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Probability Judgment in Three-category Classification Learning

Derek J. Koehler (dkochler@watarts.uwaterloo.ca)
Department of Psychology, University of Waterloo
Waterloo, Ontario N2L 3Gl CANADA

Abstract

People tend to give subadditive probability judgments
when asked to assess each in a set of three or more
exclusive hypotheses. The degree of subadditivity in such
judgments is determined in large part by the evidence upon
which the judgments are based, but the characteristics of
the evidence that influence subadditivity have yet to be
fully specified. In the present experiments, this issue was
addressed using a classification learning task, in which the
relationship between the evidence and the hypotheses
under consideration can be controlled experimentally. Two
potential evidential influences on subadditivity--cue
conflict and cue frequency--are distinguished and tested in
three experiments. The results indicate that (a) people’s
probability judgments are systematically subadditive--in
violation of standard probability theory--even when the
judgments are based on cues learned within the
experimental context, contrary to the predictions of
“ecological” theories of human judgment which attribute
such biases to nonrepresentative item selection; and (b)
cue conflict has a reliable influence on the degree of
subadditivity exhibited in probability judgments.

There is substantial evidence that people’s probability
judgments are nonextensional, that is, not consistent with
the rules of set inclusion. Recently, a descriptive theory of
probability judgment called support theory (Tversky &
Koehler, 1994) has been developed to account for these
findings. Support theory makes two basic assumptions.
The first is that judged probability reflects the relative
support for the focal and alternative hypotheses:

s(A)

s(A)+ s(B)

That is, the judged probability of A rather than B is simply
the evidential support available for A, s(A), normalized
relative to that available for its complement B. Support
theory is nonextensional, allowing judged probability to
depend not only on the event in question but also on how it
is described. Hence, A and B refer to descriptions of events,
called hypotheses, rather than to the events themselves, as in
standard probability theory.

Support theory distinguishes between explicit
disjunctions, which list their components, and implicit
disjunctions, which do not. Support theory’s second
assumption is that if H is an implicit disjunction (e.g.,
homicide) that refers to the same event as an explicit
disjunction of exclusive hypotheses H,; and Hy (e.g.,
homicide by an acquaintance or homicide by a stranger,
denoted Hg v Hy), then
2) s(H) < s(Hq Vv Hg) < s(Hg) + s(Hg).

That is, the support of the implicit disjunction H is less
than or equal to that of the explicit disjunction Hg v Hy,

(1) P(A, B) =
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which in turn is less than or equal to the total support of its
components when assessed individually (Rottenstreich &
Tversky, 1997). In short, “unpacking” the implicit
hypothesis into its components can only increase its
support, and hence its judged probability (cf. Fischhoff,
Lichtenstein, & Slovic, 1978). The relationship between
the support of the implicit disjunction and that of its
components is said to be subadditive, in the sense that the
whole receives less than the sum of its parts.

Support theory implies that, whenever a single well-
specified hypothesis is evaluated relative to all of its
alternatives taken as a group (referred to as a “catchall" or
residual category), the specified hypothesis will be given
greater weight than if it had been included implicitly in the
residual category. Consider an example with three
hypotheses: A, B, and C. When a person is asked to judge
the probability of hypothesis A, according to support
theory, the probability judgment is determined by the
evidential support for hypothesis A normalized relative to
that for its complement. In this case its complement is an
implicit disjunction of hypotheses B and C. Support theory
assumes that the implicit representation of the alternative
hypotheses decreases their support relative to that of A,
thereby increasing A’s judged probability. If separate
judgments are obtained of the probability of hypotheses A,
B, and C, the total probability assigned to the three is
predicted to exceed one, in violation of standard probability
theory. The degree of subadditivity in this case can be
measured by the extent to which the total exceeds one.

The degree of subadditivity observed depends on a number
of factors (see Tversky & Koehler, 1994), including the
compatibility of the evidence with each of the hypotheses
under consideration. For example, in one experiment
(Koehler, Brenner, & Tversky, 1997, Exp. 1) participants
judged the probability that a college student had a specified
social science major on the basis of a course that student had
taken. The courses provided as evidence varied in how
compatible they were with social science majors in general,
with two of them being quite typical (e.g., Western
Civilization) and two being fairly atypical (e.g., French
Literature). The degree of subadditivity of the judgments
(measured by the total probability assigned to four exclusive
and exhaustive social science majors) was significantly
greater for the typical courses than for the atypical courses, a
result referred to as the enhancement effect.

