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Data Mechanics and Coupling Geometry on Binary
Bipartite Networks
Hsieh Fushing*, Chen Chen

Department of Statistics, University of California Davis, Davis, California, United States of America

Abstract

We quantify the notion of pattern and formalize the process of pattern discovery under the framework of binary bipartite
networks. Patterns of particular focus are interrelated global interactions between clusters on its row and column axes. A
binary bipartite network is built into a thermodynamic system embracing all up-and-down spin configurations defined by
product-permutations on rows and columns. This system is equipped with its ferromagnetic energy ground state under
Ising model potential. Such a ground state, also called a macrostate, is postulated to congregate all patterns of interest
embedded within the network data in a multiscale fashion. A new computing paradigm for indirect searching for such a
macrostate, called Data Mechanics, is devised by iteratively building a surrogate geometric system with a pair of nearly
optimal marginal ultrametrics on row and column spaces. The coupling measure minimizing the Gromov-Wasserstein
distance of these two marginal geometries is also seen to be in the vicinity of the macrostate. This resultant coupling
geometry reveals multiscale block pattern information that characterizes multiple layers of interacting relationships
between clusters on row and on column axes. It is the nonparametric information content of a binary bipartite network. This
coupling geometry is then demonstrated to shed new light and bring resolution to interaction issues in community ecology
and in gene-content-based phylogenetics. Its implied global inferences are expected to have high potential in many
scientific areas.
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Introduction

A binary matrix is commonly used to record a collection of

indices for the presence/absence of dyadic relations between two

non-ordinal categorical variables of interest: one has all its nodes

listed on the rows, the other on the columns. This data type can be

traced back to Darwin’s (1839) The Voyage of The Beagle, in which

he reported the famous ‘‘Darwin’s Finches’’data. This kind of data

matrix is also called a co-occurrence matrix, or a binary

contingency table [1], and is popularly represented via a binary

bipartite graph (or network) in the context of Graph theory [2,3].

Such a data type becomes the center of controversy in

community ecology right after Jared M. Diamond proposed

‘‘community assembly rules’’ [4]. While this data type has been

continuously collected (e.g., bird vs. island [5], lizard vs. island [6],

plant vs. niche [7,8] and many others [9]), community ecologists

have continued debating about the two mechanistic rules

comprising natural selection forces: 1) Forbidden species random

combinations; and 2) Reduced niche overlap, for the last five

decades [10–14]. At this point in time, it might be right to ask a

neutral, but fundamental question: what are the global features or

nonparametric information contents contained within such a

binary matrix? In our opinion, the controversy is primarily caused

by missing proper answers to this question.

On another front of science in the last decade, the advent of

genome sequencing has led to the building of species phylogeny

based on the whole gene content, instead of on comparisons

between single genes [15]. Ideally this gene content based

phylogeny could be less sensitive to inconsistencies due to

horizontal gene transfer, unrecognized paralogy and highly

variable rates of evolution [16,17]. This important development

in phylogenetics also relies on binary bipartite network data.

However, its goal could have been potentially hindered by several

yet-to-be resolved issues. The first issue is that there exists no clear

guidelines for choosing species’ similarity measures. For instance,

the proportion of genes shared is seemingly a reasonable choice

[15], but it is still ad hoc. The second issue is whether there exists

enough information in the data to support a full-blown bifurcating

hierarchy. It is reasonable to suspect that some parts of this full-

blown tree structure are prone to be artifacts from the inherent

features and assumptions of their model-based constructing

approaches. The third issue is that there are irrelevant genes

which should be taken off in the construction process. This issue

becomes crucial when the number of involved genes is big. The

last, but most essential, issue is that species phylogeny and genes’

functional roles in speciation have not yet been connected. Indeed

a phylogenetic tree is better perceived through the interacting

patterns between species and genes clustering hierarchies. It is

surprising to note that all these issues are different facets of the

nonparametric information content of a binary bipartite network.

Nowadays such binary bipartite networks are ubiquitous in the

sciences and real-world businesses. To cite a few here: boards of
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directors of companies [18], actors in movie [19,20], antibiotic

resistance vs. young calves [21,22], antimicrobial resistance vs.

rehabilitated northern elephant seals [23], and bacteria vs. flexible

gene content of Prochlorococcus species [24]. Though the purposes

behind these data collections, including the aforementioned

ecological and phylogenetic ones, are very diverse, all these

references also have commonly missed the critical information

content in their binary bipartite network data sets.

In fact this phenomenon is detrimental to progress in scientific

research and world businesses in general. Since, beside the

network data, high-dimensional point cloud data have become the

primary data type in this Internet and IT era. Any such a point

cloud data set is naturally and apparently better perceived as a

bipartite network because its sample size is just too small to sustain

any smooth manifold or distributional structures under high

dimensionality. For instance, a set of one billion 100-dimensional

binary data points is merely a drop in the sea of its binary space

f0,1g100
, which has a cardinality of order 1030: This is another

major motivation why the nonparametric information content of a

bipartite network is critical in building pertinent understanding

under any high dimensional setting. Though the impact of the

computational endeavors presented here are expected to be

applicable to a wide spectrum of areas, we focus only on the above

two real scientific examples for our expository purpose.

