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Abstract

Feline leukemia virus (FeLV) is horizontally transmitted among cats and causes a variety of

hematopoietic disorders. Five subgroups of FeLV, A–D and T, each with distinct receptor

usage, have been described. Recently, we identified a new FeLV Env (TG35-2) gene as a

sixth interference group and proposed its phenotype as FeLV subgroup E (FeLV-E). FeLV-A

is  the  primary  virus  from  which  other  subgroups  have  emerged  via  mutation  or

recombination  of  the  subgroup  A  env gene.  Retrovirus  entry  into  cells  is  mediated  by

interaction of envelope protein (Env) with specific cell surface receptors. Here, phenotypic

screening of a human/hamster radiation hybrid panel identified SLC19A1, a feline reduced

folate  carrier  (RFC)  and  receptor  for  TG35-2  pseudotype  virus.  RFC  is  a  multipass

transmembrane protein. Feline and human RFC cDNAs conferred susceptibility to TG35-2

pseudotype virus when introduced into nonpermissive cells, but did not render these cells

permissive to other FeLV subgroups or feline endogenous retrovirus. Moreover, human cells

with genomic deletion of RFC were nonpermissive for TG35-2 pseudotype virus infection,

but  the  introduction  of  feline  and  human  cDNAs  rendered  them  permissive.  Mutation

analysis of FeLV Env demonstrated that amino acid substitutions within the variable region

A altered the specificity of the Env–receptor interaction. We isolated and reconstructed the

full-length infectious FeLV-E-phenotypic provirus from a naturally FeLV-infected cat, from

which the FeLV Env (TG35-2) gene was previously isolated, and the virus replicated in

hematopoietic cell lines compared with FeLV-A 61E. These results provide a tool for further

investigation of FeLV infectious disease.

Importance  Feline leukemia virus (FeLV)  is a member of the genus  Gammaretrovirus,
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which causes malignant diseases in cats. The most prevalent FeLV among cats is FeLV

subgroup A (FeLV-A), and specific binding of FeLV-A Env to its viral receptor, thiamine

transporter feTHTR1, is the first step of infection. In infected cats, novel subgroups of FeLV

have emerged by mutation or recombination of the  env gene. FeLV subgroup E (FeLV-E)

arose from a subtle mutation of FeLV-A Env, which altered the specific interaction of the

virus with its receptor. RFC, a folate transporter, is a receptor for FeLV-E subgroup. The

perturbation of specific retrovirus–receptor interactions under selective pressure by the host

results in the emergence of novel viruses.

Introduction

Retroviral envelope (Env) proteins consist of a trimer of heterodimers formed between the 

surface subunit (SU) and the transmembrane subunit (TM). Interaction of the retroviral SU 

with a receptor on the host cell surface is the initial step in viral entry. The specific SU–

receptor interaction begins with the fusion of viral and host cell membranes, resulting in 

viral entry into the host cell. Therefore, viral tropism is determined by whether the target 

cell expresses a surface receptor protein and can bind to the viral SU protein (1). Infection 

of the target cell by virus usually prevents successive rounds of infection in the same cell as 

a result of masking or downregulation of the receptor by the viral Env protein. This 

phenomenon is known as superinfection interference and this phenomenon identifies 

whether the virus uses the same or different receptors (2,3). Therefore, elucidation of the 

molecular basis for the retrovirus–receptor interaction contributes to our understanding of 

viral entry.
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Feline leukemia virus (FeLV) belongs to the genus Gammaretrovirus and is transmitted 

horizontally among domestic cats (Felis silvestris catus) (4). A recent epidemiological 

survey of FeLV infection in Japan detected FeLV in 12.2% of the 1,770 cats tested (5). This 

virus is known to induce various diseases in domestic cats, such as lymphoma, 

myelodysplastic syndrome, anemia, acute myelogenous leukemia and immune deficiency 

(6,7). The mechanisms by which this virus induces the multifarious symptoms of FeLV-

associated diseases are still unclear; however, genetic polymorphisms resulting from 

substitution or recombination have led to changes in FeLV pathogenicity and unexpected 

symptoms (8-14). Analysis of superinfection interference properties have identified FeLV 

variants comprising FeLV subgroups A, B, C, D, E and T (15-20). FeLV-A is the primary 

virus transmitted among cats (21-23) and FeLV subgroups are thought to be generated in 

cats infected with FeLV-A. FeLV subgroups B and D arise from recombination between 

FeLV-A env and the env genes of endogenous FeLV (enFeLV) or endogenous retrovirus of 

the domestic cat (ERV-DC) (17, 24, 25); subgroups C, E and T possibly arise from 

mutations in FeLV-A env (8-10,18). The cellular viral receptors for FeLV subgroup A, B, C 

and T have been identified; FeLV-A uses the feline thiamine transporter receptor (feTHTR-

1) (26), while FeLV-B uses the phosphate transporter receptors (Pit1/2) (27-30). FeLV-C 

uses a heme transporter (FLVCR-1/2) as its receptor along with THTR-1 (31-33). FeLV-T, 

a T-cytopathic FeLV subgroup, also uses Pit1 as a receptor, but it requires a second host 

protein known as FeLIX, a truncated envelope protein produced by enFeLV for entry (34).

We previously identified the FeLV env gene, TG35-2, in a 1-year-old castrated male cat,
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TG35, with a bite injury, stomatitis, loss of appetite and FeLV infection, although he had

been vaccinated with inactivated FeLV. He eventually died without diagnosis  (5,18). The

TG35-2 Env is a new interference subgroup of FeLV and shows distinct cell tropism from

FeLV-A. Therefore, we proposed naming this FeLV subgroup E (FeLV-E) (18). The  env

sequences of this clone clustered phylogenetically with those of genotype I/clade I FeLV,

found mainly in Japan (5). In this study, we used phenotypic screening of radiation hybrid

(RH) cell lines (35) to identify SLC19A1, the feline reduced folate carrier (feRFC) as the

receptor for FeLV-E. Substitution of a few amino acids within variable region A (VRA) in

Env  altered  the  specificity  of  the  Env–receptor  interaction,  including  facilitating  the

occurrence of a dual tropic virus. Furthermore, we isolated and reconstructed the full length

infectious FeLV-E phenotypic provirus from a naturally FeLV-infected cat, from which the

FeLV Env (TG35-2) gene had previously been isolated. Our results provide tools for further

investigation of FeLV infectious disease.

Results

Identification of RFC as the FeLV-E receptor

FeLV-E phenotypic virus (FeLV 33TGE2), a chimeric infectious virus, infects human but 

not hamster cells (18), indicating that it might be possible to map the position of the FeLV-E

receptor by analyzing the susceptibility of human-hamster RH cell lines to infection by 

FeLV-E. We used the G3 panel of human RH cell lines from the Stanford Human Genome 

Center (SHGC) (36) for phenotypic mapping of the FeLV-E receptor. We previously re-

genotyped tThis panel had been previously genotyped using array comparative genomic 
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hybridization (37,38). 