While the notion of “compatibility” between evidence and
hypotheses serves to summarize a number of manipulations
observed to influence subadditivity, the exact characteristics
of the evidence controlling subadditivity have yet to be
explicated. To identify more precisely the evidential
characteristics influencing subadditivity, it is necessary to
have direct experimental control over the relationship
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between the evidence and the hypotheses. This was
accomplished in the present investigation through the use of
a simulated medical diagnosis task, which has been used in
much of the recent work on classification learning (e.g.,
Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck &
Bower, 1988; Nosofsky, Kruschke, & McKinley, 1992). In
this task, participants are presented with a set of symptoms
("cues" which serve as evidence) reported by a “patient” and
are asked to guess which of a set of possible diseases
(typically two) the patient might have. Participants are
presented with a large number of patients; after each guess
participants receive feedback telling them which disease the
patient actually had. During or after the learning phase, test
trials may be given (typically without feedback), in which
participants are presented with symptom patterns and asked
to estimate the probability that the patient has a designated
disease.

This task was used to investigate two possible
interpretations of evidential compatibility underlying the
enhancement effect. The first possibility involves overall
cue frequency: Subadditivity may increase with the
frequency of presentation during learning of the cue used as
the basis of judgment. That is, if some cues simply occur
more often in conjunction with all of the categories than do
others, presentation of these cues for judgment may yield
greater subadditivity than less frequently presented cues. The
second sense in which enhancement may operate involves
the degree of conflict among a set of cues. Research on
enhancement (Koehler et al., 1997; Tversky & Koehler,
1994) suggests that subadditivity may be increased by the
introduction of evidence that has mixed or conflicting
implications (e.g., Peterson & Pitz, 1988). In the current
context this possibility can be examined by analyzing
different patterns of cues. Increased subadditivity would be
expected for those patterns that imply or support more than
one category or hypothesis.

In addition, the present set of experiments affords an
opportunity to test two competing theories of human
judgment. Support theory, with its origins in the heuristics
and biases research programme of Tversky and Kahneman
(e.g., 1974), assumes that the inferential mechanisms
underlying probability judgment often produce reasonably
accurate judgments but also cause systematic biases under
certain circumstances. In contrast, some researchers
(Bjérkman, 1994; Gigerenzer, Hoffrage, & Kleinbolting,
1991; Juslin, 1994) have recently suggested that judgmental
biases observed in experimental settings arise because
participants attempt to apply cues they have learned
accurately from experience to a set of items selected by the
experimenter that is non-representative of the environment
in which the cue-outcome relationship was originally
learned. This claim is tested in the present experiments. In
a classification learning experiment, the environment in
which the cue-outcome relationship holds is defined by and
learned during the training sequence of the laboratory task
itself. Thus the “ecological’ approach leads to the prediction
that the systematic subadditivity implied by support theory
should not be observed in the present studies, in which
nonrepresentative item selection is not an issue.
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Experiment 1

Method

Participants. Participants were 16 members of the
participant panel at the Medical Research Council Applied
Psychology Unit, who were paid for their participation.
Data from three additional participants were replaced; one
participant failed to complete the judgment task as
instructed, and the other two failed to achieve above-chance
accuracy in the learning phase of the experiment.

Stimuli and Apparatus. The stimuli were “medical
charts” consisting of four symptoms: chills, cough,
headache, and sore throat. Each symptom was denoted either
as being present (in upper-case letters, e.g., COUGH) or
absent (in lower-case letters, e.g., no cough) on the medical
chart. Each patient was to be classified as having one of
three types of flu strains, simply labeled #1, #2, and #3.