Before undertaking developments in sections below, we make

clear a stand point that threads through all concepts, ideas and

computations proposed in this paper. Our primary focuses are on

issues such as ‘‘what is a pattern’’ and ‘‘how to recognize and

compute patterns never seen before?’’. These issues are not of

classic statistics. In fact quantifying the notion of pattern and

formalizing the process of pattern discovery in general are tasks in

the heart of physical science [25]. Therefore when attempting

issues as: what and where are patterns hidden within a binary

bipartite network, we build a foundation such that a binary

bipartite network is indeed a dynamics system. Such a physical

stand is taken and emphasized in this paper. And it is because of

this system stand point, this paper is never meant to be a statistical

paper in classic sense. Further, as it is the case here, when an

observed network is the only piece of data available to a scientist,

he/she can not instantly invoke the classic concept of ‘‘sampling

from a population’’. Therefore classic statistical inferences could

not be immediately concerned about without extra proper

assumptions and supporting setups.

Materials and Methods

A Physical perspective: Where is the nonparametric
information content?

In this paper we first give one physical perspective on the issue:

What is the nonparametric information content? Denote an

m|n binary data matrix as M0, with spaces of row nodes

X~fx1,::,xi,::,xmg and of column nodes Y~fy1,::,yj ,::,yng. Let

biG(M0) denote the binary bipartite network. This network is

invariant with respect to the product of row and column

permutation groups, denoted as UX ~fsDs~(s(1),s(2),:::,s(m))g
and UY ~fpDp~(p(1),p(2),::::,p(n))g, respectively. A permuted

matrix is denoted as sM0p. From the physical perspective, such a

binary matrix sM0p of 0 and 1 can be taken as an up-and-down

spin configuration. Therefore the bipartite network biG(M0) can

be seen as the thermodynamic system defined by the collection of

permuted matrices fsM0pDs[UX ,p[UYg with Ising model poten-

tial [26]. Its ferromagnetic energy level is computed as follows:

E½sM0p�

~{
X

ij

X
(i0,j0)[N(i,j)

J
vij,i0j0w(2½sM0p�ij{1)(2½sM0p�i0 j0{1) ð1Þ

where N(i,j)~f(i’,j’)Di’~i+1,j’~j+1g is the set consisting of the

four nearest neighbors of the (i,j) entry on the matrix lattice.

Mirroring extensions are required for entries on the lattice edges,

and the interaction potential Jvij,i’j’w is taken to be constant 1 for

simplicity. The negative constant on the left hand side of equation

(1) defining the energy E(sM0p) implies that aggregations of ‘‘up-

spins’’(1’s) or ‘‘down-spins’’ (0’s) on the field of m|n lattices tends to

give rise to low energy levels, while spin configurations consisting of

alternating 1’s and 0’s, as in a checker board, give rise to high energy

levels.

This systemic concept of a bipartite network fits well in many

biological settings. For instance, considering Darwin’s finches and

Case’s Lizard data, their bipartite networks biG(M0) indeed

globally approximate the interacting dynamics between species

and islands along their evolutionary relational trajectories.

Supposedly shaped by natural selection forces, the island-vs-

species interacting patterns should be revealed in the information

content of biG(M0).

The spin configuration achieving the lowest energy level is

termed the ground state, or macrostate, of the system biG(M0). In

statistical mechanics, a system’s macrostate is supposed to reveal

the most intrinsic behaviors and patterns of the system. Hence the

macrostate is taken as the platform to manifest the coherent

information content embedded within biG(M0). The computa-

tional complexity of finding such a macrostate is to solve for the

minimizer s�,p� in the product permutation group UX |UY :

U�& arg min
s,p

E½sM0p�:

To resolving the discrete combinatorial optimization for s�,p�,
any direct search algorithm will encounter computational com-

plexity when searching within a space of size n!|m!

(&(
n

e
)n(

m

e
)m) with e the Euler number. Due to this fact of

exponential growth in size, it is nearly an impossible task even

when m and n are only of moderate sizes. Instead of tackling this

discrete combinatorial optimization with a direct optimizing

approach as in statistical physics, we devise an indirect computing

paradigm, called Data Mechanics, to resolve this computing issue

in the next section.

Data mechanics: A new computing paradigm
The principal theme of Data Mechanics is to divert the majority

of computational complexity into engineering a data-driven

surrogate system onto the product permutation group UX |UY .

At least in an implicit fashion, this surrogate system is made to

equip this group with a simple enough geometry such that its

neighborhood system would not only allow us to avoid the

majority of possible high energy spin configurations, but also allow

the simple greedy search algorithm to reach the vicinity of the

ground state.

The possibility of this theme can be heuristically seen as follows.

