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ABSTRACT OF THE DISSERTATION

Design and Analysis of Interconnected Systems:
Optimization Algorithms and Linear-Threshold Brain Networks

by

Ahmed Allibhoy

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2023

Professor Jorge Cortés, Chair

From the electric power grid, to social networks, to the human brain, many systems

of engineering and scientific interest are obtained by interconnecting simpler subsystems.

This interconnection can be as simple as a feedback loop, or have a complicated network

structure. However, in each case, the dynamic coupling results in complicated behaviors

that cannot be explained simply by looking at the constituent components in isolation. This

poses two major challenges: first, in terms of developing mathematical models to gain insight

into the behavior of complex systems, and second, in terms of optimizing their operation

xiv



or controlling them. The goal of this thesis is to develop a mathematical framework to

tackle these challenges using tools from nonlinear dynamics, control theory, optimization,

and network science.

This thesis is divided into two parts, each focusing on a specific class of intercon-

nected system arising in real world applications. In the first part, we focus on developing

a “systems theory” of optimization algorithms, in order to understand their properties and

study their interconnection with physical processes. We demonstrate that tools from safety-

critical control can be used to synthesize flows solving constrained nonlinear optimization

problems, with safety, stability and robustness guarantees that make them ideal for online

implementation when interconnected with physical processes. The second part of this thesis

discusses mathematical modeling of interconnected neurological systems, in order to under-

stand and control epileptic seizures. We model the epileptic brain with Linear Threshold

Networks (LTNs), and analyze the interplay between the network structure and the dynami-

cal properties they exhibit. We characterize conditions on the network structure under which

oscillations spread in LTNs, and develop strategies to optimally modify networks to prevent

the spread of epileptic seizures.
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Chapter 1

Introduction

Engineering interconnected systems are increasingly important in the 21st century,

but introduce a number of practical challenges. For example, advances in green technology

have resulted in renewable energy resources distributed across the electric power grid, thus

reducing our carbon footprint, but it is difficult to coordinate these resources while ensuring

reliable operation of the power grid that was designed for a paradigm where energy is gen-

erated centrally. Autonomous vehicles promise to make our transportation system safer and

more efficient, but initial roll-outs of this technology have exposed deficiencies in their ability

to navigate safely while ensuring smooth traffic flow. And in synthetic biology, engineered

genetic circuits are on the verge of revolutionizing biotechnology, but circuits designed in

vitro often do not behave predictably and reliably when embedded within a host cell. Despite

the sheer breadth covered by these examples, the fundamental challenge is the same: engi-

neering systems considered in isolation are not enough, one must consider their interactions

with other systems.
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By interaction we refer to any situation where multiple systems are dynamically

coupled, meaning the state of one influences the other and vice versa. This interaction can

manifest in many ways, e.g., as a simple feedback loop between two systems, or through a

complex network with thousands of nodes. In the network case, a large number of nodes, a

lack of full knowledge of the network topology, and heterogeneity contribute to engineering

challenges. However, even when the interconnection structure is simple, the dynamical

nature of the interactions between components can still cause problems. For example, given

two systems which are individually stable, it is possible to couple them in a way such that

the aggregate system as a whole is unstable. Other sources of challenges arising from the

dynamic aspects of interactions include unknown dynamics, parametric uncertainties, and

stochastic noise.

The goal of this dissertation is to build a mathematical framework to tackle challenges

that arise in modeling, optimization, and control of interconnected systems. While the

tools we develop are broadly applicable, we focus our attention on two specific classes of

interconnected systems: online optimization algorithms used to control physical processes

and the human brain. Despite the differences in these applications, the mathematical tools

we use are remarkably similar. In both cases, the underlying task can be formalized using

notions from control theory, we can obtain a set of conditions on the structure and dynamic

properties of the interconnection that ensure correct performance, and we can use these

conditions to develop a set of design principles for these systems.

2



1.1 Organization of Thesis

This thesis is divided into two parts. The first part is devoted to the study of the

“systems theoretic” properties of optimization algorithms. This perspective allows us to

understand the qualitative and quantitative properties of algorithms, study their intercon-

nection with physical processes, and systematically design novel algorithms. Using tools

from safety-critical control, we synthesize continuous-time flows solving constrained non-

linear optimization problems, while ensuring the constraint set is forward invariant. This

ensures that in real-time applications, feasibility is maintained even when the algorithm is

terminated early. We show that these flows have safety and stability properties that make

them ideal for their implementation in online feedback optimization problems.

The second part of this thesis discusses mathematical modeling of neurological sys-

tems, in order to understand and control epileptic seizures. We model the epileptic brain

using a class of network dynamical system called Linear Threshold Networks (LTNs). After

performing a detailed bifurcation analysis of planar LTNs, we associate behaviors originating

from these bifurcations to prototypical waveforms observed in EEG signals during epilep-

tic seizures. This provides a mathematical characterization of biomarkers associated with

epilepsy. Next, we discuss conditions on the network structure under which oscillations

spread in LTNs, and develop an optimization-based framework to design networks that are

robust to oscillations spreading, providing a path toward effective interventions to mitigate

epileptic seizures.

3



1.2 Statement of Contributions

The unifying theme of this thesis is understanding and controlling interconnected

systems that arise in engineering applications, with each part looking at this challenge from

a different angle. Part I focuses on the systems-theoretic aspects of optimization algorithms

with a view toward interconnecting them with physical properties. Part II considers the

brain as a complex networked dynamical system in an effort to model and control epileptic

seizures. We describe next in detail our contribution in each chapter.

Chapter 2: We introduce the reader to the idea of analyzing optimization algorithms from

a systems-theoretic perspective, and review in detail the literature in this area. We then recall

preliminary notions from variational analysis, optimization theory, and safety-critical control

which will be used to develop our results in later chapters.

Chapter 3: We consider the synthesis of continuous-time dynamical systems that solve

constrained optimization problems while making the feasible set forward invariant and

asymptotically stable. Our solution to the problem is a novel continuous-time flow, which we

call the safe gradient flow. We discuss two equivalent derivations of the system: the first as a

gradient flow controlled with a feedback controller implemented as a control barrier function

based quadratic program, and the second as as a continuous modification of the projected

gradient flow, based on a design parameter. We show that equilibria correspond exactly

with critical points of the original optimization problem, and conduct a thorough stability

analysis. We provide a suite of constraint qualification-based conditions under which iso-

lated local minimizers are either locally asymptotically stable with respect to the feasible set,
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locally asymptotically stable with respect to the global state space, or locally exponentially

stable. We also characterize conditions for semistability of nonisolated local minimizers and

establish global convergence to critical points of the optimization problem. We compare

the safe gradient flow with other continuous-time methods in optimization on a numerical

example to illustrate its advantages.

Chapter 4: We extend the framework we developed in Chapter 3 to synthesize continuous-

time dynamical systems that solve monotone variational inequalities. We discuss three dy-

namical systems that solve this problem. The first, the projected monotone flow, is already

known, but we discuss a novel reinterpretation of it through the lens of control theory. The

second is the safe monotone flow, which analogous to the safe gradient flow, can either be in-

terpreted as a system controlled with a feedback controller synthesized using techniques from

safety critical control, or as an approximation of the projected monotone flow. We show that

equilibria correspond exactly with critical points of the original problem, and derive global

stability guarantees under the additional assumption of convexity and monotonicity. In the

case where the constraint set is polyhedral, we establish that the system is contracting. The

third flow is the recursive safe monotone flow, which is derived by interconnecting two dy-

namical systems evolving on different time scales. Using tools from singular perturbation

theory for contracting systems, we show that for variational inequalities with polyhedral con-

straints, the KKT points are locally exponentially stable and globally attracting, and obtain

practical stability guarantees. We compare the three flows on a simple example problem.

We also demonstrate that the safe monotone flow can be interconnected with dynamical
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processes using an example of a receding horizon linear quadratic dynamic game.

Chapter 5: In this chapter we motivate our analysis of brain networks by discussing

challenges in the treatment of epilepsy. We discuss how the brain can be interpreted as a

network dynamical system and review in detail various models that exist on different spatial

scales. Next, we review properties of Linear Threshold Networks, to set the stage for our

contributions in the following chapters.

Chapter 6: In this chapter we focus our attention on a specific type of planar Linear

Threshold Network, referred to as an excitatory-inhibitory pair (EI pair). We fully char-

acterize the dynamical properties of EI pairs, including computing the equilibrium points,

deriving necessary and sufficient conditions for the existence of stable limit cycles, as well

as providing a full topological characterization of the possible bifurcation diagrams with the

input as the bifurcation parameter. This analysis allows us to show that the behavior of the

system in different dynamical regimes approximates prototypical patterns of EEG activity

observed before, during, and after epileptic seizures, and relate the transition between differ-

ent states corresponds to the bifurcations in EI pairs. Our result pave the way to designing

control systems that suppress the spread of epileptic seizures.

Chapter 7: In this chapter, we build on results from Chapter 6 to characterize conditions

for the spreading of oscillations in brain networks and to formulate and solve optimization

problems for the design of networks that are robust to oscillation spreading. In particular,

we model the excitatory and inhibitory activity of a small brain tissue (micro-domain) using
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networks of coupled EI Pairs. Using these networks, we model the complex interactions

among domains of the human brain. Our goal is to exploit the known properties of the

single EI pairs to infer global properties of the brain network. Once formal conditions on the

spreading of oscillations are derived, we develop and solve a series of optimization problems

through which we can efficiently compute conditions to isolate localized oscillations from the

rest of the network. We show how these optimization problems are computationally efficient

and practically effective. We conclude the discussion with extensive numerical simulations

on synthetically generated networks.

Chapter 8: We summarize the contributions of the thesis and propose future directions

to extend our work.
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Part I

On the Systems Theory of

Optimization Algorithms
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Chapter 2

On the Systems Theory of

Optimization Algorithms

The first part of this thesis concerns progress toward a “systems theory” for optimiza-

tion algorithms. The idea is to interpret iterative algorithms solving optimization problems

– either in continuous time or discrete time – as dynamical systems, and to use tools from

control and systems theory to understand them.

There are two primary motivations for this perspective. First, the systems approach

opens the door for understanding both qualitative and quantitative properties of algorithms

themselves. In practical applications, one seeks guarantees that the algorithm converges to

the optimizer, as well as estimates of the convergence rate. Furthermore, the real world

is full of uncertainties, which manifest themselves in problems in a myriad of ways, e.g.,

stochastic noise, parametric uncertainties, unmodeled disturbances. Thus, when deploying

optimization algorithms, one needs assurances that their performance would be robust to
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these uncertainties. Control theory offers a structured way to reason about the dynamical

properties of algorithms and provides tools for quantifying the effects of uncertainty, making

this perspective useful for analysis. However, the systems theoretic approach also holds value

for the design of algorithms, since at its core, control theory is the study of synthesizing

dynamical systems with desired properties. The ultimate promise of a “systems theory” for

optimization algorithms is to provide a design methodology enabling a user to obtain an

algorithm that can handle the specific challenges inherent to their intended application.

The second motivation stems from the interconnection of optimization algorithms

with physical processes, a set-up often referred to as online feedback optimization. Feedback

optimization is required when information relevant to the optimization problem cannot be

known a priori, thus necessitating an online approach. This approach also presents an

opportunity in situations where the objective function or the constraints of the optimization

problem are not known in closed form: solving the optimization problem online allows the

evolution of the physical process to “compute” these functions.

Feedback optimization problems arise in many engineering applications e.g., power

grids, transportation systems, robotics, and communication networks. A shared feature

in all of these examples is that the optimization algorithm is in a feedback loop with a

dynamically varying plant, and thus the analysis of the system as a whole is done naturally

within a control-theoretic framework. The feedback is due to the fact that the estimate of

the solution to the optimization problem is used to influence the state of the plant (e.g., by

providing a set-point, specifying the input using an optimization-based feedback controller,

steering the plant toward an optimal steady-state), and in turn the state of the plant modifies
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the parameters of the optimization problem. The optimization algorithm, when deployed,

progresses in parallel to the time evolution of the plant.

We illustrate this set-up diagrammatically in Figure 2.1. On the left, we depict the

ideal situation, where the exact solution to the optimization problem is used to regulate the

plant. On the right we show the actual implementation, where the optimization problem is

solved using a flow that evolves alongside the plant dynamics. The principal challenge in

feedback optimization is ensuring the interconnected system behaves optimally, which leads

one to consider questions such as: does the trajectory u(t) track the time-varying optimizer?

Are the constraints satisfied for all time? Is the interconnected system stable? Answering

these questions is nontrivial, even when stability and convergence can be verified for both

the plant and the optimizing flow individually, and requires the full battery of controls and

systems theoretic tools.

ẋ = f(x, u)

u∗(x) = argmin
u∈K(x)

{J(x, u)}
xu

ẋ = f(x, u)

u̇ = g(x, u)

xu

Figure 2.1: Diagram depicting a typical instance of an online feedback optimization prob-
lem. (Left) The ideal case, where the input to the plant is determined by the exact solution
to a parametric optimization problem, where the parameter is the system state. (Right)
A real-time implementation of feedback optimization. Here the flow u̇ = g(x, u) is used to
solve the optimization problem on the left, and evolves in parallel to the plant dynamics.

Finally, we mention the utility of the systems theoretic approach to optimization in the

network setting. For distributed optimization problems, care must be taken to ensure that

nodes can solve the problem using only information that is available to them locally. Recent

advances in consensus dynamics and distributed control provide a path to solving difficult
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network optimization problems in real-time. As computing power increases and becomes

distributed over large-scale networks, we can expect online and distributed optimization to

play a more prominent role in the future, so systems and control theory will continue to be

indispensible in the development and analysis of optimization algorithms.

2.1 Related Work

Here we review the literature that connects systems-theoretic concepts with optimiza-

tion. Early works include the study of dynamical systems solving optimization and saddle

point problems [AHU58], and demonstrating that certain combinatorial optimization prob-

lems can be solved using continuous-time flows on manifolds [Bro91, HM94]. More recent

work has focused on uncovering the phenomenon of acceleration in first-order optimization,

synthesizing flows solving constrained optimization problems, understanding the theoretical

properties of projected systems, studying saddle flows, and connecting optimization algo-

rithms with plants in a feedback loop. We now discuss in detail each of these areas in the

literature.

A Extremum Seeking Control

We begin by reviewing extremum seeking control. This refers to a class of feedback

controllers which steer a dynamical system to the optimizer of an unknown map. These

methods are widely used in real-time applications where the model being controlled is un-

known and is used in applications as varied as automotive control, bioreactors, formation

flight, and gas turbines (c.f. [AK03] and references therein). Extremum seeking control
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methods were first introduced in the 1920s [Leb22], and although these methods are related

to those in adaptive control, the historical development proceeded in parallel to develop-

ments in control theory until being rediscovered by the community in the 2000s [KW00].

Recently, there has been a resurgence of interest in extremum seeking control after it was

discovered that extremum-seeking feedback can be studied using Lie-algebraic methods in

nonlinear control [DSEJ13, GZE18]. These methods have been extended to nonsmooth op-

timization [FZE18, FBE21], and have been applied to safety critical applications [WKS23],

game theory [KG21], power systems [CPL22], and particle accelerators [WSH+23].

B Accelerated Optimization

The dynamical systems approach to optimization has also been fruitful for gain-

ing insight into the phenomenon of acceleration in optimization, where certain first-order

descent algorithms achieve super-linear convergence rates. An example of this is the cel-

ebrated Nesterov’s method [Nes83]. Similar to how gradient descent can be viewed as a

discretization of the gradient flow, recent work has uncovered that Nesterov acceleration can

be viewed as discretization of an ordinary differential equation (ODE) [SBC16]. This con-

nection has enabled the use of control-theoretic methods in analyzing acceleration, such as

Lyapunov-based convergence estimates [WRJ21], and analysis of discretization and stability

[MJ21]. These continuous-time flows can be derived using variational methods in mechanics

[WWJ16], and recent work has focused on developing rate-matching discretizations, either

using the notion of “high-resultion” differential equations [SDJS22], or symplectic integrators

[SDSJ19, FSRV20].
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C Flows Solving Equality Constrained Problems

We now discuss the dynamical systems approach for solving problems involving only

equality constraints. The works [Tan80, Yam80] employ differential geometric techniques

to design a vector field that maintains feasibility along the flow, makes the constraint set

asymptotically stable, and whose solutions converge to critical points of the objective func-

tion. Recently [SS00] introduces a generalized form of this vector field to deal with inequality

constraints in the form of a differential algebraic equation and explores links with sequential

quadratic programming. Recently, this work has been extended in [FZL20] to study the re-

gion of attraction of local minima, showing that the introduction of a stochastic perturbation

allows solutions to escape sharp local minimizers.

D Projected Dynamical Systems

A particularly fruitful area of research is in the area of projected dynamical systems,

which are commonly employed to solve optimization problems [NZ96]. Typically, this ap-

proach proceeds by projecting the gradient of the objective function onto the cone of feasible

descent directions. Projected systems are closely related to differential inclusions [AC84],

and have also been shown to be equivalent to complementary systems [HSW00, BDLA06].

These systems are, in general, discontinuous, which from an analysis viewpoint requires prop-

erly dealing with notions and existence of solutions, cf. [Cor08]. The discontinuous methods

also introduce challenges in the computation implementation of these systems [AB08]. Pro-

jected systems have been employed to solve problems arising in power systems applications

[HSB+18, DSSPG19], coverage control in robotics [GCB06], and control of transportation
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systems [NZ96].

Several modifications and extensions to projected dynamical systems have been pro-

posed in recent years. The work [HBD21] discuss projected dynamical systems on non-

Euclidean manifolds. A continuous modification of the projected gradient method was in-

troduced in [FBM+94] and its stability was analyzed in [XW00]. However, this method

projects onto the constraint set itself, rather than the tangent cone, and may fail when it

is nonconvex. Another modification is the “constrained gradient flow” proposed in [MJ22],

derived using insights from nonsmooth mechanics, and is well-defined outside the feasible

set. The resulting method is related to the one we present in Chapter 3, though unlike the

flow we discuss, this one is discontinuous and stability guarantees are only provided in the

case of convexity.

E Saddle-Point Dynamics

A common method for solving convex optimization problems is by searching for sad-

dle points of the associated Lagrangian. This can be done via a primal-dual dynamics,

consisting of a gradient descent in the primal variable and a gradient ascent in the dual one.

The analysis of stability and convergence of this method has a long history [AHU58, Kos56],

however, because they are particularly well suited for distributed implementation on network

optimization problems, they have been the subject of intense research in recent years. Stabil-

ity of these methods has been analyzed both for discrete-time implementations [LJJ20], and

continuous-time ones [FP10, CGC17, CMLC18]. Recent work has also extended these meth-

ods for nonsmooth optimization problems [CN19], and explored their contraction properties
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[CVJB21].

F Online Feedback Optimization

Here we review the literature analyzing applications where the solution to the op-

timization problem used to regulate the behavior of a physical plant [JLvdB09, CDB20,

LSPM21]. Feedback optimization problems arise in a number of advanced engineering ap-

plications, including power systems [CDB20, LSPM21], network congestion [LPD02], and

transportation [BCPD22]. We refer the reader to [HBHD21] for a review on both theoretical

methods and applications in this line of research. One particularly interesting example of

feedback optimization is model predictive control (MPC), where an optimal control prob-

lem is solved in a receding horizon manner. While stability and robustness guarantees for

MPC can be provided [RM09], recent work has explored the case where the optimization

problem is embedded in a feedback loop with a continuous-time plant [NLMK18], or solved

only approximately and warm-started on each iteration [LMNK20]. In these settings, un-

derstanding the convergence and robustness properties of the optimization algorithm is of

key importance, and necessitates a systems-theoretic approach.

2.2 Mathematical Preliminaries

We now discuss various mathematical preliminaries, included Variational Analysis,

nonlinear programming, variational inequalities, stability notions for dynamical systems,

and safety-critical control.
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2.2.1 Notation

We let R denote the set of real numbers. For v, w ∈ Rn, v ≤ w denotes vi ≤

wi for i ∈ {1, . . . , n}. We let ∥v∥ denote the Euclidean norm and ∥v∥∞ = max1≤i≤n |vi|

the infinity norm. For y ∈ R, we denote [y]+ = max{0, y}, and sgn(y) = 1 if y > 0,

sgn(y) = −1 if y < 0 and sgn(y) = 0 if y = 0. We let 1m ∈ Rm denote the vector of all

ones. For a matrix A ∈ Rn×m, we use ρ(A) and A† to denote its spectral radius and its

Moore-Penrose pseudoinverse, respectively. We write A ⪰ 0 (resp., A ≻ 0) to denote A is

positive semidefinite (resp., A is positive definite). Given a symmetric matrix Q, let λmin(Q)

and λmax(Q) denote the minimum eigenvalue and maximum eigenvalue of Q respectively.

For a matrix Q ≻ 0 and x ∈ Rn, let ∥x∥Q =
√
x⊤Qx. Given a subset C ⊂ Rn, the distance

of x ∈ Rn to C is distC(x) = infy∈C ∥x− y∥. We let C, int(C), and ∂C denote the closure,

interior, and boundary of C, respectively. Given g : Rn → R, we denote its gradient by ∇g

and its Hessian by ∇2g. For g : Rn → Rm, ∂g(x)
∂x

denotes its Jacobian. For I ⊂ {1, 2, . . . ,m},

we denote by ∂gI(x)
∂x

the matrix whose rows are {∇gi(x)⊤}i∈I .

2.2.2 Variational Analysis

We review basic notions from variational analysis following [RW98]. The extended

real line is R = R ∪ {±∞}. Given f : Rn → R, its domain is dom(f) = {x ∈ Rn | f(x) ̸=

∞,−∞}. The graph of f is graph(f) = {(x, f(x)) | x ∈ Rn}. Similarly, given a set-valued

map F : X ⇒ Rm, its graph is graph(F) = {(x, y) | x ∈ X, y ∈ F(x)}.
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Consider a subset C ⊂ Rn. The indicator function of C is δC : Rn → R,

δC(x) =


0 if x ∈ C,

∞ if x /∈ C.

Note that dom(δC) = C. For x ∈ dom(f) and d ∈ Rn, consider the following limits

f ′(x; d) = lim
(h,y)→(0+,x)

f(y + hd)− f(x)
h

, (2.1a)

f ′′(x; d) = lim
(h,y)→(0+,x)

f(y + hd)− f(x)− hf ′(y; d)
h2 . (2.1b)

If the limit in (2.1a) (resp. (2.1b)) exists, f is directionally differentiable in the direction d

(resp. twice directionally differentiable in the direction d). By definition, f ′(x; d) = ∇f(x)⊤d

if f is continuously differentiable at x and f ′′(x; d) = d⊤∇2f(x)d if f is twice continuously

differentiable at x.

Given a dynamical system ẋ = G(x) and a function V : Rn → R, the upper-right Dini

derivative of V along solutions of the system is

D+
G V (x) = lim sup

h→0+

1
h

[V (Φh(x))− V (x)] ,

where Φh is the flow map of the system. If V is directionally differentiable then D+
G V (x) =

V ′(x;G(x)), and if V is differentiable then D+
G V (x) = ∇V (x)⊤G(x).
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The tangent cone to C ⊂ Rn at x ∈ Rn is

TC(x) =

ξ ∈ Rn |∃{tν}∞
ν=1 ⊂ (0,∞), {xν}∞

ν=1 ⊂ C

tν → 0+, xν → x,
xν − x
tν

→ ξ as ν →∞

,

and the normal cone to C at x ∈ Rn is

NC(x) =

w ∈ Rn |∃(xν)∞
ν=1 ⊂ C,

xν → x,
w⊤(xν − x)
∥xν − x∥

→ 0 as ν →∞

.

When C is convex, then the normal and tangent cones simplify to

NC(x) =
{
w ∈ Rn | w⊤(y − x) ≤ 0 ∀y ∈ C

}
,

TC(x) =
{
ξ ∈ Rn | d⊤w ≤ 0 ∀w ∈ NC(x)

}
.

If C is an embedded submanifold of Rn, then the tangent cone coincides with the usual

differential geometric notion of tangent space. Let ΠC : Rn ⇒ C, with

ΠC(x) =
{
y ∈ C | ∥x− y∥ = distC(x)

}
,
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be the projection map onto C. The proximal normal cone to C at x is

N prox
C (x) =

{
d ∈ Rn | ∃{tν}∞

ν=1 ⊂ (0,∞),

{(xν , yν)}∞
ν=1 ⊂ graph(ΠC),

tν → 0+, xν → x,
xν − yν

tν
→ d as ν →∞

}
.

When C is convex, the proximal normal cone coincides with the usual notion of normal cone.

2.2.3 Nonlinear Programming

We present the basic background on necessary conditions for optimality [Ber99]. Con-

sider a nonlinear program of the form

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

h(x) = 0,

(2.2)

where f : Rn → R, g : Rn → Rm, and h : Rn → Rk are continuously differentiable. Let

C = {x ∈ Rn | g(x) ≤ 0, h(x) = 0} denote its feasible set. Necessary conditions for optimality

can be derived provided that the feasible set satisfies appropriate constraint qualification
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conditions. Let the active constraint, constraint violation, and inactive constraint sets be

I0(x) = {1 ≤ i ≤ m | gi(x) = 0}, (2.3a)

I+(x) = {1 ≤ i ≤ m | gi(x) > 0}, (2.3b)

I−(x) = {1 ≤ i ≤ m | gi(x) < 0}, (2.3c)

respectively. We say that the constraint set C satisfies

• the Constant Rank Constraint Qualification (CRCQ) condition at x if there there exists

an open neighborhood U containing x such that for all y ∈ U , and all I ⊂ {1, . . . ,m}

the set {∇gi(y)}i∈I ∪ {∇hj(y)}k
j=1 has constant rank.

• the Mangasarian-Fromovitz Constraint Qualification (MFCQ) at x if {∇hj(x)}k
j=1 are

linearly independent and there exists ξ ∈ Rn such that ∇hj(x)⊤ξ = 0 for all j ∈

{1, . . . , k} and ∇gi(x)⊤ξ < 0 for all i ∈ I0(x);

• the Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) at x if

{∇hj(x)}k
j=1 are linearly independent and there exists ξ ∈ Rn such that ∇hj(x)⊤ξ = 0

for all j ∈ {1, . . . , k} and ∇gi(x)⊤ξ < 0 for all i ∈ I0(x) ∪ I+(x);

• the Linear Independence Constraint Qualification (LICQ) at x, if {∇gi(x)}i∈I0(x) ∪

{∇hj(x)}k
j=1 are linearly independent.

Note that LICQ implies MFCQ, and EMFCQ implies MFCQ, however CRCQ neither implies

nor is implied by MFCQ.
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If x∗ ∈ C is a local minimizer solving (2.2), and any of the above constraint qual-

ification conditions hold at x∗, then there exists u∗ ∈ Rm and v∗ ∈ Rk such that the

Karash-Kuhn-Tucker (KKT) conditions hold,

∇f(x∗) + ∂g(x∗)
∂x

⊤

u∗ + ∂h(x∗)
∂x

⊤

v∗ = 0, (2.4a)

g(x∗) ≤ 0, (2.4b)

h(x∗) = 0, (2.4c)

u∗ ≥ 0, (2.4d)

(u∗)⊤g(x∗) = 0. (2.4e)

The pair (u∗, v∗) are called Lagrange multipliers, and the triple (x∗, u∗, v∗) satisfying (2.4) is

referred to as a KKT triple. If MFCQ holds at x∗, then the set of all Lagrange multipliers

corresponding to x∗ is bounded. If LICQ holds at x∗, then the Lagrange multiplier (u∗, v∗)

such that (x∗, u∗, v∗) satisfies (2.4) is unique.

2.2.4 Variational Inequalities

Here we review the basic theory of variational inequalities following [FP03]. Let

F : Rn → Rn be a map and C ⊂ Rn a set of constraints. A variational inequality refers to

the problem of finding x∗ ∈ C such that

(x− x∗)⊤F (x∗) ≥ 0, ∀x ∈ C. (2.5)
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Using the language of variational geometry, the problem (2.5) can be equivalently stated in

the form of a generalized equation[Rob83],

F (x∗) +NC(x∗) ∋ 0. (2.6)

We use VI(F, C) to refer to either (2.5) or (2.6), and SOL(F, C) to denote its set of solu-

tions. Variational inequalities provide a framework to study many different analysis and

optimization problems, including

• Solving the nonlinear equation F (x∗) = 0, which corresponds to VI(F,Rn);

• Minimizing the function f : Rn → R subject to the constraint that x ∈ C, which

corresponds to VI(∇f, C);

• Finding saddle points of the function ℓ : Rn ×Rm → R subject to the constraints that

x1 ∈ X1 and x2 ∈ X2, which corresponds to VI([∇x1ℓ;−∇x2ℓ], X1 ×X2).

• Finding the Nash equilibria of a game with N agents, where the ith agent wants to

minimize the cost Ji(xi, x−i) subject to the constraint xi ∈ Xi, which corresponds

to VI(F, C), where F is the pseudogradient operator defined by

F (x) = (∇x1J1(x), . . . ,∇xN
JN(x))

and C = X1 ×X2 × · · · ×XN .

A key concept in the study of variational inequalities is the notion of monotonicity.
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We say the map F : Rn → Rn is monotone if

(x1 − x2)⊤(F (x1)− F (x2)) ≥ 0,

for all x1, x2 ∈ Rn, and F is µ-strongly monotone if there exists µ > 0 such that

(x1 − x2)⊤(F (x1)− F (x2)) ≥ µ ∥x1 − x2∥2 ,

for all x1, x2 ∈ Rn. When F is a gradient map, i.e. F = ∇f for some function f : Rn → R,

then monotonicity (resp. µ-strong monotonicity) is equivalent to convexity (resp. µ-strong

convexity) of f . When F is monotone and C is convex, we say VI(F, C) is a monotone

variational inequality.

We now provide a characterization of the solution set SOL(F, C). We assume that C

has the form C = {x ∈ Rn | g(x) ≤ 0, h(x) = 0} where g : Rn → Rm and h : Rn → Rk are

continuously differentiable. We can formulate necessary conditions for optimality analogous

to the KKT conditions for optimization problems (2.4). In particular, if any constraint

qualification holds at x∗ ∈ C and x∗ ∈ SOL(F, C), then there exists (u∗, v∗) ∈ Rm × Rk such
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that

F (x∗) +
m∑

i=1
u∗

i∇gi(x∗) +
k∑

j=1
v∗

j∇hj(x∗) = 0 (2.7a)

g(x∗) ≤ 0 (2.7b)

h(x∗) = 0 (2.7c)

u∗ ≥ 0 (2.7d)

(u∗)⊤g(x) = 0. (2.7e)

We refer to (2.7) as the KKT conditions corresponding to VI(F, C). We denote the set of

KKT triples by XKKT(F, C). For monotone variational inequalities, when C satisfies any

constraint qualification condition at x∗, then the KKT conditions are both necessary and

sufficient for x∗ ∈ SOL(F, C). When F is monotone, SOL(F, C) is closed and convex. If F

is additionally µ-strongly monotone, then the set of solutions is a singleton, provided that a

solution exists.

2.2.5 Stability Notions

We recall basic definitions from the theory of nonlinear dynamical systems follow-

ing [HC08]. Let G : Rn → Rn be a locally Lipschitz vector field and consider the dynamical

system ẋ = G(x). Local Lipschitzness ensures that, for every initial condition x0 ∈ Rn, there

exists T > 0 and a unique trajectory x : [0, T ]→ Rn such that x(0) = x0 and ẋ(t) = G(x(t)).

If the solution exists for all t ≥ 0, then it is forward complete. In this case, the flow map

is defined by Φt : Rn → Rn such that Φt(x) = x(t), where x(t) is the unique solution with
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x(0) = x. The positive limit set of x ∈ Rn is

ω(x) =
⋂

T ≥0
{Φt(x) | t > T}.

A set S ⊂ Rn is forward invariant if x ∈ S implies that Φt(x) ∈ S for all t ≥ 0. If S is

forward invariant and x∗ ∈ S is an equilibrium, x∗ is Lyapunov stable relative to S if for

every open set U containing x∗, there exists an open set Ũ also containing x∗ such that for

all x ∈ Ũ ∩S, Φt(x) ∈ U ∩S for all t > 0. The equilibrium x∗ is asymptotically stable relative

to S if it is Lyapunov stable relative to S and there is an open set U containing x∗ such that

Φt(x)→ x∗ as t→∞ for all x ∈ U ∩S. We say x∗ is exponentially stable relative to S if it is

asymptotically stable relative to S and there exists µ > 0 and an open set U containing x∗

such that for all x ∈ U∩S, ∥Φt(x)− x∗∥ ≤ e−µt ∥x− x∗∥. Analogous definitions of Lyapunov

stability and asymptotically stability can be made for sets, instead of individual points.

Consider a forward invariant set S and a set of equilibria S contained in it, S ⊂ S.

We say x∗ ∈ S is semistable relative to S if x∗ is Lyapunov stable and, for any open set U

containing x∗, there is an open set Ũ such that for every x ∈ Ũ ∩ S, the trajectory starting

at x converges to a Lyapunov stable equilibrium in U ∩ S. Note that if x∗ is an isolated

equilibrium, then semistability is equivalent to asymptotic stability. For all the concepts

introduced here, when the invariant set is unspecified, we mean S = Rn.

Finally, we discuss Lyapunov based tests for stability of an equilibrium. The first

result is a special case of [BB03, Cor. 7.1], and establishes asymptotic stability stability of

an isolated equilibrium.
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Lemma 2.2.1 (Lyapunov test for relative stability). Let S be a forward invariant set of

ẋ = G(x) and x∗ an isolated equilibrium. Let U ⊂ Rn be an open set containing x∗ and

suppose that V : U ∩ S → R is a directionally differentiable function such that

(i) x∗ is the unique minimizer of V on U ∩ S.

(ii) D+
G V (x) < 0 for all x ∈ U ∩ S \ {x∗}.

Then x∗ is asymptotically stable relative to S.