Design. As in Estes et al. (1989) and Nosofsky et al.
(1992), all participants were presented with an identical
training sequence, consisting of 240 trials. This sequence
was constructed by first randomly choosing one of the three
flu strains (with equal probabilities), and then choosing the
four symptoms (independently) with conditional
probabilities yielding the following properties. First, the
four symptoms vary systematically in their overall frequency
of occurrence, with p(A) = 55.8%, p(B) = 46.3%, p(C) =
37.1%, and p(D) = 27.5%. Second, each symptom, taken
on its own, has the same diagnosticity. That is, given the
symptom, the flu strain it is associated with increases in
probability to 60% (with some small variation due to
rounding error for the finite series of learning trials) and the
other two flu strains decrease in probability to 20% each.
Figure 1 indicates the mapping between the four symptoms
and the flu strain with which each is most strongly
associated.

The actual symptom label (e.g., cough) assigned to the
four abstract symptoms A-D was counterbalanced over
participants, as was the position of the four symptoms in
the computer display. Unlike the training sequence, which
was the same for all participants, the order in which the
subsequent 48 pattern judgments were made was determined
randomly for each participant.

Symptom Flu Strain

#1

#2

#3

Figure 1: Schematic diagram of symptom-flu strain
mapping in Experiments 1 and 2.



Procedure. Participants were told that they would be
taking part in a simulated medical judgment task. They
were told they would be presented with a series of 240
patients, each of whom was subsequently found (via a blood
test) to have one of three influenza strains. They were
instructed that their task was to consider four symptoms
(chills, cough, headache, and sore throat) that could help
them determine which of the three flu strains a patient was
suffering from. For each patient they would be told whether
or not the patient had reported each of the four symptoms,
and then would be asked to guess which of the three flu
strains that participant had. After entering their choice, they
would be told whether they were correct or not and which flu
strain the patient in question actually had. In the beginning,
they were told, they would be guessing essentially at
random, but as they saw more patients they should begin to
have some sense of which symptoms go with which flu
strains. They were warned, however, that just as in real
medical practice, these observable symptoms were not
perfect predictors and that two patients with the exact same
set of symptoms might not always have the same flu strain.

After the training sequence, participants were presented
with symptom patterns (like those seen during training) and
were asked to judge the percentage of patients with that
pattern they would expect to have a designated flu strain.
They were instructed to give numbers between 0% and
100%, where 100% indicated that they expected every patient
with that symptom pattern to have the designated flu strain,
and 0% indicated that they expected none of the patients with
that pattern to have the designated flu strain. Participants
were asked to make such judgments for all 48 possible
combinations of the 16 different symptom patterns with the
3 different flu strains.

Results and Discussion

Learning Data. Over participants, average accuracy
across the 240 training trials was 55%, a figure substantially
greater than that expected by chance. All participants
included in the sample achieved above-chance accuracy. To
determine whether learning was at asymptote by the end of
the 240 training trials, average percent correct was computed
for four consecutive 60-trial blocks. On the first block,
39% of participants’ guesses were correct. For the next
three blocks the corresponding figures were 59%, 62%, and
58%, respectively. Participants’ performance was no longer
improving after the first 60 or so training trials, suggesting
that by the end of the training phase participants had learned
all they could about the category structure.

Pattern Judgment Data. Figure 2 displays the mean
probability assigned to each flu strain for the 16 possible
symptom patterns (present symptoms are denoted with
uppercase letters, absent symptoms with lowercase).
Participants’ probability judgments were strongly related to
the normative probabilities used to construct the training
sequence. The correlation between the set of mean pattern
judgments and the normative values is 0.93, showing that
participants were able to translate what they had learned
during the training sequence into reasonably accurate
probability judgments. As predicted by support theory,
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Figure 2: Mean judged probability of each flu strain and
their total for each of the possible symptom patterns.

however, the probability judgments were clearly subadditive:
The total probability assigned to the three possible flu
strains consistently exceeded 100%, with an average total of
120% (see Figure 2).

The degree of subadditivity varied substantially over the
various symptom patterns, allowing a test of the role of cue
frequency and cue conflict on the degree of subadditivity.
First consider cue conflict. As a simple comparison, the
average total probability for those patterns with symptoms
present that imply either zero or one flu strains (n = 6; e.g.,
abed, Abced, abCD) was compared with the average for those
patterns implying two or more different flu strains (n = 10;
e.g., ABcd, ABCd, ABCD). As predicted by the cue conflict
interpretation of enhancement, the average total was
significantly higher in the latter case (M = 128%) than in
the former (M = 107%), t (254) = 4.86, p < .001.