We first confirmed that the FeLV-E phenotypic virus (FeLV 33TGE2) does not infect the 

recipient A23 hamster cells used in the construction of the G3 panel. We then correlated the

genotypes of the RH clones with their susceptibility to FeLV-E infection. The overall 

combined narrow sense (additive) heritability, h2, of this phenotype was indistinguishable 

from 1 (0.99  0.12 s.d.), suggesting a simple monogenic architecture (39). Consistent with 

this observation, we identified a single genome-wide significant locus with a logarithm of 

the odds (LOD) score of 16.3 on chromosome 21q22.3, with a peak marker at 46,822,915 

bp (Figures 1A and 1B). The mean log10(IU+1) (infectious units/ml supernatant + 1) was 

3.6  0.5 s.e.m. for RH clones with a peak marker and 0.3  0.1 s.e.m. for clones without 

(Figure 1C). The additive heritability for the locus was 0.63  0.13 s.d., explaining the 

majority of the overall narrow sense heritability, and consistent with a monogenic trait.

The 2LOD critical region of the chromosome 21 locus extended from 46,677,060 bp to 

47,058,655 bp, or from 146 kb to the left of the peak marker (in the direction of the 

centromere) to 236 kb to the right (in the direction of the q telomere) (Figure 1D). Careful 

eExamination of this region of 21q22.3 showed that none of the previously mapped 

retroviral receptors localized to the same position. Thus, the FeLV-E receptor most likely 

represents a new retroviral receptor. The gene closest to the peak marker was COL18A1, 

which was 52.5 kb to the right. The second closest gene was the reduced folate carrier 

(RFC) gene (SLC19A1), which was 95.2 kb in the same direction. 

To determine whether RFC might function as the FeLV-E receptor, we isolated human RFC 

(huRFC) and feRFC cDNAs from HEK293T cells and feline peripheral blood mononuclear 
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cells (PBMCs), respectively. We generated retroviral expression vectors expressing the 

cDNAs encoding huRFC or feRFC and introduced them into MDTF cells, because. MDTF 

cells were are resistant to infection with Env-pseudotyped FeLV-A and FeLV-E (TG35-2) 

(18). MDTF cells carrying huRFC (MDTF-huRFC) and feRFC (MDTF-feRFC) were tested

for permissiveness to Env-pseudotyped viruses of FeLV-A (FeLV-A/Clone33), FeLV-B 

(FeLV-B Gardner–Arnstein), FeLV-C (FeLV-C Sarma), FeLV-D (FeLV-D Ty26), FeLV-E 

(TG35-2), ERV-DC10 and ampho-MuLV (MuLV 4070A) carrying a LacZ reporter gene, 

which were prepared in GPLac cells. Ampho-MuLV was used as a positive control because 

it is known to infect mouse and human cells and was used as a positive control (18). 

MDTF-huRFC and MDTF-feRFC cells were susceptible to FeLV-E-pseudotyped virus 

infection with >103 infectious units (Figure 2). However, MDTF cells carrying an empty 

vector were not susceptible to FeLV-E-pseudotyped virus infection (Figure 2). Other feline 

retroviruses, FeLV-A, FeLV-B, FeLV-C and FeLV-D, and ERV-DC10-pseudotyped viruses, 

could not infect MDTF-huRFC or MDTF-feRFC cells. FeLV-A, FeLV-B, FeLV-C, FeLV-D, 

FeLV-E, and ERV-DC10-pseudotyped viruses could successfully infect HEK293T cells. 

These results indicated that huRFC and feRFC conferred susceptibility to FeLV-E-

pseudotyped virus infection.

Expression of human or feline RFC renders HeLa-R5 cells susceptible to FeLV-E 

pseudotyped virus. We previously showed that FeLV-E phenotypic virus (FeLV 33TGE2), 

a chimeric infectious virus, could infect HeLa cells (18). HeLa-R5 cells, a derivative of 

HeLa cells, are characterized by the genomic deletion of RFC as a result of exposure to 

methotrexate (MTX) (40). As shown in Figure 3A, we confirmed that human RFC was not 
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expressed in HeLa-R5 cells, but was expressed in HeLa cells by RT-PCR. Therefore, we 

used HeLa-R5 cells to determine susceptibility to FeLV-E infection. FeLV-A, FeLV-B, 

FeLV-C, FeLV-D and FeLV-E Env-pseudotyped viruses were prepared in GPLac cells and 

tested in the cell lines indicated below. As expected, HeLa-R5 cells were non-permissive for

FeLV-E Env-pseudotyped virus infection, while FeLV-E Env-pseudotyped virus 

successfully infected the parent HeLa cells (Figure 3B). FeLV-B, FeLV-C and FeLV-D Env-

pseudotype viruses could infect HeLa and HeLa-R5 cells, while FeLV-A Env-pseudotype 

virus could not infect HeLa cells or HeLa-R5 cells. Next, a retroviral expression vector 

expressing huRFC or feRFC was introduced into HeLa-R5 cells, to generate R5-huRFC and

R5-feRFC cells (Figure 3A), and the cells were tested for infectivity with FeLV-E Env-

pseudotype virus as well as FeLV-A, FeLV-B, FeLV-C and FeLV-D Env-pseudotype viruses.

As shown in Figure 3B, both R5-huRFC and R5-feRFC cells were permissive for FeLV-E 

Env-pseudotype virus infection with >104 infectious units, as well as FeLV-B, FeLV-C and 

FeLV-D-pseudotype virus infection. However, R5-huRFC and R5-feRFC cells were non-

permissive for FeLV-A Env-pseudotype virus infection. A retroviral expression vector 

expressing the cDNA encoding mouse RFC was introduced into HeLa-R5 cells, to generate 

R5-mRFC cells (Figure 3A), and these cells were tested for infectivity with FeLV-E Env-

pseudotype virus. As shown in Figure 3C, R5-mRFC cells were not permissive for FeLV-E-

pseudotype virus infection, consistent with the data from the mouse cell line MDTF (Figure

2). These results indicated that transduction of huRFC and feRFC into HeLa-R5 cells 

rendered them susceptible to viral entry and FeLV-E infection. Because HeLa and HeLa-R5

cells were not permissive for FeLV-A infection, we conducted the following experiment. A 
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retroviral expression vector expressing feline THTR1, which was known to be the receptor 

for FeLV-A (26), was introduced into HeLa-R5 cells, termed R5-feTHTR1, and the cells 

were tested for FeLV-A Env-pseudotype viruses from FeLV-A clone 33 (41), FeLV-A 

Glasgow-1 (42) and FeLV-A TG35-4 from a TG35 case (18), and FeLV-E Env-pseudotype 

virus. As shown in Figure 4A, all FeLV-A Env-pseudotype viruses could infect R5-

feTHTR1 cells, but FeLV-E Env-pseudotype virus could not. FeLV-B Env-pseudotype virus

was used as a positive control. The results indicated that transduction of feTHTR1 into 

HeLa-R5 cells could not render cells susceptible to FeLV-E infection. We next conducted an

interference assay to determine whether FeLV-E subgroup classification depends on feRFC 

receptor. R5-feRFC cells pre-infected with FeLV 33TGE2 (R5-feRFC/33TGE2 cells) were 

tested for FeLV-E infection and the FeLV-E (TG35-2) Env-pseudotyped virus could not 

infect R5-feRFC/33TGE2 cells, but could infect R5-feRFC cells (Figure 4B). 

