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The Luttinger–Ward functional was proposed more than five
decades ago and has been used to formally justify most practically
used Green’s function methods for quantum many-body systems.
Nonetheless, the very existence of the Luttinger–Ward functional
has been challenged by recent theoretical and numerical evidence.
We provide a rigorously justified Luttinger–Ward formalism, in
the context of Euclidean lattice field theory. Using the Luttinger–
Ward functional, the free energy can be variationally minimized
with respect to Green’s functions in its domain. We then derive
the widely used bold diagrammatic expansion rigorously, with-
out relying on formal arguments such as partial resummation of
bare diagrams to infinite order.

many-body perturbation theory | Feynman diagrams | lattice field theory |
Luttinger–Ward formalism | Green’s function

The Luttinger–Ward (LW) formalism (1) is an important
component of Green’s function theories in quantum many-

body physics. The LW functional Φ[G] provides the formal
foundation for bold diagrammatic perturbation theory to all
orders and is used to formally derive widely used numerical
schemes such as the self-consistent Hartree–Fock approxima-
tion, the GW approximation (2), the dynamical mean-field the-
ory (DMFT) (3, 4), and a number of its recent extensions such as
the DMFT+GW method (5) and the dynamical cluster approxi-
mation (6). Nonetheless, the very existence of the LW functional
is currently under debate, with theoretical and numerical evi-
dence favoring the contrary in the past few years for fermionic
systems (7–10). Such failure has profound theoretical and prac-
tical implications. It suggests that many practically used Green’s
functions for computing static or dynamic properties might fail
in unpredictable ways. In particular, even in the perturbative
regime where bare diagrams converge, the bold diagrams may
fail to converge or converge to the wrong quantity (7).

In this work, we provide a rigorously justified LW formalism,
in the context of the Euclidean lattice field theory [such as the
ϕ4 theory (11, 12)]. Due to an exact correspondence between
the Feynman diagrammatic expansion of lattice field theory and
that of quantum many-body physics (11, 13), Euclidean lattice
field theory retains the valuable structural information of dia-
grammatic expansions. Meanwhile, it avoids a key theoretical
challenge of the fermionic setup, in the sense that the Green’s
function in the Euclidean lattice field theory, defined as a two-
point correlator function, has a clearly defined domain, namely
the set of positive definite matrices. Hence this work represents
a key step toward understanding and potentially remedying the
LW formalism and Green’s function methods for fermionic sys-
tems. Our theory also proves the widely used bold diagrammatic
expansion, interpreted as an asymptotic series for approximat-
ing the LW functional. Independently, our adaptation of the LW
formalism to a different setting may provide unique insight into
the study of Euclidean field theories.

For a general interaction form (not necessarily the quar-
tic interaction), we prove using Legendre duality that there

exists a universal functional of the Green’s function, denoted
F [G], which is defined via a constrained minimization prob-
lem similar in spirit to that of the Levy–Lieb construction
in density functional theory (14, 15) at zero temperature
and the Mermin functional (16) at finite temperature and
further the “density matrix functional theory” developed in
refs. 17–19. We identify a natural one-to-one correspondence
between the interacting Green’s function G and the inverse
G−1

0 of the noninteracting Green’s function. The LW func-
tional Φ[G] is rigorously defined by subtracting a logarithmically
divergent component from F [G]. The functional derivative of
the LW functional defines the self-energy and is also uni-
versal. The free energy can be expressed variationally as a
minimum over all physical Green’s functions, and the self-
consistent solution of the Dyson equation yields its global and
unique minimizer. Finally, using the LW formalism for quar-
tic interactions, we rigorously recover the form of the bold
diagrammatic expansion appearing in the quantum many-body
setting, without any reference to the noninteracting Green’s
function G0. This work gives our main results and outlines of
the proofs.