For the pattern judgments, the cue frequency interpretation
of enhancement can be tested in two ways. The simplest
way is to consider only the patterns with a single present
symptom (i.e., Abcd, aBcd, abCd, abcD). The mean total
probabilities for these four patterns are 116%, 109%, 105%,
and 93%, respectively, showing that subadditivity did
increase with cue frequency. The contrast between the A and
B symptoms and the C and D symptoms is statistically
significant, t (62) = 2.04, p < .05. A more complicated
analysis involves comparing the average totals for the eight
patterns that include each symptom so that, for example, the
pattern ABcd is counted as an A pattern and a B pattern but
not as a C or D pattern. By this analysis the average totals
for patterns including symptoms A through D are 126%,
124%, 124%, and 120%, respectively, again consistent with
the cue frequency interpretation.

Experiment 2

The first experiment revealed substantial subadditivity in
probability judgments elicited after learning, even though
the task involved only three categories and gave a
frequentistic interpretation to the response scale (cf.
Gigerenzer et al., 1991). The degree of subadditivity was
affected by both cue conflict and cue frequency. It could be
argued, however, that had probability judgments been



elicited within the learning context, instead of after learning
had taken place, the effects of cue conflict and frequency or
even the general observation of subadditivity might have
been eliminated. The feedback provided after each trial, for
example, might draw participants’ attention to the fact that
their probability judgments are generally too high and hence
eliminate the subadditivity found in the post-learning
judgments. This possibility was tested in Experiment 2 by
asking participants to make a probability judgment on each
training trial.

Method

Participants. Participants were 34 prospective
psychology undergraduate majors at University College
London, who participated as part of a laboratory
demonstration. Data from 3 of these participants were
dropped as their learning performance was only marginally
better than that expected by chance, leaving a total of 31
participants.

Design. Participants received the same training sequence
as in Experiment 1, but assigned a probability to a
designated flu strain rather than choosing which of the three
flu strains they thought was most likely on each trial. The
flu strain designated for evaluation on each trial was varied
between participants by assigning each participant to one of
three target groups. On any given trial, the three target
groups each evaluated one of the three possible flu strains so
that, across groups, judgments were obtained of the
probability of each flu strain on every training trial. The flu
strain designated for a given target group was determined
randomly such that participants in each group were assigned
each flu strain with approximately equal frequencies across
the training sequence. Because participants were giving
what were referred to as pattern judgments in Experiment 1
on every trial of Experiment 2, participants were not asked
to give final pattern judgments at the end of the learning
sequence.

Procedure. Instructions regarding the general nature of the
medical judgment task were similar to those given for
Experiment 1. The major difference is that in this
experiment participants were instructed to give a probability
judgment on every training trial. It was explained that one
of the three flu strains would be selected arbitrarily on each
trial as the designated outcome for judgment. Because the
probability judgments were obtained during learning as
individual patients were presented for assessment, the
judgments were given a probabilistic interpretation (i.e., the
probability that the patient in question has the designated flu
strain). Probability judgments were made on a scale running
from 0% to 100% in increments of 10%.

Results and Discussion

Learning Performance. In this experiment a more
complicated analysis is necessary because participants judged
the probability of a designated flu strain rather than choosing
the flu strain they thought was most likely. A standard
squared error measure was computed for each participant,
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which assumed a value of (I - n)z on irials in which the
designated event occurs and a value of p“ on trials in which
the designated event does not occur. Given chance
performance (i.e., in the absence of any learning), the value
of this error measure depends on the participant’s response
distribution. To adjust for this, a corrected performance
score was computed for each participant by first calculating
the expected value of chance performance given that
participant’s response distribution, and then subtracting the
resulting value from the participant's actual performance
score to obtain a measure of performance above that expected
by chance. The resulting measure will be referred to as
corrected performance.