2.2.6 Safety-Critical Control

We review here notions from the theory of set invariance for control systems follow-

ing [Bla99] and discuss methods for synthesizing feedback controllers that ensure it. Consider

a control-affine system

ẋ = F(x, µ)

= F0(x) +
r∑

i=1
µiFi(x),

(2.8)

with Lipschitz-continuous vector fields Fi : Rn → Rn, for i ∈ {0, . . . , r}, and a set U ⊂ Rm

of valid control inputs µ. Let C ⊂ Rn be a constraint set of the form C = {x ∈ Rn | g(x) ≤

0, h(x) = 0}, where g : Rn → Rm and h : Rn → Rk are continuously differentiable. We want

to restrict the evolution of the system to remain in C. We consider the problem of designing

a feedback controller k : Rn → U such that C is forward invariant and asymptotically

stable with respect to the closed-loop dynamics ẋ = F(x, κ(x)). In applications, C often

corresponds to the set of states for which the system can operate safely. For this reason,

we refer to C as the safety set, and call the system safe under a controller k if C is forward

27



invariant and asymptotically stable. A controller ensuring safety is safeguarding. We discuss

two optimization-based strategies for synthesizing safeguarding controllers.

A Safeguarding Control via Projection

The first strategy ensures the closed-loop dynamics lie in the tangent cone of the

safety set. If MFCQ holds at x ∈ C, the tangent cone can conveniently be expressed as,

cf. [RW98, Theorem 6.31], TC(x) = {ξ ∈ Rn
∣∣∣∂h(x)

∂x
ξ = 0, ∂gI(x)

∂x
ξ ≤ 0}. We then define the

set-valued map Kproj : Rn ⇒ U which characterizes the set of inputs, µ, that ensure the

dynamics satisfy F(x, µ) ∈ TC(x). The set has the form,

Kproj(x)=

µ ∈ U | D+
F0gi(x)+

r∑
ℓ=1

µℓD
+
Fℓ
gi(x) ≤ 0, i ∈ I(x),

D+
F0hj(x) +

r∑
ℓ=1

µℓD
+
Fℓ
hj(x) = 0, j = 1, . . . , k

.

Any feedback k : C → U such that κ(x) ∈ Kproj(x) for x ∈ C renders C forward invariant.

Lemma 2.2.2. (Projection-based Safeguarding Feedback). Consider the system (2.8)

with safety set C and suppose that Kproj(x) ̸= ∅ for all x ∈ C. Then, the feedback controller

k : C → U is safeguarding if κ(x) ∈ Kproj(x) for all x ∈ C and the closed-loop system

ẋ = F(x, κ(x)) admits a unique solution for all initial conditions.

Proof. By hypothesis, the closed-loop system satisfies F(x, κ(x)) ∈ TC(x) for all x ∈ C. It

follows that C is forward-invariant by Nagumo’s Theorem [Bla99, Theorem 3.1].

To synthesize a safeguarding controller, we propose a strategy where κ(x) at each

x ∈ C is expressed as the solution to a mathematical program. Because Kproj(x) is defined in
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terms of affine constraints on the control input µ, we can readily express a feedback satisfying

the hypotheses of Lemma 2.2.2 in the form of a mathematical program,

κ(x) ∈ argmin
µ∈Kproj(x)

J(x, µ), (2.9)

for an appropriate choice of cost function J : C × U → R. In general, care must be taken to

ensure that the set Kproj is nonempty and that the controller k in (2.9) satisfies appropriate

regularity conditions to ensure existence and uniqueness for solutions of the resulting closed-

loop dynamics. Even if these properties hold, the approach has several limitations: the

controller is ill-defined for initial conditions lying outside the safety set and the closed-loop

system in general is nonsmooth.

B Safeguarding Control via Control Barrier Functions

The second strategy for synthesizing safeguarding controllers addresses the limitations

of projection-based methods. The approach relies on the notion of a vector control barrier

functions, which generalize the usual notion of control barrier functions. Given a set X ⊃ C

and set of valid control inputs U ⊂ Rm, we say the pair (g, h) : Rn × Rk → Rm is a

(m, k)-vector control barrier function (VCBF) for C on X relative to U if

(i) The set C can be expressed as

C = {x ∈ X | g(x) ≤ 0, h(x) = 0}
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(ii) There exists α > 0 such that the map Kcbf,α : Rn ⇒ U given by

Kcbf,α(x)=
{
µ ∈ U | D+

F0gi(x)+
r∑

ℓ=1
µℓD

+
Fℓ
gi(x)+αgi(x) ≤ 0,

D+
F0hj(x) +

r∑
ℓ=1

µℓD
+
Fℓ
hj(x) + αhj(x) = 0,

1 ≤ i ≤ m, 1 ≤ j ≤ k
}
,

takes nonempty values for all x ∈ X.

In the special case where m = 1 and k = 0, this definition coincides with the usual notion

of control barrier function [ACE+19, Definition 2], where the class K function is linear, and

the Lie derivative has been replaced with the upper-right Dini derivative. The use of vector-

valued functions instead of scalar-valued ones allows us to consider a broader class of safe

sets.

Similar to the previous strategy, the set Kcbf,α characterizes the set of inputs which en-

sure that the state remains inside the safe set. However unlike the projection-based approach,

this assurance is implemented gradually: the parameter α corresponds to how tolerant we

are of trajectories approaching the boundary of the safety set, with smaller values of α corre-

sponding to situations where the trajectories beginning in the interior are more aggressively

controlled. As α → ∞, the set Kcbf,α better corresponds to Kproj. We have the following

result which is a generalization of [ACE+19, Thm. 2].

Lemma 2.2.3 (VCBF-based Safeguarding Feedback). Consider the system (2.8) with safety

set C and suppose (g, h) is a vector control barrier function for C on X relative to U . Then,
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the feedback controller k : X → U is safeguarding if κ(x) ∈ Kα(x) for all x ∈ X and the

closed-loop system ẋ = F(x, κ(x)) admits a unique solution for all initial conditions.

To synthesize a safeguarding feedback controller, one can pursue a design using a

similar approach to Section 2.2.6.A. Given a cost function J : X ×U → R, we let κ(x) solve

the following mathematical program:

κ(x) ∈ argmin
µ∈Kcbf,α(x)

J(x, µ). (2.10)

Similar to the case of projection-based safeguarding feedback control, care must be taken

to verify the existence and uniqueness of solutions to the closed-loop system, as well as to

handle situations where (2.10) does not have unique solutions. If these properties hold, then

the control design addresses the challenges of projection-based methods. In particular, we

can ensure that a controller of the form (2.10) is well-defined outside the safety set and results

in closed-loop system with continuous solutions, under mild conditions which we discuss in

the following chapters.
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Chapter 3

Control Theoretic Synthesis of

Dynamical Systems Solving

Constrained Nonlinear Programs

This chapter considers the problem of designing a continuous-time dynamical system

that solves a constrained nonlinear optimization problem and makes the feasible set forward

invariant and asymptotically stable. The invariance of the feasible set makes the dynamics

anytime, when viewed as an algorithm, meaning it returns a feasible solution regardless of

when it is terminated. Our approach augments the gradient flow of the objective function

with inputs defined by the constraint functions, treats the feasible set as a safe set, and

synthesizes a safe feedback controller using techniques from the theory of control barrier

functions. The resulting closed-loop system, termed safe gradient flow, can be viewed as

a primal-dual flow, where the state corresponds to the primal variables and the inputs
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correspond to the dual ones. We provide a detailed suite of conditions based on constraint

qualification under which (both isolated and nonisolated) local minimizers are stable with

respect to the feasible set and the whole state space. Comparisons with other continuous-

time methods for optimization in a simple example illustrate the advantages of the safe

gradient flow.

3.1 Problem Formulation

Our goal is to solve an optimization problem of the form

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

h(x) = 0,

(3.1)

where f : Rn → R, g : Rn → Rm, and h : Rn → Rk are continuously differentiable, by

designing a dynamical system ẋ = G(x) that converges to its solutions. Let the feasible set

of (3.1) be denoted by

C = {x ∈ Rn | g(x) ≤ 0, h(x) = 0}. (3.2)

The dynamics should enjoy the following properties.

(i) trajectories should remain feasible if they start from a feasible point. This can be

formalized by asking the feasible set C, defined in (3.2), to be forward invariant;

(ii) trajectories that start from an infeasible point should converge to the set of feasible
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points. This can be formalized by requiring that G is well defined on an open set

containing C, and that C as a set is asymptotically stable with respect to the dynamics.

The requirement (i) ensures that, when viewed as an algorithm, the dynamics is anytime,

meaning that it is guaranteed to return a feasible solution regardless of when it is terminated.

The requirement (ii) ensures in particular that trajectories beginning from infeasible initial

conditions approach the feasible set and, if the solutions of the optimization (3.1) belong to

the interior of the feasible set, such trajectories enter it in finite time, never to leave it again.

The problem is summarized below.

Problem 3.1.1. Find an open set X containing C and design a vector field G : X → Rn

such that the system ẋ = G(x) satisfies the following properties.

(i) G is locally Lipschitz on X;

(ii) C is forward invariant and asymptotically stable;

(iii) x∗ is an equilibrium if and only if x∗ ∈ XKKT;

(iv) x∗ is asymptotically stable if x∗ is a isolated local minimizer.

3.2 Constrained Nonlinear Programming via Safe Gra-

dient Flow

In this section we introduce our solution to Problem 3.1.1 in the form of a dynamical

system called the safe gradient flow. We present two interpretations of this system: first
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from the perspective of safety critical control, where we augment the standard gradient

flow with an input and design a feedback controller using the procedure outlined in Section

2.2.6.B, and second as an approximation of the projected gradient flow. Interestingly, both

interpretations are equivalent.

3.2.1 Safe Gradient Flow via Feedback Control

Figure 3.1: Intuition behind the design of the safe gradient flow. Grey lines are the level
curves of the objective function and the shaded region is C. In (a), the initial condition is
x0 and the minimizer is x∗, with −∇f(x) in black and −∇g(x) in gray at both points. In
(b), the dashed line is a trajectory of ẋ = −∇f(x) − u∇g(x) starting from x0. The black
vectors are −∇f(x), the gray vectors are −u∇g(x), and the red vectors are ẋ. Deep in the
interior of C, one has u ≈ 0, as following the gradient of f does not jeopardize feasibility
while minimizing it. As the trajectory approaches the boundary, u increases to keep the
trajectory in C.

Consider the control-affine system

ẋ = −∇f(x)− ∂g(x)
∂x

⊤

u− ∂h(x)
∂x

⊤

v. (3.3)

One can interpret this system as the standard gradient flow of f modified by a “control
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action” incorporating the gradients of the constraint functions. The intuition is that the drift

term takes care of optimizing f toward the minimizer, and this direction can be modified

with the input if the trajectory gets close to the boundary of the feasible set, cf. Figure 3.1.

Our idea for the controller design is to only modify the drift when the feasibility of

the state is endangered. We accomplish this by looking at the feasible set C as a safe set and

using ϕ = (g, h) : Rn → Rm+k as an (m, k)-vector control barrier function to synthesize the

feedback controller, using the strategy outlined in Chapter 2.2.6.B.

Let α > 0 be a design parameter, and define the admissible control set as

Kcbf,α(x) =
{

(u, v) ∈ Rm
≥0 × Rk

∣∣∣
− ∂g(x)

∂x

∂g(x)
∂x

⊤

u− ∂g(x)
∂x

∂h(x)
∂x

⊤

v ≤ ∂g(x)
∂x
∇f(x)− αg(x)

− ∂h(x)
∂x

∂g(x)
∂x

⊤

u− ∂h(x)
∂x

∂h(x)
∂x

⊤

v = ∂h(x)
∂x
∇f(x)− αh(x)

}
.

(3.4)

We want to show that ϕ is a valid VCBF for (3.3).

Lemma 3.2.1 (Vector control barrier function for (3.3)). Consider the optimization prob-

lem (3.1). If MFCQ holds for all x ∈ C, then there exists an open set X containing C such

that the function ϕ = (g, h) : Rn → Rm+k is a valid (m, k)-VCBF for (3.3) on X relative

to U = Rm
≥0 × Rk.

Proof. We begin by showing that inequalities parameterizing Kcbf,α(x) are strictly feasible
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for all x ∈ C, i.e., for each x ∈ C, there exists ϵ > 0 and (u, v) ∈ Rm
≥0 × Rk such that

−∂g(x)
∂x

∂g(x)
∂x

⊤

u− ∂g(x)
∂x

∂h(x)
∂x

⊤

v ≤ ∂g(x)
∂x
∇f(x)− αg(x)− ϵ1m (3.5a)

−∂h(x)
∂x

∂g(x)
∂x

⊤

u− ∂h(x)
∂x

∂h(x)
∂x

⊤

v = ∂h(x)
∂x
∇f(x)− αh(x). (3.5b)

Let g̃ = g(x) + ϵ
α
1m. By Farka’s Lemma [Roc70], (3.5) is infeasible if and only if there exists

a solution (u, v) to

−∂g(x)
∂x

∂g(x)
∂x

⊤

u− ∂g(x)
∂x

∂h(x)
∂x

⊤

v ≥ 0 (3.6a)

−∂h(x)
∂x

∂g(x)
∂x

⊤

u− ∂h(x)
∂x

∂h(x)
∂x

⊤

v = 0 (3.6b)

u ≥ 0 (3.6c)

u⊤
(
∂g(x)
∂x
∇f(x)− αg̃

)
+ v⊤

(
∂h(x)
∂x
∇f − αh(x)

)
< 0. (3.6d)

Then (3.6a), (3.6b), and (3.6c) imply that

[
u
v

]⊤
 ∂g(x)

∂x
∂g(x)

∂x

⊤ ∂g(x)
∂x

∂h(x)
∂x

⊤

∂h(x)
∂x

∂g(x)
∂x

⊤ ∂h(x)
∂x

∂h(x)
∂x

⊤

 [u
v

]
≤ 0

but, since the matrix is positive semidefinite,

(u, v) ∈ ker
 ∂g(x)

∂x
∂g(x)

∂x

⊤ ∂g(x)
∂x

∂h(x)
∂x

⊤

∂h(x)
∂x

∂g(x)
∂x

⊤ ∂h(x)
∂x

∂h(x)
∂x

⊤

 = ker
[

∂g(x)
∂x

⊤ ∂h(x)
∂x

⊤]
. (3.7)
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Next, by (3.7) and that x ∈ C, (3.6d) reduces to

−u⊤(αg(x) + ϵ1m) < 0, (3.8)

and by a second application of Farka’s Lemma, we see that (3.6c), (3.7) and (3.8) are feasible

if and only if the following system is infeasible.

∂g(x)
∂x

ξ ≤ −αg(x)− ϵ1m
∂h(x)
∂x

ξ = 0. (3.9a)

We claim that a solution to (3.9) can be constructed if MFCQ holds at x. Indeed, by MFCQ,

there exists ξ̃ ∈ Rn such that ∂gI0
∂x
ξ̃ < 0 and ∂h(x)

∂x
ξ̃ = 0, and for ϵ sufficiently small, there

exists γ > 0 such that ξ = γξ̃ solves (3.9). Thus (3.6) is infeasible, and therefore (3.5) is

feasible.

By strict feasibility and the fact that the matrix ∂h(x)
∂x

∂h(x)
∂x

⊤
has full rank, it can

be shown by Lemma 3.6.6 that, for all x ∈ C, the affine inequalities that parameterize

Kcbf,α(x) are regular1. Finally, since the affine inequalities parameterizing Kcbf,α are con-

tinuous, Kcbf,α(y) is nonempty for any y sufficiently close to x. Hence there exists an open

set X such that Kcbf,α takes nonempty values on X.

1Consider a linear system of inequalities of the form Cz ≤ c, Dz = d, and a solution z0. The system
is regular (c.f. [Rob75]) if for C ′, c′, D′, d′ sufficiently close to C, c, D, d, the perturbed system C ′z ≤ c′,
D′z = d′ remains feasible, and the distance of z0 to the solution set of the perturbed system is proportional
to the magnitude of the perturbation.
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Since ϕ is a VCBF, we can design a feedback of the form (2.10), where the objective

function is given by

J(x, u, v) =
∥∥∥∥∥∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v

∥∥∥∥∥
2

.

This design has the interpretation of finding a controller which guarantees safety while mod-

ifying the drift term in (3.3) as little as possible. The resulting feedback controller is

[
u(x)
v(x)

]
∈ argmin

(u,v)∈Kcbf,α(x)


∥∥∥∥∥∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v

∥∥∥∥∥
2 . (3.10)

We refer to the closed-loop system (3.3) under the controller (3.10) as the safe gradient

flow. In general, the solution to (3.10) might not be unique. Nevertheless, as we show

later, the safe gradient flow is well-defined because, the closed-loop behavior of the system

is independent of the chosen solution.

Comparing the dynamics (3.3) with the KKT condition (2.4a) suggests that the in-

puts (u(x), v(x)) can be interpreted as approximations of the dual variables of the problem.

With this interpretation, the safe gradient flow can be viewed as a primal-dual method.

We use this viewpoint later to establish connections between the proposed method and the

projected gradient flow.

Remark 3.2.2 (Connection with the Literature). The work [Tan80] considers the problem

of designing a dynamical system to solve (3.1) when only equality constraints are present

using a differential geometric approach. Here, we show that the safe gradient flow generalizes

the solution proposed in [Tan80]. Under the assumption that h ∈ Cr and LICQ holds, the

feasible set C = {x ∈ Rn | h(x) = 0} is an embedded Cr submanifold of Rn of codimension
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k. The approach in [Tan80] proceeds by identifying a vector field F : Rn → Rn satisfying:

(i) F ∈ Cr and F (x) ∈ TC(x) for all x ∈ C; and (ii) ḣ(x) = −αh(x) along the trajectories

of ẋ = F (x), where α > 0 is a design parameter. The proposed vector field satisfying both

properties is

F (x) = −
(
I − ∂h(x)

∂x

†∂h(x)
∂x

)
∇f(x)− α∂h(x)

∂x

†

h(x). (3.11)

To see that this corresponds to the safe gradient flow, note that the admissible control

set (3.4) in this case is

Kcbf,α(x) =
{
v ∈ Rk | −∂h(x)

∂x
∇f(x)− ∂h(x)

∂x

∂h(x)
∂x

⊤

v = −αh(x)
}
.

By the LICQ assumption, Kcbf,α(x) is a singleton whose unique element is

v(x) = −
(
∂h(x)
∂x

∂h(x)
∂x

⊤)−1(∂h(x)
∂x
∇f(x)− αh(x)

)
.

Substituting this into (3.3), we obtain the expression (3.11). This provides an alterna-

tive interpretation from a control-theoretic perspective of the differential-geometric design

in [Tan80], and justifies viewing the safe gradient flow as the natural extension to the case

with both inequality and equality constraints. □

Remark 3.2.3 (Inequality Constraints via Quadratic Slack Variables). The work [SS00]

pursues a different approach that the one taken here to deal with inequality constraints

by reducing them to equality constraints. This is accomplished introducing quadratic slack

variables. Formally, for each i ∈ {1, . . . ,m}, one replaces the constraint gi(x) ≤ 0 with the
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equality constraint gi(x) = −y2
i , and solves the equality-constrained optimization problem

in the variables (x, y) ∈ Rn+m with a flow of the form (3.11). While this method can

be expressed in closed form, there are several drawbacks with it. First, this increases the

dimensionality of the problem, which can be problematic when there are a large number

of inequality constraints. Second, adding quadratic slack variables introduces additional

equilibrium points to the resulting flow which do not correspond to KKT points of the

original problem. □

3.2.2 Safe Gradient Flow as an Approximation of the Projected

Gradient Flow

Here, we introduce an alternative design in terms of a continuous approximation of

the projected gradient flow. The latter is a discontinuous dynamical system obtained by

projecting the gradient of the objective function onto the tangent cone of the feasible set.

Later, we show that this continuous approximation is in fact equivalent to the safe gradient

flow.

Let x ∈ C and suppose that MFCQ holds at x. Then the tangent cone of C at x is

TC(x) =
{
ξ ∈ Rn

∣∣∣∣∣∂h(x)
∂x

ξ = 0, ∂gI0(x)
∂x

ξ ≤ 0
}
.

For x ∈ C, let ΠTC(x) be the projection onto TC(x). In general, the projection is a set-valued

map, but the fact that TC(x) is closed and convex makes the projection onto TC(x) unique
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in this case. The projected gradient flow is

ẋ = ΠTC(x)(−∇f(x))

= argmin
ξ∈Rn

1
2 ∥ξ +∇f(x)∥2

subject to ∂gI0(x)
∂x

ξ ≤ 0, ∂h(x)
∂x

ξ = 0.

(3.12)

In general, this system is discontinuous, so one must resort to appropriate notions of solution

trajectories and establish their existence, see e.g., [Cor08]. Here, we consider Carathéodory

solutions, which are absolutely continuous functions that satisfy (3.12) almost everywhere.

When Carathéodory solutions exist in C, then the KKT points of (3.1) are equilibria of (3.12),

and isolated local minimizers are asymptotically stable.

Consider the following continuous approximation of (3.12) by letting α > 0 and

defining Gα by

Gα(x) = argmin
ξ∈Rn

1
2 ∥ξ +∇f(x)∥2

subject to ∂g(x)
∂x

ξ ≤ −αg(x)

∂h(x)
∂x

ξ = −αh(x).

(3.13)

Note that (3.13) has a similar form to (3.12), and has a unique solution if one exists. However,

as we show later, unlike the projected gradient flow, the vector field Gα is well defined outside

C and is Lipschitz.

We now show that Gα approximates the projected gradient flow. Intuitively, this is

because for inactive constraints j /∈ I0(x), one has gj(x) < 0 and hence the jth inequality

constraint in (3.13), ∇gj(x)⊤ξ ≤ −αgj(x), becomes ∇gj(x)⊤ξ ≤ ∞ as α → ∞ and the
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constraint is effectively removed, reducing the problem to (3.12). This is formalized next.

Proposition 3.2.4 (Gα approximates the projected gradient). Let x ∈ C and suppose MFCQ

holds. Then

(i) Gα(x) ∈ TC(x).

(ii) limα→∞ Gα(x) = ΠTC(x)(−∇f(x)).

Proof. To show (i), note that if x ∈ C, then h(x) = 0 and gI0(x) = 0, so the constraints in

(3.13) imply that ∂h(x)
∂x
Gα(x) = 0 and ∂gI0 (x)

∂x
Gα(x) ≤ 0, and therefore Gα(x) ∈ TC(x).

Regarding (ii), for fixed x ∈ C, let J = I−(x) and consider the following quadratic

program

Px(ϵ) = argmin
ξ∈Rn

1
2 ∥ξ +∇f(x)∥2

subject to ∂gI0(x)
∂x

ξ ≤ 0, ∂h(x)
∂x

ξ = 0

ϵ
∂gJ(x)
∂x

ξ ≤ −gJ(x).

(3.14)

When ϵ = 0, the feasible sets of (3.14) and (3.12) are the same. Since the objective functions

are also the same, Px(0) = ΠTC(x)(−∇f(x)). Furthermore, for all α > 0, Px( 1
α

) = Gα(x).

Finally, since the QP defining Px has a unique solution, and satisfies the regularity conditions

in [BD95, Definition 2.1], Px is continuous at ϵ = 0 by [BD95, Thm. 2.2]. Hence

lim
α→∞

Gα(x) = lim
ϵ→0+

Px(ϵ) = Px(0) = ΠTC(x)(−∇f(x)).

A consequence of Proposition 3.2.4 is that solutions of ẋ = Gα(x) approximate the

solutions of the projected gradient flow, with decreasing error as α increases, cf. Figure 3.2.
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Figure 3.2: Projected gradient flow versus continuous approximation. The solution of the
projected gradient flow is in black and solutions of ẋ = Gα(x) for varying values of α are in
the colors corresponding to the colorbar. All solutions start from the same initial condition,
marked by the black dot.

3.2.3 Equivalence Between the Two Interpretations

Here we establish the equivalence between the two interpretations of the safe gradient

flow. Specifically, we show that the control barrier function quadratic program (3.10) can

be interpreted as a dual program corresponding to the continuous approximation of the

projected gradient flow in (3.13).

Let L : Rn × Rm
≥0 × Rk × Rn → R be

L(ξ, u, v;x) = 1
2 ∥ξ +∇f(x)∥2 + u⊤

(
∂g(x)
∂x

ξ + αg(x)
)

+ v⊤
(
∂h(x)
∂x

ξ + αh(x)
)
. (3.15)

Then for each x ∈ Rn, the Lagrangian of (3.13) is (ξ, u, v) 7→ L(ξ, u, v;x).
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For each x ∈ Rn, the KKT conditions corresponding to the optimization (3.13) are

ξ +∇f(x) + ∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v = 0 (3.16a)

∂g(x)
∂x

ξ + αg(x) ≤ 0 (3.16b)

∂h(x)
∂x

ξ + αh(x) = 0 (3.16c)

u ≥ 0 (3.16d)

u⊤
(
∂g(x)
∂x

ξ + αg(x)
)

= 0 (3.16e)

Because the (3.13) is strongly convex, the existence of a triple (ξ, u, v) satisfying (3.16) is

sufficient for optimality of ξ. Since the optimizer is unique, for any triple (ξ, u, v) satisfying

these conditions, ξ = Gα(x).

Let Λα : Rn ⇒ Rm
≥0 × Rk be defined by

Λα(x) = {(u, v) ∈ Rm
≥0 × Rk |∃ξ ∈ Rn such that (ξ, u, v) solves (3.16)}. (3.17)

By definition, Λα(x) is the set of Lagrange multipliers of (3.13) at x ∈ Rn. When Λα(x) ̸= ∅,

then the conditions (3.16) are also necessary for optimality of (3.13). As we show next, this

necessity follows as a consequence of the constraint qualification conditions.

Lemma 3.2.5 (Necessity of optimality conditions). For α > 0, if (3.1) satisfies MFCQ at

x ∈ C then there is an open set U containing x such that Λα(x′) ̸= ∅ for all x′ ∈ U .

Proof. If MFCQ holds at x ∈ C, there exists ξ ∈ Rn such that ∇gi(x)⊤ξ < 0 for all i ∈ I0(x)
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and ∇hj(x)⊤ξ = 0 for all j ∈ {1, . . . , k}. Next, for every j ∈ I−(x), let ϵj > 0 be defined as

ϵj ≤


−αgj(x)

∇gj(x)⊤ξ
∇gj(x)⊤ξ > 0,

1 ∇gj(x)⊤ξ ≤ 0.

Then taking 0 < ϵ ≤ minj∈I−(x){ϵj} and ξ̃ = ϵξ, satisfies

∂g(x)
∂x

ξ̃ < −αg(x) ∂h(x)
∂x

ξ̃ = −αh(x). (3.18)

The above means that the constraints of (3.13) satisfy Slater’s condition [BV09, Ch. 5.2.3]

at x, so the affine constraints are regular [Rob75, Thm. 2]. This implies that there exists an

open set U containing x on which (3.13) is feasible and Λα(x′) ̸= ∅ for all x′ ∈ U .

We use the optimality conditions to show that (3.10) is actually the dual problem

corresponding to (3.13) in the appropriate sense.

Proposition 3.2.6 (Equivalence of two constructions of the safe gradient flow). If Λα(x) ̸=∅,

(i) If (u, v) ∈ Λα(x), then (u, v) solves (3.10);

(ii) Gα is the closed-loop dynamics corresponding to the implementation of the feed-

back (3.10) over the system (3.3).

Proof. To show (i), let (u, v) ∈ Λα(x). Then there is ξ ∈ Rn such that (ξ, u, v) solves

(3.16). By (3.16a), ξ = −∇f(x)− ∂g(x)
∂x

⊤
u− ∂h(x)

∂x

⊤
v and substituting ξ into the constraints

of (3.13), it follows immediately that (u, v) ∈ Kcbf,α(x), defined in (3.4). We claim that (u, v)
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is also optimal for (3.10). To prove this, let (u′, v′) be a solution of (3.10) and, reasoning by

contradiction, suppose

∥∥∥∥∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v

∥∥∥∥2
>

∥∥∥∥∂g(x)
∂x

⊤

u′ + ∂h(x)
∂x

⊤

v′
∥∥∥∥2
.

Then, ξ′ = −∇f(x)− ∂g(x)
∂x

⊤
u′− ∂h(x)

∂x

⊤
v′ satisfies the constraints in (3.13) and ∥ξ′ +∇f(x)∥ <

∥ξ +∇f(x)∥, which contradicts the fact that ξ is optimal for (3.13).

To show (ii), suppose that (u, v) solves (3.10), and ξ = −∇f(x)− ∂g(x)
∂x

⊤
u− ∂h(x)

∂x

⊤
v.

We claim that ξ is optimal for (3.13). Indeed, if ξ̃ is the optimizer of (3.13), since Λα(x) ̸= ∅,

there exists (ũ, ṽ) ∈ Λα(x) such that (ξ̃, ũ, ṽ) solves (3.16). Note that (ũ, ṽ) is feasible

for (3.10), and

∥ξ +∇f(x)∥2 =
∥∥∥∥∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v
∥∥∥∥2
≤
∥∥∥∥∂g(x)
∂x

⊤

ũ+ ∂h(x)
∂x

⊤

ṽ
∥∥∥∥2

=
∥∥∥ξ̃ +∇f(x)

∥∥∥2
,

where the inequality follows by optimality of (u, v). It follows that ξ is optimal, but since

the optimizer of (3.13) is unique, ξ = Gα(x). Hence, Gα(x) = −∇f(x) − ∂g(x)
∂x

⊤
u − ∂h(x)

∂x

⊤
v,

which is the closed-loop implementation of (3.10) over (3.3).

Remark 3.2.7 (Lagrange Multipliers of Continuous Approximation to Projected Gradient).

The notion of duality in Proposition 3.2.6 is weaker than the usual notion of Lagrangian du-

ality. While the result ensures that the Lagrange multipliers of (3.13) are solutions to (3.10),

the converse is not true in general. This is because if (u, v) solves (3.10), then (Gα(x), u, v)

might not satisfy the complementarity condition (3.16e), in which case (u, v) ̸∈ Λα(x). An

example of this is given by the following constrained problem with objective f and inequality
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constraints g(x) ≤ 0, where

f(x) = ∥x∥2 g(x) =
[
0 1
0 −1

]
x−

[
1
1

]
.

The constraints satisfy LICQ for all x ∈ Rn. The solution is x∗ = 0 and Λα(x∗) = {(0, 0)}.

However, (1, 1) is an optimizer of (3.10), even though (1, 1) /∈ Λα(x∗). □

Remark 3.2.8 (Lagrangian Dual of Continuous Approximation to Projected Gradient).

The safe gradient flow can also be implemented using the Lagrangian dual of (3.13). This

is obtained by replacing the feedback controller (3.10) with

[
u(x)
v(x)

]
∈ argmin

(u,v)∈Rm
≥0×Rk

1
2

[
u
v

]⊤
 ∂g(x)

∂x
∂g(x)

∂x

⊤ ∂g(x)
∂x

∂h(x)
∂x

⊤

∂h(x)
∂x

∂g(x)
∂x

⊤ ∂h(x)
∂x

∂h(x)
∂x

⊤

 [u
v

]
+

u⊤
(
∂g(x)
∂x
∇f(x)− αg(x)

)
+ v⊤

(
∂h(x)
∂x
∇f(x)− αh(x)

)
and considering its closed-loop implementation over (3.3). Though this controller no longer

has the same intuitive interpretation as the CBF-QP (3.10), it has the advantage that its

values correspond exactly with Λα(x). □

Proposition 3.2.6 shows that there are two equivalent interpretations of the safe gra-

dient flow. The first is as the closed-loop system corresponding to (3.3) with the controller

(3.10), which maintains forward invariance of the feasible set C while ensuring the dynamics

is as close as possible to the gradient flow of the objective function. The second interpreta-

tion is as an approximation of the projection of the gradient flow of the objective function

onto the tangent cone of the feasible set. Both interpretations are related by the fact that
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the Lagrange multipliers corresponding to the approximate projection are the optimal con-

trol inputs solving (3.3). Beyond the interesting theoretical parallelism, this interpretation

is instrumental in our ensuing discussion when characterizing the equilibria, regularity, and

stability properties of the safe gradient flow.

3.3 Stability Analysis of the Safe Gradient Flow

Here we conduct a thorough analysis of the stability properties of the safe gradient

flow and show that it solves Problem 3.1.1. We start by characterizing its equilibria and

regularity properties, then focus on establishing the stability properties of local minimizers,

and finally characterize the global convergence properties of the flow.

3.3.1 Equilibria, Regularity, and Safety

We rely on the necessary optimality conditions introduced in Section 3.2.3 to charac-

terize the equilibria of Gα.

Proposition 3.3.1 (Equilibria of safe gradient flow correspond to KKT points). If MFCQ

holds at x∗ ∈ C, then

(i) Gα(x∗) = 0 if and only if x∗ ∈ XKKT;

(ii) If x∗ ∈ XKKT, then Λα(x∗) is the set of Lagrange multipliers of (3.1) at x∗.

Proof. Suppose that Gα(x∗) = 0. By Lemma 3.2.5, there exists (u∗, v∗) ∈ Λα(x∗) such that
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(0, u∗, v∗) satisfies the necessary optimality conditions in (3.16), which reduce to

∇f(x∗) + ∂g(x∗)
∂x

⊤

u∗ + ∂h(x∗)
∂x

⊤

v∗ = 0 (3.19a)

αg(x∗) ≤ 0 (3.19b)

αh(x∗) = 0 (3.19c)

u∗ ≥ 0 (3.19d)

(u∗)⊤(αg(x∗)) = 0 (3.19e)

Because α > 0, it follows immediately that (3.19) implies that (x∗, u∗, v∗) satisfy (2.4) and

x∗ ∈ XKKT.

Conversely, if x∗ ∈ XKKT, then for any (u∗, v∗) such that (x∗, u∗, v∗) solves (2.4), we

have that (0, u∗, v∗) solves (3.16), which implies that Gα(x∗) = 0 and (u∗, v∗) ∈ Λα(x∗).