After proper discretization, a Euclidean lattice field theory can
be described by the partition function

Z =

∫
Rn

e−
1
2
xTAx−U (x) dx . [1]

For instance, the partition function of a scalar ϕ4 theory in a
d -dimensional space is
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Z =

∫
Dϕ(r)e−

∫
Rd

1
2
|∇ϕ(r)|2+aϕ2(r)+uϕ4(r) dr. [2]

After discretizing the field ϕ(r) on a lattice of size n with com-
ponents denoted by {xi}ni=1, we can rewrite the quadratic part
in Eq. 2 by a quadratic form given by a symmetric matrix A and
the quartic part by a polynomial U (x ) as in Eq. 1. Here A can
be associated with the noninteracting Hamiltonian in quantum
many-body physics and U with the interaction term. The form in
Eq. 1 is very general and can represent interaction terms that are
quartic, beyond quartic, or even nonpolynomial in classical and
quantum statistical mechanics (e.g., refs. 11, 20, and 21). For the
integral to be well defined, we assume that U (x ) goes to infin-
ity faster than any quadratic function of x . More precisely, we
assume that for any α∈R, there exists a constant b ∈R such that
U (x ) + b≥α‖x‖2 for all x ∈Rn . This is referred to as the strong
growth condition for U . The growth condition can be weakened
so that our theory is applicable to a larger class of interactions,
but we do not discuss such technical details in this paper. For sim-
plicity we restrict our attention to real matrices, although analo-
gous results can be obtained in the complex Hermitian case.

Let Sn , Sn
+, and Sn

++ denote, respectively, the sets of sym-
metric, symmetric positive semidefinite, and symmetric positive
definite real n ×n matrices, so Sn

++⊂Sn
+⊂Sn . Then the par-

tition function Z in Eq. 1 can be viewed as a functional of
A∈Sn denoted by Z [A]. The Gibbs free energy is defined as
Ω[A] :=− logZ [A], and Ω[A] is strictly concave and C∞ smooth
on Sn .

The derivative of Ω with respect to Aij defines the two-point
correlator or the Green’s function

Gij :=∇ijΩ[A] =
1

Z [A]

∫
xixj e

− 1
2
xTAx−U (x) dx . [3]

The matrix G ∈Sn is the two-point correlator with respect to the
probability distribution ρ(x ) = e−

1
2
xTAx−U (x)/Z [A], and hence

G ∈Sn
++. G is called the interacting Green’s function, and if

we set U (x )≡ 0, we obtain the noninteracting Green’s function
G0 =A−1. However, the noninteracting Green’s function G0 is
well defined only for A∈Sn

++, while the interacting Green’s
function G is well defined for any A∈Sn owing to the growth
property of the interaction term U (x ).

LetM be the space of probability density functions on Rn with
moments up to second order; i.e., let

M=

{
ρ∈L1(Rn, (1 + |x |2) dx ) : ρ≥ 0,

∫
ρ(x ) dx = 1

}
.

Define G :M→Sn
++ by G(ρ) =

∫
xxT ρ dx , which maps a prob-

ability density to a Green’s function in Sn
++. On the other hand,

for any G ∈Sn
++, it is clear that the inverse mapping G−1(G)

is a nonempty set through the construction of a Gaussian dis-
tribution. For a general interaction U :Rn→R satisfying the
strong growth condition, our main results are given in Theorems 1
and 2.

Theorem 1 (Variational Structure). The Gibbs free energy Ω:Sn→R
can be expressed variationally via

Ω[A] = inf
G∈Sn

++

(
1

2
Tr[AG]−F [G]

)
, [4]

where F :Sn
++→R, defined as

F [G] := sup
ρ∈G−1(G)

[
S(ρ)−

∫
U ρ dx

]
, [5]

is the Legendre dual of Ω[A] with respect to the inner product
〈A,G〉= 1

2
Tr[AG]. Here S :M→R is the entropy and is defined

as S(ρ) =−
∫
ρ log ρ dx . The mapping G[A] :=∇Ω[A] is a bijec-

tion Sn→Sn
++, with the inverse given by A[G] :=∇F [G].

Note that F depends only on G and, implicitly, on the inter-
action U , but it is independent of the noninteracting term A. In
this sense, F is a universal functional of the Green’s function G .