In order to avoid higher energy, first on the node scale level, we

need to group similar rows and similar columns to form core

clusters on X and Y, respectively. Since, by grouping similar

columns, horizontal segments of 1’s and 0’s are created in the

Data Mechanics and Coupling Geometry
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correspondingly permuted matrix sM0p. Likewise grouping

similar rows generates vertical segments of 1’s and 0’s. Thus, by

grouping rows and then columns or vice versa, many small blocks

of 1’s and 0’s are generated on the lattice of sM0p. Further, on

the core cluster scale, we apply the ‘‘similarity’’ idea again to

facilitate merging of core clusters into conglomerate clusters on X
and Y, respectively. Consequently this joint operation would

further reduce the Ising model-based energy due to emergence of

larger blocks on a larger scale. We successively make use of the

similarity idea on various scales to build a multiscale block

structure, and expect to lower the energy level. In Fig. 1 we give a

schematic illustration for this theme of Data Mechanics on a

symmetry binary matrix example for simplicity.

In theory the permuting scheme illustrated in Fig. 1 should

work equally well for binary bipartite networks and offers a

glimpse of a natural geometry embedded within their ground

states. However in reality it becomes extremely impractical to

attempt to arrive at a macrostate of any real bipartite binary

network via simply performing successive permutations. Typically

after several permutations for grouping similar rows and columns,

it seems difficult to proceed further beyond the node scale. The

reason behind this difficulty is not only due to the lack of symmetry

in a bipartite network, but more profoundly due to unknown

patterns of interacting relationships between the two node spaces

X and Y. This real difficulty is clearly seen in the following real

bipartite network data.

The Case’s lizard data set [6] contains binary indices of 20

lizards’ presence/absence on 25 islands, shown in Fig. 2. As a

simple 20|25 binary matrix, from the island aspect, the

cardinality of the binary space f0,1g20
is over one million. If the

25 island data points are independently sampled from space

f0,1g20
according to an unknown distribution, we expect to see a

sparse and disconnected scattering of singletons. On the contrary,

a composition of big or small clumps of data points is actually

observed. This phenomenal data manifestation vividly indicates

that the bipartite network data could have been a part of a

‘‘complex system’’ governed by highly structured rules and

constraints. These rules and constraints, which are to be

discovered from these network data, are parts of natural selection

forces that governed the island-lizard interactions. Thus this

phenomenal data composition of big or small clumps is envisioned

in most real complex systems that give rise to large bipartite

networks. In fact this complex system viewpoint is particularly

necessary and true for big networks regarding the whole system of

interest, such as the World-Wide Web or Facebook. Hence, in

order to successfully discover unknown patterns of interacting

relationships embedded within a bipartite network, we need an

explicit algorithm to carry out the theme of Data Mechanics from

the complex system perspective.

To motivate the construction for such an algorithm, we perceive

the aforementioned phenomenal composition of big or small

clumps from a geometric perspective and put forth an argument

for adopting the ultrametric geometry. As similar enough data

nodes form small clumps or core clusters, close enough core

clusters merge into large clumps or conglomerate clusters. These

various degrees of similarity and closeness are purely data-

dependent. Thus, such a data-driven geometry would not only

constitute the network’s information content, but also would

become a very effective tool for visualizing data with high

dimensionality. The features of this computable geometry match

with characteristics of an ultrametric geometry, that is, the whole

composition can be specifically represented as a rooted ‘‘tree’’ in

Graph theory.

An ultrametric is a metric, say U(:,:), satisfying the strong

triangular inequality,U(x1,x2)ƒ maxfU(x1,x3),U(x3,x2)g among

any three nodes x1, x2 and x3. This property ensures any three

points form either an equilateral or isosceles triangle. If we take a

core cluster as a uniform component of point cloud data, then such

a tree could be thought of as a geometric extension of

Kolmogorov’s algorithmic statistics with multiscale structural

information. An informative review of ultrametrics and their

biological applications is given in [27]. The discovery of

ultrametrics and their implications in statistical mechanics is

detailed in [28]. In recent computational geometry in mathemat-

ics, ultrametric spaces are studied from the perspective of

embedding general metric spaces into trees [29], or reversely

embedding trees into Euclidean spaces, called ultrametric skele-

tons [30]. A data-driven ultrametric for point cloud data or

networks is algorithmically constructed based on devices taken

from statistical mechanics [31].

A bipartite network involves two intrinsic geometries on the row

and column axes, respectively. These two marginal geometries

manifest through the same network data, so they must be closely

interacting with each other. We collectively term all mutual

interacting patterns ‘‘coupling geometry.’’ When the system’s row

and column node spaces consist of diverse groups of member

nodes, it is natural that, as described and argued by the renown

many-body physicist P. M. Anderson [32], the coupling geometry

indeed involves interacting patterns, which likely merge via

breaking-symmetry mechanisms in statistical physics. And, as put

forth by H. Simon [33], the global architecture sustaining this

coupling geometry must be a hierarchy. A hierarchy on the matrix

lattice involved with underlying unknown breaking-symmetry

mechanics is potentially to be a multiscale block structure, which

induces two ultrametric tree-based marginal measures and satisfies

the following information and mathematical criteria:

Figure 1. A schematic illustration of theme of Data Mechanics.
Four 8|8 binary matrices are four different states of up-and-down spin
configurations with their calculated energy levels. The upper left binary
matrix with a checker board arrangement has the highest possible Ising
model-based energy. By symmetrically grouping rows and columns,
small scale blocks are formed first in the upper right matrix, and then
larger blocks are seen in the lower right matrix, and then blocks of the
global scale merge on the lower left matrix. The energy is successively
reduced further down to the lowest one along this permuting process.
doi:10.1371/journal.pone.0106154.g001
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[ET]: Consider the finest scale clustering partitions on the two

marginal trees as two discrete counting measures on row

and column node spaces. The mutual entropy distances

are sought to be as small as possible, while their

individual entropies are as large as possible;

[GW]: The Gromov-Wasserstein distance [34] between the two

ultrametric measure (u-mm) spaces is as small as

possible.

