
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Data-driven Performance Optimization for Data-intensive Applications

Permalink
https://escholarship.org/uc/item/6gn2p8mn

Author
Liu, Jie

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gn2p8mn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Data-driven Performance Optimization for Data-intensive Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Jie Liu

Committee in charge:

Dong Li, Chair
Florin Rusu
Pengfei Su

Spring 2024

Copyright

Jie Liu, Spring 2024

All rights reserved.

The dissertation of Jie Liu is approved, and it is

acceptable in quality and form for publication on

microfilm and electronically:

Professor Dong Li, Chair

Professor Florin Rusu

Professor Pengfei Su

University of California, Merced

Spring 2024

iii

DEDICATION

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita and Publications . xiii

Abstract . xiii

Chapter 1 Introduction . 1
1.1 Primary Contributions . 4
1.2 Outline and Previously Published Work 9

Chapter 2 Background . 11
2.1 Background on Mobile Processors 11
2.2 Background of DNNs Training 12

Chapter 3 Flame: A Self-Adaptive Auto-Labeling System for Heterogeneous
Mobile Processors . 15
3.1 Overview . 15
3.2 Model Design . 16

3.2.1 Labeling Functions Generation 17
3.2.2 Labeling Functions Self-Adaption 20
3.2.3 Labeling Results Guarantees 22

3.3 System Design . 23
3.3.1 Leverage GPU . 24
3.3.2 Leverage DSP and CPU 26
3.3.3 Implementation . 28

3.4 Evaluation . 29
3.4.1 Labeling Quality 31
3.4.2 Analysis on Execution Time 33
3.4.3 Analysis on Energy Consumption 34
3.4.4 Micro-Benchmarking Results 36
3.4.5 Evaluation on User Experience 37

3.5 Summary . 39

v

Chapter 4 Fauce: Fast and Accurate Deep Ensembles with Uncertainty for
Cardinality Estimation . 40
4.1 Overview of Fauce . 40
4.2 Problem description . 41

4.2.1 Notations . 41
4.2.2 Formulation as a Regression Problem 42

4.3 Query Featurization . 42
4.3.1 Tables and Joins Encoding 43
4.3.2 Columns Encoding 45
4.3.3 Range Representation 46

4.4 Choice of regression methods 47
4.4.1 Cardinality Transformation 48
4.4.2 Training Data Generation 49

4.5 Model Design . 50
4.5.1 Uncertainty Quantification 51
4.5.2 Training and Inference 52
4.5.3 Management of Estimation Uncertainty 53
4.5.4 Integration with DBMS 55

4.6 Evaluation . 56
4.6.1 Experimental Setup 56
4.6.2 Estimation Quality 58
4.6.3 Impacts on Query Performance 61
4.6.4 Efficiency of Fauce 62
4.6.5 Handling Data Updates 63
4.6.6 Other Factors Impacting Fauce 67
4.6.7 Data Profiling . 68

4.7 Summary . 68

Chapter 5 Lobster: Load Balance-Aware I/O for Distributed DNN Training 70
5.1 Overview . 70
5.2 Motivation . 72
5.3 Design . 75

5.3.1 Flexible Preprocessing Thread Management 76
5.3.2 Coordinated Data Loading / Preprocessing 77
5.3.3 Performance Model 78
5.3.4 Heuristic Strategy 80
5.3.5 Implementation Details 81

5.4 Evaluation . 82
5.4.1 Experimental Setup 82
5.4.2 I/O Performance 83
5.4.3 Reduction of Load Imbalance 85
5.4.4 End-to-End Training 86
5.4.5 Resource Utilization 87
5.4.6 Ablation Study . 88

5.5 Summary . 88

vi

Chapter 6 ArbiLIKE: An Accurate Cardinality Estimator for Arbitrary LIKE
Predicates . 90
6.1 Overview of ArbiLIKE . 90
6.2 Problem Description . 91
6.3 LIKE Predicates Encoding 93

6.3.1 Statistics Collection 93
6.3.2 Cardinality-Distance Oriented Clustering 94
6.3.3 Cluster-Centroid Embedding 96
6.3.4 Cardinality-Aware Substrings Embedding 99

6.4 Sequence model-based estimator 100
6.4.1 Cardinality Estimation via Sequence Model 100
6.4.2 Substring-importance Boosted Model 101

6.5 Extension to Generic LIKE Predicates 104
6.5.1 Formulation as a Set Resemblance Problem 104
6.5.2 Signature Vector of Inverted List 105
6.5.3 Extend to Multiple Columns 107

6.6 Evaluation . 108
6.6.1 Experimental Setup 109
6.6.2 Estimation Quality 112
6.6.3 Estimations on Standard Benchmarks 113
6.6.4 Impacts on Query Performance 114
6.6.5 Hyper-parameter Tuning 118
6.6.6 Efficiency of ArbiLIKE 121
6.6.7 Handling String Indexing 123
6.6.8 Handling Data Updates 124
6.6.9 Impact of Embedding Methods 126
6.6.10 Ablation Study of ArbiLIKE 127
6.6.11 Varying Number of Wildcards 128

6.7 Summary . 129

Chapter 7 Related Work . 130

Chapter 8 Conclusion and Future Work . 135

Bibliography . 138

vii

LIST OF FIGURES

Figure 2.1: An example of heterogeneous mobile processors. 11
Figure 2.2: DNN training pipeline. 12
Figure 2.3: The storage hierarchy for distributed training in our environment. 13

Figure 3.1: An overview of the model design in Flame. 16
Figure 3.2: DNNs training pipeline. 18
Figure 3.3: Breakdown analysis of different components in Flame. 24
Figure 3.4: The interaction between CPU and DSP. 28
Figure 3.5: Comparison between different labeling methods in execution time. 33
Figure 3.6: Comparison of the energy consumption. 33
Figure 3.7: The execution time of the three versions of Flame. 34
Figure 3.8: Energy consumption comparison of different labeling methods. . 35
Figure 3.9: PassMark slowdown with auto-labeling running in background. . 37
Figure 3.10: Impacts of using Flame on user experience. 39
Figure 3.11: The frame latency distribution of using different versions of Flame. 39

Figure 4.1: Overview of Fauce. 42
Figure 4.2: An example of Joins2Vec. 45
Figure 4.3: End-to-end example of Columns2Vec. 47
Figure 4.4: Training and inference process of Fauce. 48
Figure 4.5: Integration of Fauce with existing DBMS 55
Figure 4.6: Estimation errors on various datasets with no joins. 61
Figure 4.7: The impact of the improved cardinality estimation of Fauce on

query performance. 61
Figure 4.8: Physical efficiency of Fauce. 62
Figure 4.9: Q-error of queries with different uncertainties. 63
Figure 4.10: Statistical information for the queries. 64
Figure 4.11: Estimation quality under dynamic environment. 65
Figure 4.12: Runtime for data profiling. “x” means out of limit. 69

Figure 5.1: Overview of Lobster. 71
Figure 5.2: Execution time breakdown for the training pipeline on three GPUs,

two on one node and the third on a second node. 72
Figure 5.3: Histogram of the reuse distance of the training samples, measured

in terms of numbers of iterations (X-axis) 74
Figure 5.4: The impact of number of preprocessing threads (X-axis) on data

preprocessing throughput (Y-axis) 76
Figure 5.5: Comparison between Lobster and the baselines for multi-GPU

training on a single node and distributed training across multiple
nodes. 84

Figure 5.6: The number of iterations with load imbalance and the distribution
of batch time. We use ResNet50 with ImageNet-1K. 85

viii

Figure 5.7: Training accuracy curve for training ResNet50 on ImageNet-1K
using eight nodes (64 GPUs) with default ResNet50 hyperparam-
eter settings. 86

Figure 5.8: GPU utilization when training ResNet50 on ImageNet-1K using
one node (eight GPUs). X-axis represents different DNNs used for
testing and Y-axis is the GPU utilization. 87

Figure 5.9: Ablation study of Lobster when training ResNet50 on ImageNet-
1K using one node (eight GPUs). Y-axis is the training time
speedup compared with DALI. 88

Figure 6.1: ArbiLIKE overview. 91
Figure 6.2: q-grams and inverted lists. (a) The Customer table; (b) All the

q-grams for the “Name” attribute (q = 2); (c) Each row consists
of a 2-gram and corresponding inverted list. 92

Figure 6.3: The cardinality-aware substring embeddings involves three steps.
Each “node” is a pair of (substring, cardinality). 94

Figure 6.4: The intra-cluster contrastive embedding for the pairs of (substring,
cardinality) within a cluster. 100

Figure 6.5: Cardinality estimator in ArbiLIKE. 101
Figure 6.6: Illustration of generating the signature vectors of the inverted lists.

(a) Inverted lists of I(bi) and I(go). (b) The permutations of the
string IDs. The first row is the string IDs, and the first column
represents four random permutations of the string IDs. (c) The
signature vectors of I(bi) and I(go). 105

Figure 6.7: Cardinality estimation errors for the LIKE predicates within JOB
and JOB-extend. The scale of the y-axis is logarithmic with base
10. 113

Figure 6.8: The percentage of queries completed throughout the runtime for
both our workloads (Table 6.3) and the Join Order Benchmark
(JOB). 115

Figure 6.9: Relative runtime improvement for the JOB, where each bar rep-
resents a single query. These queries have been sorted from best
to worst improvement. The scale of the y-axis is logarithmic with
base 10. 115

Figure 6.10: Relative runtime improvement for queries with LIKE predicates
in JOB-extend, where each LIKE predicate is constructed using
one or multiple string columns from the same table. 117

Figure 6.11: Relative runtime improvement for queries with LIKE predicates
in JOB-extend, where each LIKE predicate is constructed using
two or more string columns. 118

Figure 6.12: The impact of length of q-grams in ArbiLIKE (x-axis) on Q-errors
(y-axis). 120

Figure 6.13: Signature vector size and storage space of ArbiLIKE. 121
Figure 6.14: Physical efficiency of ArbiLIKE. 123

ix

Figure 6.15: Mean absolute errors for the string indexing of different methods.
x-axis is the name of each datasets, y-axis is the indexing error. . 124

Figure 6.16: Estimation quality under dynamic environment. 125
Figure 6.17: The impact of different number of wildcards (x-axis) on Q-errors

for LIKE predicates (y-axis). 127

x

LIST OF TABLES

Table 3.1: Characteristics of datasets. 30
Table 3.2: Comparison of labeling accuracy of different methods. 32
Table 3.3: Accuracy comparison between baselines and Flame. 33
Table 3.4: Ablation study results of different components in Flame. 35

Table 4.1: Query Features Segmentation . 48
Table 4.2: Workloads used for evaluation. 57
Table 4.3: Estimation errors on the JOB-base, JOB-more-filters, JOB-complex-

joins workloads. 58
Table 4.4: Impact of encoding methods. 67
Table 4.5: Impact of cardinality transformation. 67
Table 4.6: Datasets used for data profiling. 69

Table 5.1: Notation used in performance models. 78

Table 6.1: Notations. 92
Table 6.2: Statistics for the datasets used in ArbiLIKE. 109
Table 6.3: Workloads used for evaluation. #Subs: Number of substrings.

Wilds: Wildcards type contained in LIKE predicates. #Wilds:
Number of wildcards in the workloads. Feature: Characteristic of
LIKE predicates for each workload. 109

Table 6.4: Estimation errors on the three group of LIKE predicates workloads
over five different datasets. 110

Table 6.5: Hyper-parameters considered for tuning. 119
Table 6.6: This table shows the impact of substring embedding size on the

estimation results (§6.3.4). The result shows the 90th error across
five datasets on QS-base workload. The lowest errors are bolded. . 120

Table 6.7: This table shows the impact of different encoding methods for LIKE
predicates(§6.3.4). “PST” represents the encoding method based
on prefix and suffix trees in Astrid. “Ours” denotes our encoding
method for substrings. The lowest errors are bolded. 126

Table 6.8: Ablation studies: varying primary components of ArbiLIKE. We
show the impact of (A) LIKE predicates encoding method (§6.3),
(B)learned estimator (§6.4), and (C) set resemblance for arbitrary
LIKE predicates (§6.5) on QS-multi-subs and QS-diff-wilds work-
loads over IMDB AN dataset. 128

xi

ACKNOWLEDGEMENTS

I am grateful for the support from many great people during this long adventure.

First of all, I would like to sincerely thank my advisor Professor Dong Li. His con-

tinuous guidance helped me overcome difficulties and achieved my goals throughout

my graduate study, and inspired me to move towards a better career path.

I want to express my gratitude to my committee, Professor Florin Rusu and Pro-

fessor Pengfei Su for the time and effort they spent to help me prepare my dissertation

and serve as my committee members. I want to acknowledge Dr.Bogdan Nicolae, Dr.

Min Si, and Professor Xia Ning for their help and guidance in the papers that we

co-authored.

I appreciate my internship days at MemVerge, Tencent America, Argonne Na-

tional Laboratory and Futurewei technology. My thanks go to Qingqing Zhou, Dr.

Yue Li, and Dr. Jingchao Sun for much help along the way. I could never have

imagined more enjoyable internship experiences.

I also would like to express my appreciation to colleagues and friends at UC

Merced. I would like to thank Dr.Jiawen Liu and Prof.Zhen Xie for helping me in

multiple projects and offering me with valuable suggestions. I am also grateful to

other members of Parallel Architecture, System, and Algorithm Laboratory: Dr.Kai

Wu, Prof.Wenqian Dong, Prof.Jie Ren, Mr. Dong Xu, Mr. Bin Ma, Mr. Jianbo Wu,

and Ms. Sherry Wang. I give my heartfelt thanks my friends and roommates, with

whom I had a wonderful time: Dr. Yuxin Tian, Dr. Yuanran Zhu, Mr.Yuning Chen,

and Dr.Hao Xiong.

Last but not least I want to express my gratitude to my family for their love and

support during my whole life. They giving me unconditional love and belief in me in

every choice that I have made in my life.

xii

ABSTRACT OF THE DISSERTATION

Data-driven Performance Optimization for Data-intensive Applications

by

Jie Liu

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, Spring 2024

Dong Li, Chair

Data-intensive applications have attracted considerable attention from re-

searchers in information sciences and enterprises, as these applications have made

evolutionary breakthroughs in scientific fields and are extremely valuable to produce

productivity in businesses. Recently, as the high speed growth of the new gener-

ated data, researchers have begun to leverage the useful knowledge hidden in such

huge volume of data to optimize the performance of the data-intensive applications.

However, optimize the performance of the data-intensive applications based on the

data-driven approaches are still need to be explored.

In this thesis, we focus on data-driven performance optimization for data-

intensive applications. We first study an application, auto-labeling data on mobile

devices. How to accurately and efficiently label data on a mobile device is critical

for the success of training machine learning models on mobile devices. Auto-labeling

data for data-intensive applications on mobile devices is a challenging task, because

data is incrementally generated and there is a possibility of having unknown labels

among new coming data. Furthermore, the rich hardware heterogeneity on mobile

devices creates challenges on efficiently executing the autolabeling workload. We

introduce Flame, an auto-labeling system that can label dynamically generated data

with unknown labels. Flame includes an execution engine that efficiently schedules

and executes auto-labeling workloads on heterogeneous mobile processors. Evaluating

Flame with six datasets on two mobile devices, we demonstrate that the labeling

accuracy of Flame is 11.8%, 16.1%, 18.5%, and 25.2% higher than a state-of-the-art

labeling method, transfer learning, semi-supervised learning, and boosting methods

xiii

respectively. Flame is also energy efficient, it consumes only 328.65mJ and 414.84mJ

when labeling 500 data instances on Samsung S9 and Google Pixel2 respectively.

Furthermore, running Flame on mobile devices only brings about 0.75 ms additional

frame latency which is imperceivable by the users.

Second, we explore another data-intensive application, the cardinality es-

timation in database systems. Cardinality estimation is a fundamental and critical

problem in databases. Recently, many estimators based on deep learning have been

proposed to solve this problem and they have achieved promising results. However,

these estimators struggle to provide accurate results for complex queries, due to not

capturing real inter-column and inter-table correlations. Furthermore, none of these

estimators contain the uncertainty information about their estimations. In this pa-

per, we present a join cardinality estimator called . learns the correlations across

all columns and all tables in the database. It also contains the uncertainty infor-

mation of each estimation. Among all studied learned estimators, our results are

promising: (1) has the smallest model size; (2) It has the fastest inference speed; (3)

Compared with the state of the art estimator, has 10× faster inference speed, and

provides 1.3× ∼ 6.7× smaller estimation errors for complex queries; (4) To the best

of our knowledge, is the first estimator that incorporates uncertainty information for

cardinality estimation into a deep learning model.

Furthermore, we also study the data loading problem for large-scale dis-

tributed training. The resource-hungry and time-consuming process of training Deep

Neural Networks (DNNs) can be accelerated by optimizing and/or scaling compu-

tations on accelerators such as GPUs. However, the loading and pre-processing of

training samples then often emerges as a new bottleneck. This data loading pro-

cess engages a complex pipeline that extends from the sampling of training data on

external storage to delivery of those data to GPUs, and that comprises not only

expensive I/O operations but also decoding, shuffling, batching, augmentation, and

other operations. We propose in this paper a new holistic approach to data loading

that addresses three challenges not sufficiently addressed by other methods: I/O load

imbalances among the GPUs on a node; rigid resource allocations to data loading and

data preprocessing steps, which lead to idle resources and bottlenecks; and limited ef-

ficiency of caching strategies based on pre-fetching due to eviction of training samples

needed soon at the expense of those needed later. We first present a study of key bot-

xiv

tlenecks observed as training samples flow through the data loading and preprocessing

pipeline. Then, we describe Lobster, a data loading runtime that uses performance

modeling and advanced heuristics to combine flexible thread management with op-

timized eviction for distributed caching in order to mitigate I/O overheads and load

imbalances. Experiments with a range of models and datasets show that the Lobster

approach reduces both I/O overheads and end-to-end training times by up to 1.5×
compared with state-of-the-art approaches.

Finally, we study the cardinality estimation for string predicates in database

systems. Cardinality estimation for string predicates is a notoriously challenging

problem in database systems. This paper presents ArbiLIKE, an advanced deep

learning-based cardinality estimator for arbitrary LIKE predicates. ArbiLIKE uti-

lizes a cardinality-aware embedding technique to encode LIKE predicates into feature

vectors. It further incorporates an innovative sequence model to capture the semantic

information of different substrings, enhancing the estimation accuracy. ArbiLIKE is

also capable of handling LIKE predicates with any combination of wildcards (“%”,

“ ”). Empirical evaluations showcase ArbiLIKE’s promising accuracy, achieving esti-

mation errors that are up to 165.1× smaller than those of eight baselines, including

state-of-the-art methods. As a generic estimator, ArbiLIKE realizes error reductions

ranging from 1.4 to 93.1× for LIKE predicates with multiple wildcards in comparison

to the existing techniques. To the best of our knowledge, ArbiLIKE is the first deep

learning-based estimator capable of handling arbitrary LIKE predicates.

xv

Chapter 1

Introduction

With the huge volume of generated data, data-intensive applications have drawn

huge attention from both academic and industry. Those data-intensive applications

increasingly face performance problems, because of hardware heterogeneity, difficulty

of extracting valuable information from dynamic generated data, and extraordinary

techniques to efficiently process large volume of data within limited run times. To

optimize the performance of data-intensive applications, it requires the researchers to

propose more sophisticated approaches.

Some applications running on mobile devices are data-intensive and their per-

formance needs to be optimized. For example, when training RNN model on mobile

devices to recommend the appearance of the next words when use the keyboard for

the words typing, it requires amount of labeled data. While the data labeling task

on mobile devices can be very data-intensive. From the hardware perspective, the

modern mobile processors in mobile devices are characterized with hardware het-

erogeneity. For example, mobile devices like Samsung S9 and Google Pixel2 have

eight-core CPU (four slow cores and four fast cores), mobile GPU, and DSP. DSP is

typically the most power-efficient computing unit in a mobile device [1]. To optimize

the performance for data-intensive applications on mobile devices, we need to leverage

the hardware heterogeneity to propose some sophisticated methods.

Furthermore, some database related applications are also data-intensive, for ex-

ample, the cardinality estimation usually involves huge volume of data in the database

systems. Cardinality estimation is fundamental and critical in databases. It is widely

applied to query optimization, query processing approximation, database tuning, etc.

1

2

For example, the query optimizer uses the results of the cardinality estimation to

determine the best execution plans. We study both the cardinality estimation for

numeric-based and string-based queries. As string-based data becomes increasingly

prevalent in relational databases, there is a growing need of accurate cardinality es-

timation for string queries. In this paper, we focus on cardinality estimations for

queries involving string predicates, such as the SQL LIKE operator.

Finally, large-scale distributed DNNs training is a well known data intensive ap-

plications. Deep Neural Networks (DNNs) are rapidly gaining traction in both indus-

try and scientific computing, driven by the accumulation of massive data. In science,

for example, instruments that collect data at GB/s and 100+ TB/day present a wide

range of learning opportunities. We thus see significant interest in deploying DNNs

on high-performance computing (HPC) systems in order to enable rapid learning in

domains such as computational fluid dynamics [2], power grids [3], and molecular

dynamics [4]. Various approaches [5, 6] for training DL models on massive data have

been developed: coarse-grain parallelization on multiple nodes using data-parallel,

model-parallel, pipeline-parallel, and hybrid techniques; fine-grain parallelization on

many-core architectures by constructing and scheduling execution graphs at the tensor

level; and low-level optimizations of operators [7] and communication primitives [8].

However, the current methodology to optimize the aforementioned data-intensive

applications faces the following challenges.

Resource Constraints and Efficiency. A significant challenge in deploying ad-

vanced functionalities on mobile devices and during large-scale distributed training is

managing limited computational resources and memory efficiently. For instance, in

mobile data labeling, methods like those discussed in [9, 10] require a large number

of labeling functions and substantial computational resources, often exceeding the

capacity of mobile devices. These devices, exemplified by the Samsung S9 with its

mix of CPU cores, a GPU, and a Hexagon DSP, are constrained in terms of memory

and processing power, limiting their ability to handle data-intensive tasks. Similarly,

in the context of distributed deep neural network (DNN) training, there’s a challenge

in balancing load across GPUs. Variations in data fetch times due to differences in

data storage locations (local cache vs. remote storage) can create bottlenecks, af-

fecting overall training efficiency. Efficiently managing these resources is crucial for

enhancing performance without necessitating hardware upgrades.

3

Dynamic and Complex Data Handling. Dealing with dynamically generated

data and complex data patterns presents a substantial challenge in various techno-

logical applications. For example, in mobile applications, data is often generated in

real-time, such as images for classification. This dynamic generation can result in new,

unseen labels (e.g., new types of flowers) that the system must recognize and clas-

sify without prior knowledge. This scenario demands adaptive algorithms capable of

handling new data categories as they appear. In the realm of database management,

particularly in cardinality estimation for queries involving string-based predicates

(e.g., LIKE predicates), the complexity escalates. Traditional embedding techniques

fall short in accurately capturing the nuanced patterns of string-based data, necessi-

tating innovative approaches to comprehend the intricacies of these queries, such as

differentiating between “LIKE %abc%” and “LIKE %xyz%” based on their actual

cardinalities.

Heterogeneity and Coordination. The diversity of hardware components and the

need for their coordinated operation pose a significant challenge, especially in mobile

computing and distributed systems. Mobile devices often contain a heterogeneous

mix of processors, each with unique performance characteristics and energy efficiency

levels. Optimally scheduling tasks across these varied components requires a deep

understanding of their operational nuances to maximize performance and energy ef-

ficiency. In distributed DNN training, this challenge is mirrored in the coordination

of data loading processes across multiple GPUs. Ensuring that all GPUs receive data

at a similar pace to prevent stragglers requires sophisticated scheduling and resource

management strategies. Moreover, caching mechanisms must be intelligently designed

to pre-emptively load data in a manner that minimizes I/O overheads without causing

premature cache evictions, which could otherwise impede training efficiency.

These challenges underscore the need for advanced, efficient, and adaptive solu-

tions capable of navigating the complexities of resource constraints, dynamic data,

and heterogeneous computing environments. Examples from the original text illus-

trate the practical implications of these challenges in real-world settings, highlighting

the necessity for ongoing innovation in these areas.

4

1.1 Primary Contributions

This dissertation tries to resolve the above three challenges. It includes op-

timizing the performance for data-intensive applications based on the data-driven

approaches(Chapters 2, 3, 4, and 5).

Data labeling on heterogeneous mobile processors. To address the above

challenges, we introduce Flame, an auto-labeling system for mobile processors. Flame

is featured with mobile hardware-aware algorithms and system designs.

To overcome the hardware resource constraint, Flame includes a new lightweight

method, named clustering with minimal impurity, to build a number of labeling func-

tions. After the clusters are built based on a limited number of labeled data instances,

Flame replaces the data instances within the same cluster by the cluster’s prototypes

to reduce the computation overhead. The decision boundary of each labeling func-

tion is determined by its prototypes. Any data instance falling outside the decision

boundaries of all the labeling functions is identified as a data instance potentially

with a new label. Flame interprets the presence of a sufficiently large number of such

data instances with strong cohesion among themselves as the emergence of a new la-

bel. Furthermore, because of the dynamic characteristics of the data to be labeled on

mobile devices, the labeling functions must be updated from time to time to capture

the accurate distribution of data. In Flame, because each labeling function consists

of a number of prototypes, and updating the labeling functions is just a matter of

updating its prototypes.

To guarantee the labeling accuracy, Flame uses two estimators, Association and

Purity, to measure the labeling confidence of each labeling function. We theoretically

show that the use of these estimators can guarantee the labeling accuracy. Finally,

Flame uses an ensemble method to gather the labeling confidence of labeling functions

to determine final labels.

Flame is featured with a hardware heterogeneity-aware execution engine to run

the auto-labeling algorithm (§3.3). The execution engine determines which part of the

computation should be placed on a particular computing unit (CPU, GPU or DSP)

based on the characteristics of workload and hardware. Some computation of Flame

is placed on GPU to shorten execution time, because the computation can offer high

thread-level parallelism and efficiently leverage fast shared-memory on GPU. Some

5

computation is placed on DSP (the most power-efficient computing unit), when the

energy consumption of the computation is high. The execution engine also coordinates

the interaction between CPU and DSP to avoid wakeup latency suffered by CPU for

energy saving. We summarize major contributions as follows.

The labeling accuracy of Flame is 11.8%, 16.1%, 18.5%, and 25.2% higher than

that of Snuba [10] (a state-of-the-art auto-labeling system), transfer learning, semi-

supervised learning algorithms and boosting methods respectively. Also, Flame can

detect unseen labels while all other systems cannot. Flame has high energy effi-

ciency. It consumes only 328.65mJ and 414.84 mJ when labeling 500 data instances

on Samsung S9 and Google Pixel2 respectively, while the full energy of their battery

is 3.88× 104 and 3.49× 104J respectively. This makes Flame a highly feasible system

for mobile phones. Flame running on a mobile phone has minimum impacts on the

user experience of using another application. Flame brings only 0.75 ms additional

frame latency to the user application, which is ignorable, compared with the minimum

threshold of user-perceivable latency (100 ms [11]).

Cardinality estimation for numberic predicates with uncertainty. We pro-

pose a new cardinality estimator, Fauce. Fauce includes a new query featurization

method (§4.3) that leverages semantic information contained in the database and

captures real dependent relationships between table columns to encode the queries

into more informative feature vectors. Furthermore, we mathematically define the

uncertainty of the estimator and introduce a new model that incorporates the uncer-

tainty estimation into Fauce (§6.4). Fauce also includes a new learning paradigm that

leverages the uncertainties to boost the estimation results and make Fauce robust to

be applied in dynamic databases (§4.5.3).

To capture the real correlations across all the table columns in a database (§4.3.2),

we introduce dependency graphs to capture dependent relationships across columns,

and based on the graphs we embed the columns into a vector to boost the estima-

tion accuracy.Using a general structure to capture dependency requires the catch of

implicit dependency relationships in columns across tables. Catching such a depen-

dency is difficult [12, 13, 14]. Our dependency graph is hierarchical. In particular,

we first build a local columns-dependency graph for each table. Then we build the

global columns-dependency graph for all the columns in the database based on the

local columns-dependency graphs developed in the first step. Finally, we use an em-

6

bedding technique [15] to represent each column into a vector based on the global

columns-dependency graph. Such vectors can convey real correlations among the

columns.

To include the uncertainties of the cardinality estimator into Fauce, we design a

model based on deep ensembles (§4.5.3) to comprehensively quantify the uncertainty.

The uncertainty of the cardinality estimator comes from multiple sources. First,

we are uncertain about whether the learned model parameters can best describe the

distribution of the queries in the query space. This is referred to as model uncertainty.

Second, the query-based estimators train the model based on the generated training

dataset. But the training dataset can not well reflect the features for all the queries.

That is to say, there is always a data shift between the training dataset and the

inference queries. This data shift can be large especially for dynamic databases.

Thus, we are also uncertain about whether the data used to train model can well

represent the features for inference queries, this is referred as data uncertainty. These

two types of uncertainty consist the uncertainty of the learned estimator.

We conducted an extensive set of experiments over IMDB, a real-world dataset

that exhibits complex correlation and conditional independence between table columns

and have been extensively used in prior work [16, 17, 18, 19, 20]. On the created JOB-

base benchmark, a schema that contains 6 tables and basic filters. Fauce achieves

1.16-4× higher accuracy over the state of the art estimator, it also consumes 1.2×
less memory footprint and over 5× faster for inference. To check whether Fauce is

robust to complicated queries with large number of filters, we create a more diffi-

cult benchmark, JOB-filters-extension. On this benchmark, Fauce achieves up to

1.16-51× higher accuracy than previous estimators, including IBJS [21], MSCN [16],

DeepDB [17],and NeuroCard [19]. Lastly, to test Fauce’s ability to handle queries

with more complex join relations, we created JOB-joins-extension which has 15 ta-

bles and complex joins. Experimental results show that Fauce scales well to this

benchmark, it has up to 1.16-91× higher accuracy than baselines.

Load balance-aware I/O for distributed DNNs training. We propose Lobster,

a holistic data loading I/O runtime for distributed DNN training. Lobster distin-

guishes between the I/O load of each individual GPU at fine granularity and coordi-

nates the I/O operations of the GPUs at the node level, flexibly allocating available

I/O bandwidth and threads as needed to reduce I/O load imbalance.

7

We characterize the performance (especially I/O performance) across 64 GPUs

in a production environment for distributed DNN training, highlighting the I/O load

imbalance across GPUs and frequent performance bottleneck shifts between data

loading/pre-processing pipeline and the training process. This study reveals new

opportunities for I/O performance optimization that are not considered by state-of-

art approaches.

We propose a thread management strategy to coordinate the resource usage

between data loading and preprocessing in the training pipeline, as well as to mitigate

the I/O load imbalance between GPUs. We introduce a holistic performance model

that bridges the thread management strategy with a distributed caching proposal that

features prefetching support and optimized eviction based on reuse distance. We also

design and implement a heuristic strategy to solve the optimization problem resulting

from the performance model. This strategy consists of two phases (prefetching and

eviction) and guides both the allocation of the threads and the distributed caching.

Lobster also coordinates the data loading and preprocessing stages of the pipeline,

flexibly allocating threads between them to reduce bottlenecks. This coordination is

achieved through the use of performance modeling, which we combine with reuse dis-

tance theory to design efficient eviction policies for distributed caching of the training

samples. Such an optimized eviction policy complements state-of-the-art distributed

caching approaches based on prefetching by avoiding the undesirable effect of evict-

ing training samples that are needed in the near future in order to make room for

prefetched samples that are needed later. We show that this method increases the

cache hit ratio by 14.3% compared with state-of-the-art prefetching approaches such

as that used in NoPFS [22].

Accurate cardinality estimator for arbitrary LIKE predicates. We present

ArbiLIKE, an advanced deep learning-based cardinality estimator for arbitrary LIKE

predicates. ArbiLIKE utilizes a cardinality-aware embedding technique to encode

LIKE predicates into feature vectors. It further incorporates an innovative sequence

model to capture the semantic information of different substrings, enhancing the

estimation accuracy. ArbiLIKE is also capable of handling LIKE predicates with any

combination of wildcards (“%”, “ ”).

To achieve cardinality-aware embeddings for LIKE predicates, ArbiLIKE intro-

duces a multi-tiered contrastive embedding method. First, using the q-grams tech-

8

nique, ArbiLIKE identifies (substring, cardinality) pairs within the database. Subse-

quently, these pairs are structured hierarchically using a bottom-up clustering tech-

nique, leading to a dendrogram that distinctly captures the cardinality discrepancies

across various substrings. Utilizing this structure, ArbiLIKE generates substring

embeddings through two phases: the inter-cluster embedding phase, which encodes

cluster centroids into feature vectors, and the intra-cluster embedding phase, where

individual substrings are embedded, guided by the outcomes from inter-cluster em-

bedding stage. Our proposed embedding methodology ensures that substrings with

minor cardinality variations yield similar embeddings, whereas those with marked

disparities are distinctly represented.

To derive a substring importance-boosted estimator for LIKE predicates, Arbi-

LIKE introduces a substring importance-boosted sequence model. This model captures

both prefix and suffix patterns of characters, along with substring-level semantic in-

formation. Additionally, by integrating a multi-dimensional self-attention mechanism

into the estimator, ArbiLIKE quantifies and utilizes the varying significance of dif-

ferent substrings during the cardinality estimation, leading to accuracy improvement

of cardinality estimation.

ArbiLIKE supports arbitrary LIKE predicates by formulating the cardinality es-

timation for LIKE predicates with multiple wildcards (“%”, “ ”) as a set resemblance

approximation problem. In particular, ArbiLIKE decomposes the LIKE predicate

into multiple LIKE sub-predicates, determined by the presence of wildcards. Sub-

sequently, ArbiLIKE adopts a Monte Carlo approximation technique to efficiently

calculate a resemblance value among the decomposed LIKE sub-predicates. Such

a resemblance value, in conjunction with the estimated cardinality for each LIKE

sub-predicate, is utilized to estimate the cardinality for arbitrary LIKE predicates.

To the best of our knowledge, ArbiLIKE is the first DL-based cardinality estima-

tor for arbitrary LIKE predicates. ArbiLIKE leads the accuracy among the baselines

we studied in the paper. We conduct an extensive set of experiments using real-world

datasets, IMDB [23] and DBLP [24], which contain numerous string attributes. We

evaluate ArbiLIKE from the accuracy and generalization perspectives. The experi-

mental results demonstrate that ArbiLIKE achieves 1.46-96.4× higher accuracy than

six baselines on arbitrary LIKE predicates, including Postgres [25], KVI [26], MO [27],

BayesNet [28], CRT [29], and Astrid [30].

9

1.2 Outline and Previously Published Work

The remainder of the dissertation is organized as follows. Chapter 2 provides a

comprehensive background for this dissertation. Chapter 3 presents the design, im-

plementation and evaluation of Flame, a fast, accurate, and lightweight auto-labeling

system for mobile devices. Chapter 4 introduces Fauce, the first learned cardinality

estimator that contains the uncertainties for its results. Chapter 5 characterizes the

performance (especially I/O performance) across 64 GPUs in a production environ-

ment for distributed DNN training. We describe Lobster, a data loading runtime

that uses performance modeling and advanced heuristics to combine flexible thread

management with optimized eviction for distributed caching in order to mitigate I/O

overheads and load imbalances. Chapter 6 introduces ArbiLIKE (§6.3), the first DL-

based cardinality estimator for arbitrary LIKE predicates, outperforming all studied

baselines in accuracy. Chapter 7 includes the related work of this dissertation. Chap-

ter 8 concludes this dissertation by summarizing the main lessons learned, the open

problems, and the topics for future work.