Taken together, these results indicated that both feline and human RFC are receptors for 

FeLV-E and that viral interference of FeLV-E depends on the RFC receptor.

Isolation of cDNA encoding feline RFC

RFC (SLC19A1) transports folates, but not thiamine (41). Feline RFC has not been isolated

previously. In this study, feline cDNA isolated from feline PBMCs was sequenced and 

predicted to encode a protein of 522 amino acids. The similarity between feline and human 

RFC and between feline and mouse RFC were 92.1% and 90.4%, respectively. Alignment of

the predicted amino acid sequences of the proteins encoded by the feline and human RFC 

genes is shown in Figure 5. The amino acid sequence of human RFC obtained from 
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HEK293T cells was used in this alignment. There were 69 amino acid differences between 

the feline and human proteins. Phylogenetic analysis of RFC sequences and related 

sequences including FeLV receptors indicated that our clones were likely to be feRFC 

(Figure 6). We examined mRNA expression by RT-PCR using total RNA extracted from 

various feline tissues. Feline RFC was detected in all feline tissues tested (Figure 7). The 

feline RFC transcript was detected in the CRFK feline kidney cell line (44), AH927 feline 

embryo fibroblasts (45), Fet-J feline T-cells, MCC feline large granular lymphoma (46), 

3201 (47) feline T-cell lymphoma, and MS4 feline B-cell lymphoma (48) (Figure 7). 

Determination of the amino acids in the Env protein that are required for the FeLV-E 

phenotype

We have previously shown that a subtle change in the VRA altered the interference patterns 

of the FeLV-E and FeLV-A phenotypes (18). In this study, a series of Env mutants (Figure 

8A) were tested for receptor usage using MDTF-feTHTR1 and MDTF-feRFC cells. FeLV-A

TG35-4 isolated in a cat infected with FeLV-E TG35-2 was used for the construction of 

mutants. As shown in Figure 7, FeLV-A (TG35-4) Env-pseudotype virus could infect 

MDTF-feTHTR1 cells, but not MDTF-feRFC cells. However, FeLV-E (TG35-2) Env-

pseudotype virus could infect MDTF-feRFC, but not MDTF-feTHTR1 cells. Chimeras 1 

and 2, which contained the VRA of TG35-2 and the backbone of TG35-4, could infect 

MDTF-feRFC, but not MDTF-feTHTR1 cells, while chimera 3, which comprised the VRA 

of TG35-4 and the backbone of TG35-2, could infect MDTF-feTHTR1, but not MDTF-

feRFC. These results indicated that the VRA conferred specific receptor usage to FeLV-A 

and FeLV-E.
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A further 12 Env mutants with substituted amino acids in the VRA with the TG35-4 

backbone were tested for infectivity in MDTF-feTHTR1 and MDTF-feRFC cells. Some 

mutants (mt2(K96P), mt4(i99T100L), mt5(R100H) and mt4,5) exhibited infectivity in both 

MDTF-feTHTR1 and MDTF-feRFC cells. The infectious unit measurements of mt2, mt4 

and mt5 were higher in MDTF-feTHTR1 than MDTF-feRFC cells, while the mt4,5 mutant 

infected MDTF-feTHTR1 and MDTF-feRFC cells to a similar extent. These Env mutants 

showed a dual tropic phenotype combining that of FeLV-A and FeLV-E. Thus, one or three 

amino acid substitutions in the VRA of FeLV-A (mt2 or mt4,5 mutants, respectively) 

effectively altered the FeLV-A-specific phenotype to a FeLV-A and FeLV-E dual phenotype. 

The mt2,3,4,5, mt2,3,4, mt3,4,5 and mt3,4 mutants demonstrated infectivity in MDTF-

feRFC cells, but not MDTF-feTHTR1, indicating that they were of the FeLV-E phenotype. 

The mt3,4 mutant, which was newly constructed in this study, had only three amino acid 

substitutions in the FeLV-A VRA. These results indicated that subtle mutation of the FeLV 

VRA alters the specificity of infection via the viral receptor, feTHTR1 or feRFC.

Isolation and construction of infectious FeLV provirus

We isolated the FeLV provirus from the genome of a cat TG35, in which the TG35-2 Env 

clone was detected. PCR primers designed in the U3 region of the 5 LTR and 3 LTR were ʹ ʹ

used for amplification of the provirus. The infectious provirus was reconstructed as 

described in the Materials and Methods and was termed TP2R clone. The amino acid 

sequence of Env from FeLV TP2R was almost the same as that of TG35-2 Env (Figure 9). 

Phylogenetic analysis classified FeLV TP2R as belonging to Genotype I/ Clade 1, which is 

often observed in Japanese FeLV strains (data not shown) (5). The LTRs of TP2R did not 

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237



contain tandem repeats in the enhancer. The 293T cells were transfected with FeLV TP2R 

and FeLV-A 61E (49) plasmids and the supernatants of the cells were prepared as a virus 

stock. AH927 cells infected with FeLV TP2R persistently produced the virus at high titer, as

well as FeLV-A 61E when the supernatant from the cells was measured using two methods: 

quantitative real-time RT-PCR and the determination of tissue culture infectious doses 

(TCID50) (Figure 10A). FeLV Env and Gag proteins were detected in AH927 cells infected 

with FeLV TP2R by western blot analysis and the molecular weight of FeLV TP2R Env was

slightly higher than that of FeLV-A 61E (Figure 10B). To determine the viral interference 

group of FeLV TP2R, AH927 cells infected with FeLV TP2R (AH927/ TP2R cells) were 

tested with the FeLV-A, -B, -C, -D and -E (TG35-2) Env-pseudotyped viruses. FeLV-A, 

FeLV-B, FeLV-C and FeLV-D Env-pseudotyped viruses could infect AH927/ TP2R cells, 

whereas FeLV-E(TG35-2) Env-pseudotyped virus could not. By contrast, FeLV-A, -B, -C, -

D and -E (TG35-2) Env-pseudotyped viruses could infect AH927 cells (Figure 10C). Next, 

to determine the receptor of FeLV TP2R, FeLV-A 61E and FeLV TP2R viruses were 

prepared from 293Lac cells that contained the LacZ-coding retroviral vector and viral 

infection of MDTF-feRFC and MDTF-feTHTR1 cells was analyzed. As shown in Figure 

10D, FeLV TP2R could infect MDTF-feRFC cells, but not MDTF or MDTF-feTHTR1 

cells. By contrast, FeLV-A 61E could infect MDTF-feTHTR1 cells, but not MDTF or 

MDTF-feRFC cells. These results demonstrated that FeLV TP2R could be classified as 

FeLV subgroup E and used feRFC as its receptor.