Hence this coupling geometry is not only embraced in the

minimum energy macrostate from a physical perspective, but also

manifests their phenomenal interaction patterns with quantitative

[ET] and [GW] features. The entropy feature [ET] requires

marginal trees partitioning row and column nodes into as many

core clusters as possible, and at the same time arranging these two

clustering compositions into coherent association patterns, while

the Gromov-Wasserstein distance feature [GW] requires the

formation of a multiscale block structure throughout the matrix

lattice. It is emphasized here that the coupling measure achieving

the Gromov-Wasserstein distance can be mathematically thought

of as a natural extension of the entropy-based mutual distance

used in the [ET] feature to a multiscale geometric setting. Hence it

provides a proper evaluation as well as a proper representation of

the interacting relational patterns between two coupled measure-

metric spaces. We further elaborate the functional merits of [ET]

and [GW] features here, while their precise mathematical

expressions are given in the next section.

The major merit of contemplating [ET] and [GW] features in a

coupling geometry is that they jointly offer a computational

foundation for constructing the theme of Data Mechanics, and at

the same time shed the light for resolving the computational

complexity of the discrete combinatorial optimization for search-

ing the minimum energy macrostate. We devise an iterative data-

driven computational algorithm to operationally build two tightly

coupled ultrametrics in the latter section. As an ultrametric tree

imposes strict constraints on node arrangements, the majority of

nonviable permutations are in fact excluded. Further, the coupling

of two marginal ultrametric geometries induces multiscale block

patterns with contrasting high and low intensities of 1’s or 0’s onto

the matrix lattice. A block with a high intensity of 1’s (0’s) indicates

positive (negative) interaction between its row-cluster and its

column-cluster. This kind of block pattern formation further

reduces potential permutations on row and column because these

blocks are to be moved around as unbreakable units under the two

tree constraints in the process of minimizing energy levels. This

characterizes how Data Mechanics resolves the computational

complexity.

We illustrate our computational developments and coupling

geometry via two real data sets: 1) 20 lizard vs. 25 islands [6]; 2)

8581 flexible genes vs. 12 species of Prochlorococcus and 4 species

of their close relatives, Synechococcus [24]. The Lizard-island data

set can also be found in Table 1 of [9], while the second data set

can be downloaded from Table S1 of [24] at doi:10.1371/

journal.pgen.0030231.st001.

Algorithm in Data Mechanics
Now we propose our critical algorithmic construction for the

pair of ultrametrics (d̂dX ,d̂dY ) that is supposedly approximating the

optimal pair (d�X ,d�Y ) embedded within M0. As mentioned in the

previous section, an ultrametric is typically transformed from an

empirical measure. In this paper such a transformation is proposed

by applying the Data Cloud Geometry (DCG) algorithm

developed in [31]. In general via subject matter knowledge, we

choose an empirical distance (or similarity) measure lX (i,i’) for any

node-pair (i,i’) from X and lY (j,j’) for any node-pair (j,j’) from Y.

Here the initial choices for both lY (i,i’) or lY (i,i’) are the

Hamming distance.

Without loss of generality, suppose that the number of rows m is

smaller than the number of columns n. Based on the initial choice

of lX (:,:), the DCG algorithm is applied to build an ultrametric

tree as an initial version of the target d̂dX on X . Denote the

ultrametric tree distance matrix among all nodes in X as

DX ~½d̂dX ½i,i’��, where d̂dX ½i,i’� is the ultrametric distance between

i and i’ row-nodes.

The use of DX is to provide a geometric basis for defining a

modified version of the Hamming distance as an initially deduced

empirical measure lY (j,j’) on Y. One version of lY (j,j’) on Y
deduced from DX is constructed as follows: Let yj and yj’ be any

pair of column vectors in the space f0,1gm
. For a discordance at

the ith component (1ƒiƒm), say (0,1), between yj and yj’, (that

Figure 2. Case’s (1983) Lizard data. 20 Lizard species vs 25 islands (in the Sea of Cortez (Gulf of California))
doi:10.1371/journal.pone.0106154.g002
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is, yj ½i�~0 and yj’½i�~1), we consider the collection

fd̂dX ½i,k�Dyj ½k�~1,1ƒkƒm,k=ig. This collection shows the ‘‘an-

ti-potentials’’ of co-presence of the ith ‘‘feature (being present)’’

with those existing ‘‘features’’ in yj . Denote the median of this

collection as yi(v0,1wD(yj ,yj’)). Similarly we define the

yi(v1,0wD(yj ,yj’)). We then define

lY (j,j’)~
Xm

i~1

1½yj ½i�~0,yj’½i�~1�yi(v0,1wD(yj ,yj’))

z 1½yj ½i�~1,yj’½i�~0�yi(v1,0wD(yj ,yj’)):

In contrast the Hamming distance between yj and yj’ isPm
i~1

1½yj ½i�~0,yj’½i�~1�z1½yj ½i�~1,yj’½i�~0�. Thus this measure lY (j,j’) on

the column vectors incorporates the geometric distinction among

the m components based on d̂dX , to which the Hamming distance

does not.