Proposition 3.3.1(i) shows that the safe gradient flow meets Problem 3.1.1(iii). The

correspondence in Proposition 3.3.1(ii) between the Lagrange multipliers of (3.13) and the

Lagrange multipliers of (3.1) means that the proposed method can be interpreted as a primal-

dual method when implemented via (3.13). This is because the state of the system (3.3)

corresponds to the primal variable of (3.1), and the inputs to the system (3.3) correspond

to the dual variables.

We next establish that Gα is locally Lipschitz on an open set containing C when both

the CRCQ and MFCQ conditions hold. This ensures the existence and uniqueness of classical

solutions to the safe gradient flow.

Proposition 3.3.2 (Lipschitzness of safe gradient flow). Let α > 0 and suppose that (3.1)
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satisfies CRCQ and MFCQ for all x ∈ C, f, g and h are continuously differentiable, and

their derivatives are locally Lipschitz. Then Gα is well defined and locally Lipschitz on an

open set X containing C.

Proof. By the proof of Lemma 3.2.5, if MFCQ holds at x ∈ C, there is an open neighborhood

Ux containing x on which the constraints of (3.13) satisfy Slater’s condition. Then, Gα is the

unique solution to (3.13) on Ux. Let g̃i(x, ξ) and h̃j(x, ξ) be the ith and jth constraints of

(3.13) respectively for i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}. Then

g̃i(x, ξ) = ∇gi(x)⊤ξ + αgi(x)

h̃j(x, ξ) = ∇hj(x)⊤ξ + αhj(x)

and therefore ∇ξg̃i(x, ξ) = ∇gi(x) and ∇ξh̃j(x, ξ) = ∇hj(x). Thus if CRCQ holds at x ∈ C,

then the constraints of (3.13) also satisfy CRCQ at (x, ξ). It follows by [Liu95, Theorem

3.6] that Gα is Lipschitz on Ux. The desired result follows by letting X = ⋃
x∈C Ux.

Proposition 3.3.2 verifies that the safe gradient flow meets Problem 3.1.1(i). Next,

we show that under slightly stronger constraint qualification conditions at KKT points, the

triple satisfying (3.16) is unique and Lipschitz near them.

Proposition 3.3.3 (Lipschitzness of the solution to (3.16)). Let x∗ ∈ XKKT and sup-

pose (3.1) satisfies LICQ at x∗. Then, there exists an open set U containing x∗ and Lipschitz

functions u : U → Rm
≥0, v : U → Rm such that (Gα(x), u(x), v(x)) is the unique solution to

(3.16) for all x ∈ U .

Proof. We claim that the variational equation (3.16) is strongly regular [Rob80] for all x∗ ∈
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XKKT. Strong regularity implies, cf. [Rob80, Cor. 2.1], that there exists an open set U

containing x∗ and Lipschitz functions ξ : U → Rn, u : U → Rm
≥0, v : U → Rk such that

(ξ(x), u(x), v(x)) is the unique triple solving (3.13). Since the solution (3.13) is unique,

if such a triple exists, then ξ(x) = Gα(x). To prove the claim, we begin by noting that

(3.13) satisfies the strong second-order sufficient condition since ∇2
ξξL(ξ, u, v;x) = I ≻ 0,

where L is the Lagrangian defined in (3.15). Let (x∗, u∗, v∗) be a KKT triple of (3.1). By

Proposition 3.3.1, (0, u∗, v∗) satisfies (3.16). Since the ith inequality constraint of (3.13) is

∇gi(x∗)⊤ξ + αgi(x∗) ≤ 0, when ξ = 0 the constraint is active if and only if gi(x∗) = 0. It

follows that when x∗ ∈ XKKT, the indices of the active constraints of (3.13) are the same as

those of (3.1). Moreover, for all ξ ∈ Rn,

∂

∂ξ
(∇gi(x∗)⊤ξ + αgi(x∗)) = ∇gi(x∗)⊤,

∂

∂ξ
(∇hj(x∗)⊤ξ + αhj(x∗)) = ∇hj(x∗)⊤,

so the gradients of the binding (i.e., the active inequality and equality) constraints of (3.13)

and (3.1) are also the same. By LICQ, the gradients of the binding constraints are lin-

early independent, which along with the strong second-order condition implies that (3.16) is

strongly regular by [Rob80, Thm. 4.1].

The significance of Proposition 3.3.3 is twofold. First, it establishes that, under

certain conditions, the Lagrange multipliers of (3.13) are Lipschitz as a function of x, which

ensures the existence of a locally Lipschitz continuous feedback solving (3.10). Secondly, the

result establishes conditions for uniqueness of the Lagrange multipliers in a neighborhood of
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an equilibrium x∗. These facts will play an important role in the stability analysis of local

minimizers in the sequel.

We now show in the next result that the safe gradient flow also meets Prob-

lem 3.1.1(ii). The result follows by applying Lemma 2.2.3 with ϕ = (g, h) as a VCBF

and local Lipschitz continuity of the closed-loop dynamics, c.f. Proposition 3.3.2.

Theorem 3.3.4 (Safety of feasible set under safe gradient flow). Consider the optimization

problem (3.1). If MFCQ is satisfied on C, then C is forward invariant and asymptotically

stable under the safe gradient flow.

Remark 3.3.5 (Advantages of safe gradient flow over projected gradient flow). Unlike the

projected gradient flow, the vector field Gα is locally Lipschitz, so classical solutions to

ẋ = Gα(x) exist, and the continuous-time flow can be numerically solved using standard

ODE discretization schemes. Secondly, under mild conditions, Gα is well defined for initial

conditions outside C, allowing us to guarantee convergence to a local minimizer starting

from infeasible initial conditions. Finally, because both (3.12) and (3.13) are least-squares

problems of the same dimension subject to affine constraints, the computational complexity

of solving either one is equivalent. □

Remark 3.3.6 (Discretization of safe gradient flow and role of parameter α). When consid-

ering discretizations of the safe gradient flow, the parameter α plays an important role. By

construction, trajectories of the safe gradient flow beginning at infeasible initial conditions

converge to C at an exponential rate α > 0, so larger values of α ensure faster convergence.

On the other hand, smaller values of α result in a design that enforces safety more conserva-
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Figure 3.3: Safe gradient flow on an example problem for varying values of the parameter
α (increasing from top to bottom) and the discretization stepsize h (increasing from left to
right). The gray region is the feasible set and the gray lines are level sets of the objective
function. The black dot is the unique optimizer. The blue line is a solution to the safe
gradient flow, and the blue dots are iterations of the forward Euler discretization of the
safe gradient flow. Larger values of α ensure faster convergence toward the feasible set but
reduce the range of admissible stepsizes h to ensure both convergence and safety. This is
consistent with the interpretation that smaller α results in a design that enforces safety more
conservatively (hence allowing for larger stepsizes).

tively and hence, intuitively, this should allow for larger stepsizes. Our preliminary numerical

experiments, with the forward-Euler discretization x+ = x+hGα(x) on an example problem
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with a quadratic objective function and affine contraints, confirm these intuitions, showing

that larger choices of α reduce the range of allowable stepsizes h that preserve the invariance

of the feasible set C and stability of local minimizers. We depict both the continuous-time

trajectories and the discrete-time iterations for varying values of h and α in Figure 3.3. We

have noticed that the maximal allowable stepsize h∗
α such that 0 < h < h∗

α ensures stability

and approximate safety, satisfies h∗
α → 0 as α → ∞. For space reasons, we leave to future

work the formal characterization of suitable stepsizes. □

3.3.2 Stability of Isolated Local Minimizers

Here we characterize the stability properties of isolated local minimizers under the safe

gradient flow. The following result shows that the safe gradient flow meets Problem 3.1.1(iv).

Theorem 3.3.7 (Stability of isolated local minimizers). Consider the optimization prob-

lem (3.1). Let x∗ be a local minimizer and an isolated KKT point, and let U be an open set

such that x∗ is the only KKT point contained in U . Then,

(i) If MFCQ holds for all x ∈ U ∩ C, then x∗ is asymptotically stable relative to C;

(ii) If EMFCQ holds for all x ∈ Ū , then x∗ is asymptotically stable relative to Rn;

(iii) If LICQ, strict complementarity, and the second-order sufficient condition hold at x∗,

then x∗ is exponentially stable relative to Rn.

We divide the technical discussion leading up to the proof of the result in three parts,

corresponding to each statement.
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A Stability of Isolated Local Minimizers Relative to C

Here we analyze the stability of local minimizers relative to the feasible set. We start

by characterizing the growth of the objective function along solutions of the safe gradient flow.

Lemma 3.3.8 (Growth of objective function along safe gradient flow). Let x ∈ Rn such

that Λα(x) ̸= ∅. Then,

• For all (u, v) ∈ Λα(x),

D+
Gα
f(x) = −∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x).

• If x ∈ C then,

D+
Gα
f(x) ≤ 0,

with equality if and only if x ∈ XKKT.

Proof. For x ∈ X (with X given by Proposition 3.3.2) such that (u, v) ∈ Λα(x) ̸= ∅,

(Gα(x), u, v) solves (3.16). Next,

D+
Gα
f(x) = Gα(x)⊤∇f(x)

(a)= −Gα(x)⊤
(
Gα(x) + ∂g(x)

∂x

⊤

u+ ∂h(x)
∂x

⊤

v
)

(b)= −∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x),

where (a) follows by rearranging (3.16a), and (b) follows from (3.16c) and (3.16e).

To show the second statement, note that if x ∈ C, then g(x) ≤ 0 and h(x) = 0 . Since
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u ≥ 0, it follows αu⊤g(x) + αv⊤h(x) ≤ 0 and therefore

D+
Gα
f(x) ≤ −∥Gα(x)∥2 ≤ 0.

Finally, D+
Gα
f(x) = 0 if and only if Gα(x) = 0, which by Proposition 3.3.1, is equivalent to

x ∈ XKKT.

As a consequence of Lemma 3.3.8, the objective function decreases monotonically

along the solutions starting in C. We use this fact to show that isolated local minimizers

that are isolated equilibria are asymptotically stable relative to C.

Proof of Theorem 3.3.7(i). By hypothesis and using Lemma 3.2.5, Λα(x) ̸= ∅ for all x ∈

U ∩ C. Because x∗ is the unique strict minimizer of f on U ∩ C, and by Lemma 3.3.8,

D+
Gα
f(x) < 0 for all x ∈ U ∩ C \ {x∗}, it follows by Lemma 2.2.1 that x∗ is asymptotically

stable relative to C.

B Stability of Isolated Local Minimizers Relative to Rn

Here we establish the asymptotic stability of isolated local minima relative to Rn. To

do so, we cannot rely any more on the objective function f as a Lyapunov function. This is

because outside of C, there may exist points x ∈ Rn \ C where f(x) < f(x∗). Therefore, to

show stability relative to Rn, we need to identify an alternative function whose unconstrained

minimizer is x∗. In fact, the problem of finding a function whose unconstrained minimizers

correspond to the local minimizers of a nonlinear program is well studied in the optimization

literature [DG89]: such functions are called exact penalty functions. Our discussion proceeds

57



by constructing an exact penalty function that is also a Lyapunov function for the safe

gradient flow.

Let Ω ⊂ Rn be a compact set. A function V : Ω×(0,∞)→ R is a strong exact penalty

function relative to Ω if there exists ϵ∗ > 0 such that for all 0 < ϵ < ϵ∗, x∗ ∈ int(Ω) is a local

minimizer of Vϵ(x) := V (x, ϵ) if and only if x∗ is a local minimizer of (3.1). The following

result gives a strong exact penalty function for (3.1) whose upper-right Dini derivative along

Gα is well defined on Ω.

Lemma 3.3.9 (Existence of strong exact penalty function). Let Ω ⊂ Rn be compact such that

int(Ω)∩ C ≠ ∅. Suppose (3.1) satisfies EMFCQ at every x ∈ Ω and let V : Ω× (0,∞)→ R,

V (x, ϵ) = f(x) + 1
ϵ

m∑
i=1

[gi(x)]+ + 1
ϵ

k∑
j=1
|hj(x)|. (3.20)

Then, V is a strong exact penalty function relative to Ω, V is directionally differentiable on

Ω, and

D+
Gα
Vϵ(x) = D+

Gα
f(x) + 1

ϵ

∑
i∈I+(x)

D+
Gα
gi(x) + 1

ϵ

k∑
j=1

sgn(hj(x))D+
Gα
hj(x), (3.21)

for all x ∈ Ω.

Proof. The fact that V is a strong exact penalty function relative to Ω readily follows

from [DG89, Thm. 4]. From [DG89, Prop. 3], Vϵ is directionally differentiable on Ω and its
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directional derivative in the direction ξ ∈ Rn is

V ′
ϵ (x; ξ) = ∇f(x)⊤ξ + 1

ϵ

∑
i∈I+(x)

∇gi(x)⊤ξ + 1
ϵ

∑
i∈I0(x)

[∇gi(x)⊤ξ]+

+ 1
ϵ

∑
j such that

hj(x) ̸=0

sgn(hj(x))∇hj(x)⊤ξ + 1
ϵ

∑
j such that
hj(x)=0

|∇hj(x)⊤ξ|.

We examine this expression in the case V ′
ϵ (x;Gα(x)) = D+

Gα
Vϵ(x). For any 1 ≤ i ≤ m, the

definition of Gα implies

∇gi(x)⊤Gα(x) = D+
Gα
gi(x) ≤ −αgi(x).

Therefore, if i ∈ I0(x), then [∇gi(x)⊤Gα(x)]+ = 0. Similarly, for any 1 ≤ j ≤ k, the definition

of Gα implies that

∇hj(x)⊤Gα(x) = D+
Gα
hj(x) = −αhj(x),

so if hj(x) = 0, then |∇hj(x)⊤Gα(x)| = 0, and the result follows.

We now show that Vϵ is a Lyapunov function for ϵ sufficiently small and use this fact

to certify the asymptotic stability of isolated local minimizers.

Proof of Theorem 3.3.7(ii). Assume, without loss of generality, that U is bounded. By

Lemma 3.3.9, the function Vϵ defined in (3.20) is a strong exact penalty relative to U .

By definition, this means that there exists ϵ1 > 0 such that when ϵ < ϵ1, x∗ is the only

minimizer of Vϵ in U . Let x ∈ U and (u, v) ∈ Λα(x). Then, using Lemmas 3.3.8 and 3.3.9
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and the definition of Gα, we have

D+
Gα
Vϵ(x) ≤− ∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x)− 1

ϵ

∑
i∈I+(x)

αgi(x)− 1
ϵ

k∑
j=1

α|hj(x)|.

Let I≤0 = I0(x) ∪ I−(x). It follows that,

D+
Gα
Vϵ(x) ≤− ∥Gα(x)∥2 + α

∑
i∈I≤0

uigi(x) +

α
∑

i∈I+(x)

(
ui −

1
ϵ

)
gi(x) + α

k∑
j=1

(
|vj| −

1
ϵ

)
|hj(x)|.

Next, by [RW98, Proposition 5.15], Λα is locally bounded, so there exists a B > 0 such that

sup
x∈U

{
sup

(u,v)∈Λα(x)
∥(u, v)∥∞

}
< B. (3.22)

So if we choose ϵ2 > 0 such that ϵ2 <
1
B

, then for ϵ < ϵ2,

∑
i∈I+(x)

(
ui −

1
ϵ

)
gi(x) +

k∑
j=1

(
|vj| −

1
ϵ

)
|hj(x)| < 0.

Finally, since u ≥ 0, we have α∑i∈I≤0 uigi(x) ≤ 0. Thus,

D+
Gα
Vϵ(x) ≤ −∥Gα(x)∥2 < 0,

for all x ∈ U \ {x∗}, whenever ϵ < min{ϵ1, ϵ2}. Therefore Vϵ is a Lyapunov function on U

and asymptotic stability of x∗ relative to Rn follows by Lemma 2.2.1.
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Remark 3.3.10 (Relationship to merit functions in numerical optimization). In numerical

optimization, the ℓ1 penalty function in (3.20) is often used as a merit function, i.e., a

function that quantifies how well a single iteration of an optimization algorithm balances

the two goals of reducing the value of the objective function and reducing the constraint

violation (cf. [NW06, Sec. 15.4]). Typically, the stepsize on each iteration is chosen so

that the merit function is nonincreasing. Thus, if the algorithm is viewed as a discrete-time

dynamical system, the merit function is a Lyapunov function. The ℓ1 penalty plays a similar

role for the continuous-time system described here. □

C Exponential Stability of Isolated Local Minimizers

We now discuss the exponentially stability of isolated local minimizers. Our first

step is to identify conditions under which the safe gradient flow is differentiable. To do

so, we introduce the notions of strict complementarity and second-order condition on the

optimization problem.

Definition 3.3.11 (Strict complementarity and second-order sufficient conditions). Let

(x∗, u∗, v∗) be a KKT triple of (3.1).

• The strict complementarity condition holds if u∗
i > 0 for all i ∈ I0(x∗);

• The second-order sufficient condition holds if z⊤Qz > 0 for all z ∈ ker ∂gI0 (x∗)
∂x

∩

ker ∂h(x∗)
∂x

, where

Q=∇2f(x∗)+
m∑

i=1
u∗

i∇2gi(x∗)+
k∑

j=1
v∗

i∇2hj(x∗). (3.23)
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When LICQ hold and strict complementarity hold for (3.1), these properties together

can be used to establish the differentiability of the KKT triple satisfying (3.16), and one can

compute the Jacobian in closed form.

Lemma 3.3.12 (Jacobian of safe gradient flow). Let x∗ ∈ XKKT and (u∗, v∗) be the associated

Lagrange multipliers. Suppose

• LICQ holds at x∗;

• (x∗, u∗, v∗) satisfies the strict complementarity condition;

Then Gα is differentiable at x∗ and

∂Gα(x∗)
∂x

= −PQ− α(I − P ),

where I is the n×n identity matrix, P is the orthogonal projection matrix onto ker ∂gI0 (x∗)
∂x

∩

ker ∂h(x∗)
∂x

, and Q is defined in (3.23).

Proof. Let J := I−(x∗) and assume. After possibly reordering the rows of g(x), we have I0 =

{1, 2, . . . , |I0|} and J = {|I0| + 1, . . . ,m}. For convenience of notation we write G = ∂g(x∗)
∂x

,

GI = ∂gI0 (x∗)
∂x

, GJ = ∂gJ (x∗)
∂x

and H = ∂h(x∗)
∂x

.

We first show that when LICQ, strict complementarity hold for (3.1), then these

properties also hold for the problem (3.13). By the reasoning in Proposition 3.3.3, (3.13)

satisfies the strong second-order sufficient condition at x∗, and the ith inequality of constraint

of (3.13) is active if and only if gi(x∗) = 0. Since by Proposition 3.3.1, Gα(x∗) = 0, and

Λα(x∗) = {(u∗, v∗)}, it follows that u∗
i > 0 for i such that the ith inequality constraint of

(3.13) is active, and therefore the problem satisfies strict complementarity as well.
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Therefore, by [Fia76, Theorem 2.3] it follows that Gα(x), u(x) and v(x) are differen-

tiable at x∗, and the Jacobian, J = ∂
∂x

(Gα(x∗), u(x∗), v(x∗)), can be computed as

J =


 I H⊤ G⊤

−H 0 0
−DuG 0 −αDg


︸ ︷︷ ︸

M



−1  −QαH
αDuG


︸ ︷︷ ︸

N

, (3.24)

where Du = diag(u∗) and Dg = diag(g(x∗)). By strict complementarity, Du = blkdiag(D̃u, 0)

and Dg = blkdiag(0, D̃g), where D̃u ≻ 0 and D̃g ≺ 0. We partition matrices M and N

in (3.24) to obtain

J =


I H⊤ G⊤

I G⊤
J

−H 0 0 0
−D̃uGI 0 0 0

0 0 0 −αD̃g


−1 

−Q
αH

αD̃uGI

0

 . (3.25)

Let S be the Schur complement of M when partitioned as above. Then

S =


HH⊤ HG⊤

I HG⊤
J

D̃uGIH
⊤ D̃uGIG

⊤
I D̃uGIG

⊤
J

0 0 αD̃g

,

and the inverse of S is

S−1 =


[
HH⊤ HG⊤

I

D̃uGIH
⊤ D̃uGIG

⊤
I

]−1

×

0 ×



where we replace values which will eventually be canceled out by ×. Next, we substitute

S−1 into the formula for the inverse of a 2× 2 block matrix given in [LS02, Theorem 2.1] to
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compute M−1, and simplify (3.25), which yields

∂Gα(x∗)
∂x

=−

I − [H⊤ G⊤
I G⊤

J

]
S−1

 H
D̃uGI

0


Q− α [H⊤ G⊤

I G⊤
J

]
S−1

 H
D̃uGI

0


= −PQ− α(I − P ).

where

P = I −
[
H
GI

]⊤ [
HH⊤ HG⊤

I

D̃uGIH
⊤ D̃uGIG

⊤
I

]−1 [
H

D̃uGI

]
.

Finally, let D = blkdiag(I, D̃u). It follows that D is invertible and

P = I −
[
H⊤ G⊤

I

] (
D

[
HH⊤ HG⊤

I

GIH
⊤ GIG

⊤
I

])−1

D

[
H
GI

]

= I −
[
H⊤ G⊤

I

] [HH⊤ HG⊤
I

GIH
⊤ GIG

⊤
I

]−1

D−1D

[
H
GI

]

= I −
[
H
GI

]† [
H
GI

]
,

so by the properties of the Moore-Penrose inverse, P is the projection onto ker ∂gI(x∗)
∂x

∩

ker ∂h(x∗)
∂x

.

Using the result in Lemma 3.3.12, stability of an isolated local minimizer can be

inferred by showing that the eigenvalues of the Jacobian of the safe gradient flow are all

strictly negative.

Proof of Theorem 3.3.7(iii). By the second-order sufficient condition, z⊤PQPz > 0 for all

z ∈ im P \ {0}. It follows that PQPz = 0 if and only if z ∈ kerP . Therefore 0 is an

eigenvalue of PQP with multiplicity r and PQP has n−r strictly positive eigenvalues, where
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r = dim kerP . Let z1, . . . , zr be the eigenvectors corresponding to the zero eigenvalues, and

zr+1, . . . , zn be eigenvectors corresponding to the positive eigenvalues, denoted λr+1, . . . , λn.

Then

Pzi =


0 i = 1, . . . , r,

zi i = r + 1, . . . , n.

Let

µi =


0 i = 1, . . . , r,

λi − α i = r + 1, . . . , n.

Then, it follows that (PQP − αP )zi = µizi for all 1 ≤ i ≤ n. Observe that PQP − αP =

(PQ − αI)P has precisely the same eigenvalues as P (PQ − αI) = PQ − αP . Therefore,

since µi is an eigenvalue of PQ− αP , it follows that µi + α is an eigenvalue of

PQ− αP + αI = PQ+ α(I − P ) = −∂Gα(x∗)
∂x

.

Hence the eigenvalues of ∂Gα(x∗)
∂x

are

{−α,−α, . . . ,−α,−λr+1, . . . ,−λn},

where −α appears with multiplicity r. Since all the eigenvalues are strictly negative, x∗ is

exponentially stable.
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3.3.3 Stability of Nonisolated Local Minimizers

We have characterized in Section 3.3.2 the stability under the safe gradient flow of

local minimizers that are isolated KKT points. In general, if x∗ is strict local minimizer that

is not an isolated KKT point (for example, if there are an infinite number of local maximizers

arbitrarily close to x∗, cf. [AK06, page 5]), or if x∗ is only a local minimizer, then there are

no guarantees on Lyapunov stability. However, as we show here, nonisolated minimizers are

stable under the safe gradient flow under additional assumptions on the problem data.

When there are no constraints, the safe gradient flow reduces to the classical gradient

flow, where conditions for semistability of local minimizers are well known: if the objec-

tive function is real-analytic, then all trajectories of the gradient flow have finite arclength,

cf. [Loj82], in which case the objective function can be used to construct an arclength-based

Lyapunov function satisfying the hypotheses of Lemma 3.6.4 to establish semistability. In

this section, we conduct a similar analysis for the constrained case. Our main result is as

follows.

Theorem 3.3.13 (Stability of nonisolated local minima). Consider the optimization prob-

lem (3.1), and assume f , g and h are real-analytic. Let S be a bounded set of local minimizers

on which f is constant and equal to f ∗ such that

(i) There is an open set U and β > 0 such that U ∩XKKT = S and f(x)−f ∗ ≥ βdistS(x)2

for all x ∈ U ∩ C;

(ii) LICQ is satisfied at all x∗ ∈ S;

(iii) TS(x∗) ∩N prox
S (x∗) = {0} for all x∗ ∈ S.
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Then there is α∗ > 0 such that every x∗ ∈ S is semistable relative to Rn under the safe

gradient flow Gα, for α > α∗.

To prove this result, we first discuss various intermediate results. In particular, the

growth condition in Theorem 3.3.13(i) plays a crucial role in the construction of a Lyapunov

function to prove the result. Any x∗ ∈ S satisfying this property is called a weak sharp

minimizer of f relative to S. Weak sharp minimizers play an important role in sensitivity

analysis for nonlinear programs as well as convergence analysis for numerical methods in

optimization [BF93, SW99].

We review second-order optimality conditions for weak sharp minimizers. Let x∗ ∈

XKKT, suppose that LICQ holds at x∗, and let (u∗, v∗) be the unique Lagrange multipliers

of (3.1) associated to x∗. Define the index set of strongly active constraints as

I+
0 (x∗) = {1 ≤ i ≤ m |u∗

i > 0}.

The critical cone is

Γ(x∗) = {d ∈ Rn | ∇hj(x∗)⊤d = 0, j = 1, . . . k,

∇gi(x∗)⊤d = 0, i ∈ I+
0 (x∗),

∇gj(x∗)⊤d ≤ 0, j ∈ I0(x∗) \ I+
0 (x)}.

(3.26)

Lemma 3.3.14 (Second-order necessary condition for constrained weak sharp minima

[SW99, Prop. 3.5]). Consider (3.1) and let S ⊂ C be a set on which f is constant. Suppose

that x∗ ∈ ∂S is a weak sharp local minimizer of f relative to S and LICQ is satisfied at x∗.
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Let u∗, v∗ be the Lagrange multipliers and define ℓ(x) = f(x)+(u∗)⊤g(x)+(v∗)⊤h(x). Then,

there exists γ > 0 such that, for all d ∈ Γ(x∗),

ℓ′′(x∗; d) ≥ γdistTS(x∗)(d)2.

Lemma 3.3.15 (Second-order sufficient condition for unconstrained weak sharp minima

[SW99, Thm. 2.5]). Consider W : Rn → R and suppose that W is constant on S. Suppose

x∗ ∈ ∂S and W ′′(x∗; d) > 0 for all d ∈ N prox
S (x∗) \ {0}, then x∗ is a weak sharp local

minimizer of W relative to S.

We now proceed with the construction of the Lyapunov function. Let T (α)
C : Rn ⇒ Rn

be the set-valued map where, for each x ∈ Rn, T (α)
C (x) is the constraint set of (3.13). Let

Jα : Rn × Rn → R be

Jα(x, ξ) = αf(x) +∇f(x)⊤ξ + 1
2 ∥ξ∥

2 .

Consider the optimization problem

minimize
ξ∈T

(α)
C (x)

Jα(x, ξ) (3.27)

As we show next, the solution to (3.27) is (3.13).

Lemma 3.3.16 (Correspondence between (3.27) and (3.13)). Let x ∈ Rn. Then the program

(3.13) has a solution at x if and only if (3.27) has a solution, in which case Gα(x) =

arg min
ξ∈T

(α)
C (x){Jα(x, ξ)}.
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Proof. Note that the feasible sets of (3.27) and (3.13) coincide. Next, for all (x, ξ) ∈ Rn×Rn

Jα(x, ξ)− 1
2 ∥ξ +∇f(x)∥2 = αf(x)− 1

2 ∥∇f(x)∥2 .

Since the difference of the objectives in (3.27) and (3.13) does not depend on ξ, both problems

have the same optimizer.

Lemma 3.3.16 shows that (3.27) is another characterization of the safe gradient flow

in terms of a parametric quadratic program. Let Wα : X → R be the value function

Wα(x) = inf
ξ∈T

(α)
C (x)
{Jα(x, ξ)}

= αf(x) +∇f(x)⊤Gα(x) + 1
2 ∥Gα(x)∥2 .

(3.28)

Our strategy to prove Theorem 3.3.13 consists of showing that Wα is a Lyapunov function

satisfying the hypotheses in Lemma 3.6.5 whenever α is sufficiently large. Towards this end,

we begin by computing the directional derivative of Wα. Let Q : X × Rm
≥0 × Rk → Rn×n be

the matrix-valued function,

Q(x, u, v) = ∇2f(x) +
m∑

i=1
ui∇2gi(x) +

k∑
j=1

vj∇2hj(x).

Since the Lagrange multipliers, (u(x), v(x)) are unique in a neighborhood of S, we slightly

abuse notation by defining Q(x) := Q(x, u(x), v(x)). By Lipschitzness of u and v, Q is

continuous on X. The proof of the next result follows from [Jit84, Thm. 2] and [Sha85, Cor.

4.1] and is omitted for brevity.
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Lemma 3.3.17 (Differentiability of Wα). Suppose that S satisfies the hypotheses in The-

orem 3.3.13, and X is an open set containing S on which (Gα(x), u(x), v(x)) is the unique

solution to (3.16). Then

(i) For all x ∈ X, Wα is differentiable with

∇Wα(x) = −(αI −Q(x))Gα(x); (3.29)

(ii) For all x∗ ∈ S, Wα is twice directionally differentiable in any direction d ∈ Rn, where

W ′′
α(x∗; d) =min

ζ∈Rn

[
d
ζ

]⊤ [
αQ(x∗) Q(x∗)
Q(x∗) I

] [
d
ζ

]

s.t. α∇hj(x∗)⊤d+∇hj(x∗)⊤ζ = 0, ∀j = 1, . . . , k,

α∇gi(x∗)⊤d+∇gi(x∗)⊤ζ = 0, ∀i ∈ I+
0 (x∗),

α∇gs(x∗)⊤d+∇gs(x∗)⊤ζ ≤ 0, ∀s ∈ I0(x∗) \ I+
0 (x∗).

(3.30)

Remark 3.3.18 (Dependence of Q(x) on α). In general, for x ∈ X, the value of Q(x)

depends on the choice of α, since u(x) and v(x) depend on α. However, if x∗ ∈ XKKT, then

u(x∗), v(x∗) correspond to the Lagrange multipliers of (3.1) and Q(x∗) is the Hessian of the

Lagrangian of (3.1). In particular, this means that for all x∗ ∈ XKKT, the value of Q(x∗)

depends only on the problem data and is independent of α. □

We now proceed with the proof of Theorem 3.3.13.

Proof of Theorem 3.3.13. Let α∗ = supx∗∈S{ρ(Q(x∗))}. For α > α∗, we have αI−Q(x∗) ≻ 0

for all x∗ ∈ S. Assume without loss of generality that αI − Q(x) ≻ 0 for all x ∈ U (if not,

since Q is continuous, we can always find an open subset of U containing S for which these
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property holds). We claim that Wα satisfies each of the conditions (i)-(iii) in Lemma 3.6.5

with K = Rn.

We begin by showing condition (iii). If x∗ ∈ U is a local minimizer of Wα, then

∇Wα(x∗) = (αI−Q(x∗))Gα(x∗) = 0. Since αI−Q(x∗) ≻ 0, from (3.29) we deduce Gα(x∗) =

0, so x∗ ∈ XKKT and therefore x∗ ∈ U ∩XKKT = S.

Conversely, suppose that x∗ ∈ S. Note that, by Proposition 3.3.1, Wα(x) = αf(x)

for all x ∈ S. Therefore, if x∗ ∈ int(S), it follows that x∗ is a local minimizer of Wα. On

the other hand, suppose that x∗ ∈ ∂S. For d ∈ Rn, let ζd be the unique optimizer of (3.30).

Then

W ′′
α(x∗; d) = αd⊤Q(x∗)d+ 2ζ⊤

d Q(x∗)d+ ∥ζd∥2 . (3.31)

From the constraints in (3.30), ζd +αd ∈ Γ(x∗). Because x∗ ∈ ∂S is a weak sharp minimizer

of f relative to S, by Lemma 3.3.14, there exists γ > 0 such that for all d ∈ Rn,

ℓ′′(x∗; ζd + αd) = (ζd + αd)⊤∇2ℓ(x∗)(ζd + αd) ≥ γdistTS(x∗)(ζd + αd)2 (3.32)

Since ∇2ℓ(x∗) = Q(x∗), we combine (3.31) and (3.32) to get

αW ′′
α(x∗; d) ≥ζ⊤

d (αI −Q(x∗))ζd + γdistTS(x∗)(ζd + αd)2.

Because αI − Q(x∗) ≻ 0, if W ′′
α(x∗; d) = 0, then ζd = 0 and d ∈ TS(x∗). But TS(x∗) ∩

N prox
S (x∗) = {0}, which meansW ′′

α(x∗; d) > 0 for all d ∈ N prox
S (x∗)\{0}, so by Lemma 3.3.15,

x∗ is a weak sharp local minimizer of Wα.
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Next we verify condition (ii) in Lemma 3.6.5. For all x ∈ U ,

D+
Gα
Wα(x) = ∇Wα(x)⊤Gα(x) = −Gα(x)⊤(αI −Q(x))Gα(x).

Without loss of generality, we can assume that U is bounded. Then, we can choose c1, c2 > 0

so that

c1 < inf
x∈U
{λmin(αI −Q(x))}

c2 > sup
x∈U
{λmax(αI −Q(x))}.

It follows that D+
Gα
Wα(x) ≤ −c1 ∥Gα(x)∥2 for all x ∈ U , but since ∥∇Wα(x)∥ ≤ c2 ∥Gα(x)∥,

we have for all x ∈ U ,

D+
Gα
Wα(x) ≤ −c1

c2
∥∇Wα(x)∥ ∥Gα(x)∥ .

