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ABSTRACT OF THE DISSERTATION

The Anisotropic Bernstein Problem

By

Yang Yang
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Associate Professor Connor Mooney, Chair

In this thesis we discuss the Bernstein problem for parametric elliptic functionals. In the

first part, we give a proof by foliation that the cones over Sk×Sl minimize parametric elliptic

functionals for each k, l ≥ 1. We also analyze the behavior at infinity of the leaves in the

foliations. This analysis motivates conjectures related to the existence and growth rates

of nonlinear entire solutions to equations of minimal surface type that arise in the study

of such functionals. In the second part we construct nonlinear entire anisotropic minimal

graphs over R4, which completes the solution to the anisotropic Bernstein problem. The

examples we construct have a variety of growth rates, and our approach both generalizes to

higher dimensions and recovers and elucidates known examples of nonlinear entire minimal

graphs over Rn, n ≥ 8. The first two parts are joint works with C. Mooney. In the final

part, we discuss the work of Ecker-Huisken about a Bernstein theorem for the minimal

surface equation with controlled growth condition, and also its possible generalization to the

anisotropic case.
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Chapter 1

Introduction

A well-known theorem of Bernstein says that entire minimal graphs in R3 are planes. Build-

ing on work of Fleming [13], De Giorgi [7], and Almgren [1], Simons [31] extended this result

to minimal graphs in Rn+1 for n ≤ 7. In contrast, there are nonlinear entire solutions to

the minimal surface equation in dimension n ≥ 8 due to Bombieri-De Giorgi-Giusti [2] and

Simon [29].

In this thesis, we study the Bernstein problem for a more general class of parametric elliptic

functionals. These assign to an oriented hypersurface Σ ∈ Rn+1 the value

AΦ :=

ˆ
Σ

Φ(ν)dA, (1.1)

where ν is the unit normal to Σ, and Φ is a uniformly elliptic integrand, namely, a one-

homogeneous function on Rn+1 that is positive and smooth on Sn, and satisfies in addition

that {Φ < 1} is uniformly convex. For example, the case Φ = 1 on Sn corresponds to the

area functional. Such functionals have attracted recent attention both for their applied and

theoretical interest ([5, 22, 23, 21, 24, 9, 11, 12] ). In particular, they arise in models of

crystal surfaces and in Finsler geometry, and they present important technical challenges
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not present for the area functional (especially due to the lack of a monotonicity formula),

often leading to more general and illuminating proofs even in the area case.

Almgren-Schoen-Simon proved that the (n−2)-dimensional Hausdorff measure of the singular

set for a minimizer of (1.1) vanishes [25]. In particular, minimizers are smooth in the case

n = 2. Morgan later showed that the cone over Sk × Sk in R2k+2 minimizes a parametric

elliptic functional for each k ≥ 1, by constructing a calibration [20]. Thus, there exist

singular minimizers of parametric elliptic functionals when n ≥ 3.

The anisotropic Bernstein problem asks whether critical points of AΦ which are graphs of

functions defined on all of Rn are necessarily hyperplanes. In the case of the area functional

Φ(x) = |x|, the answer is positive if and only if n ≤ 7. For general uniformly elliptic

integrands, it is known that the answer is positive in dimension n = 2 by work of Jenkins

[15] and in dimension n = 3 by work of Simon [28]. It is also known by recent work of

Mooney [18] that the answer is negative in dimensions n ≥ 6. This left open the cases

n = 4, 5.

The thesis is organized as follows. The second chapter introduces the work of the author

and Mooney, proving the cones over Sk×Sl minimize parametric elliptic functionals for each

k, l ≥ 1, by constructing foliations by minimizers in the spirit of [2]. To our knowledge,

this is the first application of the foliation approach for integrands other than area (that is,

Φ|Sn = 1).

Chapter 3 is from the paper of the author and Mooney. We discuss the recent solution of

the anisotropic Bernstein problem (the answer is yes if and only if n < 4). We construct

nonlinear entire anisotropic minimal graphs over R4, and the examples we construct have a

variety of growth rates. Our methods both generalize to higher dimensions and shed light

on known examples in the case of the area functional.

In Chapter 4, we introduce a theorem of Ecker-Huisken [10], saying that in the area funca-
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tional case, Bernstein theorem holds with controlled growth assumption, and we discuss its

possible generalization in the parametric elliptic functional case.

3



Chapter 2

A proof by foliation that Lawson’s

cones are AΦ-minimizing

2.1 Introduction

A well-known result in the theory of minimal surfaces is that area-minimizing hypersurfaces

in Rn+1 are smooth when n ≤ 6, but can have singularities in higher dimensions. An impor-

tant tool in the theory is the monotonicity formula, which reduces the regularity problem

to establishing the existence or non-existence of singular area-minimizing hypercones. Such

cones were ruled out by Simons in the case n ≤ 6 [31]. On the other hand, Bombieri-De

Giorgi-Giusti proved that the cone over S3 × S3 in R8 is area-minimizing [2].

In this chapter we consider the regularity problem for minimizers of parametric elliptic

functionals, which generalize the area functional. These assign to an oriented hypersurface

Σ ⊂ Rn+1 the value

AΦ(Σ) :=

ˆ
Σ

Φ(ν) dA, (2.1)
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where ν is the unit normal to Σ, and Φ is a one-homogeneous function on Rn+1 that is

positive and C2 on Sn, and has uniformly convex sub-level sets. Functionals of the form

(2.1) have attracted recent attention for their applied and theoretical interest ([23], [9]). In

particular, they arise in models of crystal surfaces and in Finsler geometry, and the lack of

a monotonicity formula for critical points of (2.1) presents interesting technical challenges.

Almgren-Schoen-Simon proved that the (n−2)-dimensional Hausdorff measure of the singular

set for a minimizer of (2.1) vanishes [25]. In particular, minimizers are smooth in the case

n = 2. Morgan later showed that the cone over Sk × Sk in R2k+2 minimizes a parametric

elliptic functional for each k ≥ 1, by constructing a calibration [20]. Thus, there exist

singular minimizers of parametric elliptic functionals when n ≥ 3.

The purpose of this chapter is to prove that the cones over Sk × Sl minimize parametric

elliptic functionals for each k, l ≥ 1, by constructing foliations by minimizers in the spirit of

[2]. To our knowledge, this is the first application of the foliation approach for integrands

other than area (that is, Φ|Sn = 1).

Remark 2.1.1. The examples here and in [20] show that the best regularity result possible

for minimizers of (2.1) is that the singular set has e.g. locally bounded (n− 3)-dimensional

Hausdorff measure. It remains an interesting open problem to determine the maximum

possible dimension of the singular set for a minimizer of (2.1). See e.g. [32], pg. 686, for

further discussion of this problem.

The approach of constructing a foliation by minimizers has several advantages. The first is

that it removes some of the guesswork involved in constructing a calibration. Indeed, the

approach involves solving a nonlinear ODE, which we show is possible provided the integrand

Φ satisfies analytic conditions that are straightforward to check (see Lemma 2.2.1). The

second is that the behavior at infinity of a leaf in the foliation gives quantitative information

that is useful in the study of the closely related Bernstein problem for graphical minimizers.

When a critical point of (2.1) can be written as the graph of a function u, we say that u

5



solves an equation of minimal surface type. An interesting question is:

Question 2.1.2. Are entire solutions to equations of minimal surface type in Rn necessarily

linear?

For the area functional, the answer to Question 2.1.2 is “yes” if n ≤ 7 ([13], [7], [1], [31]) and

“no” if n ≥ 8 ([2]). For general parametric elliptic functionals, the answer is “yes” when n ≤ 3

([15], [28]) and was recently shown to be “no” when n ≥ 4 ([19]), and its complete resolution

will be further discussed in Chapter 3. Our main theorem in this chapter is an important first

step twoards the resolution of the anisotropic Bernstein problem. More precisely, it suggests

the existence of nonlinear entire solutions to equations of minimal surface type in dimension

n ≥ 4 that grow sub-quadratically at infinity (see Conjecture 2.3.1 and the discussion after

its statement).

For future reference we state our main result of this chapter here. We fix k, l ≥ 1, we let

x ∈ Rk+1 and y ∈ Rl+1, and we define the Lawson cones Ckl over Sk × Sl by

Ckl := {|x| = |y|} ⊂ Rk+l+2.

Theorem 2.1.3. For each k, l ≥ 1, there exist parametric elliptic functionals AΦ such that

Φ is analytic away from the origin, and each side of the cone Ckl is foliated by analytic

minimizers of AΦ. In particular, Ckl minimizes AΦ.

Remark 2.1.4. The foliation is generated by dilations of a pair of critical points of AΦ, each

of which lies on one side of Ckl and is asymptotic to Ckl at infinity. We discuss the precise

asymptotic behavior in Section 2.3.

Remark 2.1.5. The AΦ-minimality of Ckl is new in the cases k ̸= l and k+ l ≤ 5, or k+ l = 6

and min{k, l} = 1. The cases k = l ≤ 2 were treated in [20], and the remaining examples

(k + l = 6 and min{k, l} ≥ 2 or k + l ≥ 7) are known to minimize area, up to making an

affine transformation ([16]).
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Remark 2.1.6. A proof of minimality by foliation gives rise to a proof by calibration through

the following observation: If we denote by ν(z) the unit normal to the leaf that passes

through z, then the vector field ∇Φ(ν) is a calibration on Rk+l+2. For a discussion of this

connection in the area case see e.g. [6]. Indeed, it is divergence-free by the minimality of the

leaves, and satisfies

∇Φ(ν) · w ≤ Φ(w)

for all w ∈ Sk+l+1 and at all points x. The inequality follows from the convexity of the

hypersurface ∇Φ(Sk+l+1) and the fact that ∇Φ(w) · w = Φ(w).

The chapter is organized as follows. In Section 2.2 we prove Theorem 2.1.3. We reduce

the problem to the careful analysis of a certain nonlinear second-order ODE, using the

symmetries of Ckl. More precisely, we choose integrands that (like Ckl) are invariant under

rotations in x and y, and we search for critical points Σkl of (2.1) that share these symmetries

and can be written in the form {|y| = σ(|x|)} or {|x| = σ(|y|)} for some function σ of one

variable. The condition that Σkl is a critical point gives rise to a nonlinear second-order

ODE for σ. The heart of our construction is Lemma 2.2.1, which gives conditions on the

integrand that guarantee the existence of solutions to the ODE with the desired properties.