The next step is to apply the DCG algorithm based on the

deduced lY (:,:) to build an ultrametric tree on Y. This is an initial

version of the target d̂dY . Denote the ultrametric tree distance

matrix among all nodes in Y as DY ~½d̂dY ½j,j’��, where d̂dY ½j,j’� is the

ultrametric distance between the j and j’ column-nodes. Then we

modify the initial version empirical measure lX (i,i’) on X based on

DY via the same deducing procedure as above. Iterative

modification is performed back and forth between these two

node-spaces X and Y until the pair of ultrametric trees (d̂dX ,d̂dY )
becomes stable.

The key concept behind this iterative algorithm is to bring out

the circular relationship between the inter-dependence patterns

contained within the bipartite network biG(M0) and its two

marginal ultrametric spaces (X ,d�X ) and (Y,d�Y ) in a data-driven

fashion. Therefore, by implementing this iterative algorithm, we

anticipate phenomenal multiscale block structural information

being revealed as features of the coupling geometry. This

algorithm is applied on two illustrating examples experimentally

to provide evidence that our iterative approach is capable of

discovering a pair of (nearly) optimal ultrametrics (d̂dX ,d̂dY ) from

biG(M0).

Results

Community ecology example
Consider the presence/absence data matrix of lizard vs. island

in [6] (see also [12]), as shown in Fig. 2. We apply the above

iterative algorithm and arrive at a pair of stable distance measures

on both spaces of row and column nodes, respectively. The

coupling of these two computed ultrametrics reveals structural

block patterns, as shown in Fig. 3. It is noted that the coupling

geometry has been obtained by permuting the blocks and then

permuting nodes within each block to achieve further reductions

in energy level.

The coupling geometry shown in Fig. 3 clearly reveals that the

marginal geometry on row axis has three clusters with two of them

being closer than either one of them to the third cluster, while

another marginal geometry on the column axis essentially has two

major clusters and three singletons as outliers. The coupling

geometry allows us to visualize one cluster of species as being the

least adaptive by having negative interactions with most of the

islands, except with those three outlying islands. In contrast, the

other cluster of species is the most adaptive group throughout all

islands, while the third cluster of species’ adaptation is selective on

island clusters. The vividly contrasting interacting patterns in this

coupling geometry should provide rather informative evidence for

discerning and testing community assembly rules. Specifically,

computed geometries based on species’ and island’s covariate

information must conform to this coupling geometry. This is an

example of the implied global inference, which is contrastingly

different from Monte Carlo based statistical inference in the

literature. Most of the popular Monte Carlo schemes are based on

uniform distributions of the degree sequences. They are not even

related to the marginal measures mX or mY . Thus they typically

miss the system perspective of the coupling geometry.

Next we conduct a computer experiment to confirm that our

computed coupling geometry is indeed in the vicinity of the

ground state from the physical perspective. This experiment

consists of a simple local perturbation, called checkerboard-switch,

for generating new binary matrices. A checker-board is a 2|2
binary matrix with all row and column sums being equal to 1. We

say such a matrix is in A-state if both 1’s are on the main diagonal,

and B-state for off-diagonal ones. A switch is to change A-state into

B-state, or vice versa. Such a checkerboard-switch was proposed in

[6] and popularly used in the literature of community ecology on

assembly rule (see also [12]).

This experiment begins with randomly choosing two rows and

two columns from the computed coupling geometry shown in

Fig. 3. If the four entries do not form a checkerboard, then make

another run of random selection. If it is a checkerboard, then a

switch is performed, and resulting in a locally perturbed new

20|25 matrix. Its energy level is computed. This is the first trial.

The next trial implements the random checker-board switch

perturbation onto the matrix resulting from the previous trial. We

repeatedly continue this perturbation process for 105 trials, and

then plot the sequential 105 energy levels, as shown in Fig. 4.

The energy trajectory makes a nearly vertical jump from the

energy value at {1426, then successively goes through a plateau

and then somehow is trapped in a level-off phase, in which it

oscillates between 2200 to 2100. This distinct phenomenon

reveals the fact that this checkerboard-switched matrix sequence

escapes extremely quickly from a deep potential well, which is

confirmed as a ground state. In fact, the level-off phase in Fig. 4 is

not an absorbing phase. The trajectory eventually evolves into

another phase with energy level near 0 when this experiment

continues beyond several millions trials. Though, at this stage, we

have no exact knowledge about how many leveling-off phases are

actually involved in this experiment, we imagine that the number

is closely tied to the multiscale block patterns embraced within the

coupling geometry.

Nonetheless this energy trajectory clearly demonstrates that the

computed coupling geometry is at least very close to the minimum

energy macrostate from the physical perspective. Also the clear

block pattern information in Fig. 3 simultaneously provides

evidence for achieving the optimal coupling measure regarding

the [ET] and [GW] features from a mathematical perspective.