FeLV-E TP2R and FeLV-A 61E viruses were prepared from AH927 cells and viral 

replication in different cell lines (CRFK, Fet-J, MCC, 3201 and MS4 cells) was tested by 
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determining the viral copy number at 10 days post-infection. As shown in Figure 11, FeLV-

E TP2R and FeLV-A 61E viruses exhibited replication with high copy numbers in CRFK 

cells. In particular, the copy number of FeLV-A 61E was significantly higher than that of 

FeLV-E TP2R in CrFK cells (P<0.01). Both viruses could replicate in hematopoietic cells 

and FeLV-E TP2R virus exhibited significantly higher viral copy numbers compared with 

FeLV-A/61E in Fet-J feline T-cells, MCC feline large granular lymphoma cells and MS4 

cells (Figure 11). These results indicated that FeLV-E TP2R could replicate with high virus 

titer, similar to FeLV-A 61E, in cultured cell lines.

Discussion

FeLV is transmitted among domestic cats at high prevalence in Japan and shows high 

genetic diversity due to mutation or recombination of viral genes (4, 67). Mutation of the 

FeLV Env sequence, especially in the VRA, may lead to a change in the viral receptor 

interference group. Our previous study identified a novel FeLV interference group based on 

FeLV Env and proposed FeLV-E subgroup as a new FeLV interference group. In this study, 

we report that the receptor of FeLV-E is RFC, which is classified as SLC19A1. We mapped 

the receptor for FeLV-E to within region q22.3 of chromosome 21 using phenotypic 

screening of RH cell lines (Figure 1) and further analyses demonstrated that RFC confers 

susceptibility to FeLV-E infection. Expression of feline and human RFC cDNA, but not 

mouse RFC cDNA, in non-permissive MDTF cells rendered these cells susceptible to 

FeLV-E infection. Sequence similarity and phylogenetic analysis indicated that the feline 

receptor is an orthologue of huRFC and is most likely a folic acid transport protein. Further 

functional experiments clarified that it is a folic acid transporter.
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Analysis of the amino acid sequence encoded by feRFC revealed gene polymorphisms 

encoded by Ala or Gly at position 249 and both cDNAs can function as the FeLV-E receptor

(data not shown). Genetic variants in the huRFC gene locus have been found and are 

reported to be associated with differences in folate homeostasis (51). Two huRFCs were 

isolated from HEK293T cells and were found to contain polymorphisms when compared 

with the huRFC sequence with gene accession numbers AAC50180 and NM_194255, and 

both function as FeLV-E receptors (data not shown). The feRFC revealed high amino acid 

similarity (more than 90%) with huRFC and moRFC. Forced expression of huRFC 

rendered cells permissive for FeLV-E infection (Figure 2). However, despite high amino acid

similarity with mRFC, FeLV-E could not infect mouse cells (MDTF cells) or cells 

ectopically expressing mRFC (Figure 2 and Figure 3C). FeLV subgroup was classified by 

viral interference and its in vitro host range properties, and we demonstrated here that the 

FeLV-E subgroup required RFC (Figure 4B).

The utilization of transport proteins for cell entry is a common feature of 

gammaretroviruses, including extinct retroviruses (1, 52, 53). For example, ecotropic 

murine leukemia virus utilizes mCAT, the cationic amino acid transporter (54). To date, all 

known receptors for feline and murine gammaretroviruses have been multi-transmembrane 

receptors (4,55). The discovery of RFC is a receptor for FeLV-E follows this pattern of 

multi-pass membrane transport molecules acting as retroviral receptors. RFC was recently 

reported to be the receptor for murine endogenous retrovirus (56). Because some 

gammaretroviruses are known to share a receptor, such as GaLV, FeLV-B, KoRV-A and 

10A1-MuLV, which all use Pit1 (27, 28, 29, 57, 48), it is plausible that other known viruses 
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may also use RFC as a receptor.

FeLV-A is transmitted among domestic cats and novel subgroups of FeLV are usually 

generated in vivo. In other words, FeLV-A evolves into FeLV-B, FeLV-C, FeLV-D, FeLV-E 

and FeLV-T subgroups in FeLV-A infected cats, and each of these subgroups display altered 

tropisms because of their differential receptor use. The RFC transporter belongs to the 

SLC19 family of reduced folate transporters, of which there are three members: two 

thiamine transporters, THTR1 and THTR2, and RFC. It is known that huRFC is 

ubiquitously expressed in tissues (43), and as shown in Figure 7, feRFC is also ubiquitous in

feline tissues. FeLV-E utilizing RFC as its receptor may have the potential to be 

endogenized in cats, as seen for murine endogenous retrovirus (56). In experiments using 

Env mutants, the VRA region of FeLV-A and FeLV-E determined the specificity of viral 

receptors. A slight change in the amino acid sequence altered the tropism from FeLV-A to 

FeLV-E (Figure 8). 

In other words, receptor usage was changed from feTHTR1 to feRFC. The amino acid 

residues ETL in the VRA partly contribute to this specific shift to FeLV-E tropism. 

Interestingly, some Env mutants with point mutations in the VRA utilized both feTHTR1 

and feRFC. This indicates that the structure of the VRA of Env determines the interaction 

with the receptor, and this interaction leads to the specificity of viral infection. Although 

Env mutants, mt 3,4,5 and mt 4,5, infected MDTF cells expressing the receptor (Figure 8B),

these mutants did not infect AH927 cells (18). Therefore, this suggests that additional 

factors may influence viral entry and infection.

Since FeLV-E was detected in FeLV-A-vaccinated cats, this may indicate that selection 

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325



pressure may have led to the emergence of FeLV-E. Dual tropic FeLVs with different 

receptor usages have been reported (33, 59, 60), and dual tropic mutants that use both 

feTHTR1 and feRFC may occur as an intermediate phenotype, but this phenotype may not 

be sufficiently stable.  Koala retrovirus is known to use THTR1 and Pit1 as receptors (1). 

Therefore, KORV may evolve to a novel virus that uses RFC as a acceptor, due to the subtle 

mutation in the Env.  

Methotrexate (MTX) is a  chemotherapeutic agent and  immune system suppressant that  is

transported  by RFC (43,  51).  In  a  similar  way,  FeLV-E Env pseudotype virus  carrying

retroviral expression vector can be utilized in transduction via RFC. 

The FeLV-E TP2R provirus isolated from cat case TG35 was reconstructed as infectious

provirus. FeLV-E TP2R was characterized as belonging to the FeLV-E phenotype (Figure

10) and was able to preferentially replicate in hematopoietic cells compared with FeLV 61E

(Figure 11), which may be due to FeLV TP2R promoter activity or viral receptor usage.

In this study, we identified the cellular receptor for FeLV-E and isolated FeLV-E-phenotypic

provirus.  However,  the  prevalence  and  pathogenicity  of  FeLV-E  in  cats  remain  to  be

determined. Identification of the FeLV-E receptor may therefore help establish a strategy to

detect  FeLV-E  infection  in  domestic  cats.  This  study  provides  a  tool  for  further

investigations into FeLV-induced diseases.