Chapter 2 contains material of background section from several published papers[31,

32, 33], The dissertation author is the primary investigator and first author of these

papers.

Chapter 3 contains material from “Flame: A Self-Adaptive Auto-Labeling Sys-

tem for Heterogeneous Mobile Processors”, by by Jie Liu, Jiawen Liu, Zhen Xie, Xia

Ning and Dong Li, which appears in the Proceedings of the ACM/IEEE Symposium

on Edge Computing (SEC’21). The dissertation author is the primary investigator

and first author of this paper. The material in theis chapter is copyright ©2021 by

the Association for Computing Machinery (ACM).

Chapter 4 contains material from “Fauce: Deep Ensembles with Uncertainty

for Cardinality Estimation”, by Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong

Li, which appears in the 47th International Conference on Very Large Data Bases

(VLDB’21). The dissertation author is the primary investigator and first author of

this paper. The material in theis chapter is copyright ©2021 by the Association for

Computing Machinery (ACM).

Chapter 5 contains material from “Lobster: Load Balance-Aware I/O for Dis-

tributed DNN Training”, by Jie Liu, Bogdan Nicolae, and Dong Li, which appears

10

in the 51th International Conference on Parallel Processing (ICPP’22). The disser-

tation author is the primary investigator and first author of this paper. The material

in these chapters is copyright ©2022 by the IEEE Association.

Chapter 6 contains material from “ArbiLIKE: An Accurate Cardinality Estima-

tor for Arbitrary LIKE Predicates”, by Jie Liu, Qingqing Zhou, and Dong Li, which

is submitted in the 2025 ACM SIGMOD International Conference on Management

of Data (SIGMOD’25). The dissertation author is the primary investigator of these

papers. The material in thesis chapter is copyright ©2025 by the Association for

Computing Machinery (ACM).

Chapter 2

Background

This chapter presents a comprehensive introduction to the background of this

dissertation.

2.1 Background on Mobile Processors

We introduce background of Flame information in this section.

Heterogeneous mobile processors. The modern mobile processors in mobile

devices are characterized with hardware heterogeneity. Figure 2.1 shows such an

example commonly found in many mobile devices (e.g., Samsung S9, Google pixel2,

Huawei P8 and Xiaomi Mi 10). In our study, we use mobile devices, each of which

has eight-core CPU (four slow cores and four fast cores), mobile GPU, and DSP. DSP

is typically the most power-efficient computing unit in a mobile device [1]. However,

DSP is not good at handling some operations (e.g., square root and division).

DSP Multi-Core CPU GPU

System Network on Chip Bus

Heterogeneous Mobile Processors

User Apps
(Gmail, etc)

Services
(Auto-labeling, etc)

Run in Foreground Run in Background

Applications

Figure 2.1: An example of heterogeneous mobile processors.

11

12

Data Fetch

Decoding

Data Preprocessing Model Training

Local Storage Remote Storage

Batching

Augmentation DNNs GPUs

Figure 2.2: DNN training pipeline.

Mobile applications. The applications running on mobile devices can be clas-

sified as foreground and background applications. The mobile system usually sets a

higher priority to run the foreground applications to enable smooth interaction be-

tween the user and mobile devices. The background applications have low priority

to be scheduled and run by the mobile system [34]. The background applications are

not expected to introduce significant latency to the foreground applications. Flame

is a background application.

2.2 Background of DNNs Training

DNN training is an iterative process: first, the answer to an input is obtained

in a forward pass over all layers. Then, in a backward pass, the difference (gradi-

ents) between the predicted and actual result (“ground truth”) is used to update the

weights layer by layer in reverse order. This process repeats for a large number of

iterations until the DNN model has converged. Typically, multiple passes over the

whole training data are required. Thus, iterations are grouped into epochs, each of

which represents a full pass.

The input of each iteration is a mini-batch, which is obtained by random sampling

of the training data. For efficiency reasons, in practice a pseudo-random number

generator is used to shuffle the training samples, after which they are accessed in the

shuffled order and grouped together as mini-batches. Since the seed of the pseudo-

random number generator is known in advance, the I/O access pattern necessary to

read the training samples can be made fully deterministic [22].

Before executing the forward and backward pass, the DNN training pipeline in-

cludes a data loading and preprocessing state, as illustrated in Figure 2.2. Data

13

GPU GPU

DDR4
Memory

CPUs

Node 1

NVLink

interconnection

Parallel
File System

NVMe
SSD

GPU GPU

DDR4
Memory

CPUs

Node 2

NVLink

NVMe
SSD

GPU GPU

Local
Storage

CPUs

Node n

NVLink

NVMe
SSD

Figure 2.3: The storage hierarchy for distributed training in our environment.

loading is responsible for prefetching and caching the training samples (which is pos-

sible thanks to the I/O access pattern being deterministic), while data preprocessing

is responsible for additional transformations: decoding, augmentation, batching. All

these stages in the pipeline are overlapping, which optimizes the resource utilization.

The data preprocessing can be performed on either the CPU or the GPUs. For the

purpose of this work, we assume the preprocessing is performed on the CPU, while the

training is performed on the GPUs. This is a common scenario [35, 36, 37, 38, 39, 40]

that makes efficient use of heterogeneous compute resources.

In order to scale the DNN training, multiple nodes equipped with multiple GPUs

are used, as illustrated in Figure 2.3. The most common approach to achieve this is

data parallelism, i.e., training the same DNN model replica on multiple GPUs with

different mini-batches, then averaging the gradients during the backward pass. In

this case, the GPUs co-located on the same node share a node-local cache. If a

training sample is not available in the node-local cache, it can be retrieved either

from the external storage repository (typically a parallel file system or PFS) or, if

available, from the cache of a different node. The latter requires the implementation

of a distributed cache but improves I/O latency significantly for several reasons: (1)

the bandwidth between compute nodes is higher than the I/O bandwidth between

a single compute node and the PFS; (2) the aggregated I/O bandwidth of the PFS

is limited and becomes a bottleneck when multiple compute nodes compete for it;

(3) the PFS is not optimized for I/O access patterns that involve small randomly

14

scattered reads necessary to retrieve the training samples.

In Lobster, we assume a data-parallel training that makes use of a distributed

cache. However, it is important to note that our proposal works in general for other

DNN training scenarios as well (e.g., different DNN models sharing the same training

data, alternatives to distributed caching like for example KV-stores, or even single-

node DNN training). Our goal is to optimize node-local caches such that they can

serve multiple co-located GPUs efficiently, when considering the challenges discussed:

(1) data load imbalance across the GPUs; (2) lack of coordination between the stages

of the pipeline; (3) sub-optimal cache eviction due to deterministic prefetching.

Chapter 3

Flame: A Self-Adaptive

Auto-Labeling System for

Heterogeneous Mobile Processors

3.1 Overview

We propose a fast, accurate, and lightweight auto-labeling system, Flame, for

mobile devices. It is the first system to label data dynamically generated on mobile

devices. We implement it on two realistic mobile phones (Samsung S9 and Google

Pixel2). (1) Labeling Functions Generation generates a number of labeling functions

(LFs) based on the user labeled data instances, each labeling function includes sev-

eral prototypes. (2) Labeling Functions Self-adaption applies the LFs on the dynamic

unlabeled data, these LFs can be updated by the Flame. Furthermore, Flame can

detect the emergence of new labels and building new labeling functions for the data

instances with new labels. (3) Labeling Results Guarantees calculates a labeling con-

fidence value for each labeling function, then it aggregates all the labeling confidence

values, finally, it assigns labels for unlabeled data instances. (4) The labeled data

instances can be used to train discriminative classification models, such as a deep

neural network.

15

16

User Labeled Data

Unlabeled Data

Labeling Functions
Generation

Labeling Functions
Generator

Labeling
Function 1

Labeling
Function n

Labeling Functions
Self-adaption

Labeling Functions
Update

Build New Labeling
Functions

New Labels Detection

Labeling Results
Guarantees

Labeling Confidence
Calculation

Output Labeled Data
Instances

Labeling Confidence
Aggregation

Discriminative Model

 ∑

Output

Input: labeled data

Figure 3.1: An overview of the model design in Flame.

3.2 Model Design

Figure 3.1 overviews our auto-labeling model. Flame includes three components,

Labeling Functions Generation: a labeling function generator to generate a number

of labeling functions for assigning labels. Labeling Functions Self-adaption: a self-

adaptive strategy to update the existing labeling functions, detect the emergence of

new unseen labels in a dynamic setting, and build new labeling functions for the

data instances belong to new unseen labels. Labeling Results Guarantees calculates

a labeling confidence value for each labeling function during data instance labeling,

and then aggregates and verifies the labeling results of Flame for an unlabeled data

instance. The input/output of Flame is discussed as follows.

Input data. The input data of Flame is a small number of labeled data and a

large number of unlabeled data. The labeled data is represented as DL = {xi, yi}NL
i=1,

where xi ∈ Rd is the d-dimension features of the data i and yi ∈ Y = {1, 2, ..., C} is

the associated label (C different known labels in total). The non-stationary unlabeled

data is represented as DU = {xt}NU
t=1 (xt ∈ Rd), where NU ∈ [0,∞) is the number

of unlabeled data. In our setting, NU can be large, as the new data is continuously

generated.

Output data. The output of Flame is the confidence of a label yi ∈ Y
′

=

{1, 2, ..., C, ..., C ′} for data xi in the unlabeled dataset DU , where Y
′

is the set of

result labels including known labels and new unseen labels (C
′ ≥ C). Here, C

′ ≥ C,

which indicates that some unseen labels that are not in Y may appear in Y
′
, as

new data is incrementally generated. The final labeling confidence value is calculated

through an ensemble method in Flame (§3.2.3).

17

3.2.1 Labeling Functions Generation

We design a lightweight method to generate labeling functions. Existing stud-

ies [9, 41] use supervised machine learning models (e.g., Decision Tree, K-Nearest

Neighbor) to build labeling functions. However, these machine learning models [42,

43, 44, 45] cannot work well on mobile devices because of two reasons. First, the data

generated on mobile devices are seldom labeled. Therefore, using the labeling func-

tions built based on supervised learning models causes low labeling accuracy. Second,

a large number of labeling functions (more than 100) are needed to have high data

coverage, which requires abundant computational resources and memory space.

We design an impurity-based clustering method to determine the boundary of

each labeling function. A cluster is completely pure if the data instances within this

cluster belong to the same label (along with some unlabeled data). Given a limited

amount of labeled data, the goal of impurity-based clustering is to create a number

of clusters by minimizing the intra-cluster dispersion, and at the same time by mini-

mizing the impurity of each cluster, we refer it as Clustering with Minimal Impurity.

In order to determine the boundary of each labeling function in fine granularity, each

created cluster is further divided into a number of cliques. A clique of a cluster is a

group of data instances with cohesion larger than 0.5 in the corresponding cluster,

the cohesion is calculated by a commonly used method called q-NSC [46].

Then, we use the prototype of a clique to replace the data instances in that

clique. A prototype indicates the best exemplar of the data instances within a clique.

The corresponding prototypes of all the cliques of a cluster could provide a concise

representation for the entire raw data instances within a cluster. In this paper, a

prototype of a clique is defined as below,

Prototype: the prototype of a clique is a tuple denoted by p =< µ, r, d, n, f̄ >,

where µ is the centroid of the clique, r represents the radius of the clique, d denotes

the sum of squared Euclidean distance from data instances in the clique to µ, n is the

total number of data instances in the clique, and f̄ is a vector recording the number

of data instances belonging to different labels in the clique.

The f̄ is referred as frequencies in the rest of the paper. Here is an example of f̄ ,

f̄ = (f1, f2, ..., ft), where each element fi in f̄ is the frequency of the corresponding

label yi assigned to the data instances. Finally, each cluster is represented by one or

18

r1

Cluster Cliques of the Cluster Prototype of each Clique

Clique1

Clique2

Clique3

Prototype1

Prototype3

Prototype2

r2

r3

Figure 3.2: DNNs training pipeline.

Algorithm 1 PrototypeInitialization (Dij)

Input : Dij: the data instances in clique Cij of cluster i
Output: pij: the initialized prototype for clique Cij

µij = 1
|Dij |

∑
x∈Dij

x; // |Dij| is the size of Dij

rij ← maxx∈Dij
∥x − µij∥22 dij ←

∑
x∈Dij

∥x − µij∥22 nij ← |Dij| f̄ ← (f1, ..., fi +

1, ..., fC) return pij

more prototypes depending on the data distribution in the cluster. Each prototype

is denoted by pij, where the subscript i indicates the index of the ith built cluster,

j > 0 is the prototype index. We denote the set of prototypes for cluster i by Pi, i.e.,

pij ∈ Pi. Figure 3.2 depicts an example of the relationship among cluster, cliques,

and prototypes.

The boundary of each labeling function is determined by a collection of one or

multiple prototypes. Flame maintains a labeling function pool which is represented as

LF , assuming LF contains K labeling functions, that is, LF = {lfi, ..., lfK}, where

lfi ∈ LF is an individual labeling function. Each labeling function lfi could consisted

by M prototypes, therefore, lfi in LF is represented as lfi = {pi1, ..., piM}.
Prototype initialization. The initialization for the prototypes is based on the

limited number of labeled dataset DL = {xi, yi}NL
i=1. Here, the number of labels in DL

may be small when compared to the eventual labels that may occur over time. Data

instances associated with label yi ∈ Y are denoted by Di. Di consists of M cliques

(Ci1, ..., CiM) and the data instances in clique Cij are represented as Dij. We create a

prototype for each clique by selecting a data instance from Dij, uniformly at random.

Algorithm 1 details the prototype initialization process for a given label yi ∈ Y .

Objective function. When building the labeling functions using the Cluster-

ing with Minimal Impurity method, the objective is to minimize the dispersion and

19

impurity of clusters. We formulate the objective function as follows,

Obj(x) =
∑K

i=1

∑M

j=1

∑
x∈Dij

∥x− µij∥2 + λ
∑K

i=1

∑M

j=1
ADCij × Entropyij (3.1)

In Equation 3.1, the first term is used to minimize the dispersion of data instances

within the scope of each prototype; K is the total number of labeling functions in LF ;

Dij is the set of data instances within the scope of the prototype pij; and µij is the

centroid of the prototype pij. The second term in Equation 3.1 is used to minimize

the impurity of data instances in each clique, and λ is a hyper-parameter controlling

the importance of the second term. The impurity is constructed based on labeling

diversity and the entropy value of data instances in the scope of a prototype, and

it is calculated as ADCij × Entropyij, where ADCij is the Aggregated Dissimilarity

Count (ADC) of the prototype pij and Entrotyij is the entropy of the prototype pij.

ADCij is calculated as follows,

ADCij =
∑
x∈Dij

M∑
j=1

DCij(x, ℓ), (3.2)

where DCij(x, ℓ) denotes the Dissimilarity Count (DC) of a data instance x in the

prototype pij having the label ℓ, it is calculated as the total number of labeled in-

stances in that prototype belonging to labels other than ℓ.That is,

DCij(x, ℓ) = |Lij| − |Lij(ℓ)|, (3.3)

where |Lij| is the total number of labeled data instances within the scope of prototype

pij, and |Lij(ℓ)| is the number of instances in the prototype pij belonging to label ℓ.

The entropy in Equation 3.1 is calculated as follows,

Entropyij =
C

′∑
ℓ=1

(−|Lij(ℓ)|
|Lij|

× log(
|Lij(ℓ)|
|Lij|

)), (3.4)

where
|Lij(ℓ)|
|Lij | is the prior probability of the label ℓ, C

′
is the number of labels.

20

Algorithm 2 UpdatePrototypes (xnew, Pi, Ti)

Input: xnew: new coming data instance in cluster i,
Pi: current prototypes set of cluster i,
Ti: threshold value for cluster i,

Output: Updated Prototypes: P u
i

k ← |Pi|; // Current number of prototypes in Pi

Dnew
ij =j=1,...,k ∥xnew − µij∥22 if Dnew

ij < Ti then
// Update the prototypes Pi

µij ← 1
nij+1

(xnew + nij ∗ µij) dij ← dij + Dnew
ij nij ← nij + 1

else
pi,k+1 ← PrototypeInitial(xnew); // Algorithm 1

P u
i = Pi ⊕ pi,k+1

end
T u
i ← Update(Ti, P

u
i); // Update the threshold

for pij, pik ∈ P u
i do

if ∥µij − µik∥22 < T u
i then

µij =
µij+µik

2
dij ← dij + dik nij ← nij + nik P u

i = Remove(pik, P
u
i)

end

end
return P u

i

3.2.2 Labeling Functions Self-Adaption

In this section, we introduce how the built labeling functions adapt to the dy-

namic datasets. Flame can update the prototypes of the labeling functions and it can

also build new labeling functions for those new coming labels.

Labeling functions update. Since each labeling function is consisted by a

number of prototypes, the labeling functions can be updated by updating its proto-

types. We use a threshold to determine whether a new coming data instance xnew

can be associated to any of the existing prototypes in Pi of cluster i. If xnew is close

to a prototype pij ∈ Pi, then we update pij. If not, we create a new prototype using

Algorithm 1 and add it to Pi. Algorithm 2 describes the prototype update process.

We first compute a threshold Ti associated with the cluster i using all its existing

prototypes, i.e., Ti = mean(dij) + 0.5 ∗ std(dij) for all pij ∈ Pi. Here, mean and std

are the mean and standard deviation of sum of squared distances in each prototype

of cluster i. We then compute the closest prototype for the new coming data instance

xnew by j=1,...,kD
new
ij , where Dnew

ij = ∥xnew − µij∥22, k is the current number of proto-

types in Pi (line 2). If Dnew
ij < Ti, then the prototype pij is updated (line 3-6). If not,

21

then a new prototype is created using xnew (line 7-9). The prototype update process

may generate a large number of prototypes. Too many prototypes can cause over-

fitting, furthermore, storing large number of prototypes consumes too much memory

space. To avoid this scenario, we determine whether any two given prototypes in Pi

can be merged using the the updated threshold Ti (line 11-16). At last, the updated

prototype is returned (line 17).

New labels detection. Before building new labeling functions for the new

unseen labels, Flame needs to detect the appearance of unseen labels first. Similarly

to some existing methods [47], we compute the new unseen labels detection threshold

T i
new for each cluster i to reject data instances belong to new unseen labels and assign

labels for data instances with existing labels. We refer it as Nearest Mean Clustering

(NMC).

Due to the dynamic characteristics of the data to be labeled, Flame requires

to continuously update prototypes. An optimal threshold value for T i
new should be

determined based on the current data patterns. Here, we assume that data of a same

label follow a Gaussian distribution. Applying the average inner-cluster distance with

a small range of float for each cluster, we obtain the statistic for confidence threshold.

A cluster Ci is consisted by K cliques, the centroids of these cliques are µi1, ..., µiK .

For the cluster Ci, we have,

disti =
1

∥Ci∥
∑
x∈Ci

min
j=1...K

∥x− µij∥22 (3.5)

where ∥Ci∥ is the size of the cluster Ci, minj=1,...,K∥x− µij∥22 means the distance

of data instance x to it’s nearest prototype pij ∈ Pi. The desired threshold value

T i
new for cluster Ci is calculated by T i

new = disti + ω ∗ stdi, where stdi is the standard

deviation of ∥x− µij∥22.
The boundary of a labeling function lfi ∈ LF is determined by it prototypes.

Each prototype corresponds to a “hypersphere” in the feature space with a centroid

and radius. The coverage of a labeling function lfi is the union of the hyperspheres

encompassed by all prototypes in lfi. To assign a label for a new instance xnew by

the labeling function lfi, we compute the distance set Di
new from xnew to the nearest

prototype by minj=1,...,K∥x−µij∥22. Finally, we select the minimum distance from set

Di
new, i.e., minDi

new, If minDi
new is less than the threshold T i

new, the label of xnew

22

is from one of the existing labels. Else, xnew is regarded as a data instance with an

unknown label.

When the data instance xnew is from one of the existing labels, we assign the

labels for xnew as follows. Assume the value of minDi
new’s corresponding prototype

is pij. In the prototype pij, fmax is the highest frequency value in the frequency

vector f̄ , then fmax’s corresponding label y will be assigned to data instance xnew.

Each lfi ∈ LF maintains an assigned label for the data instance xnew and a labeling

confidence value (§3.2.3) for its labeling result. The label of the data instance xnew

is determined by taking the majority vote among all labeling functions.

Build new labeling functions. Flame builds new labeling functions for the

data instances belong to new unseen labels. When the data instance xnew is poten-

tially with a new label, it will be stored into a buffer B. Flame periodically checks

the buffer B and applies our clustering with minimal impurity (§3.2.1) method on

the data instances in buffer B to build the new labeling functions. Therefore, Flame

can incrementally incorporate new label information from data instances in B. At

last, those data instances that belong to the new label are removed from B, and the

released space is used to collect the subsequent data instances potentially belong to

other new labels.

3.2.3 Labeling Results Guarantees

Labeling confidence calculation. In Flame, each labeling function lfi ∈ LF

uses a metric (Confi) to quantify its labeling confidence for a data instance x. Flame

employs two heuristics, i.e., association and purity to estimate the Confi(x). After

each individual labeling function’s confidence value Confi(x)(i = 1, .., K) acquired,

Flame combines these values together to get the entire labeling functions LF ’s labeling

confidence value Conf(x).

The closest prototype from x in labeling function lfi is pij. The pij is the jth

prototype of lfi, ℓmax is the label having highest frequency in pij. The Association

and Purity of the prototype pij are calculated as follows [46]:

• Association is calculated by Rij −Dij(x), where Rij is the radius of pij and Dij(x)

is the distance between x and pij. If Dij(x) is small, it means x is close to the

23

prototype pik, then (Rij−Dij(x)) is large which leads to a high the association and

confidence of labeling.

• Purity is calculated by
|Lij(ℓmax)|

|Lij | , where |Lij| is the sum of all frequencies in pij,

and |Lij(ℓmax)| is the frequency of ℓmax in pij. A large Lij(ℓmax) means the high

purity of the prototype pij, which also leads to a high confidence of labeling.

We denote the Association and Purity of the labeling function lfi as Ai and Pi

respectively. Given the Ai and Pi of the labeling function lfi, its confidence value

Confi(x) is calculated as below,

Confi(x) = Ai(x)× Pi(x), (3.6)

Labeling confidence aggregation. Flame calculates the confidence value

Confi(x) for each lfi in LF for a given data instance x. These confidence values

are normalized between 0 and 1, and then aggregated together to calculate the over-

all labeling confidence of all labeling functions as follows,

Conf(x) = max
ℓ∈Y ′
{

M∑
i=1

1(lfi(x) = ℓ)× Confi(x)} (3.7)

where Conf(x) is the aggregated labeling confidence for data instance x, 1(lfi(x) =

ℓ) is an indicator function returns 1 if lfi(x) = ℓ and returns 0 otherwise. After

Conf(x) is calculated by Equation 3.7, we have a threshold τ to decide if Conf(x) is

high enough. If it is higher than τ , the label is assigned; Otherwise, the data instance

is added into the buffer B for further new unseen labels detection (§3.2.2). The value

of τ is specified by the programmer. We empirically determine 0.6 < τ < 0.8 based

on the sensitivity study using datasets listed in Table 3.1.

3.3 System Design

Flame has four components, Labeling Functions Generation (§3.2.1), Labeling

Functions Self-adaption (§3.2.2), Labeling Confidence Calculation and Labeling Con-

fidence Aggregation (§3.2.3). Figure 3.3 shows the execution time and energy con-

sumption breakdown for the four components in Flame. Here, “LFG” is short for La-

beling Functions Generation, “LFS” is short for Labeling Functions Self-adaptation,

24

Energy
Consumption

20

40

60

Execution
Time

0

LFG

R
at

io
 (%

)

LFS LCA

80

100
LCC

Figure 3.3: Breakdown analysis of different components in Flame.

“LCC” is short for Labeling Confidence Calculation, and “LCA” is short for Labeling

Confidence Aggregation. The results are received by labeling 3000 data instances

in Samsung S9 by Flame. We can see Labeling Functions Generation and Labeling

Functions Self-adaption together consume more than 60% of time, and Labeling Con-

fidence Calculation component consumes about 40% of energy. Given a mobile device

with three heterogeneous processing units (CPU, GPU and DSP), we map the four

components to the three processing units based on the workload characteristics of the

four components and hardware. Furthermore, we use a performance model to decide

the optimal way to utilize fast shared-memory in GPU when running the workload of

Labeling Functions Generation. We also use a performance model to coordinate the

usage of CPU and DSP while reducing the wake-up rate of CPU for high performance.

We discuss our system design in detail as follows.

3.3.1 Leverage GPU

Flame uses GPU to run Labeling Functions Generation and Labeling Functions

Self-adaption, because these two components spend more than 60% of time and the

clustering with minimal impurity method (§3.2.1) used by these two components is

suitable for parallelism. Therefore, we run these two components on mobile GPU to

speedup the labeling task. We do not offload the two components to DSP, because

they involve heavy computation (such as square root), which cannot be efficiently

processed on DSP [48]. To reduce execution of Labeling Functions Generation, we

make the best use of fast shared-memory on GPU to store data instances and cen-

troids, which brings a challenge. In particular, the fast memory has a rather small

25

capacity. For example, in our platform (a Samsung S9 mobile phone), shared memory

is only 64KB. We store some data instances and centroids in shared memory, such

that they do not have to be repeatedly fetched from slow global-memory to build

labeling functions. To host as many data instances in fast memory as possible, we

apply a sampling method to approximate data instances without impacting labeling

accuracy. In particular, given a data instance (an image), we use spatial sampling

which selects every n-th row for sampling where n is determined based on the image

size [49].

There is a non-trivial tradeoff between placing centroids in shared memory and

placing data instances in shared memory. To enable high-performance memory ac-

cesses to data instances, Flame fetches a batch of data instances (nd) into shared

memory and then processes them one by one in shared memory. Leveraging the spa-

tial locality, fetching nd data instances together causes less global memory accesses.

To get the nearest centroid for each data instance in shared memory, Flame must ac-

cess all centroids. To enable high-performance memory accesses to centroids, Flame

also fetches centroids to shared memory batch by batch (the batch size is nc). Plac-

ing too many data instances (or too many centroids) in shared memory can cause

frequent data movement to fetch centroids (or data instances).

We formulate the above discussion to decide the optimal numbers of data in-

stances (nd) and centroids (nc) to be placed on shared memory as follows. Assume

that the total number of data instances to be processed on GPU is Nd, the total

number of centroids is Nc, the execution time of processing nd data instances and

nc centroids on shared memory is t, and the time to transfer nd data instances and

nc centroids from GPU global memory to shared memory is td and tc respectively.

The total execution time T to process Nd data instances and Nc centroids is modeled

as follows. We want to minimize T under the constraint of shared memory capacity

(Memshared).

T = min
nd≥0,nc≥0

⌈Nd

nd

⌉ · td + ⌈Nc

nc

⌉ · tc + ⌈Nd

nd

⌉ · ⌈Nc

nc

⌉ · t, (3.8)

subject to nd + nc ≤
Memshared

datasize
, nd ≥ 0, nc ≥ 0. (3.9)

26

where datasize is the size of a data instance. In Equation 3.8, ⌈Nd

nd
⌉ · td denotes

the time to transfer Nd data instances from global memory to share memory, ⌈Nc

nc
⌉ · tc

denotes the time to transfer Nc centroids from global memory to share memory,

and ⌈Nd

nd
⌉ · ⌈Nc

nc
⌉ · t denotes the execution time to process Nd data instances and

Nc centroids on GPU. td, tc, and t are measured offline. Flame solves the above

programming problem using the ALGLIB [50] (a cross-platform numerical analysis

and data processing library).

3.3.2 Leverage DSP and CPU

Flame runs Labeling Confidence Calculation on DSP (not on CPU or GPU), be-

cause Labeling Confidence Calculation is the most energy-consuming component: It

takes 41.6% of energy consumption of the whole auto-labeling workflow. Compared

with GPU and CPU, DSP consumes the least power [1]. Furthermore, Flame runs

Labeling Confidence Aggregation on CPU, not on DSP or GPU. Because this compo-

nent involves a large amount of division and square root computation, which are not

supported effectively on DSP [1]; This component has low thread-level parallelism,

making it less efficient to run on GPU either.

The workload execution on CPU and DSP introduces inevitable interaction be-

tween CPU and DSP. In particular, the execution of Labeling Confidence Aggregation

has dependency on Labeling Confidence Calculation. Only after Labeling Confidence

Calculation is done on DSP, Labeling Confidence Aggregation can be executed on

CPU. We use a common mechanism in mobile phones, the remote procedure call

(particularly named FastRPC in our evaluation platforms, Samsung S9 and Google

Pixel2 mobile phones) for interaction between CPU and DSP.

Wake up CPU by DSP. CPU must be woken up by DSP if the execution

on DSP takes too long time [51] (e.g., a few seconds) and such wake-up operation

on CPU takes 60 mJ, which is very energy-consuming. In Flame, once DSP finishes

Labeling Confidence Calculation for a batch of data instances, which typically takes

23.6 seconds, the intermediate results generated by DSP must be transferred to CPU

cores for Labeling Confidence Aggregation. At this moment, DSP must wake up CPU.

Compared to the power consumption to wake up CPU, the energy consumption for

data transfer between DSP and CPU is relatively small. This is because data transfer

27

between CPU and DSP consists of simply passing data instances to be labeled, remote

invocation parameters, and labeling confidence values calculated by DSP, which is

typically 74 KB per transfer and consumes only 3.3 mJ. In general, the rate of waking

up CPU is critical to the energy consumption of Flame. We must reduce the wake-up

frequency to maintain low-energy consumption.

To minimize the wake-up frequency, we define the CPU wake-up interval and

formulate it as follows. The CPU wake-up interval is defined as the time duration

from the point where a batch of intermediate results is transferred from DSP to

CPU to the point where the next batch is transferred. The CPU wake-up interval

heavily depends on memory capacity in DSP and data instance size. Larger memory

capacity or smaller data instance size causes longer CPU wake-up interval, and vice

versa. Furthermore, DSP processes data instances batch by batch, and processes data

instances within the same batch in parallel. Given DSP memory capacity (Memdsp),

memory consumed by DSP invocation parameters (Mempara), the size of each data

instance (datasize), and the number of threads used by DSP (nt), the number of

batches of data instances is G, where G = ⌈Memdsp−Mempara

datasize×nt
⌉. The CPU wake-up

interval △ T is formulated as follows.

△ T = γ +
G−1∑
i=0

{ max
j∈[0,nt−1]

tij}+ ρ (3.10)

where γ is the time to transfer data instances and remote invocation parameters

from CPU to DSP, and ρ is the time to transfer calculated labeling confidence values

for each data instance from DSP to CPU. The CPU wake-up interval includes the time

to process a batch of data instances in DSP, which is formulated as maxj∈[0,nth−1] tij

in Equation3.10, where tij is the execution time of jth thread for ith batch of data

instances, where i ∈ [0, G− 1] and j ∈ [0, nth − 1], nt is the total number of threads

in DSP. γ and ρ are measured offline. Flame determines the maximum CPU wake-up

interval by using ALGLIB on Equation 3.10.

Data transfer for DSP. DSP needs to load data to be labeled from CPU main

memory to DSP local memory; DSP also needs to transfer labeling confidence values

for each data instance between CPU and DSP. To load data from CPU main memory,

we use slow CPU cores, because we find that using fast CPU cores often causes a

crash on DSP because of a run-out-of-memory error, and using slow CPU cores does

28

Slow CPUs: offload workloads
to DSP

Data
Transfer

Remote
Invocation

Data Buffer

Kernel Driver AC BD
Invocation Queue

Enqueue Dequeue

Outputs: labeling
confidence values

Fast CPUs: labeling confidence
aggregation and assigning labels

Data Instances

Thread Pool

Labeling
Confidence
Calculation

Method

d1 d2 dn

CPUs
Wakeup

Processing
on DSP

 1 1

2 3

3

4

5 5

Initialization

Fetch Data Instances

Multi-Core CPUs

 Digital Signal Processor (DSP)

Figure 3.4: The interaction between CPU and DSP.

not have this problem. Such an error happens because DSP cannot timely process

the data in the local memory before the new data comes in. We use fast CPU cores

to transfer data between CPU and DSP.

Overall workflow. Figure 3.4 generally depicts the interaction between CPU

and DSP. It includes five stages. At Stage one, the slow CPU cores transfer data

instances to be labeled and initiates DSP remote invocation. At Stage two, the

FastRPC kernel driver receives the remote invocations and enqueues them up to wait

for the response from DSP. A buffer on DSP is used to store the data instances to be

labeled. At Stage three, once DSP is ready for labeling the data instance, it dequeues

invocations from the invocation queue and dispatches them for processing. At Stage

four, DSP computes the labeling confidence values of data instances in parallel. At

last, the labeling confidence values (i.e., the intermediate results) are transferred to

fast CPU cores for labeling confidence aggregation and labeling.

3.3.3 Implementation

We implement Flame using C++ with Native Development Kit (NDK) on An-

droid 9.0 and Android 8.0. The system is evaluated on two mobile phones (Samsung

S9 with Snapdragon 845 SoC and Google Pixel2 with Snapdragon 835 SoC). Our

29

implementation includes about 8,000 lines of code in total. In our mobile platforms,

we have three types of mobile processors, which are GPU, fast CPU and slow CPU.

Each mobile platform has mobile GPU, fast CPU, slow CPU, and DSP. To run a

workload on a specific type of CPU, we use the thread affinity API. To execute a

kernel on GPU, we maintain a CPU thread to execute an OpenCL version of the

kernel. To execute a parallel kernel, we examine the availability of CPU cores and

GPU at runtime and then obtain the optimal concurrency. The workload running on

DSP is implemented by C99. We use FastRPC commonly supported by Samsung S9

and Google Pixel2 for communication between CPU and DSP.

3.4 Evaluation

We compare Flame with other baseline methods, in terms of labeling quality and

performance. Our evaluation aims to achieve the following four goals.

• Is the labeling quality of Flame better than that of the baseline methods?

(§3.4.1)

• Does Flame effectively utilize hardware heterogeneity of mobile processors?

(§3.4.2 and §3.4.3)

• Does each component of the Flame effectively boost the overall labeling quality?

(§3.4.4)

• Does Flame have imperceivable influences on user experiences on mobile de-

vices? (§3.4.5)

Experimental Setup. We use two mobile systems.

• Samsung S9: It uses Qualcomm Snapdragon 845 SoC and Android 9.0 Pie operating

system (OS). The 845 SoC includes a 4-core fast CPU, a 4-core slow CPU, an

Adreno 630 mobile GPU, and a Hexagon 685 DSP. The fast and slow CPU cores

are different in terms of frequency, cache hierarchy, and instruction scheduling. The

CPU architecture has 4x Kryo 385 cores (Cortex-A75) at up to 2.8 GHz (max) for

performance and 4x Kryo 385 at 1.8 GHz (max) for efficiency.

30

Table 3.1: Characteristics of datasets.