Finally, we claim that Wα|U is a globally subanalytic function, and therefore condition (i)

holds by [Kur98, Thm. 1] and the fact that the class of globally subanalytic sets is an o-

minimal structure (cf. [Kur98, Definition 1]). To prove the claim, first note that, since f

is real-analytic, Jα is real-analytic, and therefore subanalytic [BM88, Definition 3.1]. Since

U is bounded, and the restriction of any subanalytic function to a bounded open set is

globally subanalytic [VdDM96], it follows that Jα|U is globally subanalytic. Finally, since

T
(α)
C |U : U ⇒ Rn is a globally subanalytic set valued map, and

Wα|U(x) = inf
ξ∈T

(α)
C |U (x)

{Jα|U(x, ξ)},

it follows by application of Lemma 3.6.2 that Wα|U is globally subanalytic. The statement
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follows by applying Lemma 3.6.5 with K = Rn.

3.3.4 Global Convergence

Finally, we turn to the characterization of the global convergence properties of the

safe gradient flow. We show that when the problem data are real-analytic and the feasible

set is bounded, every trajectory converges to a KKT point.

Theorem 3.3.19 (Global convergence properties). Consider the optimization problem (3.1),

and assume C is bounded, f , g, and h are real-analytic functions, and LICQ holds everywhere

on C. Let X be an open set containing C on which the safe gradient flow is well defined.

Then there is α∗ > 0 such that for α > α∗, every trajectory of the safe gradient flow starting

in X converges to some KKT point.

To prove Theorem 3.3.19, we use the next result characterizing the positive limit set

of solutions of the safe gradient flow.

Lemma 3.3.20 (Convergence to connected component). Consider the optimization prob-

lem (3.1), and assume C is bounded, f , g, and h are real-analytic functions, and MFCQ

holds everywhere on C. Let X be an open set containing C on which the safe gradient flow

is well defined. Then for all x ∈ X, ω(x) is contained in a unique connected component

of XKKT.

Proof. By Theorem 3.3.4, C is asymptotically stable and forward invariant on X, and by

Lemma 3.3.8, D+
Gα
f(x) ≤ 0 for all x ∈ C. Using the terminology from [AE10], f is a height

function of the pair (C,Gα).
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Because f, g, and h are real-analytic and C is bounded, C is a globally subanalytic

set. Let f̂ = f + δC. Then f̂ is a globally subanalytic function, f̂ is continuous on dom(f̂) =

C, and XKKT is precisely the set of critical points of f̂ . By the Morse-Sard Theorem for

subanalytic functions [BDL06, Thm. 14], XKKT has at most a countable number of connected

components, and f̂ is constant on each connected component. Since f(x) = f̂(x) for all

x ∈ C, f is also constant on each connected component of XKKT, meaning that the connected

components of XKKT are contained in f (cf. [AE10, Definition 5]).

Hence, we can apply [AE10, Thm. 6], and conclude that for all x ∈ X, the positive

limit set ω(x) is nonempty and contained in a unique connected component of E, where

E = {x ∈ C | D+
Gα
f(x) = 0}.

However, by Lemma 3.3.8, E = XKKT, concluding the result.

We are ready to prove Theorem 3.3.19.

Proof of Theorem 3.3.19. By Lemma 3.3.20, for x ∈ X, there is a connected component

S ⊂ XKKT such that ω(x) ⊂ S. Since LICQ holds on S, by Proposition 3.3.3 there is

an open set U containing S and Lipschitz functions (u, v) : U → Rm
≥0 × Rk such that

U ∩XKKT = S and (Gα(x), u(x), v(x)) is the unique solution to (3.16) on U .

Let Wα be given by (3.28). By Lemma 3.3.17, Wα is differentiable on U , and using the

same reasoning as in the proof of Theorem 3.3.13, Wα is a globally subanalytic function, and

satisfies the Kurdyka- Lojasiewicz inequality. Furthermore, if α > α∗ = supx∗∈S{ρ(Q(x∗))},

then there is some c > 0 such that D+
Gα
Wα(y) ≤ −c ∥∇Wα(y)∥ ∥Gα(y)∥ for all y ∈ U .
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Thus, we can apply Lemma 3.6.5 with K = Rn to conclude that every trajectory

starting in U that remains in U for all time converges to a point in S. However, since

ω(x) ⊂ S, there exists a T > 0 such that ΦT (x) ∈ U , and for all t > 0, Φt(ΦT (x)) =

ΦT +t(x) ∈ U . Thus, there exists x∗ ∈ S such that ΦT +t(x) → x∗ as t → ∞, and therefore

the trajectory starting at x converges to x∗.

Remark 3.3.21 (Lower bounds on the parameter α to ensure global convergence). Note

that the proof of Theorem 3.3.19 yields the expression α∗ = supx∗∈S{ρ(Q(x∗))} for the

lower bound on α that guarantees global convergence. In general, computing this expression

requires knowledge of the primal and dual optimizers of the original problem. However,

reasonable assumptions on f , g, and h allow us to obtain upper bounds of α∗. For instance,

if C is polyhedral and∇f is ℓf -Lipschitz on C, it follows that ∥∇2f(x)∥ ≤ ℓf , and∇2gi(x) = 0

and ∇2hj(x) = 0 for all i = 1, . . .m and j = 1, . . . k. Therefore, α∗ ≤ ℓf , and ℓf can be used

instead as a lower bound on α to ensure global convergence. □

3.4 Comparison With Other Optimization Methods

Here we compare the safe gradient flow with other continuous-time flows to solve

optimization problems. We consider the problem of minimizing f(x) = 0.25 ∥x∥2 − 0.5x1 +

0.25x2 subject to x2 ≥ 0 and x1 ≤ x2 (see also [HBHD21, Figure 8] for a comparison of

additional methods). Figure 3.4 shows the outcome of the comparison on the same example

problem taken from [HBHD21]. The methods compared are the projected gradient flow,

the logarithmic barrier method (see e.g. [FGW02, Sec. 3]), the ℓ2-penalty gradient flow (see
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e.g. [FM90, Ch. 4]), the projected saddle-point dynamics (see e.g., [CMLC18]), the globally

projected dynamics (see e.g., [XW00]), and the safe gradient flow.

(a) Projected gradient flow (b) Logarithmic barrier flow (c) ℓ2-penalty gradient flow

(d) Projected saddle-point dynam-
ics

(e) Globally projected dynamics (f) Safe gradient flow

Figure 3.4: Comparison of safe gradient flow with other continuous-time optimization
algorithms. The blue-shaded region is the feasible set and the grey curves are level sets of
the objective function. The initial condition is denoted by the purple dot, and the global
minimizer is denoted by a blue dot. (a) The trajectory converges to the global minimizer,
and the trajectory remains inside the feasible set for all time but it is nonsmooth. (b) The
trajectory is smooth and remains inside the feasible set but does not converge to the global
minimizer. However, by choosing µ small enough, the trajectory can be made to converge
arbitrarily close to the minimizer. (c) The trajectory is smooth, but does not remain inside
the feasible set or converge to the global minimizer. However, by choosing ϵ small enough,
the trajectory can be made to converge arbitrarily close to the minimizer. (d) Initialized
with u(0) = 0, the trajectory does not remain inside the feasible set, but it converges to
the global minimum. (e) The trajectory is smooth, converges to the global minimizer, and
remains inside the feasible set. However, this method may not be well-defined for nonconvex
problems (f) The trajectory is smooth, converges to the global minimizer, and remains inside
the feasible set. Of the methods implemented here and in [HBHD21, Figure 8], the safe
gradient flow is the only nonconvex method that satisfies all of these properties.

Under the logarithmic barrier method, the feasible set is forward invariant and the

minimizer of the logarithmic barrier penalty fbarrier(x;µ) = f(x)− µ∑m
i=1 log(−gi(x)), with
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µ > 0, does not correspond to the minimizer of (3.1). Under the unconstrained minimizer of

the ℓ2-penalty, fpenalty(x; ϵ) = f(x) + ϵ
2
∑m

i=1[gi(x)]2+, with ϵ > 0, does not correspond to the

minimizer of (3.1), and the feasible set is not forward invariant under the gradient flow of

fpenalty. Under the projected saddle-point dynamics, the feasible set is not forward invariant,

but each trajectory converges to x∗. Under the globally projected dynamics, the feasible

set is forward invariant, trajectories converge to x∗, and trajectories are smooth. However,

unlike the safe gradient flow, the globally projected dynamics may be undefined when the

constraints are not convex.

3.5 Conclusions

We have introduced the safe gradient flow, a continuous-time dynamical system to

solve constrained optimization problems that makes the feasible set forward invariant. The

system can be derived either as a continuous approximation of the projected gradient flow or

by augmenting the gradient flow of the objective function with inputs, then using a control

barrier function-based QP to ensure safety of the feasible set. The equilibria are exactly

the critical points of the optimization problem, and the steady-state inputs at the equilibria

correspond to the dual optimizers of the program. We have conducted a thorough stability

analysis of the dynamics, identified conditions under which isolated local minimizers are

asymptotically stable and nonisolated local minimizers are semistable. Future work will

explore the flow’s robustness properties, and leverage convexity to obtain stronger global

convergence guarantees. Further, we hope to explore issues related to the practical imple-

mentation of the safe gradient flow, including interconnections of the optimizing dynamics
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with a physical system, , develop discretizations of the dynamics and study their relationship

with discrete-time iterative methods for nonlinear programming, and extend the framework

to Newton-like flows for nonlinear programs which incorporate higher-order information.

3.6 Chapter Appendix

3.6.1 The Kurdyka- Lojasiewicz Inequality

Here we discuss the Kurdyka- Lojasiewicz inequality, which plays a critical role in

the stability analysis of the systems considered in this chapter. The original formulation of

the  Lojasiewicz inequality[Loj82] states that for a real-analytic function V : Rn → R and a

critical point x∗ ∈ V −1(0), there exists ρ > 0, θ ∈ [0, 1), and c > 0 with

|V (x)|θ < c ∥∇V (x)∥ ,

for all x in a bounded neighborhood of x∗ such that |V (x)| ≤ ρ. This inequality is used to

establish that trajectories of gradient flows of real-analytic functions have finite arclength

and converge pointwise to the set of equilibria.

In many applications, the assumption of real analyticity is too strong. For exam-

ple, the value function of a parametric nonlinear program generally does not satisfy this

assumption, even when all the problem data is real-analytic. However, generalizations of

the  Lojasiewicz inequality have since been shown [Kur98, BDL07] to hold for much broader

classes of functions, which can be characterized using the notion of o-minimal structures,
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which we define next.

Definition 3.6.1 (o-minimal structures). For each n ∈ N, let On be a collection of subsets

of Rn. We call {On}n∈N an o-minimal structure if the following properties hold.

(i) On is closed under complements, finite unions and finite intersections.

(ii) If A ∈ On1 and B ∈ On2 then A×B ∈ On1+n2.

(iii) Let π : Rn+1 → Rn be the projection map onto the first n components. If A ∈ On+1,

then π(A) ∈ On.

(iv) Let g1, . . . , gm and h1, . . . , hk be polynomial functions on Rn with rational coefficients.

Then {x ∈ Rn | gi(x) < 0, hj(x) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k} ∈ On

(v) O1 is precisely the collection of all finite unions of intervals in R.

Examples of o-minimal structures include the class of semi-algebraic sets and the class

of globally subanalytic sets. We refer the reader to [VdDM96] for a detailed overview of these

concepts. The notion of o-minimality plays a crucial role in optimization theory, since the

remarkable geometric properties of definable functions allows nonlinear programs involving

them to be studied using powerful tools from real algebraic geometry and variational analysis,

cf. [Iof09].

Let {On}n∈N be an o-minimal structure. A set X ⊂ Rn such that X ∈ On is said to

be definable with respect to {On}n∈N. When the particular o-minimal structure is obvious

from context, then we simply call X definable. Given a definable set X and f : X → Rm and

F : X ⇒ Rm, we say that f (resp. F) is definable if graph(f) ∈ On+m (resp. graph(F) ∈
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On+m). The image and preimage of a definable set with respect to a definable function is

also definable, and the class of definable functions is closed with respect to composition and

linear combinations. Furthermore, as we show below, the value function of a parametric

nonlinear program is definable when the problem data is definable.

Lemma 3.6.2 (Definability of value functions). Let X ⊂ Rn, J : X × Rm → R and

F : X ⇒ Rm be definable. Let V : X → R be given by V (x) = infξ∈F(x){J(x, ξ)}, and

suppose that dom(V ) = X. Then V is also definable.

Finally, functions definable on o-minimal structures satisfy a generalization of the

 Lojasiewicz inequality [Kur98].

Lemma 3.6.3 (Kurdyka- Lojasiewicz inequality for definable functions). Let X ⊂ Rn be

a bounded, open, definable set, and V : X → R a definable, differentiable function, and

V ∗ = infy∈X V (y). Then there exists c > 0, ρ > 0, and a strictly increasing, definable,

differentiable function ψ : [0,∞)→ R such that

ψ′(V (x)− V ∗) ∥∇V (x)∥ ≥ c

for all x ∈ U where V (x)− V ∗ ∈ (0, ρ).

3.6.2 Lyapunov Tests for Stability

Here we present Lyapunov based tests for attractivity and stability of a nonisolated

equilibria. Each of the tests we discuss exploit the fact that pointwise convergence follows
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as a consequence of the trajectories of the system having finite arclength. We begin with the

“arclength”-based Lyapunov test from [BB10, Thm. 4.3 and Theorem 5.2].

Lemma 3.6.4 (Arclength-based Lyapunov test). Let K be a forward invariant set of ẋ =

F (x). Let S ⊂ K be a set of equilibria and U ⊂ Rn an open set containing S where

U ∩ F−1({0}) = S. Let V : U ∩ K → R be a continuous function. Consider the following

conditions.

(i) There exists a c > 0 such that for all x ∈ U ∩ K,

D+
F V (x) ≤ −c ∥F (x)∥ . (3.33)

(ii) x∗ is a minimizer of V if and only if x∗ ∈ S.

If (i) holds then every bounded trajectory that starts in U ∩K and remains in U ∩K for all

time has finite arclength and converges to a point in S. If (i) and (ii) hold then, in addition,

every x∗ ∈ S is semistable relative to K.

In the case where the Lyapunov function V is definable with respect to an o-minimal

structure, we show that the condition in (3.33) for the arclength-based Lyapunov test can be

replaced with D+
F V (x) ≤ −c ∥F (x)∥ ∥∇V (x)∥. This is referred to as the “angle-condition”

and has been exploited [AMA05, Lag07] to show convergence of descent methods to solve non-

linear programming problems. The name arises from the fact that the inequality implies that

the angle between F (x) and ∇V (x) remains bounded in a neighborhood of the equilibrium.

In the next result, we show that the angle condition, together with the Kurdyka- Lojasiewicz

inequality, implies that all trajectories of the system have finite arclength.
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Lemma 3.6.5 (Angle-condition-based Lyapunov test). Let K be a forward invariant set

of ẋ = F (x). Let S ⊂ K be a bounded set of equilibria and U ⊂ Rn a bounded open set

containing S where U ∩ F−1({0}) = S. Let V : U ∩ K → R be a differentiable function.

Consider the following conditions.

(i) V is constant and equal to V ∗ on S and definable with respect to some o-minimal

structure;

(ii) There is c2 > 0 such that for all x ∈ U ∩ K,

D+
F V (x) ≤ −c2 ∥∇V (x)∥ ∥F (x)∥ .

(iii) x∗ is a minimizer of V if and only if x∗ ∈ S.

If (i) and (ii) hold then every trajectory that starts in U ∩ K and remains in U ∩ K for all

time has finite arclength and converges to a point in S. If (i)-(iii) hold then, in addition,

every x∗ ∈ S is semistable relative to K.

Proof. Suppose (i) holds. By Lemma 3.6.3, there exists c1 > 0 and a strictly increasing,

definable, differentiable function ψ : [0,∞) → R such that ψ′(|V (x) − V ∗|) ∥∇V (x)∥ ≥ c1

for all x ∈ (U ∩ K) \ S. Assume without loss of generality that ψ(0) = 0, and define

Ṽ : U ∩ K → R by

Ṽ (x) =



ψ(V (x)− V ∗) V (x) > V ∗

0 V (x) = V ∗

−ψ(V ∗ − V (x)) V (x) < V ∗.
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Then for all x ∈ U with V (x) > V ∗, we have

D+
F Ṽ (x) = ψ′(V (x)− V ∗)D+

F V (x)

≤ −c2ψ
′(V (x)− V ∗) ∥∇V (x)∥ ∥F (x)∥

≤ −c1c2 ∥F (x)∥ .

A similar argument can be used to show that the above inequality also holds when V (x) ≤ V ∗.

Since ψ is increasing, x∗ ∈ U∩K is a local minimizer of Ṽ if and only if x∗ is a local minimizer

of V . Hence, the result follows by applying Lemma 3.6.4 with the Lyapunov function Ṽ .

3.6.3 Regularity of Systems of Linear Inequalities

The proof of Lemma 3.2.1, requires the following technical result which gives condi-

tions for which a linear system of inequalities is regular.

Lemma 3.6.6. Consider a linear inequality system in the variables (u, v) ∈ Rm × Rk with

the form

G1u+G2v ≤ c (3.34a)

H1u+H2v = h (3.34b)

u ≥ 0 (3.34c)

where c ∈ Rnc, d ∈ Rnd, G1 ∈ Rnc×m, G2 ∈ Rnc×k, H1 ∈ Rnd×m, H2 ∈ Rnd×k. The

system (3.34) is regular if H2 is full rank and there exists (u0, v0) such that G1u0 +G2v0 < c,
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H1u0 +H2v0 = h, u0 ≥ 0.

Proof. By [Rob75, Theorem 2], the system (3.34) is regular if and only if:

(i) There exists (u0, v0) such that G1u0 +G2v0 < c, H1u0 +H2v0 = d, u0 ≥ 0.

(ii) The following system is regular:

H1u+H2v = d (3.35a)

u ≥ 0. (3.35b)

We claim that (3.35) is regular whenever H2 has full rank. Indeed, by a second application

of [Rob75, Theorem 2], (3.35) is regular if and only if

(i) There exists u1, v1 such that u1 > 0 and H1u1 +H2v1 = d

(ii) [H1 H2] has full rank.

Because H2 has full rank, (i) holds since for any u1 > 0, we can always find some v1 such

that H2v1 = h−H1u1 and (ii) holds since if H2 is full rank, range([H1 H2]) = range(H2).
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Chapter 4

Control Theoretic Synthesis of

Dynamical Systems Solving Monotone

Variational Inequalities

In this chapter, we extend the framework we developed in Chapter 3 to synthesize

anytime algorithms, in the form of continuous-time dynamical systems, to solve monotone

variational inequalities. We introduce three algorithms that solve this problem: the projected

monotone flow, the safe monotone flow, and the recursive safe monotone flow. The first two

systems admit dual interpretations: either as projected dynamical systems or as dynamical

systems controlled with a feedback controller synthesized using techniques from safety-critical

control. The third flow bypasses the need to solve quadratic programs along the trajectories

by incorporating a dynamics whose equilibria precisely correspond to such solutions, and

interconnecting the dynamical systems on different time scales. We perform a thorough
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analysis of the dynamical properties of all three systems. For the safe monotone flow, we

show that equilibria correspond exactly with critical points of the original problem, and the

constraint set is forward invariant and asymptotically stable. The additional assumption

of convexity and monotonicity allows us to derive global stability guarantees, as well as

establish the system is contracting when the constraint set is polyhedral. For the recursive

safe monotone flow, we use tools from singular perturbation theory for contracting systems

to show KKT points are locally exponentially stable and globally attracting, and obtain

practical safety guarantees. We illustrate the performance of the flows on a two-player

game example and also demonstrate the versatility for interconnection and regulation of

dynamical processes of the safe monotone flow in an example of a receding horizon linear

quadratic dynamic game.

4.1 Problem Formulation

Consider a variational inequality

(x− x∗)⊤F (x∗) ≥ 0, ∀x ∈ C. (4.1)

which we denote by VI(F, C), where F : Rn → Rn is continuously differentiable and C is a

convex set of the form

C = {x ∈ Rn | g(x) ≤ 0, h(x) = Hx− ch = 0}, (4.2)
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where g : Rn → Rm is continuously differentiable. Our goal is to synthesize a dynamical

system that solves the variational inequality. We formalize this next.

Problem 4.1.1. (Anytime solver of variational inequality). Design a dynamical

system, ẋ = G(x), which is well defined on a set X containing C such that

(i) Trajectories of the system converge to SOL(F, C);

(ii) C is forward invariant;

(iii) Trajectories of the system with initial condition outside C converge to C.

Item (i) ensures that the dynamical system can be viewed as an algorithm which

solves (4.1): solutions can be obtained by simulating system trajectories and taking the

limit as t→∞ of x(t). Item (ii) ensures that this algorithm is anytime, meaning that even if

terminated early, it is guaranteed to return a feasible solution provided the initial condition

is feasible. Item (iii) accounts for infeasible initial conditions, and ensures asymptotic safety.

Both the expression of the algorithm in the form of a continuous-time dynamical system and

the anytime property are particularly useful for real-time applications, where the algorithm

might be interconnected with other physical processes – e.g., when the algorithm output is

used to regulate a physical plant and constraints of the optimization problem ensure the safe

operation of the plant.

In the following, we introduce three dynamics to solve Problem 4.1.1, synthesized

using the techniques outlined in Section 2.2.6. The first is the projected monotone flow,

which is already well-known, but we reinterpret it here through the lens of control theory.
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The next two are the safe monotone flow and the recursive safe monotone flow. Both

dynamics are entirely novel.

4.2 Projected Monotone Flow

In this section, we discuss our first solution to Problem 4.1.1, in the form of the pro-

jected monotone flow. We show that the system can be implemented in two equivalent ways:

either as a control system with a feedback controller designed using the strategy outlined in

Section 2.2.6.A, or as a projected dynamical system. In fact, this system admits many other

equivalent descriptions, for example in terms of monotone differential inclusions, or com-

plementarity systems [BDLA06, HSW00, AC84], and its properties have been extensively

studied [NZ96]. However, we focus here on the control-based and projection-based forms. In

the following sections we describe in detail the derivation of each implementation, show they

are equivalent, and discuss the properties of the resulting flow regarding safety and stability.

4.2.1 Control-Based Implementation

Our design strategy originates from the observation that, when F is monotone, the

system ẋ = −F (x) finds solutions to the unconstrained variational inequality VI(F,Rn).

However, trajectories flowing along this dynamics might leave the constraint set C. This
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leads us to consider the control-affine system:

ẋ = F(x, u, v)

= −F (x)−
m∑

i=1
ui∇gi(x)−

k∑
j=1

vj∇hj(x).
(4.3)

Here, we have augmented the system with inputs from the admissible set U = Rm
≥0 × Rk to

modify the flow of the original drift −F to account for the constraints in a way that ensures

that the solutions to (4.3) stay inside of or approach C. The idea is that if the constraint

gi(x) ≤ 0 is in danger of being violated, the corresponding input ui can be increased to ensure

trajectories continue to satisfy it. Likewise, the input vj can be increased or decreased to

ensure the corresponding constraint hj(x) = 0 is satisfied along trajectories.

Our design proceeds by thinking of C as a safety set for the system and using the

approach outlined in Section 2.2.6.A to synthesize a safeguarding feedback controller (u, v) =

κ(x). Assuming that MFCQ holds for all x ∈ C, Kproj : Rn ⇒ Rm
≥0 × Rk takes the form

Kproj(x) =
{

(u, v) ∈ Rm
≥0 × Rk

∣∣∣− ∂gI

∂x
F (x)− ∂gI

∂x

∂g

∂x

⊤
u− ∂gI

∂x

∂h

∂x

⊤
v ≤ 0,

− ∂h

∂x
F (x)− ∂h

∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v = 0

}
.

The following result states that the set of admissible controls is nonempty. We omit its proof

for space reasons, but note that it readily follows from Farka’s Lemma [Roc70].

Lemma 4.2.1. (Projection onto Tangent Cone is Feasible). If x ∈ C and MFCQ

holds at x, then Kproj(x) ̸= ∅.
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We then use the feedback controller

κ(x) ∈ argmin
(u,v)∈Kproj(x)

J(x, u, v), (4.4)

where we set the objective function to be

J(x, u, v) = 1
2
∥∥∥ m∑

i=1
ui∇gi(x) +

k∑
j=1

vj∇hj(x)
∥∥∥2
. (4.5)

This function measures the magnitude of the “modification” of the drift term in (4.3). Thus,

the QP-based controller (4.4) has the interpretation, at each x, of finding the control input

such that the closed-loop system dynamics are as close as possible to −F (x), while still being

in TC(x). In general, the program given by (4.4) does not have unique solutions. Despite

this, we show below that the closed-loop dynamics of (4.3) is well defined regardless of which

solution to (2.9) is chosen. We refer to it as the projected monotone flow and denote it by P .

4.2.2 Projection-Based Implementation

The second implementation of the projected monotone flow consists of projecting

−F (x) onto the tangent cone of the constraint set. In general, the tangent cone does not

have a representation that allows us to compute the projection easily. However, when the

appropriate constraint qualification condition holds, the tangent cone admits a convenient

parameterization which allows for the projection to be implemented as a quadratic program.

Let x ∈ C and suppose that MFCQ holds at x. It follows that the tangent cone can be
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parameterized as

TC(x) =
{
ξ ∈ Rn

∣∣∣ ∂h(x)
∂x

ξ = 0, ∂gI0(x)
∂x

ξ ≤ 0
}
. (4.6)

The projection-based implementation of the projected monotone flow takes then the following

form:

ẋ = ΠTC(x)(−F (x))

= argmin
ξ∈Rn

1
2 ∥ξ + F (x)∥2

subject to ∂gI0(x)
∂x

ξ ≤ 0, ∂h(x)
∂x

ξ = 0.

(4.7)

The projection onto the tangent ensures by Nagumo’s Theorem [Bla99, Theorem 3.1]

that C is forward invariant.

4.2.3 Properties of Projected Monotone Flow

Here, we lay out the properties of the projected monotone flow. We begin by estab-

lishing the equivalence between the control- and projection-based implementations. We then

discuss existence and uniqueness of solutions, and finally the stability and safety properties

of the dynamics.

A Equivalence of Control-Based and Projection-Based Implementations

Equivalence follows directly from the properties of the tangent cone, as we show next.

Proposition 4.2.2. (Equivalence of Control-Based and Projected-Based Imple-

mentations). Assume MFCQ holds at x ∈ C and let (u, v) be any solution to (4.4) (note
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that P(x) = F(x, u, v)). Then, P(x) = ΠTC(x)(−F (x)).

Proof. Let (u, v) be any solution to (4.4) and ξ = ΠTC(x)(−F (x)). Then F(x, u, v) ∈ TC(x),

so it follows immediately by optimality of ξ that

∥ξ + F (x)∥2 ≤ ∥F(x, u, v) + F (x)∥2 .

Next, because ξ is given by a projection, there exists w ∈ NC(x) such that ξ+F (x) +w = 0,

see e.g., [BDLA06, Corollary 2]. If MFCQ holds at x ∈ C, by [RW98, Theorem 6.14], there

exists (ū, v̄) such that w can be written as

w =
m∑

i=1
ūi∇gi(x) +

k∑
j=1

v̄j∇hj(x), ū ≥ 0, ū⊤g(x) = 0.

Combining this expression with the fact that ξ = −F (x) − w ∈ TC(x) and using the pa-

rameterization of the tangent cone in (4.6), we deduce that (ū, v̄) ∈ Kproj(x). By optimality

of (u, v),

∥ξ + F (x)∥2 =
∥∥∥ m∑

i=1
ūi∇gi(x) +

k∑
j=1

v̄j∇hj(x)
∥∥∥2

≥
∥∥∥ m∑

i=1
ui∇gi(x) +

k∑
j=1

vj∇hj(x)
∥∥∥2

= ∥F(x, u, v) + F (x)∥2 .

But since the projection onto the tangent cone must be unique, we conclude ξ = F(x, u, v).
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The value of Proposition 4.2.2 stems from showing that safety-critical control can

be used to systematically design algorithms that solve variational inequalities. Though the

control strategy pursued in Section 4.2.1 results in a known flow, this sets up the basis for

employing other design strategies from safety-critical control to yield novel methods, as we

will show later.

B Existence and Uniqueness of Solutions

The projected monotone flow is discontinuous, and hence one must consider notions

of solutions beyond the classical ones, see e.g., [Cor08]. Here, we consider Carathéodory

solutions, which are absolutely continuous functions that satisfy (4.7) almost everywhere.

The existence and uniqueness of solutions for all initial conditions follows readily from [AC84,

Chapter 3.2, Theorem 1(i)].

C Safety and Stability of Projected Monotone Flow

We now show that the projected monotone flow is safe, meaning that the constraint

set C is forward invariant, and the solution set SOL(F, C) is stable. Forward invariance

of C follows directly from Nagumo’s Theorem. The equilibria of the projected monotone

flow correspond to solutions to VI(F, C). Finally, stability of a solution x∗ can be certified

using the Lyapunov function V (x) = 1
2 ∥x− x

∗∥2, as a consequence of [AC84, Chapter 3.2,

Theorem 1(ii)]. These properties are summarized in the following result.

Theorem 4.2.3. (Safe and Stability Properties of Projected Monotone Flow).

Let C be convex and suppose MFCQ holds everywhere on C. The following hold for the
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projected monotone flow:

(i) C is forward invariant;

(ii) x∗ is an equilibrium of the projected monotone flow if and only if x∗ ∈ SOL(F, C);

(iii) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is globally Lyapunov stable relative to C;

(iv) If F is µ-strongly monotone, then the projected monotone flow is contracting at rate

µ. In particular, the unique solution x∗ ∈ SOL(F, C) is globally exponentially stable

relative to C.

4.3 Safe Monotone Flow

In this section, we discuss a second solution to Problem 4.1.1, which results in an

entirely novel flow, termed safe monotone flow. Similar to the projected monotone flow, this

system admits two equivalent implementations: either as a control-system with a safeguard-

ing feedback controller or as a projected dynamical system.

4.3.1 Control-Based Implementation

We start with the control system (4.3) with the admissible control set U = Rm
≥0×Rk,

viewing C as a safety set, and design a safeguarding controller. We synthesize this controller

using the function (g, h) as a VCBF, following the approach outlined in Section 2.2.6.B.

94



Letting α > 0 be a parameter, the set of control inputs ensuring safety is given by

Kcbf,α(x) =
{

(u, v) ∈ Rm
≥0 × Rk

∣∣∣ − ∂g

∂x
F (x)− ∂g

∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v ≤ −αg(x)

− ∂h

∂x
F (x)− ∂h

∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v = −αh(x)

}
.

The next result shows that this set is nonempty on an open set containing the constraint set.

Lemma 4.3.1. (Vector Control Barrier Function for (4.3)). Assume MFCQ holds

for all x ∈ C. Then there exists an open set X ⊃ C on which ϕ = (g, h) is a vector-control

barrier function of (4.3) for C, on X, relative to Rm
≥0 × Rk.

The proof of this result is identical to [AC24, Lemma 4.1] and we omit it for brevity.

By Lemma 4.3.1, the feedback controller (u, v) = κ(x) where

κ(x) ∈ argmin
(u,v)∈Kcbf,α(x)

J(x, u, v), (4.8)

and J is given by (4.5), is well defined on X. This controller has the same interpretation

as before: determining the control input belonging to Kcbf,α(x) such that the closed-loop

system dynamics are as close as possible to −F (x). Similar to the case with projection-

based methods, the problem (2.10) does not necessarily have unique solutions. However, we

show below that the closed-loop system is well-defined regardless of which solution is chosen.

We refer to it as the safe monotone flow with safety parameter α, denoted Gα.
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4.3.2 Projection-Based Implementation

Here we describe the implementation of the safe monotone flow as a projected dy-

namical system. Similar to the projected monotone flow, the projected system is obtained by

projecting −F (x) onto a set-valued map. However, because the projection onto the tangent

cone is in general discontinuous as a function of the state, we replace the tangent cone with

the α-restricted tangent set, denoted T
(α)
C , defined as

T
(α)
C (x) =

{
ξ ∈ Rn

∣∣∣ ∂g(x)
∂x

ξ ≤ −αg(x), ∂h(x)
∂x

ξ = −αh(x)
}
. (4.9)

Figure 4.1 illustrates this definition. This set can be interpreted as an approximation of the

usual tangent cone, but differs in several key ways. First, the restricted tangent set is not

a cone, meaning that vectors in T
(α)
C (x) cannot be scaled arbitrarily: in certain direction,

the magnitude of vectors in T
(α)
C (x) is restricted. An important property of T (α)

C (x) is that,

even though the tangent cone is undefined for x ̸∈ C, this is not the case for the restricted

tangent set. In fact, it can be shown that T (α)
C takes nonempty values on an open set

containing C. This property allows for the safe monotone flow to be well-defined for infeasible

initial conditions. The next result summarizes properties of the α-restricted tangent set.

Proposition 4.3.2. (Properties of α-Restricted Tangent Set). Assume MFCQ holds

for all x ∈ C. The set-valued map T (α)
C : Rn ⇒ Rn satisfies:

(i) T
(α)
C (x) is convex for all x ∈ Rn;

(ii) For any fixed x ∈ C, the set T (α)
C (x) satisfies MFCQ at all ξ ∈ T (α)

C (x).
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(a) (b)

Figure 4.1: Illustration of the notion of tangent cone, and α-restricted tangent set. The
gray-shaded region represents the set C. The colored regions depict either type of set, which
consists of vectors centered various points xi. The dashed border indicates directions in
which the magnitude of vectors in the set are unbounded. (a) The α-restricted tangent set.
Note that the set is well-defined at x2 ̸∈ C, however because the region does not overlap with
the point x2, the set T (α)

C (x2) does not contain any zero vectors, and all vectors point strictly
toward the feasible set. (b) The tangent cone. Note that the tangent cone is not well defined
at points outside C.