In particular, after a change of variable we can view the ODE as a nonlinear first-order

autonomous system. The conditions we impose on the integrand guarantee that the solution

trajectory is trapped in a region of the plane that corresponds to a function σ that defines

a foliation leaf Σkl which is asymptotic to Ckl, and approaches Ckl at a precise rate. We

remark that our approach quickly recovers the foliation by area-minimizing hypersurfaces of

each side of the Simons cone Ckk when k ≥ 3 (see Remark 2.2.4). Finally, in Section 2.3 we

discuss the behavior at infinity of the leaves in the foliation given by Theorem 2.1.3, and the

implications for Question 2.1.2. In particular, we state conjectures concerning the existence

and growth rates of nonlinear global solutions to equations of minimal surface type in Rk+l+2

for each k, l ≥ 1, and we compare these conjectures with what is known about the minimal

7



surface equation.

2.2 Proof of Theorem 2.1.3

2.2.1 Integrand Notation

We choose integrands Φ that depend only on |x| and |y|. We define them by a pair of

one-variable functions ϕ and ψ as follows:

Φ(x, y) =


|y|ϕ

(
|x|
|y|

)
, |y| ≥ |x|

|x|ψ
(

|y|
|x|

)
, |x| > |y|.

(2.2)

The functions ϕ and ψ will be chosen to be positive, smooth, even, and locally uniformly

convex on R.

2.2.2 Foliation Leaf Notation

Having fixed an appropriate choice of Φ, we will show that there exists a critical point of AΦ

of the form

Σkl = {|y| = σ(|x|)} ⊂ {|y| > |x|}, (2.3)

where σ is smooth, even, convex, asymptotic to |.|, and |σ′| < 1. The dilations of Σkl are

then minimizers of AΦ, and they foliate one side of Ckl (namely {|y| > |x|}), see Figure 2.1.

A similar procedure will give a foliation of the other side {|x| > |y|} by minimizers of AΦ.

8



ℝk+1

ℝl+1

Ckl

Σkl

x
.σ( |x | )

Figure 2.1: The dilations of Σkl foliate one side of Ckl.
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2.2.3 Euler-Lagrange ODE

For hypersurfaces of the form (2.3) and integrands of the form (2.2), the condition that Σkl

is a critical point of AΦ is equivalent to the nonlinear second-order ODE

σ′′(t) + kP (σ′(t))
σ′(t)

t
+ lQ(σ′(t))

1

σ(t)
= 0, (2.4)

where

P (s) :=
ϕ′(s)

sϕ′′(s)
, Q(s) :=

sϕ′(s)− ϕ(s)

ϕ′′(s)
. (2.5)

This follows from the first variation formula

tr(D2Φ(ν(z))II(z)) = 0

for critical points of (2.1), where II denotes the second fundamental form of Σ and ν denotes

the unit normal. One can also use the symmetries of Σkl and Φ to reduce the problem to

taking the first variation of the one-variable integral

AΦ(Σkl) = const.

ˆ
tkσl(t)ϕ(σ′(t)) dt.

In the following technical lemma we show that there exists a global solution to (2.4) with

the desired properties, provided ϕ satisfies certain analytic conditions. We will later give

examples of ϕ that satisfy these conditions. To state the lemma we define for a smooth

function φ on R the function Ekl(φ) by

Ekl(φ)(s) := l
k + l − 1

k + l + 1
φ(s)−

(
k +

(
l − 2

k + l

k + l + 1

)
s

)
φ′(s)

−
(
k + l + 1

2
− s

)
(1− s)φ′′(s).

(2.6)

10



Lemma 2.2.1. Assume that ϕ(s) is a smooth, even, uniformly convex function on R that

satisfies

ϕ(1) = 1, ϕ′(1) =
l

k + l
, (2.7)

and in addition that

Ekl(ϕ)(s) ≥ κ(1− s) (2.8)

for some κ > 0 and all s ∈ [0, 1]. Then there exists a global smooth, even, convex solution

σ to the ODE (2.4) that satisfies the initial conditions

σ(0) = 1, σ′(0) = 0 (2.9)

and in addition satisfies σ(t) > |t|, |σ′(t)| < 1 for all t, and

σ(t) = |t|+ a|t|−µ + o(|t|−µ) (2.10)

as |t| → ∞ for some a > 0, where

µ :=
k + l − 1

2
−

√(
k + l − 1

2

)2

− kl

ϕ′′(1)(k + l)
. (2.11)

Remark 2.2.2. It is straightforward to check that any function ϕ satisfying the conditions

(2.7) and (2.8) automatically satisfies the inequality

ϕ′′(1)− 4kl

(k + l)(k + l − 1)2
> 0, (2.12)

so µ is well-defined. Conversely, any choice of ϕ that satisfies (2.7) and (2.12) also satisfies

(2.8) for s ∈ [1 − δ, 1], where κ > 0 and δ > 0 depend only on the left side of (2.12) and

11



∥ϕ∥C3([−1, 1]).

Proof of Lemma 2.2.1. Standard ODE theory gives the short-time existence of a solution

to (2.4) with the desired properties in a neighborhood of 0 (see Remark 2.2.3 below). To

proceed we rewrite (2.4) as an autonomous first-order system. In terms of the quantities

w(τ) := e−τσ(eτ ), z(τ) := σ′(eτ ), (2.13)

the second-order ODE (2.4) becomes:

 w′

z′

 =

 −w + z

−lQ(z)
w

− kzP (z)

 := V(w, z). (2.14)

We denote the components of the vector field V by V i, i = 1, 2, and the solution curve

(w(τ), z(τ)) by Γ(τ). The only zero of V in the closure of the infinite half-strip

Ω := {w > 1} ∩ {0 < z < 1}

occurs at (1, 1) (here we used (2.7)). In addition, the linearization of (2.14) around the zero

(1, 1) has the form X ′ =M X, where

M =

 −1 1

− kl
ϕ′′(1)(k+l)

−k − l

 . (2.15)

The eigenvalues of M are

λ± = −k + l + 1

2
±

√(
k + l − 1

2

)2

− kl

ϕ′′(1)(k + l)
, (2.16)

and these eigenvalues correspond to directions with slopes 1 + λ±.

12



We claim that Γ is contained in the region R ⊂ Ω bounded by the curves

Γ1 :={z = 0}, Γ2 := {V 2 = 0} =

{
w =

l

k

(
ϕ

ϕ′ − z

)}
, and

Γ3 :=

{
(z − 1) =

(
1 +

λ+ + λ−
2

)
(w − 1)

}
.

We first note that V 2 > 0 on Γ1 ∩ {w > 0} using that Q(0) < 0. Next, by the uniform

convexity of ϕ, the curve Γ2 ∩Ω is a graph over the positive z-axis with negative slope, and

furthermore V 1 < 0 in Ω (in particular, on Γ2 ∩ Ω). Finally, after a calculation using the

definitions (2.5) of P and Q and inequality (2.8), we have

V 2

V 1
< 1 +

λ+ + λ−
2

on Γ3 ∩ Ω. Indeed, the preceding inequality can be written

−lQ(z)− kwzP (z) >
k + l − 1

2
w(w − z)

on Γ3 ∩ Ω. Using that

Γ3 ∩ Ω =

{
w =

k + l + 1

k + l − 1
− 2

k + l − 1
z, z ∈ (0, 1)

}

and that

−Q(z) = ϕ(z)− zϕ′(z)

ϕ′′(z)
, −zP (z) = − ϕ′(z)

ϕ′′(z)

the previous inequality becomes

l(ϕ− zϕ′)−k
(
k + l + 1

k + l − 1
− 2

k + l − 1
z

)
ϕ′

>
k + l − 1

2

(
k + l + 1

k + l − 1
− 2

k + l − 1
z

)
k + l + 1

k + l − 1
(1− z)ϕ′′

=
k + 1 + 1

k + l − 1

(
k + l + 1

2
− z

)
(1− z)ϕ′′.

13



Γ1

Γ2
Γ3

R

z = 1

w = 1

V

Figure 2.2: The solution curve is contained in the region R bounded by Γ1, Γ2 and Γ3.

After regrouping terms, we see that this inequality holds for z ∈ (0, 1) using (2.8). We

conclude that Γ2 and Γ3 meet only at (1, 1), and V points towards the interior of R on each

of the curves {Γi}3i=1 (see Figure 2.2). It only remains to argue that Γ(τ) ∈ R for all τ << 0,

which holds by the initial convexity of σ (note that V 2 < 0 “above” Γ2 in Ω).

Since R ⊂ Ω ∩ {V 2 > 0}, we conclude that σ > |.|, |σ′| < 1 and that σ is convex. The

asymptotic behavior (3.2.2) follows from the linear analysis. Indeed, the region R excludes

the line with slope 1 + λ− that goes through (1, 1). Thus, in the expansion of Γ for τ

large, the coefficient of the principal eigenvector of the linearized operator at (1, 1) (which

corresponds to the eigenvalue λ+ and has slope −µ = 1 + λ+) is nonzero, completing the

proof.

Remark 2.2.3. We could not find a precise reference for short-time existence, so for com-

pleteness we sketch the argument. We first rewrite (2.4) in divergence form:

[tkσlϕ′(σ′)]′ = ltkσl−1ϕ(σ′).
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We are thus looking for a continuous function σ′ on an interval [0, t0] such that σ′(0) = 0

and

σ′(t) = (ϕ∗)′

 l

tk
(
1 +

´ t

0
σ′(s) ds

)l ˆ t

0

sk
(
1 +

ˆ s

0

σ′(τ) dτ

)l−1

ϕ(σ′(s)) ds


:= G(σ′)(t),

where ϕ∗ is the Legendre transform of ϕ. For t0 > 0 small, the operator G is a contraction

mapping on the space of continuous functions on [0, t0] that vanish at 0 and are bounded

by 1 in the C0 norm. A fixed point argument then gives the existence of a function σ ∈

C1[0, t0]∩C∞(0, t0) that solves (2.4) on (0, t0) and satisfies σ(0) = 1, σ′(0) = 0. The higher

regularity of σ follows from the observation that Σkl = {|y| = σ(|x|)} can be locally written

over its tangent planes as a C1 graph that solves an equation of minimal surface type (and

is thus smooth, see e.g. [14]). Finally, the equation (2.4) itself gives that

σ′′(0) =
lϕ(0)

(k + 1)ϕ′′(0)
> 0,

so σ is convex near 0, concluding the argument.

Remark 2.2.4. In the case of the area functional we have that

ϕ(s) =
√
1 + s2. (2.17)

Our approach recovers the foliation of each side of the cone Ckk by area-minimizing hy-

persurfaces when k ≥ 3, as follows. First, a short calculation shows that the function

σ0(t) := (1 + t4)1/4 is a super-solution of the ODE (2.4) corresponding to the area integrand

(2.17) when k ≥ 3. A similar calculation was performed in [8] to construct a sub-calibration

for Ckk. If we take Γ2 as above and we take Γ3 = {(e−τσ0(e
τ ), σ′

0(e
τ )), τ ∈ R}, then a similar

argument to the one above shows that the solution trajectory to the associated autonomous
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system is trapped between Γ2 and Γ3, giving an exact solution σ of (2.4) with the desired

properties.