The last statement of Theorem 1 suggests that ∇F (hence
also F) should approach infinity as G approaches the bound-
ary of Sn

++. Remarkably, we can explicitly separate the part that
accounts for the blowup of F at the boundary. Consider the case
in which U ≡ 0 and F [G] = supρ∈G−1(G) S(ρ). The maximum is
attained by the probability density corresponding to the Gaussian
distributionN (0,G), whose entropy is 1

2
log det(2πeG). Hence

F [G] =
1

2
log((2πe)n detG) =

1

2
Tr[log(G)] +

n

2
log(2πe),

[6]
which diverges logarithmically as G approaches the boundary of
Sn
++. Subtracting away this singular part, we define the LW func-

tional as

Φ[G] := 2F [G]−Tr[log(G)]−Φ0, Φ0 =n log(2πe). [7]

Theorem 2 (LW Functional). The LW functional in Eq. 7 is universal,
satisfies Φ[G]≡ 0 for noninteracting systems, and extends contin-
uously up to the boundary of Sn

++. The self-energy functional is
defined as Σ[G] =∇Φ[G] and is also universal. The solution of the
Dyson equation

G−1 =A−Σ[G] [8]

in Sn
++ is the unique minimizer of the free energy in Eq. 4.

According to the preceding discussion, for A∈Sn
++, we have

G0 =A−1, and the Dyson equation Eq. 8 can be written equiva-
lently as

G =G0 +G0Σ[G]G. [9]

This is the common starting point for deriving the Feynman dia-
gram expansion (11, 13) with propagator G0, i.e., the “thin-line”
(or “bare”) diagrammatic expansion. In our setting, this expan-
sion is meaningless when A/∈Sn

++, since the corresponding parti-
tion function Eq. 1 diverges in noninteracting limit. On the other
hand, the Dyson equation in the form of Eq. 8 is more general
and is valid for any A∈Sn .

When the self-energy functional Σ[G] is known, Eq. 8 can be
solved to obtain G . On the other hand, Eq. 8 can also be used
in the reverse direction to compute Σ once A and an approxi-
mation to G are available. This is the approach taken in DMFT
(3), which approximates Σ by solving a number of impurity prob-
lems on local domains. This second use of the Dyson equation
seems to suggest that Σ depends on both G and A, although
we have claimed it to be a universal functional of G! However,
the one-to-one mapping between A and G furnished by Theo-
rem 1 resolves this paradox, and Σ[G] is indeed well defined for
the Euclidean lattice field theory. A similar correspondence for
many-body quantum systems is still under debate (4, 7–10).

Although the dependence of the LW functional on the inter-
action U was implicit only in the preceding discussion, we may
explicitly consider this dependence, including it in our notation
as Φ[G;U ]. The same convention will be followed for other func-
tionals without comment. As we shall see, unlike the functional
F [G], which diverges at the boundary of Sn

++, the LW func-
tional Φ[G;U ] extends continuously to the boundary of G . This
relates to the possibility of establishing a diagrammatic expan-
sion Φ[G;U ] with respect to the interaction strength.

So far we have considered the LW formalism for any interac-
tion that satisfies the strong growth condition. To draw a closer
connection with the diagrammatic expansion used in quantum
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many-body physics, we now restrict our attention to the quartic
interaction

U (x ) =
1

8

n∑
i,j=1

vij x
2
i x

2
j . [10]

Here vij = vji is symmetric, and the symmetry factor 8 simpli-
fies the counting when deriving diagrammatic approximations.
v should be chosen so that the corresponding U satisfies the
strong growth condition. In particular, this condition is satis-
fied if vij ≥ 0 for all i , j , with strict inequality holding for i = j .
The interaction Eq. 10 can mimic a short-range interaction as
well as a long-range (such as Coulomb) interaction in its second
quantized form (13). One can derive an exact correspondence
between the Feynman diagrammatic expansions in this lattice
field theory and those in condensed matter physics (11), neglect-
ing the particle-hole distinction.

For fixed interaction U and G ∈Sn
++, we may define a per-

turbative expansion of Φ[G; εU ] with respect to the interaction
strength ε. Theorem 3 shows that the bold diagrammatic expan-
sion of the LW functional at G can be understood as the asymp-
totic series in ε for the LW functional at G . Note that for the
series in Eq. 11 to be asymptotic means that the error of the N th
partial sum is O(εN+1) as ε→ 0. The importance of Theorem 3
is to show that the bold diagrammatic expansion is well defined
without any reference to the noninteracting Green’s function G0.