Materials and Methods

Cells

 The CRFK feline kidney cell line (44), AH927 feline embryo fibroblasts (45), 3201 (47) 

feline T-cell lymphoma cells, HEK293T, and Mus dunni tail fibroblasts (MDTF) (61) were 
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cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

calf serum (FCS) and 1× penicillin/streptomycin. Fet-J feline T-cells (ATCC CRL-11967) 

and MCC feline large granular lymphoma cells (46) were cultured in RPMI1640 with 10% 

FCS and 1× penicillin/streptomycin. MS4 feline B-cell lymphoma cells (48) were cultured 

in RPMI1640 with 20% FCS and 1× penicillin/streptomycin. HeLa cells and RFC-null 

HeLa (R5) cells (40) (kindly provided by Dr. I. David Goldman (Albert Einstein College of 

Medicine)), were cultured in DMEM with 10% FCS and 1× penicillin/streptomycin. MDTF

and R5 cells expressing feline, human and mouse RFC, MDTF-feRFC, MDTF-huRFC, R5-

feRFC, R5-huRFC and R5-mRFC, MDTF cells expressing feline THTR1 (MDTF-

feTHTR1) (18), and R5 cells expressing feline THTR1 (R5-feTHTR1) were cultured in 

DMEM with 10% FCS and 1× penicillin/streptomycin and 0.6 mg/mL G418. PLAT-E and 

PLAT-A retroviral packaging cells (62), GPLac cells (5), an env-negative packaging cell 

line containing β-galactosidase (LacZ)-coding pMXs retroviral vector (5, 62), and 293Lac 

cells (63) containing LacZ-coding pMXs retroviral vector, were cultured in DMEM with 

10% FCS and 1× penicillin/streptomycin. 

Viruses

Feline retroviruses were prepared from the supernatants of AH927 cells infected with 

FeLV-B Gardner-Arnstein (64), FeLV-A 61E (49) and FeLV 33TGE2 (18), a replication-

competent virus (33TGE2) containing the TG35-2 env gene and the LTR, gag and pol genes

of FeLV-A clone 33 (41). Ampho-MuLV was prepared from the supernatants of NIH3T3 

cells infected with ampho-MuLV (18).

The retroviral vector pMXs encoding LacZ with FeLV-A 61E, FeLV-E TP2R and Ampho-
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MuLV were harvested from 293Lac cells infected with each  replication-competent virus.

Virus-containing cell supernatants were filtered through 0.22-µm-pore filters and stored as

viral stocks at 80°C until use.˗

Isolation and reconstruction of FeLV TP2R provirus

Genomic DNA was isolated from the blood of case TG35 (5) using the QIAamp DNA

Blood kit (QIAGEN, Venlo, Netherlands). The FeLV provirus was amplified by PCR using

KOD FX Neo (Toyobo, Osaka, Japan) with a primer pair designed to the FeLV 5  LTR andʹ

3 LTR:  Fe-227S  (5 -TTACCCAAGTATGTTCCCRTGAGATANAAGGAAGT-3 ,ʹ ʹ ʹ

nucleotide  position  67–101  of  FeLV-A  61E;  GenBank  M18247)  and  Fe-7R  (5 -ʹ

GTCAACTGGGGAGCCTGGAGAC-3 , nucleotide position 8174–8195 of FeLV-A 61E).ʹ

The resulting PCR products of  8–10 kbp were cloned into pCR-Blunt  II-TOPO vectors

(Invitrogen, Carlsbad, CA, USA) and sequenced by dye terminator cycle sequencing carried

out by Fasmac Co., Ltd., Kanagawa, Japan. Two clones, TG35LL1 and TP1, were isolated

and clone TG35LL2 was used for further experiments. The 5 LTR U3 and the 3  LTR R-U5ʹ ʹ

of the TG35LL2 clone were repaired based on the LTR sequences of TG35LL2 using the

In-Fusion HD Cloning Kit (Takara, Shiga, Japan). The 1.5 kb restriction fragment generated

by excision at the  NruI restriction enzyme site located upstream of the  pol gene and the

BspT104I restriction site located in the pol gene, was replaced with that of the TP1 clone.

The results indicated that the phenylalanine at amino acid position 384 of Pol was changed

to isoleucine, and the isoleucine at amino acid position 485 of Pol was changed to leucine.

The  reconstructed  provirus  was  designated  as  TP2R.  The  nucleotide  sequence  was

deposited in the GenBank database under accession number OOO.
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HEK293T cells were seeded in six-well plates one day prior to transfection and the TP2R

expression plasmid was transfected using Lipofectamine 3000 (Invitrogen). Two days post-

transfection, the supernatant was filtered through 0.22-µm-pore filters and was used to infect

AH927 cells in the presence of 10 µg/ml polybrene (Santa Cruz Biotechnology, Santa Cruz,

CA, USA). The cells were cultured for more than 14 days and the virus-containing cell

supernatant was  filtered  through 0.22-µm-pore filters and stored as a viral stock at 80°C˗

until use.

Screening of the G3 RH panel

The RH cell lines from the human/hamster G3 panel were initially obtained from Dr A. 

Dusty Miller (Fred Hutchinson Cancer Research Center, Seattle, WA, USA). The cells were 

maintained in α minimum essential medium with 10% fetal bovine serum (FBS), 1× 

penicillin/streptomycin (Wako Pure Chemical Industries, Osaka, Japan) and 1× 

hypoxanthine-aminopterin-thymidine (HAT; 100 μM hypoxanthine, 0.4 μM aminopterin and 

16 μM thymidine; Life Technologies, CA) (36). A total of 79 clones were available, of which

75 were tested in our experiment. Prior to the infection assay, the cells were weaned from 

HAT by growing in HAT medium for 1 week, then for 2 weeks in HT medium lacking 

aminopterin, and then for 1 week in non-supplemented medium (38).

The RH cell lines were plated at 104 cells per well in a 24-well plate and exposed to FeLV-E

pseudotype virus carrying LacZ (33TGE2-LacZ) on the next day. Two days after infection,

the cells were stained with X-gal (5-bromo-4-chloro-indolyl-β-D-galactopyranoside; Wako

Pure  Chemical  Industries).  Viral  titers  were  determined  as  infectious  units  (IU)/ml  by

counting the blue-stained nuclei.
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The 75 hybrid cell lines were RH1 to RH83, omitting RH36, RH38, RH48, RH49, RH69,

RH71, RH76 and RH78. The viral titers for the cell lines (IU/ml) were 0, 0, 0, 0.70, 0, 1.54,

0, 0, 0, 0, 1.48, 0, 0, 4.92, 0.85, 0.95, 0, 1.49, 0, 0, 0, 2.50, 1.11, 0, 0, 1.63, 2.00, 0, 1.79, 0,

0, 0, 0, 0, 0, 0, 4.24, 0, 4.16, 0, 0, 5.37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.80, 0, 0, 3.41, 0, 0,

0, 0.48, 0, 0, 3.28, 0, 3.46, 0.48, 3.17, 0, 3.47, 0.18, 0, 0 and 0, respectively. The cell lines

had  been  previously  genotyped  using  235,789  markers  by  array  comparative  genomic

hybridization (37,38). 

Human markers were binned into 0 or 1 extra copies (diploid or triploid) using coordinates

from  the  GRCh37/hg19  genome  assembly  (https://genome.ucsc.edu).  Markers  were

discarded if they  possessed with  identical  the same  genotype vectorgenotypes across the

clones,  were  or  present in four or fewer clones, or  present  in all clones., were discarded,

leaving a A total of 54,560 markers remained. The phenotype used for mapping in each RH

clone was log10 of the IU/ml value plus one. The LOD scores were computed and genome-

wide significance levels were set by permutation as described previously (38). A 5% family-

wise error rate (FWER) was used as the threshold for genome-wide significance.