Datasets Application # features # labels # instances

MNIST Classification 28× 28 10 70,000
EMNIST Classification 28× 28 62 814,255
ImageNet Classification 224× 224 100 60,000
Cifar100 Classification 3× 28× 28 100 60,000
UCF50 Recognition 320× 240 50 15,000
UCF101 Recognition 320× 240 101 50,500

• Google Pixel2: It uses Qualcomm Snapdragon 835 SoC and Android 8.0 Oreo OS.

The 835 SoC includes a 4-core fast CPU, a 4-core slow CPU, an Adreno 540 mobile

GPU, and a Hexagon 682 DSP. The CPU architecture has 4x Kryo 280 at 2.45

GHz (max) for performance and 4x Kryo 280 at 1.9 GHz (max) for efficiency.

Datasets. Table 3.1 describes the six datasets used to evaluate Flame. Those

datasets are commonly used for classification or recognition, which are common ap-

plications in mobile devices. To evaluate this ability of Flame, we use the following

method. We test Flame on both static and dynamic datasets. (1) Static Datasets.

All the labels are known and the data instances are not incrementally generated. (2)

Dynamic Datasets. We rearrange instances in each dataset to emulate a dynamic

environment where data instances are incrementally generated with previously un-

seen labels. For MNIST [52], we randomly choose two labels as known, and the rest

eight labels as unknown and needed to be detected by Flame. For EMNIST [53], we

randomly choose six labels as known, and the rest 56 labels as unknown and needed

to be detected. For Cifar100 [54] and miniImageNet [55], we randomly choose ten

labels as known, and the rest 90 labels as unknown. UCF50 [56] and UCF101 [57]

datasets contain 59, and 101 types of human activities respectively, and they also

contain 13,421 short videos created for activity recognition. We use the ffmpeg [58]

tool to extract raw images from the above video datasets and feed the unstructured

images to Flame sequentially. We select six and ten types of activities as known for

UCF50 and UCF101 respectively, and the rest types of activities as unknown and

needed to be detected.

For those data instances with known labels, we sample a part of them to form

a subset DL. DL is used to build labeling functions LF for Flame at the beginning

31

of auto-labeling. DL takes up to 5% of all the data instances in a dataset. The rest

of the dataset (DU) is used to simulate the scenario where new data is incrementally

generated for auto-labeling.

Baselines. We compare Flame with four baselines: (1) Boosting (AdaBoost), which

uses the labeled data to generate one complex decision tree or multiple, simple decision

trees to label unlabelled data; (2) Semi-supervised learning [59], which uses both

the labeled and unlabeled data to assign labels; (3) Transfer learning, which uses

MobileNet V3 [60] pre-trained on ImageNet for labeling; (4) Snuba [9], a state-of-the-

art work for auto-labeling on servers. Snuba cannot run on mobile devices because of

the lack of a set of system libraries. So we just report its labeling accuracy.

Evaluation metrics. For the dynamic datasets, we use the following metrics to

evaluate the labeling quality. (1) Accuracy(%) = Nnew+Nexist

N
, where Nnew is the

total number of data instances with unknown labels correctly labeled, Nexist is the

total number of data instances with known labels correctly labeled, and N is total

number of data labeled by the system. Let FP represent the the number of data

instances that should be assigned with known labels but is mislabeled with unknown

labels (i.e., previously unknown labels); Let FN represent the number of data in-

stances that should be assigned with unknown labels but is mislabeled with known

labels; Let Nl represent the number of data instances assigned with unknown labels.

We use the following two metrics based on FP , FN , and Nl. (2) Mnew, the percent-

age of data instances that should be assigned with unknown labels but is mislabeled

with known labels, (Mnew = FN×100
Nl

); and (3) Fnew: the percentage of data instances

that should be assigned with known labels but is mislabeled with unknown labels,

(Fnew = FP×100
N−Nl

). Furthermore, we measure the performance of Flame in terms of

execution time and energy consumption. We measure the execution time using Flame

to label 5000 data instances from each dataset in Table 3.1. We also measure the

impact of Flame on user interactions when running Flame on mobile systems.

3.4.1 Labeling Quality

In this section, we analysis the labeling quality on both static and dynamic

datasets.

Labeling quality on dynamic datasets. Table 3.2 shows the results. “ACC”

32

Table 3.2: Comparison of labeling accuracy of different methods.

Methods
MNIST EMNIST ImageNet Cifar100 UCF50 UCF101

Acc Mnew Fnew Acc Mnew Fnew Acc Mnew Fnew Acc Mnew Fnew Acc Mnew Fnew Acc Mnew Fnew

Boosting 62.8 78.9 - 56.2 82.3 - 57.2 67.8 - 64.6 72.3 - 64.8 82.6 - 63.4 67.3 -
Transfer 76.8 62.4 - 72.6 64.8 - 65.7 58.3 - 70.6 69.4 - 70.2 64.4 - 66.7 61.9 -
Semi-s 71.5 48.3 9.8 70.7 39.7 11.3 62.4 40.4 9.4 71.7 38.4 8.9 67.2 38.3 8.8 62.4 41.7 12.9
Snuba 81.2 42.5 8.3 78.2 31.2 8.5 70.0 34.7 8.7 75.3 31.8 6.4 73.3 34.8 8.2 71.2 37.1 9.8
Flame C 87.3 23.6 3.7 85.4 22.8 5.9 86.2 31.1 7.9 85.7 23.9 5.7 86.3 34.4 6.4 83.7 28.4 8.7
Flme CG 86.2 22.7 4.5 86.1 24.7 6.2 85.8 29.9 7.6 87.5 25.0 5.2 85.7 32.3 6.6 82.4 27.7 9.7
Flame Full 86.7 22.9 5.7 85.3 23.9 6.9 87.2 30.3 8.1 85.8 23.7 6.1 87.1 33.7 6.9 84.8 26.9 8.3

is the accuracy of the labeling results; The notation “-” denotes failure of detecting

unknown labels. Mnew is the percentage of data that should be assigned with un-

known labels but is mislabeled with known labels; Fnew is the percentage of data that

should be assigned with known labels. For Mnew and Fnew, a lower value indicates

a better result. In general, Flame performs best. We conclude the following. (a)

Flame outperforms the boosting and semi-supervised methods. The average label-

ing accuracy of Flame is higher than that of the two methods by 25.2% and 18.5%

respectively. The reason is that Flame has the ability to immediately detect new

coming unknown labels. This advantage is obvious when the number of unknown

labels in the dataset is large (e.g., ImageNet, Cifar100, UCF101); (b) Flame outper-

forms the transfer learning method up to by 16.1%. This is because the pre-trained

model is directly used for labeling without learning a representation of the data from

scratch; (c) Flame outperforms Snuba by 11.8%. Snuba’s labeling quality is based on

trained labeling functions and it fails to assign unknown labels to data instances, be-

cause Snuba’s labeling functions can not adapt to dynamic datasets; (d) The labeling

quality of different versions of Flame (i.e., CPU Only, CPU and GPU, and the full

featured version which uses CPU, GPU and DSP) does not vary significantly. The

slight variance in the labeling quality comes from randomness in execution order of

parallel threads in the heterogeneous computing environment.

End-to-end impact. We evaluate the effect of using the auto-labeled data

to train DNN models. In our evaluation, we use a DNN model with three fully-

connected layers and each layer contains 128 neurons, which is commonly deployed

in mobile phones [61]. We stop the training process until the DNN model’s loss value

converges. Table 3.3 shows the accuracy lift after using auto-labeled data from Flame.

The column “Highest Accuracy of Baseline” means the highest accuracy achieved by

33

Table 3.3: Accuracy comparison between baselines and Flame.

Datasets Highest Accuracy of Baseline (%) Flame (%) Lift

MNIST 81.1 88.2 +7.1
EMNIST 76.6 84.1 +7.7
ImageNet 75.2 84.6 +9.4
Cifar100 72.3 79.6 +6.3
UCF50 78.3 85.2 +6.9
UCF101 76.5 83.7 +7.2

EMNIST ImageNet Cifar100

10

20

30

MNIST
0

Transfer Learning Boosting

Ex
ec

ut
io

n
Ti

m
e

(M
in

s) Semi-Supervised Learning Flame

(a) Execution time of different methods on Samsung S9
UCF50 UCF101

EMNIST ImageNet Cifar100

10

20

30

MNIST
0

Transfer Learning Boosting

Ex
ec

ut
io

n
Ti

m
e

(M
in

s) Semi-Supervised Learning Flame

(b) Execution time of different methods on Google Pixel2
UCF50 UCF101

Figure 3.5: Comparison between different labeling methods in execution time.

EMNIST ImageNet

0.3

UCF50

0.4
0.5
0.6
0.7
0.8

MNIST
0.2

Flame: CPU Only

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n Flame: CPU and GPU Flame: full-featured

(a) Normalized energy consumption of Flame on Samsung S9
UCF101Cifar100

0.9
1.0

EMNIST ImageNet

0.3

UCF50

0.4
0.5
0.6
0.7
0.8

MNIST
0.2

Flame: CPU Only

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n Flame: CPU and GPU Flame: full-featured

(b) Normalized energy consumption of Flame on Google pixel2
UCF101Cifar100

0.9
1.0

1.1 1.1

Figure 3.6: Comparison of the energy consumption.

the baselines. The accuracy lift over the six datasets shows that labeling results of

Flame improves the model accuracy. In general, the model accuracy is improved by

up to 9.4% over six datasets.

3.4.2 Analysis on Execution Time

We compare the execution time of different labeling methods. We also show how

our system design (§3.3) can reduce the execution time of Flame.

34

EMNIST ImageNet

5

UCF50

10
15
20
25
30

MNIST
0

Flame: CPU Only

Ex
ec

ut
io

n
Ti

m
e

(M
in

s)

Flame: CPU and GPU Flame: full-featured

(a) Labeling execution time of different Flame on Samsung S9
UCF101Cifar100

35
40

EMNIST ImageNet

5

UCF50

10
15
20
25
30

MNIST
0

Flame: CPU Only

Ex
ec

ut
io

n
Ti

m
e

(M
in

s)

Flame: CPU and GPU Flame: full-featured

(b) Labeling execution time of different Flame on Google pixel2
UCF101Cifar100

35
40

45 45

Figure 3.7: The execution time of the three versions of Flame.

Comparison with different versions of Flame. Figure 3.7 presents execution

time of labeling 5,000 data instances on Samsung S9 and Google Pixel2. We use three

execution strategies to evaluate the effectiveness of Flame: (1) using CPU Only; (2)

using CPU and GPU; and (3) using CPU, GPU and DSP (i.e., the full-featured

Flame). Figure 3.7 shows that compared with using CPU Only, using CPU and

GPU leads to an average of 2.1× speedup, because of using GPU. Using the full-

featured Flame, there is average 6.8× performance improvement, because of using

GPU and DSP. Flame fully taps the capability of hardware heterogeneity in mobile

processors. Such a large reduction in execution time is not paid by using larger energy

consumption, discussed as follows.

Comparison with the baselines. Figure 3.5 presents the execution time of

labeling 5,000 data instances on Samsung S9 and Google Pixel2 using different meth-

ods. Compared with the baselines, Flame’s execution time is the shortest. Figure 3.5

shows that Flame reduces the execution time by average 5.6×, 4.2×, and 3.8× re-

spectively, compared with the transfer learning, semi-supervised learning, and the

boosting methods. Such a reduction in execution time is because of two reasons:

(1) Flame uses the lightweight clustering with minimal impurity method (§3.2.1) to

build the labeling functions; and (2) Flame uses Algorithm 2 to merge the close proto-

types to reduce the number of prototypes contained in each labeling function, which

significantly reduces computation overhead in Flame.

3.4.3 Analysis on Energy Consumption

We analysis the energy consumption of different labeling methods over the six

datasets. We also analyze how full-featured Flame saves energy, compared with the

other two versions of Flame.

35

EMNIST ImageNet Cifar100

0.3

0.5

0.7

MNIST
0.1

Transfer Learning Boosting

En
er

gy
 C

on
su

m
pt

io
n

Semi-Supervised Learning Flame

(a) Normalized energy consumption of different methods on Samsung S9
UCF50 UCF101

0.9

EMNIST ImageNet Cifar100

0.3

0.5

0.7

MNIST
0.1

Transfer Learning Boosting

En
er

gy
 C

on
su

m
pt

io
n

Semi-Supervised Learning Flame

(b)Normalized energy consumption of different methods on Google Pixel2
UCF50 UCF101

0.9

Figure 3.8: Energy consumption comparison of different labeling methods.

Table 3.4: Ablation study results of different components in Flame.

Datasets
Labeling Functions Generation Labeling Functions Self-adaption Labeling Results Guarantees
Accuracy Mnew Fnew Accuracy Mnew Fnew Accuracy Mnew Fnew

MNIST +14.4 -5.1 -8.3 +7.8 -7.2 -5.1 +6.5 -4.2 -3.5
EMNIST +18.5 -8.8 -12.2 +12.5 -18.3 -17.1 +9.1 -7.7 -6.4
ImageNet +21.3 -7.8 -13.7 +14.2 -25.4 -14.4 +9.1 -8.2 -8.4
Cifar100 +24.1 -10.4 -13.1 +14.6 -27.3 -20.6 +12.9 -8.8 -7.7
UCF50 +17.7 -9.2 -11.0 +8.7 -13.5 -11.5 +11.1 -7.2 -6.1
UCF101 +19.5 -7.4 -12.8 +9.7 -23.3 -18.6 +12.7 -7.4 -9.8

Comparison with different versions of Flame. Figure 3.6 shows the energy

consumption of the three strategies (CPU Only, CPU and GPU, and the full-featured

Flame) on Samsung S9 and Google Pixel2 . The energy consumption in Figure 3.6

is normalized by that of running Flame on Google Pixel2 with only CPU. Figure 3.6

shows that the average energy consumption of using the strategies of “CPU and

GPU” and full-featured Flame is 73.4%, and 46.2% of that of Flame using only CPU,

respectively. Full-featured Flame uses the least energy, which shows the advantage of

using DSP.

Comparison with the baselines. Figure 3.8 shows energy consumption of the

semi-supervised learning, transfer learning, boosting, and Flame. The energy results

36

are normalized by energy consumption of using the transfer learning method on each

dataset. In Figure 3.8, energy results are normalized by the energy consumption

of using the transfer learning. In general, Flame consumes the least energy in all

datasets. This is largely because we offload the most energy-consuming component

of Flame (Labeling Confidence Calculation) to DSP (§3.3.2).

3.4.4 Micro-Benchmarking Results

We evaluate the components of Flame (i.e., Labeling Functions Generation, La-

beling Functions Self-adaption, and Labeling Results Guarantees) and show how each

component can affect the auto-labeling quality. Table 3.4 shows the results. We

measure how the evaluation metrics change when involving different components in

Flame. Mnew is the percentage of data that should be assigned with unknown labels

but is mislabeled with known labels; Fnew is the percentage of data that should be

assigned with known labels but mislabeled with unknown labels.

Labeling functions generation. We quantify the contribution of Labeling

Functions Generation (§3.2.1) to the labeling quality. Table 3.4 shows that (1) com-

pared with the other two components, Labeling Functions Generation contributes

more to the labeling accuracy, and (2) including Labeling Functions Generation im-

proves the accuracy by up to 24.1% (Cifar100). We conclude Labeling Functions Gen-

eration component is useful for improving the labeling accuracy, especially for those

datasets with a large numbers of unknown labels (e.g., Cifar100 and ImageNet). Ad-

ditionally, Mnew and Fnew are decreased by up to 10.4% and 13.1% respectively after

involving Labeling Functions Generation. Therefore, this component also boosts the

capability of recognizing unknown labels and known labels.

Labeling functions self-adaption. We quantify the contribution of Label-

ing Functions Self-adaption component (§3.2.2) to the labeling quality. Table 3.4

shows that (1) Labeling Functions Self-adaption leads to more reduction in Mnew and

Fnew than the other two components, indicating that it is more efficient to recog-

nize unknown labels and known labels than the other two components. (2) Labeling

Functions Self-adaption is more helpful to those datasets with a larger number of

unknown labels. For example, Cifar100 has 100 labels and MNIST has 10 labels. The

reduction of Mnew and Fnew on Cifar100 dataset is 27.3% and 20.6% respectively,

37

2D

5
10
15

20
25

0

Transfer Learning Boosting

(a) PassMark slowdown of Flame on Samsung S9

Semi-Supervised Learning Flame

0
2

8
6

4

10
1230

CPU

5
10
15

20
25

0

Sl
ow

do
w

n
(%

)

0
2

8
6

4

10
1230

Memory

5
10
15

20
25

0 0
2

8
6

4

10
1230

Sp
ee

du
p

2D

5
10
15

20
25

0

Transfer Learning Boosting

(b) PassMark slowdown of Flame on Google Pixel2

Semi-Supervised Learning Flame

0
2

8
6

4

10
1230

CPU

6
12
18

24
30

0

Sl
ow

do
w

n
(%

)

0
2

8
6

4

10
1236

Memory

6
12
18

24
30

0 0
2

8
6

4

10
1236

Sp
ee

du
p

Figure 3.9: PassMark slowdown with auto-labeling running in background.

while the reduction on Labelme dataset is only 7.2% and 5.1% respectively.

Labeling Results Guarantees. We quantify the contribution of Labeling Con-

fidence Aggregation (§3.2.3) to the labeling quality. Table 3.4 shows that (1) Labeling

Confidence Aggregation improves the accuracy by up to 12.9%, and (2) Mnew and Fnew

are decreased by up to 8.8% and 9.8% respectively after involving Labeling Confidence

Aggregation.

3.4.5 Evaluation on User Experience

We run Flame in background as a service in mobile phones, in order to avoid

the impact of using Flame on the user applications running in foreground. In this

section, we evaluate the impact of using Flame on the user experience. Android

always sets higher priority to the foreground applications compared to the background

applications to provide prompt response to user input, more resources are allocated

to the foreground applications. Since labeling is an intensive task, running it in

background can reduce its impact on user experience of other applications on the

devices. Therefore, We run Flame in background.

Impact on other applications. We evaluate how using different labeling meth-

ods impacts the performance of another application running in foreground. We use

a benchmark PassMark [62] as the user application. We use PassMark, because it

38

involves CPU tests, memory tests, and graphics tests, representing workloads with

various characterization. Figure 3.9 shows the slowdown of PassMark while running

various labeling methods in background. We compare Flame with other labeling

methods in terms of PassMark slowdown. In general, Flame has the least impact on

PassMark. (a) For the CPU tests, the full-featured Flame leads to up to 4.6% and

6.1% slowdown in PassMark on Samsung S9 and Google Pixel2 respectively. The

CPU slowdown of the full-featured Flame is up to 7.1× better than the baselines. (b)

For the memory tests, the full-featured Flame leads to up to 4.7% and 5.9% slowdown

in PassMark on Samsung S9 and Google Pixel2 respectively. Compared to the base-

lines, the full-featured Flame achieves up to 5.7× and 5.9× slowdown improvement

on Samsung S9 and Google Pixel2 respectively. (c) For 2D graphic experience, the

full-featured Flame leads to up to 3.1% and 4.3% slowdown in PassMark on Sam-

sung S9 and Google Pixel2 respectively. Compared to the baselines, the slowdown

improvement for 2D graphic experience is up to 7.9× and 7.4× on Samsung S9 and

Google Pixel2 respectively.

Impact on the interaction between the user and mobile devices. We

aim to find out whether running Flame affects a user’s interactive experience with

the mobile device. We perform our tests using an application that models the user

interaction with a device by taking a user’s input from the touch screen and rendering

a response on the screen. By analyzing the rendering latency in response to the user

input, we can quantitatively understand the interactivity. We use Android dumpsys

tool to measure the latency. We use two metrics to quantify the latency: (1) response

time, i.e., the time for the mobile device to process the user input; and (2) frame

latency, i.e., the time to render a new frame based on the user input. Figure 3.10 lists

the 95th percentile response time and Figure 3.11 lists the frame latency distribution

under four different configurations. These configurations are (1) without running

Flame (baseline), (2) running Flame on CPU (Flame: CPU Only), (3) running Flame

on CPU and GPU (Flame: CPU and GPU), and (4) running Flame on CPU, GPU

and DSP (Flame: full-featured).

Figure 3.10 shows that the response time increases by only 0.03 ms and 0.04

ms when running full-featured Flame on Samsung S9 and Google Pixel2. The re-

sponse time in the figure shows how fast the application reacts to user input events.

Meanwhile, as Figure 3.11 shows, the median frame latency only increases by 0.75

39

Response time (ms)

Baseline

(a) Response time comparison on Samsung S9

0.19 ms

0.24 ms

0.22 ms

0.22 ms

Flame: CPU Only

Flame: CPU and GPU

Flame: full-featured
Response time (ms)

Baseline

(b) Response time comparison on Google Pixel2

0.24 ms

0.29 ms

0.27 ms

0.28 ms

Flame: CPU Only

Flame: CPU and GPU

Flame: full-featured

Figure 3.10: Impacts of using Flame on user experience.

Samsung S9
Google Pixel2

4.5
4.8

5.7

5.4

5.1

6.0

6.3

Baseline Flame:
CPU Only

Flame:
CPU and GPU

Flame:
full-featured

Fr
am

e
La

te
nc

y
(m

s)

Figure 3.11: The frame latency distribution of using different versions of Flame.

ms and 0.64 ms when running full-featured Flame on Samsung S9 and Google Pixel2

respectively. Such increase is very small, compared with the minimum threshold of

user-perceivable latency, 100 ms [11]. Baseline is the frame latency without running

Flame. Figure 3.11 also shows that the additional frame latency caused by Flame:

the full-featured Flame causes negligible latency, compared with using CPU and GPU

to run Flame. This means that involving DSP into Flame does not affect the user’s

graphic experience. For the above testing results, we conclude that the impact of

the labeling tasks is not perceivable by users, because the minimum threshold of

perceivable latency is 100 ms [11].

3.5 Summary

Auto-labeling on mobile devices is critical to enable ML training on mobile de-

vices. However, it is challenging to enable auto-labeling on mobile devices, because of

unique data characteristics on mobile devices and heterogeneity of mobile processors.

In this paper, we introduce the first auto-labeling system for mobile devices, named

Flame, to address the above problem. Flame includes auto-labeling algorithms to

detect unknown labels from dynamic data.

Chapter 4

Fauce: Fast and Accurate Deep

Ensembles with Uncertainty for

Cardinality Estimation

4.1 Overview of Fauce

Figure 4.1 shows the architecture of Fauce at a high level. The Query Featuriza-

tion (§4.3) transforms the queries into vectors, it includes Tables Encoding (§4.3.1),

Joins Encoding(§4.3.1), Columns Encoding (§4.3.2), and basic statistical information

(§4.3.3). The generated training dataset (§4.4.2) is used to train the appropriately

designed regression model (§4.5). At last, the trained model is used to estimate the

query cardinalities (§4.5.2).

Fauce consists of two stages. First, Fauce transforms input queries into feature

vectors through a new query featurization method (§4.3), including tables encoding

and joins encoding). Tables encoding (§4.3.1) is based on a graph embedding method

that can capture semantic information of the database tables and achieve more accu-

rate encoding results than widely used one-hot encoding and binary encoding meth-

ods. Joins encoding (§4.3.1) is based on our proposed joins2vec algorithm to featurize

joins into vectors. Without any assumption on the independence of columns, our col-

umn encoding (§4.3.2) can capture real dependency information among the columns.

Besides the encoding information, Fauce also collects statistics of the database tables

(e.g., row counts and domain bounds) to represent the point predicate and/or range

40

41

predicate of a query (§4.3.3).

Second, we train the modelM based on the generated training dataset (§4.4.2).

Once the training is finished, the model is ready to estimate the cardinalities for a

given query. For each input query, we use a query featurization method to transform

the query into a feature vector. This vector is plugged into the model M, and the

output ofM is the estimated cardinality together with the corresponding uncertainty.

4.2 Problem description

In this section, we introduce some notations and describe why the cardinality

estimation can be solved as a regression problem.

4.2.1 Notations

Consider a database D contains m tables, D = {Ti}mi=1. Each table Ti has a

number of numeric columns, represented as Ti = {Col1i , ..., Colcki }, where ck is the

total number of columns in Table Ti. The total number of columns in D is denoted

as C, where C =
∑m

k=1 ck.

We define the actual cardinality of a query q as the number of rows in joint tables

that satisfy all predicates in q, and denote it as Act(q). Similarly, we use Card(q) to

represent the estimated cardinality for the query q. Each query q can be represented

as a collection of four sets: ⟨Tables⟩, ⟨Joins⟩, ⟨Columns⟩, ⟨V alues⟩, and each set is

defined as below.

• ⟨Tables⟩: the set of the tables in q’s FROM clause.

• ⟨Joins⟩: the set of the join relations in q’s WHERE clause.

• ⟨Columns⟩: the set of the columns involved in q’s WHERE clause.

• ⟨V alues⟩: the set of the predicates values in q’s WHERE clause.

These four sets together depict the features of a query.

42

Join
Schema

Tables

T1 Tn
...

Query Featurization

Tables
Encoding

Joins
Encoding

Columns
Encoding

Statistical
Information

Query Encoding Predicates
Representation

Model
Design

Training
Dataset

Model
Training

Model
Inference

Training Data Generation

Prepare Base Tuples Parsing

Figure 4.1: Overview of Fauce.

4.2.2 Formulation as a Regression Problem

As the cardinality of a query is a real-valued number, we develop a regression

model M, such that for any range query q on joint tables, the estimated cardinality

Card(q) produced by M matches or closes to the actual cardinality Act(q).

The input of the model M must be a real-valued vector. Therefore, we must

transform the query q into a real-valued vector which represents the features of

q. This transformation is called query featurization. For a query q = ⟨Tables⟩,
⟨Joins⟩, ⟨Columns⟩, ⟨V alues⟩, we transform q into a query feature vector f⃗ =

⟨fT , fJ , fC , fV ⟩, where fT , fJ , fC , and fV are the features extracted from ⟨Tables⟩,
⟨Joins⟩, ⟨Columns⟩, and ⟨V alues⟩ respectively. The vector f⃗ serves as the input to

the regression model M. The actual cardinality, Act(q), serves as the labels, which

guides the model training. Given a training set of labeled queries S, the model M
trained on S is expected to produce accurate cardinalities for unseen queries.

4.3 Query Featurization

Before using the model M to estimate the cardinality, we must convert input

queries into vectors. A query q can be represented as: ⟨Tables⟩, ⟨Joins⟩, ⟨Columns⟩,
and ⟨V alues⟩. Each of them is represented by a vector. These four vectors combined

together is the outcome of the query featurization for q. The result is directly plugged

43

into the model for both training and inference. Section 4.3.1 introduces how to encode

⟨Tables⟩ and ⟨Joins⟩ into vectors; Section 4.3.2 introduces the method to encode

⟨Columns⟩; and Section 4.3.3 introduces how to represent ⟨V alues⟩ of a query.

4.3.1 Tables and Joins Encoding

Tables encoding. Instead of using one-hot and binary encoding methods, we

use a graph embedding method [63] to encode the database tables. The join schema of

a database is considered as an undirected graph G, where vertices are tables and each

edge connects two joinable tables. We use G as the input for the graph emebedding

method, and the output is a group of vectors. Each vector is the encoding result for a

corresponding table. In a database D = {Ti}mi=1, if a table is not involved in a query,

we use a vector with all zeros to represent this table. Similar to the binary encoding,

our tables encoding method represents each table as a ⌈log(m+1)⌉ dimensional vector,

where m is the number of tables in a database. Finally, the ⟨Tables⟩ of a query q is

represented as a vector fT with length of m⌈log(m + 1)⌉.
Joins encoding. Using the existing coarse-grained joins encoding methods [16]

for query featurization always causes large errors in cardinality estimation. We pro-

pose a new fine grained algorithm called Joins2Vec for the joins encoding.

Algorithm 3 GetJoinGraphs (G, t, d)

Input: JS = (V,E): The join schema of a database
t: Table which is the root of a join relationship
d: Neighbours considered for extracting join graph

Output: jg
(d)
t : rooted join graph of degree d around table t

jg
(d)
t = {} if d = 0 then

jg
(d)
t := t

else
Nt := Neighbours(G, t); // Breath First Search

Md
t := {GetJoinGraphs(G, t

′
, d− 1)|t′ ∈ Nt}

jg
(d)
t := jg

(d)
t ∪ GetJoinGraphs(G, t, d− 1)⊕Md

t

end

return jg
(d)
t

The ⟨Joins⟩ of a query q is based on the join graphs derived from the join schema

JS. The Algorithm Joins2Vec consists of two main components; the first component

discovers all the possible join graphs based on the join schema JS, and the second

44

component gets the encodings for all the join graphs. The goal of Algorithm Joins2Vec

is to learn a λ dimensional encoding for each join graph. We first search all the join

graphs, JGs (extensive details are depicted in Algorithm 3). Then the encodings for

the join graphs in JGs are initialized as a matrix: Θ ∈ R|JGs|×λ where |JGs| is the

number of possible join graphs extracted from JS. After that, we learn the encoding

result Θ. These steps are explained in detail in the following two paragraphs.

(1) Get all the join graphs. First, we introduce how to use each table t in

the database D as a root to build the join graphs. The join graph jg
(d)
t rooted at

the table t with different numbers of joinable tables d in a given join schema JS is

extracted. The join graphs discovering process is separately explained in Algorithm 3.

The Algorithm 3 takes the join schema JS, table t, and degree of the joins d as inputs

and returns the intended join graph jg
(d)
t . When d = 0, no join graphs need to be

extracted and the table t is returned. For the case when d > 0, we get all the (breadth-

first) neighbours of t in Nt, and the neighbours of t are those tables that can be joined

with the table t. Then for each joinable table, t
′
, we get its (d−1)-degree join graphs

and save them in M
(d)
t , where M

(d)
t is a list to store the rooted d-degree join graphs

around table t. Finally, we get the (d− 1)-degree join graph around the table t and

concatenate these join graphs with M
(d)
t to obtain the intended join graphs jg

(d)
t .

(2) Get the context for each join graph. Then, we introduce how to get the

context for each join graph based on the results of Algorithm 3. Once the join graphs

jg
(d)
t of table t is extracted, we learn the encoding of a target join graph using its

surrounding context in a given join schema JS. We define the context of a d-degree

join graph jg
(d)
t of the table t as the set of join graphs of (d− 1), d and (d+ 1)-degree

rooted at each of the neighbours of t. Note that we consider join graphs of (d− 1), d

and (d+1)-degree to be in the context of a join graph of d-degree, because a d-degree

join graph is likely to be rather similar to the join graphs of degrees that are closer

to d (e.g., d− 1 and d + 1) and not just the d-degree join graphs only.

(3) Optimize the encodings for the join graphs. The encoding of a target

join graph, jg
(d)
t , with the context context

(d)
t is learnt using the process in algorithm

Joins2vec. Given the current representation of the target join graph Θ(jg
(d)
t), we want

to maximize the probability of every join graph in its context jgcont. Here, we learn

such posterior distribution using logistic regression classifier. Finally, the encodings

of all the join graphs are optimized by gradient descent.

45

2
Get the context of each Join

Graph (use JG1 as an example)

A B C A B C
A

B

B

C A

B C1

Get Join Graphs

(a) Join Schema (b) Join Graphs

JG1 JG2 JG3

JG4 JG5 JG6

(1) Get neighbors: B

(2) Get context of JG1:

B A

B

B

C

B C

A

(c) Context of JG1

JG1 1.23 1.12 0.44

JG2 0.32 0.70 1.23

JG3 0.21 0.36 0.24

JG4 0.23 0.45 0.35

JG5 3.20 0.32 0.25

JG6 1.22 1.10 0.58

(d) Joins encoding results

3

Encodings
optimization

Figure 4.2: An example of Joins2Vec.

Using Algorithms: Joins2Vec and GetJoinGraphs, we get the encoding result

for ⟨Joins⟩ of a query. Assume there are n possible join graphs in a database and

the encoding size λ is equal to n, the representation of ⟨Joins⟩ of the query q is a

n dimensional vector. Figure 4.2 shows an example of applying Joins2Vec on a join

schema with three tables, A, B, and C. In this figure, (a) A join schema with three

tables. (b) Get all the possible join graphs based on (a) using Algorithm 3. (c) Get

the context of each join graph. (d) Encode the join graphs into vectors. All the join

graphs derived from this join schema are encoded into vectors (see (d) in Figure 4.2).

4.3.2 Columns Encoding

The correlations of table columns can be utilized as useful information to fa-

cilitate the columns encoding. We propose a method called Columns2Vec, which

encodes the columns by using real correlations among the columns. This method

includes three steps.

(1) Build local columns-dependency graphs. We calculate the Randomized

Dependence Coefficient [64] (RDC) values for each pair of columns in each table Ti

from the database D. If the RDC value for two columns exceeds a threshold τ , then

those two columns are dependent with each other; otherwise, they are independent.

Using a small value of τ overestimates the columns-dependency, while using a large

value of τ underestimates the columns-dependency. Here, we set τ as 0.4. Based on

46

the RDC values of each pair of columns, we can build a local columns-dependency

graph gi for each table Ti. The graph gi is a DAG. Once there exists a connection (i.e.,

an edge) between two columns (i.e., vertices), the graph shows those two columns are

correlated. We get dependency information between any pair of columns in gi by

using depth first search to find whether a path exists between their corresponding

vertices.

(2) Build a global columns-dependency graph for the database. This

graph is represented as G. It is built based on the local column-dependency graphs.

Assume that there are two tables Ti and Tj and their local columns-dependency graphs

are gi and gj respectively. We merge gi and gj if Ti and Tj are joinable. Thus, we can

build the global columns-dependency graph G by checking whether the pair of tables

Ti, Tj in a database are joinable or not.

(3) Use graph embedding for encoding. We use a graph embedding [15]

to encode each vertex in G into a vector. The results of Columns2Vec are used to

represent ⟨Columns⟩ of a query q as a vector fC with the length C, where C is the

total number of different columns in the database. Figure 4.3 shows an example of

applying Columns2Vec to three tables, Title, Company, and Cast. In this figure,

(a) Three tables, and their columns to be encoded. (b) Local columns-dependency

graph for each table, vertices are columns, an edge represents the correlations between

two columns. (c) Global columns-dependency graph. (d) Use the graph from (c) as

the input for the graph embedding method. Finally, each column in the database is

represented as a vector. Multiple columns from these three tables are encoded into

vectors (see (d) in Figure 4.3).

4.3.3 Range Representation

In this section, we discuss how to represent ⟨V alues⟩ of a query. In a database

D = {Ti}mi=1, any conjunctive query q on numeric columns of the database D can

be represented as a subset of (lb11 ≤ Col11 ≤ ub11) ∧ ... ∧ (lbcmm ≤ Colcmm ≤ ubcmm),

where Colji is the jth column of the table Ti, lb
j
i and ubji are the lower bound and

upper bound on values in the column Colji respectively, and {ci}mi=1 is the number

of columns in the tables {Ti}mi=1. Let the domain of the jth column in table Ti be

dom(Colji) = [minj
i ,maxj

i]. If a query does not contain predicate on column Colji ,

47

id

t_id c_id

Y

S id

c_id

Z

g3

T2:Company
c_id(PK) t_id(FK) Zip

1 12 230
2 36 125
3 50 150

T3:Cast
id(PK) t_id(FK) c_id(FK)
30 12 2
20 36 3
15 13 1

t_id

Y

S

g1

c_id

t_id Z

g2
1

2

3

t_id

t_id 0.13 0.38 0.67
Year 1.13 7.10 3.22
Score 0.5 0.3 0.2
c_id 0.22 0.17 0.14
Zip 5.1 2.3 2.5
id 3.10 2.21 1.58

(d) Columns encoding results

Graph embedding

(a) Tables
T1:Title

t_id(PK) Year Score
12 2001 5
36 2000 3
50 2002 2

(b) Local dependency graphs (c) Global dependency graph

G

Figure 4.3: End-to-end example of Columns2Vec.

then we have lbji = minj
i and ubji = maxj

i . Then, the predicate on the column Colji

becomes minj
i ≤ Colji ≤ maxj

i . It means that the predicate on Colji does not filter

out any row. For instance, assume that there are two columns Colji and Colki from the

table Ti, each of which is in the domain [0,100]. Then, the predicate 10 ≤ Colji ≤ 20

would have the following representation: (10 ≤ Colji ≤ 20) ∧ (0 ≤ Colki ≤ 100).