Hence we are confident to summarize that our Data Mechanics

and its algorithm successfully achieve its designated task of

extracting nonparametric information content embedded within

this data set.

Phylogeny based on gene content
Next we illustrate a bipartite network in phylogeny. The advent

of completely sequenced genomes has provided a new perspective

for constructing phylogeny based on gene content. Via a bipartite

network, this new perspective offers that phylogeny is better

viewed as systemic interactions between genes and species in order
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to capture the evolutionary trajectories of gain-and-loss on genes.

Such a gene-content-based phylogeny is expected to be less

sensitive to inconsistencies due to horizontal gene transfer and

highly variable rates of evolution, to which single gene based

phylogeny, in general, suffers.

Consider a data matrix taken from [24] with 8581 flexible genes

on 12 species of Prochlorococcus (6 for high-light(HL) and 6 low-

light(LL)) and 4 species of its close relative, Synechococcus. These

8581 flexible genes contain only 481 distinct combinations of a

gene’s presence/absence in the 16-dim binary space f0,1g16
.

Among these 481 genes, a giant clique of size more than 300 is

formed according to the Hamming distance (see Figure S1(a) in

File S1). The presence of this giant clique strongly indicates that

these 481 genes are indeed selected via a highly structural scheme.

In contrast, when 481 genes are indeed independently sampled

from the 16-dim binary space f0,1g16
, the chance of finding a

clique of size more than 3 is negligible (see File S1 and Fig. S1(b) in

File S1). We begin our computing by first tentatively trimming off

non-informative genes in distinguishing among species, such as

genes with less than 4 and more than 14 presences among the 16

dimensions. There are 312 remaining genes. We then apply the

iterative algorithm on this 16|312 binary matrix.

The coupling geometry, shown in Fig. 5, is obtained by

schematically permuting blocks and then nodes within blocks.

All permutations are selected to achieve lower energy levels, while

conforming to the two marginal tree geometries: a phylogenetic

tree on the 16 species and a gene-tree equipped with 18 core

clusters. It is rather interesting to see that our nonparametric

species phylogenetic tree is characteristically similar with those

model-based trees reported in [24]. From the coupling geometry,

the gene contents of the two far apart core clusters: 6 HL

Prochlorococcus and 4 Synechococcus species, nearly complement

Figure 3. The computed coupling geometry of Case’s lizard data with marked blocks for interactions. Two marginal ultrametric trees
are shown on row and column space. The initial and final energy levels are 2748 and 21426.
doi:10.1371/journal.pone.0106154.g003

Figure 4. Evidence of macrostate of the computed coupling
geometry of Case’s lizard data. The energy levels from a series of
matrices are reported. The matrices are generated by randomly
switching a checkerboard in the last matrix.
doi:10.1371/journal.pone.0106154.g004
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each other. They overlap on three small gene clusters: B, C and D,

which jointly form a single branch in the gene tree. Contrastingly

the 6 LL Prochlorococcus species are divided into three pairs, each

of which has rather distinct gene content. A pair (in red) is indeed

so different that it becomes an independent branch in the

phylogenetic tree. This geometric feature is not found in the classic

phylogenetic tree, which is mostly bifurcated. In fact their gene

content vividly support this data-driven tree geometric structure.

As for the gene tree, 16 out of 18 gene core clusters reveal their

speciation functions, except the two irrelevant gene clusters A and

O. In summary this coupling geometry, which should be in the

close vicinity of the minimum energy level, is rather informative

for gene-vs-species interaction. It is also worth noting that this

computing process also resolves the issue of how to identify

irrelevant feature dimensions.

Bootstrapping and statistical implications
One significant merit of the coupling geometry is that it serves

as a foundation for the principle of bipartite network boot-

strapping. This systemic principle is prescribed as follows:

Principle of Bipartite Network Bootstrapping. All boot-

strapped networks of a bipartite network biG(M0) are generated

as microstates conforming to the macrostate.

Here the macrostate is the computed coupling geometry via d̂dX

and d̂dY as an approximate for s�M0p�. By ‘‘conforming’’ we

mean that the block structural information of the finest scale has to

be retained in every bootstrapped bipartite network. Therefore a

bootstrapped bipartite network must be constructed by pitching up

all simulated blocks subject to row and column sums of the original

sub-matrices. This principle brings out an essential and relevant

fact that any bootstrapping ensemble has its corresponding

structural constraints. Any of its member should not be treated

as a random graph even though it certainly contains randomness

within blocks. But more importantly it also embraces deterministic

structures between blocks. This characteristic of simultaneously

embracing deterministic structures and randomness is a defining

feature of real dynamics systems [25].

For implementing the network bootstrapping principle here, an

algorithm proposed in [35] is suitable for this block-wise

simulation (also see a modified version in [36]). We give the

modified algorithm below for generating a submatrix with given

row and column sum sequences.

Algorithm for random submatrix with given row and

column sum sequences. Denote the sub-matrix as A|B with

the two node subspaces A(X and B(Y. Denote the row sums,

or degree sequence da~fdaig of A and column sums, or degree

sequence db~fdbjg of B. Let DAD~NA and DBD~NB.