2.2.4 Proof of Main Theorem

In this final subsection we choose the functions ϕ, ψ that define Φ, and we apply Lemma

2.2.1 to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. We first indicate how to choose integrands Φ that are C2, 1 away

from the origin, defined through the notation (2.2). For p, q > 2 to be chosen later we take

ϕ(s) = 1− l

p(k + l)
+

l

p(k + l)
|s|p,

ψ(s) = 1− k

q(k + l)
+

k

q(k + l)
|s|q,

(2.18)

up to making small perturbations near s = 0 so that ϕ and ψ are smooth and uniformly

convex. It is straightforward to check that if p and q are related by

l(p− 1) = k(q − 1), (2.19)

then Φ is C2, 1 away from the origin. We note that ϕ satisfies (2.7), and we will verify that

provided p is sufficiently large, then ϕ also satisfies the desired inequality (2.8). Away from a

small neighborhood of s = 0, where we perturbed (2.18) and the inequality (2.8) is obvious,

the inequality Ekl(ϕ)(s) > 0 becomes

[
(p− 1)

(
k + l + 1

2
− s

)
+ ks

]
(1− s)

<
(k + l − 1)(k + l − l/p)

k + l + 1
(s2−p − s2).

(2.20)

Denote the left side of (2.20) by L(s) and the right side by R(s). Since L is quadratic in s

16



and R′′ is decreasing in s, it suffices to prove the inequalities

R′(1) < L′(1), L′′ ≤ R′′(1).

The first inequality holds provided

p− 1 >
4k

(k + l − 1)2
, (2.21)

in agreement with Remark (2.2.2). The second one holds provided

(p− 1)2 −
(
k + 2l + 2

k + l
+

4

(k + l)(k + l − 1)

)
(p− 1)

+
4k

(k + l)(k + l − 1)
≥ 0.

(2.22)

Both (2.21) and (2.22) hold e.g. when p ≥ 6, regardless of k, l ≥ 1. When p ≥ 6 the

inequality (2.12) also holds, so by Remark (2.2.2) the desired inequality (2.8) holds for some

κ > 0.

Up to exchanging k and l, the function ψ satisfies (2.7), and a similar analysis shows that

Elk(ψ) ≥ κ(1 − s) for some κ > 0 and all s ∈ [0, 1] if q ≥ 6. We conclude using Lemma

2.2.1 that each side of Ckl is foliated by smooth critical points of AΦ when we choose ϕ, ψ

as above with p, q ≥ 6, and furthermore Φ ∈ C2, 1(Sk+l+1) provided p and q are chosen such

that (2.19) holds as well.

We now explain how the integrand can be made analytic on Sk+l+1, by perturbing the C2, 1

integrand constructed above. We first improve to smooth. Take ϕ and ψ as above, and let

ϕ̃(s) = sψ(1/s)
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for s ≤ 1. We glue ϕ to ϕ̃ near s = 1 by taking the convex combination

ϕ̄ := ηδϕ+ (1− ηδ)ϕ̃,

where ηδ is a smooth function that transitions from 1 to 0 in the interval [1− 2δ, 1− δ] for

δ > 0 to be chosen, and satisfies

∥ηδ∥Cm(R) ≤ Cmδ
−m

with Cm independent of δ. Since ϕ̃ and ϕ agree to second order at s = 1, the inequality (2.8)

holds for ϕ̄ away from [1− 2δ, 1− δ] provided δ is small (see Remark (2.2.2)). Furthermore,

we have

|ϕ̃(m)(s)− ϕ(m)(s)| ≤ Cm(1− s)3−m

for each m ≤ 2 and s ∈ [1/2, 1]. It follows that

|Ekl(ϕ̄)− Ekl(ϕ)| ≤ Cδ2

in [1 − 2δ, 1 − δ]. Since Ekl(ϕ) ≥ κδ in this interval, the inequality (2.8) holds for ϕ̄ when

δ is small, up to reducing κ slightly. After replacing ϕ by ϕ̄ (and keeping ψ the same), we

obtain a new integrand that is smooth on Sk+l+1 and by Lemma 2.2.1 satisfies the desired

properties.

Finally, we indicate how to improve the regularity from smooth to analytic. We start with a

smooth choice of integrand Φ as constructed above. Using the symmetries of Φ we may view

it as a smooth function on S1. We approximate this function by the partial sums SN of its

Fourier series with N terms. We add small correctors of the form aN+bN cos(2θ)+cN cos(4θ)

to SN to obtain new approximations TN , with aN , bN , cN chosen such that TN agrees to

second order with Φ at θ = π/4. Since SN converge uniformly in Cm to Φ for any m, the
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functions TN do as well. It follows that the one-homogeneous extensions of TN to R2 (which

we now identify with TN) have uniformly convex sub-level sets for N large. Since TN agree

to second order with Φ on the diagonals, Remark (2.2.2) implies that the conditions (2.7)

and (2.8) hold for the function obtained by restricting TN to the horizontal lines tangent to

S1 when N is large. The same holds (with k and l exchanged) for the restriction of TN to

the vertical lines tangent to S1. Hence, after replacing Φ(x, y) with TN(|x|, |y|) for N large,

we obtain an integrand that is analytic on Sk+l+1 and by Lemma 2.2.1 satisfies the desired

properties.

2.3 Discussion

In this section we discuss the implications of the analysis in Section 2.2 for Question 2.1.2.

The discussion is motivated by the examples of entire minimal graphs constructed in [2] and

[29]. Those examples are asymptotic to area-minimizing cones of the form K × R, where

K is the Simons cone in [2], and any one of a large family of area-minimizing cones with

isolated singularities in [29]. In all cases, each side ofK is foliated by smooth area-minimizing

hypersurfaces. These are closely related to the level sets of the functions u that define the

entire minimal graphs. More precisely, each level set of u is a graph over K outside of some

ball, with the same leading-order asymptotic behavior at infinity as a leaf in the foliation.

Furthermore, if the distance between a leaf in the foliation and K on ∂Br behaves like r−µ

as r → ∞, then supBr
|∇u| ∼ rµ.

In view of this discussion we conjecture:

Conjecture 2.3.1. For any integrand Φ as constructed in Theorem 2.1.3, and k ̸= l, there

exists an elliptic extension of Φ to Rk+l+3, and a nonlinear global solution to the corresponding

equation of minimal surface type in Rk+l+2, whose graph is asymptotic to Ckl×R. Moreover,

the gradient of this solution grows at the same rate that the leaves in the foliation associated
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to Φ approach Ckl.

In Chapter 3, we will prove the case when k = l, but this problem remains open for the case

when k ̸= l. The proof of Theorem 2.1.3 shows that for any µ ∈ (0, µkl), we can choose

integrands such that each side of Ckl is foliated by minimizers whose distance from Ckl on

∂Br behaves like r
−µ, where

µkl =
k + l − 1

2
−

√(
k + l − 1

2

)2

− min{k, l}
5

. (2.23)

The formula (2.23) comes from (2.11) and noting that, when choosing ϕ and ψ, we could

take any exponents p and q such that (2.19) holds and p, q ≥ 6. Thus, Conjecture (2.3.1)

predicts that for any µ ∈ (0, µkl), there exist global solutions to equations of minimal surface

type in Rk+l+2 whose graphs are are asymptotic to Ckl ×R, and have maximum gradient in

Br growing like rµ.

Remark 2.3.2. Mooney showed in [18] that when k = l = 2, the graph of u = |x|2 − |y|2

(which is asymptotic to C22×R) minimizes a parametric elliptic functional AΨ, and each level

set of u minimizes AΦ, where Φ = Ψ|{x7=0}. The perspective in that work is quite different,

and the proof is based on solving a linear hyperbolic equation to construct Ψ. However,

the discussion at the end of [18] shows that this strategy could be challenging to implement

when 2 ≤ k + l ≤ 3. In these cases, Question 2.1.2 may instead yield to a combination of

the approaches from [2] and [18].

To conclude we discuss the gradient growth rates of the solutions predicted by Conjecture

2.3.1. We first consider the possibility of constructing solutions with fast growth. In the case

k = l = 1, a closer inspection of inequalities (2.21) and (2.22) shows that we can take any

p = q > 5 when defining ϕ and ψ. This corresponds to the “optimal” value µ11 = 1
2
. One

may hope to show that (2.23) can be improved to µkl = (k + l − 1)/2 for arbitrary k and l,

which corresponds to choices of ϕ such that inequality (2.12) tends to equality. However, we
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suspect that this is not possible. Indeed, if k = l is large, this corresponds to a small value

of ϕ′′(1). It would follow that the integrand Φ is larger on Sk × Sk than at nearby points

on
√
2 S2k+1, in which case perturbations of Ckk could likely decrease its energy. Since the

quantity (2.23) is bounded above independently of k and l, it does not seem likely that the

examples from Theorem 2.1.3 can give rise to solutions to equations of minimal surface type

with arbitrarily fast gradient growth.

On the other hand, Conjecture 2.3.1 predicts the existence of global solutions to equations

of minimal surface type with very slow gradient growth, namely

sup
Br

|∇u| ∼ rµ

with µ > 0 small. However, global solutions to equations of minimal surface type with

bounded gradient are linear. This is a consequence of the De Giorgi-Nash-Moser theorem.

Indeed, if the gradient of a global solution u to an equation of minimal surface type is

bounded, then each derivative ue is a global bounded solution to a uniformly elliptic equa-

tion in divergence form (with ellipticity constants depending on ∥∇u∥L∞). Applying e.g.

Theorem 8.22 from [14] and sending R0 → ∞ (keeping in mind the remark at the end of

Section 8.9), we see that ue is constant. We thus expect that the ellipticity of the integrands

from Conjecture 2.3.1 will degenerate as µ tends to zero, and we conjecture a “quantitative”

version of the rigidity result for solutions with bounded gradient:

Conjecture 2.3.3. Let u be a global solution to an equation of minimal surface type on Rn,

corresponding to a functional AΨ. Then for some ϵ(n, Ψ) > 0,

sup
Br

|∇u| = O(rϵ) ⇒ u is linear.

In [10] the authors give a beautiful proof of Conjecture 2.3.3 for the area functional, for any

ϵ < 1 and in arbitrary dimension n. The proof in [10] depends on precise constants in the
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Simons inequality for the Laplacian of the second fundamental form on a minimal surface.

Although analogues of the Simons inequality exist for critical points of (2.1), the constants

degenerate with the ellipticity of Φ, and it is not clear that the same strategy would prove

Conjecture 2.3.3.
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Chapter 3

The anisotropic Bernstein problem

3.1 Introduction

In this chapter we study graphical critical points of parametric elliptic functionals, which

assign to an oriented hypersurface Σ ⊂ Rn+1 the value

AΦ(Σ) =

ˆ
Σ

Φ(ν) dA. (3.1)

Here ν is the unit normal to Σ, and Φ is a uniformly elliptic integrand, namely, a one-

homogeneous function on Rn+1 that is positive and smooth on Sn, and satisfies in addition

that {Φ < 1} is uniformly convex. Such functionals have attracted recent attention both for

their applied and theoretical interest ([5, 22, 23, 21, 24, 9, 11, 12]). In particular, they arise

in models of crystal surfaces and in Finsler geometry, and they present important technical

challenges not present for the area functional (especially due to the lack of a monotonicity

formula), often leading to more general and illuminating proofs even in the area case.