The above definition includes one-sided range predicates and point predicates, i.e.,

Colji = x can be specified as lbji = x and ubji = x.

Finally, we use a vector fV with 2C dimensions to represent ⟨V alues⟩ of a query,

it is represented as: ⟨lb11, ub11, ..., lbcmm , ubcmm ⟩. This vector is used as a part of input

features for the model M. To facilitate learning, all the vectors constructed by the

query featurization have the same dimension and the same format as depicted in Table

4.1, where m is the number of tables in the database, n is the number of possible

join relationships among the database tables, and C is the total number of different

columns in the database. Therefore, the feature vector for the query q after the query

featurization has a length of L = m⌈log(m + 1)⌉+ n + 3C.

4.4 Choice of regression methods

We use an ensembles of deep neural networks (DNNs), or deep ensembles for

short, to estimate the cardinalities. We choose DNN, because the distribution of

queries is very complex and DNNs are powerful models that have achieved impressive

48

Featurize
Queries

Transform
Cardinality

Deep Ensembles

Featurize Queries

Training
Queries

Generation

Queries for Inference

W1 W2 WM

Ud1 Ud2 UdM

Estq1 Estq2 EstqM

Data Uncertainty
Aggregation: Ud

Model Uncertainty
Aggregation: Um

Queries
Sampling

Queries
Retraining

1 2 3

1

2

3

Data
Uncertainty

Um1 Um2 UmM
Model
Uncertainty

Estimation
Results

Cardinality Estimation Results: Card

4 5

6

Offline

Online

Training Steps:
1 2 3 6

Inference Steps:
1 2 3 4 5

Ud > Thr

Um > Thr

4

4

5

Incremental Learning for Queries with High Uncertainties

Uncertainty Management

Figure 4.4: Training and inference process of Fauce.

Table 4.1: Query Features Segmentation

Type Table Join Column Predicate

Segment ⟨Tables⟩ ⟨Joins⟩ ⟨Columns⟩ ⟨V alues⟩
Method Embedding Joins2Vec Columns2Vec Range
Seg. Size m⌈log(m+ 1)⌉ n C 2× C

accuracy on many tasks. Furthermore, previous work [65, 66] has shown the advantage

of using the ensemble technique to boost the cardinality estimation.

Deep ensembles. Deep ensembles is a learning paradigm where a collection

of a finite number of DNNs is trained for the same task. In general, deep ensembles

is constructed in two steps: (1) training a number of DNNs in parallel without any

interaction, and (2) calculating the weighted average of the estimation results of each

DNN as the final output of the deep ensembles.

4.4.1 Cardinality Transformation

In this section, we discuss how to create proper training labels through transfor-

mations. We generate a set of queries (§4.4.2) S = (q1 : Act(q1)), ..., (qN : Act(qN))

with actual cardinality as the label, where S contains N labeled queries. The cardi-

nality variation across different queries in S can be huge, and the distribution of the

actual cardinalities for different queries can be skewed. Building an accurate model

on such data is challenging. We alleviate this problem by normalizing the actual car-

dinalities in S before training (i.e., the normalized values of the actual cardinalities

belong to [0, 1]).

We use the log transformation and min-max scaling to do the transformation.

At runtime when using Fauce for estimation, we apply inverse transformation to get

49

the true estimations.

Log transformation.The log transformation allows the modelM to capture the

abrupt variation. We apply log transformation (using the base 2) on the cardinalities

to mitigate such variation.

Min-max scaling. We rescale the outcomes of the log transformation into

the range [0, 1] using min-max scaling. Given a set of log transformed cardinali-

ties CARD = {card1, card2, ..., cardn}, the max cardinality in CARD (maxcard), the

min cardinality in CARD (mincard), the result of the min-max scaling for cardi in

CARD is calculated as, card
′
i = cardi−mincard

maxcard−mincard
. Therefore, the final cardinality es-

timation is formulated by inverse transformation, which is represented as: est(qi) =

2card
′
i×(maxcard−mincard)+mincard .

4.4.2 Training Data Generation

Since the distribution of the cardinalities for the queries can be easily skewed,

naive sampling from the space of all queries can result in a highly non-uniform train-

ing dataset and a sub-optimal cardinality estimator. In order to generate a uniform

training dataset, our training data generation uses the following two rules: (1) Gen-

erality. The queries should come from different join graphs derived from the join

schema of the database; (2) Diversity. The training data of the queries should be

diverse in the number of predicates and their cardinalities. Based on these two rules,

our training data is generated as follows.

We make the generated queries uniformly distributed to each join graph. To

generate a query to a join graph, we first draw a tuple from the inner join result

and get the number of non-null columns of this tuple, denoted as Nc. Second, we

choose the number of predicates np ∈ {2, 3, ..., Nc} uniformly at random. Then we

randomly choose np columns, and randomly place np comparison operators associated

with these columns based on whether each column can support range ({≤,≥,=}) or

equality filters (=). These two steps guarantee a diverse set of multi-predicate queries.

50

4.5 Model Design

Fauce includes two complementary approaches that operate in two phases, shown

in Figure 4.4. We first train the model offline, then we use the trained model for the in-

ference online. The outcome of the inference includes, estimated cardinality and both

model uncertainty and data uncertainty. Card denotes the estimated cardinality; Um

is the model uncertainty with respect to the estimation; Um is the query-dependent

data uncertainty. Queries with high uncertainties are used for the incremental learn-

ing. Dotted neurons represent Dropout.

In the offline phase, we train the modelM based on the generated training data

(Section 4.4.2); In the online phase, the model M accepts queries and outputs their

estimated cardinalities together with the estimation uncertainties. The training first

generates a set of labeled queries S (§4.4.2). Then we apply query featurization (§4.3)

and cardinality transformation (§4.4.1) on S to get the training dataset D. D consists

of N featurized queries {xi, yi}Ni=1, where xi ∈ RL represents the L-dimensional query

features, and yi ∈ R is a real value in the range of [0, 1]. Let K denote the number

of DNNs in the deep ensemble, and W = {wi}Ki=1 denote the parameters of the

ensemble where wi is the parameters of a DNN. Once the training is finished offline,

the parameters W will be used for inference online.

A query for inference is featurized as a real valued vector, and then this vector

is plugged into the trained model to estimate the cardinality and uncertainty of

this estimation. The uncertainty consists of model uncertainty and data uncertainty,

where the model uncertainty describes how confident the learned model is, and the

data uncertain measures how noisy the collected query data are. These two types of

uncertainty values will be leveraged to boost the model accuracy. The high model

uncertainty means the learned parameters W cannot best describe the distribution

of the features of a query. In this case, this query will be collected for the future

retraining. The high data uncertainty means the noisy of the query data (e.g., new

updated data in database) is high. In this case, we generate a bunch of new training

queries based on this query with the high data uncertainty by a sampling method [67],

and use these queries for the future training. That is, we use an incremental learning

strategy to boost the model accuracy.

51

4.5.1 Uncertainty Quantification

Model uncertainty can be quantified using the Bayesian neural network [68, 69]

(BNN) that captures uncertainty about the learned parameters. Data uncertainty

describes the shift between the generated training data and input queries. To quantify

the uncertainty, we use the following definition of the total variance in each estimated

cardinality, based on [70]. Assuming x is the feature vector of the query q, y is q’s

estimated cardinality before inverse-transformation, the variance in y is formulated

as follows.

V ar(y) = V ar(E[y|x]) + E[V ar(y|x)] (4.1)

Based on Equation 4.1, we define the model uncertainty and data uncertainty as

follows.

Um(y|x) = V ar(E[y|x]) (4.2)

Ud(y|x) = E[V ar(y|x)] (4.3)

where Um and Ud represent the model and data uncertainty respectively. We can see

that both uncertainties explain the variance in the estimation. The model uncertainty

explains the variance related to E[y|x], and the data uncertainty explains the variance

inherent to the conditional distribution V ar(y|x).

Model uncertainty. BNNs are used to find the posterior distribution of pa-

rameters W for Fauce, given the dataset D = {xi, yi}Ni=1. Assume that the posterior

distribution of W is p(W |D), and fW = {fwi
}Ni=1 is the function mapping for the deep

ensembles between {xi}Ni=1 and {yi}Ni=1. Given an inference query q∗, its feature vec-

tor is x∗. The estimated cardinality is calculated by marginalizing over the posterior

distribution, shown as follows.

p(y∗|x∗, D) =

∫
W

p(y∗|fW (x∗))p(W |D)dW (4.4)

In Equation 4.4, y∗ is the estimated cardinality for the query q∗ before the inverse-

transformation. Here, the exact computation for p(W |D) is intractable, so we use

a variational inference method [71] to find an approximation q(W) to the poste-

52

rior distribution p(W |D). The estimation distribution is approximated by switch-

ing p(W |D) to q(W) in Equation 4.4 and performing the Monte Carlo integration,

E(y∗|x∗) ≈ 1
K

∑K
i=1 fwi

(x∗). The predictive variance can also be approximated as,

V ar(y∗) ≈ 1
K

∑K
i=1 fwi

(x∗)2 − E(y∗|x∗)2. V ar(y∗) arises because of the uncertainty

about the model parameters W . We use V ar(y∗) to quantify the model uncertainty

in Fauce.

Data uncertainty. Data uncertainty is dependent on the input queries. We

need a model that not only estimates the output cardinalities, but also estimates the

variances of the cardinalities given the input queries. That is, the model must give an

estimation of V ar(y|x) mentioned in Equation 4.3. Assume that µ(x) and σ(x) are

the functions parameterized by W that calculate the mean and standard deviation

of the estimation for a query q respectively, and x is q’s feature vector. We have

y ∼ N (µ(x), σ(x)2), and the negative log likelihood is written as follows.

Loss(W) =
1

N

N∑
i=1

(
log σ2(xi)

2
+

(yi − µ(xi))
2

2σ2(xi)
+

1

2
log2π) (4.5)

Comparing Equation 4.5 with a standard mean squared loss used in the tradi-

tional regression, we can see that the ensemble model introduces higher estimation

variances for queries where the mean of estimated cardinality µ(xi) is more deviated

from the true cardinality yi. On the other hand, a regularization term on σ(xi) pre-

vents the model from introducing high estimation variances for all queries. After the

model is optimized, we use σ2(x∗) to estimate the data uncertainty of a new query

q∗, where x∗ is the feature vector after q∗ is featurized.

4.5.2 Training and Inference

Ensembles training. Fauce uses the entire training dataset D to train each

DNN. To improve the model’s robustness, Fauce also includes the adversarial train-

ing. In particular, we use the fast gradient sign method [72] to generate adversarial

query examples. Given a query q, x as q’s feature vector, and y as the query’s true

cardinality, an adversarial example is generated by x
′

= x+ ηsign(▽xLoss(W,x, y)),

where Loss(W, x, y) is from Equation 4.5. Here, η is a small value to bound the max

perturbation. Those adversarial examples generated by the above formulation are

53

used to augment the original training set D by treating (x
′
, y) as additional training

examples.

Ensembles inference. We treat the ensemble as a uniformly-weighted mixture

model to calculate the final estimation results. Assume that x∗ is the feature vector

of the query q∗. The estimated cardinality of q∗ is calculated as

Card(q∗) = E(y∗|x∗) ≈ 1

M

M∑
i=1

µwi
(x∗) (4.6)

The model uncertainty for the query q∗ is measured as,

Um(q∗) =
1

M

M∑
i=1

µwi
(x∗)2 − E(y∗|x∗)2 (4.7)

and the data uncertainty for the query q∗ is quantified as,

Ud(q
∗) =

1

M

M∑
i=1

(σ2
wi

(x∗) + µ2
wi

(x∗))− E(y∗|x∗)2 (4.8)

4.5.3 Management of Estimation Uncertainty

Uncertainty management. We propose an algorithm called manage uncer-

tainty (Algorithm 4) to use the uncertainties to make the estimation safer to use and

improve model accuracy. In Algorithm 4, ϕm and ϕd are two thresholds for the model

uncertainty Um(q∗) and data uncertainty Ud(q
∗) respectively.

When comparing the uncertainty values with the thresholds, we have three sit-

uations. First, Um(q∗) ≤ ϕm and Ud(q
∗) ≤ ϕd. This means that Fauce is confident

on its estimation, so the estimated cardinality is safe to use (Lines 2-3). Second,

Um(q∗) > ϕm and Ud(q
∗) ≤ ϕd. This happens when the training dataset D well

represents the features of q∗, but the trained parameters underestimate q∗. We store

the query q∗ into a buffer B for an incremental learning strategy to eliminate the

underestimation (Lines 4-5). Third, Um(q∗) > ϕm and Ud(q
∗) > ϕd. This happens

when the training dataset D cannot represent the features of the query q∗, and the

parameters underestimate q∗. Besides storing the query q∗ into the buffere B, we

enlarge the number of queries in B by sampling [67] additional training data based

on q∗ for the incremental learning (Lines 6-9). At last, we update the modelM (Line

54

10).

Algorithm 4 ManageUncertainty(Um(q∗), Ud(q
∗), ϕm, ϕd)

Input: Um(q∗): Model uncertainty for new query q∗

Ud(q
∗): Data uncertainty for new query q∗

Card(q∗): Estimated cardinality for q∗

ϕm, ϕd: Threshold for the model, data uncertainty
Output: Safe Card: Cardinality that is safety to use
Output: M∗: updated model M
B = {}; // Buffer to store queries for retraining

if Um(q∗) ≤ ϕm and Ud(q
∗) ≤ ϕd then

Safe Card := Card(q∗)
else if Um(q∗) > ϕm and Ud(q

∗) ≤ ϕd then
B = B ⊕ q∗

else if Um(q∗) > ϕm and Ud(q
∗) > ϕd then

B = B ⊕ q∗ B∪ = Sampling(q∗); // Sampling queries[67]

M∗ ← IncrementalLearning(M, B) return Safe Card,M∗

When is the incremental learning triggered? In Algorithm 4, the incre-

mental learning can be triggered in two cases. In the first case, the incremental

learning is triggered when the number of queries in B is beyond B’s maximal size. In

Fauce, we set the maximal size of B as 2000 queries. A small maximal size of B can

frequently trigger the incremental learning, which increases the overhead of using the

incremental learning. In contrast, a large maximal size of B may rarely trigger the

incremental learning, which means that a large number of queries will be estimated by

a stale model. As a consequence, the estimation quality of Fauce is decreased. In the

second case, the incremental learning is triggered when a large fraction of estimated

queries with high uncertainties happen. This scenario usually happens in a dynamic

environment. As data are continuously updated, the workload and data distribution

shift may happen. The learned estimator can no longer accurately represent the dis-

tribution of the updated data. As a result, the queries based on new updated data

have high uncertainties.

Re-encoding for tables/joins/columns. The tables and joins encoding is

based on the join schema of a database. Thus, re-encoding of them is not necessary

when incremental learning happens in both static and dynamic environments. The

columns encoding is based on the inter-column correlations. Such correlations do not

change in a static environment. Thus, re-encoding of columns is not necessary. How-

ever, in a dynamic environment, the inter-column correlations could change when

55

Cardinality
Estimation

Module

Statistical
Information

Deep Ensembles
Training

Queries Encoding

Data

Uncertainty
Feedback

Query
Optimizer

Query
Executor

Queries
Buffer

Query

Results

Execution
Plan

Incremental
Learning

Safe
Card

Unsafe Card

Offline Stats Collection

Offline Training

DBMS Fauce

Offline Training
Fe

ed
ba

ck

Figure 4.5: Integration of Fauce with existing DBMS

data are continuously updated. However, Fauce does not need to re-encode of all

the columns from scratch. First, Fauce calculates the inter-column correlations only

based on the new coming data. Then, Fauce filters out those pairwise columns whose

correlations are significantly changed, and only re-encodes those columns. Therefore,

re-encoding of columns only happens on a portion of columns in a dynamic environ-

ment. In Fauce, columns re-encoding can be finished within 50 seconds on our testing

workloads in a dynamic environment.

4.5.4 Integration with DBMS

Figure4.5 shows how Fauce is integrated into a DBMS. Fauce is performed be-

fore the query optimizer as an additional phase that estimates the cardinalities and

uncertainties. If the estimated uncertainties are less than the threshold ϕm and ϕm,

then the cardinalities are injected into the query optimizer. In Fauce, the cardinality

estimation techniques have online and offline phases. The offline phase includes three

components: (1) statistical information collection; (2) deep ensembles training; and

(3) incremental learning. These three components happen in both static and dynamic

scenarios. But in a dynamic scenario, the statistical information can be outdated as

new data are continuously coming. Thus, Fauce must update the statistics in the

dynamic scenario. In dynamic scenario, the re-encoding of columns is required when

incremental learning happens. The updated data may change the correlations among

columns. Thus, Fauce must update the global column-dependency graph(§4.3.2) for

56

the database. The online phase is for inference. This phase is the same in both static

and dynamic scenarios. Before inference, a query must be featurized into vectors. As

Fauce has received the statistics information about the database tables and encoding

results of all the tables, joins, and columns in the offline phase, the time overhead for

query featurization is small, which usually takes 2-6ms in our evaluation.

How is the incremental learning tied to the database system? Fig-

ure 4.5 shows that the incremental learning is tied to the database system in two

ways. For the first way, we can get uncertainty feedback when use Fauce to estimate

the cardinalities. The queries with large estimated uncertainties will be stored in a

buffer B for the offline incremental learning. For the second way, we can directly use

feedback from the query executor for incremental learning. However, the incremental

learning based on new queries could affect the existing queries. In other words, the

model “forgets” the old data and focuses exclusively on the new data. We use the

Dropout [73] technique to avoid the above problem. In Fauce, we utilize a dropout

value of p = 0.2 when updating the model M over the queries in B. Here, the

overhead of the incremental learning is around 2 mins.

4.6 Evaluation

We compare Fauce with state-of-the-art cardinality estimators using point and

range queries. We aim to answer the following questions:

• Compared with the prior methods, how does Fauce perform in terms of accuracy

and efficiency? (§4.6.2 and §4.6.4)

• How does the improvement on the cardinality estimation impact the perfor-

mance of the query optimiser (§4.6.3)

• How does the Fauce perform in a dynamic environment? (§4.6.5)

• How does Fauce compare with other literature on data profiling? (§4.6.7)

4.6.1 Experimental Setup

Platform. We use a machine with an NVIDIA V100 GPU and an Intel i9 CPU with

128GB RAM, and Tensorflow 2.3.

57

Table 4.2: Workloads used for evaluation.

Workload Tables Rows Cols Feature

JOB-base 6 2 · 1012 13 normal queries
JOB-more-filters 6 2 · 1012 22 + more filters
JOB-complex-joins 15 2 · 1013 22 + complex joins

Workloads. We use a real-world dataset: IMDB [23]. IMDB has complex correlated

columns. It consists of 21 tables. We use the same method in training data generation

(§4.4.2) to generate testing queries. In our experiments, each workload contains 2000

testing queries. Those workloads are discussed as follows (see Table 4.2). In Table 4.2,

Tables : Number of base tables in each workload. Rows : Number of rows after the

outer join. Cols : Total number of columns in the base tables. Feature: Characteristic

of the queries in each workload.

• JOB-base: the queries in JOB-base are generated based on numeric columns

in JOB-light. The schema in JOB-light is a typical star schema. JOB-light

contains six tables, title (primary), cast info, movie info, movie companies,

movie keyword, and movie info idx. The predicates of the queries have 2-7 filters.

• JOB-more-filters: this benchmark tests Fauce’s scalability to complicated pred-

icates. Some queries involve large number of columns in their predicates. The

schema is the same as JOB-base’s. The predicates of the testing queries have 8-13

filters.

• JOB-complex-joins: this benchmark contains 15 tables in IMDB and involves

multiple join keys. For instance, movie companies is not only joined with title on

movie id, but also joined with company name on company id, etc. Each query joins

2–11 tables. JOB-complex-joins is used to test Fauce’s scalability to complicated

join conditions.

Evaluation metrics. To evaluate the accuracy of Fauce on the above workloads, we

use the q-error metric. The q-error of Fauce on a query q is calculated as, error =

max(est(q)
act(q)

, act(q)
est(q)

). Here, we assume that act(q) ≥ 1 and est(q) ≥ 1, so the minimum

error is 1×. We report the median, 75th, 90th, 95th and 99th percentile errors across

all queries.

58

Table 4.3: Estimation errors on the JOB-base, JOB-more-filters, JOB-complex-joins work-
loads.

Estimator
JOb-base JOB-more-filters JOB-complex-joins

50th 75th 90th 95th 99th 50th 75th 90th 95th 99th 50th 75th 90th 95th 99th

Postgres 13.4 623 1960 2 · 105 7 · 105 8.1 162 1429 1 · 104 2 · 105 17.4 1679 7928 4 · 105 8 · 105
IBJS 11.6 125 2321 4 · 105 7 · 106 7.6 77.1 963 8 · 103 4 · 105 14.5 239 5014 3 · 105 7 · 105
MSCN 6.13 44.5 142 3568 2 · 104 4.8 16.3 121 1680 5 · 104 6.9 34.4 163 2820 4 · 104
DeepDB 4.61 17.3 145 3348 3 · 104 4.2 14.5 86 1182 4 · 104 5.3 17.3 268 3717 3 · 104
NeuroCard 4.15 10.2 107 1693 9 · 103 3.8 8.2 59 538 2 · 104 4.5 8.8 56.7 608 8 · 103
Fauce+DU 4.12 9.6 46.5 1246 8 · 103 3.9 7.7 43 464 1 · 104 4.1 8.4 48.0 598 9 · 103
Fauce+MU 2.86 5.5 17.2 375 3 · 103 3.2 5.6 25 245 5 · 103 3.4 7.2 25.8 366 5 · 103
Fauce+Both 2.58 5.1 15.3 279 2 · 103 2.9 5.1 21 206 3 · 103 2.7 6.3 21.6 227 3 · 103

Baselines. We compare Fauce against a variety of representative cardinality estima-

tors, including:

1) Postgres: Using Postgres, we evaluate the cardinality estimation that can

be obtained from a real DBMS. The cardinality estimation in Postgres relies on 1D

histograms and heuristics.

2) IBJS: We use the Index-based Join Sampling method (IBJS) [21] as a non-

learned baseline. IBJS estimates a query’s cardinality using a sampling-based ap-

proach based on the query’s join graph and executing per-table filters.

3) MSCN: This is a representative supervised query-driven estimator [16]. We

generate 10K training queries for each workload to train the model and use a bitmap

size of 2K.

4) DeepDB: This is an unsupervised data-driven estimator [17]. DeepDB uses a

non-neural sum-product network as the density estimator for each table subset chosen

by correlation tests. Conditional independence is assumed across subsets.

5) NeuroCard: This is also an unsupervised data-driven estimator [19]. Neuro-

Card is a join cardinality estimator that builds a single neural density estimator over

the entire database.

4.6.2 Estimation Quality

Tables 4.3 shows that Fauce exceeds the baseline estimators on all the three

workloads (§ 4.6.1). “MU” and “DU” denote model uncertainty and data uncertainty

respectively. “Fauce+MU” means training with model uncertainty only, “Fauce+DU”

means training with data uncertainty only, and “Fauce+Both” means training with

59

both model uncertainty and data uncertainty.

(1) Results on JOB-base.

Postgres has the largest median, 75th, and 90th error. Postgres only

relies on 1D histogram and heuristics, and does not contain cross-column statistics.

Thus, Postgres cannot fully capture the characteristics of queries, and has high esti-

mation error.

IBJS has the largest 95th and 99th errors. IBJS is a sampling based

method. We set the maximum sampling budget as 10,000, as a larger sampling budget

does not bring too much benefit [21]. Because the joint space is very large, those

samples have small chances to hit testing queries, hence can cause large estimation

errors. IBJS’s inference time varies from 3 to 20 ms. For queries with many joins, IBJS

must store hundreds or even thousands of intermediate results. As a consequence,

IBJS’s memory size varies from 40 KB to 4 MB.

MSCN has large estimation errors on some queries with small true

cardinalities. MSCN’s training is based on a number of featurized queries. MSCN

does not contain uncertainty information about testing queries. Furthermore, its

query featurization method cannot leverage semantic information in a database. As

a result, MSCN has large errors on some queries.

DeepDB has large errors on high quantiles. DeepDB uses a sum-product

network to estimate the density for each table subset. Each table subset is chosen

based on the correlations among tables in the database. DeepDB assumes conditional

independence across table subsets. But this assumption is not always true in real

databases as some table subsets may have close relationships. Furthermore, DeepDB

assumes inter-column independence when building the density model via the sum-

product network. Therefore, it does not reflect real column dependencies in the

databases. Because of the above assumptions, DeepDB has limited expressiveness,

which causes large errors on high quantiles. As a result, Fauce’s accuracy gain on

each quantile is 1.8×, 3.4×, 9.5×, 12×, and 15×, compared with DeepDB.

Fauce exceeds NeuroCard. NeuroCard uses deep autoregressive models as a

density estimator to learn high-dimensional data distributions. It works as follows.

Given a range query with K predicates, first, NeuroCard obtains the probability of

i-th predicate conditioned on previous values. Then, it generates a sample value for

i-th column. Finally, the conditional probabilities are multiplied together to estimate

60

the cardinality. We find NeuroCard tends to have large errors on some range queries

with correlated columns in their predicates. In contrast, Fauce is robust to this kind

of queries. The overall Fauce’s accuracy gain on each quantile is 1.6×, 2×, 7×, 6.1×,

and 4.5×, compared with NeuroCard.

(2) Results on JOB-more-filters. This workload is used for testing Fauce’s

scalability on queries with a large number of filters in their predicates. As Table 6.4

shows, all estimators produce less accurate cardinalities than Fauce. Compared with

Postgres, Fauce’s accuracy gain is from 2.8× to 70×, because the accumulative error

caused by the 1D histogram grows as the number of filters grows. Compared with

IBJS, Fauce’s accuracy gain is from 2.6× to 46×. This is because the sampling results

can easily be empty as the number of filter grows. Compared with MSCN, Fauce’s

accuracy gain is 1.7×, 3.2×, 5.9×, 8.1× and and 16.7× at median, 75th, 90th, 95th,

and 99th respectively. Compared with DeepDB, Fauce improves the accuracy by

1.5×, 2.8×, 4×, 5.7×, and 13.3× at median, 75th, 90th, 95th, and 99th respectively.

At last, compared with NeuroCard, Fauce’s accuracy gains is 1.3×, 1.6×, 2.8×, 2.6×
and 6.7× at median, 75th, 90th, 95th, and 99th respectively. Existing estimators fail

to capture the more complex inter-column correlations. As a result, their estimations

are vulnerable to queries with a large number of columns in predicates. The results

demonstrate Fauce’s scalability to the number of filters.

(3) Results on JOB-complex-joins.

This workload is used for testing the Fauce’s ability to scale to queries with a large

number of filters and multiple join keys. The number of filters in the predicates of the

queries varies from 2 to 13; The possible number of join keys varies from 2 to 10, and

the predicates of the queries can have multiple join keys. Table 6.4 shows that Fauce’s

accuracy remains high on this complex schema. Postgres and IBJS have the largest

errors, because many intermediate samples become empty. Compared with MSCN

and DeepDB, Fauce’s accuracy improvement is up to 13.3× and 10× respectively.

NeuroCard also achieves high accuracy, but it still has large estimation errors on

queries with correlated columns in predicates. Fauce overcomes this challenge and

offers better accuracy than NeuroCard.

(4) Results on queries with no joins. We use the methods in [65] as the

baseline. The estimators in [65] are based on light-weight models (i.e., simple NNs

and boosting trees). We refer to the methods using NNs and boosting trees in [65]

61

102

104

Q
-e

rro
r

Forest
100

102

104

Power
100

102

104

Weather
100

Fauce LW-NN LW-XGB

Figure 4.6: Estimation errors on various datasets with no joins.

100

200

300

0
0

Speed Up Intervals
1.0 2.0

400

500

3.0 4.0
0

10-1

10-2

100

5.0 >5.0

%
 Q

ue
rie

s

(a) JOB-base

100

200

300

0
0

Speed Up Intervals
1.0 2.0

400

500

3.0 4.0
0

10-1

10-2

100

5.0 >5.0

(b) JOB-more-filters

100

200

300

0
0

Speed Up Intervals
1.0 2.0

400

500

3.0 4.0
0

10-1

10-2

100

5.0 >5.0

(c) JOB-complex-joins

N
O

. o
f Q

ue
rie

s

Figure 4.7: The impact of the improved cardinality estimation of Fauce on query perfor-
mance.

as “LW-NN” and “LW-XGB” respectively. Our experiments use the same datasets

as [65], including “Forest”, “Power”, and “Weather”. Fauce, LW-NN, and LW-XGB

are trained and tested on the same queries. Figure 4.6 shows the testing results. We

can see Fauce has the higher accuracy than LW-NN and LW-XGB on all the datasets.

The main difference between Fauce and LW-NN lies in the query featurization method.

LW-NN and LW-XG extract features from ⟨V alues⟩ of queries, and use AVI [74],

EBO[75], and MinSel[76] as extra features during query featurization. Fauce, besides

extracting features from ⟨V alue⟩, uses the Columns2vec algorithm to extract features

from ⟨Column⟩ of a query. The higher accuracy of Fauce on these datasets indicates

that Fauce’s featurization method can capture more informative features of a query

than the query featurization method used in [65].

4.6.3 Impacts on Query Performance

We evaluate whether the improvement of cardinality estimation in Fauce leads

to better query performance. Our evaluation is based on the workloads introduced

in Section 4.6.1. We test 2000 queries for each workload. After we get the estimated

cardinalities from Fauce, these estimations are then fed into a version of PostgreSQL

62

Inference Time (ms) [log scale]
(b) Inference Time Comparison

50%

0%

%
 o

f Q
ue

rie
s

1 10 20

100%

100 200

Fauce MSCN NeuroCard DeepDB

20

40

60

MSCN
0

80

Fauce-p

NeuroCard
Tr

ai
ni

ng
 T

im
e

(m
in

)

(a) Training Time Comparison

JOB-base JOB-more-filters JOB-complex-joins

DeepDB
Fauce

Figure 4.8: Physical efficiency of Fauce.

modified to accept external cardinality estimations [77]. Figure 4.7 shows the perfor-

mance impact of the cardinalities estimated by Fauce, compared to the default cardi-

nality estimations from PostgreSQL. For the Job-base (Figure4.7(a)), the execution

time for these queries ranges from < 1s up to 200s. Fauce improves the performance

of 81.4% of the queries. For the Job-more-filters (Figure4.7(b)), the majority of the

queries’ runtime ranges from 0.5 to 350s. Fauce improves the performance for 80.3%

of the queries. 8.4% of the queries’ execution time is extended, and the rest of queries

have the same performance as PostgreSQL. For the Job-complex-joins (Figure4.7(c)),

Fauce improves the performance for 78.2% of the queries.

4.6.4 Efficiency of Fauce

Training time comparison. Figure 4.8(a) shows the training time. Once the

training queries are collected, training MSCN takes 55-60 mins for the three work-

loads. DeepDB can only run on parallel CPUs (not on GPU as other methods), so

DeepDB takes the longest training time (60-75 mins). Fauce has higher efficiency

on query featurization compared with MSCN, so training Fauce requires less time

than MSCN: Fauce takes 50-54 mins on all the three workloads. Note that DNNs in

the ensemble are independent in Fauce and can be trained independently. Therefore,

Fauce’s training time can be further optimized through parallel training, which re-

duces the training time to less than 20 mins (see Fauce-p in Figure 4.8(b)). Training

NeuroCard has to calculate the join count tables and perform parallel sampling first,

and then trains the auto-regressive model for some epochs. Even if training process of

NeuroCard is accelerated by GPUs, training Neurocard still takes more than 20 mins

on Job-more-filters and Job-complex-joins workloads. Our methods Fauce-p takes

63

102

104

Q
-e

rro
r

(a) Model Uncertainty Um

100
0 0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 1.00.9

102

104

Q
-e

rro
r

(b) Data Uncertainty Ud

100
0 0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 1.00.9

Figure 4.9: Q-error of queries with different uncertainties.

the shortest training time.

Inference time comparison. Figure 4.8(b) shows the inference time of MSCN,

DeepDB, NeuroCard, and Fauce on JOB-base workload. MSCN, NeuroCard, and

Fauce run on GPU while DeepDB runs on CPU; These estimators are implemented

in Python. Fauce and MSCN are the fastest because they are based on lightweight

network and involve fewer calculation during the inference. DeepDB’s inference time

spans from 1 ms to 200ms, and its inference time is short for queries with a small

number of joins and filters. However, its inference time can be more than 150ms for

complex queries. NeuroCard’s inference time is smaller than DeepDB, but it is still

2 to 10× larger than those of Fauce and MSCN. This is due to a large number of

floating point operations involved in the autoregressive model of NeuroCard. The

inference time of DeepDB and NeuroCard is more sensitive to the complexity of the

queries than Fauce and MSCN.

4.6.5 Handling Data Updates

We analyze how Fauce performs in a dynamic environment. It is common that

data are continuously updated in databases.

Threshold values. In Algorithm 4, we use two thresholds ϕm and ϕd to control

the model uncertainty and data uncertainty respectively. Here, we discuss how we set

proper values for ϕm and ϕd as the thresholds. In our study, the threshold values for

ϕm and ϕd are measured based on additional 10K queries, not those for testing. Those

queries are derived from JOB-light. We estimate cardinalities and uncertainties for

64

1000

2000

0.2
0N

O
. o

f Q
ue

rie
s

(a) Model Uncertainty Um
0.4 0.6 0.8 1.0

1000

2000

0.2
0N

O
. o

f Q
ue

rie
s

(b) Data Uncertainty Ud

0.4 0.6 0.8 1.0

102

104

0

Q
-e

rro
r

(c) Safe/Unsafe Cardinality
Safe_Card Unsafe_Card

Figure 4.10: Statistical information for the queries.

those 10K queries. The uncertainty value of each query is in the range of [0,1]. We

set the length of a uncertainty interval as 0.1 and use ten uncertainty intervals. We

count the number of queries in each of the ten uncertainty intervals. Figure 4.9(a)

and (b) show that queries with ϕm higher than 0.5 or ϕd higher than 0.4 tend to

have large errors. Based on the above observation, we set the threshold value for

model uncertainty and data uncertainty as 0.5 and 0.4 respectively. In Fauce, if a

query’s model uncertainty is below ϕm or a query’s data uncertainty is below ϕd, then

its estimated cardinality is safe to use. We refer to such cardinality as “safe card”.