Initialization: Set m~

PNA

i~1 daiz
PNB

j~1 dbj

2
. Initialize the

set of edges E to the empty set. Define the sequences d̂da~fd̂daig,
d̂db~fd̂dbig and initialize it by d̂da~da and d̂db~db. Set P~1.

Step 1: Pick one node pair (ai,bj), ai[A and bj[B, with

probability proportional to

pij~ d̂daid̂dbj

� �a

1{
daidbj

4m

� �

among all pairs (ai’,bj’)6[E.

Step 2: Update P~P|pij , and add fai,bjg to E and reduce

d̂dai and d̂dbj by 1.

Step 3: Repeat Step 1 and Step 2 until no more edges can be

added to E.

Output: If DEDvm report failure, otherwise output

biG~(A|B,E) and N~ m!Pð Þ{1
.

Here the number N returned by the algorithm is an estimate of

the size of the ensemble of corresponding random graphs.

Therefore the size of a bootstrapping ensemble of the whole

bipartite network is calculated as the product of the sizes of all

block ensembles.

It is noted that the original version of the algorithm proposed in

[35] has the probability of picking a pair of nodes (ai,bj) with the

exponent a being equal to 1. We noticed however that when one

or multiple hubs are present in the block considered, the algorithm

often fails to generate a network that fully satisfies the constraints

on the degrees of the nodes. To resolve this problem, we define:

a~1½Ddai{dbj Dwk�z1 ð2Þ

that is, a is an indicator function with an empirically chosen

thresholding exponent k (i.e. a~2 if Ddi{dj Dwk and 1 otherwise).

This is a pragmatic correction that circumvents the failure

problem, with the side effect of underestimating the size of the

corresponding ensemble. Also we note that there are other

algorithms described in the literature for generating binary

matrices with prescribed row and column sums (see for example

[1]). These algorithms rely on the maximum entropy property and

provide asymptotic estimates of the size of the ensemble of random

networks that can be generated. The algorithm used here has the

advantage of being simple to implement.

It becomes evident that, under this principle of bipartite

network bootstrapping, any bootstrapped bipartite network is

equipped with the characteristic multiscale block pattern infor-

mation. Here we further explore such a multiscale block structure

from the energy distribution perspective. Consider bootstrapping

the Lizard’s bipartite network data based on the computed

coupling geometry shown in Fig. 3. We construct three different

bootstrapping ensembles with respect to three different scales of

block structures as follows:

En-1 The finest scale level: the 6 colored blocks in Fig. 3 are

simulated individually with the remaining four outlier

columns (A, C, Y, Q) fixed; The estimated logrithm of

this ensemble size is 25.68.

En-2 One median scale on row axis: the green and orange

blocks are merged into one larger block, or submatrix,

and yellow and blue blocks are merged into another

larger submatrix; The estimated logrithm of this ensem-

ble size is 28.43.

En-3 One coarse scale on row and column axes: the four blocks

marked with colors: green, orange, yellow and blue, are

merged into one large submatrix. The estimated logrithm

of this ensemble size is 136.76.

We randomly select one bootstrapped network from each of the

three ensembles, En-1, En-2 and En-3, respectively, and present

them in Fig. 6. The first two bootstrapped bipartite networks are

hardly different, and the third one is only slightly different from

the first two. Correspondingly the energy densities of these three

bootstrapping ensembles with respect to block structures En-1, En-

2 and En-3 are reported in Fig. 7. The first location shift from the

very left density of En-1 to the middle density of En-2 is relatively

small. It indicates that the merging of green and orange blocks

together with merging of yellow and blue blocks do not create

significantly different matrices. This indication is reasonable and

real because one of the four involved blocks is nearly completely

1’s, while the rest of three blocks are nearly completely 0’s. No

significant different matrices are to be expected. In contrast, the
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Figure 5. The computed coupling geometry of 16|312 bipartite presence/absence matrix of gene content. Phylogenetic tree of 12
species of Prochlorococcus and 4 species of Synechococcus and a gene tree of 312 distinct genes are shown on the row and column space. The initial
and final energy levels are 27524 and 210880.
doi:10.1371/journal.pone.0106154.g005
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second location shift of the middle density to the very right one of

En-3 is relatively larger than the first location shift. The merging of

the four blocks: green, orange, yellow and blue, allows us to create

more distinct matrices, but not drastically different. In fact these

four blocks form an ‘‘AND’’ type of interacting pattern, in contrast

with the ‘‘OR’’ interacting pattern shown in Fig. 1. We expect a

very large bootstrapping ensemble only when the 6 colored blocks

are merged.

Our computed coupling geometry manifests data-driven

features, so it is likely biologically meaningful. Upon its multiscale

block structural information, different scales can bear with

different biological features of interest. The presence of this fine

scale feature is meant to contain complicated and detailed

structural information, while the presence of only large-scale

features is meant to lose all fine-scale structural characteristics.