The anisotropic Bernstein problem asks whether critical points of AΦ which are graphs of
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functions defined on all of Rn are necessarily hyperplanes. In the case of the area functional

Φ(x) = |x|, it is known through spectacular work of Bernstein, Fleming [13], De Giorgi [7],

Almgren [1], Simons [31], and Bombieri-De Giorgi-Giusti [2] that the answer is positive if

and only if n ≤ 7. For general uniformly elliptic integrands, it is known that the answer

is positive in dimension n = 2 by work of Jenkins [15] and in dimension n = 3 by work of

Simon [28]. It is also known by recent work of Mooney [18] that the answer is negative in

dimensions n ≥ 6. This left open the cases n = 4, 5. The purpose of this chapter is to settle

the anisotropic Bernstein problem negatively in these remaining cases:

Theorem 3.1.1. There exists a smooth nonlinear function u : R4 → R and a uniformly

elliptic integrand Φ on R5 such that the graph of u in R5 minimizes AΦ.

We in fact construct, for any µ ∈ (0, 1/2), a pair (u, Φ) proving Theorem 3.1.1 such that

sup
Br

u ∼ r1+µ

for r large, and our methods both generalize to higher dimensions and shed light on known

examples in the case of the area functional.

Here and below we denote for x ∈ Rk+1 and y ∈ Rl+1 the cone Ckl ⊂ Rk+l+2 by

Ckl = {|x| = |y|}.

The first examples of nonlinear entire minimal graphs were constructed in [2]. The examples

in [2] are asymptotic to Ckk × R ⊂ R2k+3, for k ≥ 3. Similarly, for the more general

anisotropic case, the example in [18] is asymptotic to C22 × R. However, the approaches

in [2] and [18] are completely different. In the former, the method is to carefully construct

super- and sub-solutions to the minimal surface equation, with appropriate ordering and

symmetries, and then use the maximum principle. In [18], the method is to first fix a choice
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of solution u, and then construct the integrand Φ by solving a linear hyperbolic equation. In

the case k = l = 2 it turned out that for the simple choice

u = |x|2 − |y|2,

the hyperbolic equation for Φ reduced after a change of variable to the classical two-variable

wave equation. This made the construction significantly shorter and more elementary than

for the case of the area functional. Unfortunately the analogous choice for u in the case

k = l = 1 does not solve an equation of minimal surface type, as shown in [18]. However,

the choice

u = |x|4/3 − |y|4/3

also yields a two-variable wave equation for Φ in the case k = l = 1 after a change of variable,

so it seemed likely that the methods in [18] could be adapted. The issue is that this choice

of u does not solve an equation of minimal surface type near {|x||y| = 0}, so both u and the

integrand Φ obtained by solving the wave equation need to be modified. This seems to be

tricky, and we are leaving the pursuit of this approach to its conclusion for future work.

In this chapter we instead proceed by the maximum principle, inspired by [2]. The problem

of constructing entire graphical minimizers in Rn+1 is closely related to the existence of

singular minimizers in Rn. This was certainly recognized in [2], where it was shown that

C33 is area-minimizing by constructing foliations of each side of the cone by smooth area

minimizers. It is clear that the level sets of the entire graphical minimizers in [2] resemble

the leaves in this foliation, but no explicit connection is made between the results. Our

approach in this chapter is to make this connection explicit. As a consequence we are able to

construct, in the general anisotropic case, a variety of examples with many different growth

rates in the optimal dimension n = 4, and to recover the known examples from [2].

Our starting point is the work in Chapter 2, where we prove that the cones Ckl minimize
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parametric elliptic functionals for all k, l ≥ 1 by constructing foliations. It was known

previously that minimizers of (3.1) are smooth in the case n = 2 by deep work of Almgren-

Schoen-Simon [25]. Morgan [20] later proved that minimizers are not necessarily smooth in

dimension n = 3. Indeed, he proved that C11 minimizes a parametric elliptic functional, by

constructing a calibration. Although the foliation approach in Chapter 2 is more involved,

advantages are that it removes some of the guesswork involved in constructing a calibration,

and that the leaves in the foliation give a hint as to how to proceed in the anisotropic

Bernstein problem. We showed in particular in Chapter 2 that for any µ ∈ (0, 1/2), there

is an integrand Ψ such that the sides of C11 are foliated by minimizers of AΨ that closely

resemble the level surfaces of locally Lipschitz functions that are homogeneous of degree

1 + µ. This involved the careful analysis of a nonlinear second-order ODE.

The first step in this chapter is to deepen the analysis of the nonlinear ODE. By studying its

linearization around a solution, we obtain small perturbations of the leaves in our foliation of

each side of C11 that have the same asymptotic behavior as before, but have strictly positive

or negative anisotropic mean curvature. These leaves then define locally Lipschitz functions

w and w that are homogeneous of degree 1 + µ, constant on the leaves, vanish on C11, and

by virtue of the curvature of their level sets serve as good model candidates for super- and

sub-solutions.

The second step in this work is to make a choice of integrand Φ on R5. Our choice agrees

exactly with Ψ on {x5 = 0}, and can be viewed as way of smoothly extending Ψ to S4\{x5 =

0}. The case of the area functional suggests taking

Φ|{x5=1} =
(
1 + Ψ

2
)1/2

,

and our integrand indeed resembles this choice.

The final step in this work is to “re-stack” the level sets of the functions w and w in a way

26



that they become legitimate super- and sub-solutions to the equation of minimal surface

type defined by Φ on one side of C11. This is accomplished by composing w and w with

appropriate concave, resp. convex one-variable functions. We can then proceed as in [2],

using these super- and sub-solutions to trap the exact solutions to the equation we wish to

solve in BR with appropriate boundary data, and taking R to infinity.

We conclude the introduction with several remarks. The first is that our approach works

equally well to construct examples asymptotic to Ckk×R for all k ≥ 1. We focus on the case

k = 1 for simplicity of notation and to emphasize ideas. In a later section we indicate how

to generalize to higher dimensions, and we also make explicit how our approach recovers

the examples from [2], whose construction seems at first somewhat ad-hoc. The second

is that our approach does not work when k ̸= l, because the argument relies crucially

on the odd symmetry over Ckk of solutions to the PDE associated to Φ. We intend to

pursue this question in future work. In [29] Simon constructs entire minimal graphs that are

asymptotic to the cylinders over a variety of area-minimizing cones with isolated singularities

(in particular, all of the area-minimizing Lawson cones, which are affine transformations of

Ckl with k + l ≥ 7 or k + l = 6 and min{k, l} ≥ 2, see e.g. Chapter 5 in A sufficient

criterion for a cone to be area-minimizing by G. Lawlor). The existence of foliations plays

an important role in that paper as well, and we believe that a combination of the ideas in

that work and ours may bring further clarity to the picture. Finally, we remark that when

Φ is close to the area functional on Sn in a strong topology, e.g. C4, the results are the

same as in the area case. For example, the Bernstein theorem holds up to dimension n = 7

[28], regularity of minimizers holds up to dimension n = 6 [25], and stable critical points in

low dimensions are flat ([4], [5]). We thus know that for our examples, the integrands are

necessarily far from area. It would be interesting to weaken the topology required for such

results e.g. to closeness in C2 (which suffices for proving the flatness of stable critical points

in dimension n = 2 [17]), and our examples may shed light on this question. These remarks

are discussed at greater length in a later section.
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The chapter is organized as follows. In Section 3.2 we recall our results from Chapter 2

concerning the foliation of each side of C11 by minimizers of parametric elliptic functionals,

and we refine our analysis of a certain nonlinear ODE to obtain perturbed foliations by

hypersurfaces with anisotropic mean curvature of a desired sign. In Section 3.3 we make our

choice of integrand Φ, which fixes the equation we wish to solve. In Section 3.4 we construct

super- and sub-solutions to this equation using the perturbed foliations. In Section 3.5 we

put it all together to prove Theorem 3.1.1. Finally, in Section 3.6 we discuss generalizations

of our constructions to higher dimensions, the relation to the case of the area functional,

and future work.

3.2 Foliation

In this section we first recall for the reader’s convenience the construction of foliations of each

side of C11 by minimizers of (3.1), accomplished in Chapter 2. We then refine the analysis

from Chapter 2, and we use this along with a study of a linearized problem to perturb the

leaves of the foliation so that they have positive or negative anisotropic mean curvature.

Finally, we use these leaves to define homogeneous functions on R4 that will serve as models

for super- and sub-solutions to the PDE we eventually wish to solve.

3.2.1 Previous Results

In Chapter 2 we constructed uniformly elliptic integrands Ψ on R4 defined by analytic, even,

one-variable functions ϕ as follows:

Ψ(x, y) = φ(|x|, |y|) =


|y|ϕ(|x|/|y|), |y| > 0,

|x|ϕ(|y|/|x|), |x| > 0.

(3.2)
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We showed that for any µ ∈ (0, 1/2), the function ϕ could be chosen such that there exists

a critical point Σ ⊂ {|y| > |x|} of AΨ of the form

Σ = {|y| = σ(|x|)},

where the function σ is even, analytic, locally uniformly convex, larger than |.|, σ(0) = 1,

and

σ(τ) = τ + aτ−µ + o(τ−µ)

for some a > 0 as τ → ∞. Furthermore, the curve Γ parameterized for τ > 0 by

(τ−1σ(τ), σ′(τ)) tends as τ → ∞ to (1, 1), and Γ is bounded in a certain region of the

(w, z) plane:

Γ ⊂ {0 < z < 1} ∩ {z > 3/2− w/2}. (3.3)

We remark that the smoothness of Ψ away from 0 ensures that

2ϕ′(1) = ϕ(1), (3.4)

and that µ and ϕ are related through the identiy

ϕ(1)

2ϕ′′(1)
= µ(1− µ). (3.5)

The dilations of Σ, along with their reflections over C11, give a foliation of each side of C11

by minimizers of AΨ. The condition that Σ is a critical point is equivalent to σ solving the

ODE

G(σ)(τ) := σ′′(τ) +
1

τ
P (σ′(τ)) +

1

σ
Q(σ′(τ)) = 0, (3.6)
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where

P (s) =
ϕ′(s)

ϕ′′(s)
, Q(s) =

sϕ′(s)− ϕ(s)

ϕ′′(s)
, (3.7)

and the results were obtained through the analysis of this ODE.