Theorem 3 (Bold Diagrammatic Expansion). For any interaction
U :Rn→R satisfying the strong growth condition, the LW func-
tional and the self-energy have the following asymptotic series
expansions:

Φ[G; εU ] =

∞∑
k=1

Φ(k)[G;U ] εk , Σ[G; εU ] =

∞∑
k=1

Σ(k)[G;U ] εk .

[11]
Moreover, for U of the form Eq. 10, the coefficients of the asymp-
totic series satisfy

Φ(k)[G;U ] =
1

2k
Tr
[
GΣ(k)[G;U ]

]
, [12]

and Σ(k)[G;U ] consists of all one-particle irreducible skeleton dia-
grams of order k .

For example, when the U dependence is determined by vij as
in Eq. 10, one can show that the self-energy obtained from bold
diagrammatic expansion up to second order is(

Σ(1)[G]
)
ij

=−1

2

(∑
k

vikGkk

)
δij − vijGij ,

(
Σ(2)[G]

)
ij

=
1

2
Gij

∑
k ,l

vikG
2
klvlj

+
∑
k ,l

vikGkjGklGlivjl .

For readers familiar with Feynman diagrams, the corresponding
diagrams (or graphs) are given in Fig. 1. (See, e.g., ref. 11 for

a general discussion.) In each graph, a vertex connected only to
a truncated thin line is called an external vertex and represents
the i or j index of the self-energy matrix. All other vertices are
internal vertices, which are to be summed over in the expansion.
Each “bold” line (represented as a double line) connecting two
internal vertices labeled as k , l represents the Green’s function
Gkl . When the bold line forms a closed circle, it is interpreted
as the diagonal element Gkk . Each wiggled line connecting two
internal vertices labeled as k , l represents the interaction −vkl .
The factor 1

2
is associated with the symmetry factor of the graph.

Compared with the Feynman diagrams for condensed matter
systems, we find that not coincidentally, Fig. 1 A and B corresponds
to the Hartree and Fock exchange diagrams, respectively, and Fig.
1 C and D corresponds to the ring and second-order exchange dia-
grams, respectively. The only difference is that the lines in the dia-
grams in Fig. 1 do not possess directions, due to the absence of any
distinction between creation and annihilation operators.

Interestingly, the relation Eq. 12 was originally assumed to be
true to obtain a formal derivation of the LW functional (1, 22).
Our proof here does not rely on such formal manipulation, but
instead only on the transformation rule (Proposition 4) below and
the quartic nature of the interaction U .

Finally, we remark that certain properties in the Euclidean
setting, such as the concavity of the free energy functional, can
noticeably fail in the non-Euclidean setting. Indeed, the origi-
nal setting for the LW formalism is a field theory described by
the fermionic coherent state path integral represented by Grass-
mann variables. The free energy functional is nonconcave and the
induced Legendre correspondence may not be one to one. This
leads to the failure of the LW formalism observed in refs. 4 and
7–10, and the full picture of the LW functional remains to be
revealed. Intriguingly, the LW formalism may also be seen as an
expansion of a static density matrix formalism (16, 19), which itself
does enjoy convexity properties and hence well-defined Legendre
duality. However, the density matrix formalism is not induced in
the same way by a field theory and does not enjoy even formally
properties such as the diagrammatic expansion. The Euclidean
field theory setting can then be viewed as combining the best of
both worlds, in that it enjoys the convexity properties needed for
the nonperturbative definition of the Legendre dual functionals,
as well as the formal properties convenient for systematic approx-
imation as in diagrammatic expansions and DMFT.

This work also opens up several immediate research direc-
tions. By making a connection between quantum many-body
physics and Euclidean lattice field theory, it lowers the barrier for
quantitatively assessing the effectiveness of bold diagrammatic
schemes and other numerical schemes based on many-body per-
turbation theory such as the GW theory (2). Possible topics to
be developed include the effectiveness of self-consistent many-
body perturbation theories and the effectiveness of the vertex
correction methods in the GWΓ theory. Theoretical properties
of impurity models and embedding schemes, such as the DMFT,
can also be studied in the context of Euclidean lattice field theory
using the LW formalism.