(iii) There exists an open set X containing C such that T (α)
C (x) ̸= ∅ for all x ∈ X;

(iv) If x ∈ C, then T
(α)
C ⊂ TC(x).

Proof. We first observe that (i) follows from the fact that the constraints characterizing

T
(α)
C (x) are affine in the variable ξ. We prove (ii) using the same strategy as [AC24, Lemma

4.5], which we sketch here. If MFCQ holds at x ∈ C, then the inequalities defining (4.9)

satisfy Slater’s condition [BV09, Chapter 5.2.3] at x and therefore MFCQ holds for all

ξ ∈ T (α)
C (x). To show (iii), we note that Slater’s condition implies that the affine constraints

parameterizing T
(α)
C (x) are regular [Rob75, Theorem 2], meaning that the system remains

feasible with respect to perturbations. Since T (α)
C (x) is nonempty for all x ∈ C, it follows

that there exists an open set X containing C such that T (α)
C (x) is nonempty for all x ∈ X.

Finally, (iv) follows from the definition of the tangent cone.
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Using the α-restricted tangent set, we can define the projected dynamical system

ẋ = Π
T

(α)
C (x)(−F (x))

= argmin
ξ∈Rn

1
2 ∥ξ + F (x)∥2

subject to ∂g(x)
∂x

ξ ≤ −αg(x)

∂h(x)
∂x

ξ = −αh(x).

(4.10)

Similar to the projected monotone flow, the projection operation ensures that the trajecto-

ries of the system remain in the safety set. However, as we show next, the advantages of

projecting onto the restricted tangent cone is that the system is well defined for infeasible

initial conditions, and trajectories of the system are smooth.

4.3.3 Properties of Safe Monotone Flow

We now discuss the properties of the safe monotone flow. We begin by establishing

the equivalence of the control-based and projection-based implementations. Next, we discuss

its stability and safety properties.

A Equivalence of Control-Based and Projection-Based Implementations

We establish here that the control-based and projection-based implementations of

the safe monotone flow are equivalent. The next result states that the closed-loop dynamics

resulting from the implementation of (2.10) over (4.3) is equivalent to the projection onto

T
(α)
C (x). The structure of the proof mirrors that of Proposition 4.2.2.
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Proposition 4.3.3. (Equivalence of Control-Based and Projection-Based Imple-

mentations). Assume MFCQ holds for everywhere on C and let X ⊂ Rn be an open set

containing C on which Kcbf,α takes nonempty values. Let (u, v) be any solution to (4.8) at

x ∈ X (note that Gα(x) = F(x, u, v)). Then, Gα(x) = Π
T

(α)
C (x)(−F (x)).

Proof. Let (u, v) be any solution to (4.8) and ξ = Π
T

(α)
C (x)(−F (x)). Then

F(x, u, v) ∈ T
(α)
C (x), so it follows immediately by optimality of ξ that ∥ξ + F (x)∥2 ≤

∥F(x, u, v) + F (x)∥2. Next, because ξ is given by a projection, there exists w ∈ NT (ξ),

where T = T
(α)
C (x) such that ξ + F (x) + w = 0, see e.g., [BDLA06, Corollary 2], and where

w =
m∑

i=1
ūi∇gi(x) +

k∑
j=1

v̄j∇hj(x), ū ≥ 0, ū⊤(∇g(x)⊤ + αg(x)) = 0.

Combining this expression with the fact that ξ = −F (x) − w ∈ T
(α)
C (x) and using the

definition of the α-restricted tangent cone, we deduce that (ū, v̄) ∈ Kcbf,α(x). By optimality

of (u, v), we have

∥ξ + F (x)∥2 =
∥∥∥ m∑

i=1
ūi∇gi(x) +

k∑
j=1

v̄j∇hj(x)
∥∥∥2

≥
∥∥∥ m∑

i=1
ui∇gi(x) +

k∑
j=1

vj∇hj(x)
∥∥∥2

= ∥F(x, u, v) + F (x)∥2 .

But since the projection onto the α-restricted tangent cone must be unique, we conclude

ξ = F(x, u, v).
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B Existence and Uniqueness of Solutions

We now discuss conditions for the existence and uniqueness of solutions of the safe

monotone flow.

Proposition 4.3.4. (Existence and Uniqueness of Solutions to Safe Monotone

Flow). Assume MFCQ and the constant-rank condition hold on C for all x ∈ C and let X

be the open set containing C in Proposition 4.3.2(iii). Then

(i) For all x0 ∈ C, there exists a unique solution x : R≥0 → Rn to the safe monotone flow

with x(0) = x0.

(ii) For all x0 ∈ X, there exists a unique solution x : [0, tf ] → Rn such that x(0) = x0.

Furthermore, the solution can be extended so that either tf = ∞ or x(t) → ∂X as

t→ tf .

Proof. We first note that the program (4.10) satisfies the General Strong Second-Order

Sufficient Condition (cf. [Liu95]) and Slater’s condition at x ∈ X. Because the objective

function and constraints of (4.10) are twice continuously differentiable, we can apply [Liu95,

Theorem 3.6] to conclude that Gα is locally Lipschitz at x. Therefore, Gα is also lower

semicontinuous and by [AC84, Chapter 2, Theorem 1] there exists for all x0 ∈ X a solution

x : [0, tf ] → Rn for some tf > 0 with x(0) = x0. Furthermore, either tf = ∞ or x(t) → ∂X

as t→ tf . Uniqueness of solutions holds by local Lipschitznes and (ii) follows.

To show (i), we note that Gα(x) ∈ TC(x), and by [Bla99, Theorem 3.1], for any solution

with x(0) ∈ C, we have that x(t) ∈ C for all t ≥ 0 on the interval on which the solution
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exists. Since C ⊂ int(X), solutions beginning in C cannot approach ∂X, and exist for all

time.

C Safety of Safe Monotone Flow

Here we establish the safety properties of the safe monotone flow. We begin by

characterizing optimality conditions for the closed-loop dynamics.

Lemma 4.3.5. (Optimality Conditions for Closed-loop Dynamics). For x ∈ Rn,

consider the equations

ξ + F (x) + ∂g(x)
∂x

⊤

u+ ∂h(x)
∂x

⊤

v = 0, (4.11a)

∂g(x)
∂x

ξ + αg(x) ≤ 0, (4.11b)

∂h(x)
∂x

ξ + αh(x) = 0, (4.11c)

u ≥ 0, (4.11d)

u⊤
(
∂g(x)
∂x

ξ + αg(x)
)

= 0, (4.11e)

in (ξ, u, v). Let Λα : Rn ⇒ Rm
≥0 × Rk be

Λα(x) = {(u, v) | ∃ξ such that (ξ, u, v) solves (4.11)}.

Assume MFCQ holds everywhere on C. Then, there exists an open set X ⊃ C such that, if

x ∈ X, then Λα(x) ̸= ∅. If (ξ, u, v) solves (4.11), then Gα(x) = ξ and (u, v) solves (4.8).

101



Proof. Let F̃ (x, ξ) = F (x) + ξ. Then

ξ = Π
T

(α)
C (x)(−F (x))

is a solution to the monotone variational inequality VI(F̃ (x, ·), T (α)
C (x)), parameterized by x.

Since MFCQ holds at all ξ ∈ T (α)
C (x) by Proposition 4.3.2(iii), we can use the KKT conditions

to characterize Gα(x), which correspond to (4.11). Further, by Proposition 4.3.2(iv), solutions

to (4.11) exist on an open set X containing C. Since F̃ is strongly monotone with respect

to ξ, the solution to VI(F̃ (x, ·), T (α)
C (x)) is unique, proving the result.

We rely on the optimality conditions in Lemma 4.3.5 to establish the following result

characterizing the equilibria and safety properties of the safe monotone flow.

Theorem 4.3.6. (Equilibria and Safety of Safe Monotone Flow). Let α > 0, C

be convex, and suppose MFCQ and the constant rank condition holds everywhere on C. The

following hold for the safe monotone flow:

(i) C is forward invariant and asymptotically stable on X;

(ii) x∗ is an equilibrium if and only if x∗ ∈ SOL(F, C);

Proof. To show (i), note that by Proposition 4.3.3, for all x ∈ X there exists (u(x), v(x)) ∈

Kcbf,α(x) such that Gα(x) = F(x, u(x), v(x)). Given the existence and uniqueness of solutions

of the closed-loop system, cf. Propositions 4.3.4, the result follows from Lemma 2.2.3 since

ϕ(x) = (g(x), h(x)) is a VCBF. Statement (ii) follows from the observation that, if Gα(x∗) =

0, by Lemma 4.3.5, there exists (u∗, v∗) such that (0, u∗, v∗) solves (4.11), which holds if and
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only if (x∗, u∗, v∗) solves (2.7).

D Stability of Safe Monotone Flow

Here we characterize the stability properties of the safe monotone flow. We begin by

establishing conditions for stability relative to C.

Theorem 4.3.7. (Stability of Safe Monotone Flow Relative to C). Assume MFCQ

holds everywhere on C. Then

(i) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is globally Lyapunov stable relative to C;

(ii) If x∗ ∈ SOL(F, C) and F is µ-strongly monotone, then x∗ is globally asymptotically

stable relative to C.

Before proving Theorem 4.3.7, we provide several intermediate results. Our strategy

relies on fixing x∗ ∈ SOL(F, C) and considering the candidate Lyapunov function

V (x)= 1
2 ∥x− x

∗∥2

︸ ︷︷ ︸
Ṽ (x)

− 1
α2 inf

ξ∈T
(α)
C (x)

{
ξ⊤F (x)+ 1

2 ∥ξ∥
2
}

︸ ︷︷ ︸
W (x)

. (4.12)

We first compute bounds on the Dini derivative of Ṽ along Gα.

Lemma 4.3.8. (Dini Derivative of Ṽ ). Assume MFCQ holds everywhere on C. For

x∗ ∈ SOL(F, C), let (u∗, v∗) be Lagrange multipliers corresponding to x∗. For x ∈ X and
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(u, v) ∈ Λα(x), then

D+
Gα
Ṽ (x) ≤ −µ ∥x− x∗∥2 − (u− u∗)⊤(g(x)− g(x∗))− (v − v∗)⊤h(x),

if F is µ-strongly monotone (inequality holds with µ = 0 if F is monotone instead).

Proof. Note that

D+
Gα
Ṽ (x) = −(x− x∗)⊤F (x)−

m∑
i=1

ui(x− x∗)⊤∇gi(x)−
k∑

j=1
vj(x− x∗)⊤∇hj(x).

By µ-strong monotonicity of F , −(x − x∗)⊤F (x) ≤ −µ ∥x− x∗∥2 − (x − x∗)⊤F (x∗) (the

inequality holds with µ = 0 if F is monotone). Next, we rearrange (2.7a) and use that gi is

convex for all i = 1, . . . ,m and hj is affine for all j = 1, . . . ,m to obtain

−(x− x∗)⊤F (x∗) =
m∑

i=1
u∗

i (x− x∗)⊤∇gi(x∗) +
k∑

j=1
v∗

j (x− x∗)⊤∇hj(x∗)

≤
m∑

i=1
u∗

i (gi(x)− gi(x∗)) +
k∑

j=1
v∗

j (hj(x)− hj(x∗))

= (u∗)⊤(g(x)− g(x∗)) + (v∗)⊤h(x).

where the last equality follows from the fact that h(x∗) = 0. By a similar line of reasoning,
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we have

−
m∑

i=1
ui(x− x∗)⊤∇gi(x)−

k∑
j=1

vj(x− x∗)⊤∇hj(x)

≤ −
m∑

i=1
ui(gi(x)− gi(x∗))−

k∑
j=1

vj(hj(x)− hj(x∗))

= −u⊤(g(x)− g(x∗))− v⊤h(x).

The result follows by summing the two expressions.

We now move on to characterizing properties of W .

Lemma 4.3.9. (Properties of W). Assume MFCQ holds everywhere on C. Define the

matrix-valued function Q : X × Rm
≥0 → Rn×n by

Q(x, u) = 1
2

(
∂F (x)
∂x

+ ∂F (x)
∂x

⊤)
+

m∑
i=1

ui∇2gi(x).

Then, for all x ∈ X and (u, v) ∈ Λα(x),

W (x) = −1
2 ∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x) (4.13)

and

D+
Gα
W (x) ≥ Gα(x)⊤Q(x, u)Gα(x)− α2u⊤g(x)− α2v⊤h(x). (4.14)

Proof. We first show that the solution to the optimization problem in the definition of W

is ξ = Gα(x). Note that the constraints in the definition of W in (4.12) and (4.10) are

identical. Let J(x, ξ) denote the objective function in the definition of W . Then J(x, ξ) −

105



1
2 ∥ξ + F (x)∥2 = −1

2 ∥F (x)∥2. Because the difference between the objective functions of

(4.10) and the definition of W is independent of ξ, the two optimization problems have the

same solution. The claim now follows because the solution to (4.10) is Gα(x).

Next we show that W can be expressed in closed form as (4.13). Because the optimizer

is ξ = Gα(x), we have

W (x) = Gα(x)⊤F (x) + 1
2 ∥Gα(x)∥2 . (4.15)

Note that (Gα(x), u, v) satisfies the optimality conditions (4.11) for all (u, v) ∈ Λα(x). There-

fore we can rearrange (4.11a) to obtain F (x) = −Gα(x)− ∂g(x)
∂x

⊤
u− ∂h(x)

∂x

⊤
v. Next

Gα(x)⊤F (x) = −∥Gα(x)∥2 − u⊤∂g(x)
∂x
Gα(x)− v⊤∂h(x)

∂x
Gα(x)

= −∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x),

where the second equality follows by rearranging (4.11c) and (4.11e). Then, (4.13) follows

by substituting the previous expression into (4.15).

Finally we show (4.14). Let L(x; ξ, u, v) be the Lagrangian of the parametric opti-

mization problem in the definition of W in (4.12). Then

L(x; ξ, u, v) = ξ⊤F (x) + 1
2 ∥ξ∥

2

+
m∑

i=1
ui(∇gi(x)⊤ξ + αgi(x)) +

k∑
i=1

vi(∇hi(x)⊤ξ + αhi(x)).
(4.16)

Next by [BLM16, Theorem 4.2], it follows that

D+
Gα
W (x) = sup

(u,v)∈Λα(x)

{
∇xL(x;Gα(x), u, v)⊤Gα(x)

}
≥ ∇xL(x;Gα(x), u, v)⊤Gα(x).
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By direct computation, we can verify that

∇xL(x; ξ, u, v) = Q(x, u)ξ + α
∂g(x)
∂x

⊤

u+ α
∂h(x)
∂x

⊤

v

Therefore

∇xL(x;Gα(x), u, v)⊤Gα(x) = Gα(x)⊤Q(x, u)Gα(x) + αu⊤∂g(x)
∂x
Gα(x) + αv⊤∂h(x)

∂x
Gα(x)

= Gα(x)⊤Q(x, u)Gα(x)− α2u⊤g(x)− α2v⊤h(x),

where once again, the last equality above follows by rearranging (4.11c) and (4.11e).

We are now ready to prove Theorem 4.3.7.

Proof of Theorem 4.3.7. Let x∗ ∈ SOL(F, C) and suppose the hypotheses of (i) hold. Con-

sider the function V : X → R defined by (4.12). We show that V is a (strict) Lyapunov

function when F is (µ-strongly) monotone. Let x ∈ C and (u, v) ∈ Λα(x). Then, us-

ing (4.11d), αu⊤g(x) + v⊤h(x) ≤ 0, so by examining the expression in (4.13) we see that

W (x) ≤ 0 for all x ∈ C with equality if and only if x ∈ SOL(F, C). Thus V is positive

definite with respect to x∗. Next, D+
Gα
V (x) = D+

Gα
Ṽ (x)− 1

α2D
+
Gα
W (x), and by Lemmas 4.3.8

and 4.3.9,

D+
Gα
V (x) ≤ − 1

α2Gα(x)Q(x, u)Gα(x) + u⊤g(x) + v⊤h(x)

− (u− u∗)⊤(g(x)− g(x∗))(v − v∗)⊤(h(x)− h(x∗))

= − 1
α2Gα(x)Q(x, u)Gα(x) + (u∗)⊤g(x) + (v∗)⊤h(x) + u⊤g(x∗) + v⊤h(x∗).
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Since u ≥ 0 and x∗ ∈ C, we have g(x∗) ≤ 0 and h(x∗) = 0, and therefore u⊤g(x∗)+v⊤h(x∗) ≤

0. Similarly, since u∗ ≥ 0, and x ∈ C, we have g(x) ≤ 0 and h(x) = 0, and therefore

(u∗)⊤g(x) + (v∗)⊤h(x) ≤ 0. Finally, since F is monotone and g is convex, it follows that

Q(x, u) is positive semi-definite, and therefore D+
Gα
V (x) ≤ 0. To show (ii), we can use the

same reasoning above to show that D+
Gα
V (x) ≤ −µ ∥x− x∗∥2.

Next, we discuss stability with respect to the entire state space, which ensures the

safe monotone flow can be used to solve VI(F, C) even for infeasible initial conditions.

Theorem 4.3.10. (Stability of Safe Monotone Flow with Respect to Rn). Assume

MFCQ and the constant-rank condition holds on C. Then

(i) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is globally Lyapunov stable;

(ii) If x∗ ∈ SOL(F, C) and F is µ-strongly monotone, then x∗ is globally asymptotically

stable.

To prove Theorem 4.3.10, we can no longer rely on the Lyapunov function V defined

in (4.12) because it is no longer positive definite and may take negative values for x ̸∈ C.

Instead, we consider the new candidate Lyapunov function

Vϵ(x) = Ṽ (x) +
[
− 1
α2W (x)

]
+

+ δϵ(x) (4.17)

where ϵ > 0 and δϵ is the penalty function given by

δϵ(x) = 1
ϵ

m∑
i=1

[gi(x)]+ + 1
ϵ

k∑
j=1
|hj(x)|.
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Before proceeding to the proof of Theorem 4.3.10, we provide a bound for the Dini derivative

of δϵ along Gα.

Lemma 4.3.11. (Dini Derivative of δϵ). For all x ∈ X and ξ ∈ Rn, δϵ is directionally

differentiable along ξ at x. In particular,

D+
Gα
δϵ(x) ≤ −α

ϵ

∑
i∈I+(x)

gi(x)− α

ϵ

∑
j∈Ih(x)

|hj(x)|, (4.18)

where Ih(x) = {j ∈ [1, k] | hj(x) ̸= 0}.

Proof. Note that δϵ corresponds to the ℓ1 penalty function for the set C. By [DG89, Propo-

sition 3], the directional derivative of δϵ is

δ′
ϵ(x; ξ) =1

ϵ

∑
i∈I+(x)

∇gi(x)⊤ξ + 1
ϵ

∑
i∈I0(x)

[∇gi(x)⊤ξ]++

1
ϵ

∑
j∈Ih(x)

sgn(hj(x))∇hj(x)⊤ξ + 1
ϵ

∑
j ̸∈Ih(x)

|∇hj(x)⊤ξ|.

Note D+
Gα
δϵ(x) = δ′

ϵ(x;Gα(x)). Expression (4.18) follows by noting that ∇gi(x)⊤Gα(x) ≤

−αgi(x) and ∇hj(x)⊤Gα(x) = −αhj(x).

We are now ready to prove Theorem 4.3.10.

Proof of Theorem 4.3.10. We begin by showing (i). Let x∗ ∈ SOL(F, C). Note that, from

the optimality conditions (4.11), Λα(x∗) corresponds to the set of Lagrange multipliers of

the solution x∗ to VI(F, C). Because MFCQ holds at x∗, it follows that Λα(x∗) is bounded.
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Thus, it is possible to choose ϵ > 0 small enough so that

α

ϵ
> sup

(u∗,v∗)∈Λα(x∗)

{
∥(u∗, v∗)∥∞

}
. (4.19)

Next, it follows immediately from the definition (4.17) that Vϵ is positive definite with respect

to x∗. We now compute D+
Gα
Vϵ(x) and show that it is negative semidefinite. Let x ∈ X. We

consider three cases: W (x) < 0, W (x) > 0, and W (x) = 0. In the case where W (x) < 0,

D+
Gα
Vϵ = D+

Gα
Ṽ (x)− 1

α2D
+
Gα
W (x) +D+

Gα
δϵ(x).

Combining the bounds in Lemmas 4.3.8, 4.3.9, and 4.3.11,

D+
Gα
Vϵ(x) ≤ − 1

α2Gα(x)Q(x, u)Gα(x) (4.20)

+
∑

i∈I+(x)

(
u∗ − α

ϵ

)
gi(x) +

∑
j∈Ih(x)

(
v∗ − α

ϵ

)
|hj(x)|.

Since ϵ satisfies (4.19), it follows that D+
Gα
Vϵ(x) ≤ 0.

For the case where W (x) > 0, we rearrange (4.13) to write

u⊤g(x) + v⊤h(x) = 1
α
W (x) + 1

2α ∥G(x)∥2 >
1

2α ∥G(x)∥2 .
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Then, we have

D+
Gα
Vϵ(x) = D+

Gα
Ṽ (x) +D+

Gα
δϵ(x)

≤ −(u− u∗)⊤g(x)− (v − v∗)⊤h(x)− α

ϵ

∑
i∈I+(x)

gi(x)− α

ϵ

∑
j∈Ih(x)

|hj(x)|

≤ − 1
2α ∥Gα(x)∥2 +

∑
i∈I+(x)

(
u∗ − α

ϵ

)
gi(x) +

∑
j∈Ih(x)

(
v∗ − α

ϵ

)
|hj(x)|,

(4.21)

and D+
Gα
Vϵ(x) ≤ 0. In the case where W (x) = 0,

D+
Gα
Vϵ(x) = D+

Gα
Ṽ (x) + 1

α2 [−D+
Gα
W (x)]+ +D+

Gα
δϵ(x),

which leads us to two subcases: (a) D+
Gα
W (x) < 0 and (b) D+

Gα
W (x) ≥ 0. In subcase (a),

D+
Gα
Vϵ(x) satisfies the bound in (4.20) and, therefore, D+

Gα
Vϵ(x) ≤ 0. In subcase (b),

u⊤g(x) + v⊤h(x) = 1
2α ∥Gα(x)∥2

and, therefore, D+
Gα
Vϵ(x) satisfies the bound in (4.21), so D+

Gα
Vϵ(x) ≤ 0.

Finally, for (ii), we can use the same arguments above to show in each case D+
Gα
Vϵ(x) ≤

−µ ∥x− x∗∥2.

We conclude this section by discussing the contraction properties of the safe monotone

flow. Contraction refers to the property that any two trajectories of the system approach

each other exponentially (cf. [DJB22, Bul23] for a precise definition), and implies exponential

stability of an equilibrium. We show that, for sufficiently large α, the safe monotone flow

system is contracting provided F is globally Lipschitz and the constraint set C is polyhedral.
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Our analysis relies relies on the following result.

Lemma 4.3.12. ([Yen95, Lemma 2.1]). Consider the following quadratic program

min
(u,v)∈Rm

≥0×Rk

1
2

∥∥∥∥∥
[
u
v

]∥∥∥∥∥
2

Q̃

+ c⊤
[
u
v

]
+ p, (4.22)

where Q̃ ⪰ 0. Then (u∗, v∗) solves (4.22) if and only if it is a solution to the linear program

min
(u,v)∈Rm

≥0×Rk

(
Q̃

[
u∗

v∗

]
+ c

)⊤ [
u
v

]
. (4.23)

We now show that the safe monotone flow is contracting.

Theorem 4.3.13. (Contraction and Exponential Stability of Safe Monotone

Flow). Let F be µ-strongly monotone and globally Lipschitz with constant ℓF and C a

polyhedral set defined by (4.2) with g(x) = Gx− cg and h(x) = Hx− ch. If

α >
ℓ2

F

4µ, (4.24)

then the safe monotone flow is contracting with rate c = µ − ℓ2
F

4α
. In particular, the unique

solution x∗ ∈ SOL(F, C) is globally exponentially stable.

Proof. We claim that if the assumptions hold, then

(x− y)⊤(Gα(x)− Gα(y)) ≤ −c ∥x− y∥2 , (4.25)

in which case the system is contracting by [DJB22, Theorem 31], and exponential stability
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of x∗ ∈ SOL(F, C) follows as a consequence. To show the claim, from (4.11a), note that

Gα(x) = −F (x)−G⊤ux −H⊤vx.

for any (ux, vx) ∈ Λα(x). Let then x, y ∈ X and (ux, vx) ∈ Λα(x) and (uy, vy) ∈ Λα(y).

Then, using the strong monotonicity of F ,

(x− y)⊤(Gα(x)− Gα(y)) = −(x− y)⊤(F (x)− F (y))

+ (x− y)⊤(Gα(x) + F (x)− Gα(y)− F (y))

≤ −µ ∥x− y∥2 − (x− y)⊤
[
G⊤ H⊤

] [ux − uy

vx − vy

]

= −µ ∥x− y∥2 −
[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
.

(4.26)

Next, let J̃(x;u, v) = − infξ∈Rn L(x; ξ, u, v), where L is the Lagrangian of (4.10),

defined in (4.16), and let

Q̃ =
[
GG⊤ GH⊤

HG⊤ HH⊤

]
.

For x ∈ Rn, L is minimized when ξ = −F (x)−G⊤u−H⊤v, and therefore

J̃(x;u, v) = 1
2

∥∥∥∥∥
[
u
v

]∥∥∥∥∥
2

Q̃

+
[
GF (x)−α(Gx− cg)
HF (x)−α(Hx− ch)

]⊤[
u
v

]
+ 1

2 ∥F (x)∥2 . (4.27)

If (ux, vx) ∈ Λα(x), then (ux, vx) is a solution to the program min(u,v)∈Rm
≥0×Rk J̃(x, u, v), which

is the Lagrangian dual1 of (4.10). By Lemma 4.3.12, (ux, vx) is also a solution to the linear

1By convention, the Lagrangian dual problem is a maximization problem (cf. [BV09, Chapter 5]). How-
ever, the minus sign in the definition of J̃ ensures that here it is a minimization. The reason for this sign
convention is to make the notation simpler.
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program,

min
(u,v)∈Rm

≥0×Rk

(
Q̃

[
ux

vx

]
+
[
GF (x)− α(Gx− cg)
HF (x)− α(Hx− ch)

])⊤ [
u
v

]
.

Since (uy, vy) is also feasible for the previous linear program, by optimality of (ux, vx),

−
[
ux − uy

vx − vy

]⊤ [
Gx− cg

Hx− ch

]
≤ − 1

α

∥∥∥∥∥
[
ux

vx

]∥∥∥∥∥
2

Q̃

+ 1
α

[
uy

vy

]⊤

Q̃

[
ux

vx

]
− 1
α

[
ux − uy

vx − vy

]⊤ [
GF (x)
HF (x)

]
.

By a similar line of reasoning,

−
[
uy − ux

vy − vx

]⊤ [
Gy − cg

Hy − ch

]
≤ − 1

α

∥∥∥∥∥
[
uy

vy

]∥∥∥∥∥
2

Q̃

+ 1
α

[
ux

vx

]⊤

Q̃

[
uy

vy

]
− 1
α

[
uy − ux

vy − vx

]⊤ [
GF (y)
HF (y)

]
.

Combining the previous two expressions, we obtain

−
[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
≤ − 1

α

[
ux − uy

vx − vy

]⊤ [
G(F (x)− F (y))
H(F (x)− F (y))

]
− 1
α

∥∥∥∥∥
[
ux − uy

vx − vy

]∥∥∥∥∥
2

Q̃

≤ ℓF

α

∥∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥∥ ∥x− y∥ − 1
α

∥∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥∥
2

,

where we used ∥(u, v)∥Q̃ = ∥M⊤(u, v)∥, with M = [G;H]. For any ϵ > 0, by Young’s

Inequality [RF10, pp. 140],

−
[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
≤ ℓF

2ϵα ∥x− y∥
2 −

( 1
α
− ϵℓF

2α

) ∥∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥∥
2

.

Substituting into (4.26), we obtain

(x− y)⊤(Gα(x)− Gα(y)) ≤ −
(
µ− ℓF

2ϵα

)
∥x− y∥2 −

( 1
α
− ϵℓF

2α

) ∥∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥∥
2

.
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Therefore, (4.25) holds with c = µ− ℓF

2ϵα
if ϵ satisfies

ℓF

2αµ ≤ ϵ ≤ 2
ℓF

.

Such ϵ can be chosen if α >
ℓ2

F

4µ
, which corresponds to the condition (4.24). The optimal

estimate of the contraction rate is c = µ− ℓ2
F

4α
.

Remark 4.3.14. (Connection with Safe Gradient Flow). The safe monotone flow

is a generalization of the safe gradient flow introduced in [AC24]. The latter was originally

studied in the context of nonconvex optimization and, similar to the case of the safe mono-

tone flow, enjoys safety of the feasible set and correspondence between equilibria and critical

points. Further, under certain constraint qualifications, the local stability of equilibria rela-

tive to the constraint set under the safe gradient flow can be established using the objective

function as a Lyapunov function. Because we are working with variational inequalities, F

may not correspond to the gradient of a scalar objective function, so the Lyapunov functions

used in [AC24] are not directly applicable. The assumption of convexity and monotonicity

here allows us to construct novel Lyapunov functions to obtain global stability results. □

4.4 Recursive Safe Monotone Flow

A drawback of the projected and safe monotone flows is that, in order to implement

them, one needs to solve either the quadratic programs (4.4) or (4.8) at each time along

the trajectory of the system. As a third algorithmic solution to Problem 4.1.1, in this

section we introduce the recursive safe monotone flow which gets around this limitation
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by incorporating a dynamics whose equilibria correspond to the solutions of the quadratic

program. We begin by showing how to derive the dynamics for general constraint sets C by

interconnecting two systems on multiple time scales. Next, we use the theory of singular

perturbations of contracting flows to obtain stability guarantees in the case where C is

polyhedral, and show that trajectories of the recursive safe monotone flow track those of

the safe monotone flow. The latter property enables us to formalize a notion of “practical

safety” that the recursive safe monotone flow satisfies.

4.4.1 Construction of the Dynamics

We discuss here the construction of the recursive safe monotone flow. The starting

point for our derivation is the control-affine system (4.3). The safe monotone flow consists

of this system with a feedback controller specified by the quadratic program (4.8). Rather

than solving this program exactly, the approach we take is to replace it with a monotone

variational inequality parameterized by the state. For fixed x ∈ X, we can solve solve this

inequality, and hence obtain the feedback κ(x), using the safe monotone flow corresponding

to this problem. Coupling this flow with the control system (4.3) yields the recursive safe

monotone flow.

In this section we carry out this strategy in mathematically precise terms. We rely

on the following result, which provides an alternative characterization of the CBF-QP (4.8).

Lemma 4.4.1. (Alternative Characterization of Safe Feedback). For x ∈ Rn,
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consider the optimization

minimize
(u,v)∈Rm

≥0×Rk

1
2
∥∥∥ m∑

i=1
ui∇gi(x) +

k∑
j=1

vj∇hj(x)
∥∥∥2

+ u⊤
(
∂g

∂x
F (x)− αg(x)

)
+ v⊤

(
∂h

∂x
F (x)− αh(x)

)
.

(4.28)

If (u, v) is a solution to (4.28), then (u, v) is a solution to (4.8).

Proof. Note that the constraints of (4.28) satisfy MFCQ for all (u, v) ∈ Rm
≥0 × Rk. Since

the objective function in (4.28) is convex in (u, v), one can see that necessary and sufficient

conditions for optimality are given by a KKT system that, after some manipulation, takes

the form

−∂g
∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v − ∂g

∂x
F (x)− αg(x) ≤ 0

−∂h
∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v − ∂h

∂x
F (x)− αh(x) = 0

u ≥ 0

u⊤
(
− ∂g

∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v − ∂g

∂x
F (x)− αg(x)

)
= 0.

It follows immediately that if (u, v) satisfies the above equations, then (u, v) ∈ Kcbf,α(x)

given by (4.8).

The rationale for considering (4.28), rather than working with (4.8) directly, is that

the constraints of (4.28) are independent of x, which will be important for reasons we show

next. Being a constrained optimization problem, (4.28) can be expressed in terms of a

variational inequality (parameterized by x ∈ Rn). Formally, let F̃ (x, u, v) be given by

F̃ (x, u, v) =
[
− ∂g

∂x
F(x, u, v)− αg(x)

−∂h
∂x
F(x, u, v)− αh(x)

]
, (4.29)
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where F is given by (4.3) and let C̃ = Rm
≥0 × Rk, which we parameterize as

C̃ = {(u, v) ∈ Rm × Rk | u ≥ 0}. (4.30)

The optimization problem (4.28) corresponds to the variational inequality VI(F̃ (x, ·, ·), C̃).

Our next step is to write down the safe monotone flow with safety parameter β > 0

corresponding to the variational inequality VI(F̃ (x, ·), C̃). Note that the β-restricted tangent

set (4.9) of C̃ is

T
(β)
C̃ (u, v) =

{
(ξu, ξv) ∈ Rm × Rk | ξu ≥ −βu

}
.

The projection onto T (β)
C̃ (u, v) has the following closed-form solution

Π
T

(β)
C̃

(u,v)

([
a
b

])
=
[
max{−βu, a}

b

]
.

Using this expression and applying Proposition 4.3.3, we write the safe monotone flow cor-

responding to VI(F̃ (x, ·), C̃) as

u̇ = max
{
− βu, ∂g(x)

∂x
F(x, u, v) + αg(x)

}

v̇ = ∂h(x)
∂x
F(x, u, v) + αh(x).

(4.31)

Under certain assumptions, which we formalize in the sequel, for a fixed x, trajectories

of (4.31) converge to solutions of the QP (4.8).