Remark 3.2.1. In Chapter 2 we defined Ψ in {|x| > 0} and {|y| > 0} by two different

functions ϕ and ψ. However, the conditions in Chapter 2 that ϕ and ψ are required to

satisfy are invariant under taking convex combinations when k = l, so we can assume ϕ = ψ

after replacing Ψ(x, y) by (Ψ(x, y) + Ψ(y, x))/2.

3.2.2 Refinement of Foliation Analysis

From hereon out, we fix a choice of µ ∈ (0, 1/2) and ϕ as in the previous subsection. For

the purposes of this chapter we need to make the asymptotic expansion of σ a little more

precise.

We first establish some notation. Here and for the rest of the chapter we will let c denote a

small positive constant that depends only on ϕ, and its value may change from line to line.

For a smooth function h on (0, ∞), we denote by F(h) a smooth function on (0, ∞) such

that, for all τ ≥ 1,

|F(h)(τ)| ≤ c−1|h(τ)|, |F(h)′(τ)| ≤ c−1|h′(τ)|, |F(h)′′(τ)| ≤ c−1|h′′(τ)|.

Proposition 3.2.2. There exists a > 0 and b ∈ R such that

σ = τ + aτ−µ + bτµ−1 + F(τ−1−2µ).
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For our purposes, the following corollary in fact suffices:

σ = τ + aτ−µ + F(τ−1/2) for some a > 0. (3.8)

Before proving Proposition 3.2.2, we recall a few things from the proof of the results in the

previous subsection. First, the ODE (3.6) for σ can be written as a first-order autonomous

system for X(s) := (e−sσ(es), σ′(es)) of the form

X′(s) = V(X(s)),

where

V(w, z) = (−w + z, −P (z)−Q(z)/w).

Using the identities (3.4) and (3.5) we have that V(1, 1) = (0, 0) and that

DV(1, 1) =M :=

 −1 1

−µ(1− µ) −2

 .

The matrix M has eigenvalues −1 − µ and µ − 2, corresponding to eigenvectors in the

directions of lines with the slopes −µ and µ− 1. We proved in Chapter 2 that the solution

curve X tends to (1, 1) as s tends to infinity, and by (3.3) is trapped in a region which

excludes the line through (1, 1) with slope µ− 1.

Proof of Proposition 3.2.2: Let

Y(s) = X(s)− (1, 1), W(w, z) = V(w + 1, z + 1),

so that

Y′ = W(Y), W(0) = 0, DW(0) =M.
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The eigenvalues of MT +M are −3±
√

1 + (1− µ(1− µ))2 ∈ (−5, −3/2). Since |Y| tends

to zero, we conclude from the ODE for |Y|2 that

ce−5s ≤ |Y|2(s) ≤ c−1e−
3
2
s, s ≥ 0. (3.9)

To obtain (3.9) we use that

|Y′ −MY| ≤ c−1|Y|2, s ≥ 0. (3.10)

Letting

p = (1, −µ), q = (1, µ− 1)

denote the eigenvectors of M , decomposing Y into a linear combination of these vectors,

and using (3.9) in (3.10) gives in a similar way that for some a0 ∈ R,

|Y(s)− a0e
−(1+µ)sp| ≤ c−1e−3s/2, s ≥ 0.

We conclude from this the following improvement of (3.9):

|Y|2 ≤ c−1e−2(1+µ)s, s ≥ 0.

Using this improved estimate in (3.10) we conclude that for some a, b ∈ R,

|Y(s)− ae−(1+µ)sp− be(µ−2)sq| ≤ c−1e−2(1+µ)s, s ≥ 0.

The conclusion follows from this expression and from the second component of the ODE for

Y, provided a > 0. To show that a > 0, note first that by (3.3), we have a ≥ 0 and that

if a = 0 then b = 0. In the latter case we would have |Y|2 ≤ c−1e−4(1+µ)s, s ≥ 0, and upon
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examining the ODE (3.10) for Y again we could improve the expansion of Y to

|Y(s)− a1e
−(1+µ)sp− b1e

(µ−2)sq| ≤ c−1e−4(1+µ)s, s ≥ 0.

If a1 ̸= 0 then the upper bound |Y|2 ≤ c−1e−4(1+µ)s, s ≥ 0 is violated, hence a1 = 0,

and again by (3.3) we have b1 = 0. We conclude that |Y|2 ≤ c−1e−8(1+µ)s, s ≥ 0, which

contradicts the lower bound in (3.9).

3.2.3 Linear ODE

Our goal now is to perturb the leaves in the foliation determined by the function σ. We let

L denote the linearization of the ODE (3.6) at σ, namely,

Lf = f ′′ +

(
1

τ
+
σ′

σ
+
σ′′ϕ′′′

ϕ′′

)
f ′ +

ϕ− σ′ϕ′

σ2ϕ′′ f

:= f ′′ + [log(p)]′f ′ + qf,

where

p(s) = sσ(s)ϕ′′(σ′(s)).

Using the invariance of the operator G under the Lipschitz rescalings

σ → σλ := λ−1σ(λτ),

we see that the function

f0(τ) := − d

dλ
σλ(τ)|λ=1 = σ(τ)− τσ′(τ)
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solves the linearized equation

Lf0 = 0.

Furthermore, by the properties of σ and the estimate (3.8), f0 is smooth, positive, even, and

satisfies

f0 = a(1 + µ)τ−µ + F(τ−1/2). (3.11)

For g continuous, the solution to the ODE

Lf = g, f(0) = f ′(0) = 0

can be written

f(τ) = f0(τ)

ˆ τ

0

1

f 2
0 (t)p(t)

ˆ t

0

g(s)p(s)f0(s) ds dt. (3.12)

Taking

g = σ−5/2

in (3.12) we obtain a smooth even solution f1. By the asymptotics (3.11) of f0 and the

formula (3.12) for f1, we have for some d ∈ R that

f1 = dτ−µ + F(τ−1/2). (3.13)

Below we will often bound quantities by powers of σ, which serves as a strictly positive

regularization of the function |τ |. Using (3.8) and (3.13) and applying Taylor’s theorem with

remainder to P and Q, it is straightforward to show for ϵ small that

|G(σ + ϵf1)− ϵL(f1)| ≤ c−1ϵ2σ−3−2µ. (3.14)
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Indeed, Taylor expansion gives for |ϵ| > 0 small and any τ > 0 that

ϵ−2|G(σ + ϵf1)− ϵL(f1)| ≤
∥P ′′∥L∞([0, σ′(τ)+|ϵf ′

1(τ)|])

τ
f ′2
1

+ ∥Q∥C2([0, 1])

(
f ′2
1

σ
+

|f1f ′
1|

σ2
+
f 2
1

σ3

)
+ |ϵ|∥Q∥C2([0, 1])

(
|f1f ′2

1 |
σ2

+
|f 2

1 f
′
1|

σ3

)
+ ϵ2∥Q∥C2([0, 1])

f 2
1 f

′2
1

σ3
.

Using that P is odd and σ and f1 are even we have that

∥P ′′∥L∞([0, σ′(τ)+|ϵf ′
1(τ)|])

τ
≤ c−1 1

σ
,

and the remaining terms can be bounded using (3.8) and (3.13).

In summary, we have proven:

Proposition 3.2.3. There exists ϵ0 > 0 small such that the functions

σ := σ + ϵ0f1, σ := σ − ϵ0f1

are even, locally uniformly convex, larger than |τ |, and have the asymptotics

σ = τ + aτ−µ + F(τ−1/2), σ = τ + aτ−µ + F(τ−1/2) (3.15)

for some a, a > 0. Furthermore, they satisfy for all τ ∈ R that

G(σ) ≥ cσ−5/2, −G(σ) ≥ cσ−5/2 (3.16)
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and

1

2
σ(2τ) ≤ σ(τ) ≤ σ(τ). (3.17)

The inequality (3.17) follows from the asymptotics (3.8) for σ and (3.13) for f1, and the

smallness of ϵ0. For (3.16) we use (3.14) and that 5/2 < 3 + 2µ.

Geometrically, the surface

Σ := {|y| = σ(|x|)}

has anisotropic mean curvature vector pointing “away from” C11, and the opposite is true

for the hypersurface

Σ := {|y| = σ(|x|)}.

Remark 3.2.4. The choice g = σ−5/2 is convenient but there is flexibility in the choice of

exponent. For all arguments in this chapter, the choice g = σ−β−2 with

µ < β < 1− µ

would suffice. These inequalities guarantee that

σ = τ + aτ−µ + F(τ−β),

that the solution f to Lf = g, f(0) = f ′(0) = 0 satisfies

f = dτ−µ + F(τ−β)

for some d ∈ R, and that G(σ + ϵf) ≥ cg for ϵ > 0 small. The arguments below can also be

treated in a similar way as presented for such choices of β.
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3.2.4 Model Super- and Sub-solutions

To conclude the section we define functions that are homogeneous of degree 1 + µ and take

the value 1 on Σ and Σ. These serve as model super- and sub-solutions to the PDE we

eventually wish to solve. First, we define functions w0, w0 of two variables (ξ, ζ) in {ζ > |ξ|}

by

w0(λ
−1τ, λ−1σ(τ)) = w0(λ

−1τ, λ−1σ(τ)) = λ−1−µ.

Here λ > 0 and τ ∈ R. We extend these functions over the diagonals by odd reflection, and

we define them to vanish on the diagonals. The continuity of w0 follows from the identity

w0(τ/σ(τ), 1) = σ−1−µ and taking τ to ±∞, and similarly for w0. The calculations below

show that w0, w0 are in fact locally Lipschitz.

Here and below we evaluate the quantities of interest for w0 at the point λ−1(τ, σ(τ)), and

for w0 at λ−1(τ, σ(τ)). We calculate

∇w0 = (1 + µ)
λ−µ

σ − τσ′ (−σ
′, 1), ∇w0 = (1 + µ)

λ−µ

σ − τσ′ (−σ
′, 1). (3.18)

Using Proposition 3.2.3 we conclude that

cλ−µσµ ≤ |∇w0|, |∇w0| ≤ c−1λ−µσµ. (3.19)

It follows that c ≤ |∇w0(τ/σ(τ), 1)|, |∇w0(τ/σ(τ), 1)| ≤ c−1 for all τ ∈ R, which establishes

the local Lipschitz regularity of these functions.

Next we calculate

D2w0 =(1 + µ)
λ1−µ

(σ − τσ′)3
·

[µ(σ − τσ′)(−σ′, 1)⊗ (−σ′, 1)− σ′′(−σ, τ)⊗ (−σ, τ)] ,
(3.20)
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and the same expression with σ replaced by σ for D2w0. By Proposition 3.2.3, each of the

four entries in the matrix in brackets is bounded up to multiplying by constants by σ−1/2,

which gives

|D2w0|, |D2w0| ≤ c−1λ1−µσ3µ−1/2. (3.21)

For x, y ∈ R2 we let

w(x, y) = w0(|x|, |y|), w(x, y) = w0(|x|, |y|).