Thus along the multiscale, scientists can formulate a serial of

nested null/alternative hypotheses. Then, based on the corre-

sponding bootstrapping ensembles, proper bootstrapped distribu-

tions of testing statistics can be constructed. Making comparisons

among such bootstrapped distributions is a legitimate way of

making statistical inferences. Another natural testing statistic is the

ratio of the sizes of the bootstrapping ensembles. Such a ratio

reveals the probability of seeing a network equipped with

structural patterns specified by an alternative hypothesis within a

larger ensemble consisting of bootstrapped networks lacking the

specified patterns under the null hypothesis.

In network applications, the most popularly employed null

hypothesis corresponds to the largest possible scale level, which

usually lacks any block structure. Its bootstrapping ensemble in

turn contains patternless networks that are only subject to the full

spectrum of row and column sum sequences. This largest

ensemble surely contains networks having relatively smaller-scale

block pattern information as its minority and patternless networks

as its majority. It is worth noting that, due to its massive size, it

might require a very large number of bootstrapped networks in

Figure 6. Three bootstrapped bipartite networks from En-1 (a), En-2 (b) and En-3 (c) bootstrapping ensembles based on the
computed coupling geometry of Case’s lizard data. In contrast to the presence-absence matrix in Fig. 3, more presence connections (1’s in the
matrix) are observed in the yellow, blue and red blocks as the one-scale structure is relaxed. These connections are marked in red.
doi:10.1371/journal.pone.0106154.g006
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order to build a representative bootstrapping distribution for any

testing statistics.

On the other hand inferential issues on hypotheses concerning

features beyond the computed pattern geometry can not be

immediately and rigorously discussed. The following reason is one

of the keys: as far as model based statistical inferences on networks

are concerned, they are likely imposed with many men-made and

unrealistic structural assumptions. Also the model setups also tend

to involve with many parameters. The implication deduced from

this paper is that these assumptions and parametric setups often

are incoherent, or even contradicting with the computed

geometric information. Such incoherence and contradiction would

fundamentally cause many difficulties. It is easy to speculate that a

complex network model is built without a solid capability of

accommodating potential structural information contained in the

data-driven macrostate. Hence, not only computational, but also

inferential issues could spin out of control. These related

phenomena are of critical importance. However they are beyond

the scope of the current paper.

Discussion

The information content of a binary bipartite network is

identified, computed and represented as a coupling geometry.

From a physical perspective, it is a pure combinatorial optimiza-

tion problem with rather overwhelming computational complex-

ity. Our Data Mechanics is proposed as an indirect optimization

approach to effectively resolve such a complexity. Through

information entropy criteria and the Gromov-Wasserstein dis-

tance, the coupling geometry is found to be equivalent to an

optimal construction problem for a pair of ultrametric measure

spaces. In addition, the computed coupling geometry is capable of

manifesting authentic interacting patterns on different layers of

geometric hierarchies.

The resultant geometric multiscale pattern information is

demonstrated to be able to shed new light on two important

biological topics: 1) species and island interaction in community

ecology; 2) phylogeny based on gene content in genetics. In

principle this coupling geometry would serve as a foundation for

global inference. For instance, the bipartite network of island and

species can be taken as a response, and bipartite networks of

islands’ and species’ individual information as a covariate.

Coupling these three geometries would fundamentally resolve

the controversial community assembly rules. Potential applications

of such global inferences are ubiquitous in science.

Beyond shedding new and critical light on real world problems,

the coupling geometry and Data Mechanics together seems to

point out an important cycle among three elements: a binary data

matrix naturally contains an optimal pair of ultrametrics (d̂dX ,d̂dY );
such an ultrametric pair supports a coupling geometry; a coupling

geometry then reveals the authentic interacting pattern informa-

tion content embedded within this data matrix. This trinity

concept implies one principle for network analysis in general: a

computable coupling geometry is the foundation for legitimate

statistical modeling and hypotheses formulating, while such

geometry based network bootstrapping ensembles provide the

bases for hypothesis testing and statistical inference. That is,

computing geometric information content from matrix data is a

principle way of seeking knowledge from networks ranging from

binary to weighted, undirected to directed.
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29. Bădoiu M, Cole R, Demaine ED, Iacono J (2007) A unified access bound on

comparison-based dynamic dictionaries. Theoretical Computer Science 382:

86–96.

30. Mendel M, Naor A (2013) Ultrametric skeletons. Proceedings of the National

Academy of Sciences 110: 19256–19262.

31. Fushing H, Wang H, VanderWaal K, McCowan B, Koehl P (2013) Multi-scale

clustering by building a robust and self correcting ultrametric topology on data

points. PloS one 8: e56259.

32. Anderson PW, et al. (1972) More is different. Science 177: 393–396.

33. Simon H (1962) Complexity: ‘‘the architecture of complexity. Proceeding of the

American Philosophical Society: 467–482.

34. Mémoli F (2009) Spectral gromov-wasserstein distances for shape matching. In:

Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International

Conference on. IEEE, pp. 256–263.

35. Bayati M, Kim JH, Saberi A (2010) A sequential algorithm for generating

random graphs. Algorithmica 58: 860–910.

36. Fushing H, Chen C, Liu SY, Koehl P (2014) Bootstrapping on undirected binary

networks via statistical mechanics. Journal of statistical physics 156: 823–842.

Data Mechanics and Coupling Geometry

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e106154