This discussion suggests a system solving the original variational inequality VI(F, C)
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can be obtained by coupling (4.31) with the dynamics (4.3) as follows:

ẋ = F(x, u, v) (4.32a)

τ u̇ = max
{
− βu, ∂g(x)

∂x
F(x, u, v) + αg(x)

}
(4.32b)

τ v̇ = ∂h(x)
∂x
F(x, u, v) + αh(x). (4.32c)

We refer to the system (4.32) as the recursive safe monotone flow. The parameter τ char-

acterizes the separation of timescales between the system (4.32a) and (4.32b)-(4.32c). The

interpretation of the dynamics is that, when τ > 0 are sufficiently small, (4.32b)-(4.32c)

evolve on a much faster timescale and rapidly approach the solution set of (4.8). The system

on the slower timescale (4.32a) then approximates the safe monotone flow. We formalize

this analysis next.

4.4.2 Stability of Recursive Safe Monotone Flow

To prove stability of the system (4.32), we rely on results from contraction the-

ory [DJB22]. Specifically, we derive conditions on the time-scale separation τ that ensures

that (4.32) is contracting and, as a consequence, globally attractive and locally exponentially

stable. Throughout the section, we assume the following assumption holds.

Assumption 4.4.2. (Strong Monotonicity, Lipschitzness, and Polyhedral Con-

straints). The following holds:

(i) F is µ-strongly monotone and ℓF -Lipschitz;
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(ii) C is a polyhedral set defined by (4.2) with g(x) = Gx − cg and h(x) = Hx − ch, and

the matrix

Q̃ =
[
GG⊤ GH⊤

HG⊤ HH⊤

]
(4.33)

has full rank.

Next, we show that it is possible to tune the parameters β so the system (4.31) is

contracting, uniformly in x.

Lemma 4.4.3. (Contractivity of (4.31)). Under Assumption 4.4.2, if

β >
1
4
λmax(Q̃)
λmin(Q̃)

,

then the system (4.31) is contracting with rate c̄ = λmin(Q̃)− λmax(Q̃)
4β

uniformly in x.

Proof. We first observe that F̃ is given by

F̃ (x, u, v) = Q̃

[
u
v

]
− α

[
Gx− cg

Hx− ch

]
.

By Assumption 4.4.2, Q̃ ≻ 0 and therefore F̃ is (i) λmin(Q̃)-strongly monotone in (u, v)

uniformly in x and (ii) ∥Q̃∥-Lipschitz in (u, v) uniformly in x. By Theorem 4.3.13, if β >

∥Q̃∥2

4λmin(Q̃) , the system (4.31) is uniformly contracting. The result follows by observing that

∥Q̃∥2 = λmax(Q̃).

We now characterize the contraction and stability properties of the recursive safe

monotone flow.
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Theorem 4.4.4. (Contractivity of Recursive Safe Monotone Flow). Assume F

is µ-strongly monotone and ℓF globally Lipschitz, and α satisfies (4.24). Under Assump-

tion 4.4.2 and β chosen as in Lemma 4.4.3, then

(i) the unique KKT triple, (x∗, u∗, v∗) corresponding to VI(F, C) is the only equilibrium

of (4.32).

Moreover, for all ϵ > 0, there exists τ ∗ > 0, such that for all 0 < τ < τ ∗,

(ii) the system (4.32) is contracting on the set

Zϵ =
{

(x, u, v) ∈ X × Rm × Rk

∣∣∣∣ ∥(u, v)− κ(x)∥ ≤ ϵ
}
,

and every solution of (4.32) eventually enters Zϵ in finite time. In particular, there ex-

ists a class KL function β : R≥0×R≥0 → R such that for every solution (x(t), u(t), v(t))

∥∥∥(u(x(t)), v(x(t))
)
− κ(x(t))

∥∥∥ ≤ β
( ∥∥∥(u(x(0)), v(x(0))

)
− κ(x(0))

∥∥∥ , t);

(iii) the unique KKT triple (x∗, u∗, v∗) is locally exponentially stable and globally attracting.

Proof. We begin with (i). By direct examination of (4.32), we see that the equilibria corre-

spond exactly with triples satisfying (2.7). Since the matrix Q̃ has full rank, the gradients

of all the constraints are linearly independent, and hence MFCQ holds on C. Since F is µ-

strongly monotone, the solution x∗ ∈ SOL(F, C) is unique and there exists a unique Lagrange

multiplier (u∗, v∗) such that (x∗, u∗, v∗) satisfies (2.7).
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To show (ii), we verify that all hypotheses in [CBD23, Theorem 4] hold. First, note

that the map x 7→ F(x, u, v) is ℓF -Lipschitz in x uniformly in (u, v), and ∥[G;H]∥-Lipschitz

in (u, v), uniformly in x. Let H denote the righthand side of (4.31). Because H is piecewise

affine in (u, v) and F globally Lipschitz, there exists constants ℓH,x, ℓH,u,v > 0, such that

H is ℓH,x-Lipschitz in x uniformly in (u, v) and ℓH,u,v-Lipschitz in (u, v) uniformly in x. By

Lemma 4.4.3, there exists c̄ > 0 such that (4.31) is c̄-contracting, uniformly in x. Finally,

we note that the reduced system corresponding to (4.32) is ẋ = Gα(x), which is contracting

by Theorem 4.3.13. Thus all the hypotheses of [CBD23, Theorem 4] hold and (ii) follows.

Finally (iii) follows from combining (i) and (ii).

4.4.3 Safety of Recursive Safe Monotone Flow

Here we discuss the safety properties of the recursive safe monotone flow. In general,

even if the initial condition belongs to C, i.e., x(0) ∈ C, it is not guaranteed that solutions

of the system (4.32) satisfy x(t) ∈ C for t > 0. However, under appropriate conditions, we

can show that the system is “practically safe”, in the sense that x(t) remains in a slightly

expanded form of the original constraint set C.

Theorem 4.4.5. (Practical Safety of Recursive Safe Monotone Flow). Assume

F is µ-strongly monotone and ℓF globally Lipschitz, and α satisfies (4.24). Under Assump-

tion 4.4.2 and β chosen as in Lemma 4.4.3, then for all ϵ > 0, there exists δ > 0 and τ ∗

such that, if 0 < τ < τ ∗, any solution to (4.32) with

• x(0) ∈ C;
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• ∥(u(0), v(0))− κ(x(0))∥ ≤ δ;

satisfies x(t)∈Cϵ ={x∈Rn |g(x) ≤ ϵ, |h(x)| ≤ ϵ} for all t ≥ 0.

To prove Theorem 4.4.5, we rely on the notion of input-to-state safety. Consider the

system

ẋ = Gα(x)−
n∑

i=1
ei(t)∇gi(x)−

m∑
j=1

dj(t)∇hj(x). (4.34)

This system can be interpreted as the safe monotone flow perturbed by a disturbance de-

termined by (e(t), d(t)). The set C is input-to-state safe (ISSf) with respect to (4.34), with

gain γ, if there exists a class K function γ such that, if γ(∥(e, d)∥∞) < ϵ, then Cϵ is forward

invariant under (4.34). This notion of input-to-state safety is a slight generalization of the

standard definition, cf. [KA18], to the case where the safe set is parameterized by multiple

equality and inequality constraints. We show next that (4.34) is ISSf.

Lemma 4.4.6. (Perturbed Safe Monotone Flow is ISSf). Under Assumption 4.4.2,

the set C is input-to-state safe with respect to (4.34) with gain γ(r) = λmax(Q̃)
α

r, where Q̃ is

defined in (4.33).

Proof. For i ∈ {1, . . . ,m}, under (4.34)

ġi(x) = G⊤
i

(
Gα(x)−

n∑
i=1

ei(t)∇gi(x)−
m∑

j=1
dj(t)∇hj(x)

)

≤ −αgi(x)−G⊤
i

( n∑
i=1

ei(t)∇gi(x)−
m∑

j=1
dj(t)∇hj(x)

)

≤ −αgi(x) + λmax(Q̃) ∥(e(t), d(t))∥ ,

where G⊤
i is the ith row of G. It follows from [KA18, Theorem 1] that the set Cgi

= {x ∈
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Rn | G⊤
i x− (cg)i ≤ 0} is input-to-state safe with gain γ with respect to (4.32).

For j ∈ {1, . . . , k}, under (4.34),

ḣj(x) = H⊤
j

(
Gα(x)−

n∑
i=1

ei(t)∇gi(x)−
m∑

j=1
dj(t)∇hj(x)

)

= −αhj(x)−H⊤
j

( n∑
i=1

ei(t)∇gi(x)−
m∑

j=1
dj(t)∇hj(x)

)
,

where H⊤
j is the jth row of H. It follows that

ḣj(x) ≤ −αhj(x) + λmax(Q̃) ∥(e(t), d(t))∥ ,

ḣj(x) ≥ −αhj(x)− λmax(Q̃) ∥(e(t), d(t))∥ .

Thus, by [KA18, Theorem 1], the sets C−
hj

= {x ∈ Rn | H⊤
j x − (ch)j ≤ 0}, and C+

hj
= {x ∈

Rn | H⊤
j x−(ch)j ≥ 0} are also input-to-state safe with gain γ with respect to (4.32). Finally,

input-to-state safety of C follows from the fact that

C =
( m⋂

i=1
Cgi

)
∩
( k⋂

j=1
(C+

hj
∩ C−

hj
)
)
.

We are now ready to prove Theorem 4.4.5.

Proof of Theorem 4.4.5. By Lemma 4.4.6, C is input-to-state safe with respect to (4.34), with

gain γ(r) = λmax(Q̃)
α

r. Note that, for any solution (x(t), u(t), v(t)) of (4.32), the trajectory

x(t) solves (4.34) with [
e(t)
d(t)

]
=
[
u(t)
v(t)

]
− κ(x(t)).
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Next, by Theorem 4.4.4, for all ϵ, there exists τ ∗ > 0 such that if 0 < τ < τ ∗, then for all

t ≥ 0,
∥∥∥(e(t), d(t)

)∥∥∥ ≤ β
( ∥∥∥(e(0), d(0)

)∥∥∥ , t) for some class KL function β. Now, choose δ > 0

such that α−1λmax(Q̃)β(δ, 0) < ϵ and let ∥(u(0), v(0))− κ(x(0))∥ ≤ δ. Then, for all t ≥ 0,

γ
(∥∥∥(e(t), d(t)

)∥∥∥) ≤ γ(β(δ, t)) ≤ γ(β(δ, 0)) < ϵ.

Hence, for x(0) ∈ C ⊂ Cϵ, since C is input-to-state safe with respect to (4.34), we conclude

x(t) ∈ Cϵ for all t ≥ 0.

4.5 Numerical Examples

Here we illustrate the behavior of the proposed flows on two example problems. The

first example is a variational inequality on R2 corresponding to a two-player game with

quadratic payoff functions where we compare the projected monotone flow. The second ex-

ample is a constrained linear-quadratic dynamic game where we implement the safe monotone

flow in a receding horizon manner to examine its anytime properties.

4.5.1 Nash Equilibria of Two-Player Game

The first numerical example we discuss is a variational inequality on R2 corresponding

to a two-player game, where player i ∈ {1, 2} wants to minimize a cost Ji(x1, x2) subject

to the constraints that xi ∈ Ci ⊂ R. We take C = C1 × C2 ⊂ R2. We have selected a

two-dimensional example that allows us to visualize the constraint set and the trajectories

of the proposed flows to better illustrate their differences. The problem of finding the Nash
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equilibria of a game of this form is equivalent to the variational inequality VI(F, C), where

F is the pseudogradient map, given by F (x) = (∇x1J1(x1, x2),∇x2J2(x1, x2)). For i ∈ {1, 2},

let Ci = {x ∈ R | −1 ≤ x ≤ 1} and Ji be the quadratic function Ji(x1, x2) = 1
2x

⊤Qix+ r⊤
i x,

with

Q1 =
[

1 −1
−1 1

]
∈ R2×2, r1 =

[
0
0

]
∈ R2,

Q2 =
[
1 1
1 1

]
∈ R2×2, r2 =

[
0.5
0.5

]
∈ R2.

The pseudogradient map is given by F (x) = Qx+ r where

Q =
[
1 −1
1 1

]
r =

[
0

0.5

]

Because 1
2(Q+Q⊤) = I ≻ 0, it follows that the F is 1-strongly monotone, and therefore the

problem has a unique solution x∗ ∈ SOL(F, C).

Figure 4.2 shows the results of implementing each of the proposed flows to find the

Nash equilibrium. The projected monotone flow, cf. Figure 4.2(a), is only well defined in C.

However, the constraint set remains forward invariant and all trajectories converge to the

solution x∗. The safe monotone flow with α = 1.0, cf. Figure 4.2(b), also keeps the constraint

set forward invariant and has all trajectories converge to x∗. In addition, the system is well

defined outside of C, and trajectories beginning outside the feasible set converge to it.

In Figure 4.2(c), we consider the recursive safe monotone flow with α = 1.0, β = 1.0

and τ = 0.25, where u(0) = 0. The trajectories converge to x∗ and closely approximate the

trajectories of the safe monotone flow. Note, however, that the set C is not safe but only

practically safe. This is illustrated in the zoomed-in Figure 4.2(d), where it is apparent that
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the trajectories do not always remain in C but remain close to it.

(a) Projected monotone flow (b) Safe monotone flow

(c) Recursive safe monotone flow (d) Zoomed-in plot of (c)

Figure 4.2: Implementation of (a) projected monotone flow, (b) safe monotone flow (α =
1.0), and (c) recursive safe monotone flow (τ = 0.25) in a two-player game. The shaded region
shows the constraint set C and the colored paths represent trajectories of the corresponding
flow starting from various initial condition. (d) shows a zoomed-in portion of the boundary
of C to illustrate the practical safety of the recursive safe monotone flow.
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4.5.2 Receding Horizon Linear-Quadratic Dynamic Game

We now discuss a more complex example, where the input to a plant is specified by

the solution to a variational inequality parameterized by the state of the plant. To solve it,

we interconnect the plant dynamics with the safe monotone flow, and demonstrate that the

anytime property of the latter ensures good performance and satisfaction of the constraints

even when terminated terminated early. The plant takes the form of a discrete-time linear

time-invariant system with two inputs,

z(s+ 1) = Az(s) +B1w1(s) +B2w2(s), (4.35)

where A ∈ Rnz×nz and Bi ∈ Rnz×nw for i ∈ {1, 2}. We consider a linear-quadratic dynamic

game (LQDG) between two players, where each player i ∈ {1, 2} can influence the system

(4.35) by choosing the corresponding input wi ∈ Wi ⊂ Rnw . We fix a time horizon, N > 0,

and an initial condition z(0) = z0, and define a cost J as the quadratic payoff function,

J(w1(·), w2(·)) = ∥z(N)∥2
Qf

+
N−1∑
s=0
∥z(s)∥2

Q + ∥w1(s)∥2
R1
− ∥w2(s)∥2

R2
, (4.36)

where Qf , Q ⪰ 0 and R1, R2 ≻ 0. The goal of player 1 is to minimize the payoff (4.36),

whereas the goal of player 2 is to maximize it. This problem can be solved in closed form

when the constraints Wi are trivial (cf. [BO99, Chapter 6], [PP10]), but must be solved

numerically for nontrivial ones.

We first note the LQDG problem can be written as a variational inequality. Indeed,
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let z̄ = (z(1), . . . , z(N)) and, for i ∈ {1, 2}, let w̄i = (wi(0), . . . , wi(N − 1)). Define

A =


A
A2

...
AN

 , Ci =



Bi 0 · · · 0
ABi Bi · · · 0
A2Bi ABi · · · 0

... ... . . . ...
AN−1Bi AN−2Bi · · · Bi

 .

Next, letting Q̄ = diag(Q, . . . , Q,Qf ) and R̄i = diag(Ri, . . . , Ri), and using the fact that

z̄ = Az0 + C1w̄1 + C2w̄2, we see that the payoff function (4.36) can be written as,

J(w̄1, w̄2) =
[
w̄1
w̄2

]⊤ [
C⊤

1 Q̄C1 + R̄1 C⊤
1 Q̄C2

C⊤
2 Q̄C1 C⊤

2 Q̄C2 − R̄2

] [
w̄1
w̄2

]
+ 2

[
C⊤

1 Q̄Az0
C⊤

2 Q̄Az0

]⊤ [
w̄1
w̄2

]
+ z⊤

0 A⊤Q̄Az0.

Finally, letting x = (w̄1, w̄2), we see that the problem corresponds to the variational inequal-

ity VI(F (·, z0), C), where

F (x, z0)=
[
C⊤

1 Q̄C1 + R̄1 C⊤
1 Q̄C2

−C⊤
2 Q̄C1 R̄2 − C⊤

2 Q̄C2

][
w̄1
w̄2

]
+
[
C⊤

1 Q̄Az0
−C⊤

2 Q̄Az0

]

and the constraint set is

C = W1 ×W1 × · · ·W1︸ ︷︷ ︸
N times

×W2 ×W2 × · · · ×W2︸ ︷︷ ︸
N times

.

If the problem data satisfies

[
C⊤

1 Q̄C1 + R̄1 0
0 R̄2 − C⊤

2 Q̄C2

]
≻ 0,

then F is strongly monotone.
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For simulation purposes, we take nz = 5, nw = 2, Bi = I, Wi = R2
≥0, and A a

marginally stable matrix selected randomly. We use the safe monotone flow to solve the

variational inequality and implement the solution in a receding horizon manner: given the

initial state z0, we solve for the optimal input sequence (w1(·), w2(·)) over the entire time

horizon, apply the input (w1(0), w2(0)) to (4.35) to obtain z(1), update the initial condition

z0 ← z(1) and repeat. When F is strongly monotone, on each iteration the flow converges

to the exact solution as t→∞. However, we also consider here the effect of terminating the

solver early at some t = tf <∞.

Figure 4.3 shows the results of the simulation. In Figure 4.3(a), we plot ∥z(s)∥ for

various values of termination times. We denote the exact solution with tf =∞. The closed-

loop dynamics with the exact solution to the receding horizon LQDG is stabilizing, and as

tf grows larger, the early terminated solution drives the state of the system closer to the

origin. In Figure 4.3(b), we plot the first component of w1(s) in blue and the first component

of w2(s) in red. Regardless of when terminated, the inputs satisfy the input constraints on

each iteration due to the safety properties of the safe monotone flow.
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(a) ∥z(s)∥ on each iteration (b) First component of {wi(s)}i∈{1,2} on each itera-
tion

Figure 4.3: Receding horizon implementation of the safe monotone flow solving a linear
quadratic dynamic game for different choices of termination time tf . The closed-loop im-
plementation of the exact solution corresponds to tf = ∞ (dashed lines). (a) We plot the
evolution of ∥z(s)∥ in green. (b) We plot the evolution of the first component of w1(s) in
blue-green (scale in left y-axis) and the first component of w2(x) in red-orange (scale in right
y-axis).

4.6 Conclusions

We have tackled the design of anytime algorithms to solve variational inequalities as a

feedback control problem. Using techniques from safety-critical control, we have synthesized

three continuous-time dynamics which find solutions to monotone variational inequalities:

the projected monotone flow, already well known in the literature, and the novel safe mono-

tone and recursive safe monotone flows. The equilibria of these flows correspond to solutions

of the variational inequality, and so we have embarked in the precise characterization of their

asymptotic stability properties. We have established asymptotic stability of equilibria in the

case of strong monotonicity, and contractivity and exponential stability in the case of poly-
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hedral constraints. We have also shown that the safe monotone flow renders the constraint

forward invariant and asymptotically stable. The recursive safe monotone flow offers an al-

ternative implementation that does not necessitate the solution of a quadratic program along

the trajectories. This flow results from coupling two systems evolving on different timescales,

and we have established local exponential stability and global attractivity of equilibria, as

well as practical safety guarantees. We have illustrated in two game scenarios the properties

of the proposed flows and, in particular, their amenability for interconnection and regulation

of physical processes. Future work will develop methods for distributed network problems

and consider applications to feedback optimization arising in applications such as power

systems, traffic networks, and communications systems.
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Part II

Human Focal Epilepsy as a Network

Dynamical Disease
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Chapter 5

Dynamical Models of Brain Networks

5.1 Introduction

Epilepsy is a chronic neurological disorder characterized by intermittent episodes

of hypersynchronous electrical activity in the brain. These episodes, commonly known as

seizures, are marked by symptoms such as abnormal sensations, muscle contractions, and

loss of consciousness. Approximately 50 million individuals have epilepsy, making the disease

one of the most widespread neurological conditions in the world. Despite this, there is no

known cure for epilepsy. Current treatment strategies merely aim to reduce the frequency

of seizures and manage symptoms when seizures occur. While modern anti-epileptic drugs

result in full remission of seizures in most patients, in around 20-40% of cases the condition

does not respond to pharmacological intervention [SS06, BBB+12]. Surgical treatment may

be indicated for drug-resistant patients, however outcomes are highly variable, with cessation

of seizures being achieved 34-84% of the time, depending on the type of epilepsy and the
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surgical target [SH08].

The difficulties in treating epilepsy arise from the complexity of the disease. To mo-

tivate the models and analysis considered in this section, we highlight two defining features

of epilepsy. The first is that epilepsy is a dynamical disease [MG77, GM79, dSBK+03].

This refers to the fact that the brain activity (when measured with e.g. EEG) can be

characterized with an oscillatory temporal signal that, in epileptic patients, appears normal

between seizure episodes but undergoes qualitative changes during seizures. Thus the epilep-

tic brain, if viewed as a dynamical system, exhibits a type of multi-stability, with healthy

and seizure-like modes corresponding to different attractors in the state-space. The second

is that epilepsy is a network disorder [Spe02]. This refers to the fact that the brain is com-

posed of many different components interconnected through a network structure, and while

seizures may be localized to certain brain regions, their emergence results from interactions

among all elements of the network. These network effects complicate the identification of

appropriate targets for surgical resection or neurostimulation, since simply targeting regions

with pathological activity might not have the intended effect due to the global nature of

these interactions.

Mathematical models that account for both the dynamical and network aspects of the

epileptic brain provide a promising route to managing this complexity, and designing effective

interventions to mitigate epileptic seizures. In this part of the thesis we show how tools from

nonlinear dynamics, non-smooth systems, and network optimization can be used to derive

such models and analyze their properties, as well as mathematically formalize the problem

of suppressing the spread of seizures and solve it optimally. Here, we review the current
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state-of-the-art in modeling brain networks, then we discuss mathematical preliminaries in

order to set the stage for our contributions in later chapters.

5.2 Related Work

In this section we discuss prior work in dynamic modeling of the human brain. Though

the field is vast and has a rich history, we restrict our attention here to models in the form of

ordinary differential equations on networks. For a more comprehensive overview we refer the

interested reader to, e.g., [Izh07, DA01, FZB16]. The human brain consists of on the order of

1011 neurons and 1014 synaptic connections between these neurons. Because of the enormous

scale involved, it is not tractable to capture all the neurons and their connections in a single

model of the brain. For this reason, network models of the human brain exist on different

spatial scales[GCC+21], depending on the phenomenon of interest, or the particular features

of the brain one wants to understand (cf. Figure 5.1 for a depiction of different spatial scales

of brain modeling). At the smallest scale, each node in the network corresponds to a single

neuron, whereas at the largest scale a single node may represent an entire brain region. Here

we briefly review network brain models on the entire spectrum of spatial scales.

5.2.1 Microscopic or Single-Neuron Models

We begin by discussing microscopic or single-neuron models (cf. Figure 5.1(left)),

where as the name suggestions, nodes in the network correspond to individual neurons.

These systems are typically mechanistic, meaning they are derived from the fundamental
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Figure 5.1: Figure showing brain networks at different spatial scales. (Left) Schematic
of Hodgkin-Huxley model describing a single-neuron as a nonlinear circuit [HH52] (Center)
Depiction of brain network at the mesoscopic scale [SVW+21] (Right) Depiction of brain
network at the macroscopic scale [MBBP19].

physical laws, as opposed to phenomenological models which describe empirical observations

but are not derived from first-principles. The most famous examples are the Hodgkin-Huxley

model [HH52], and closely related Fitzhugh-Nagumo model [Fit61, NAY62], which explains

the origination and propagation of action potentials in neurons through the diffusion of ions

across the cell membrane using the model of a leaky capacitor. While these systems are

used to understand the physiology of neuronal networks, recent work [SBS22] focuses on

controlling them, both in biomedical applications as well as engineering applications such as

neuromorphic computing.

5.2.2 Macroscopic Models

We now discuss macroscopic models (cf. Figure 5.1(right)), which exist on the oppo-

site end of the spectrum of spatial scales to single-neuron models. Here, nodes correspond to

entire brain regions, and edges represent long-range cortical connections between these re-

gions. At the macroscocpic scale the celebrated Kuramoto model (see e.g. [DB14, ADGK+08]
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for a review of this system and its properties) is often used. This system can be written as

θ̇i = ωi +
N∑

j=1
Wij sin(θj − θi),

where W is the weighted adjacency matrix of the network and θi is the state of the ith node.

This model is employed when the relevant information about each node can be captured by

a single phase variable, for example when one cares about synchronization between oscil-

latory signals in the brain [BHD10]. Recent work involving Kuramoto models has focused

on controlling brain networks using deep-brain stimulation, e.g., through optimal control

[MWMM19, WM22] or vibrational control [QBP22b].

5.2.3 Mesoscopic Models

We finally review here mesoscopic models (cf. Figure 5.1(center)) which describe phe-

nomena occurring between the single-neuron and macroscopic scales, and will be the main

focus of the rest of this thesis. At this scale, the nodes in the network describe large popula-

tions of neurons. Unlike single-neuron models, the mesoscopic models we discuss are usually

phenomenological, though in special cases it has been shown these models corresponding to

mean-field approximations of single-neuron models [WC72]. Here we focus on rate models,

where the state of the ith node, xi, models the average firing rate of the ith neural popula-

tion. Examples of rate models include the Wilson-Cowan model [WC72] and the Jansen-Rit
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model [JR95]. Typically these models have the following form

τ ẋ = −x + f(Wx + u), (5.1)

where W is the weighted adjacency matrix of the network, u represents the vector of exoge-

nous inputs to each node, and f is an activation function. In the case where f is a sigmoidal

activation, one recovers the Wilson-Cowan model, however Gaussian functions [MEK+15],

Heaviside functions [HE15], and piecewise linear activation functions [NC21a, NC21b] have

also been used.

5.3 Mathematical Preliminaries

5.3.1 Notation

We use R, R≥0, and R≤0 to denote the set of reals, nonnegative reals and non-positive

reals, respectively. We use lower case bold letters to denote vectors, and upper case bold

letters to denote matrices. The identity matrix is denoted by I. Given a vector x ∈ Rn, we use

xi to refer to its ith component, and given a matrix A ∈ Rn×m we use Aij to refer to its (i, j)th

component. For x ∈ R and m ∈ R≥0, [x]m0 = min{max{x, 0},m}, which is the projection of x

onto [0,m]. Similarly, when x ∈ Rn and m ∈ Rn
≥0, [x]m0 = [[x1]m1

0 . . . [xn]mn
0 ]T . The open ball

in Rn with radius ϵ > 0 centered at x ∈ Rn is denoted by Bϵ(x) = {y ∈ Rn | ∥y− x∥ < ϵ}.
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5.3.2 Graph Theory

Here we review basic notions from graph theory, which is theoretical framework we

employ for modeling networks. A graph is a pair G = (V , E) consisting of a set of nodes,

V = {1, 2, . . . , N}, and a set of edges E ⊂ V × V which describe connections between nodes.

We say that the graph is undirected if (i, j) ∈ E implies that (j, i) ∈ E , otherwise we refer

to the graph as directed. The connectivity structure of the graph can be described by the

adjacency matrix, A ∈ RN×N , defined by

Aij =


1 (i, j) ∈ E

0 (i, j) ̸∈ E

Note that when the graph is undirected, A is a symmetric matrix. In certain applications,

we want to assign a weight wij to each edge (i, j), where wij = 0 whenever (i, j) ̸∈ E . In this

case we refer to the graph as a weighted graph, and describe its structure using a weighted

adjacency matrix W ∈ RN×N with Wij = wij.

5.3.3 Linear Threshold Networks

Here we go over the theory of Linear-Threshold Networks (LTNs), which are a specific

instance of the rate model (5.1) where the activation function is piecewise linear. Our

exposition follows that of [NC21a]. Consider a graph G = (V , E) where V = {1, 2, . . . , N},

and E ⊂ V × V . Let W be a weighted adjacency matrix of the network. The dynamics of
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the LTN are given by

ẋ = −x + [Wx + u]m0 , (5.2)

where m is a vector describing the maximum firing rates of each node. The state-space of

the system is X = [0,m1] × [0,m2] × · · · × [0,mN ]. Note that by construction, if x(0) ∈ X

then x(t) ∈ X for all t ≥ 0.

For Neuroscience applications, it is common to assume that the network satisfies the

following assumption, commonly known as Dale’s Law.

Assumption 5.3.1 (Dale’s Law). For all j = 1, . . . , N , either Wij > 0 for all i = 1, . . . , N

or Wij < 0 for all i = 1, . . . , N

Informally, Assumption 5.3.1 states that every node in the network is either excitatory,

meaning an increase in its activity enhances the firing rates of its neighbors, or inhibitory,

meaning that an increase in its activity decreases the firing rates of its neighbors. This

property is commonly observed in real-world examples of brain networks.

5.3.4 Existence and Stability of Equilibria

We now discuss equilibria in LTNs. We begin by partitioning the state-space of the

system (5.2) into 3N regions parametrized by a switching index σ = (σ1, . . . , σN), where
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σi ∈ {0, ℓ, s}. Given a switching index σ, we define the corresponding switching region by

Ωσ = {x ∈ X | (Wx + u)i ≤ 0 if σi = 0,

(Wx + u)i ∈ [0,mi] if σi = L,

(Wx + u)i ≥ mi if σi = S}.

(5.3)

We also define the switching matrices ΣL
σ and ΣS

σ by

(ΣL
σ )ii =


1 if σi = L

0 if σi ̸= L

(ΣS
σ)ii =


1 if σi = S

0 if σi ̸= S

.

Using the switching matrices, the dynamics (5.2) can be equivalently written as

ẋ = (−I + ΣL
σW)x + ΣL

σu + ΣS
σm if x ∈ Ωσ (5.4)

From the form of the equation (5.4), it is clear that the LTN is a switched affine system with

3N modes. However, even though the dynamics are affine in each switching region, switched

affine systems exhibit much richer behavior than affine systems, include multiple equilibria,

limit-cycles and even chaotic trajectories.

Our analysis requires the following assumption.

Assumption 5.3.2. Assume that

(i) det(W) ̸= 0

(ii) For all σ ∈ {0, ℓ, s}N , we have that det(−I + ΣL
σW) ̸= 0.
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Note that Assumption 5.3.2 is not restrictive because the set of matrices in RN×N

which fail this assumption has Lebesgue measure zero, and it is therefore satisfied by almost

all matrices W ∈ RN×N . With this assumption, we can rearrange (5.4) to define for each

switching region σ, an equilibrium candidate,

x∗
σ = (−I + ΣL

σW)−1(ΣL
σu + ΣS

σm).

Clearly x∗
σ is an equilibrium of (5.2) if and only if x∗

σ ∈ Ωσ, and the corresponding equilibrium

is stable if −I + ΣL
σW is a Hurwitz matrix.

5.3.5 Existence of Oscillations

Finally, we discuss sufficient conditions for the existence of oscillatory solutions

to (5.2). The notion of oscillation varies in the mathematical neuroscience literature. Here,

we use definition of oscillation which appears in [NPC22]. We say that a solution x(t) is os-

cillatory if (i) its power spectrum contains distinct and pronounced peaks and (ii) x(t) does

not converge to a fixed point as t → ∞. Although this definition is imprecise, it includes

both limit cycles and chaotic trajectories, and encompasses the types of oscillatory patterns

typically encountered in neuroscience applications [BD04, WGTB14].

Recent work[NC19, NPC22] has characterized the existence of oscillations using an

approach inspired by the Poincaré-Bendixson Theorem [Str00, Chapter 7.3]. Informally, this

theorem states that periodic solutions to a system exist when the state-space is compact,

and does not contain any stable equilibrium points. This condition, which we refer to as
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“Lack of Stable Equilibria” (LoSE) is both necessary and sufficient for the existence of a

limit cycle when N = 2. For N > 2, the condition is only sufficient for the existence of an

oscillation, which is possibly chaotic.

We conclude this chapter with a result which characterizes exactly when stable limit

cycles exist in LTNs satisfying Dale’s Law, with N = 2. We refer the reader to [NPC22] for

results for larger networks.

Theorem 5.3.3 (Existence of Stable Limit Cycle in Planar LTNs). Consider the sys-

tem (5.2) with N = 2 where

W =
[
a −b
c −d

]
a, b, c, d ≥ 0.

The system has a globally stable limit cycle if

d+ 2 < a, (5.5a)

(a− 1)(d+ 1) < bc, (5.5b)

(a− 1)m1 < bm2, (5.5c)

0 < u1 < bm2 − (a− 1)m1, (5.5d)

0 < (d+ 1)u1 − bu2 < (bc− (a− 1)(d+ 1))m1. (5.5e)
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Chapter 6

Modeling Epileptic Behavior using

Excitatory-Inhibitory Pairs

In this chapter, we provide a detailed characterization of the equilibria and bifurca-

tions of two-dimensional linear-threshold models, referred to as excitatory-inhibitory pairs

(EI pairs). Using the input to the system as the bifurcation parameter, we characterize the

location of the admissible equilibria, show that bifurcations can arise only when equilibria lie

on the boundary of well-defined regions of the state space, and prove that (codimension-one)

bifurcations can only be of three different types: persistent, non-smooth fold, and Hopf. We

show how these bifurcations change the qualitative properties of the system trajectories, and

how these behaviors resemble prototypical patterns of EEG activity observed before, dur-

ing, and after seizure events in the human brain. Our findings suggest that low-dimensional

linear threshold models can effectively be used to model, analyze, predict, and ultimately

regulate the interactions of neuronal populations in the human brain.
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6.1 Problem Formulation

We model the interaction between populations of neurons using Linear-Threshold

Networks, An epileptic seizure can be viewed as an abrupt intermittent transition between

highly ordered and disordered states [NdS05]. In a dynamical systems’ context, this may

correspond to a qualitative change in the behavior of the system, which is typically linked to

the study of bifurcations. Evidence suggests that, even during highly disruptive events such

as seizures, the underlying connectivity structure between neurons does not experience a

significant change in its nature, while the inputs to the system may be altered by exogenous

and endogenous events. Following this evidence, here we study how changes in the input u

in (5.2) can generate qualitative changes in the behavior of the neurons firing rates.