We evaluate the quantities of interest for w, resp. w on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, λ >

0}, resp. {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, λ > 0}. By (3.19) we have

cλ−µσµ ≤ |∇w|, |∇w| ≤ c−1λ−µσµ. (3.22)

Furthermore, for τ > 0 the entries of D2w that are not in D2w0 are λτ
−1∂ξw0 and λσ

−1∂ζw0.

Using (3.18) we have the bounds

λτ−1|∂ξw0|, λσ−1|∂ζw0| ≤ c−1λ1−µσµ−1 ≤ c−1λ1−µσ3µ−1/2,

and similarly for D2w. We conclude from (3.21) that

|D2w|, |D2w| ≤ c−1λ1−µσ3µ−1/2. (3.23)

Finally, we relate the curvature of the level sets of w, w to a PDE. Recall that

Ψ(x, y) = φ(|x|, |y|) = |y|ϕ(|x|/|y|) = |x|ϕ(|y|/|x|).
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Using that ∂ξw0 < 0 in {ζ > ξ > 0}, we have in {|y| > |x|} that

Ψij(∇w)wij = φ11w0ξξ − 2φ12w0ξζ + φ22w0ζζ −
φ1

|x|
+
φ2

|y|
, (3.24)

where the derivatives of φ are evaluated at (|∂ξw0|, |∂ζw0|). Using the formulae (3.18) and

(3.20) and the relation between φ and ϕ, and evaluating the above expression on {(|x|, |y|) =

λ−1(τ, σ(τ)), τ > 0, λ > 0}, we get

Ψij(∇w)wij = −λϕ′′(σ′)G(σ).

Indeed, up to the factor −λϕ′′(σ′), the first three terms on the right side of (3.24) contribute

the first term in the expression (3.6) for G, and the last two contribute the second two

terms in the expression for G. The analogous calculations hold for w, with σ replaced by σ.

Combining this calculation with Proposition 3.2.3 we obtain:

Proposition 3.2.5. We have

Ψij(∇w)wij = −λϕ′′(σ′)G(σ) ≤ −cλσ−5/2

on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, λ > 0}, and

Ψij(∇w)wij = −λϕ′′(σ′)G(σ) ≥ cλσ−5/2

on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, λ > 0}.

To conclude the section we note that inequality (3.17) from Proposition 3.2.3 and homo-

geneity imply that

w(·) ≤ w(2·) = 21+µw(·) in {|y| > |x|}. (3.25)
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3.3 Choice of Integrand

In this section we fix our choice of integrand. Let Ψ be the same as above, and let F be a

smooth even convex function on R such that

F (s) = s+
1

8
s−1, s > 1/2.

We let Ψ be any smooth locally uniformly convex function on R4, depending only on |x| and

|y| and invariant under exchanging x and y, such that

Ψ = F (Ψ) in {Ψ > 1}.

(See Remark 3.3.2). Finally, we define

Φ(x, y, z) :=


|z|Ψ

(
x
|z| ,

y
|z|

)
, z ∈ R\{0},

Ψ(x, y), z = 0.

(3.26)

Proposition 3.3.1. The function Φ is in C∞(S4) and is a uniformly elliptic integrand.

Proof. On {|z| > 0} this follows from the local uniform convexity of Ψ, which in {Ψ > 1}

follows from the identity

D2Ψ = F ′(Ψ)D2Ψ+ F ′′(Ψ)∇Ψ⊗∇Ψ,

the uniform ellipticity of Ψ and the fact that F ′′(s) > 0 for s > 1. We now examine the

points on S4 ∩ {z = 0}. Using the fact that F (s) = s + s−1/8 for s > 1/2, we have in a

neighborhood of S4 ∩ {z = 0} that

Φ(x, y, z) = Ψ(x, y) +
z2

8Ψ(x, y)
.
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Thus, on a hyperplane tangent to S4 on {z = 0}, the horizontal second derivatives of Φ

at the point of tangency agree with those of Ψ, the mixed horizontal and vertical second

derivatives vanish, and the pure vertical second derivative is strictly positive, completing the

proof.

Remark 3.3.2. This can be accomplished e.g. by taking F to be a positive constant in a

small neighborhood of 0 and locally uniformly convex otherwise, and defining Ψ to be the

sum of F (Ψ) and a small multiple of an appropriate radial cutoff of |x|2 + |y|2.

3.4 Super and Sub Solutions

Let Φ, Ψ be as in the previous section. We note as in [18] that the graph of a function u on

a domain Ω ⊂ R4 is a critical point of AΦ if and only if

Ψij(∇u)uij = 0 (3.27)

in Ω. In this section we “re-stack” the level sets of w and w to obtain super- and sub-solutions

of (3.27) in {|y| > |x|}, without changing their growth rates.

3.4.1 Supersolution

To begin we fix the quantities

γ :=
2µ

1 + µ
, M :=

2

1/2− µ
, δ :=

γ

M
.

We define

u = H(w),
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where H(0) = 0 and

H
′
(s) = A|s|−γ + e

B
´∞
|s|

tδ−1

1+t2δ
dt
= A|s|−γ + eBI(|s|).

We note that H is well-defined because γ < 1. We claim for B = A2 and A sufficiently large

that u is a super-solution to (3.27) in {|y| > |x|}.

To see this, note first that

H
′
(s) ≥ 1 + As−

2µ
1+µ .

Combining this with the estimate (3.22) we conclude on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥

0, λ > 0} that

|∇u| = H
′
(λ−1−µ)|∇w| ≥ c(Aλµ + λ−µ) ≥ cA1/2.

For A > 1 sufficiently large we conclude that

∇u({|y| > |x|}) ⊂ {Ψ > 1},

thus ∇u always lies in the region where Ψ = F (Ψ). Henceforth we assume A has been chosen

at least this large. We calculate using the one-homogeneity of Ψ that

Ψij(∇u)uij = F ′(H
′
(w)Ψ(∇w))Ψij(∇w)wij

+ F ′′(H
′
(w)Ψ(∇w))H ′′

(w)Ψ
2
(∇w)

+ F ′′(H
′
(w)Ψ(∇w))H ′

(w)Ψi(∇w)Ψj(∇w)wij

:= I + II + III

in {|y| > |x|}. We have that F ′(s) ≥ 1/2 and F ′′(s) = s−3/4 when s > 1, and that H
′′
< 0.

Using this, along with Proposition 3.2.5, and the estimates (3.22) and (3.23) on ∇w and
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D2w, we conclude that

I ≤ −cλσ−5/2, II ≤ −c
∣∣∣H ′′

∣∣∣H ′−3
λµσ−µ, III ≤ c−1H

′−2
λ1+2µσ−1/2

on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, λ > 0}. Here H and its derivatives are evaluated at

λ−1−µ. We conclude in particular that

Ψij(∇u)uij ≤ −c
(
λσ−5/2 +

∣∣∣H ′′
∣∣∣H ′−3

λµσ−µ
)
+ c−1H

′−2
λ1+2µσ−1/2.

We can make sure this is nonpositive provided

c−2 ≤ H
′2
(λ−1−µ)λ−2µσ−2 + λ−1−µ

∣∣∣H ′′
∣∣∣ /H ′

(λ−1−µ)σ1/2−µ.

After the change of variable s = λ−1−µ, σ̃ = σ1/2−µ this desired inequality becomes

c−2 ≤ s|H ′′|/H ′
(s)σ̃ +H

′2
(s)sγσ̃−M := E (3.28)

for all s > 0 and σ̃ ≥ 1. We have

s|H ′′|/H ′
(s) =

Aγs−γ +B sδ

1+s2δ
eBI

As−γ + eBI
,

and since H
′ ≥ 1 + As−γ,

H
′2
(s)sγ ≥ A2s−γ + sγ.

To continue we split the verification of (3.28) into two cases. In the case s ≤ 1 we have

E ≥
Aγs−γ−δ + B

2
eBI

As−γ + eBI
sδσ̃ + A2s−γσ̃−M

≥ min{γ, 1/2}X + A2X−M (here X = sδσ̃)

≥ cA
2

M+1
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for any B ≥ 1, hence (3.28) is true in the case s ≤ 1 for A large and any B ≥ 1. We may

take e.g. B = A2. Then in the remaining case s ≥ 1 we have

E ≥
B s2δ

1+s2δ
eBI

A+ eBI
s−δσ̃ + sγσ̃−M

≥ 1

2
B

eBI

A+ eBI
X +X−M (here X = s−δσ̃)

≥ B

2(A+ 1)
X +X−M

≥ 1

4
AX +X−M (using that B = A2 > 1)

≥ cA
M

M+1 ,

concluding the proof of (3.28) provided B = A2 and A is large.

Remark 3.4.1. Roughly, the term “I” in the PDE, which represents the curvature of the

level sets of u, dominates in a region of {|y| > |x|} that lies away from the boundary C11,

is tangent to C11 near 0, and separates sub-linearly from C11 for |y| large. The term “II,”

which represents the remaining vertical curvature of the graph of u, dominates near C11.

3.4.2 Subsolution

The subsolution is similar to and in fact easier to construct than the supersolution. Let

γ, M, and δ be as above. We first define

u0 = H(w),

with H(0) = 0 and

H ′(s) = e
−C

´∞
s

tδ−1

1+t2δ
dt
.
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We claim that for all C ≥ C0 large, there exists λC > 0 small such that the function u0 is a

sub-solution of (3.27) in

ΩC := {w > λ−1−µ
C } = {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, 0 < λ < λC}.

The value λC is chosen for any C ≥ 1 as follows. First, we choose λC < 1 small such that

H ′(λ−1−µ
C ) ≥ 1/2. (3.29)

Using (3.22) we conclude that

|∇u0| ≥ cλ−µ
C in ΩC .

After possibly taking λC smaller we thus have

∇u0(ΩC) ⊂ {Ψ > 1}.

This fixes our choice of λC for arbitrary C ≥ 1. Since Ψ = F (Ψ) in {Ψ > 1} we conclude in

ΩC that

Ψij(∇u0)(u0)ij = F ′(H ′(w)Ψ(∇w))Ψij(∇w)wij

+ F ′′(H ′(w)Ψ(∇w))H ′′(w)Ψ
2
(∇w)

+ F ′′(H ′(w)Ψ(∇w))H ′(w)Ψi(∇w)Ψj(∇w)wij

= I + II + III.