A B C D

Fig. 1. Bold diagrams for the first-order (A and B) and second-order (C and D) contribution to the self-energy for interaction of the form Eq. 10.
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Outline of the proof of Theorem 1: First, we reformulate the
computation of the Gibbs free energy Ω[A] =− logZ [A] as a
minimization problem:

Ω[A] = inf
ρ∈M

[∫ (
1

2
xTAx +U (x )

)
ρ dx −S(ρ)

]
. [13]

This is the classical Gibbs variational principle (23). For a short
proof adapted to this setting, see Proof of the Classical Gibbs Vari-
ational Principle in Theorem 1.

Next, we split the infimum in Eq. 13 as

Ω[A] = inf
G∈Sn

++

(
1

2
Tr[AG] + inf

ρ∈G−1(G)

[∫
U ρ dx −S(ρ)

])
.

[14]
Here we have used

∫
xTAx ρ dx = Tr[G(ρ)A]. By introducing

the functional Eq. 5, we obtain the variational formulation in
Eq. 4. Now Eq. 4 means precisely that Ω is the Legendre dual
or more precisely the concave conjugate of F with respect to the
inner product 〈A,G〉= 1

2
Tr[AG]. This is denoted by Ω =F∗.

One can further prove thatF is concave onSn
++ and diverges to

−∞ at the boundary ofSn
++ (Proof ThatF Is Concave in Theorem

1 and Proof That F Diverges to −∞ at the Boundary of Sn
++ in

Theorem 1). Based on these facts, we have thatF =F∗∗; i.e.,F =
Ω∗, so F and Ω are concave duals of one another. Furthermore,
it can be shown using the strict concavity and C∞ smoothness of
Ω =F∗ that F is strictly concave and C∞ smooth on Sn

++.
The Legendre duality suggests that ∇F and ∇Ω are inverses

of one another; i.e., the mapping G[A] :=∇Ω[A] is a bijection
Sn→Sn

++, with inverse given by A[G] :=∇F [G]. Moreover, we
remark that for any G ∈Sn

++, the supremum in the definition
Eq. 5 of F [G] is uniquely attained at the probability density
ρG(x ) := 1

Z [A[G]]
e−

1
2
xTA[G]x−U (x).

Q.E.D.
Outline of the proof of Theorem 2: The differentiability of the

LW functional on Sn
++ directly follows from the C∞-smooth

property of F [G] on Sn
++. Hence the self-energy Σ[G] =∇Φ[G]

is well defined on Sn
++. Using the LW functional, Eq. 4 can be

written as

Ω[A] =
1

2
inf

G∈Sn
(Tr[AG]−Tr[log(G)]−Φ[G]−Φ0). [15]

The Euler–Lagrange equation with respect to G gives the Dyson
equation Eq. 8, and the uniqueness of the solution follows from
that of the minimizer in Theorem 1.

We now establish that unlike F [G], which blows up at the
boundary of Sn

++, the LW functional Φ[G] extends continuously
to the boundary of Sn

++, so in fact the LW functional is well
defined on Sn

+. We first state a useful property of the LW func-
tional, which relates a basis transformation of the Green’s func-
tion with a transformation of the interaction (Proof of the Trans-
formation Rule (Proposition 4)).

Proposition 4 (Transformation Rule). Let G ∈Sn
++, and let U be the

interaction term. Let T denote an invertible matrix in Rn×n , as well
as the corresponding linear transformation Rn→Rn . Then

Φ[TGT ∗;U ] = Φ[G;U ◦T ].

Using the transformation rule, we need only to specify a formula

for computing Φ[G] for matrices of the form G =

(
Gp 0
0 0

)
with

Gp ∈Sp
++, p≤n . Indeed, any matrix G ∈Sn

+ with rank p≤n can
be represented as such after an appropriate change of basis, so
together with the transformation rule, such a formula will pin
down the value of Φ[G] for all G ∈Sn

+.

Define a p-dimensional interaction Up :Rp→R by the rule
Up( · ) =U ( · , 0). We prove that

Φn [G;U ] = Φp [Gp ;Up ] [16]

defines the continuous extension of Φn to the boundary of Sn
++.