Figure 4.10(a) and (b) show the number of queries within the ten intervals. We can

see the percentage of safe card is about 70%. The errors of queries within safe card

and unsafe card are shown in Figure 4.10(c), based on which we conclude that the

queries with safe card have much smaller errors than with unsafe card.

Dynamic environment setup. Suppose that there are n queries uniformly

distributed in a time range [Ti, Ti+1], and T = Ti+1−Ti. The queries based on updated

data begin to come at timestamp Ti. Those queries with high uncertainties are stored

in the buffer B for the incremental learning. Once the number of queries in the buffer

B is beyond B’s maximum capacity, the model update begins. Suppose the model

update finishes at timestamp Tf (Ti < Tf ≤ Ti+1). For the first ⌈n · Tf−T i

T
⌉ queries,

their cardinalities are estimated using the stale model Mstale. For the remaining

⌊n · (1− Tf−T i

T
)⌋ queries, the updated modelMupdate are used. Since some queries are

handled by the (inaccurate) stale model, the estimation results for these queries can

be erroneous.

Data update. We use the real-world dataset IMDB [23] for testing under

a dynamic environment. Our experiment is based on two different kinds of data

updates. The first kind of data updates leads to significant changes in pair-wise

correlations, while the second kind of data updates does not. (a) In the first kind

65

T=1 min

102

104

Q
-e

rro
r

106

T=100 mins

Fauce NeuroCard

Ti Ti+1 Ti+1Ti TfStale Updated Stale
T=500 mins

Ti+1Ti TfStale Updated
100

T=1 min

102

104

Q
-e

rro
r

106

T=100 mins
Ti Ti+1 Ti+1Ti TfStale Updated Stale

T=500 mins
Ti+1Ti TfStale Updated

100

(b) Dynamic environment when 50% rows are updated

(a) Dynamic environment when 20% rows are appended

Figure 4.11: Estimation quality under dynamic environment.

of data update, we use the similar method introduced in [65] to update the dataset.

In particular, we update 50% tuples of the dataset, which results in huge change in

data distribution; (b) In the second kind of data update, we partition the table title

into two parts on the year column. The part with the latest year is used as the new

data to be appended into dataset, the pair-wise correlations for this method are not

significantly changed. This kind of data update is used in [19]. After data updates,

we apply our workload generation method on the updated dataset to generate 10K

queries for testing. These queries are uniformly distributed in [Ti, Ti+1]. T , which is

equal to Ti+1 − Ti, is a parameter, which represents how “frequently” the data are

updated. For example, if the data are periodically updated every 100 mins, then T

is 100 mins.

Model update. We update Fauce and NeuroCard, and then compare their

estimation quality. NeuroCard is a dat-driven estimator, so NeuroCard is updated

by retraining on the entire new updated dataset. Fauce is a query-driven estimator.

We assign 2K queries for Fauce, as 2K is the maximum capacity of the buffer B to

store queries for the incremental learning.

Estimations in a dynamic environment. We test the estimation quality of

Fauce and NeuroCard in a dynamic environment. The value of T is varied to control

the frequency of data update. We set three levels of the frequency: high (1 min),

medium (100 mins), and low (500 mins). The estimation quality of NeuroCard and

66

Fauce in the dynamic environment is shown in Figure 4.11.

First, we compare Fauce with NeuroCard when 20% of rows in the table title

is appended (Figure4.11(a)). If the frequency of the data update is high (shown in

the left figure in Figure4.11(a)), both Fauce and NeuroCard cannot finish the model

update, then the stale models for Fauce and NeuroCard are used for testing. When

the data update does not change the data distribution, data distribution learned by

NeuroCard still works. As a result, NeuroCard performs better than Fauce. When the

data update frequency is medium and slow (the right two figures in Figure4.11(a)),

both Fauce and NeuroCard can finish model update. We set the time interval for

data updates as T = Ti+1 − Ti, for the queries coming within [Ti, Tf], and those

queries are tested by the stale models. Here, Tf is the time when the model updates

are finished. Queries coming within [Tf , Ti+1] are tested by the updated models.

For queries coming within [Ti, Tf], NeuroCard performs better than Fauce. This is

because the appended data does not change the data distribution in the database.

So NeuroCard can still work well. Queries coming within [Tf , Ti+1] are tested by the

updated models in Fauce and NeuroCard. We can see Fauce performs better than

NeuroCard.

Second, we compare Fauce and NeuroCard when 50% rows in table title are

updated (Figure4.11(b)). Overall, Fauce performs better than NeuroCard for queries

coming within [Ti, Tf] (when the stale models are used) and [Tf , Ti+1] (when the

updated models are used). This is because the inter-column correlations in this

scenario have been significantly changed, so the data distribution learned by Neuro-

Card is outdated. In Fauce, the feature vector of a query q = ⟨Tables⟩, ⟨Joins⟩,
⟨Columns⟩, ⟨V alues⟩ after the query featurization (§4.3) has the length of L =

m⌈log(m + 1)⌉ + n + 3C (see Table4.1). As the inter-column correlations have

been significantly changed, the features extracted from ⟨Columns⟩ can not reflect the

new inter-column correlations. The ratio for the features extracted from ⟨Columns⟩
among the total length of the feature vector is: C

L
, where C is the length of features

extracted from ⟨Columns⟩. Here, the schema of the database remains the same, so

the features extracted from ⟨Tables⟩ and ⟨Joins⟩ can be reused. Those features are

not required for re-encoding. If the domain of some columns is changed, we need to

update the domain for featurizing ⟨V alues⟩ of a query q. Updating the domain of the

columns can be finished in a very short time (similar with updating the 1D histogram

67

Table 4.4: Impact of encoding methods.

Workload Encoding 50th 90th 95th 99th

JOB-base
One-hot 4.53 87 2029 3× 104

Binary 4.24 62 1586 2× 104

Ours 2.58 15.3 279 2× 103

JOB-more-filters
One-hot 5.23 84 862 2× 104

Binary 4.82 69 754 2× 104

Ours 2.9 21 206 3× 103

JOB-complex-joins
One-hot 5.62 78 1446 2× 104

Binary 4.77 62 1193 1× 104

Ours 2.7 21.6 227 3× 103

Table 4.5: Impact of cardinality transformation.

Workload Transformation 50th 90th 95th 99th

JOB-base
No 3.22 32.9 1117 1× 104

Yes 2.58 15.3 279 2× 103

JOB-more-filters
No 3.57 47.4 429 2× 104

Yes 2.9 21 206 3× 103

JOB-more-joins
No 4.15 36.7 428 2× 104

Yes 2.7 21.6 227 3× 103

in DBMSs). We conclude that only the C
L

portion of features after the query featur-

ization is influenced by data updates. For IMDB [23], C is relatively small, compared

with L, so Fauce’s featurization method still work well in this scenario. That is why

Fauce performs better than NeuroCard when 50% of rows is updated.

4.6.6 Other Factors Impacting Fauce

We explore how the encoding method (§4.3.1 and §4.3.2) and cardinality trans-

formation (§4.4.1) impact Fauce’s accuracy.

(1)Impact of encoding methods. We encode ⟨Tables⟩, ⟨Joins⟩, and ⟨Columns⟩
of a query with our encoding method. Some existing estimators [16, 66, 78] use one-

hot or binary encoding methods. Table 4.4 shows the impact of encoding methods on

the errors over the three workload (§4.6.1). This table shows the impact of different

encoding methods for ⟨Tables⟩, ⟨Joins⟩, and ⟨Columns⟩ when query featurization

(§4.3). “Ours” denotes our encoding method. The lowest errors are bolded. We

can see the impact brought by different encoding methods for low-quantile errors is

68

small. However, the encoding methods have large impact on high-quantile errors.

Our encoding method’s accuracy gain is up to 7.3× and 15× on high-quantile errors,

compared with the one-hot and binary encodings respectively.

(2)Impact of cardinality transformation. We use log transformation and

min-max scaling (§4.4.1) to normalize the cardinalities before model training. Ta-

ble 4.5 shows that the transformation reduces the error, especially the high-quantile

errors. For the “Tranformation” column, value “No” means testing without trans-

formation, and value “Yes” means testing with transformation. Lowest errors are

bolded. This is because the cardinalities of queries in the training dataset are skewed,

and the models directly trained on such skewed dataset have large errors. Using the

transformation reduces the gap between large and small cardinalities.

4.6.7 Data Profiling

The column encoding method (§4.3.2) in Fauce can be used to find approximate

functional dependencies (AFDs) among database columns. We compare the efficiency

of Fauce with other four data profiling methods: Pyro [12], Tane [79], Ducc/Dfd [80],

and Fdep [81]. Table 4.6 shows the information of the datasets we use for data

profiling. The results are shown in Figure 4.12. We can see that Fauce finishes the job

of finding the AFDs on all the datasets within a time limit (104s). Fauce’s execution

time for data profiling is the shortest on the datasets DB Status, Census, and Entity

source. These datasets have unknown or large number of AFDs. When profiling

on the datasets Reflns and Spots, Fauce’s execution time is still lower than Tane,

Ducc/Dfd, and Fdep (except for Pyro). For an easy-to-process dataset with a smaller

number of rows/columns and AFDs (e.g., the Wiki image), Fauce is outperformed

by the baselines. But for the hard-to-process datasets (i.e., DB Status, Census, and

Entity source), the speedup of Fauce is larger than 10×, compared with baselines.

4.7 Summary

The cardinality estimation using machine learning models is a new research trend

in the database community. However, it is challenging to make accurate cardinality

estimations using machine learning models. We introduce Fauce to address this prob-

69

100

Pyro Tane Ducc/DfdFauce

DB status Wiki image Census Reflns

102

Entity source

104

R
un

tim
e

(s
)

Spots

Fdep
Time limit

104s

Dataset

Figure 4.12: Runtime for data profiling. “x” means out of limit.

Table 4.6: Datasets used for data profiling.

DB status Wiki image Census Reflns Entity Spots

Cols. 35 12 42 37 46 15
Rows 29,787 777,676 199,524 24,769 26,139 973,510
AFDs 108,003 92 unknown 9,396 unknown 75

lem. Fauce has a new query featurization method which can make the input feature

vectors more informative for the cardinality estimation. It also includes uncertainty

information for estimation results. Experimental results show that Fauce has 1.16-

91× higher accuracy than state-of-the-art solutions. By leveraging the uncertainty

information, Fauce’s estimation can be further improved.

Chapter 5

Lobster: Load Balance-Aware I/O

for Distributed DNN Training

5.1 Overview

To address the above challenges, we propose Lobster, a holistic data loading I/O

runtime for distributed DNN training. Lobster distinguishes between the I/O load

of each individual GPU at fine granularity and coordinates the I/O operations of the

GPUs at the node level, flexibly allocating available I/O bandwidth and threads as

needed to reduce I/O load imbalance.

Lobster also coordinates the data loading and preprocessing stages of the pipeline,

flexibly allocating threads between them to reduce bottlenecks. This coordination is

achieved through the use of performance modeling, which we combine with reuse dis-

tance theory to design efficient eviction policies for distributed caching of the training

samples. Such an optimized eviction policy complements state-of-the-art distributed

caching approaches based on prefetching by avoiding the undesirable effect of evict-

ing training samples that are needed in the near future in order to make room for

prefetched samples that are needed later. We show that this method increases the

cache hit ratio by 14.3% compared with state-of-the-art prefetching approaches such

as that used in NoPFS [22].

Besides the above contributions, Lobster introduce other performance optimiza-

tion techniques, such as co-locating data loading and preprocessing in the same

NUMA node considering the potential impact of NUMA on the training pipeline,

70

71

Performance Model

...

Data Indexes Training Data
Accessing Order

Optimization Data
Transfer

Optimized Data LoaderRandom
Sampler

Data
Preprocessing Thread Management Model

Training

Loaded Training Data

PFS

Cluster

PFS PFS PFS

Metadata ...

Storage Backend

Figure 5.1: Overview of Lobster.

and concurrency throttling for data preprocessing to save working threads. Thanks

to these contributions, Lobster is able to maximize GPU and cache utilization, thus

hiding the overheads of data loading and enabling high performance and scalable

end-to-end DNN training.

We characterize the performance (especially I/O performance) across 64 GPUs

in a production environment for distributed DNN training, highlighting the I/O load

imbalance across GPUs and frequent performance bottleneck shifts between data

loading/pre-processing pipeline and the training process. This study reveals new

opportunities for I/O performance optimization that are not considered by state-

of-art approaches. We propose a thread management strategy to coordinate the

resource usage between data loading and preprocessing in the training pipeline, as

well as to mitigate the I/O load imbalance between GPUs. We introduce a holistic

performance model that bridges the thread management strategy with a distributed

caching proposal that features prefetching support and optimized eviction based on

reuse distance. We design and implement a heuristic strategy to solve the optimization

problem resulting from the performance model. This strategy consists of two phases

(prefetching and eviction) and guides both the allocation of the threads and the

distributed caching. We evaluate Lobster on a 64-GPU (NVIDIA A100) cluster and

compare its performance with the state-of-the-art PyTorch I/O [82], DALI [83], and

NoPFS [22] systems on several DNN models and training datasets.

72

50

0

Ti
m

e
(m

s)

N
od

e1
 G

PU
1

Iter 1

100

200

N
od

e2
 G

PU
1

GPU Idle
GPU Computation
Data Pre-processing
Data Decoding
Data Loading

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

N
od

e1
 G

PU
1

Iter 1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

N
od

e1
 G

PU
1

Iter 1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

Iterations are from beginning part of the epoch (0-180 iterations) Iterations are from middle part of the epoch (181-360 iterations) Iterations are from the end of the epoch (361-560 iterations)

Figure 5.2: Execution time breakdown for the training pipeline on three GPUs, two on
one node and the third on a second node.

5.2 Motivation

We now motivate our approach by examining the challenges introduced in Sec-

tion 1 in detail. To this end, we run a series of experiments that profile the perfor-

mance of the DNN training pipeline and discuss our observations.

A detailed description of the experimental setup is available in Evaluation sec-

tion. Using this experimental setup, we train a ResNet50 model on the ImageNet-1K

dataset using PyTorch 1.8 as the DNN runtime and DALI [83], an industry-standard

state of art data loading library. We use a data-parallel setup deployed on eight nodes,

for a total of 64 GPUs. Since the stages of the training pipeline are overlapping and

we are interested in studying the bottlenecks, we measure the duration of the delays

caused by each stage along the critical path.

Figure 5.2 shows detailed results for three GPUs: two co-located on the same

node, and the third on a different node. We omit the first epoch (because the caches

need to warm up and therefore the behavior is different compared to the rest of the

epochs) and focus on 24 iterations (out of 562) of the second epoch: eight each in the

beginning, middle, and end—enough to capture a recurring pattern throughout the

epoch. We make the following observations:

Observation 1: There is data load imbalance across GPUs. GPUs are

often idle during an iteration, but not because they are waiting for their own data

loading and pre-processing stages, which are faster than, and therefore fully overlap

with, training. The problem is rather that other GPUs have longer data loading and

preprocessing stages, which causes them to become stragglers and delay the start of

the training stage. As each GPU needs to perform the same amount of work during

the training stage, the stragglers cause other GPUs to sit idle while they wait to

73

average the gradients during the backward pass. For example, during iteration 7,

GPU0 of Node1 and GPU1 of Node2 are less loaded than GPU1 of Node1. Their

GPU idle time takes 73% and 12% of the total iteration time, respectively. Compared

with iteration 2, where there is no data load imbalance, iteration 7 is 3× slower. Our

results show that such data load imbalances occur frequently: in 65.3% of our 562

iterations.

Observation 2: Data loading overheads vary frequently and irregularly

across iterations, leading to the performance bottleneck shifting among

the stages of the pipeline. Since the pipeline overlaps the stages, the slowest

stage becomes a bottleneck. Ideally, data loading and preprocessing should never

become a bottleneck. However, not only does this happens frequently with state-

of-art approaches, but it is difficult to predict: during the same iteration, on some

GPUs the training stage is the performance bottleneck, while the opposite is true

on the other GPUs. Similarly, on the same GPU, the bottleneck can shift between

data loading and training across iterations and exhibit an irregular pattern. This

can happen on any GPU. In this experiment, we did not observe the preprocessing

stage becoming a bottleneck by itself, however, this can happen and was reported

by other studies [35]. When data loading is the bottleneck, training performance

suffers significant slowdown. For example, in the case of GPU0 on Node0, in the

two iterations where data loading is the bottleneck, its duration is 3× longer than

the training stage—an observation that is explained by the fact that remote I/O to

the external repository and/or the local caches of other compute nodes is orders of

magnitude slower that local I/O. Furthermore, this effect is also correlated with load

imbalance: whenever the performance bottleneck shifts in a GPU, other GPUs tend

to exhibit load imbalance. Thus, when data loading is the bottleneck, it tends to

exhibit a bursty pattern.

Observation 3: The preprocessing stage does not benefit from an ar-

bitrarily large number of threads.

Data preprocessing is characterized by a streaming memory access pattern: train-

ing samples are continuously arriving in batches, and each training sample can be

further split into sub-domains (e.g. regions in an image). The computations are

typically embarrassingly parallel, therefore they can considered a bag of tasks to be

assigned to threads. Varying the number of threads changes data parallelism and

74

Pe
rc

en
ta

ge
 o

f d
at

a
sa

m
pl

es
 (%

)

0

5.0
x1

02

1.0
x1

03

2.0
x1

03

4.0
x1

03

8.0
x1

03

1.6
x1

04

3.2
x1

04

5

10

15

20

Figure 5.3: Histogram of the reuse distance of the training samples, measured in terms of
numbers of iterations (X-axis)

memory bandwidth consumption, which in turn impacts performance. To study this

effect, we vary the number of preprocessing threads and measure the preprocessing

throughput (decoding/decompression and data augmentation). As can be observed

in Figure 5.4, the preprocessing throughput peaks at 6 threads, after which it flat-

tens and even slightly becomes worse. This effect has been observed by others as

well [84, 85]. For data preprocessing, intensive memory bandwidth consumption is

the major performance bottleneck when the number of threads is large. Further-

more, excessive memory bandwidth consumption also impacts the other stages in the

pipeline. Therefore, it must be avoided.

Observation 4: Many training samples have a long reuse distance.

During data-parallel training, each GPU processes a different mini-batch. This

means that each training sample cached on a compute node at iteration i may be

reused the first time either by the same or a different GPU co-located on the same

node at iteration j. We call j − i the reuse distance. Studying the reuse distance of

the training samples is important to understand how well the cache of each compute

node is utilized. Figure 5.3 shows the histogram of reuse distance of data samples

accessed by GPUs for Node1. We observe that many training samples have a long

reuse distance. Here, when two memory accesses to a sample are separated by at

least one epoch away, we call it “long”. For example, 80% of the training samples

have the reuse distance larger than 1,000 iterations.

Implications. Observation 1 indicates that the data load imbalance is frequent

and leads to stragglers. Thus we need a fine-grained load balancing strategy that is

aware of individual GPUs. Observation 2 is correlated to Observation 1 and points

75

to a frequent shift of the performance bottleneck among the stages of the pipeline

due to I/O bursts. Therefore, it is important to (1) optimize the utilization of the

node-local cache to avoid remote I/O; (2) coordinate with the other stages of the

pipeline and allocate more I/O threads to data loading when remote I/O cannot be

avoided. Observation 3 indicates that the preprocessing stage does not benefit from

an arbitrarily large number of threads and it can be even detrimental to allocate too

many threads to it due to high memory bandwidth consumption. Therefore, it is

important to determine the minimum number of threads needed to reach the peak

preprocessing throughput and not exceed it. Observation 4 indicates that we can

leverage long reuse distance of training samples to optimize the utilization of the

node-local cache. In particular, we can explore new eviction policies that coordinate

with prefetching to avoid the undesirable situation in which the training samples that

are needed in the near future are evicted at the expense of the prefetched training

samples that are needed later.

5.3 Design

Based on the observations summarized in Motivation section, we propose Lob-

ster, a holistic data loading I/O runtime for distributed DNN training. Lobster uses

the following high-level strategy to balance the work of the different stages of the

training pipeline between different GPUs: (1) decide the number of data prepro-

cessing threads; (2) given the number of data preprocessing threads, when the data

loading is not a performance bottleneck of the training pipeline, decide the number

of data loading threads per iteration for each GPU ; (3) given the number of data

preprocessing threads, when the data loading is a performance bottleneck of the train-

ing pipeline, use performance modeling and run an heuristic algorithm to decide the

number of data loading threads to balance I/O between GPUs in the same node. The

heuristic algorithm considers the reuse distance of the training samples, which is used

to coordinate with the prefetching and improve the overall hit ratio of the node-local

cache. This strategy is implemented as illustrated in Overview section.

Lobster addresses (1) by throttling thread-level parallelism in preprocessing so

that it can redirect threads for data loading. To decide the number of preprocessing

threads, Lobster predicts the preprocessing throughput based on a piece-wise linear

76

2000

Im
ag

es
 p

er
 s

ec
on

d
Number of threads for data preprocessing

0
21 4 6 8 10 12 14

1500

1000

500

Figure 5.4: The impact of number of preprocessing threads (X-axis) on data preprocessing
throughput (Y-axis)

regression model. For (2), Lobster introduces a multi-queue data structure to distin-

guish I/O between GPUs, and assigns threads to GPUs in proportion to data loading

intensity. For (3), Lobster formulates the problem of deciding data loading threads

as an optimization problem, and uses a computation-efficient heuristic algorithm to

solve it. We now examine each of these aspects in detail.

5.3.1 Flexible Preprocessing Thread Management

We decide the number of data preprocessing threads based on two goals: (1)

the combined duration of preprocessing and data loading should be smaller than the

training stage; (2) need to redirect threads to improve the performance of the data

loading stage.

Given a batch of training samples, we use the following two-step algorithm to

meet the above goals. Step 1: predict the preprocessing throughput using the opti-

mal number of preprocessing threads (that reaches the peak preprocessing through-

put, as explained in Motivation section. The prediction is based on performance

modeling, as detailed below. Then, we use the methods in Sections 5.3.2 and 5.3.3

to decide the number of threads allocated for the data loading stage. This aims to

reach goal (1). Step 2: as long as goal (1) is not reached and the preprocessing

stage is not a performance bottleneck, take away one thread from the preprocessing

stage and make it available for data loading. The frequency of running this algorithm

can be adjusted to reach a trade-off where we avoid excessive overheads on one hand,

while maintaining the capability to adapt quickly to changing performance bottleneck

shifts.

The success of the above algorithm depends on the accuracy of the performance

77

predictions of the data preprocessing stage. To this end, for a specific training sample

size, we build a piece-wise linear regression model that takes the number of threads

as input and predicts the execution time of processing one training sample. We build

a portfolio of models, each of which corresponds to a training sample size. During

runtime, if the sample size does not have a corresponding model in the portfolio, we

choose the model whose sample size is closest to the one considered.

Note that the performance modeling approach mentioned above is architecture-

dependent and data sample-dependent. This means that for different training envi-

ronments (different hardware, types of preprocessing and sample sizes) we need to

adjust the performance modeling. However, in practice, the same HPC machines,

types of preprocessing and sample sizes are reused across many training instances of

the same or different DNN models. Therefore, the cost of constructing performance

model is amortized.

5.3.2 Coordinated Data Loading / Preprocessing

Given a fixed number of threads for the data preprocessing stage, the remaining

CPU threads of the same node will be assigned for the data loading stage that serves

all GPUs of that node.

Discriminating data load overheads between co-located GPUs. Current state

of art efforts [82, 83, 36, 35, 22] serve all GPUs equally using a pool of threads reserved

for the data loading stage. However, this is sub-optimal because the GPUs that trigger

higher data loading overheads should be served using more threads, such that they will

not become stragglers. To address this issue, Lobster proposes to maintain a separate

request queue for each GPU, each of which can be assigned a different number of

threads such as to achieve load balancing. Note that the data loading requests are

placed in the queue of each GPU based on deterministic prefetching while considering

the reuse distance. These details will be discussed later.

Thread assignment. Given the requests in all GPU queues of a node that corre-

spond to future training iterations, Lobster checks if there is a GPU that is predicted

to become a straggler due to data loading. The prediction is based on performance

modeling, as detailed in our proposed performance model. Assignments are then

made by using the heuristic detailed in our proposed heuristics section. When a GPU

78

Table 5.1: Notation used in performance models.

Notation Metric Description

N number of compute nodes
M number of GPUs in one compute node
Mem storage space on each compute node
D training dataset, comprising |D| data samples
S size of D
si size of data sample di (di ∈ D)
I number of iterations per epoch
Tl(α) MB/s local memory read throughput (α read threads)
Tr(β) MB/s inter-node read throughput (β read threads)
TPFS(γ) MB/s read throughput of remote PFS (γ read threads)

is not predicted to become a straggler, the number of threads assigned to the request

queue is proportional to the size of the queue.

5.3.3 Performance Model

We introduce a holistic performance model that bridges the thread manage-

ment strategy for data loading and preprocessing (discussed above) with distributed

caching. Table 6.1 summarizes the major notations used by our model.

Let si be the size of sample di in the training dataset D, which thus has a total

size of S =
∑

0≤i<|D| si; N be the number of nodes and M the number of GPUs

per node (for a total of N ×M GPUs); Mem be the host memory size allocated for

caching; and |B| be the mini-batch size. If S > Mem, then the training data cannot

be fully cached on a single node; if S > N×Mem, it cannot be fully cached across all

nodes. One epoch consists of I =
⌈

|D|
|B|×M

⌉
iterations, or I =

⌊
|D|

|B|×M

⌋
iterations if we

discard the last (potentially partial) iteration. At iteration h (0 ≤ h < I), each GPU

Gj
i (where i is the node ID and j is the GPU ID), processes its own mini-batch Bh,i,j.

Overall, the GPUs need to read a collection Bh =
⋃

i∈N,j∈M Bh,i,j of training

samples concurrently. Three scenarios can arise when reading training sample dk

with size sk on node ni:

1. dk is present in the local cache of node ni, in which case the data loading duration

is sk
Tl(α)

, where Tl(α) is the local cache read throughput with α concurrent I/O

threads.

2. dk is present in the remote cache of another node, in which case the data loading

79

duration is sk
Tr(β)

, where Tr(β) is the remote cache read throughput of a single I/O

with β concurrent threads.

3. dk is present on the remote storage repository (parallel file system), in which case

the data loading duration is sk
TPFS(γ)

, where TPFS(γ) is the PFS read throughput

of a single I/O thread with γ concurrent I/O threads (for simplicity, we assume

TPFS(γ) to be globally stable on the average across the compute nodes).

Assume Bh,i,j
HL and Bh,i,j

HR represent the training samples that cause cache hits

on node ni’s local cache and on the cache of remote nodes respectively, while Bh,i,j
M

represents training samples that cause cache misses and need to be fetched from the

PFS. We have Bh,i,j = Bh,i,j
HL ∪ Bh,i,j

HR ∪ Bh,i,j
M . Assuming TL(ni, B

h,i,j) represents the

duration of loading Bh,i,j for GPU Gj
i , we have:

TL(ni, B
h,i,j) =

∑
dk∈Bh,i,j

HL
sk

αi,j × Tl(αi,j)
+

∑
dk∈Bh,i,j

HR
sk

βi,j × Tr(βi,j)
+

∑
dk∈Bh,i,j

M
sk

γi,j × TPFS(γi, j)
(5.1)

In Equation 5.1, αi,j, βi,j and γi,j are the initial number of data loading threads

allocated for each scenario for each GPU Gj
i (as discussed in subsection 5.3.2). Given

the mini-batch Bh,i,j, we denote its data preprocessing time TP (ni, B
h,i,j). We assume

the duration of the training stage Ttrain is constant. Thus, in order to minimize the

performance bottleneck introduced by the data loading and preprocessing stages for

GPU Gj
i during iteration h, we need to minimize the following expression:

min
∣∣TL(ni, B

h,i,j) + TP (ni, B
h,i,j)− Ttrain

∣∣ (5.2)

However, our overall goal is to minimize the performance bottleneck introduced

by the data loading and preprocessing of all M GPUs of the compute node during

iteration h. Assuming T h,i
max and T h,i

min are the maximum and minimum T h,i,j at itera-

tion h across all M GPUs (where T h,i,j is the execution time of the hth iteration for

the jth GPU on the node i), we can achieve this goal by minimizing the gap between

T h,i
max and T h,i

min as follows:

min
∣∣∣T h,i

max − T h,i
min

∣∣∣ (5.3)

80

Unfortunately, the solution for Equations 5.2 and 5.3 is an optimization problem

that can be solved using Integer Linear Programming (ILP), which is known to be

NP-complete [86]. Even if this were feasible for a single iteration h, we have to

consider that we have a total of N ×M GPUs and a large number I of iterations.

Thus, an exact solution to this optimization problem is not tractable.

5.3.4 Heuristic Strategy

To make the optimization problem introduced above tractable, we propose a

heuristic strategy that works in two phases: (1) determine the number of data loading

threads for each GPU; (2) determine an efficient eviction strategy for deterministic

prefetching to avoid cache misses due to evicting samples with small reuse distance.

Note that (2) influences the scenarios applicable for the training samples (node-local

cache vs. remote cache vs. PFS), therefore there is a close connection between (1)

and (2).

Thread assignment in case of predicted stragglers. Given a set of mini-batches

to be prefetched by the GPUs co-located on a node, Lobster determines a near-optimal

assignment of data loading threads by using a greedy algorithm that aims to satisfy

the goals formulated in Equations 5.2 and 5.3.

The initial allocation Lth of data loading threads to each co-located GPU is

proportional to the number of pending requests in the data loading queue. We then

calculate the difference between the duration of data loading + preprocessing and

that of the training stage by using Equations 5.1 and 5.2. If this difference is greater

than a threshold τ (which can be fine-tuned as needed to prune the search space),

then we employ a binary search to explore the search space until we converge to a

near-optimal solution that minimizes the gap between Tmax and Tmin.

To cover the case when the greedy algorithm does not converge, we introduce an

array W whose length is TL, the maximum number of data loading threads that can

be used by a node. The array records Tdif calculated in the prior iterations. When

the array is fully populated, then we stop the search and choose the solution that has

the minimum Tdif among all those recorded in W .

Eviction Policy based on Reuse Distance and Deterministic Prefetch-

ing It is important to note that the determinism of the prefetching pattern of one

81

node is a global property: it is known to all other nodes (e.g. by fixing the pseu-

dorandom number generator seed of each node such that it is a function of a fixed

seed and the node id). Thus, we can determine, at each moment during training, two

parameters: (1) how many times each training sample will be reused by all GPUs

until the end of training; (2) the minimum reuse distance of each training sample

across all GPUs. To obtain these parameters efficiently, we maintain a list of future

accesses for each training sample. Each entry in the list records the GPU and itera-

tion number during which the training sample needs to be accessed for the reminder

of the training. Based on this list, we apply two sub-policies:

Reuse count policy. If during training the number of accesses to a training sample

reaches the reuse count for a node, then the sample is evicted from the node-local

cache—unless no other node in the group holds a copy, as eviction would then force the

other nodes to perform expensive I/O operations to re-prefetch the training sample

from the remote storage repository.

Reuse distance policy. Let I be the number of iterations in an epoch, h the current

iteration, and Bh the set of mini-batches accessed by all co-located GPUs on a node.

Then after iteration h has finished, we can check the next reuse distance of each

training sample dk ∈ Bh. If the next reuse distance is larger than 2 × I − h, then

the training sample will not be accessed by any GPUs on the node during the next

epoch. In this case, the training sample can be considered as being reused far enough

in the future to justify eviction in order to make room for more prefetches.

Coordination with prefetching. Thanks to the two eviction policies mentioned

above, any spare capacity in the node-local cache can be used for prefetching more

training samples. However, if the training samples can be prefetched faster than they

are consumed, the spare capacity will be quickly filled. In this case, we can evict the

training samples with the largest reuse distance, while prioritizing the prefetches with

the nearest reuse distance.

5.3.5 Implementation Details

Lobster consists of two components: one is used in offline fashion to construct

piece-wise linear regression models for the preprocessing stage and to pre-compute

an efficient thread management plan combined with an efficient prefetching/eviction

82

plan based on the reuse distance. The planning phase is based on a simulator pro-

posed by [22], which was extended to: (1) decide the number of data preprocessing

threads; (2) decide the number of data loading threads; (3) adding the cache evic-

tion algorithm, and (4) add coordination logic between data preprocessing and data

loading.

The other component is an online runtime implemented in C++ and built on

the top of DALI 2.0 [83]. It is designed to interpret the plan generated by the offline

component, and to enforce the thread management and data prefetching as planned.

5.4 Evaluation

We evaluate the performance of Lobster in two data-parallel scenarios: (1) single

node with multiple GPUs and (2) multiple nodes, each with multiple GPUs. In each

case, we compare Lobster with three baseline approaches in terms of I/O performance,

memory cache efficiency, and end-to-end training runtime. Our evaluation aims to

answer four questions:

• Does Lobster have better I/O performance than the baselines?

• Does Lobster address the load imbalance problem?

• Does Lobster influence end-to-end training performance compared with baselines?

• Does each component of Lobster contribute to the overall improvement?

5.4.1 Experimental Setup

We evaluate Lobster with six representative DNN models that are frequently used

as training benchmarks (ResNet50 [87], ResNet32 [87], ShuffleNet [88], AlexNet [89],

SquenceNet [90], VGG11 [91]) and, for each model, two datasets, IMAGENet-1K and

ImageNet-22K. We use PyTorch 1.8 with NCCL2 for all evaluations. At the beginning

of DNN model training, the training datasets are stored on a Lustre parallel file system

mount point.

Baselines. We compare Lobster with three baseline approaches:

83

• PyTorch I/O [82]: The built-in PyTorch DataLoader using a constant number of

threads for data loading and another constant number of threads for preprocessing.

• DALI [83]: A widely used NVIDIA library for DNN training I/O. DALI uses three

threads for data loading by default and leaves other threads for preprocessing.

• NoPFS [22]: A state-of-the-art approach that implements deterministic prefetching

that is combined with PyTorch. The thread management for NoPFS is the same

as that with PyTorch I/O.

Hardware. We performed experiments on Argonne’s ThetaGPU HPC machine,

which is specifically optimized for training DNNs at scale. It comprises 24 NVIDIA

DGX A100 nodes, each of which is equipped with eight NVIDIA A100 Tensor-Core

GPUs, two AMD Rome CPUs, 1 TB of DDR4 memory and 320 GB GPU memory.

This amounts to a total of 24 TB DDR4 and 7.6 TB GPU memory. We use 40 GB

DDR4 memory as node-local cache on each node. If the cache is large, all samples are

placed locally without causing I/O. But typically, a small portion of DDR4 memory

is used as cache. The nodes are interconnected with 20 Mellanox QM9700 HDR200

40-port switches wired in a fat-tree topology. The external storage provided by a

Lustre parallel file system deployment provides an aggregate 250 GB/s bandwidth,

mounted using POSIX.

Datasets. We use two widely used datasets with different sizes.

• ImageNet-1K [92]: This dataset, widely used to evaluate DNNs for image classifi-

cation, consists of 1.28 million training images and 50,000 validation images, each

image assigned to one of 1000 classes. Its total size is 135 GB.

• ImageNet-22K [93]: A representative larger dataset widely used to pre-train DNNs.

This dataset consists of 14,197,103 training images and 7000 validation images,

most with an image size of between 10 KB and 50 KB, and each assigned to one

of 21,841 classes. The total dataset size is 1.3 TB.