All participants performed better than chance, that is, had
positive corrected performance measures. The mean
corrected performance value was 26.3 (SD = 11.8). All
subsequent analysis is based on mean data averaged over
participants within a given target group (n =9, 11, and 11
for the three groups). As in the previous experiment, mean
learning performance was examined for the four sequential
sets of 60-trial blocks. The mean correct performance value
(computed separately for each participant and then averaged)
was 0.8, 8.3, 8.7, and 8.6 for blocks 1, 2, 3, and 4,
respectively.

Pattern Judgments. As the above analysis suggests that
learning was at or near asymptote by trial 60, the pattern
judgments were obtained by averaging over trials 61-240.
Figure 3 displays the mean judgment assigned to each flu
strain, and their total, for each of the 16 possible symptom
patterns. The correlation between the mean pattern
judgments and the corresponding normative values was 0.92,
which is essentially identical to that obtained in the first
experiment. The correlation between the pattern judgments
obtained in Experiments 1 and 2 is 0.95.

Once again, the probability judgments were substantially
subadditive for all 16 symptom patterns. The (unweighted)
mean total probability assigned to the three possible flu
strains is 124%, which is slightly greater than the
comparable value of 120% for the pattern judgments of
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Figure 3: Mean judged probability of each flu strain and
their total for each of the possible symptom patterns in
Experiment 2.



the first experiment. Participants’ judgments were
consistently subadditive, then, even when feedback regarding
the actual outcome was given after every judgment. Indeed,
comparison with the pattern judgments of Experiment |
suggests that the feedback did nothing at all to decrease the
degree of subadditivity in the pattern judgments.

Cue conflict had a significant effect on the degree of
subadditivity observed in the pattern judgments., Those
patterns implying only a single flu strain (or none) received
a weighted average total probability of 115% while those
patterns implying two or three different flu strains received
an average total of 132%, t (178) = 6.03, p < .001. Patterns
including only a single present symptom (i.e., Abcd, aBcd,
abCd, abcD) failed to show an effect of cue frequency,
though it should be noted that the collection of judgments
during learning allowed less time for effects of frequency to
emerge.

Experiment 3

A final experiment assessed the effects of cue conflict and
cue frequency using a different category structure than that
used in the first two experiments. The new category
structure was intended to completely separate testing of the
two effects. In the resulting design, cue conflict could be
tested using cues that were equated in terms of frequency, and
cue frequency could be tested using cues that were
completely nondiagnostic with regard to the outcome
variable. As in the first experiment, participants made
choice decisions rather than probability judgments on each
of the training trials.

Method

Participants. Participants were 16 undergraduates at the
University of Waterloo, who participated in exchange for
credit in their introductory psychology course. Data from
two additional participants were dropped: One whose
learning performance was not greater than that expected by
chance, and one who reported to the experimenter that she
had failed to complete the judgment task as instructed.

Design and Procedure. Participants were presented with
information regarding five symptoms, rather than four as in
the previous experiments. Symptoms A, B, and C were
equally diagnostic, and were associated with flu strains #1,
#2, and #3, respectively. The likelihood of the symptom
associated with a flu strain (e.g., of symptom A given flu
strain #1) increased to 75% in the presence of that flu strain
and decreased to 25% in its absence. As in the first two
experiments, then, the likelihood of a flu strain given the
presence of its associated symptom (e.g., of flu strain #1
given symptom A) was 60%, with the remaining two flu
strains having a probability of 20% each. Symptoms D and
E were nondiagnostic and differed only in terms of their
overall frequency. Regardless of the patient’s flu strain,
symptom D was present with a probability of 75%, while
symptom E was present with a probability of 25%. Note
that this represents a greater difference in cue frequency than
that investigated in the first two experiments, allowing a
stronger test of cue frequency’s influence on judged
probability.
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The training sequence again consisted of 240 trials. This
sequence was constructed by first randomly choosing one of
the three flu strains (with equal probabilities), and then
choosing the five symptoms (independently) with the
appropriate probabilities for that flu strain. In contrast to
the fixed training sequence used in the previous experiments,
the order in which the 240 patients were presented in the
training sequence was determined randomly for each
participant to ensure the results were not attributable to
some idiosyncrasy of the particular training sequence being
employed. The introduction of a fifth symptom
(“dizziness”) increased the number of pattern judgments made
by each participant to 96, the order of which was determined
randomly for each participant. Participants made their
judgments--which were given a probabilistic interpretation--
using a probability judgment scale running from 0% to
100% in increments of 10% .