1u1

2 u2

c

a

b

d

Figure 6.1: Schematic of EI Pair, where node 1 is excitatory and node 2 is inhibitory.

We consider a network of excitatory and inhibitory neurons satisfying Dale’s Law

(c.f Assumption 5.3.1) with N = 2 all-to-all connectivity. We let the state x1 (resp. x2)

correspond to the lumped activity of the population of excitatory (resp. inhibitory) neurons,

which have positive (resp. negative) feedforward contribution to the network. We refer to

the system in this special case as an EI Pair, and is depcited schematically in Figure 6.1. As
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our ensuing analysis reveals, the EI pair case shows much of the complexity of the general

case and is rich enough to capture a variety of epileptic behaviors.

In this case, the state space of the system is X = [0,m1]× [0,m2], and the dynamics

of the EI pair simplify as follows.

ẋ1 = −x1 + [ax1 − bx2 + u1]m1
0 (6.1a)

ẋ2 = −x2 + [cx1 − dx2 + u2]m2
0 . (6.1b)

The parameters u1 and u2 capture changes in the neurological background activity. In this

chapter, we seek to understand how changes in this activity result in seizure like behav-

ior. Since qualitative changes occur due to bifurcations, we wish to identify all possible

bifurcations in (6.1) using u1 as a bifurcation parameter. Additionally, we want to identify

conditions on the parameters of the system that ensure the existence of a stable limit cycle,

without relying on the “Lack of Stable Equilibria” (LoSE) condition.

6.2 Bifurcations in EI Pairs

In this section we characterize the bifurcations of (6.1) as a function of the external

input u. Throughout the rest of this chapter we assume that Assumption 5.3.2 holds. Recall

that the LTN can be viewed as a switched affine system with 32 = 9 modes. Let ẋ = fσ(x,u),

where

fσ(x,u) = (−I + ΣL
σW)x + ΣS

σm + ΣL
σu,
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denote the dynamics (6.1) in the case x ∈ Ωσ, where Ωσ is the switching region defined

in (5.3) and σ ∈ {0, ℓ, s}}2. Let x∗
σ denote the equilibrium candidate corresponding to the

region Ωσ.

We focus on codimension-one bifurcations, since they arise more frequently in bio-

logical systems than higher-dimensional bifurcations [Izh00]. In particular, we choose u1 as

the bifurcation parameter, and leave u2 constant. An equivalent analysis can be carried out

using u2 as the bifurcation parameter and keeping u1 constant. Because u2 is constant, we

abuse notation slightly by writing the equilibrium candidates as a function of u1 only.

We now characterize the equilibrium candidates in each switching region. To do this,

we rely on the following assumption.

Assumption 6.2.1. The parameters of (6.1) satisfy

−m1c < u2 < (1 + d)m2. (6.2)

The condition bounding u2 in (6.2) limits the number of admissible equilibria to five

(down from nine). For u2 < −m1c, (resp. u2 > (1 +d)m2), we have x2 = 0, (resp. x2 = m2),

for all u1, which are of little interest and we therefore exclude to keep the problem tractable.
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When (6.2) holds, the 5 equilibrium candidates are:

x∗
00(u1) = 0, (6.3a)

x∗
ℓ0(u1) =

( 1
1− au1, 0

)
, (6.3b)

x∗
ℓs(u1) =

(
1

1− au1 −
bm2

1− a,m2

)
(6.3c)

x∗
ℓℓ(u1) =

(
(1 + d)u1 − bu2

(1 + d)(1− a) + bc
,

cu1 + (1− a)u2

(1 + d)(1− a) + bc

)
(6.3d)

x∗
ss(u1) = m. (6.3e)

A bifurcation can occur only when x∗
σ(u) is on the boundary of Ωσ. In this case,

the equilibrium candidate x∗
σ overlaps with the equilibrium candidate of another region.

Therefore, we call u a bifurcation candidate if there exist σ1, σ2 ∈ {0, ℓ, s}2 with σ1 ̸= σ2

such that x∗
σ1(u) = x∗

σ2(u). A boundary equilibrium bifurcation occurs when u is a bifurcation

candidate and x∗
σ is admissible in both Ωσ1 and Ωσ2 , i.e., when x∗

σ1(u) ∈ Ωσ1 and x∗
σ(u) ∈ Ωσ2 .

Suppose a boundary equilibrium bifurcation occurs at u. Then, u is

(i) a Persistent BEB (P-BEB) if the number of equilibria is constant in a neighborhood

of u;

(ii) a Non-smooth fold BEB (NSF-BEB) if the number if equilibria is not constant in a

neighborhood of u;

(iii) a Hopf bifurcation1 if it is an NSF-BEB such that a limit cycle emerges.
1As highlighted in [BBCK08], the definition of Hopf bifurcation does not generalize well to piecewise

smooth systems since there is no sense in which eigenvalues cross the imaginary axis at the bifurcation onset.
However, with a slight but common abuse of terminology, we refer to a Hopf bifurcation if the only attractor
in the system is a limit cycle.
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We next state our main theoretical result which characterizes explicitly all possible

bifurcation diagrams of (6.1).

Theorem 6.2.2. (Bifurcation diagram) Let u1 be the bifurcation parameter of the sys-

tem (6.1), and suppose Assumption 6.2.1 holds. Then, there exist at most eight bifurcation

candidates. Further, there exist four qualitatively different bifurcation diagrams induced by

the following inequalities:

a < 1, (6.4a)

(a− 1)(d+ 1) < bc, (6.4b)

a < d+ 2, (6.4c)

In particular, the possible bifurcation diagrams are defined as follows (see Table 6.2 for an

illustration):

(A) If (6.4a) is satisfied, then there exists a unique equilibrium for every u and all bifur-

cations are P-BEB.

(B) If inequalities (6.4a) and (6.4b) are not satisfied, then the system has one equilibrium

(for small and big values of u1) or three equilibria. Then, bifurcations involving the Ωℓℓ

region and only one other region are P-BEB. Otherwise, bifurcations are NSF-BEB.

(C) If (6.4b)-(6.4c) are satisfied and (6.4a) is not satisfied, then the bifurcation candidates

involving either the region Ω00 or Ωss and only one other region are P-BEB. Otherwise,

bifurcations are NSF-BEB.
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(D) If (6.4b) is the only satisfied inequality, then the analysis of BEB is equivalent to that

of Case C. However, condition (6.4c) makes x∗
ℓℓ an unstable fixed point resulting in a

Hopf bifurcation at uℓ0
00 and at uℓs

ss.

Proof. Recall that u is a bifurcation candidate if and only if there exist distinct σ1 and σ2

such that x∗
σ1(u) = x∗

σ2(u). Examining only the x1 component in equations (6.3a)-(6.3e), we

see that these are affine in u1. Moreover, the affine functions (6.3a) and (6.3e) are parallel

and never intersect, so there is no bifurcation candidate when σ1 = 00 and σ2 = ss. By a

similar line of reasoning, we conclude that there is no bifurcation candidate when σ1 = l0

and σ2 = ls. Hence there are only eight possible bifurcation candidates.

Let Ωσ1 and Ωσ2 be neighboring regions. We claim that there exists

h : Ωσ1 ∪ Ωσ2 × R→ R

such that the dynamics (6.1), on Ωσ1 ∪ Ωσ2 , become

ẋ =


fσ1(x, u1), h(x, u1) ≤ 0,

fσ2(x, u1), h(x, u1) ≥ 0,

(6.5)

where h(x, u1) = 0 on Ωσ1 ∩ Ωσ2 . Let uσ1,σ2 be the bifurcation candidate, i.e., x∗
σ1(uσ1,σ2) =

x∗
σ2(uσ1,σ2) = x∗. Then, a BEB occurs if h(x∗, uσ1,σ2) = 0. Further, a P-BEB occurs if

there exists a neighborhood of uσ1,σ2 such that, for all u1 in such neighborhood, the following

inequality holds:

h(x∗
σ1(u1), u1)h(x∗

σ2(u1), u1) > 0.
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A NSF-BEB occurs instead when the inequality is not satisfied in any neighborhood of uσ1,σ2 .

We will now show explicitly how to compute the type of bifurcation when σ1 = 00

and σ2 = ℓ0. Let Ω1 = Ω00 and Ω2 = Ωℓ0. Then, (6.5) becomes

ẋ1 =


−x1, h(x, u1) < 0,

(a− 1)x1 − bx2 + u1, h(x, u1) > 0,

with h(x, u1) = ax1−bx2+u1. From (6.3) we have (x∗
00(u1))1 = 0 and (x∗

ℓ0(u1))1 = 1/(1−a)u1.

Hence, h(x∗
00(u1), u1) = u1 and h(x∗

0ℓ(u1), u1) = u1/(1 − a), which identifies a P-BEB at

u1 = 0 if and only if a < 1. Thus, in Case A the bifurcation candidate involving regions Ω00

and Ωℓ0 is a P-BEB, while it is a NSF-BEB in cases B, C, and D. An equivalent analysis

involving the remaining seven bifurcation candidates can be performed. In the interest of

space, the explicit computations are here omitted.

Finally, cases C and D exhibit equivalent conditions for the boundary equilibrium

bifurcations. However, when condition (6.4c) is met, the equilibrium in Ωℓℓ is unstable

(both eigenvalues of the I−W are positive), are are also satisfied. This gives rise to a

discontinuity-induced Hopf bifurcation, which differentiates case D from case C.

We plot the possible bifurcation diagram of (6.1) as described in Theorem 6.2.2.

To make things easier to visualize, we only show the first coordinate of the equilibrium

candidates. The first coordinate of (6.3a), which corresponds to the equilibrium candidate

of the region Ω00, is zero for every value of u1 and is referenced as 00 in Case A of Table 6.2.

Similarly, the first coordinate of the equilibrium candidate (6.3d), which corresponds to the
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equilibrium candidate of the region Ωℓℓ, varies linearly as a function of u1 and is referenced

as ℓℓ in Case A of Table 6.2. A bifurcation candidate arises whenever two of these lines

intersect. Bifurcation candidates are shown as black dots in Table 6.2. When the equilibrium

candidates are admissible, then a BEB occurs, which is shown with a square in Table 6.2.

Further, when the number of equilibria remains constant on both sides of a bifurcation, a

P-BEB occurs: this can be seen, for instance, in Case A, where all bifurcations are P-BEB

(black squares). On the other hand, in Case B, the number of admissible equilibria to the

left of the bifurcation occurring at u1 = 0 are three, x∗
00, x∗

ℓ0 and x∗
ss, while there is just one

admissible equilibrium, x∗
ss, to its right. This is an example of NSF-BEB, which is denoted

with white squares.
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(A) a < 1 (B) a > 1
(a− 1)(d+ 1) > bc

(C)
a > 1

(a− 1)(d+ 1) < bc
a < d+ 2

(D)
a > 1

(a− 1)(d+ 1) < bc
a > d+ 2

Figure 6.2: Different types of bifurcation diagrams as discussed in Theorem 6.2.2. Thin
dashed lines show families of virtual equilibria. Thick lines show equilibria: thick solid lines
show stable fixed points, while thick dashed lines show unstable fixed points. Black (white)
square markers show P-BEB (NSF-BEB), while circles show non-admissible bifurcation can-
didates. In Case (D) conditions for the existence of a limit cycle (c.f. Theorem 5.3.3 are
satisfied and the maximum and minimum values of the limit cycle are shown in green.
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6.3 Oscillations in EI Pairs

We now discuss conditions for the presence of oscillations in EI pairs, in the form of

a stable limit cycle. Our analysis leads to a refinement of Theorem 5.3.3 whose proof does

not rely on the “Lack of Stable Equilibria” condition. We state this result next.

Theorem 6.3.1 (Limit Cycles in EI Pairs). The system (6.1) has a globally stable limit

cycle if and only if

d+ 2 < a, (6.6a)

(a− 1)(d+ 1) < bc, (6.6b)

(a− 1)m1 < bm2, (6.6c)

0 < u1 < bm2 − (a− 1)m1, (6.6d)

0 < (d+ 1)u1 − bu2 < [bc− (a− 1)(d+ 1)]m1. (6.6e)

If (6.6) holds, the system has a unique unstable equilibrium:

x∗ = 1
bc− (1 + d)(a− 1)

[
(1 + d)u1 − bu2
cu1 − (a− 1)u2

]
. (6.7)

Proof. We begin by characterizing the nullclines of the system. Consider the x1 nullcline
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set, X∗
1 (u) = {x ∈ X | (fσ(x,u))1 = 0, if x ∈ Ωσ}. Note that x ∈ X∗

1 (u) if and only if

x1 = 0, x2 ≥
u1

b
, (6.8a)

x1 ∈ (0,m1), x2 = a− 1
b

x1 + u1

b
, (6.8b)

x1 = m1, x2 ≤
a− 1
b

m1 + u1

b
. (6.8c)

Similarly, for the nullcline set X∗
2 (u) = {x ∈ X | (fσ(x,u))2 = 0, if x ∈ Ωσ} we have

x ∈ X∗
2 (u) if and only if

x1 ≤ −
u2

c
, x2 = 0, (6.9a)

x1 = d+ 1
c

x2 −
u2

c
, x2 ∈ (0,m2), (6.9b)

x1 ≥
d+ 1
c

m2 −
u2

c
, x2 = m2. (6.9c)

We first show how the conditions in the statement are necessary and sufficient for (6.1)

to have a unique fixed point x∗ which, furthermore, is unstable. For x∗ to be the unique

equilibrium, the nullclines X∗
1 (u) and X∗

2 (u) must intersect exactly once. This condition

is satisfied when (i) the slope of the nullcline X∗
1 (u) in the linear region is less than the

ratio m1/m2, cf (6.6c); (ii) the slope of the nullcline X∗
1 (u) is smaller than that of X∗

2 (u)

in the same region, cf. (6.6b); (iii) and 0 < x1(m1) < m2, cf. (6.6d). Using the equations

defining the nullclines, we obtain the coordinates of x∗ in (6.7). Finally, since x∗ needs to

belong to the linear region, we have 0 < x∗
1 < m1, which reduces to (6.6e). Furthermore, the

equilibrium is unstable since the Jacobian at this fixed point is A = −I + W and, by (6.6a)
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and (6.6b), trace(A)2 − 4det(A) < 0. Thus, the eigenvalues of A are conjugate roots with

real part (−d−1)+(a−1)
2 > 0.

Next, let R = [0,m1]× [0,m2]\Bϵ(x∗) for ϵ small enough so that Bϵ(x∗) ⊂ Ωℓℓ. Note

that R is compact by definition, and that [0,m1]× [0,m2] is forward invariant with respect to

the dynamics (6.1). Furthermore, since x∗ is the unique fixed point, is in the interior of the

region Ωℓℓ, and both eigenvalues of the Jacobian have a positive real component, we deduce

that R is forward invariant. By the Poincaré-Bendixon Theorem [Sma00, Chapter 7.3], since

R is compact, forward invariant, and contains no fixed points, the system has a stable limit

cycle in R, concluding the proof.

6.4 Reproducing Epileptic Patterns

Here, we show how EI pairs can be used to model epileptic seizures. To obtain EEG-

like waveforms from the linear threshold model, we simulate the dynamics in (6.1) by adding

noise w in the linear threshold function:

ẋ = −x + [Wx + u + w]m0 .

The noise w is obtained by filtering Gaussian white-noise, with variance 1.4, through a filter

with 1Hz cut-off frequency.

Although EEG measurements of the epileptic brain can exhibit a variety of behav-

iors, the EEG response can typically be constructed from a small number of prototypical

waveforms [NdS05]. The transition from healthy activity to a seizure is marked by a sudden
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(a) Healthy background ac-
tivity [Cha96].

(b) Seizure onset and termination [Cha96]. (c) Slow wave [NdS05].

Figure 6.3: EEG recordings showing prototypical epileptic waveforms.

dramatic change in the qualitative nature of the EEG signal. A seizure may contain several

further changes before normal neurological activity is restored [Cha96]. For example, the

EEG recording of the seizure in Fig. 6.3 can be divided into four segments based on the

qualitative nature of the waveform, labeled S1, S2, S3, and S4. The healthy background

activity, S1, is characterized by small fluctuations about a steady state. The presence of

spikes in S2 indicates the onset of a seizure, with irregular low-frequency oscillations in S3,

and quasi-sinusoidal oscillations in S4.

In [TWCF11], the authors introduce a “dictionary” relating prototypical waveforms

to attractors of a nonlinear dynamical system. Here, we introduce a similar dictionary

to associate prototypical waveforms to features in the phase-plane of the linear threshold

model. This dictionary, along with the bifurcation analysis in Section 6.2, can be used

to systematically determine conditions on the connectivity matrix W so that the desired

waveform can be replicated and the desired transitions can be obtained by varying the input

to the excitatory and inhibitory populations.

In Table 6.1, we relate the characteristic waveforms to features in the phase plane,

and in Table 6.2 we use the bifurcation analysis from Section 6.2 to show which transitions

between these waveforms each system is capable of exhibiting. These two tables can be used
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Table 6.1: EEG activity and features in the phase-space [TWCF11].

Waveform Description Dynamical Behavior Clinical Setting
Normal background Stable Fixed Point Preictal activity
High-frequency Osc Stable Limit Cycle Interictal activity
Low-frequency Osc Multistability Interictal activity

Spikes Multistability of (0, 0) and another fixed point Seizure onset

Table 6.2: Relationship between all bifurcations each system exhibits and transition in type
of EEG activity as outlined in Table 6.1.

.

System Bifurcations Seizure behavior
A P-BEB

P-BEB No change
P-BEB
P-BEB

B NSF Normal → Spikes
P-BEB No change

NSF Spikes → Normal
C NSF Normal → Spikes

NSF Spikes → Normal
D NSF Normal → Spikes

Hopf Spikes → High frequency Oscillations
Hopf High Frequency Oscillations → Slow waves
NSF Slow waves → Normal

to explain epileptic patterns through the dynamical properties of linear-threshold pairs, to

characterize possible seizures each pair can create, and to synthesize a system that can

recreate an EEG pattern associated with a seizure event.

As we show next, with the correct values of parameters, the linear threshold model

can have solutions sharing qualitative characteristics with EEG waveforms during epileptic

seizures.

In Figure 6.4a we replicate the seizure in Figure 6.3b having the characteristic wave-

forms S1-S4. Figure 6.4b shows the input u1 + w1 as a function of time. To replicate the

normal background activity in S1, we initialize system (D) choosing u1 so that (0, 0) is the

unique (stable) fixed point. The system then fluctuates around the equilibrium and there

will be minimal activity in both the excitatory and inhibitory populations with sporadic

firings caused by the system noise.
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Figure 6.4: Recreating epileptic dynamics using the LTN in Case D. (Top) Simulation of
EEG recording. (Bottom) Input u1 + w1 as a function of time.

To obtain spikes in S2, we increase u1 so that it is near the first NSF-BEB bifurcation.

If w1 +u1 < 0,then x00 is a stable fixed point. However, when u1 +w1 > 0, the system has a

unique limit cycle and x00 is unstable. In this case, the state x will initially oscillate until the

noise restores the stability of x00, at which point the state will be attracted toward the origin.

As u1 is increased, the stable limit cycle persists even with noise. The state oscillates about

xℓℓ with small amplitude as in S3. Increasing u1 further increases both components of xℓℓ

(c.f. (6.3d)) as well as the amplitude of the oscillations, resulting in behavior similar to S4.

We notice that, instead of increasing u1, a similar behavior can be achieved by decreasing u2

since it has a negative contribution on the value of x∗
ℓℓ in (6.3d). This is to be expected, since

u2 is the input to the inhibitory population. In fact, a higher input to a population translates

in a higher firing rate for the population itself. This, in return, increases oscillations when

increasing the input to an excitatory population, or decreases oscillations in the case of an
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Figure 6.5: Recreating slow waves using Case D. Simulation of EEG recording (top) and
input u1 + w1 as a function of time.

inhibitory population.

An additional behavior typical of epileptic seizures is a slow wave, consisting of a low-

frequency high amplitude oscillation with intermittent spikes. Figure 6.3c shows an EEG

recording of a seizure initially with high frequency oscillations in S5, then with slow waves

with intermittent spikes in S6. To recreate slow waves in the linear threshold model, we

initialize system (D) with u1 near the second NSF-BEB bifurcation. When w1 > 0, xss is

a stable fixed point and system fluctuates around (m1,m2). When w1 < 0, xss is unstable

and the system has a limit cycle, resulting in a high frequency spiking which is halted once

the stability of xss is restored. A simulation showing this behavior is in Fig. 6.5a, with the

corresponding input in Figure 6.5b.
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6.5 Conclusions

We have shown how LTNs can be used to model a variety of prototypical brain waves

measured in both healthy and epileptic brains. Focusing on a two-dimensional network, we

provide an exhaustive analysis of the equilibria and bifurcations occurring as a function of

the input to the system. We also provide a map and numerical evidence to associate these

bifurcations to patterns of EEG signals observed before, during, and after seizure events.

Directions of future research include a formal analysis of the results suggested in Section 6.4

to relate the behavior of this model with real life EEG data, the study of higher-dimensional

linear threshold models, and the design of control algorithms to detect and regulate seizure

behaviors.
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Chapter 7

Optimal Network Interventions to

Control Localization of Oscillations

Oscillations are a prominent feature of neuronal activity and are associated with a

variety of phenomena in brain tissue, both healthy and unhealthy. Characterizing how oscil-

lations spread through regions of the brain is of particular interest when studying coun-

termeasures to pathological brain synchronizations. A recent study [SBB+10] revealed

the existence of pathological activity in brains of clinically asymptomatic subjects. In

other words, epileptic-like oscillations are observed in the brains of both healthy and non-

healthy patients, however only in the latter class do localized oscillations spread through-

out different regions of the brain into a symptomatic epileptic event. It is hypothesized

in [Spe02, SBB+10] that healthy and non-healthy brains differ with respect to their struc-

tural robustness to the spreading of localized oscillations. Modification of the network

structure to increase structural robustness is a potential avenue for treatment of neuro-
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logical disorders. This modification can be done via electrical stimulation, as is the case

with deep brain stimulation[KLA+21, QBP22a], or surgical resection, where connections

between certain brain regions are severed in order to prevent the spread of harmful oscilla-

tions [RL01]. This motivates the importance of characterizing the spatiotemporal dynamics

of oscillations onset and propagation in the context of pathological activity in the brain

[KTG+10, SBB+10, TDH+11], as well as developing design principles for modifying the

network structure optimally.

The main contribution of this chapter is to characterize conditions for the spreading

of oscillations in brain networks and to formulate and solve optimization problems for the

design of networks that are robust to oscillation spreading. In particular, we model the

excitatory and inhibitory activity of a small brain tissue (micro-domain) using EI pairs,

whose structural properties were characterized in Chapter 6. We begin by stating conditions

on the inputs of EI pairs which determine whether that pair is inactive or has an oscillation.

We then build networks of EI pairs in order to model the complex interactions among domains

of the human brain. Our goal is to exploit the known properties of the single EI pairs to

infer global properties of the brain network. Once formal conditions on the spreading of

oscillations are derived, we develop and solve a series of optimization problems through

which we can efficiently compute conditions to isolate localized oscillations from the rest of

the network. We show how these optimization problems are computationally efficient and

practically effective. We conclude the discussion with extensive numerical simulations on

synthetically generated networks. We tie the discussion of oscillations in the brain to the

the study of epilepsy; however our results can be also applied to other oscillation-related
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problems in network control.

7.1 Input Conditions on EI Pairs

Consider a single EI Pair whose dynamics whose dynamics are given by

ẋE = −xE + [axE − bxI
i + uE]mE

0 (7.1a)

ẋI = −xI + [cxE − dxI
i + uI ]mI

0 (7.1b)

In Chapter 7, we characterized the fixed points and attractors in (7.1) for all possible pa-

rameter values. Here we pay attention to the following dynamical features of EI pairs: the

origin being a stable fixed point (corresponding to healthy neurological behavior) and stable

limit cycles (corresponding to a pathological oscillation characteristic of an epileptic seizure).

The following result is a consequence of Theorem 6.2.2, and gives conditions on time-varying

inputs u(t) resulting in trajectories converging to the origin.

Lemma 7.1.1 (Convergence to origin in EI pairs). Consider the EI pair (7.1). If the input

satisfies u(t) = (uE(t), uI(t)) ≤ 0 for all t ≥ 0, then every trajectory converges to the origin.

We next give conditions on time-varying inputs to (7.1) such that the corresponding
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solution is oscillatory. We define the set

U = {(uE, uI) ∈ R2 | uE ≥ 0,

uE ≤ −(a− 1)mE + bmI ,

(d+ 1)uE − buI ≥ 0,

(d+ 1)uE − buI ≤ ∆mE}

(7.2)

where ∆ = (bc − (a − 1)(d + 1)). The next result follows as a straightforward consequence

of Theorem 6.3.1.

Lemma 7.1.2 (Sufficient conditions on inputs giving rise to oscillations). Consider the EI

pair (7.1). Then,

(i) U is nonempty if and only if

bmI ≥ (a− 1)mE, (7.3a)

bc− (a− 1)(d+ 1) ≥ 0. (7.3b)

(ii) Suppose (7.3) holds and d + 1 < a− 1. If u(t) ∈ U for all t ≥ 0, then all solutions of

(7.1), except for those corresponding to equilibria, are oscillatory.

7.2 Interconnections of EI Pairs

We consider complex networks resulting from the interconnection of EI pairs. Con-

sider a network of N nodes, where each node corresponds to a single EI pair. For
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i ∈ {1, 2, . . . , N}, the parameters of the ith EI pair in the network are

Wi =
[
ai −bi

ci −di

]
, mi =

[
mE

i

mI
i

]
, ui =

[
uE

i

uI
i

]
. (7.4)

We interconnect the individual EI pairs to form a coupled network, with a 2N -dimensional

state space

X = {(xE
1 , x

I
1, . . . , x

E
N , x

I
N) | xE

i ∈ [0,mE
i ], xI

i ∈ [0,mI
i ]}.

The dynamics of the network are given by (5.2), where

W = diag(W1, . . . ,WM) (7.5a)

+ AEE ⊗
[
1 0
0 0

]
+ AEI ⊗

[
0 −1
0 0

]

+ AIE ⊗
[
0 0
1 0

]
+ AII ⊗

[
0 0
0 −1

]
,

m =
[
m⊤

1 . . . mM

]⊤
, (7.5b)

u =
[
u⊤

1 . . . uM

]⊤
. (7.5c)

Here, AEE ∈ RN×N
≥0 is a weighted adjacency matrix which characterizes the connections

between the excitatory nodes of each pair in the network, AII ∈ RN×N
≥0 models connections

between the inhibitory nodes of each pair, and connections from excitatory to inhibitory

nodes and from inhibitory to excitatory nodes are given by AEI ∈ RN
≥0 and AIE ∈ RN×N

≥0 ,

respectively. Figure 7.1 illustrates a network built by coupling EI pairs in this manner.

We seek to characterize the oscillations in the network using knowledge of the pa-

rameters of the individual pairs, as well as the interconnections AEE,AEI ,AIE,AII . We
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Figure 7.1: Illustration of the graph associated to a network of coupled EI pairs.

say that the ith node in the coupled network is oscillatory if for all solutions x(t) of the

interconnected system, xi(t) does not converge to a constant as t → ∞. We say that the

ith node is inactive if for all solutions, xi(t) → 0 as t → ∞. While other behaviors are of

course possible, such as converging to a nonzero constant, our focus on these particular ones

is driven by their relevance for neurological applications.

Determining whether a particular node in the network is oscillatory or inactive is,

in general, nontrivial because of the complex effect of the interconnection on the dynamics

of individual nodes. In particular, note that, if the parameters of the ith node satisfy the

conditions in Lemma 7.1.1, then the ith node is not necessarily inactive in the coupled

network. Likewise if the parameters of the ith node satisfy the conditions of Lemma 7.1.2,

this does not necessarily mean that the ith node is necessarily oscillatory in the coupled

network. We illustrate these observations in the following example. Although both cases are

interesting in their own right, our focus in this chapter is on characterizing the robustness of

the dynamical properties of the nodes, rather than the emergence of new features through

network interconnection.
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Figure 7.2: Illustration of how the dynamical properties of isolated EI pairs might signif-
icantly change when coupled with other EI pairs, as discussed in Example 7.2.1. (a) Two
oscillatory EI pairs, cf. (a1), are interconnected so that, when coupled, cf. (a2), both EI
pairs saturate. (b) An oscillatory EI pair and an inactive EI pair, cf. (b1), are interconnected
in such a way that, in the resulting network, cf. (b2), both EI pair exhibit an oscillatory
trajectory.

Example 7.2.1 (Properties of EI pairs not preserved after interconnection). Consider the

numerical examples in Fig 7.2. In panel (a), we study a simple network made up of two

EI pairs (specific network parameters are reported in (a3)). When taken separately, each

EI pair is oscillatory, cf. (a1). In panel (a2), the two EI pairs are interconnected through a

simple excitatory-to-excitatory interconnection. As a result of this reciprocal excitation, the

two nodes in the interconnected network become saturated.

In panel (b), we consider a network of two EI pairs (specific network parameters are
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reported in (b3)), where the first node has a globally asymptotically stable limit cycle and

the second node has a globally asymptotically stable fixed point at the origin, cf. (b1).

After interconnecting the two EI pairs in panel (b2), the second pair becomes oscillatory as

a consequence of the incoming activity from the other EI pair. □

Given these observations, this chapter has two goals. The first goal is to characterize

conditions under which properties of individual pairs in the network, such as being oscillatory

or inactive, are preserved when the pairs are interconnected with one another. The second

goal is to develop an approach to modify the network parameters so that given sets of desired

nodes are either inactive or oscillatory. We formalize both of these problems next.

Problem 7.2.2. What are the conditions on the node parameters Wi, ui, and mi, i ∈

{1, . . . , N}, and the interconnection parameters AEE, AEI , AIE, and AII that determine

when the dynamical properties of the ith node are preserved after interconnection?

Problem 7.2.3. Consider a network whose interconnection is described by ÂEE, ÂEI , ÂIE,

and ÂII and let Ioscillatory, Iinactive ⊂ {1, . . . , N} be disjoint sets of nodes. How should the

interconnection structure be modified so that in the resulting network every node in Ioscillatory

is oscillatory and every node in Iinactive is inactive?

Both problem formulations touch upon the spatio-temporal spreading (or lack of

thereof) of oscillations in networks and are of general interest. Here, we are particularly

motivated by the spreading of microseizures (localized pathological activity in the brain)

to clinical seizures (diffused pathological activity in the brain). In this framework, one can

interpret Problem 7.2.2 as studying whether a given brain network is prone to the insurgence
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of a clinical seizure as a consequence of a microseizure. Consequently, Problem 7.2.3 can be

viewed as the study on how interventions on the brain might target specific areas of interest.

7.3 Sufficient Conditions for Preservation of Dynami-

cal Properties of Subsystems

We begin by introducing notation that will be useful for the proofs of the main

technical results. The dynamics of the ith node in the coupled network are

ẋE
i (t) = −xE

i (t) +
[
aix

E
i (t)− bix

I
i (t) + ũE

i (t)
]mE

i

0
, (7.6a)

ẋI
i (t) = −xI

i (t) +
[
cix

E
i (t)− dix

I
i (t) + ũI

i (t)
]mI

i

0
, (7.6b)

where (ũE
i (t), ũI

i (t)) incorporates the combined input to the ith node from its neighbors:

ũE
i (x) = uE

i +
N∑

j=1
AEE

ij xE
j −

N∑
j=1

AEI
ij x

I
j (7.7a)

ũI
i (x) = uI

i +
N∑

j=1
AIE

ij x
E
j −

N∑
j=1

AII
ij x

I
j (7.7b)

We first present sufficient conditions for the ith node in the network to be inactive. As

a consequence of Lemma 7.1.1, the ith node taken individually is inactive when (uE
i , u

I
i ) ≤ 0.

The following result gives conditions which ensure that (ũE
i (x), ũI

i (x)) ≤ 0 for all x ∈ X,

so the inactivity of the ith node is robust with respect to all inputs the node receives from

neighboring nodes.
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Theorem 7.3.1 (Sufficient conditions for robust inactivity). Assume that for i ∈ {1, . . . , N},

uE
i +

N∑
j=1

AEE
ij mE

j ≤ 0, (7.8a)

uI
i +

N∑
j=1

AIE
ij m

E
j ≤ 0. (7.8b)

Then, the ith node in the coupled system (7.5) is inactive.

Proof. Let x(t) be a solution to the coupled system (7.7). Note that by (7.8),

ũE
i (x(t)) ≤ uE

i +
N∑

j=1
AEE

ij mE
j ≤ 0,

ũI
i (x(t)) ≤ uI

i +
N∑

j=1
AIE

ij m
I
j ≤ 0.

Since the input to the ith EI pair is ũi(t) = (ũE
i (x(t)), ũI

i (x(t))), the result follows by Lemma

7.1.1.

Note that the condition in (7.8) holds only if (uE
i , u

I
i ) ≤ 0. In fact it is not possible

for the ith node to be inactive with respect to the interconnected network, unless the ith

node individually is inactive.

We now move on to discussing sufficient conditions for the ith node in the network

to be oscillatory after interconnection. Our technical approach relies on the following result

which formalizes the following observation: the ith node taken individually is oscillatory

when (uE
i , u

I
i ) ∈ Ui, where Ui is the set (7.2) for the parameters corresponding to the ith EI

pair, so the oscillation of the ith node persists after interconnection if (ũE
i (x), ũI

i (x)) ∈ Ui
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for all x ∈ X.