5.4.2 I/O Performance

Single-Node Multi-GPU Data-Parallel Training. We run Lobster on a single

node with eight GPUs. Figure 5.5(a) and (b) show the results for ImageNet-1K and

84

ResNet32 ShuffleNet AlexNet

0.5

1.0

1.5

ResNet50
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h

DALI Lobster

(a) Multi-GPU training in a single node with ImageNet-1K
SequenceNet VGG11

2.0

ResNet32 ShuffleNet AlexNet

0.5

1.0

1.5

ResNet50
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h

DALI Lobster

(b) Multi-GPU training in a single node with ImageNet-22K
SequenceNet VGG11

2.5

2.0

Res
Net3

2

Shu
ffle

Net

Alex
Net

0.5

1.5

2.0

Res
Net5

0
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h DALI Lobster

Seq
ue

Net

VGG11

1.0

Res
Net3

2

Shu
ffle

Net

Alex
Net

Res
Net5

0

Seq
ue

Net

VGG11

Res
Net3

2

Shu
ffle

Net

Alex
Net

Res
Net5

0

Seq
ue

Net

VGG11

Two nodes (16 GPUs)
(c) Distributed training across nodes with ImageNet-22K

Four nodes (32 GPUs) Eight nodes (64 GPUs)

Figure 5.5: Comparison between Lobster and the baselines for multi-GPU training on a
single node and distributed training across multiple nodes.

ImageNet-22K, respectively. We observe that:

(a) Lobster is 1.6× and 1.8× faster than PyTorch DataLoader using ImageNet-1K

and ImageNet-22K, respectively. This performance improvement results mainly from

the alleviation of I/O load imbalance between GPUs. The performance improvement

is especially large in the case of ImageNet-22K (the larger dataset).

(b) Lobster is 1.7× faster than DALI, for two reasons: (1) DALI lacks fine-

grained thread-level optimizations for the training pipeline, while Lobster can flexibly

allocate CPU threads to coordinate data loading and pre-processing; and (2) Lobster

is NUMA-aware, and co-locates data loading and preprocessing threads.

(c) Lobster is 1.2× faster than NoPFS. This is due to the cache eviction based

on reuse distance, which complements deterministic prefetching. Specifically, NoPFS

evicts the training samples to accommodate the training samples to be prefetched

for the next iteration, while our approach is able to prefetch more training samples

thanks to its eviction policies, which translates to higher cache hit rates and better

performance.

Multi-Node Distributed Data-Parallel Training. We evaluate Lobster on eight

nodes when using all eight GPUs available on each node. We see in Figure 5.5(c) that

for ImageNet-22K Lobster is 2.0×, 1.4×, and 1.2× faster than PyTorch DataLoader,

DALI, and NoPFS, respectively. Compared with the single-node evaluation, Lobster

85

0.5

0

1.5

1.0

2.5

2.0

N
o.

 o
f i

te
ra

tio
ns

 w
ith

 lo
ad

 im
ba

la
nc

e
Pytorch
DALI
NoPFS
Lobster

(a) Training on a single node (eight GPUs)

1.0

0

3.0

2.0

5.0

4.0

N
o.

 o
f i

te
ra

tio
ns

 w
ith

 lo
ad

 im
ba

la
nc

e

Pytorch
DALI
NoPFS
Lobster

(b) Training on eight nodes (64 GPUs)

50

0

150

100

250

200

Ba
tc

h
tim

e
di

st
rib

ut
io

n
(m

s)

Pytorch
DALI

NoPFS
Lobster

(c) Training on single node (eight GPUs)(x104) (x103)

Figure 5.6: The number of iterations with load imbalance and the distribution of batch
time. We use ResNet50 with ImageNet-1K.

makes better use of the distributed cache across nodes, leading to a larger performance

improvement.

Scalability of Data-Parallel Training. We evaluate Lobster using a variable

number of nodes and with different datasets. For ImageNet-1K, we use a single node

whose memory cache is smaller than the dataset size, while for ImageNet-22K, we

use multiple nodes whose aggregated memory cache across the nodes is smaller than

the dataset size (but larger than the size of ImageNet-1K). Figure 5.5 shows the

results with respect to PyTorch Dataloader: (a) Lobster scales well for ImageNet-1K.

Furthermore, when training with ImageNet-22K, compared with PyTorch Dataloader,

Lobster has a speedup of 1.53× on average (up to 1.9×); (b) with different system

scales on a single node and multiple nodes, Lobster consistently shows a significant

speedup (1.2×–2.0×).

5.4.3 Reduction of Load Imbalance

To evaluate Lobster’s effectiveness in reducing data load imbalance, we count

the number of iterations with load imbalance across GPUs in each epoch. We use

ResNet50 with ImageNet-22K as the training dataset. Figure 5.6 depicts the results.

Single-Node Multi-GPU Data-Parallel Training. We train the model for 50

epochs, each of 55,457 iterations. We depict in Figure 5.6(a) the results for all epochs.

Compared with PyTorch, DALI, and NoPFS, Lobster reduces the iterations with load

imbalance by 31.4%, 16.4%, and 7.9% respectively on average. WithLobster, only

17.5% of all training iterations exhibit load imbalance.

Multi-Node Distributed Data-Parallel Training. We fix the number of iter-

ations per epoch at 6932 and train ResNet-50 for 50 epochs. Figure 5.6(b) shows

the results for all epochs. The number of iterations is smaller than when training

86

25%

0%

To
p-

1
ac

cu
ra

cy
 (%

)
Epoch

1 20 40 60 80

100%

50%

75%

Pytorch
Lobster

Figure 5.7: Training accuracy curve for training ResNet50 on ImageNet-1K using eight
nodes (64 GPUs) with default ResNet50 hyperparameter settings.

on a single node because we use more GPUs. Compared with PyTorch DataLoader,

DALI, and NoPFS, Lobster reduces the number of iterations with load imbalance by

35.2%, 25.8%, and 9.7% respectively. Overall, with Lobster, only 22.8% of all training

iterations still exhibit load imbalance.

Lobster is able to reduce the number of iterations with load imbalance more

effectively thanks to the coordination between the data loading and preprocessing

stages, which redirects more threads for data loading when the GPUs are bottlenecked

by it.

Batch time distribution. Figure 5.6(c) presents the batch time distribution when

training ResNet50 with ImageNet-1K on one node (8 GPUs), showing successful

mitigation of performance degradation brought by the load imbalance across GPUs.

With Lobster, there is less variance in per-batch time (iteration duration) than the

baselines. Lobster’s batch time is also shorter than other methods’. Figures 5.6

demonstrates a key performance advantage of Lobster: reducing the batch time where

the data loading is slow due to load imbalance across GPUs.

5.4.4 End-to-End Training

Lobster does not change the randomness of data accessing during the distributed

training. The techniques in Lobster do not influence the DNN model’s accuracy. To

demonstrate this, we train ResNet50 to convergence for ImageNet-1K on eight nodes

(64 GPUs) with both Pytorch DataLoader and Lobster. Figure 5.7 shows the accuracy

curves. We see that the two methods have similar learning curves, although with some

slight variation due to different random seeds for network parameters. In both cases,

87

ResNet32 ShuffleNet AlexNet

25

50

75

ResNet50
0

Pytorch NoPFS

G
PU

 U
til

iz
at

io
n

(%
) DALI Lobster

SequenceNet VGG11

100

Figure 5.8: GPU utilization when training ResNet50 on ImageNet-1K using one node
(eight GPUs). X-axis represents different DNNs used for testing and Y-axis is the GPU
utilization.

training converges to the target accuracy of 76.0% in around 40 epochs. Nevertheless,

as Figure 5.5 indicates training with Lobster is up to 1.4× faster than with PyTorch

DataLoader. As a consequence, using Lobster for data loading achieves an overall

shorter training time.

5.4.5 Resource Utilization

Memory cache hit ratio. We measure the cache hit ratio of the memory cache

during the whole training process. We use one node with eight GPUs and ImageNet-

1K. Lobster has higher cache hit ratio than the baselines. On average, the cache

hit ratio with Lobster is 63.2%, while it is 24.5%, 32.6%, and 48.9% with PyTorch

DataLoader, DALI, and NoPFS respectively. The higher cache hit ratio demonstrates

the effectiveness of cache eviction as a complement for deterministic prefetching.

NoPFS has higher cache hit ratio than PyTorch DataLoader and DALI, because of

its efficient distributed cache with deterministic prefetching. However, its cache hit

ratio is lower than Lobster because of a simpler cache eviction policy.

GPU utilization. We measure average GPU utilization during the whole training

process. We use one node with eight GPUs and ImageNet-1K, and fix the number of

epochs at 50. As can be observed in Figure 5.8, Lobster has higher GPU utilization

than the baselines: 76.1% vs. 52.3%, 57.5%, and 72.4% for PyTorch DataLoader,

DALI, and NoPFS respectively. The higher GPU utilization of Lobster demonstrates

the effectiveness of addressing load imbalance across GPUs.

88

0

NoPFS Lobster Lobster_thDALI

ResNet50 ResNet32 ShuffleNet AlexNet

1.0

SeqenNet

1.5

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

D
AL

I

VGG11

Lobster_evict

0.5

Figure 5.9: Ablation study of Lobster when training ResNet50 on ImageNet-1K using one
node (eight GPUs). Y-axis is the training time speedup compared with DALI.

5.4.6 Ablation Study

We next evaluate the individual impacts of Lobster’s thread management and

its cache eviction policies. To this end, Lobster th includes thread management but

excludes cache eviction based on reuse distance, while Lobster evict does the precise

opposite. We show in Figure 5.9 results for ImageNet-1K on a single node (eight

GPUs).

Thread management. We see that: (1) the thread management optimization con-

tributes more to the training performance improvement than the cache eviction policy;

(2) the thread management improves the training performance by up to 1.4× (1.3×
on average), compared with DALI.

Cache eviction policy. We also see that the cache eviction policy based on reuse

distance (1) leads to 15% higher performance than DALI, on average, and (2) is more

helpful for small models (e.g., ShuffleNet, SequenceNet), for which the duration of

the training stage is smaller compared with the larger models (and thereby less likely

to become a performance bottleneck).

5.5 Summary

Data loading is becoming a major performance bottleneck in distributed DNN

training. Prior studies of data loading performance for distributed DNN training

have conducted neither a holistic analysis of all training pipeline stages not a fine-

grained analysis of the load of individual GPUs, two areas that present opportunities

for further optimization. To fill this gap, we have proposed Lobster, a data loading

runtime that exploits several observations related to load imbalance, performance

89

bottlenecks in various stages of the training pipeline, and the reuse distance of training

samples to propose a new flexible thread management strategy and cache eviction

policy that complements deterministic prefetching. These methods allow Lobster to

consistently outperform the state-of-art PyTorch I/O, DALI, and NoPFS systems by

1.3–2.0×.

Chapter 6

ArbiLIKE: An Accurate

Cardinality Estimator for

Arbitrary LIKE Predicates

6.1 Overview of ArbiLIKE

Figure 6.1 provides a high-level overview of ArbiLIKE’s architecture, which con-

sists of four stages. In the statistical information collection stage, ArbiLIKE collects

valuable statistics offline by parsing string tuples from DB, including a pair (sub-

string, cardinality) built using the q-grams technique and an inverted list (§6.2) for

each substring.

In the predicates encoding stage (§6.3), ArbiLIKE begins by using a bottom-

up hierarchical clustering technique (§6.3.2) to organize the offline-gathered pairs of

(substring, cardinality). This clustering relies on the cardinality-distances between

different substrings. Such a method ensures that within a cluster, pairs of (substring,

cardinality) exhibit minimal cardinality variations, while pairs in distinct clusters

show substantial cardinality differences. Following this, ArbiLIKE adopts a multi-

tiered contrastive embedding strategy to transform substrings into feature vectors

(§6.3.4), using the formed hierarchical clusters as the input.

In the model design stage (§6.4), ArbiLIKE introduces a novel sequence model,

Mest, designed to capture the importance of various substrings (§6.4.2). Upon com-

pletion of training, the model is ready to estimate cardinalities for LIKE predicates.

90

91

Training data

Predicate
segments

Set resemblance
approximation

Estimated
cardinality

Collected statistics

String
Database

Model Design

Generic
Predicates
Estimator

Cardinality
distance

Hierarchical
clustering

Predicates Encoding

Substring-importance
boosted model training Inference

Cardinality estimator

Substrings embedding

Statistical Information
Q-grams Inverted lists

Multi-tiered contrastive
embedding

Figure 6.1: ArbiLIKE overview.

For each input LIKE predicate, ArbiLIKE transfroms it into a feature vector, which is

subsequently fed intoMest. The output ofMest represents the estimated cardinality

for the corresponding predicate.

In the generic predicate estimation stage (§6.5), ArbiLIKE is adapted to address

arbitrary LIKE predicates with any number of wildcards (“%”, “ ”). Initially, a

generic LIKE predicate is decomposed into one or multiple LIKE sub-predicates based

on wildcard positions. Then, usingMest (§6.4.2), ArbiLIKE estimates the cardinality

for each sub-predicate and compute a resemblance value (§6.5.2) among them. The

resemblance value and the cardinality estimates of the sub-predicates determines the

cardinality of a generic LIKE predicate.

6.2 Problem Description

In this section, we introduce some notations and preliminaries. The definitions

of the notations are summarized in Table 6.1.

Notations. Consider a string database DB, containing NS string tuples. We

represent the database as DB = {Si}NS
i=1, where Si is the i-th string tuple in DB

(1 ≤ i ≤ NS). Each string tuple Si in DB is composed of a sequence of characters. For

a given string Si, we denote Si[j : k] as the substring that starts at the j-th position

92

Table 6.1: Notations.

Notation Description

DB = {Si}NS
i=1 a database consisted of NS string tuples

Si the i-th string tuple in DB, i ∈ [1, NS]
S[j : k] the substring of S from position j to position k
ℓi length of string tuple Si

Σ the alphabet of string tuples in DB
qij the j-th q-gram of the string Si

Q(Si) a set of q-grams of string tuple Si

I(qij) the inverted list of q-gram qij
Sig(qij) the signature vector of q-gram qij

(a) Table
Customer
IDs Name
1 bingo
2 bioing
3 bin
4 bing
5 boing
6 ing

2-grams
Name 2-grams
bingo {bi, in, ng, go}
bioing {bi, io, oi, in, ng}

bin {bi, in}
bing {bi, in, ng}

boing {bo, oi, in, ng}
ing {in, ng}

(b) 2-grams of attribute "Name"
Inverted lists

2-gams IDs of Name
bi {1, 2, 3, 4}
in {1, 2, 3, 4, 5, 6}
ng {1, 2, 4, 5, 6}
go {1}
oi {2, 5}
bo {5}

(c) Inverted lists of 2-grams

1

2-grams Inverted
list

2

Figure 6.2: q-grams and inverted lists. (a) The Customer table; (b) All the q-grams for the
“Name” attribute (q = 2); (c) Each row consists of a 2-gram and corresponding inverted
list.

and ends at the k-th position of Si, where 1 ≤ j ≤ k ≤ ℓi. LIKE predicates.

The SQL supports two wildcards, “%” and “ ”, for specifying string patterns

in LIKE predicates. The wildcard “%” allows for the substitution of zero or more

characters in a string, while the wildcard “ ” substitutes only one character in a string.

A couple of examples are as follows: A query LIKE “%ab%” matches all string tuples

in DB containing the substring “ab”; the query LIKE “a b” matches all string tuples

composed of three characters, with the first character being ‘a’ and the last character

being ‘b’. The query LIKE “%ab%cd%” selects all the string tuples containing “ab”

followed by “cd”, with any number of characters in between. A diverse range of LIKE

predicates can be formulated using the two wildcard characters (“%”, “ ”).

Q-grams model. For a given string tuple Si in DB, its substrings can be

acquired via the q-grams technique [94]. We obtain q-grams of Si by sliding a window

of size q over the continuous characters of Si, and each q-gram is a substring of Si.

We represent the set of q-grams of Si as Q(Si), written as Q(Si) = {subij}|Si|+2q
j=1 ,

93

where subij is the j-th q-gram of the string Si, |Si| denotes the length of Si, Q(Si)

contains |Si| + 2q substrings. Figure 6.2(b) presents an example of q-grams derived

from “Name” attribute in the Customer table (depicted in Figure 6.2(a)), and we set

q to 2 in this example.

Inverted list for a substring in Q(Si). Given Q(Si) of the string tuple Si

in DB, the inverted list of a substring subij in Q(Si) is denoted as I(subij). I(subij)

represents a set of string tuple IDs, defined in Equation 6.1.

I(subij) = {i : Si ∈ DB ∧ subij ∈ Q(Si)}NS
i=1 (6.1)

Equation 6.1 indicates that if a string tuple Si ∈ DB contains the substring subij, the

string tuple’s unique string ID is added into I(subij). The inverted list of a substring

is leveraged to estimate the cardinality of arbitrary LIKE predicates in ArbiLIKE.

Figure 6.2(c) shows an example of the inverted lists for the substrings (2-grams) of

the “Name” attribute in the Customer table.

6.3 LIKE Predicates Encoding

We first discuss how to collect the statistics and encode Like predicates in this

section.

6.3.1 Statistics Collection

Within a LIKE predicate, a string can be decomposed into one or multiple sub-

strings. Our embedding methodology (§6.3.2 and §6.3.3) leverages both these sub-

strings and their associated actual cardinalities in the database. Collection of pairs

of (substring, cardinality). We employ the set Sub(DB) to store pairs of (sub-

string, cardinality) derived from string tuples in DB. To construct Sub(DB), we

traverse each string tuple Si in DB (1 ≤ i ≤ NS) and extract all pairs of (substring,

cardinality) using the q-grams technique. In ArbiLIKE, q is set to 3 (see Table 6.5).

Thus, Sub(DB) comprises {(subi : cardi)}Nsub
i=1 , with (subi : cardi) representing the

i-th pair in Sub(DB), and Nsub is the count of those pairs.

94

1 2 3 4 5 6 7

Step2: Cluster-centroid embedding

 Centroid embeddings ini�aliza�on

2

Anchors Posi�ves Nega�ves
1 2
4 5
6 7

Cluster1
Cluster2
Cluster3

Inter-cluster training data

Anchor Posi�ves Anchor Nega�ves

Cluster-centroid embedding results

Step1: Bo�om-up hierarchical clustering

1

Cluster1 Cluster2 Cluster3

Step3: Substrings embedding

Substrings embeddings ini�aliza�on

Anchors Posi�ves Nega�ves
32 1

4 5
6 7

Cluster1
Cluster2
Cluster3

Intra-cluster training data

Posi�ve subs Nega�ve subs

Substrings embedding results

1 2 3 4 5 6 7

2
Centroid1 Centroid2 Centroid3

Cl
us

te
r d

ist
an

ce

Reduce distance Increase distance

Figure 6.3: The cardinality-aware substring embeddings involves three steps. Each “node”
is a pair of (substring, cardinality).

6.3.2 Cardinality-Distance Oriented Clustering

The predicate encoding methodology in ArbiLIKE is a two-phase process. First,

it establishes clusters based on cardinality-distance using (substring, cardinality) pairs

from Sub(DB) (§6.3.1). Second, it harnesses a contrastive embedding technique

(§6.3.3 and §6.3.4) to encode substrings from Sub(DB) into feature vectors.

Determine cardinality-distance. In ArbiLIKE, we use the Q-error [95] and the

edit distance [96] together to decide the cardinality-distance between two two unique

(substring, cardinality) pairs, Pi = (subi : cardi) and Pj = (subj : cardj), within

Sub(DB). (1) For the Q-error, it offers a symmetric, scale-independent measure of

the cardinality discrepancies and is prevalent in existing literature [95]. For Pi and Pj,

the Q-error of the cardinalities cardi and cardj is denoted by: Q-error(cardi, cardj) =
max(cardi,cardj)

min(cardi,cardj)
, where cardi and cardj represent the actual cardinalities of substrings

subi and subj, respectively. (2) For the edit distance, it represents the minimum

number of edits (insertions, deletions, substitutions) needed to change one string

into another. We didn’t choose hamming distance [97], as it counts the number of

positions at which the corresponding characters in two strings of equal length. For

Pi = (subi : cardi) and Pj = (subj : cardj), the edit distance between subi and

subj is denoted by: Edit(subi, subj). A large edit distance implies a greater distance

between subi and subj, indicating lower similarity; whereas a small edit distance

means a shorter distance between them, signifying higher similarity. Based on the

Q-error and the edit distance, we calculate the cardinality-distance beween Pi and Pj

as follows, Dist(Pi,Pj) = 1
Edit(subi,subj)

× max(cardi,cardj)

min(cardi,cardj)
.

Build cardinality-distance oriented clusters. We adadt a bottom-up hierar-

95

chical clustering method [98] to establish clusters from the (substring, cardinality)

pairs in Sub(DB), guided by the cardinality-distance. The tree-structured of this

method supplies fine-grained cardinality differences among various clusters, thereby

enhancing the embedding quality for LIKE predicates.

The procedure for constructing the hierarchical clusters involves the following

steps. Step1: Initialization. Each pair Pi = (subi : cardi) in Sub(DB) is initially

treated as an individual cluster. Step2: Compute pairwise distances. Compute

the distance between each pair of clusters based on the cardinality-distance metric.

Step3: Determine clusters to merge. Identify and merge the two clusters that are

close to each other. In ArbiLIKE, we adopt Ward’s minimum variance [99] method to

decide which two clusters to merge. This method seeks the merger that results in the

smallest increase in the total within-cluster variance. For two clusters Ci and Cj, and

their merged cluster Cij, with |Ci|, |Cj|, and |Cij| denoting the number of (substring,

cardinality) pairs in Ci, Cj, and Cij respectively, the increased squared error by merging

Ci and Cj is calculated as below.

∆SSE(Ci,Cj) =
|Ci| × |Cj|
|Ci|+ |Cj|

× Dist2(PCi
,PCj

) (6.2)

where PCi
and PCj

represent the centroid (substring, cardinality) pairs for clusters

Ci and Cj respectively. For the cluster Ci, its centroid is denoted as PCi
= (subci :

cardci). Here, cardci is calculated as 1
|Ci|

∑|Ci|
j=1 cardij, where cardij refers to the actual

cardinality of the j-th substring in Ci, |Ci| is the size of the i-th cluster. And subci is

calculated as the median string of the i-th cluster. To calculate subci , we arrange all

strings in the cluster Ci in lexicographical order (alphabetical order for strings), and

use ⌊ |Ci|
2
⌋-th string in Ci after the sorting to represent subci . The term Dist2(PCi

,PCj
) is

the cardinality-distance between these centroids PCi
and PCj

. Equation 6.2 calculates

the increase in the sum of squared errors (SSE) upon merging clusters Ci and Cj. In

the hierarchical clustering process, clusters with the minimal ∆SSE(Ci,Cj) value are

merged into a single cluster. Step4: Update the distances between the newly created

cluster and the remaining clusters using Equation 6.2. Repeat steps 2, 3, and 4 until

all (substring, cardinality) pairs in Sub(DB) are unified into a single cluster. This

methodology ensures minimal cardinality disparities within clusters, and significant

variations between different clusters. The middle part of Figure 6.3 shows an example

96

of hierarchical clustering. In this example, three clusters are built, with each cluster

represented by nodes of the same color.

6.3.3 Cluster-Centroid Embedding

ArbiLIKE introduces a multi-tiered contrastive embedding strategy to enable

cardinality-aware embeddings for substrings in Sub(DB). This strategy encompasses

two embedding stages: inter-cluster contrastive embedding (Inter-CCE) and intra-

cluster contrastive embedding (Intra-CCE). Inter-CCE aims to produce embeddings

for each cluster’s centroid, whereas Intra-CCE derives embeddings for substrings with

each cluster, drawing upon the results from Inter-CCE. Next, we detail the cluster-

centroid embedding by Inter-CCE.

ArbiLIKE includes a cluster-centroid embedding model, Mcent, we borrow the

idea proposed in contrastive learning method [100, 101] to build our cluster-centroid

embedding model, Mcent. The contrastive learning compares three data types: an-

chor, positive, and negative, within the embedding space. Specifically,Mcent is struc-

tured as a Triplet Network [102], which is designed for comparative analysis between

these three data types. This network comprises three sub-networks, each dedicated to

processing one data type. WithinMcent, each sub-network is designed as a two-layer

perceptron (See hyper-parameters tuning for details (§6.6.5)).

Build the training dataset for centroid embedding. To train the cluster-

centroid embedding model Mcent, the first step is building an appropriate training

dataset. In ArbiLIKE, each (substring, cardinality) pair in Sub(DB) serves as a data

sample. The training dataset is built by choosing anchors, positive, and negative

substrings from the previously constructed hierarchical clusters (§6.3.2).

Anchors selection. Anchors act as reference substrings against which positive

and negative substrings are compared. From the hierarchical clusters established on

Sub(DB), centroids of these clusters are selected as anchors. The anchor for the i-th

cluster corresponds to its centroid, denoted as Anchori = (subci : cardci).

Positive substrings selection. Positive substrings are those closely resembling the

anchor in terms of cardinality. The aim is to ensure that the embeddings of the

anchor and these substrings are close to each other in the embedding space. For a

given anchor Anchori of the i-th cluster, we utilize the K-nearest neighbour method

97

to identify the K closest (substring, cardinality) pairs within the same cluster. Here,

K = Nc − 1, with Nc being the total number of cardinality-distance oriented clus-

ters (§6.3.2). The K nearest pairs of (substring, cardinality) are determined by the

cardinality-distance and are chosen as positive substrings, represented as Subi
+.

Negative substrings selection. Negative substrings have notably different cardi-

nalities from the anchor. The objective is to separate the embeddings of the anchor

and these negative substrings in the embedding space. In ArbiLIKE, for a given an-

chor Anchori of the i-th cluster, centroids from the other Nc−1 clusters are selected

as negative substrings. As Anchori and these centroids come from different clusters,

they inherently have different cardinalities. The set of negative substrings is denoted

as Subi
−.

Training dataset. For the i-th cluster of (substring, cardinality) pairs, after deter-

mining the anchors, positive, and negative substrings, we denote the training dataset

for embedding the cluster’s centroid as Di. This dataset comprises: Di=(Anchori,

Subi
+, Subi

−), where Anchori is the centroid, while Subi
+ and Subi

− are the respec-

tive positive and negative substrings for the i-th cluster. Each training entry is a

triplet (sa, sp, sn), derived from the i-th cluster’s (Anchori, Subi
+, Subi

−).

Cluster-centroid embedding. In ArbiLIKE, we use the triplet ranking loss to

learn embeddings for each cluster’s centroid. For a triplet (sa, sp, sn) in Di, the loss

function is formulated as below.

Loss(sa, sp, sn) = max(0,mi
inter + d(Ea,Ep)− d(Ea,En)) (6.3)

where mi
inter is a margin chosen to distinguish the embedding distances of (sa, sp) and

(sa, sn) for a given triplet (sa, sp, sn) in Di. The embeddings Ea, Ep, and En corre-

spond to sa, sp, and sn respectively and are updated during the training of the model

Mcent. The terms d(Ea,Ep), d(Ea,En) represent the Euclidean distances between the

embeddings Ea and Ep, Ea and En, respectively. The objective of Equation 6.3 is

to guarantee that the distance between the embeddings of an anchor and a negative

substring, d(Ea,En), exceeds that between the anchor and a positive substring, Ea

and Ep. Let’s analyze the three cases presented in Equation 6.3 to better understand

how to achieve accurate embeddings for the centroid of the i-th cluster.

• Case1: d(Ea,En) > d(Ea,Ep) + mi
inter. Here, the negative substring’s embedding

98

is adequately separated from the anchor compared to the positive substring’s em-

bedding. As a result, the loss is zero, leading to no updates in the embeddings for

the anchor, positive, and negative substrings.

• Case2: d(Ea,En) < d(Ea,Ep). Here, the negative substring’s embedding is closer

to the anchor than the positive substring’s embeddings. Given the loss exceeds

mi
inter, leading to updates in the embeddings for both the positive and negative

substrings.

• Case3: d(Ea,Ep) < d(Ea,En) < d(Ea,Ep) + mi
inter . Here, while the negative sub-

string’s embedding is more distant from the anchor than the positive substring’s

embedding, the distance doesn’t exceed mi
inter. Thus, the loss remains positive but

is less than mi
inter, resulting in updates only to the embeddings of the negative

substrings.

Selection of mi
inter. In Equation 6.3, the margin minter serves to balance the distance

between positive pairs d(Ea,Ep) and negative pairs d(Ea,En). It ensures that the

embeddings are well-separated while still being able to learn meaningful features. A

small mi
inter may inadequately differentiate positive and negative substring embed-

dings. Conversely, a large mi
inter struggles to generate informative embeddings by

compelling them to be overly distant.

In ArbiLIKE, we determine mi
inter as follows. After initializing embedding for each

triplet in Di prior to training modelMcent, we compute distances between embeddings

of the anchor and all substrings in Subi
+ and Subi

−. Then, these distances are ranked

in ascending order, and the distance at the |Subi
+|-th position is chosen as the value

of mi
inter. This ensures the distance of every positive pair (sa, sp) remains less than all

negative pairs (sa, sn). Note, |Subi
+| represents the count of (substring, cardinality)

pairs in Subi
+.

For each cardinality-distance oriented cluster (§6.3.2), we build a training dataset

and learn the embedding of the cluster-centroid. The outcome of cluster-centroid

embedding is a matrix, Ecent ∈ RNc×λ, where Nc is the number of cluster centroids,

and λ is the embedding size. The left part of Figure 6.3 shows the three main steps

to obtain the centroid embeddings. First, ArbiLIKE constructs the training dataset

for each cluster, comprising numerous triples (Anchors, Positives, Negatives). In our

99

example, we consider three clusters. Second, we assign initial embeddings for training

data samples, and identify the positive and negative pairs for each training data

sample. Finally, ArbiLIKE employs the Inter-CCE approach to obtain embeddings

for each centroid in the hierarchical clusters (§6.3.2). These results are used in the

Intra-CCE process (§6.3.4) to acquire embeddings for the collected substrings (§6.3.1)

in ArbiLIKE.

6.3.4 Cardinality-Aware Substrings Embedding

We illustrate how the Intra-CCE method converts substrings into feature vectors.

ArbiLIKE incorporates a substrings embedding model Msub which is adapted from

the contrastive learning technique for the substrings embedding. Msub is a Triplet

Network, similar to the structure of cluster-centroid embedding modelMcent (§6.3.3).

We use AutoML [103] to find the optimal structure of the Msub (§6.6.5). Before

training Msub, we need to build the training dataset.

Build training dataset for substrings embedding. For substring embedding

within a specific cluster, we construct a training dataset comprising triples denoted

as (Anchor, Subintra
+ , Subintra

−), where the Anchor denotes the cluster’s centroid.

Within the cluster, we categorize all (substring, cardinality) pairs into two subsets:

positive and negative pairs. ArbiLIKE utilizes a max-margin selection strategy [104]

to optimally partition the pairs of (substring, cardinality) into two distinct groups.

The loss function forMsub aligns with Equation 6.3. Here, the margin for the Intra-

CCE method is denoted as mintra, its value is chosen based on the distance between

the optimal boundary and the cluster centroid.

Intra-cluster contrastive pairs. In ArbiLIKE, using the margin mintra, (substring,

cardinality) pairs within a cluster are divided into two groups, Subintra
+ and Subintra

− .

Substrings in Subintra
+ exhibit smaller cardinality-distance to the centroid than those

in Subintra
− . The training dataset for substrings embeddings within a cluster, repre-

sented as Dtrain, consists of triples (sa, sp, sn). Here, sa is the cluster’s centroid, while

sp and sn are positive and negative substrings from Subintra
+ and Subintra

− , respectively.

Substrings embedding. Figure 6.4 depicts the substring embeddings generation

process using Intra-CCE. Prior to the substring embeddings, each substring within the

cluster is initialized with an embedding vector of length λ. As indicated in Figure 6.4,

100

7 2

4
1 3

6

5

Margin

Embedding space
(a) Initial embedding

7
2

4
1 3

6

5
Margin

Embedding space
(b) Embedding outcome

Cluster Centroid

Pull Push

Positives

Negatives

1 2 3

4 5 6 7

Figure 6.4: The intra-cluster contrastive embedding for the pairs of (substring, cardinality)
within a cluster.

the positive substrings, Subintra
+ , consists of {sub1, sub2, sub3}, while the negative sub-

strings Subintra
− , comprise {sub4, sub5, sub6, sub7}. Initially, in the embedding space,

the positive substring sub3 lies beyond the intra-cluster margin, whereas the negative

substring sub7 falls within this margin (Figure 6.4(a)). Upon applying Intra-CCE,

the embeddings of positive substrings converge closer to the centroid, whereas those

embeddings of the negative substrings disperse farther from the centroid within the

embedding space, as illustrated in Figure 6.4(b). The goal of Intra-CCE is the training

ofMsub and the generation of embeddings for substrings in Sub(DB). The resulting

substrings embedding is a matrix Esub ∈ RNsub×λ, where Nsub denotes the count of

substrings in Sub(DB), and λ is the embedding size.

6.4 Sequence model-based estimator

In this section, we introduce the proposed substring-based sequence model in

ArbiLIKE. We introduce a novel sequence model-based estimator.

6.4.1 Cardinality Estimation via Sequence Model

This section shows how to leverage the character based language model for the

cardinality estimation. The string in a LIKE predicate can be decomposed into a

sequence of substrings. In ArbiLIKE, we use a substring-importance boosted sequence

model to estimate the cardinalities of LIKE predicates.

Substring-based sequence model. Given a string S, by applying the q-grams

technique, we obtain all the substrings of S with a length of q. Consequently, S can be

represented as a sequence of (possibly) overlapped substrings: S =< sub1, ..., subt >,

where t is the number of decomposed substrings. The substring-based sequence model

101

1 0 1

Sub1 embedding
0 2 0 1 1 1

0 1 1 2 4 4 2 8

1 0
0.0

0.0 0.0 0.0

2 3 2 6

0.5 0.5

1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5 2.0 0.0 1.0

GRU

GRU

GRU

GRU GRU

GRU

Matrix Multi

Esub : subs
embedding

Q K V

SoftMAX

Element-wise
Matrix Multi

Sequence
model

KeyValueKey Value Key Value

Score Score Score

1.0 2.0 1.5

QueryScore

Weighted-
embedding

Sub2 embedding Sub3 embedding

Input

(a) Model Architecture (b) Obtain weighted feature vector using attention

Output: Selectivity of a LIKE predicate

Figure 6.5: Cardinality estimator in ArbiLIKE.

is used to estimate the joint probability P (S) = P (sub1, sub2, ..., subt) using the

following formula.

P (S) = P (sub1)×
t∏

i=2

P (subt|sub1, ..., subi−1) (6.4)

where t denotes the number of potentially overlapped substrings within S, and P (S)

represents the joint probability of the string S. Once this probability is computed,

we use it to estimate the cardinalities of the LIKE predicates.

6.4.2 Substring-importance Boosted Model

As shown in left part of Figure 6.5, our substring-importance boosted sequence

modelMest incorporates two parts: the first part is a self-attention mechanism [105]

capturing the importance of each substring of string tuples in DB, and the second part

is a Gated Recurrent Unit (GRU), a type of commonly used recurrent neural network

(see details of the model structure in (§6.6.5)). We discuss Mest for cardinality

estimation in this section.