Isolation of RFC and construction of an RFC expression vector

Total RNA was isolated from feline PBMCs (65) and HEK293T cells using RNAiso Plus

(Takara),  and  the  extracted  RNA  was  treated  with  recombinant  DNase  I  (RNase-free)

(Takara).  cDNA was  synthesized  with  a  PrimeScript  II  first-strand cDNA synthesis  kit

(Takara) using oligo(dT) primers. FeRFC cDNA was amplified by PCR using the primers

fRFC-1S  (CCGCCCGCCCGCCCGGGTACCTGGGGAG)  and  fRFC-1R
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(GCCAGCCCGCAGTGCCCCAGCAGGCAGCGGGAT)  and  was  then  cloned  into  pCR-

Blunt II-TOPO vectors (Invitrogen) and sequenced. FeRFC and huRFC were amplified by

PCR  using  the  primers  fRFCEI  (5 -ʹ

GCGAATTCACAGCAAGCATGGTGCCCTCCGGCCAGGTGGCGG-3 )  and  fRFCBIIʹ

(5 -ʹ

GGAGATCTTCACAGGTCTTCTTCAGAGATCAGTTTCTGTTCGGCTTTGGCCTCGG

GCTGCTGGTTCTGTT-3 ;  underlining indicates the myc tag sequence)  for feRFC, andʹ

huRFC-S (5 -CGCTCGAGATGGTGCCCTCCAGCCCAGCGGTGGAG-3 ) and huRFC-Rʹ ʹ

(5 -ʹ

CGAGATCTTCACAGGTCTTCTTCAGAGATCAGTTTCTGTTCCTGGTTCACATTCTG

AACACCGT-3 ; underlining indicates the myc tag sequence) for human RFC. ʹ

Mouse RFC (mRFC) cDNA (clone H4025H01) was obtained from Riken BRC (National

Research  and  Development  Institute  of  RIKEN  Bioresource  Center).  Mouse  RFC was

amplified  by  PCR  using  a  specific  primers  pair:  mRFC-F  (5 -ʹ

CTGGGCACCATGGTGCCCACTGGCCAGGTGGCAG-3 )  and  mRFC-R  (5 -ʹ ʹ

AGAGATCTAGATCTTCACAGATCCTCTTCTGAGATGAGTTTTTGTTCCTGGTTCAC

ATTCTGAACACCGTCGCTTGGAAGACA-3 ;  underlining  indicates  the  myc  tagʹ

sequence).

PCR  reactions  were  conducted  with  KOD  FX  Neo  DNA  polymerase  (Toyobo).  PCR

products were digested with  EcoRI and BglII for feRFC and mRFC, and with  XhoI and

BglII for huRFC, and then each fragment was inserted into pMSCVneo retroviral vector

(Takara). 
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Generation of cell lines 

The feRFC, huRFC and feTHTR1(26) retroviral expression vectors were transfected into

PLAT-E (ecotropic  MuLV packaging)  cells  or  PLAT-A (amphotropic  MuLV packaging)

cells (58) using Lipofectamine 3000 (Invitrogen). The pMSCV-neo empty vector was used

as a control. Two days post-transfection, supernatants were collected and filtered through a

0.22-μm filter, and 1 ml of the filtrate was used to infect MDTF and RFC-null HeLa (R5)

cells which were then seeded into 12-well plates. Polybrene, at a concentration of 8 μg/μl,

was added to the infection. Cells were maintained in complete medium containing G418 at

a concentration of 0.6 mg/ml.

Preparation of LacZ-carrying Env-pseudotyped viruses

GPLac cells, an env-negative packaging cell line containing a LacZ-coding retroviral 

vector, were seeded in 6-well plates one day prior to transfection and were transfected with 

env expression plasmids to produce LacZ-carrying Env-pseudotyped virus. After 48 h, cell 

culture supernatants were collected, filtered through a 0.22-μm filter and stored at 80°C. ˗

Env expression plasmids for pseudotyped virus preparations: pFUss clone33 (FeLV-A 

Clone 33 env), pFUss GB (FeLV-B Gardner–Arnstein env), pFUss SC (FeLV-C sarma 

env), pFUss Ty2.0 (FeLV-D Ty26 env), pFUss TG35-2 (FeLV-E TG35-2 env), pFUss 

TG35-4 (FeLV-A TG35-4 env), pFUss DC10 (ERV-DC10 env) and pFUss 4070A 

(amphotropic MuLV 4070A env), have been described previously (17,18).

Env expression plasmids for the mutant FeLV env genes, constructed in either TG35-2 or 

TG35-4 env were: chimera 1, chimera 2, chimera 3, mt1, mt2, mt3, mt4, mt5, mt6, 
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mt2,3,4,5, mt2,3,4, mt3,4,5, mt2,3 and mt4,5, as previously described (18). In this 

experiment, the env expression plasmid, mutant mt3,4, was newly generated by site-

directed mutagenesis with Fe-602S 

(CTAGCAATGTAAAACATGAAACCCTCGCTCGTTATCC) and its complimentary 

sequence in the pFUss vector. The sequences of the Env mutants are shown in Figure 8A.

Viral infection and titration by a LacZ assay. Target cells seeded in 24-well plates were 

inoculated with 250 µl of Env-pseudotyped viruses and cultured in medium containing 10 

µg/ml of polybrene. After 48 h, cells were stained with X-Gal (5-bromo-4-chloro-3-indolyl-

β-D-galactopyranoside), and single-cycle infectivity was titrated by counting blue-stained 

nuclei under the microscope.

Detection of RFC by RT-PCR 

Feline  tissues  were  obtained  from  a  specific-pathogen-free  (SPF)  cat  (Kyoto-SPF1)

described in our previous study (65). Total RNA was extracted from the tissues with an

RNAiso Plus kit (Takara) and from cell lines using miRNeasy (QIAGEN) and recombinant

DNase I. cDNA was synthesized with the PrimeScript II first-strand cDNA synthesis kit

(Takara). PCR for detecting RFC in the feline tissues and cell lines was performed using

KOD  One  PCR  Master  Mix  -Blue-  (Toyobo)  with  primer  set  Fe-626S  (5 -ʹ

CACCGACTACCTGCGCTACA-3 )  and  Fe-601R (5 -CGTAGTTGACCGTGGAGAAGG-ʹ ʹ

3 ). Thermal cycling conditions were 35 cycles of 98°C for 10 s, 60°C for 5 s and 68°C for 1ʹ

s. PCR for detecting RFC in HeLa, R5, R5-huRFC and R5-feRFC cells was performed

using  the  KOD  One  PCR  Master  Mix  -Blue-  (Toyobo)  with  primer  set  Fe-649S  (5 -ʹ

AGAGCTTCATCACCCCCTAC-3 ) and Fe-625R (5 -GCTGTAGAAGAGCTCCATGA-3 ).ʹ ʹ ʹ
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Thermal cycling conditions were 35 cycles of 98°C for 10 s, 55°C for 5 s and 68°C for 1 s.