Results and Discussion

Learning Performance. Over participants, average
accuracy across the 240 training trials was 47%.
Participants were less accurate in the training phase of this
experiment than they were in the previous two, as would be
expected given the changes in the category structure
introduced in this experiment: Participants had to consider
five symptoms (rather than four as in the previous
experiments), only three of which were diagnostic. All
participants included in the sample achieved significantly
above-chance accuracy. Participants’ performance showed
little sign of improvement in the second half of the training
sequence, suggesting that by the end of the training phase
participants had learned all they could about the category
structure.

Pattern Judgment Data. The correlation between the
mean pattern judgments and the normative values over the
32 possible symptom patterns was 0.81. As predicted by
support theory, the probability judgments were clearly
subadditive: The total probability assigned to the three
possible flu strains consistently exceeded 100%, with an
average total of 142%. The degree of subadditivity observed
for these judgments appears to be considerably greater than
that of the previous experiments, perhaps because the
inclusion of an additional symptom induced a greater sense
of conflict or uncertainty.

The average total probability for those patterns with
symptoms present that imply either zero or one flu strains
(n = 48; e.g., Abcde, aBcDE, abede) was compared with the
average for those patterns implying two or more different flu
strains (n = 48; e.g., ABcde, ABCde, ABCDe). As predicted
by the cue conflict interpretation of enhancement, the mean
total was significantly higher in the latter case (M = 150%)
than in the former (M = 135%), E(1, 15) = 13.30, p < .01.

Recall that symptoms D and E were introduced to provide
a test of cue frequency’s role. Comparison of symptom
patterns abcDe and abcdE revealed no significant difference,
with mean total probabilities of 122% and 127%,
respectively, t(15) = 0.26, ns. This difference is in the
opposite direction of that predicted by the cue frequency
interpretation of enhancement. Note, however, that this



analysis is based on only a single observation per
participant. To overcome this problem, the symptom
patterns were divided into four classes of 8 patterns each: de
(neither D nor E); dE (E but not D); De (D but not E); and
DE (both D and E). The average total probability assigned
to these four classes was 134%, 139%, 146%, and 148%,
respectively. These four classes differed significantly by an
omnibus ANOVA, FE(3, 45) = 5.01, p < .01; more
importantly, the contrast between dE and De was at least
marginally significant, E(1, 45) = 2.85, p < .10. There is
some indication, then, that cue frequency plays a role even
when the cues in question are completely nondiagnostic.

General Discussion

There are two major empirical findings in the present set of
experiments. First, when more than two categories are used,
people’s probability judgments in the context of
classification learning--as has been found in other domains--
are substantially subadditive. Furthermore, use of the
probability judgment task during (rather than after) the
training sequence was insufficient to eliminate this effect:
Participants continued to give subadditive judgments despite
the provision of potentially corrective outcome feedback on
every trial. Contrary to the claims of researchers such as
Gigerenzer et al. (1991) and Juslin (1994), systematic biases
in probability judgment are not necessarily eliminated by
designs which exclude the possibility of non-representative
item selection.

The second major empirical observation is that the degree
of subadditivity in people’s probability judgments varied
substantially as a function of the evidence being used to
make the judgment. Evidence that implicates or supports
more than one category tends to induce greater subadditivity
than does evidence implicating only a single category. This
“cue conflict” interpretation of what Tversky and Koehler
(1994) referred to as the enhancement effect was strongly
supported in both experiments. (The role of cue frequency is
less clear.) When one category is specified for judgment and
the alternatives are included implicitly in a residual category,
introduction of “mixed” evidence implicating multiple
categories is interpreted by participants as supporting
differentially the category designated for judgment (cf.
Peterson & Pitz, 1988). Koehler et al. (1997) suggest that
categories or hypotheses included implicitly in the residual
do not utilize the support available from the evidence as
efficiently as does the specified, focal hypothesis because the
way in which the evidence supports the specified hypothesis
is more readily apparent than is the way in which it supports
its negation through the alternatives included in the residual.
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