Training dataset generation. To train the sequence model Mest, we must build

the training dataset first. Given a string database, DB = {Si}NS
i=1, the process of

102

generating training data has two steps: (1) We insert special characters ‘∧’ and ‘$’

into each string tuple Si ∈ DB to signify the start and end of Si respectively; (2) We

then decompose Si into a sequence of substrings using the q-grams technique (§6.2).

For instance, if DB = {joe, jony} and q = 2, the training dataset is represented

as Dseq = {∧j, jo, oe, e$,∧j, jo, on, ny, y$}. We use Σsub to denote the set of unique

substrings with a length of q in DB. In this example, Σsub = {∧j, jo, oe, e$, on, ny, y$}.
Loss function for the estimator. We describe the loss function Loss(Dseq,Σsub)

in Equation 6.5 for the substring-importance boosted sequence modelMest. InMest,

the loss function processes the substrings of each string tuple Si ∈ DB (i ∈ [1, NS])

sequentially one substring at a time, and seeks to accurately estimate the probability

distribution for the next substring given the preceding substrings. For instance, in the

running example above, the distinct substrings set Σsub = {∧j, jo, oe, e$, on, ny, y$}.
When using “jo, on” as an input,Mest generates a probability distribution suggesting

that the subsequent substring could be any in Σsub.

Based on the generated training dataset Dseq and the collected unique substrings

Σsub from the database DB, we build the loss function Loss(Dseq,Σsub). Let ŷ(j) and

y(j) represent the probabilities of the predicated and actual next substring respec-

tively. We use the cross-entropy (CE) [106] to quantify the loss between the prob-

ability distributions for ŷ(j) and y(j). The calculation of Loss(Dseq,Σsub) is listed as

below.

Loss(Dseq,Σsub) = − 1

|Dseq|

|Dseq|∑
i=1

|Σsub|∑
j=1

y
(j)
i logŷ

(j)
i (6.5)

where ŷ
(j)
i and y

(j)
i represent the predicted and actual probabilities, respectively, that

the i-th substring in Dseq occurs at the position j in Σsub, |Dseq| is the size of the

training dataset, and |Σsub| is the total number of unique substrings in Σsub. Equa-

tion 6.5 minimizes the cross entropy error of ŷ
(j)
i and y

(j)
i across the entire training

datatset Dseq.

Model training. Algorithm 5 depicts the process of training the estimator Mest.

This algorithm produces the parameters required for the cardinality estimator, which

subsequently can be used to estimate the cardinalities of LIKE predicates. The train-

ing dataset fed into Algorithm 5 is denoted as Dseq, comprising continuous substrings

with a length of q. Additional inputs include a set of unique substrings, Σsub, the

103

Algorithm 5 Substring-importance boosted estimator

Input: Dseq: Training dataset generated from DB
Σsub: Set of unique substrings of DB
Esub: Substring embeddings (§6.3.4)
B: Batch size during the model training
α: Learning rate when training model Mest

λ: Substring embedding size (§6.3.4)
Output: Parameters of trained estimator Θ
Initialize WQ ∈ Rλ×λ, WK ∈ Rλ×λ, WV ∈ Rλ×λ, Θ
for number of training iterations do

for b < number of batches do
Db ← get minibatch(Dseq, B, b) Eb ← columns mapping(Esub, Db)
Qb = Eb ×WQ, Kb = Eb ×WK , Vb = Eb ×WV

Wimp ← soft max(Qb×Kb
T

√
λ

)

Wemb = Wimp ×Vb Σb ← columns mapping(Σsub, B, b)
Loss(Db,Σb,Θ) = −Log[Pr(Σb|Wemb)]

Θ = Θ− α∂Loss(Db,Σb,Θ)
∂Θ

end

end
return Θ;

substring embeddings Esub (§6.3.4), a predefined batch size B, a learning rate α,

and the size of substring embeddings λ. Before model training, we initialize three

weight matrices, WQ, WK , and WV , each having dimensions Rλ×λ. These matrices

are associated with the Query, Key, and Value matrices in the self-attention mech-

anism. During the model training, for each epoch (as described in Lines 2-11) and

each batch (Lines 3-11), the algorithm first fetches a mini-batch Db of data instances,

and each instance is a substring in Dseq (Line 4). Then, the algorithm extracts the

corresponding embeddings for the fetched substrings, denoted as Eb ∈ RB×λ, with B

representing the batch size and λ is the size of substring embedding (Line 5). Utilizing

Eb, we calculate the Query (Qb), Key (Kb), and Value (Vb) matrices (Line 6). Once

we obtain the Qb, Kb, and Vb matrices, the algorithm computes the importance score

for each substring in Db, this yields the weighted-embedding matrix Wemb ∈ RB×λ

(Lines 7-8). Finally, using Wemb as the input for the loss function (Equation 6.5),

the parameters Θ are learnt through the process outlined in Lines 10-11. Algorithm 5

thus yields the trained model parameters Θ for Mest (Line 12). Figure 6.5 provides

an example of applying ArbiLIKE to a string tuple in DB with three substrings.

104

6.5 Extension to Generic LIKE Predicates

In this section, we illustrate how ArbiLIKE addresses the challenge of LIKE

predicates with arbitrary number of wildcards(“%”,“ ”).

6.5.1 Formulation as a Set Resemblance Problem

We formulate the cardinality estimation of arbitrary LIKE predicates as a set

resemblance problem. A typical LIKE predicate may contain multiple wildcards (“%”,

“ ”) which partitions the string in the LIKE predicate into various segments.

For a generic LIKE predicate “LIKE %seg1%seg2%, ...,%segm%”, each segi is a

sequence of characters with a length of ℓsegi , where i ∈ [1,m]. The inverted list (§6.2)

of segi is defined as Ii. In practice, collecting inverted lists for segi of any length is un-

realistic due to the considerable time and space overheads. In ArbiLIKE, if ℓsegi > q,

we identify all segi’s substrings (max length of q), and select the substring with the

smallest cardinality. We then utilize the inverted list associated with this selected

substring to approximate the segi’s inverted list. We use Pseg = {segi}mi=1 to denote

a set of string segments which can be induced from “%seg1%seg2%, ...,%segm%”. If

the resemblance value among the inverted lists for string segments in Pseg is known,

the cardinality of a generic LIKE predicate “LIKE %seg1%seg2%, ...,%segm%” is es-

timated using Equation 6.6.

Card(Pseg) = { max
1≤i≤m

Card(segi)} ×Res(Pseg) (6.6)

where maxCard(segi),1 ≤ i ≤ m, denotes the maximum estimated cardinality among

all the string segments within Pseg. Each Card(segi), where i ∈ [1,m], is estimated

by the modelMest (§6.4.2). The term Res(Pseg) represents the resemblance value of

the inverted lists for all string segments in Pseg. The value of Res(Pseg) lies within

[0, 1], and Res(Pseg) quantifies the similarity of these inverted lists. In Equation 6.6,

Res(Pseg) is computed using Equation 6.7.

Res(Pseg) =
|I1 ∩ I2, ...,∩Im|
|I1 ∪ I2, ...,∪Im|

(6.7)

105

ID2

ID3 ID6

ID4 ID5

ID1

I(bi)
I(go)

U

(a) Inverted lists of "bi" and "go"

ID1 ID2 ID3 ID4

π1
π2
π3
π4

ID5 ID6

2 1 5 6 3 4
4
1
3

2 6 3 1 5
4
5

4 2 6 2
2 5 4 1

(b) Permutations

ID1 ID2 ID3 ID4

π1
π2
π3
π4

2 1 5 6 1
4
1
3

2 6 3 2
5
4

4 2 1
2 5 2

(c) Signature vector generation of the inverted lists for "bi" and "go"

Sig(bi)I(bi) ID1

π1
π2
π3
π4

2 2
4
1
3

4
1
3

Sig(go)I(go)

Figure 6.6: Illustration of generating the signature vectors of the inverted lists. (a)
Inverted lists of I(bi) and I(go). (b) The permutations of the string IDs. The first row is
the string IDs, and the first column represents four random permutations of the string IDs.
(c) The signature vectors of I(bi) and I(go).

6.5.2 Signature Vector of Inverted List

Some string segments in Pseg may appear in a large portion of string tuples in DB,

which results in long inverted lists and an unacceptable time complexity to perform

intersection and union operations in Equation 6.6. To address this problem, ArbiLIKE

uses an efficient approach to calculate the set resemblance which is adapted from the

existing methods [107, 108]. In ArbiLIKE, we must calculate the set resemblance in

an efficient way.

ArbiLIKE uses a signature vector to approximately represent an inverted list

to calculate the set resemblance for efficiency. The signature vector is a real-valued

vector with a fixed length and keeps the characteristics of a large set. ArbiLIKE uses

a Monte Carlo approximation technique to build a signature vector of an inverted

list. The signature vector of Ii is denoted as Sigi = (X1
i , X

2
i , ..., X

L
i), where each

element Xj
i is a real valued number, i ∈ [1,m], j ∈ [1, L], m is the number of different

segments in a generic LIKE predicate, and L is the length of the signature vector.

We use U = {1, ..., NS} to denote the universe of string tuple IDs in DB where NS

is the number of string tuples in DB. Given a generic LIKE predicate in the form of

“%seg1%seg2%, ...,%segm%”, and the inverted list of i-th segment is Ii. Based on the

definition of the inverted list (§6.2), we have Ii ⊆ U. Assume that π is a permutation

of U. We define min{π(Ii)} = min{π(x)|x ∈ Ii}. We select π1, ..., πL, which represent

106

L uniform random permutations derived from U. For an inverted list Ii of i-th string

segment in a generic LIKE predicate, we define its signature vector as follows.

Sigi = (min{π1(Ii)},min{π2(Ii)}, ...,min{πL(Ii)}) (6.8)

where term min{πj(Ii)} is the minimum value of the j-th permutation (j ∈ [1, L])

and L is the total count of permutations applicable to string tuple IDs in DB. Hence,

for the j-th element Xj
i in Sigi, we have Xj

i = min{πj(Ii)}. In practice, to get the

proper value of each element in a signature vector, we independently seed a hash

function and generate a hash value h(x) for each element x ∈ Ii; the minimum h(x) is

recorded in the signature vector. In ArbiLIKE, we employ linear hash functions [109],

because of their efficacy and ease of generating numerous independent hash functions.

Each hash function is selected to ensure a low probability of collision.

We use R̂es(Pseg) to represent an approximated value of the Res(Pseg) (§6.5.1),

where Res(Pseg) represents the resemblance value of the inverted lists for all string

segments in a generic LIKE predicate, “LIKE %seg1%seg2%, ...,%segm%”. we calcu-

late R̂es(Pseg) using the following formula.

R̂es(Pseg) =
|{i|min{πi(I1)} = · · · = min{πi(Im)}}|

L
(6.9)

where L is the number of hash functions and L is equal to the length of a signature

vector. With the appropriate selection of L, R̂es(Pseg) is guaranteed to provide a

reliable approximation of Res(Pseg) [110]. Figure 6.6 gives an example of calculating

the signature vectors of two inverted lists: I(bi) and I(go). These two lists are derived

from the Customer table in Figure 6.2(a). We use the following four steps to generate

signature vectors for I(bi) and I(go).

Step1: get the entire string IDs and inverted lists of I(bi) and I(go). In this

example, I(bi) = {1, 2, 3, 4} and I(go) = {1}. The entire string tuple IDs are repre-

sented as IDs = {1, 2, 3, 4, 5, 6}. To make the example clearer, we use ID1, ..., ID6 to

denote string tuple ID from 1 to 6 in the Customer table (Figure 6.6(a)).

Step2: get L random permutations for the entire string tuple IDs. The signature

vector length is equal to the number of random permutations. In this example, we

set L = 4, and the four random permutations are π1, π2, π3, and π4 (Figure 6.6(b)).

Step3: determine the signature vectors for the inverted lists I(bi) and I(go).

107

For each random permutation πi, where i ∈ [1, 4], we extract the minimum value in

πi, and this value becomes the i-th element of the signature vector. After iterating

through all the random permutations, we obtain the signature vector corresponding

to an inverted list. As Figure 6.6(c) shows, for I(bi), π1 maps ID1, ID2, ID3, and

ID4 to 2, 1, 5, 6 respectively. Thus, the minimum value of π1 is 1. Similarly, we find

the minimum mapped values for the remaining random permutations. The resulting

signature vectors for I(bi) and I(go) are denoted as Sig(bi) and Sig(go) respectively.

In this instance, Sig(bi) =is {1,2,1,2} while Sig(go) is {2,4,1,3}.
Step4: get the approximation of a set resemblance value of Sig(bi) and Sig(go)

based on Equation 6.9, which is computed as 0.25. We utilize this value to estimate

the cardinality of “LIKE %bi%go%” based on Equation 6.6. And the estimated

cardinality is 1, which is the same as the actual cardinality of “LIKE %bi%go%”.

6.5.3 Extend to Multiple Columns

As a table may contain multiple string columns, it is common that a LIKE

predicate is constructed based on more than one string columns. In this section, we

introduce how to make ArbiLIKE handle LIKE predicates involves different columns

by leveraging the set join and union operations.

Different columns. Assuming a table with at least two string columns, Col1 and

Col2, we examine two basic types of LIKE predicates based on “AND” and “OR”,

which can be extended to more complex predicates. (1) Different Columns with

“AND”: Predicates can be in the form of “Col1 LIKE %seg 1% AND Col2 LIKE

%seg 2%”, where “%seg 1%” and “%seg 2%” are sequences of characters. Step

1: Obtain signature vectors for %seg 1% and %seg 2% (denoted as Sig1 and Sig2,

representing the rows in the table containing these character sequences. The sig-

nature vectors convey the information of which rows in the table contain the cor-

responding character sequence. Step 2: Calculate the similarity of the signature

vectors, Sim(Sig1,Sig2) ∈ [0, 1], using cosine similarity. This value approximates

the ratio of rows containing both “%seg 1%” and “%seg 2%”. Step 3: Approxi-

mate the results using Sim(Sig1,Sig2). Once the cardinalities for “%seg 1%” and

“%seg 2%” (represented as Card1 and Card2) are obtained, calculate the results as:

Min(Card1,Card2)×Sim(Sig1,Sig2) (similar to set join operations). (2) Different

108

Columns with “OR”: The process is similar to the “AND” case, with a variation

in Step 3 for calculating results. Step 3 (OR Variant): Calculate the results as:

Max(Card1,Card2) + Min(Card1,Card2) × Sim(Sig1,Sig2). This formula re-

sembles the calculation used in set union operations.

Predicates with numeric columns. In handling predicates with numeric and

string columns, ArbiLIKE employs a structured approach. Step 1. Selectivity

estimation for numeric columns: Using an autoregressive model, ArbiLIKE esti-

mates the selectivity (Sel1) of numeric conditions (like Col1 ≤ v1), representing

the proportion of rows that meet this criterion. Step 2. Cardinality estimation

for LIKE operator: For string column predicates, ArbiLIKE calculates the cardinal-

ity (Card2), indicating the number of rows that match the LIKE condition. Step

3. Combining for “AND” operation: For combined “AND” predicates (e.g., Col1

≤ v1 AND Col2 LIKE %seg%), ArbiLIKE approximates the final cardinality by

multiplying Sel1 and Card2. Step 4. Combining for “OR” operation: For “OR”

predicates (e.g., Col1 ≤ v1 OR Col2 LIKE %seg%), it calculates the result using:

Max(Card1, Card2) + (1 − Sel1) ×Min(Card1, Card2), where Card1 is the cardi-

nality of the numeric condition. This method allows ArbiLIKE to effectively handle

queries with both numeric and string columns, enhancing its capability in database

query optimization.

Predicates containing the “ ” wildcard. Given that the wildcard “ ” represents a

single character in a string, our first step is usingMest to predict potential characters

that can substitute the “ ”. Each “ ” is then replaced with the predicted charac-

ter. This transforms a predicate containing the “ ” wildcard into a form resembling

LIKE “%seg1%seg2%, ...,%segm%”. Subsequently, we adopt the method presented in

Section 6.5.1 to estimate the cardinalities for predicates with the “ ” wildcard.

6.6 Evaluation

We compare ArbiLIKE with state-of-the-art cardinality estimators for LIKE

predicates. We aim to answer the following questions:

• How does ArbiLIKE perform in terms of accuracy when dealing with arbitrary

LIKE predicates? (§6.6.2 and §6.6.3)

109

Table 6.2: Statistics for the datasets used in ArbiLIKE.

Source Column Abbrv #Entries Min Len Max Len

DBLP Article Titles DBLP AT 50K 3 127
DBLP Author Names DBLP AN 82K 2 64
IMDB Movie Notes IMDB MN 3.66M 2 147
IMDB Movie Titles IMDB MT 4.56M 4 85
IMDB Actor Names IMDB AN 4.26M 2 135

Table 6.3: Workloads used for evaluation. #Subs: Number of substrings. Wilds: Wild-
cards type contained in LIKE predicates. #Wilds: Number of wildcards in the workloads.
Feature: Characteristic of LIKE predicates for each workload.

Workloads #Subs Wilds #Wilds Feature

QS-base 1 “%” 1 or 2 Single-subs
QS-multi-subs 2-5 “%” 3-6 Multi-subs
QS-diff-wilds 2-5 “%”, “ ” 3-6 Diff-wildcards

• How does the improvement on the cardinality estimation impact the performance

of the query optimizer? (§6.6.4)

• How do different hyper-parameters impact the estimation accuracy of ArbiLIKE?

(§6.6.5)

• How does each component of ArbiLIKE boost the overall cardinality estimation

accuracy? (§6.6.10)

6.6.1 Experimental Setup

Platform. We use a machine with an NVIDIA A100 GPU and an Intel i9 CPU

with 96GB RAM, and Pytorch 2.0.

Workloads. We use real-world datasets (Table 6.2): IMDB [23] and DBLP [24].

Both have a number of string attributes. We use three workloads (Table 6.3). Each

contains 2,000 testing queries. We discuss the workloads as follows.

• QS-base: This workload is constructed by following the existing work [16, 111, 18,

19, 31, 20, 112], it comprises 2,000 LIKE predicates in the form of %S%, S%, and

110

Table 6.4: Estimation errors on the three group of LIKE predicates workloads over five
different datasets.

Type Estimator
DBLP AT DBLP AN IMDB MN IMDB MT IMDB AN

50th 90th 99th 50th 90th 99th 50th 90th 99th 50th 90th 99th 50th 90th 99th

QS-Base

Postgres 6.5 63.3 417.0 6.7 55.4 417.0 12.6 159.2 417.0 10.8 125.6 417.0 10.5 139.0 417.0
MO 12.4 88.5 1342.3 14.3 97.5 1225.3 18.8 192.4 3680.5 14.6 130.0 1844.6 16.3 142.8 2563.3

BayesNet 14.2 165.9 3945.6 16.1 158.2 3474.2 23.4 428.6 4428.7 15.2 135.8 3222.1 20.8 361.5 3734.5
CRT 11.5 75.8 788.7 14.2 96.4 655.9 17.6 179.3 1135.5 13.7 95.3 961.5 14.4 146.0 846.8
LBS 8.2 49.3 384.1 7.3 78.6 262.3 11.7 223.5 768.3 7.2 108.5 744.4 15.3 193.7 734.6

DREAM 5.4 44.8 466.5 6.4 61.8 278.6 7.1 176.5 683.3 6.4 86.6 1042.7 10.5 153.9 779.0
P-SPH 7.3 39.5 544.6 7.6 68.4 382.7 10.6 185.4 1034.6 8.0 97.3 846.5 13.8 164.5 1088.6
Astrid 2.4 15.7 106.4 2.7 33.5 94.8 6.8 89.4 182.1 4.6 58.6 154.3 5.3 76.5 176.9

ArbiLIKE 1.6 9.2 23.9 1.7 9.8 21.4 2.1 14.2 45.6 1.7 10.8 27.5 1.8 12.7 38.1

QS-multi-subs

Postgres 10.3 96.2 417.0 9.4 78.5 417.0 13.3 222.9 417.0 11.6 184.2 417.0 12.9 208.5 417.0
MO 19.5 304.9 1880.1 17.8 234.8 1688.2 37.0 1021.3 4280.6 24.4 756.4 2256.2 32.4 1087.6 3336.7

BayesNet 26.6 517.3 4045.6 24.3 425.1 2774.3 34.4 416.5 5282.9 25.6 226.2 3536.3 26.6 331.5 4322.3
CRT 30.2 190.2 1277.7 26.6 155.0 905.3 39.4 220.2 1555.7 22.4 143.5 1136.4 32.7 169.0 1283.8
LBS 14.8 163.6 933.5 13.2 151.6 784.9 16.3 356.8 1450.2 18.0 186.7 1327.5 17.7 164.6 1348.4

DREAM 6.8 123.1 634.8 5.3 90.4 573.2 10.5 146.9 893.1 9.1 159.8 873.1 12.1 118.9 915.2
P-SPH 9.7 145.7 783.4 12.6 128.4 658.5 11.8 185.2 1208.4 14.2 173.4 1033.8 13.7 150.4 1353.6
Astrid 2.9 70.2 266.0 3.1 58.5 202.8 9.3 129.9 838.0 6.5 64.2 534.8 9.4 85.7 646.4

ArbiLIKE 2.1 17.1 85.2 2.2 15.3 66.7 2.5 24.7 120.6 2.4 20.6 106.3 2.3 21.4 117.9

QS-multi-
wilds

Postgres 11.9 156.2 417.0 11.5 117.6 417.0 12.4 269.4 417.0 11.9 227.3 417.0 13.3 234.3 417.0
MO 36.3 514.5 3242.5 35.7 315.5 2484.8 46.3 1721.2 3800.8 26.3 1188.5 2456.4 38.6 1420.5 2678.1

BayesNet 34.1 981.3 4004.8 29.5 477.3 4550.2 48.2 686.6 5182.0 37.8 265.2 4225.8 44.4 470.8 4583.4
CRT 34.0 297.2 390.4 31.3 200.5 278.9 45.3 459.8 2440.2 24.2 237.4 1683.8 41.7 308.4 1797.6
LBS 18.6 314.6 428.9 16.0 178.8 436.5 37.6 540.3 1855.4 23.6 309.4 1578.5 25.3 277.3 2067.1

DREAM 11.2 186.4 477.5 10.7 155.8 466.0 13.8 510.5 1753.4 16.0 278.7 1336.9 14.6 402.6 1448.8
P-SPH 14.5 263.5 462.1 13.5 195.4 394.0 28.9 416.6 2190.0 18.3 412.7 1970.4 17.4 338.5 1984.2
Astrid 4.3 92.6 379.8 3.9 74.5 343.8 14.7 148.1 1414.2 7.7 97.8 904.4 10.5 132.5 1107.5

ArbiLIKE 2.2 19.3 104.3 1.9 18.5 82.9 2.8 29.7 221.6 2.5 24.6 198.3 2.6 25.4 217.3

%S, where S represents a character string with a length varying between 2 to 12

characters.

• QS-multi-subs: This workload contains general LIKE predicates which involve mul-

tiple substring. The format of predicates likes this: %seg1%seg2%, ...,%segm%,

with each “seg” representing one or more characters. We create this workload by

first choosing a random string tuple from a DB and selecting a random number τ

(3 ≤ τ ≤ tuple length). We then remove τ characters randomly from the string

tuple and insert 3 to 6 wildcards “%” among the remaining characters.

• QS-diff-wilds: This workload contains LIKE predicates with “%” and “ ” wildcards,

we randomly select a string tuple from the database and a number τ (3 ≤ τ ≤ tu-

ple length). From this tuple, we remove τ characters, and insert “%” and “ ”

wildcards in the remaining characters. We ensure that each LIKE predicate con-

tains at least one “%” wildcard and one “ ” wildcard.

Evaluation metric. To evaluate the accuracy of ArbiLIKE, we use a commonly used

metric Q-error [16, 111, 18, 19]. The Q-error of a query is the multiplicative factor

111

an estimated cardinality deviates from a query’s true cardinality: max(estim
actual

, actual
estim

).

In ArbiLIKE, we report the median, 90th, and 99th percentile errors.

Baselines. We compare ArbiLIKE against a variety of representative cardinality

estimators, including: (1) Postgres [25]: A genuine DBMS using 1D histograms and

heuristics for cardinality estimation. (2) Maximal Overlap (MO [27]): Utilizes

pruned count-suffix trees and implements a maximal overlap strategy among sub-

strings to enhance estimation accuracy. (3) BayesNet [28]: A leaned method that

leverages a Bayesian network for cardinality estimation, it depends on the conditional

independent assumption across substrings extracted from DB string tuples. (4) Car-

dinality Resemblance Technique (CRT [29]): Aims to overcome underestima-

tion in cardinality estimation for LIKE predicates by identifying critical substrings.

CRT is capable of addressing LIKE predicates comparising multiple substrings, e.g.,

“LIKE %seg1%seg2%, ...,%segm%”. (5) Lower Bound Estimation (LBS [107]):

This technique relies on the information stored in an extended q-grams, LBS utilizes

signatures generated by set hashing techniques to estimate the overlaps among groups

of substrings of the string in the LIKE predicates. (6) Deep Cardinality Estima-

tion of Approximate substring queries (DREAM [113]): Takes a query string

and a threshold as input, and approximately estimates the cardinality of the query

within an edit distance using the long short-term memory (LSTM [114]). (7) Po-

sitional Sequence Patterns-based Histogram (P-SPH [115]): Aims to employ

a positional sequence pattern-based histogram structure to estimate the selectivity

of LIKE queries. (8) Astrid [30]: A deep learning-based approach for cardinality

estimation in LIKE predicates. It integrates an embedding learner with a sequence

model for cardinality estimation.

Adapt baselines for evaluation. To evaluate the eight baseline methods, adapta-

tions were necessary since not all were originally designed for LIKE predicates involv-

ing multiple substrings or varied wildcards. Postgres, CRT, and LBS are equipped

to handle LIKE predicates across all three workload types in Table 6.2. For MO,

BayesNet, and P-SPH, they can handle queries that have same format as queries in

QS-base and QS-multi-subs workloads (Table 6.2). To enable these three methods to

handle LIKE predicate with wildcard “ ”, we directly replace the wildcard “ ” with

“%”, this is the same as the method used in LBS to handle LIKE predicates with

wildcard “ ”. In ArbiLIKE, only the approach introduced in section 6.5 is related

112

to handle generic LIKE predicates. To enable the two deep learning based methods

(DREAM and Astrid) handle LIKE predicates with multiple substrings or different

wildcards (“%” and “ ”), we replace our proposed LIKE predicates encoding method

(§6.3) and the sequence model (§6.4) with each of these two methods, while retaining

the method introduced in section 6.5 as it is.

6.6.2 Estimation Quality

Table 6.4 shows that ArbiLIKE exceeds the baseline estimators. Postgres uti-

lizes heuristic methods for estimating cardinalities with LIKE predicates. While it

caps errors with heuristics, it struggles to accurately represent inter-relationships of

substrings, resulting in significant errors, particularly for predicates with multiple

wildcards. MO (Maximal Overlap) employs q-gram based estimations, assuming in-

dependence among substrings, which often leads to underestimation of cardinalities

for LIKE predicates. In comparison, ArbiLIKE achieves an accuracy boost ranging

from 7.8× to 80.7× over MO. BayesNet assumes conditional independence among sub-

strings, a premise that frequently fails in real-world databases, leading to large errors,

especially at higher quantiles. Compared to BayesNet, ArbiLIKE improves accuracy

by 8.9× to 165.1×. CRT (Cardinality Ratio Technique): Estimates cardinalities by

identifying shorter strings similar in frequency to a given string in LIKE predicates.

Reliance on this method leads to considerable errors, especially for predicates in-

volving long strings. ArbiLIKE outperforms CRT with an accuracy improvement of

3.7×to 35.0×.

ArbiLIKE also have higher estimation accuracy compared to some recent pub-

lished methods. LBS (Label-Based Sampling) uses an extended q-gram table for

cardinality estimation but faces challenges with LIKE predicates that include strings

longer than the q-gram length, leading to low accuracy. LBS estimates the cardinality

of an input LIKE predicate based on the cardinalities of the minimal base string of

the string in a LIKE predicate. Since the base string with lengths larger than q do not

exist in the extended q-gram table, the LBS approximates their cardinalities by using

MO [27]. Therefore, LBS suffers from low estimation accuracy for a LIKE predicate

with long strings. Compared to LBS, ArbiLIKE achieves an accuracy improvement

ranging from 4.2× to 18.2×. DREAM applies a trie-based dynamic programming

113

(a) Q-error for JOB

0

102

104

Q
-e

rro
r

106

Arbi
LIK

E
Astr

id
P-S

PH
DREAM
Pos

tgr
es

CRTMO

LB
S

(b) Q-error for JOB-extend

0

102

104

Q
-e

rro
r

106

Arbi
LIK

E
P-S

PH
DREAM
Pos

tgr
es

CRTMO

LB
S

Astr
id

Figure 6.7: Cardinality estimation errors for the LIKE predicates within JOB and JOB-
extend. The scale of the y-axis is logarithmic with base 10.

approach for fast query estimation. However, it heavily relies on a LSTM model

for unrecorded strings, incurring high errors at the 99th percentile. P-SPH (Posi-

tional Sequence Pattern Histograms) extracts positional sequence patterns to build

histograms for estimation. Its partial sequence matching approach, which uses short

string cardinalities to represent longer ones, results in overestimation. Consequently,

ArbiLIKE surpasses P-SPH in terms of accuracy ranging from 4.5× to 30.8×.

Astrid utilizes a deep sequence model for cardinality estimation but doesn’t ef-

fectively recognize cardinality variations among substrings. Its character-driven se-

quence model fails to capture complex patterns within LIKE predicates, leading to

errors beyond the 75th percentile, ArbiLIKE achieves up to 6.4× better accuracy

than Astrid. Our method, ArbiLIKE, is presented as a new cardinality estimation for

LIKE predicates. It achieves enhanced accuracy in cardinality estimation for LIKE

predicates across all scenarios, particularly excelling where others fall short, such as

with long strings and complex inter-string relationships.

6.6.3 Estimations on Standard Benchmarks

We evaluate the cardinality estimation accuracy ofor ArbiLIKE and baselines us-

ing two standard benchmarks: (1) the Join Order Benchmark (JOB) and (2) JOB-

extend. JOB is based on IMDB dataset [23], it comprises 113 queries, with 80

containing LIKE predicates. Of these, 44 queries feature LIKE predicates tied to a

single table and a single string column, while 4 queries pertain to a single table but

two or more string columns. The remaining 32 queries incorporate LIKE predicates

114

associated with at least two tables and two string columns. JOB-extend is also a

widely used benchmark for evaluation [116, 117, 118]. The queries in JOB-extend are

derived from the same query templates as JOB. JOB-extend includes 2,240 queries

in total, and 1,644 of them with LIKE predicates. Note that BayesNet was not eval-

uated on either JOB or JOB-extend due to its incompatibility with queries involving

cyclic joins. This benchmark is used to test the scalability of ArbiLIKE on the query

performance.

Figure 6.7 shows the cardinality estimation results of ArbiLIKE and baselines

on the LIKE predicates within the queries of JOB and JOB-extend. Generally, the

baselines tend to yield larger errors due to the broader cardinality space to be esti-

mated for queries in JOB and JOB-extend compared to our workloads (Table 6.3).

Compared to ArbiLIKE, Astrid, P-SPH, DREAM, Postgres, LBS, CRT, and MO

exhibit up to 1.7× 2.1×, 7.4×, 3.5×, 9.8×, 11.2× and 19.5× greater median errors,

respectively. The smallest estimation errors for all methods are observed in JOB’s

queries Q5a, Q5b, and Q5c, where the LIKE predicates involve only a single character,

allowing for precise estimations by all methods. ArbiLIKE also exhibits the lowest

variance in estimation errors, attributable to its effective LIKE predicate encoding

(§6.3) and sequence model (§6.4), which capably learn underlying string patterns from

the database columns, given sufficient training.

6.6.4 Impacts on Query Performance

We evaluate whether the improvement of cardinality estimation in ArbiLIKE

leads to better query performance compared to baselines.

Experimental setting. To fairly evaluate the cardinality estimation results on exe-

cution plan, we use Postgres as common ground. We run all the methods (ArbiLIKE

and the rest seven baselines) independently and collect their cardinality estimation re-

sults on LIKE predicates. Then, we inject these estimated cardinalities in a modified

version of Postgres [77] and measure the runtime of each query.

Workloads. We use three workloads for the performance evaluation. (1) Ours.

We use the workloads listed in Table 6.3 as the first benchmark for performance

evaluation. (2) JOB (§6.6.3). We use the queries with LIKE predicates in JOB

for another performance evaluation. (3) JOB-extend. We use this benchmark to

115

ArbiLIKE CRTAstrid PostgresP-SPH

50%

0%Q
ue

rie
s

C
om

pl
et

e
(%

)100%

25%

75%

0 10 20 30 40 50
(a) Execution time of QS-base (min)

50%

0%Q
ue

rie
s

C
om

pl
et

e
(%

)100%

25%

75%

0 20 40 60 80 100
(b) Execution time of QS-multi-subs (min)

50%

0%Q
ue

rie
s

C
om

pl
et

e
(%

)100%

25%

75%

0 15 30 45 60 75
(c) Execution time of QS-diff-wilds (min)

DREAM LBS MOBayesNet

50%

0%Q
ue

rie
s

C
om

pl
et

e
(%

)100%

25%

75%

0 60 120 180 240 300
(d) Execution time of JOB (sec)

Figure 6.8: The percentage of queries completed throughout the runtime for both our
workloads (Table 6.3) and the Join Order Benchmark (JOB).

100

101

010-1

R
un

tim
e

im
pr

ov
em

en
t

10 20 30 80
Queries

40 50 60 70

Figure 6.9: Relative runtime improvement for the JOB, where each bar represents a single
query. These queries have been sorted from best to worst improvement. The scale of the
y-axis is logarithmic with base 10.

test the scalability of different methods. and (3)JOB-extend (§6.6.3). We use a

standard benchmark queries, JOB, for LIKE queries evaluation. JOB is based on

IMDB dataset [23] with 113 queries, and 80 queries with LIKE predicates. Among

these 80 queries, the LIKE predicates in 44 of them are based on one table one string

column, 4 of them are based on one table two string columns. For the the rest of

32 queries, their LIKE predicates are built based on more than 2 tables and 2 string

columns.

(1) Performance on our workloads. Figure 6.8 (a), (b), and (c) presents the

116

percentage of queries completed versus the runtime of different methods on QS-base,

QS-multi-subs, and QS-diff-wilds, respectively. Compared to the eight baselines, Ar-

biLIKE achieves runtime reductions of up to 1.52×, 1.74×, and 1.67× for QS-base,

QS-multi-subs, and QS-diff-wilds workloads, respectively. Compared to Astrid, Ar-

biLIKE’s runtime is shorter by factors of 1.29×, 1.25×, and 1.41× across these same

workloads. Furthermore, ArbiLIKE’s runtime is 1.34×, 1.46×, and 1.52× shorter

than those of Postgres for QS-base, QS-multi-subs, and QS-diff-wilds, respectively.

Postgres shows robustness for complex queries (QS-multi-subs and QS-diff-wilds) due

to its heuristic methods that effectively bound estimation errors for intricate queries,

with its performance on QS-diff-wilds being only slightly inferior to ArbiLIKE. MO,

however, exhibits the longest execution times across the three workloads due to having

the largest cardinality estimation errors.