Using that F ′ ≥ 1/2, F ′′(s) = s−3/4 for s ≥ 1, Proposition 3.2.5, the estimates (3.22) and

(3.23) on ∇w and D2w, and (3.29), we conclude on {(|x|, |y|) = λ−1(τ, σ(τ)), τ ≥ 0, 0 <

λ < λC} that

I ≥ cλσ−5/2, II ≥ cH ′′(λ−1−µ)λµσ−µ, III ≥ −c−1λ1+2µσ−1/2.
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We emphasize here that c does not depend on C. We have in particular that

Ψij(∇u0)(u0)ij ≥ c
(
λσ−5/2 +H ′′(λ−1−µ)λµσ−µ

)
− c−1λ1+2µσ−1/2

in ΩC . After the same change of variable as in the previous subsection, we conclude that u0

is a sub-solution of (3.27) in ΩC provided

c−2 < sH ′′(s)σ̃ + sγσ̃−M := E for all s ≥ λ−1−µ
C , σ̃ ≥ 1. (3.30)

Since

sH ′′(s) = C
sδ

1 + s2δ
H ′(s) ≥ 1

4
Cs−δ

for s ≥ λ−1−µ
C (here we use (3.29) again), we have

E ≥ 1

4
Cs−δσ̃ + sγσ̃−M

=
1

4
CX +X−M (here X = s−δσ̃)

≥ cC
M

M+1

for s ≥ λ−1−µ
C , σ̃ ≥ 1. Thus, (3.30) holds for any choice C ≥ C0 large.

Remark 3.4.2. Again, the term “I” representing the curvature of the level sets of u0 domi-

nates in a region of ΩC that lies away from C11 and separates sub-linearly from C11 as |y| gets

large, and the term “II” representing the vertical curvature of the graph of u0 dominates in

the region of ΩC close to C11.

We have shown that u0 is a sub-solution of (3.27) in ΩC0 . To get a sub-solution of (3.27) on

all of {|y| > |x|} we take a truncation of u0. Namely, the function

u0 := max{0, u0 −H(λ−1−µ
C0

)}
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is a sub-solution to (3.27) on {|y| > |x|}, as is

u0R(·) := R−1u0(R·)

for any R > 0. To conclude this section we let

u = u0R in {|y| > |x|}, R = 2−
1+µ
µ ,

and we extend u to all of R4 by odd reflection over C11. For this choice of R, we have in

{|y| > |x|} that

u ≤ u. (3.31)

Indeed, in {|y| > |x|} we have

u = R−1u0(R·)

≤ R−1u0(R·)

= R−1H(w)(R·)

≤ R−1w(R·) (since H ′ < 1)

= Rµw (homogeneity)

≤ w (choice of R and inequality (3.25))

≤ H(w) (since H
′
> 1)

= u.

Furthermore, since H has linear growth, we have that

sup
Br

u ≥ cr1+µ
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for all r large.

3.5 Proof of Theorem 3.1.1

Finally, we put everything together to prove the main theorem of this chapter.

Proof of Theorem 3.1.1: The definition and uniform ellipticity of Φ were established in

Section 3.3. For k ≥ 1, solve the Dirichlet problem

Ψij(∇uk)∂i∂juk = 0, uk|∂Bk
= u.

We have the existence of a unique solution uk ∈ C∞(Bk) ∩ C
(
Bk

)
by the results in Section

5 of [27]. By the symmetries of the integrand Ψ and the boundary data and uniqueness, the

functions uk depend only on |x| and |y|, and are odd over C11 (note that u is odd over C11).

In particular, they vanish on C11. Using (3.31) and the maximum principle we conclude that

u ≤ uk ≤ u

in Bk ∩ {|y| > |x|}, with the reverse inequality on the other side of C11. Simon’s interior

gradient estimate (see Section 5 in [27]) implies that for any R > 0 and k > 2R, the norm

∥uk∥C1(BR) is bounded by a constant independent of k. We can in fact replace the space

C1(BR) in this estimate by Cm(BR) for any m, using De Giorgi-Nash-Moser theory and

Schauder estimates [14]. We may thus extract a subsequence of {uk} that converges locally

uniformly along with all its derivatives to a smooth limit u which solves the equation

Ψij(∇u)uij = 0
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on R4 and furthermore satisfies

u ≤ u ≤ u

in {|y| > |x|}, with the reverse inequality otherwise. Since

sup
Br

u ≥ cr1+µ

for all r large, this completes the proof.

3.6 Discussion

In this final section we discuss how our methods recover, in a systematic way, known examples

of nonlinear entire minimal graphs, and we discuss some open questions related to this work.

3.6.1 Entire minimal graphs asymptotic to Ckk × R

The above approach adapts easily to constructing nonlinear entire solutions to equations

of minimal surface type whose graphs are asymptotic to Ckk × R for any k ≥ 1. In this

subsection we outline how to do this in the case of the minimal surface equation and k ≥ 3,

both recovering the examples in [2] and giving a systematic way of building super- and

sub-solutions starting from a foliation.

For x, y ∈ Rk+1, k ≥ 3, the minimal leaves foliating a side of the cone Ckk are dilations of

{|y| = σ(|x|)}, where σ solves

G(σ) := σ′′ + k(1 + σ′2)

(
σ′

τ
− 1

σ

)
= 0, σ(0) = 1, σ′(0) = 0.

The quantity G is equivalent to the mean curvature of the leaf, up to multiplying by positive
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constants. An analysis of this ODE similar to that done above in the more general anisotropic

setting shows that for

µ = (k − 1/2)−
√

(k − 1/2)2 − 2k,

we have

σ = τ + aτ−µ + F(τ−α) for some a > 0.

Here

α = min{k − 1/2 +
√

(k − 1/2)2 − 2k, 2µ+ 1}

=


k − 1/2 +

√
(k − 1/2)2 − 2k, k = 3

2µ+ 1, k ≥ 4.

From here the analysis follows the same lines. Let β ∈ (µ, α). By analyzing the linearized

equation at σ with right hand side σ−β−2, one produces perturbed leaves defined by functions

(σ, σ) with the asymptotic behavior τ+(a, a)τ−µ+F(τ−β) and a, a > 0, and mean curvature

(−G(σ), G(σ)) ≥ cσ−β−2. Define w, w to be functions that are homogeneous of degree

1 + µ with the perturbed leaves defined by σ, σ as level sets, and then choose H, H with

linear growth and a constant K such that the minimal surface operator applied to H(w) is

nonpositive and to max{0, H(w)−K} is nonnegative in {|y| > |x|} (recall in this case that

F (s) =
√
1 + s2). The analysis is nearly identical after changing the parameters γ, M, δ

from Section 3.4 to

γ =
µ+ 1/2

µ+ 1
, M =

2

β − µ
, δ =

1

M(µ+ 1)
.

As above, the key terms are a term representing the mean curvature of the level sets (we

called it “I” above), which was designed to have a desired sign by perturbing the leaves

in the minimal foliation, and terms involving H ′′, H
′′
(we called them “II” above) which

represent a favorable curvature in the remaining “vertical” direction. These terms dominate
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in complementary regions of {|y| > |x|} (see Remarks 3.4.1 and 3.4.2).

Remark 3.6.1. It is known more generally by work of Hardt-Simon that each side of any area-

minimizing hypercone C with an isolated singularity is foliated by smooth area-minimizing

hyperfurfaces [30]. In this more general setting, perturbing the leaves in the foliation to have

mean curvature of a desired sign amounts to solving the Jacobi field equation with a source

term decaying at a certain rate. It is feasible that our approach of perturbing the leaves,

then stacking could produce entire minimal graphs asymptotic to C × R provided the cone

has appropriate symmetries; see next sub-section for issues that can arise.

3.6.2 The case Ckl, k ̸= l

From Chapter 2, we know for any k, l ≥ 1, each side of Ckl is foliated by minimizers of

a parametric elliptic functional. Perturbing the leaves in the foliation to have anisotropic

mean curvature of a desired sign works in the same way as described above for any k and l

(and similarly for the foliations associated to the area-minimizing Lawson cones), as well as

the construction of super- and sub-solutions to equations of minimal surface type on each

side of the cone that are appropriately ordered and have comparable growth rates. However,

to build entire solutions asymptotic to Ckk × R, we rely on the odd symmetry over Ckk of

solutions to the Dirichlet problem on bounded domains. Thus, another argument is needed

to produce examples asymptotic to Ckl × R when k ̸= l.

In [29] Simon constructs entire minimal graphs that are asymptotic to C × R for a large

class of area-minimizing cones C including all of the area-minimizing Lawson cones. The

approach in that work is first to solve the Dirichlet problem on B1 with large values on one

side of the cone and small values on the other, and then note that appropriate rescalings and

translations of the resulting graphs converge to complete (but not necessarily entire) minimal

graphs. It is then delicately argued that these graphs must in fact be entire, using along the
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way the minimal foliations constructed in [30]. Perhaps a combination of approaches in this

chapter and in [29] could elucidate what is happening, and allow the construction of entire

anisotropic minimal graphs asymptotic to Ckl × R in the remaining cases k ̸= l and either

k + l < 6 or k + l = 6 and min{k, l} = 1.

3.6.3 Controlled Growth Results

It is known that minimal graphs satisfying the controlled growth condition |∇u| = o(|x|) are

necessarily linear [10]. A key tool in the argument is the Simons identity for the Laplace of the

second fundamental form, which has an anisotropic analogue (see [33]). Similar arguments

might thus be used to prove controlled growth Bernstein theorems in the anisotropic case,

assuming e.g. that |∇u| = O(|x|ϵ) for some ϵ small depending on the dimension and the

integrand.

3.6.4 Closeness to Area

Finally, the known results for the area functional are robust under small C4 perturbations

of the integrand in (3.1) from area on Sn. For example, the Bernstein theorem still holds

up to dimension n = 7 ([28]), and the flatness of stable critical points holds in dimension

n = 3 (this was shown in [4], [5], also for the first time in the case of the area functional).

Interestingly, the latter result holds in dimension n = 2 under the hypothesis of C2 closeness

to the area functional [17]. It would be interesting to determine whether or not the topology

in which closeness is measured could be relaxed e.g. to C2 in the other cases. By quantifying

the closeness to area of the integrands in this chapter or in Chapter 2, one could gain insights

into this question.
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Chapter 4

Controlled growth anisotropic

Bernstein problem

4.1 Introduction

It is well known that the only entire solutions of the minimal surface equation on Rn,

div

(
∇u√

1 + |∇u|2

)
= 0,

are linear functions, provided that n ≤ 7, [1], [7], [13], [31].

In 1990, Ecker and Huisken [10] extended this theorem to all dimensions, assuming in ad-

dition that the gradient of u grows slightly slower than linearly. Their theorem says the

following:

Theorem 4.1.1. An entire smooth solution u of the minimal surface equation satisfying

|∇u(x)| = o(
√

|x|2 + |u(x)|2)
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is a linear function.