PCR for detecting β-actin was performed using the same master mix kit and a previously

reported primer set (17). Thermal cycling conditions were 30 cycles of 98°C for 10 s, 52°C

for 5 s and 68°C for 1 s.

Phylogenetic analysis

A  phylogenetic  tree  was  constructed  using  the  following  sequences:  human  RFC

(AAC50180 and NM_194255), mouse RFC (NP_112473.1), human THTR1 (NP_008927),

feline THTR1 (ABD61002.1),  human THTR2 (NP_079519), feline THTR2 (AFV75033),

human  FLVCR1  (NP_054772),  feline  FLVCR1  (NP_001009302),  porcine  FLVCR2

(NP_001136312),  human FLVCR2 (NP_060261),  human Pit1 (NP_005406),  feline  Pit1

(NP_001009840), human Pit2 (NP_006740) and feline Pit2 (NP_001009839). The MEGA7

program package was  used  for  the  phylogenetic  analysis  (66).  The alignments  for  each

phylogenetic tree were conducted using MUSCLE software (67). The phylogenetic tree was

constructed using 341 positions,  the  neighbor-joining  method (68)  and the  JTT matrix-

based method (69), and the robustness of each tree was evaluated by the bootstrap method

(1000 times). 

Viral titration

AH927 cells were seeded into 24-well plates one day prior to infection. Then, 250 µl of

diluted  virus  stock  (10-fold  serial  dilutions)  was  added  in  the  presence  of  10  µg/ml

polybrene in quadruplicate. Eight hours post-infection, 250 µl of medium was added to each

well.  Three  days  post-infection,  the  cells  were  fixed  with  3.7% formaldehyde  solution,
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permeabilized with 0.2% Triton-X 100 and then blocked with 1% BSA. The cells were

stained overnight at 4°C with a FeLV Gag p27 antibody, then stained for one hour at room

temperature with horseradish peroxidase (HRP)-conjugated anti-mouse IgG antibody (Cell

Signaling,  Danvers,  MA,  USA).  The  cells  were  added  with  DAB-peroxidase  substrate

solution (Nacalai Tesque, Kyoto, Japan), and colonies of brown cells were counted under a

microscope.  The  viral  titer  was  calculated  as  the  50%  tissue  culture  infectious  dose

(TCID50) according to the Reed–Muench method (70).

Quantification of viral RNA by quantitative real-time RT-PCR

Fet-J, MCC, MS4 and 3201 cells were seeded at 4 × 104 cells/well into 24-well plates and

infected with 2 × 103 TCID50 of virus stock in the presence of 10 µg/ml polybrene in a total

volume of 500 µl. Twenty-four hours post-infection, the culture medium was changed and

the  cells  were  cultured  for  10 days.  Then the  culture  supernatants  were  collected  after

centrifugation at 300  g at 4°C for 5 min.

The culture supernatants (200 µl) were treated for 40 min at 37°C with 10 mM of MgCl2

and 20 µg/mL of DNaseI, and total RNA was extracted using the High Pure Viral RNA kit

(Roche, Basel, Switzerland). cDNA was generated from 8 µl of RNA using the PrimeScript

II 1st Strand cDNA Synthesis kit (Takara) with random 6 mers in a total volume of 20 µl.

For  real-time RT-PCR of  FeLV 61E,  a  probe (FeLV_U3-probe)  and primers  (Forward:

FeLV_U3-exo-f,  Reverse:  FeLV_U3-exo-r)  against  FeLV  LTR  were  used  as  previously

reported by Tandon et al. (71). For real-time RT-PCR of FeLV TP2R, a reverse primer was

designed (FeLV_U3-exo-r2: 5 -TTATAGCAAAAAGCGCGGG-3 ). The probe was labelledʹ ʹ

at the 5 -end with the fluorescent reporter dye FAM (6-carboxyfluorescein) and at the 3 -endʹ ʹ
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with the fluorescent quencher dye TAMRA (5,(6) carboxytetramethylrhod-amine). Then, 2

µl of cDNA were amplified in a total volume of 25 µl using Premix Ex Taq (Takara) with a

final concentration of 300 nM of forward primer, 300 nM of reverse primer and 200 nM of

probe.  Reactions  were  performed  using  CFX96  Touch  (Bio-Rad,  Hercules,  CA,  USA).

Thermal cycling conditions were 95°C for 30 s, then 45 cycles of 95°C for 5 s and 60°C for

30 s. Plasmid p61E (a gift from Dr. Edward Hoover), which contains the full-length FeLV-A

61E  provirus  subcloned  into  pUC18,  and  TP2R,  were  used  as  standards  for  PCR

quantification.  The  plasmid  standard  copy  number  was  calculated  from optical  density

measurements at 260 nm. A 10-fold dilution series of the plasmid standard template DNA

was made in 10 mM Tris-Cl, pH 8.5. Quantification of the sample amplicon was achieved

by comparing the threshold cycle value of the sample with the standard curve of the co-

amplified standard template DNA.

Western blot analysis

Cell lysates were prepared by resuspending the cells in lysis buffer (20 mM Tris-HCl [pH

7.5], 150 mM NaCl, 10% glycerol, 1% Triton X-100, 2 mM EDTA, 1 mM Na3VO4 and 1

μg/ml each of aprotinin and leupeptin) followed by incubation on ice for 20 min. Insoluble

components  were  removed  by  centrifugation,  and  the  protein  concentrations  were

determined using a protein assay kit (Bio-Rad). Proteins were separated by electrophoresis

on 7.5% or 10%–20% gradient Tris-glycine mini gels (Oriental Instruments, Kanagawa,

Japan) under reducing conditions (3.5 × 10 2˗  M 2-mercaptoethanol) and then transferred

electrophoretically to nitrocellulose filters for western blotting using goat anti-FeLV gp70
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and goat anti-FeLV p27 primary antibodies (NCI-Frederick), and a HRP-conjugated anti-

goat IgG secondary antibody (Cell Signaling). Detected proteins were visualized using 20

LumiGLO (Cell Signaling).

Ethical approval

Animal studies were conducted following the guidelines for the Care and Use of Laboratory

Animals of the Ministry of Education, Culture, Sports, Science and Technology, Japan. All

experiments were approved by the Genetic Modification Safety Committee of Yamaguchi

University, Yamaguchi, Japan.

Accession numbers

The nucleotide sequences reported in this study were deposited in the DDBJ, EMBLE and

GenBank databases under accession numbers LC223819 and LC223820.
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Figure Legends

Figure 1.  Mapping of a locus for FeLV-E infectivity.  (A)  A genome-significant locus

resides on chromosome 21. LOD, logarithm of the odds. (B) The locus is located near the

telomere on the long arm of chromosome 21 at 21q22.3. (C) log10(IU+1) for RH clones

containing  the peak marker  (genotype = 1)  and for  clones  without  (genotype = 0).  IU,

infectious units/ml supernatant. (D) The peak marker is close to the RFC gene (red).