Here Φn and Φp are the LW functionals for the n-dimensional
and p-dimensional lattice field theories, respectively. We sketch
the proof of this fact in Sketch of the Proof of the Continuous
Extension of the LW Functional in Theorem 2.

Q.E.D.
Outline of the proof of Theorem 3: For a given Green’s func-

tion G and interaction U , for notational simplicity we omit
the dependence on G and U from the notation via the defini-
tions Φ(ε) := Φ[G; εU ] and Σ(ε) = Σ[G; εU ]. We first prove that
there exists an asymptotic series of the form Eq. 11. This exis-
tence proof is nonconstructive, and hence the series coefficients
still need to be determined. We abbreviate the notation for the
series coefficients via Φ(k) := Φ(k)[G;U ] and Σ(k) := Σ(k)[G;U ].
Here the superscript (k) is just a notation and does not indicate
the k th-order derivative.

Theorem 3 then consists of identifying that these coefficients
are given by the bold diagrammatic expansion using G and U .
Our strategy is to first evaluate the expansion for the self-energy
and then pin down the coefficients for the LW functional by prov-
ing the relation Eq. 12. Since the series expansion is valid only in
the asymptotic sense, for any finite ε we consider the truncation
at finite-order N , which is denoted by Σ

(N )
(ε) :=

∑N
k=0 Σ(k) εk .

Then we have Σ(ε)−Σ
(N )

(ε) =O(εN+1). For the purpose of
this discussion, O(εN+1) will be thought of as negligibly small.

A difficulty in proving Theorem 3 is that, although we wish to
use the technique that resums bare self-energy diagrams to bold
self-energy diagrams, Σ[G; εU ] is defined without reference to
any bare propagator. Lemma 5 below identifies a bare propaga-
tor G(N )

0 (ε) that generates (up to negligible error) the bold prop-
agator G under the interaction εU . The rest of the proof involves
rigorous resummation of the diagrams using G

(N )
0 (ε) up to finite

order to obtain the bold diagrammatic expansion (Proof of the
Resummation Step in Theorem 3). After this, the relation Eq. 12
is a consequence of the transformation rule (Proof of the Expan-
sion Coefficients of the LW Functional in Theorem 3).

It remains to introduce the aforementioned Lemma 5 and
explain how it allows us to identify a bare propagator (dependent
on ε) that generates G under the interaction εU , up to negligible
error. Lemma 5 says that Σ

(N )
(ε) can be identified as the exact

self-energy with respect to a modified interaction term (Proof of
Lemma 5):

Lemma 5. Σ
(N )

(ε) is the self-energy at G induced by the modi-

fied interaction U
(N )
ε (x ) := εU (x ) + 1

2
xT
(

Σ(ε)−Σ
(N )

(ε)
)
x . In

other words, Σ
(N )

(ε) = Σ[G;U
(N )
ε ] is the exact self-energy corre-

sponding to a noninteracting Green’s function

G
(N )
0 (ε) :=

(
G−1 + Σ

(N )
(ε)
)−1

[17]

and the interaction U
(N )
ε .

Note carefully that Lemma 5 is a nonperturbative fact and is
valid for all ε> 0. In a perturbative context, since Σ

(N )
(ε) is the

self-energy yielded exactly by the bare propagator G(N )
0 (ε) under

the interaction U
(N )
ε , and since U

(N )
ε (x ) (for any given x ) differs

from εU (x ) by negligible error, one expects that the self-energy
Σ̃(N )(ε) yielded exactly by the same bare propagator under the
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interaction εU differs from Σ
(N )

(ε) by only negligible error, and
this is indeed true.

Then one finds, by swapping Σ out for Σ̃ in Eq. 17, that

G̃(N )(ε) :=

([
G

(N )
0 (ε)

]−1

− Σ̃(N )(ε)

)−1

≈G,

in the sense that equality holds with negligible error. But G̃(N )(ε)
is precisely the bold propagator generated by the bare propa-
gator G(N )

0 (ε) under interaction εU . This bold propagator then

matches G up to negligible error as claimed. Together with the
resummation step (Proof of the Resummation Step in Theorem 3),
this establishes the expansion for the self-energy.

Q.E.D.
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