Lemma 7.3.2 (Robustness of oscillations in coupled networks). For i ∈ {1, . . . , N}, assume

[
ũE

i (x)
ũI

i (x)

]
∈ Ui, for all x ∈ X. (7.9)

Then, the ith node in the coupled system (7.5) is oscillatory.

Proof. Let x(t) be a solution to (7.7). Then by (7.9), ũi(x(t)) ∈ Ui for all t ≥ 0. Since

ũi(x(t)) is the input to the ith node, the result follows by Lemma 7.1.2.

Note that the condition (7.9) holds only if (uE
i , u

I
i ) ∈ Ui, meaning that Lemma 7.3.2

characterizes only the case where a pair that is oscillatory when viewed individually remains

oscillatory after being interconnected in a network. However, as shown in Example 7.2.1, it

is possible for nodes (uE
i , u

I
i ) /∈ Ui to become oscillatory after interconnection, though we do

not consider such cases here.

In general, the condition in Lemma 7.3.2 is not easy to check computationally. How-

ever, as we show next, in the special case where there are no interconnections from the

inhibitory neurons in each subsystem (i.e., AIE = AII = 0) the condition (7.9) can be

expressed in terms of affine constraints on the adjacency matrices.

Corollary 7.3.3 (Affine conditions for robust oscillations without inhibitory coupling).

Consider a network interconnection (7.5) with AIE = AII = 0. For i ∈ {1, . . . , N}, condition
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(7.9) holds if and only if

uE
i −

N∑
j=1

AEImI
j ≥ max

{
0, biu

I
i

di + 1

}
, (7.10a)

uE
i +

N∑
j=1

AEEmE
j ≤ min

{
bim

I
i − (ai − 1)mE

i ,
∆im

E
i + biu

I
i

di + 1

}
, (7.10b)

where ∆i = bici − (ai − 1)(di + 1). In such case, the ith node in the coupled system (7.5) is

oscillatory.

Proof. Note that

sup
x∈X

uE
i +

N∑
j=1

AEE
ij xE

j −
N∑

j=1
AEI

ij x
I
j

 = uE
i +

N∑
j=1

AEE
ij mE

j

inf
x∈X

uE
i +

N∑
j=1

AEE
ij xE

j −
N∑

j=1
AEI

ij x
I
j

 = uE
i −

N∑
j=1

AEI
ij m

I
j ,

so by examining the constraints parameterizing Ui, we see that condition (7.9) holds if and

only if

uE
i −

N∑
j=1

AEI
ij m

I
j ≥ 0,

(d+ 1)
uE

i −
N∑

j=1
AEI

ij m
I
j

− buI
i ≥ 0

and

uE
i +

N∑
j=1

AEE
ij mE

j ≤ −(ai − 1)mE
i + bim

I
i ,

(d+ 1)
uE

i +
N∑

j=1
AEE

ij mE
j

− buI
i ≤ ∆im

E
i .

We obtain (7.10) by rearranging the above equations.

As the following result shows, in the presence of inhibitory coupling, it is still possible
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to derive checkable conditions in the form of affine constraints on the entries of the adjacency

matrices given by (7.11). The conditions are valid for all interconnection structures, and are

only sufficient for condition (7.9) to hold. However, in the special case where AIE = AII = 0,

the equations (7.11) reduce to (7.10) and are both sufficient and necessary for (7.9) to hold.

Theorem 7.3.4 (Affine conditions for robust oscillations with inhibitory coupling). Let

i ∈ {1, . . . , N}, and suppose that

uE
i −

N∑
j=1

AEI
ij m

I
j ≥ 0, (7.11a)

uE
i +

N∑
j=1

AEE
ij mE

j ≤ bmI
i − (a− 1)mE

i , (7.11b)

(d+ 1)
uE

i −
N∑

j=1
AEI

ij m
I
j

− b
uI

i +
N∑

j=1
AIE

ij m
E
j

 ≥ 0, (7.11c)

(d+ 1)
uE

i +
N∑

j=1
AEE

ij mE
j

− b
uI

i −
N∑

j=1
AII

ij m
I
j

 ≤ ∆im
I
i , (7.11d)

where ∆i = bici−(ai−1)(di +1). Then, condition (7.9) holds and the ith node in the coupled

system is oscillatory.

Proof. Begin by observing that,

inf
x∈X

(d+ 1)
uE

i +
N∑

j=1
AEExE

j −
N∑

j=1
AEI

ij x
I
j

− b
uI

i +
N∑

j=1
AIE

ij x
E
j −

N∑
j=1

AIIxI
j


≥ inf

x,y∈X

(d+ 1)
uE

i +
N∑

j=1
AEExE

j −
N∑

j=1
AEI

ij y
I
j

− b
uI

i +
N∑

j=1
AIE

ij y
E
j −

N∑
j=1

AIIxI
j


= (d+ 1)

uE
i −

N∑
j=1

AEI
ij m

I
j

− b
uI

i +
N∑

j=1
AIE

ij m
E
j

 .
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and similarly that,

sup
x∈X

(d+ 1)
uE

i +
N∑

j=1
AEExE

j −
N∑

j=1
AEI

ij x
I
j

− b
uI

i +
N∑

j=1
AIE

ij x
E
j −

N∑
j=1

AIIxI
j


≤ sup

x,y∈X

(d+ 1)
uE

i +
N∑

j=1
AEExE

j −
N∑

j=1
AEI

ij y
I
j

− b
uI

i +
N∑

j=1
AIE

ij y
E
j −

N∑
j=1

AIIxI
j


= (d+ 1)

uE
i +

N∑
j=1

AEE
ij mE

j

− b
uI

i −
N∑

j=1
AII

ij m
I
j

 .

It follows immediately that if (7.11) holds, then (7.9) holds as well.

Remark 7.3.5 (Comparison with the literature). The results presented here differ from the

characterization in [NC19, NPC22, NC21a] of oscillations in linear threshold networks in

two ways: first, previous results use the lack of stable equilibria as a proxy for the existence

of oscillations, whereas we take a slightly different approach by showing when conditions

for the existence of oscillations in the ith node are robust with respect to all inputs from

neighboring nodes. Second, previous results simply ensure the existence of oscillations, while

the results here allow us to determine whether a given node participates in the oscillation,

or remains inactive. □

7.4 Network Design Using Sufficient Conditions

In this section we apply the results of Section 7.3 to address Problem 7.2.3, and deter-

mine how to modify the structure of a given network to control the spread of oscillations. The

approach we take is to determine the network interconnection structure as the solution to an

optimization problem, where the constraints of the optimization problem correspond to the
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conditions in Theorems 7.3.1 and 7.3.4. We begin by presenting the proposed optimization

problems, and then complement them with numerical examples.

7.4.1 Network Optimization Problems

Let Ioscillatory and Iinactive ⊂ {1, . . . , N} be disjoint sets, where Ioscillatory denotes the

indices of the nodes in the network we desire to be oscillatory and Iinactive denotes the indices

of the nodes in the network we desire to be inactive. Assume we are given a nominal network

of coupled EI pairs whose interconnection is determined by Â = (ÂEE, ÂEI , ÂIE, ÂII). The

problem we address here is to modify the network parameters, so that the modified network

given by A = (AEE, AEI , AIE, AII) has oscillating and inactive nodes as determined by

Ioscillatory and Iinactive, respectively.

We consider two scenarios. In the first, the weights of each of the interconnection

matrices can be varied continuously, as is the case with deep brain stimulation, where the

magnitude of the change to the network increases with electrical stimulation. In the second

scenario, we no longer have fine-grained control over the weights of each of the interconnec-

tion matrices, and the network structure can only be modified by removing edges entirely.

This scenario corresponds to surgical resection, where connections between brain regions are

severed to control the spread of oscillations.
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A Continuous Modification of Network Weights

To find the modified network in the first scenario, we introduce the following opti-

mization problem.

minimize
AEE , AEI

AIE , AII

∑
k∈{EE,EI,IE,II}

1
2
∥∥∥Ak − Âk

∥∥∥2

subject to

AEE,AEI ,AIE,AIIsatisfy (7.8) ∀i ∈ Iinactive

AEE,AEI ,AIE,AIIsatisfy (7.11) ∀i ∈ Ioscillatory.

(7.12)

The interpretation of the optimization problem (7.12) is that it finds the minimal modi-

fication to the parameters of the nominal network that ensure they satisfy the sufficient

conditions derived in Section 7.3. Because these conditions are affine with respect to AEE,

AEI , AIE, and AII , (7.12) is a quadratic program and can be solved efficiently using stan-

dard convex optimization solvers. The solution, A = (AEE, AEI , AIE, AII), gives the

network with the desired properties.

178



B Modification of Network by Removing Edges

We now consider the second scenario, where the network can only be modified by

removing edges. To solve this problem, we introduce the following optimization problem:

minimize
SEE , SEI

SIE , SII ∈ {0, 1}N×N

∑
k∈{EE,EI,IE,II}

∑
1≤i,j≤N

(1− Sk
ij)

subject to

Ak = Sk ⊙ Âk k ∈ {EE,EI, IE, II}

AEE,AEI ,AIE,AIIsatisfy (7.8) ∀i ∈ Iinactive

AEE,AEI ,AIE,AIIsatisfy (7.11) ∀i ∈ Ioscillatory.

(7.13)

Here, ⊙ denotes element-wise multiplication. In the above problem, Sk ∈ {0, 1}N×N ,

where k ∈ {EE,EI, IE, II} is a matrix where Sk
ij = 0 if the edge between i and j is severed,

and Sk
ij = 1 if it is preserved. The interpretation of the problem is that it finds the minimum

number of edges that need to be severed in order for the modified network to have the

desired properties. The modified network is given by A = (AEE, AEI , AIE, AII), where

Ak
ij = Âk

ijSk
ij Unlike (7.12), the problem (7.13) is not convex, but rather a mixed-integer

program (MIP), which in general is NP-complete. However, modern MIP solvers [Mak08]

employ a number of heuristic techniques which allows them to solve relatively large problems

efficiently.
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C Feasibility and Optimality of (7.12) and (7.13)

We now give conditions for (7.12) and (7.13) to be feasible. Intuitively, both problems

are feasible if, in the absence of any interconnection, every i ∈ Iinactive is inactive, and every

i ∈ Ioscillatory is oscillatory. This intuition is formalized in the following result.

Proposition 7.4.1 (Feasibility of (7.12) and (7.13)). The problems (7.12) and (7.13) are

feasible if and only if for all i ∈ Iinactive, ui satisfies the hypothesis of Lemma 7.1.1, and for

all i ∈ Ioscillatory, Wi,ui,mi satisfy the hypotheses of Theorem 6.3.1.

Proof. We begin with the forward direction. Suppose that Ak = 0 for k ∈ {EE,EI, IE, II}.

Then it follows immediately that these matrices satisfy the constraints in (7.12). Similarly,

if Sk
ij = 0 for all 1 ≤ i ≤ j, then it follows immediately that the constraints of (7.13) are

satisfied.

To show the reverse direction, suppose that Ak for k ∈ {EE,EI, IE, II} is feasible

for (7.12). If i ∈ Iinactive, then (ũE
i (x), ũI

i (x)) solve (7.8) for all x ∈ X, which implies that

(uE
i , u

I
i ) ≤ 0. Likewise, if i ∈ Ioscillatory, then (ũE

i (x), ũI
i (x)) solve (7.11) for all x ∈ X,

which implies that (uE
i , u

I
i ) ∈ Ui. The same argument can be applied for the constraints

of (7.13).

Finally, we show that the optimization problem (7.12) solve Problem 7.2.3. This

follows as a direct consequence of Theorems 7.3.1 and 7.3.4.

Theorem 7.4.2 (Network design via optimization). Suppose that for all i ∈ Iinactive, ui

satisfies the hypothesis of Lemma 7.1.1, and for all i ∈ Ioscillatory, Wi,ui,mi satisfy the

hypotheses of Theorem 6.3.1. Then
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(i) Let A = (AEE, AEI , AIE, AII) solve (7.12). Then for all i ∈ Ioscillatory, the ith node

of coupled network determined by A will be oscillatory, and for all i ∈ Iinactive, the ith

node will be inactive;

(ii) Let A = (AEE, AEI , AIE, AII) solve (7.13). Then for all i ∈ Ioscillatory, the ith node

of coupled network determined by A will be oscillatory, and for all i ∈ Iinactive, the ith

node will be inactive.

7.4.2 Simulations

We illustrate here how the solutions to the optimization problems (7.12) and (7.13)

produce network designs that accomplish the desired controlled spread of oscillations.

A Example with Random Network

In the first example, we consider a network of N = 10 nodes. For i ∈ {1, . . . , 5}, the

ith node satisfies the hypotheses of Lemma 7.1.1, and for i ∈ {6, . . . , 10}, the ith node satisfies

the hypotheses of Theorem 6.3.1. The interconnections AEE and AEI are given by random

networks, and AIE = AII = 0. We modify the network using the design methodology

outlined in Section 7.4.1, where Iinactive = {1, 2} and Ioscillatory = {6, . . . , 10}, and nodes

i ∈ {3, 4, 5} can be either oscillatory or inactive. Figure 7.3 shows the results.

Note that the nominal network does not satisfy the desired properties since there are

nodes i ∈ Iinactive which oscillate, and i ∈ Ioscillatory do not oscillate and instead saturate at

the upper limit. We modify the network designs both by continuously modifying the network

weights using (7.12), and by severing edges using (7.13). Note that with both designs, the
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Figure 7.3: Illustration of the network design procedure. In each of the graphs, the edges
given by AEE are solid and edges given by AEI are dashed. Each box represents a single EI
pair, where the pairs in Iinactive are grey, the pairs in Ioscillatory are green, and the pairs that
are not in either of these sets are white. In each plot, the response of the excitatory node
of each pair is on top, and the response of the inhibitory nodes are on bottom. The blue
trajectories represent pairs i ∈ Iinactive and orange trajectories represent pairs i ∈ Ioscillatory.
Panel (a) displays the nominal network, where ÂEE and ÂEI are random networks. Panel
(b) displays the network designed using (7.12). The red edges are those modified by the
optimization, and the brightness corresponds to the magnitude of the modification. Finally,
panel (c) displays the network designed using (7.13).
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nodes in i ∈ Iinactive are inactive, and nodes in i ∈ Ioscillatory are robustly oscillatory.

B Example with Spatial Propagation

For our second example, consider a network of N = 1230 nodes. The first 1225 nodes

in the network arranged in a 35 × 35 grid and satisfy the conditions in Lemma 7.1.1. The

remaining 5 nodes, whose indices we denote by Idriver, satisfy the conditions in Lemma 6.3.1.

The network has only excitatory-excitatory coupling, where each node in the grid is coupled

to the nodes in the cells above, below, to the left and to the right, and the driver nodes are

randomly coupled to nodes in in the grid (ÂEE denotes the adjacency matrix of the network).

As shown in Figure 7.4(a), the oscillations from the 5 driver nodes spread throughout the

network.

We now mark a region in the grid where we do not want the oscillations to spread.

Let Iinactive denote the indices of these nodes. To determine how to modify the network

interconnection, we use the optimization problem (7.12) to determine the interconnection

weights AEE of the modified network. As shown in Figure 7.4(b), the oscillations in the

modified network spread from the driver nodes to other regions in the network while avoiding

the region determines by the nodes in Iinactive.
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Figure 7.4: Spreading of oscillations in two 35×35 grids of EI pairs, as discussed in Section
7.4.2. Panel (a) shows four consecutive snapshots of the network activity for excitatory (top)
and inhibitory (bottom) nodes in each EI pair of a randomly generated grid. We notice how
oscillations originate from a subset of pairs, and spread throughout the nominal network.
Panel (b) shows the network modified using (7.12), so that all pairs i in Iinactive are inactive.
We find that 13 out of the 297 edges to nodes in Iinactive from nodes not in Iinactive have been
modified (i.e., changes were made by (7.12) to less than 5% of the links between EI pairs).
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7.5 Conclusions

We have studied the spreading of oscillations in complex networks of interconnected

EI pairs. Such networks, modeled here with a piecewise-linear activation function, are an

expressive modeling tool for oscillatory networks, with meaningful connections to brain dy-

namics. Motivated by the link between the spatial spread of oscillations and seizures in

the brain, we have identified formal conditions on the network interconnection structure

that determine which regions oscillate and which remain inactive. We have built on this

understanding to propose strategies that mitigate the spread of oscillations among brain

regions. These strategies formalize network design objectives by means of optimization pro-

grams with attractive numerical properties. The simulation results show that the proposed

approach may be effective in practice. Future work will address the study of the emergence

of oscillations through network interconnection and in particular characterize conditions for

the nodes in networks of coupled EI pairs to be oscillatory without assuming that they admit

oscillations individually. Further, we hope to compute tighter bounds on the sufficiency con-

ditions for robust oscillations and to further validate these results through data-generated

models of brain networks from human subjects.
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Chapter 8

Conclusion

This thesis addressed the control and optimization of interconnected systems. We

focused on two specific instances of this challenge: (i) understanding the systems theoretic

properties of optimization algorithms and using them to regulate dynamic physical processes,

and modeling (ii) epileptic seizures in brain networks and optimally modifying the network

structure to stop their spread. Here, we summarize the contributions of this thesis and

propose directions for future work.

8.1 Summary

The first part of this thesis focuses on the systems theoretic aspects of optimization

algorithms. After reviewing the literature and mathematical preliminaries in Chapter 2, we

introduced the safe gradient flow in Chapter 3. The safe gradient flow is a continuous-time

flow synthesized using techniques from safety-critical control that solves constrained nonlin-

ear optimization problems while keeping the invariant set forward invariant and asymptoti-
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cally stable. These properties make the system, when interpreted as an algorithm, anytime,

meaning that it is guaranteed to return a feasible solution even when terminated early.

This property is particularly useful for real-time applications where the algorithm might be

interconnected with other physical processes, such as when the algorithm output is used

to regulate a physical plant and constraints of the optimization problem ensure the safe

operation of the plant.

In Chapter 4 we extended the framework developed in Chapter 3 to the setting of

variational inequalities. This approach leads to reinterpretations of well-known algorithms

from the lens of control theory, such as the projected monotone flow, and in other cases

leads to entirely novel algorithms, such as the safe monotone flow and the recursive safe

monotone flow. We thoroughly analyze the safety and stability properties of each flow, and

demonstrate through numerical simulations the interconnection of the safe monotone flow

with a linear dynamical system on a receding horizon linear quadratic dynamic game.

The second part of this thesis concerns modeling the human brain as a network

dynamical system to understand and control epileptic seizures. We present an overview of

mathematical modeling of neurological systems in Chapter 5. Next, in Chapter 6, we perform

a detailed analysis of an EI Pair, a two-dimension linear threshold network that can be used

to model populations of interacting neurons. We characterize all possible bifurcations of these

systems, and relate the behavior of EI Pairs in different dynamical regimes to prototypical

oscillations observed during epileptic seizures.

Finally, in Chapter 7 we consider networks of interconnected EI Pairs. We identify

conditions which characterize the spatiotemporal spread of oscillations in the coupled net-
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work. In particular, we obtain sufficient conditions that ensure harmful oscillations remain

localized to certain regions of the network, and identify precisely which nodes participate

in the oscillation. Once formal conditions on the spreading of oscillations are derived, we

introduced an optimization-based framework to perturb the network structure so that it

exhibits the desired localization of oscillations. We hope that this framework allows us to

guide clinical interventions used to manage epilepsy, such as surgical resection and deep-brain

stimulation.

8.2 Future Work

In this section we outline future research directions that build upon the results ob-

tained in this thesis.

8.2.1 Interconnections of Dynamics with Optimizing Flows

A Discretization of Safe Gradient Flows

The algorithms considered in Chapter 3 and 4 are all continuous-time systems. While

this makes the theoretical analysis easier, and is more natural for applications where the

optimization algorithm is implemented in the form of a physical system, continuous-time

algorithms are not always practical since they require continuous communication, sensor

measurements, and actuation. For this reason, in the future, we would like to consider

discretizations of the safe gradient flow and the safe monotone flow, which still preserve

their stability and safety properties. Because Lipschitz continuity guarantees can be ob-
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tained in certain cases, one approach is to use standard ODE discretization schemes like the

Forward-Euler discretization, or the Runge-Kutta method. While we presented preliminary

experiments on this approach in Chapter 3, a rigorous characterizing of conditions under

which stability and safety are preserved can be done using tools outlined in [SH98]. Another

approach would be the implementation of event-triggered discretization [HJT12], which also

integrates well with the control-theoretic context in which these flows were originally derived,

and for which safety and stability guarantees are known [TOCA21].

B Dynamically Varying Parameters

Another exciting frontier for future work is using optimizing flows to solve parametric

optimization problems, where the parameters are varying dynamically. While the recursive

safe monotone flow, and the implementation of the safe monotone flow on receding horizon

dynamic games considered in Chapter 4 can be considered specific examples of this, special

assumptions were needed to obtain stability and safety guarantees, such as separation of

time scales and polyhedral constraint sets. However, the general case of designing optimiz-

ing flows with coupled parameter dynamics while ensuring safety, as well as convergence to

the dynamically varying optimizer, is still an open problem. In the case of unconstrained

problems, recent progress has been made using the framework of sensitivity conditioning

[PBD22], where feed-forward control is used to ensure stability of the coupled system. How-

ever, this approach assumes differentiability of the dynamics, which may not hold in the

presence of constraints. In the future, we hope to generalize these results to constrained

systems and apply them to the flows derived in Chapter 3 and 4.
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C Online Learning

As availability of data and computing power grows, the use of online learning for

controlling unknown systems becomes more relevant. There are multiple ways to approach

this problem. For example, this task can be formalized as an online feedback optimization

problem, where the optimization problem corresponds to learning the system model, and the

parameter dynamics correspond to the plant being controlled. In this case online control is

enabled using the sensitivity conditioning approach [PBD22]. A second approach draws on

ideas from extremum seeking control, where a dynamical system is steered to the optimizer

of an unknown objective function. The key component that enables extremum seeking

control approaches is the use of an oscillatory signal that allows the system to learn the

gradient of the objective function. Combining this method of gradient estimation with the

safe gradient flow opens the door to the possibility of optimizing flows that only need zeroth

order information, making them ideal for online learning applications. To make this possible,

however, we need a better understanding of the sensitivity and robustness properties of the

safe gradient flow.

8.2.2 Dynamics and Control of Brain Networks

A Emergence of Oscillations Through Network Interconnection

While oscillations in LTNs were studied in Chapter 7, the analysis leveraged the

idea of robustness, where individual nodes were assumed to be oscillatory, and we discussed

conditions under which this property was robust to network interconnection. However, in
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many cases, one is interested in the opposite situation, where individual nodes are not oscil-

latory, but oscillations emerge spontaneously after network interconnection. Understanding

the emergence properties is key to future work in mathematically characterizing biomarkers

of epilepsy, and will also inform the design of interventions to manage epileptic seizures,

including through network optimization and feedback control. For example, one drawback

of the optimization-based framework developed in Chapter 7 is that the designs were often

overly conservative. A better understanding of the emergence of oscillations may enable

network interventions which modify the network less aggressively.

B Online Control of Brain Networks

One exciting direction for future research is online control schemes for the prevention

epileptic seizures. In contrast to the network interventions discussed in Chapter 7, which

only modifies the parameters of the system, the goal of this line of research is controlling

the dynamics of the network. Recent progress has already been made in this direction,

For example vibrational control [QBP22b] has emerged as useful paradigm for controlling

synchronization in brain networks. In order to control linear threshold networks to inhibit the

spread of pathological oscillations, several challenges need to be addressed. First, feedback

control requires access to real-time measurements from which the state of the system can be

reconstructed. For neurological systems, most sensors can only acquire aggregate information

of entire brain regions, and access to information about specific nodes requires invasively

probing the brain. Secondly, the network can only be controlled through a sparse subset of

the nodes. We hope to extend our work on LTNs to develop control strategies that can be
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implemented with these limitations.
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formal symplectic and relativistic optimization. Journal of Statistical Mechan-
ics: Theory and Experiment, 2020(12):124008, 2020.

[FZB16] A. Fornito, A. Zalesky, and E. Bullmore. Fundamentals of Brain Network
Analysis. Academic Press, 2016.

[FZE18] J. Feiling, A. Zeller, and C. Ebenbauer. Derivative-free optimization algorithms
based on non-commutative maps. IEEE Control Systems Letters, 2(4):743–748,
2018.

[FZL20] Han Feng, Haixiang Zhang, and Javad Lavaei. A dynamical system perspective
for escaping sharp local minima in equality constrained optimization problems.
In IEEE Conf. on Decision and Control, pages 4255–4261, Jeju Island, Republic
of Korea, December 2020.

[GCB06] A. Ganguli, J. Cortés, and F. Bullo. Maximizing visibility in nonconvex poly-
gons: Nonsmooth analysis and gradient algorithm design. SIAM Journal on
Control and Optimization, 45(5):1657–1679, 2006.

[GCC+21] Katharina Glomb, Joana Cabral, Anna Cattani, Alberto Mazzoni, Ashish Raj,
and Benedetta Franceschiello. Computational models in electroencephalogra-
phy. Brain Topography, pages 1–20, 2021.

199



[GM79] Leon Glass and Michael C Mackey. Pathological conditions resulting from
instabilities in physiological control systems. Annals of the New York Academy
of Sciences, 316(1):214–235, 1979.

[GZE18] Victoria Grushkovskaya, Alexander Zuyev, and Christian Ebenbauer. On a
class of generating vector fields for the extremum seeking problem: Lie bracket
approximation and stability properties. Automatica, 94:151–160, 2018.

[HBD21] A. Hauswirth, S. Bolognani, and F. Dörfler. Projected dynamical systems on
irregular, non-Euclidean domains for nonlinear optimization. SIAM Journal on
Control and Optimization, 59(1):635–668, 2021.

[HBHD21] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler. Optimization algorithms
as robust feedback controllers. arXiv preprint arXiv:2103.11329, 2021.

[HC08] W. Haddad and V. S. Chellaboina. Nonlinear Dynamical Systems and Control:
A Lyapunov-Based Approach. Princeton University Press, Princeton, NJ, 2008.

[HE15] J. Harris and B. Ermentrout. Bifurcations in the Wilson-Cowan equations with
nonsmooth firing rate. SIAM Journal on Applied Dynamical Systems, 14(1):43–
72, 2015.

[HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of Physiology, 117(4):500–544, 1952.

[HJT12] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction
to event-triggered and self-triggered control. In IEEE Conf. on Decision and
Control, pages 3270–3285, Maui, HI, 2012.

[HM94] U. Helmke and J. B. Moore. Optimization and Dynamical Systems. Springer,
1994.
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1922.

[Liu95] J. Liu. Sensitivity analysis in nonlinear programs and variational inequalities via
continuous selections. SIAM Journal on Control and Optimization, 33(4):1040–
1060, 1995.

[LJJ20] Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for mini-
max optimization. In Conference on Learning Theory, pages 2738–2779. PMLR,
2020.

[LMNK20] Dominic Liao-McPherson, Marco M Nicotra, and Ilya V Kolmanovsky. Time-
distributed optimization for real-time model predictive control: Stability, ro-
bustness, and constraint satisfaction. Automatica, 117:108973, 2020.

[Loj82] Stanislaw Lojasiewicz. Sur les trajectoires du gradient d’une fonction analy-
tique. Seminari di geometria, 1983:115–117, 1982.

[LPD02] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control. IEEE
Control Systems, 22(1):28–43, 2002.

[LS02] Tzon-Tzer Lu and Sheng-Hua Shiou. Inverses of 2× 2 block matrices. Computers
& Mathematics with Applications, 43(1-2):119–129, 2002.

[LSPM21] L. S. P. Lawrence, J. W. Simpson-Porco, and E. Mallada. Linear-convex optimal
steady-state control. IEEE Transactions on Automatic Control, 66(11):5377–
5384, 2021.

[Mak08] Andrew Makhorin. GLPK (GNU linear programming kit), 2008. http://www.
gnu.org/s/glpk/glpk.html.

[MBBP19] T. Menara, G. Baggio, D. S. Bassett, and F. Pasqualetti. A framework to
control functional connectivity in the human brain. In IEEE Conf. on Decision
and Control, pages 4697–4704, Nice, France, 2019. IEEE.

[MEK+15] Hil GE Meijer, Tahra L Eissa, Bert Kiewiet, Jeremy F Neuman, Catherine A
Schevon, Ronald G Emerson, Robert R Goodman, Guy M McKhann, Charles J
Marcuccilli, Andrew K Tryba, Jack D Cowan, Stephan A van Gils and Wim
van Drongelen. Modeling focal epileptic activity in the wilson–cowan model
with depolarization block. Journal of Mathematical Neuroscience, 5:1–17, 2015.

[MG77] Michael C Mackey and Leon Glass. Oscillation and chaos in physiological
control systems. Science, 197(4300):287–289, 1977.

[MJ21] M. Muehlebach and M. I. Jordan. Optimization with momentum: Dynamical,
control-theoretic, and symplectic perspectives. Journal of Machine Learning
Research, 22(73):1–50, 2021.

202

http://www.gnu.org/s/glpk/glpk.html
http://www.gnu.org/s/glpk/glpk.html


[MJ22] M. Muehlebach and M. I. Jordan. On constraints in first-order optimization:
A view from non-smooth dynamical systems. Journal of Machine Learning
Research, 23:1–47, 2022.

[MWMM19] Bharat Monga, Dan Wilson, Tim Matchen, and Jeff Moehlis. Phase reduction
and phase-based optimal control for biological systems: a tutorial. Biological
Cybernetics, 113(1-2):11–46, 2019.

[NAY62] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse trans-
mission line simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070,
1962.

[NC19] E. Nozari and J. Cortés. Oscillations and coupling in interconnections of two-
dimensional brain networks. In American Control Conference, pages 193–198,
Philadelphia, PA, July 2019.

[NC21a] E. Nozari and J. Cortés. Hierarchical selective recruitment in linear-threshold
brain networks. Part I: Intra-layer dynamics and selective inhibition. IEEE
Transactions on Automatic Control, 66(3):949–964, 2021.

[NC21b] E. Nozari and J. Cortés. Hierarchical selective recruitment in linear-threshold
brain networks. Part II: Inter-layer dynamics and top-down recruitment. IEEE
Transactions on Automatic Control, 66(3):965–980, 2021.

[NdS05] Ernst Niedermeyer and FH Lopes da Silva. Electroencephalography: Basic
Principles, Clinical Applications, and Related Fields. Lippincott Williams &
Wilkins, 2005.

[Nes83] Y. E. Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[NLMK18] Marco M Nicotra, Dominic Liao-McPherson, and Ilya V Kolmanovsky. Em-
bedding constrained model predictive control in a continuous-time dynamic
feedback. IEEE Transactions on Automatic Control, 64(5):1932–1946, 2018.

[NPC22] E. Nozari, R. Planas, and J. Cortés. Structural characterization of oscillations
in brain networks with rate dynamics. Automatica, 146:110653, 2022.

[NW06] J. Nocedal and S.J. Wright. Numerical optimization. Springer, Berlin, Heidel-
berg, 2006.

[NZ96] A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational
Inequalities with Applications, volume 2 of International Series in Operations
Research and Management Science. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1996.

203



[PBD22] M. Picallo, S. Bolognani, and F. Dörfler. Sensitivity conditioning: Beyond
singular perturbation for control design on multiple time scales. IEEE Trans-
actions on Automatic Control, 68(4):2309–2324, 2022.

[PP10] M. Pachter and K. D. Pham. Discrete-time linear-quadratic dynamic games.
Journal of Optimization Theory & Applications, 146:151–179, 2010.

[QBP22a] Y. Qin, D. S. Bassett, and F. Pasqualetti. Vibrational control of cluster syn-
chronization: Connections with deep brain stimulation. In IEEE Conf. on
Decision and Control, Cancún, Mexico, December 2022. Submitted.

[QBP22b] Yuzhen Qin, Danielle S Bassett, and Fabio Pasqualetti. Vibrational control
of cluster synchronization: Connections with deep brain stimulation. In IEEE
Conf. on Decision and Control, pages 655–661. IEEE, 2022.

[RF10] H. L. Royden and P. Fitzpatrick. Real Analysis. Prentice Hall, 2010.

[RL01] Felix Rosenow and Hans Lüders. Presurgical evaluation of epilepsy. Brain,
124(9):1683–1700, 2001.

[RM09] J. B. Rawlings and D. Q. Mayne. Model predictive control: theory and design.
Nob Hill Pub. cop., Madison, WI, 2009.

[Rob75] S. M. Robinson. Stability theory for systems of inequalities. Part I: Linear
systems. SIAM Journal on Numerical Analysis, 12(5):754–769, 1975.

[Rob80] Stephen M Robinson. Strongly regular generalized equations. Mathematics of
Operations Research, 5(1):43–62, 1980.

[Rob83] S. M. Robinson. Generalized equations. In Mathematical Programming The
State of the Art: Bonn 1982, pages 346–367. Springer, 1983.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[RW98] R. T. Rockafellar and R. J. B. Wets. Variational Analysis, volume 317 of
Comprehensive Studies in Mathematics. Springer, New York, 1998.

[SBB+10] M. Stead, M. Bower, B.H. Brinkmann, K. Lee, W.R. Marsh, F.B. Meyer,
B. Litt, J. Van Gompel, and G.A. Worrell. Microseizures and the spatiotem-
poral scales of human partial epilepsy. Brain, 133(9):2789–2797, 2010.

[SBC16] W. Su, S. Boyd, and E.J. Candès. A differential equation for modeling Nes-
terov’s accelerated gradient method: theory and insights. Journal of Machine
Learning Research, 17(1):5312–5354, 2016.

[SBS22] Raphael Schmetterling, Thiago B Burghi, and Rodolphe Sepulchre. Adaptive
conductance control. Annual Reviews in Control, 2022.

204



[SDJS22] B. Shi, S. S. Du, M. I. Jordan, and W. J. Su. Understanding the acceleration
phenomenon via high-resolution differential equations. Mathematical Program-
ming, 195:79–148, 2022.

[SDSJ19] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplec-
tic discretization of high-resolution differential equations. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, ed-
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