Figure 2. Infection of cell lines by LacZ-carrying Env-pseudotyped viruses. Env-

pseudotyped viruses of FeLV-A (FeLV-A Clone33), FeLV-B (FeLV-B Gardner–Arnstein), 

FeLV-C (FeLV-C Sarma), FeLV-D (FeLV-D Ty26), FeLV-E (TG35-2), ERV-DC10 and 

ampho-MuLV (MuLV 4070A) were tested in the cell lines, HEK293T, MDTF, MDTF 
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expressing human RFC (MDTF-huRFC), and MDTF expressing feline RFC (MDTF-

feRFC) shown on the x axis. The y axis indicates the infectious units using the log10 of β-

galactosidase (LacZ) positive cells per ml of supernatant. Data were obtained from three 

independent experiments in triplicate and represent the averages of nine results and the 

standard deviation.

Figure 3. Infection of cell lines by LacZ-carrying Env-pseudotyped viruses. (A) The 

expression of RFC was tested in the cell lines, HeLa, HeLa-R5 (R5), R5 expressing human 

RFC (R5-huRFC), R5 expressing feline RFC (R5-feRFC) and R5 expressing mouse RFC 

(R5-mRFC) by RT-PCR. β-actin was used as a control. (B) The Env-pseudotyped viruses of

FeLV-A (FeLV-A Clone33), FeLV-B (FeLV-B/Gardner–Arnstein), FeLV-C (FeLV-C 

Sarma), FeLV-D (FeLV-D Ty26) and FeLV-E (TG35-2) viruses were tested for infection in 

the cell lines shown on the x axis. (C) The Env-pseudotyped virus of FeLV-E (TG35-2) was

tested in the cell lines shown on the x axis. The y axis indicates the infection units by log10 

of β-galactosidase (LacZ) cell positives per ml of supernatant. Data represent the averages 

from three independent experiments with the standard deviation shown.

Figure 4. Infection and interference assay of LacZ-carrying Env-pseudotyped viruses. 

(A) The Env-pseudotyped viruses of FeLV-A Clone 33, FeLV-A Glasgow-1, FeLV-A 

(TG35-4), FeLV-B (FeLV-B Gardner–Arnstein) and FeLV-E (TG35-2) were tested for 

infection in R5-expressing feTHTR1 cells (R5-feTHTR1). (B) The Env-pseudotyped FeLV-

B (FeLV-B/Gardner–Arnstein) and FeLV-E (TG35-2) viruses were tested for infection in 

the R5 cells expressing feline RFC (R5-feRFC) and R5-feRFC cells pre-infected with FeLV 
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33TGE2 (R5-feRFC/33TGE2). The infection units were indicated by log10 of β-

galactosidase (LacZ) cell positives per ml of supernatant. Data represent the averages from 

three independent experiments with the standard deviation shown.

Figure 5. Alignment of the predicted amino acid sequences of feRFC and huRFC. The 

alignment in single letter amino acid code was conducted using MUSCLE software (67). 

Dots indicate conserved amino acid residues, and positions where there are differences 

between feline and human RFC sequences are shown as letters. A hyphen (–) indicates a 

gap in the amino acid sequence. Transmembrane domains (gray boxes) based on huRFC 

were predicted using the constrained consensus topology prediction (72).

Figure 6. Phylogenetic analysis of RFC and related proteins with FeLV receptors. A 

neighbor-joining tree was generated from the amino acid sequences of human RFC, feline 

RFC and mouse RFC with proteins indicated from the FeLV-A, FeLV-B and FeLV-C 

receptors. The scale bar indicates evolutionary distance in amino acid substitutions per site.

Figure 7. RFC expression in feline tissues and feline cell lines. Detection of RFC by RT-

PCR using total RNA isolated from the indicated tissues and cell lines (AH927, CRFK, Fet-

J, MCC, 3201 and MS4). A representative 2% agarose gel with electrophoresed PCR 

product (133 bp) is shown. The gels were stained by ethidium bromide. RT(+) and RT( ) ˗

controls were included during cDNA synthesis.

Figure 8. Determination of the amino acids in the Env protein that are required for 

FeLV-E receptor usage. (A) The indicated mutant FeLV env genes, constructed in either 
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the TG35-2 (FeLV-E) or TG35-4 (FeLV-A) env gene, were generated with site-directed 

mutagenesis or recombination of the VRA (18). The mutant FeLV env gene, mt3,4, was 

newly generated in this study. The env sequences other than the VRA, derived from TG35-2

or TG35-4 env, are referenced on the right side. (B) The indicated Env-pseudotyped viruses 

were tested for infection in the MDTF, MDTF expressing feline THTR1 (MDTF-feTHTR1)

and MDTF expressing feline RFC (MDTF-feRFC) cell lines. The infection units were 

indicated by log10 of β-galactosidase (LacZ) cell positives per ml of supernatant. Data 

represent the averages from three independent experiments with the standard deviation 

shown.

Figure 9. Alignment of the amino acid sequence of FeLV Env. Surface subunit (SU), 

transmembrane subunit (TM), receptor-binding domain (RBD), proline-rich region (PRR) 

and C domain of the Env protein are shown for FeLV-A 61E (49), FeLV-A clone 33 (41) 

and FeLV TG35-2 env clone (18) compared with FeLV TP2R. The variable regions, VRA 

and VRB, are also shown. Dots indicate identical residues, and dashes indicate spaces that 

were introduced for the amino acid alignment. Boxes indicate the positions of the PCR 

primers (18). The Env sequences were aligned with the Genetyx program (Genetyx 

Corporation, Tokyo, Japan).

Figure 10. Characterization of FeLV-E TP2R. (A) Viral copies and titers of FeLV-A 

61E and FeLV TP2R harvested from the supernatants of FeLV-infected AH927 cells were 

shown as copies per ml and 50% tissue culture infectious doses (TCID50) per ml. (B) FeLV 

proteins were detected in AH927 cells infected with FeLV-A 61E (61E) or FeLV TP2R 

(TP2R) using anti-FeLV gp70 Env and anti-FeLV p27 Gag antibodies by western blot 
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analysis. (C) Interference assay of FeLV TP2R. Env-pseudotyped viruses of FeLV-A 

(FeLV-A clone 33), FeLV-B (FeLV-B Gardner-Arnstein), FeLV-C (FeLV-C Sarma), FeLV-

D (FeLV-D Ty26) and FeLV-E(TG35-2) were tested for infection in AH927 cells and 

AH927 cells pre-infected with FeLV TP2R (AH927/TP2R). (D) The replication-competent 

viruses of FeLV-A 61E, FeLV TP2R and ampho-MuLV carrying LacZ were tested for 

infection in MDTF, MDTF-feTHTR1 and MDTF-feRFC cells. The infection units by log10

of β-galactosidase (LacZ) cell positives per ml of supernatant. Data represent the averages 

from three independent experiments with the standard deviation shown.

Figure 11. FeLV replication in different cell lines. The cells (CRFK, Fet-J, MCC, 3201 

and MS4) were infected with 2 × 103 TCID50 of FeLV TP2R or FeLV-A 61E virus. The viral

copy number was measured in the culture supernatants at 10 days post-infection by 

quantitative real-time RT-PCR. The y axis indicates the viral copy number. ** P < 0.01, *

P < 0.05 (Student’s t test). Data represent the averages from three independent experiments 

with the standard deviation shown.
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