If u is an entire solution to the minimal surface equation, and

|∇u| < C, (4.1)

then u is linear. The reason is that the minimal surface equation becomes uniformly elliptic

in this case, and then the Harnack inequality of De Giorgi and Nash can be applied [14]. If

we assume something weaker, that

|u(x)| ≤ C(1 + |x|), (4.2)

then u is linear. The reason is that linear growth implies the gradient is globally bounded,

and this is by the interior gradient estimate of Bombieri-De Giorgi-Miranda [3]. And in

Theorem 4.1.1, the assumption is weaker than the previous examples. In fact, it is almost

optimal, since in [29], Leon Simon constructed nonlinear global solutions to the minimal

surface equation in high dimensions with

|∇u(x)| ≤ c|x|1+O(1/n).

The problem appears to be open if we just assume

|∇u(x)| = O(|x|).

In the anisotropic case, growth conditions (4.1) and (4.2) also imply global solutions are

linear. In the case of (4.1), the reason is the same as the minimal surface case; and the case

(4.2) is by the interior gradient estimate of Leon Simon [27].

The chapter is organized as follows. In Section 4.2, we give a proof of Theorem 4.1.1. And
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in Section 4.3, we discuss a possible generalization of Theorem 4.1.1 to the anisotropic case,

and also its difficulty.

4.2 Proof of Theorem 4.1.1

Let Σ = graph u. Assume without loss of generality that 0 ∈ Σ. We let Σ ∩ BR =

{(x, u(x)) ∈ Rn+1 : |x|2 + |u(x)|2 ≤ R2}, v =
√

1 + |∇u|2, and |II| denotes the norm of the

second fundamental form of Σ. The Theorem 4.1.1 follows from the following lemma:

Lemma 4.2.1. We have the curvature estimate:

|II(0)|v(0) ≤ c(n)R−1 sup
Σ∩BR

v (4.3)

for all R > 1.

Theorem 4.1.1 follows from this estimate and the sub-linear growth hypothesis on |∇u|:

Proof of Theorem 4.1.1. Suppose the Lemma 4.2.1 is true, then

|II(0)|v(0) ≤ c(n)R−1 sup
Σ∩BR

(√
1 + o(|x|2 + |u(x)|2)

)
≤ c(n)

o(R)

R
.

After taking R → +∞, we get II(0) = 0. By translation, we have the same holds at any

point on Σ.

Now it suffices to prove the Lemma 4.2.1.

Proof of Lemma 4.2.1. To prove (4.3), we recall two well-known relations for minimal
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surfaces, the Jacobi equation

LΣν
n+1 = ∆νn+1 + |II|2νn+1 = 0, (4.4)

and Simons inequality [26]

∆|II|2 ≥ 2(1 + 2/n)|∇|II||2 − 2|II|4, (4.5)

where νn+1 is the (n+ 1)-th component of ν, LΣ and ∆ denote the Jacobi operator and the

Laplace-Beltrami operator on Σ respectively. Notice that νn+1 = v−1, and plug this into the

equation (4.4), we arrive at

∆v = |II|2v + 2v−1|∇v|2. (4.6)

From (4.5) and (4.6) we compute

∆(|II|pvq) ≥(q − p)|II|p+2vq + p(p− 1 + 2/n)|II|p−2vq|∇|II||2

+ q(q + 1)vq−2|II|p|∇v|2 + 2pq|II|p−1vq−1∇|II| · ∇v.
(4.7)

By Young’s inequality we have for ε > 0 that

2pq|II|v∇|II| · ∇v ≥ −pq
[
εv2|∇|II||2 + ε−1|II|2|∇v|2

]
. (4.8)

Using (4.8) inequality in (4.7) we get

∆(|II|pvq) ≥(q − p)|II|p+2vq + p [p− 1 + 2/n− εq] |II|p−2vq|∇|II||2

+ q
[
q + 1− ε−1p

]
vq−2|II|p|∇v|2.
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We can choose ε such that each of the last two terms is non-negative provided

q(1− 2/n) ≤ p− 1 + 2/n,

in which case

∆(|II|pvq) ≥ (q − p)|II|p+2vq. (4.9)

In particular, taking p = q ≥ n−2
2

we conclude that

∆(|II|pvp) ≥ 0.

Notice that mean value property also holds on minimal surfaces [14]:

|II|pvp(0) ≤ c(n)

 
Σ∩BR

|II|pvp dH n

≤ c(n)R−n/2

(ˆ
Σ∩BR

|II|2pv2p dH n

)1/2 (4.10)

where we used Cauchy-Schwarz inequality and the fact that the n-dimensional Hausdorff

measure on minimal graphs can be estimated by H n(Σ ∩BR) ≤ c(n)Rn [14].

Now, in (4.9), replace p with p− 1 and q with p, then for p ≥ n− 1 we get

∆(|II|p−1vp) ≥ |II|p+1vp. (4.11)

In order to estimate the right-hand side of (4.10), we then multiply (4.11) by |II|p−1vpη2p

where η is a test function with compact support, then we obtain

ˆ
Σ

|II|2pv2pη2p ≤
ˆ
Σ

∆
(
|II|(p−1)vp

)
· |II|p−1vpη2p. (4.12)
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Denote |II|(p−1)vp by f , then we have

ˆ
Σ

(∆f · f) η2p = −2p

ˆ
Σ

fη2p−1∇f · ∇η −
ˆ
Σ

|∇f |2η2p

≤ c(p)

ˆ
Σ

f 2η2(p−1)|∇η|2

= c(p)

ˆ
Σ

|II|2(p−1)v2pη2(p−1)|∇η|2.

(4.13)

From (4.12) and (4.13), and by using Young’s inequality we get

ˆ
Σ

|II|2pv2pη2p ≤ c(p)

ˆ
Σ

(
|II|2(p−1)v2(p−1)η2(p−1)

)
·
(
v2|∇η|2

)
≤ c(p)

(
ε

ˆ
Σ

|II|2pv2pη2p + ε1−p

ˆ
Σ

v2p|∇η|2p
)
.

Let ε be small, then we finally arrive at

ˆ
Σ

|II|2pv2pη2p ≤ c(p)

ˆ
Σ

v2p|∇η|2p. (4.14)

We now choose η to be the standard cut-off function for Σ ∩ B2R, with η ≡ 1 in BR and

η ≡ 0 outside of B2R. Then, since p = p(n), we obtain from (4.14)

(ˆ
Σ∩BR

|II|2pv2p dH n

)1/2

≤ c(n)Rn/2R−p sup
Σ∩B2R

vp (4.15)

which in view of (4.10) implies estimate (4.3).
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4.3 The Anisotropic Case

The Theorem 4.1.1 does not hold for general elliptic functionals, for example in Chapter

3, the nonlinear entire solution u whose graph is a minimizer to some parametric elliptic

functional, and its gradient has growth rate between (0, 1/2) at infinity. However, one of the

key ingredients in the proof of the Theorem 4.1.1 is Simons identity for the Laplace of the

second fundamental form, which has an anisotropic analogue (see [33]). It seems possible

that one could use similar arguments to prove a controlled growth Bernstein theorem in the

anisotropic case:

Conjecture 4.3.1. Let u be a global solution to an equation of minimal surface type on Rn,

corresponding to a functional AΦ. Then for some ε(n, Φ) > 0,

sup
Br

|∇u| = O(rε) ⇒ u is linear.

Below we discuss briefly what the main difficulty is in extending the arguments of Ecker-

Huisken to the anisotropic case.

We first note that it can be shown that there is an anisotropic analogue for the Jacobi

operator for minimal graphs. If a hypersurface Σ is a minimizer of a parametric elliptic

functional AΦ, consider Σ̃ a normal variation of Σ, defined as

Σ̃ = { z + εφ(z)ν(z), z ∈ Σ },

where ν(z) is the unit normal of Σ at z and φ is a smooth function compactly supported on

Σ. After some computation, we see that the anisotropic mean curvature of Σ̃ is, to leading

order in ε, εLΦφ, where LΦ is the anisotropic Jacobi operator

LΦ = ∆Φ + |IIΦ|2. (4.16)
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Here ∆Φ and |IIΦ|2 are defined by

∆Φφ = div
(
D2Φ(ν)∇φ

)
, |IIΦ|2 = tr

(
D2Φ(ν) · II2

)
.

Similar to the minimal surfaces case, if Σ is the graph in Rn+1 of a function on Rn, we

conclude that for the (n+ 1)-th component of the unit normal ν to Σ we have

LΦν
n+1 = ∆Φν

n+1 + |IIΦ|2νn+1 = 0.

Plugging v−1 = νn+1 into the above equation, we arrive at

∆Φv = |IIΦ|2v + 2v−1
(
(D2Φ(ν)∇v) · ∇v

)
. (4.17)

In [33], there is a generalization of Simons inequality, which says the following:

1

2
∆Φ|IIΦ|2 ≥

(
1− η

1 + θ

)
(1 + 2/n)(D2Φ∇|IIΦ|) · ∇|IIΦ| − (λ−1

Φ +C(η, θ)εΦ)|IIΦ|4 (4.18)

for all η ∈ (0, 1] and θ > 0 with a non-negative constant εΦ that tends to 0 as ∥Φ−A∥C4 → 0,

where A(x) = |x|, and λΦ is defined as follows

λΦ := inf
z∈Sn,V ∈z⊥\{0}

∂2Φ
∂zα∂zβ

(z)V αV β

|V |2
> 0.

For simplicity, in the future we will still use ∆, II instead of ∆Φ and IIΦ. From (4.17) and
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(4.18) we compute

∆(|II|pvq) ≥
(
q − (λ−1

Φ + C(η, θ)εΦ)p
)
|II|p+2vq

+ p

(
p− 2 +

(
1− η

1 + θ

)
(1 + 2/n)

)
|II|p−2vq(D2Φ∇|II|) · ∇|II|

+ q(q + 1)|II|pvq−2(D2Φ∇v) · ∇v + 2pq|II|p−1vq−1(D2Φ∇|II|) · ∇v.

Using Young’s inequality we derive

∆(|II|pvq) ≥
(
q − (λ−1

Φ + C(η, θ)εΦ)p
)
|II|p+2vq (4.19)

provided (
2−

(
1− η

1 + θ

)
(1 + 2/n)

)
q ≤ p− 2 +

(
1− η

1 + θ

)
(1 + 2/n).

It seems that we can continue as in [10], but the issue is that the constant λΦ degenerates

with the ellipticity of Φ. To be more precise, in order to have

∆(|II|pvq) ≥
(
q − (λ−1

Φ + C(η, θ)εΦ)p
)
|II|p+2vq ≥ 0,

we would need q > (λ−1
Φ + C(η, θ)εΦ)p. Combining this with the constraint from the use of

Young’s inequality in (4.19), we see that we would need

(
2−

(
1− η

1 + θ

)
(1 + 2/n)

)
(λ−1

Φ + C(η, θ)εΦ) < 1,

which for λΦ small is not possible, so it is not clear that the same strategy would prove

Conjecture 4.3.1.
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