(2) Performance on JOB workload. Figure 6.8(d) presents the percentage of

queries completed versus the runtime of different methods on the JOB. ArbiLIKE,

along with Astrid, S-SPH, Postgres and DREAM, demonstrates superior performance

in executing the JOB. This is attributed to their effective methods, such as predi-

cates encoding method, fine grained positional string pattern and heuristics, which

more accurately model string patterns. ArbiLIKE completes all JOB queries in ap-

proximately 164 seconds, marking a 79.8% reduction in total runtime compared to

the slowest method (MO at 294 seconds). Additionally, in comparison with Astrid,

P-SPH, Postgres, and DREAM, ArbiLIKE shows execution time reductions of 1.23×,

1.31×, 1.37× and 1.48×, respectively.

In Figure 6.9, we compare the runtime relative to Postgres across 80 queries fea-

turing LIKE predicates from JOB. The term “old time” refers to Postgres’s runtime,

while “new time” denotes the runtime after incorporating ArbiLIKE’s cardinality esti-

mations for the LIKE predicates. Out of the 80 queries, 67 exhibit improved runtime,

with five queries showing more than 10× relative improvement. For example, query

13B, originally joining “company names” and “movie companies” yielding over a mil-

lion rows, is restructured in the updated plan to join “title” and “company names”

first, reducing the interim result size to under 1000 rows and enabling a more cost-

effective subsequent join. Conversely, 13 queries experienced slower runtime, with

two notably slower.

(3) Performance on JOB-extend workload. Figures 6.10 and 6.11 depict the

117

10-1

101

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S

MO

CRT

(c) #columns = 3 (d) #columns = 4

100

10-2

102

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S MO

CRT

100

10-2

102
R

el
at

iv
e

im
pr

ov
e

Arbi
LIK

E
Astr

id
P-S

PH
DREAM

LB
S MO

CRT

100

10-1

101

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S MO

CRT

100

(a) #columns = 1 (b) #columns = 2

Figure 6.10: Relative runtime improvement for queries with LIKE predicates in JOB-
extend, where each LIKE predicate is constructed using one or multiple string columns
from the same table.

relative runtime improvements by various methods for LIKE predicates derived from

differing numbers of tables and columns, with Postgres serving as the baseline for

comparison. Methods such as LBS, CRT, BayesNet, and MO show declining perfor-

mance as the complexity from an increased number of tables and columns in LIKE

predicates. The complexity of string patterns within multi-column predicates poses

significant challenges for these models to provide accurate pattern matching. In con-

trast, ArbiLIKE shows exceptional performance, even when managing queries involv-

ing up to four tables and four columns, as demonstrated in Figure 6.11(d). This is

attributed to ArbiLIKE’s advanced predicates encoding and sequence model, which

adeptly captures complex string patterns. Such capabilities ensure that ArbiLIKE

consistently delivers stable runtime performance, regardless of the query’s intricacy.

Notably, ArbiLIKE achieves up to a 1.6× reduction in runtime compared to Post-

gres, this result is achieved when the LIKE predicates based on four tables and four

columns.

118

10-1

101

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S

MO

CRT

100

10-1

101

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S

MO

CRT

100

10-1

101

R
el

at
iv

e
im

pr
ov

e
Arbi

LIK
E

Astr
id

P-S
PH

DREAM
LB

S MO

CRT

100

10-1

101
R

el
at

iv
e

im
pr

ov
e

Arbi
LIK

E
Astr

id
P-S

PH
DREAM

LB
S

MO

CRT

100

 #columns = 2 #columns = 3

#columns = 3 #columns = 4

 # tables = 2 # tables = 2

tables = 3 # tables = 4(d)

(a)

(c)

(b)

Figure 6.11: Relative runtime improvement for queries with LIKE predicates in JOB-
extend, where each LIKE predicate is constructed using two or more string columns.

6.6.5 Hyper-parameter Tuning

We improve ArbiLIKE’s accuracy by tuning its hyper-parameters. To tune hy-

perparameters for ArbiLIKE, we primarily employed three approaches: (1) Search-

based methods; (2) Bayesian optimization (BO); and 3) reinforcement learning (RL).

BO-based methods require a well-defined objective function for optimization, while

RL-based methods necessitate defining actions, states, and reward functions. Due to

the extensive training time required for BO-based and RL-based methods, we opted

for a robust and straightforward search-based method.

(1) Reasons for different hyperparameter values.

Model architecture. ArbiLIKE consists of three models: Mcent (§6.3.3),Msub (§6.3.4),

and Mest (§6.4.2). In its deep learning models, a balance between complexity and

overfitting is maintained. Based on existing studies [30, 113], a sequence model with

four layers is efficient for learning underlying string patterns. Thus, ArbiLIKE em-

ploys two to five layers, with each layer having 16 to 512 neurons.

Other five hyperparameters. (1) q-grams length: Short q-grams capture granular pat-

119

Table 6.5: Hyper-parameters considered for tuning.

Hyper-parameter Design Space Chosen Value

No. layers(Mcent) {2,3,4,5} 3
No. neurons(Mcent) 16-512 L1:32, L2:96, L3:48
No. layers(Msub) {2,3,4,5} 3
No. neurons(Msub) 16-512 L1:48, L2:128, L3:48
No. layers(Mest) {1,2,3,4,5} 2
No. neurons(Mest) 16-512 L1:48, L2:256
Length. q-grams (q) {1,2,3,4,5} 3
Subs embedding size (λ) 16-80 48
Batch size (B) 32-256 128
Learning rate (α) 1e−5-1e0 5e−4

Size. signature vector (L) 16-128 60

terns, while longer ones detect complex patterns. However, longer q-grams also raise

computational complexity. A typical length of q-grams is between two and seven.

(2) Substrings embedding size λ (§6.3.4): Larger embeddings can lead to overfitting,

especially in smaller datasets. Therefore, λ is tuned within the range of 16 to 80.

(3) Batch size B (§6.4.2): It influences the training dynamics. Smaller batches might

converge faster but are less stable, whereas larger batches provide stability at a com-

putational cost. The chosen range for B is 32 to 256. (4) Learning rate α: It dictates

model adjustment in response to error. A smaller value (around 1e−4) is typical,

but ArbiLIKE explores values from 1e−5 to 1e0. (5) Signature Vectors Length L

(§6.5.2): Affects the accuracy of approximations. A larger L increases accuracy but

also computational load, with the value ranging from 16 to 128.

(2) How to tune hyperparameters. (1) Define the hyperparameter grid: Define a

grid of hyperparameter values mentioned above. For example, learning rates of 0.001,

0.01, 0.1, etc. (2) Cross-validation setup: Use strategies like k-fold cross-validation

for evaluation. From our collection of datasets (Table 6.2 and string columns in

IMDB), we randomly choose one for testing and use the remaining for validation. (3)

Search for hyperparameter values: Use uniform grid search algorithm [119] to evaluate

each combination of five hyperparameter values in the grid. For model structures

tuning, ArbiLIKE uses the Optuna [103] which is designed to identify optimal neural

network structures. We then test ArbiLIKE with each of these configurations against

workloads (Table 6.3, JOB, and JOB-extend) from the testing and validation datasets.

(4) Finally, we select the winning model structures and hyperparameter configuration.

The hyperparameter tuning process is integral to optimizing ArbiLIKE’s accuracy,

120

101

102

Q
-e

rro
r

103

100

2 5
 (a) Value of "q" (DBLP_AN)

1 3 4

DBLP_AN

2 5
 (b) Value of "q" (IMDB_AN)

1 3 4

IMDB_AN

Figure 6.12: The impact of length of q-grams in ArbiLIKE (x-axis) on Q-errors (y-axis).

Table 6.6: This table shows the impact of substring embedding size on the estimation
results (§6.3.4). The result shows the 90th error across five datasets on QS-base workload.
The lowest errors are bolded.

Embed Size DBLP AT DBLP AN IMDB MN IMDB MT IMDB AN

16 19.2 50.3 74.1 98.3 142.9
32 15.4 23.4 55.6 37.3 46.8
48 9.2 9.8 14.2 10.8 12.7
64 10.3 9.5 14.5 10.1 13.4
80 9.7 10.3 14.7 9.6 13.8

ensuring that it is well-suited to the specificities of the datasets and workloads it

encounters. Table 6.5 provides details of our proposed model structures and five

hyper-parameter values in ArbiLIKE after the hyperparameters tuning.

(3) Impact of hyperparameters tuning (1) q-gram Length. Figure 6.12 shows

that the optimal q-gram length for ArbiLIKE is q = 3. Short q-grams (q = 1)

inadequately represent database strings, while longer ones (q ≥ 5) create substrings

that deviate from LIKE predicate strings, both resulting in higher estimation errors.

(2) Substring Embedding Size λ. A larger λ helps ArbiLIKE learn complex substring

correlations, but very large values risk overfitting. Table 6.6 presents the experimental

results as we adjust the embedding size between 16 and 80. Experiments reveal

that λ values beyond 48 see diminishing error reduction, guiding the selection of

λ in ArbiLIKE’s tuning process. (3) Signature Vector Size L. Signature vector size

impacts set resemblance accuracy in cardinality estimations. Figure 6.13(a) shows the

influence of signature vector size, L, on the Q-errors for the QS-multi-subs workload

across the five datasets (Table 6.2). Increasing the size up to 50 significantly reduces

Q-errors, but sizes above 80 may introduce inaccuracies. Thus, ArbiLIKE uses a

signature vector size of 60.

(3) Size of signature vectors L. The signature vector plays a crucial role in calculating

121

DBLP_AN

IMDB_AN

15

30

DBLP_AT
0St

or
ag

e
sp

ac
e

(M
B)

ArbiLIKE

(b) Storage space comparison

45

IMDB_MT

30

10
90

th
 Q

-e
rro

r

50

70

90

(a) Length of signature vectors

IMDB_MT
IMDB_AN
IMDB_MN

DBLP_ANDBLP_AT

16 48 80 112 IMDB_MN

Astrid
BayesNet

Figure 6.13: Signature vector size and storage space of ArbiLIKE.

set resemblance when estimating cardinalities for generic LIKE predicates (§6.5.2).

Figure 6.13(a) shows the influence of signature vector size, L, on the Q-errors for the

QS-multi-subs workload across the five datasets (Table 6.2). There’s a pronounced

reduction in Q-error as the size of the signature vectors increases (specifically for sizes

less than 50). In ArbiLIKE, we utilize hash functions to find appropriate values for

elements in signature vectors, ensuring that similar elements consistently hash into

identical buckets. However, a large signature vector size (beyond 80) can occasionally

introduce false positives or even false negatives, thereby compromising the accuracy

of the set resemblance computation. In ArbiLIKE, we select 60 as the size for each

signature vector.

6.6.6 Efficiency of ArbiLIKE

Training time comparison. Figure 6.14(a) compares training time among various

models across different datasets. DREAM’s training spans between 192 and 466 mins

across all datasets, with the bulk of this time dedicated to the constructing trie-

based dynamic programming table. Astrid’s training time varies from 150 to 244

mins, with the majority of this time attributed to the embedding learning process.

Because Astrid’s embedding method depends on large prefix and suffix trees, which

can even exceed the size of DB. ArbiLIKE is the most time-efficient in training.

This is attributed to two main factors. First, ArbiLIKE’s superior efficiency in LIKE

predicate embeddings over Astrid: its substring embedding method is bounded by

the number of fixed-length (q=3) substrings in the DB. Secondly, ArbiLIKE uses a

light-weighted sequence model as the estimator. Consequently, ArbiLIKE’s training

time ranges only from 56 to 127 mins.

Inference time comparison. Figure 6.14(b) compares the inference time of BayesNet,

122

DREAM, Astrid, and ArbiLIKE on the QS-base workload. Among the leaning-

based estimators, BayesNet has the shortest inference time, because it just relies

on probability multiplications for different substrings to estimate cardinalities, which

is lightweight. DREAM is faster than Astrid and ArbiLIKE, because it only in-

volves finding the minimal string in the dynamic programming table and feeds the

feature into a sequence model for inference. The sequence models in Astrid needs

more floating-point operations during the inference compared to ArbiLIKE, leading

to its inference time spans from 20 ms to 176 ms. On average, Astrid’s median

inference time is 2.2× longer than that of ArbiLIKE. The inference time of leaning-

based estimators are closely tied to the string length in LIKE predicates, with short

strings (less than 8 characters) requiring 20-80 ms and longer strings (over 20 char-

acters) requiring over 150 ms. While ArbiLIKE’s estimator has only 176 inference

neurons (48+128) with roughly 8448 weights. As a result, ArbiLIKE only requires

8448 Multiply-Accumulate operations per inference.

Storage space. ArbiLIKE’s storage needs primarily stems from three components:

substring embeddings Esub ∈ RNsub×λ, model parameters (Mcent, Msub, and Mest),

and signature vectors Sig ∈ RNsub×L, where Nsub is the number of substrings extracted

from the DB, λ is the embedding size, and L is each signature vector’s size. The

total data storage for ArbiLIKE is approximately 108 × Nsub + 454, 656. Thus, the

storage directly correlates with the number of substrings Nsub. For instance, with

47,891 substrings from the IMDB AN dataset, ArbiLIKE’s storage space is around

21.5MB using a single-precision floating-point for the data. Figure 6.13(b) compares

the storage demands of BayesNet, Astrid, and ArbiLIKE. ArbiLIKE uses 2.3×-3.1×
less storage space than its counterparts. BayesNet’s storage space stems from the

size of its Conditional Probability Tables (CPTs) and its network structure. In our

tests, the size of BayesNet’s CPTs ranges from 22.5MB to 49.4MB, making BayesNet

consumes the most storage space. Meanwhile, Astrid retains prefix and suffix trees

derived from the DB along with the parameters of its trained estimator. Astrid’s

storage needs range between 13.8MB and 33.5MB, making it consume 1.3×-1.7×
more storage than ArbiLIKE.

123

Inference Time (ms) [log scale]

(b) Inference time comparison

50%

0%

%
 o

f Q
ue

rie
s

1 10 20

100%

100 200

Bayes DREAM Astrid ArbiLIKE

101

DBLP_AT
100

102

IM
DB_MT

IM
DB_A

NTr
ai

ni
ng

 T
im

e
(m

in
)

(a) Training time comparison

DREAM ArbiLIKE

DBLP_AN

IM
DB_MN(X 3)

Astrid

Figure 6.14: Physical efficiency of ArbiLIKE.

6.6.7 Handling String Indexing

We explore how ArbiLIKE can be leveraged to deal with the problem of string

indexing. The output from string indexing indicates the count of strings in a dataset

that are lexicographically less than or equal to a specified query string Qs, with “s”

representing the string within the query.

Dataset. For our evaluation, we use five datasets: “Article titles”, “Movie notes”,

“Movie titles”, “URLs”, and “GEO”. The details of “Article titles”, “Movie notes”,

and “Movie title” are listed in Table 6.2. The “URLs” [120] dataset, comprising 92

million quoted URLs with an average string length of 20 characters, and “GEO”,

containing 7 million global geographic location names with an average string length

of 13 characters, are both drawn from real-world data.

Baselines. We use SIndex [121], RSS [122], Masstree [123], and Wormhole [124]

as baselines for string indexing. SIndex and RMI are modern string indexing methods

based on learned models. Masstree combines a B-tree with a Trie for concurrent

indexing, while Wormhole integrates a Trie into the internal nodes of a B-tree. These

methods are implemented in C++ or C for efficiency, whereas ArbiLIKE is developed

in Python. Consequently, we assess the string indexing error offline, reporting the

Mean Absolute Error (MAE [125]) for each method.

Configurations. In contrast to typical machine learning tasks where overfitting

is avoided, ArbiLIKE is designed to fit the input dataset as closely as possible for

precise indexing, hence we utilize the entirety of each dataset for both training and

evaluation. For strings longer than the q-gram length, we employ ArbiLIKE’s encod-

ing method (§6.3) to convert distinct strings into uniform-length real-valued vectors.

These vectors are then processed by the sequence model (§6.4), outputting a value

124

0

SIndex RSS

Article_titles Movie_notes Movie_titles URLs

40

GEO

80

M
ea

n
ab

so
lu

te
 e

rro
r

20

60

ArbiLIKE Masstree Wormhole

Figure 6.15: Mean absolute errors for the string indexing of different methods. x-axis is
the name of each datasets, y-axis is the indexing error.

between 0 and 1, which is subsequently scaled to an integer range.

Results. We randomly select 2,000 strings from each dataset for indexing. Fig-

ure 6.15 shows the indexing error in terms of MAE. ArbiLIKE’s MAE is up to 1.4×
lower than the baselines on “Movie notes”, “Movie title”, and “GEO” datasets. On

the “URLs” dataset, however, ArbiLIKE’s MAE is worse than the other two learned

models (SIndex and RMI), due to “URLs” has an extensive number of entries, which

poses a challenge for single learned models predicting across a wide range. Com-

pared to ArbiLIKE, both SIndex and RMI contain a hierarchical model to improve

the indexing accuracy. Nonetheless, ArbiLIKE’s MAE is still 1.2× lower than the

Trie and B-tree based models (Masstree and Wormhole), indicating the benefits of

learned models over the traditional string indexing techniques. However, we find that

ArbiLIKE requires some hours to be trained for the string indexing problem, while

the construction time of Masstree and Wormhole only take just a few minutes.

6.6.8 Handling Data Updates

We analyze how ArbiLIKE performs in a dynamic environment.

Dynamic environment setup. Suppose that there are n queries uniformly dis-

tributed in a time range [Ti, Ti+1], and T = Ti+1 − Ti which controls the frequency

of the data update. The queries based on updated data begin to come at timestamp

Ti. Suppose the model update finishes at timestamp Tf . If Tf ∈ [Ti, Ti+1], for thefirst

⌈n · Tf−T i

T
⌉ queries, their cardinalities are estimated using the stale model. For the

remaining ⌊n · (1− Tf−T i

T
)⌋ queries, the updated model will be used. Data update.

We use IMDB AN dataset (Table 6.2) for testing under a dynamic environment, this

is the string attribute “Actor Names” in table title from IMDB [23]. We use the

125

(a) T=10 min

101

102

Q
-e

rro
r

103

BayesNet Astrid

Ti Ti+1Full stale
100

(b) T=300 mins

101

102

Q
-e

rro
r

103

Ti Ti+1Large partial stale
100

(c) T=1000 mins

101

102

Q
-e

rro
r

103

Ti Ti+1Small partial stale
100

AbLIKE

Figure 6.16: Estimation quality under dynamic environment.

similar method introduced in [65, 19] to update the dataset. In particular, we par-

tition the table title into two parts on the year column. The part with the latest

year is used as the new data to be appended into dataset. After data updates, we

apply our workload generation method (§6.6.1) on the updated dataset to generate

5K queries for testing. These queries are uniformly distributed in [Ti, Ti+1]. T , which

is equal to Ti+1 − Ti, is a parameter, which represents how “frequently” the data are

updated. For example, if the data are periodically updated every 100 mins, then T is

100 mins. Model update. We apply incremental learning [126] to update BayesNet,

Astrid, and ArbiLIKE, subsequently comparing their estimation accuracy. Since all

three are data-driven estimators, they need to be retrained on the entire new updated

dataset.

Estimations in a dynamic environment. We test the estimation quality of Ar-

biLIKE, BayesNet, and Astrid in a dynamic environment. We manipulate the value

of T to adjust the data update frequency, setting it at high (10 min), medium (300

mins), or low (1000 mins). Figure6.16 illustrates the estimation quality of BayesNet,

Astrid, and ArbiLIKE in the dynamic environment.

With a high update frequency (T=10 mins), the estimators ArbiLIKE, BayesNet,

and Astrid cannot complete their model updates in time. As a result, all queries

within the [Ti, Ti+1] interval are processed using the stale model, leading to inaccu-

rate estimations for the three models (Figure 6.16(a)). With a medium data up-

date frequency (T=300 mins), all three learned estimators-ArbiLIKE, BayesNet, and

Astrid-successfully complete their model updates. However, in this scenario, a large

portion of queries coming within the time interval T are still evaluted using stale

models. As depicted in Figure 6.16(b), ArbiLIKE’s accuracy is up to 10.4× and 4.6×
better than BayesNet and Astrid, respectively. With a low data update frequency

(T=1000 mins), all three estimators can still finish model updates within time inter-

126

Table 6.7: This table shows the impact of different encoding methods for LIKE predi-
cates(§6.3.4). “PST” represents the encoding method based on prefix and suffix trees in
Astrid. “Ours” denotes our encoding method for substrings. The lowest errors are bolded.

Query Set Encoding 50th 90th 95th 99th

QS-base

Binary 5.77 65.7 365.6 1206.8
PST 3.56 18.5 89.6 186.5
Ours 1.86 6.7 12.7 38.1

QS-Multi-Subs
Binary 5.67 127.4 872.1 1462.9
PST 4.17 42.8 208.6 985.3
Ours 2.35 14.6 23.3 117.9

QS-Multi-Wildcards
Binary 6.02 102.4 789.7 1562.6
PST 4.63 47.7 230.6 1146.8
Ours 2.55 17.4 26.0 227.1

val T . Here, only a minor fraction of queries rely on stale models. Consequently, as

Figure 6.16(c) shows, the accuracy of all three models improves when compared to

their accuracy under high and medium data update frequencies.

Assume the time of finishing model update for ArbiLIKE, BayesNet, and Astrid

are Tarbi, Tbayes, and Tastr respectively, therefore, the number of queries coming

within the time interval T = Ti+1 − Ti that are tested by stale models for Arbi-

LIKE, BayesNet, and Astrid are narbi = ⌈n · Tarbi−T i
T
⌉, nbayes = ⌈n · Tbayes−T i

T
⌉, and

nastr = ⌈n · Tastr−T i
T
⌉ respectively. Here, n is the total number of queries coming

within time interval T . According to the efficiency of ArbiLIKE (§??), we have

Ti < Tarbi < Tbayes < Tastr < Ti+1, therefore, we can conclude narbi < nbayes < nastr.

This means compare to the updated BayesNet and Astrid, more queries will be tested

by the new updated ArbiLIKE. As a result, ArbiLIKE performs better than BayesNet

and Astrid in a dynamic environment.

6.6.9 Impact of Embedding Methods

We study how the embedding methods (§6.3.4) impacts accuracy. Impact of

embedding methods. We encode the substrings of string tuples in DB into feature

vectors using our embedding method. Existing estimators [16, 66, 30] often use binary

or prefix and suffix tree (PST) embedding. Table 6.7 shows the impact of different

embedding methods on errors across three LIKE predicates query sets (§6.6.1) for

the IMDB AN dataset. While the impact on low-quantile errors is small, different

127

101

102

Q
-e

rro
r

103
BayesNet

100

Astrid ArbiLIKE

2 3 4 5
 (a) #Wildcards in LIKE predicates (only "%" wildcard)

101

102
Q

-e
rro

r
103

100

2 3 4 5
 (b) #Wildcards in LIKE predicates ("%" and "_" wildcards)

Figure 6.17: The impact of different number of wildcards (x-axis) on Q-errors for LIKE
predicates (y-axis).

embedding methods significantly affect high-quantile errors. Compared to PST-based

embedding, our embedding method achieves accuracy gains up to 8.4× on high-

quantile errors across different query sets. This improvement results from ArbiLIKE’s

multi-tiered contrastive embedding approach.

We transform the substrings of database string tuples into feature vectors using

our embedding method. Existing estimators often use binary or prefix and suffix tree

(PST) embedding. Table 5 illustrates the effect of different embedding methods on

errors across three LIKE predicates query sets for the IMDB AN dataset. While the

impact on low-quantile errors is minimal, different embedding methods significantly

affect high-quantile errors. Our method reduces the 99th percentile error notably,

compared to binary and PST-based embeddings, achieving accuracy gains up to 4.9×,

8.4×, and 5.1× on high-quantile errors across different query sets. This improvement

results from ArbiLike’s multi-tiered contrastive embedding approach.

6.6.10 Ablation Study of ArbiLIKE

We evaluate the relative importance of three components of ArbiLIKE. Table 6.8

shows the results. The base estimator utilizes a predicate encoding method grounded

in the prefix and suffix trees (PST), as seen in Astrid [30]. In variant (A), we adopt

ArbiLIKE’s LIKE predicate encoding method (§6.3), replacing the PST used in the

base estimator. The encoding method in ArbiLIKE notably enhances estimation ac-

128

Table 6.8: Ablation studies: varying primary components of ArbiLIKE. We show the
impact of (A) LIKE predicates encoding method (§6.3), (B)learned estimator (§6.4), and
(C) set resemblance for arbitrary LIKE predicates (§6.5) on QS-multi-subs and QS-diff-wilds
workloads over IMDB AN dataset.

Methods
QS-multi-subs QS-diff-wilds

p50 p90 p99 p50 p90 p99

Base estimator 11.3 210.5 3030.1 14.9 341.4 3624.5

(A)+ Predicates encoding 6.8 72.3 891.2 7.4 106.7 1159.6

(B)+ Learned estimator 3.9 53.3 424.4 4.1 71.2 642.5

(C)+ Set resemblance 2.3 21.4 117.9 2.6 25.4 217.3

curacy, especially in high-quantile errors. Specifically, by incorporating our encoding

method, we observe reductions in the 50th, 90th, and 99th percentile errors by up

to factors of 2.0×, 3.2×, and 3.4× respectively, compared to the base estimator. In

variant (B), we enhance variant (A) by employing our importance-boosted sequence

model (§6.4) to estimate the cardinality for LIKE predicate, instead of using the

LSTM in base estimator. Our sequence model significantly improves both low and

high-quantile errors. Specifically, reductions in the 50th, 90th, and 95th percentile

errors are observed by factors of up to 1.8×, 1.5×, and 2.1×, respectively, when com-

pared to the variant (A). In variant (C), we enhance variant (B) by integrating our

set resemblance method (§6.5) to estimate cardinalities for generic LIKE predicates,

replacing the technique from CRT. Our set resemblance approach markedly reduces

errors across all quantiles when compared to the variant (B). Notably, the error re-

duction at the 50th, 90th, and 99th percentiles reach up to factors of 1.7×, 2.8×,

and 3.6× respectively. Among the three components, our set resemblance method

significantly reduces high-quantile errors.

6.6.11 Varying Number of Wildcards

We evaluate three learning-based approaches — BayesNet, Astrid, and Arbi-

LIKE - when handling LIKE predicates with varying numbers of wildcards (ranging

from two to five). Figure 6.17 illustrates the Q-errors for QS-multi-subs and QS-diff-

wilds workloads on the IMDB AN dataset, and each workload contains 2000 LIKE

predicates. The predicates are categorized into four groups based on the count of wild-

cards (from two to five). ArbiLIKE demonstrates lower errors than both BayesNet

and Astrid, irrespective of the number of wildcards present in the LIKE predicates.

129

Notably, the estimation accuracy of ArbiLIKE remains fairly stable and is not sig-

nificantly affected by the wildcard count in LIKE predicates. For instance, when the

number of wildcards rises from two to five, the 75th percentile error of ArbiLIKE

merely ascends from 16.3 to 18.8 and from 15.4 to 21.3 on the QS-multi-subs and

QS-diff-wilds workloads respectively. The consistency in ArbiLIKE’s estimation er-

ror is attributed to our methodology for estimating cardinalities for arbitrary LIKE

predicates (§6.5.1).

6.7 Summary

The cardinality estimation using machine learning models is a new research trend

in the database community. However, it is challenging to make accurate cardinality

estimations using machine learning models for LIKE predicates. We introduce Ar-

biLIKE to address this problem. ArbiLIKE has a new LIKE predicates embedding

method which make the input feature vectors more informative for the cardinality

estimation. It also includes a substring-importance enhanced sequence model as a

cardinality estimator for LIKE predicates. ArbiLIKE can handle generic LIKE pred-

icates with wildcards (“%”, “ ”). Experimental results show that ArbiLIKE has

1.46-94.6× higher accuracy than state-of-the-art solutions.

Chapter 7

Related Work

The performance optimization for data-intensive applications like auto-labeling

and cardinality estimation is challenging. T here are some proposed approaches aimed

to tackle the challenges of data labeling and cardinality estimation in database.

Automatic labeling. We first provide an overview of automatic labeling meth-

ods, which label data automatically based on generated labeling functions using both

labeled and unlabeled data.

The main challenge of auto-labeling is to build proper labeling functions that can

cover the most data instances in the dataset [127, 128, 129, 130, 131, 132, 133, 134,

135]. Labeling functions with high quality are difficult to be acquired. In [10], Varma

et. al propose a method that uses machine learning models to build labeling functions

under weak supervision. Other work [136, 137, 9, 138] uses distant supervision [136,

137, 139], in which the training sets are generated with the help of external resources,

such as knowledge bases. Some recently proposed approaches [140, 9] demonstrate the

use of proper strategies to boost the labeling quality by ensemble technique [133, 141].

The existing approaches focus on static datasets with fixed size and pre-determined

number of labels. Our work focuses on the dynamically increased datasets on mobile

devices. Our work has the capability to identify new labels that are never seen before.

To solve the hardware resource constraint problem on mobile devices, we leverage

processor heterogeneity to efficiently run the auto-labeling workload. Our work not

only labels dataset with high quality, but also is highly feasible to be deployed on

mobile devices.

Optimization of machine learning on mobile devices. Recently, there are

130

131

many existing efforts that optimize the performance of machine learning models on

both server side [142] and edge side, including dynamic resource scheduling [143, 144,

145, 146, 147, 148, 149, 150, 151, 152], computation pruning [153, 154, 155, 156, 157],

model partitioning [158, 149, 159, 160], model compression [161, 162, 163], coordina-

tion with cloud servers [164, 158] and memory management [4, 148]. Flame is different

from them, because it focuses on data labeling task on heterogeneous mobile proces-

sors. In particular, DeepX [149] proposes a number of resource scheduling algorithms

to decompose DNNs into different sub-tasks on mobile devices. LEO [164] introduces

a power-priority resource scheduler to maximize energy efficiency. NestDNN [161]

compresses and prunes models based on the available hardware resource on mobile

devices.

Deep Learning for Databases. Recently, there has been extensive work on

applying techniques from DL for solving challenging database problems. One of the

first work was by Kraska et. al [165] that sought to build learned indexes. There are

two conceptual connections between our approach and [65]. First, they both seek to

leverage the data distribution for the task at hand. Second, both of these leverage the

concept of ensembles/mixtures to improve the performance of individual DL models.

However, the problem they tackle are very different – density estimation vs indexing.

Another difference is that [65] uses the cumulative distribution function (CDF) while

our unsupervised approach uses probability density estimation (PDF). There has been

extensive work on using DL techniques including reinforcement learning for query

optimization (and join order enumeration) such as [16, 17, 19, ?]. Recently, there

has been effort to build a learned database systems [166] and an end-to-end learned

optimizers [18]. DL has also been applied to the problem of entity resolution in and

data integration [167].

Query-driven cardinality estimators. By leveraging past or collected queries,

query-driven approaches build and correct the current models to learn functions map-

ping a query with its predicted probability. Representative work includes correcting

histograms [75, 168], updating statistical summaries in DBMS [169, 170], and query-

driven kernel-based methods [171, 172].

Data-driven cardinality estimators. Data-driven approaches build unsu-

pervised models, which learn the joint probability density function (PDF) of table

attributes to estimate the probability of an query. In recent researches, there has been

132

extensive work on applying data-driven techniques for solving challenging database

problems. Sample and Kernel-based methods [17, 21, 21, 171] sample records from

tables on-the-fly, or use average kernels centered around sampled points for estima-

tion. Sum-Product Networks (SPNs) [173, 174] estimate the PDF results using either

sum and product operations to combine children information in a tree structure.

Deep Auto-Regression (DAR) models are the current state-of-the-art density mod-

els [175, 166, 176, 177, 18] from the ML community. DAR models capture all possible

correlations among the attributes of tables to produce selectivity estimates.

ML based approaches for selectivity estimation. Recently, there has been

a surge of interest in using ML-based methods in order to enhance the performance

of database components, e.g. indexing [178], data layout [179], query execution [167]

and scheduling [180]. Most recently, work [16] targeted correlations across joins using

a custom neural network architecture. While [16] certainly addresses generic version

of the selectivity estimation problem, the models in this paper are much more succinct

leading to significantly faster estimations.

Optimizing DNN training time. Solutions proposed for reducing DNN train-

ing times include specialized hardware [181, 182], parallel training [183, 184, 185],

GPU memory optimizations [186], lowering communication overhead [187], and oper-

ator optimizations [188, 189, 190, 191]. New hardware systems like NVIDIA’s Mag-

num IO [181, 192] provide high-throughput storage solutions to reduce data loading

overheads, but cannot help when training DNNs in distributed environments with

complex storage hierarchies. Model batching [193] addresses data loading costs when

running multiple DNNs on a single node. OneAccess [194, 195, 196] is a prelimi-

nary study that makes a strong case for storing pre-processed data across epochs to

reduce the data preprocessing overhead. However such an approach precludes com-

monly used online data preprocessing techniques, which can affect model convergence

during training. None of these approaches address, as does Lobster, data loading over-

heads resulting from load imbalances across GPUs. Lobster balances loads between

GPUs and avoids bursty data loading such that the data loading does not become a

performance bottleneck.

Data caching for distributed DNN training. Quiver [36, 197] uses SSD as

caches to avoid slow data loading from remote storage. Cerebro [198] partitions the

dataset across nodes in a cluster. Instead of shuffling data, Cerebro moves the models

133

from one node to others. However, when training DNNs with a single node, using

Cerebro cannot bring performance improvement. DeepIO [199] uses a partitioned

caching technique for distributed training. DeepIO heavily relies RDMA for high

performance I/O. DIESEL [200] deploys a task-grained distributed cache across nodes

for multiple DNN training tasks. DIESEL introduces metadata snapshot mechanisms

for each training dataset, and mainly focuses on optimizing metadata processing

during the DNN training. MinIO [35] reduces the amount of disk I/O for training

on a single node and multiple nodes. MinIO does not provide the fine-grained cache

strategy like Lobster. For MinIO, once data samples are cached, they are never evicted

out of the cache. NoPFS [22] introduces a performance model that can leverage

the storage hierarchy for the data caching. But NoPFS cannot immediately evict

data samples with long reuse distances out of memory. Lobster addresses the I/O

bottleneck by providing the thread management for different stages in the training

pipeline. Furthermore, Lobster leverages the knowledge on the reuse distance of data

samples to make the best use of the memory cache. In particular, we can evict “cold”

data samples out of the memory cache to save the memory cache space and prefetch

more data samples to be accessed in the near future into the memory cache.

Cardinality estimation for string queries. The early work [25, 26, 27, 28, 29,

108, 201, 107, 202, 203] addressed cardinality estimation for LIKE predicates based

on suffix trees, built from the substrings of string tuples in a DB. An improved

estimator was given by [29, 108]. Recent studies, such as CRT [202], improved esti-

mates by identifying shorter strings with cardinalities similar to a given string. A fol-

lowup work [26] introduced two estimators, HSol and Vsol. A considerable amount of

works [25, 27] have been done in the field of approximate string cardinality estimation.

Other techniques for numeric data include sampling [204, 25, 27], histograms [107],

wavelets [205], and graphical models [179].

Early studies addressed LIKE predicates cardinality estimation using suffix trees,

built from database string tuples. Despite improvements in estimation by subsequent

works, underestimation persisted. Recent studies, such as CRT, improved estimates

by identifying shorter, similar cardinality strings. Follow-up research introduced HSol

and Vsol estimators, leveraging set hashing for estimation. A significant volume of

research, including [8] and [13], has been conducted on approximate string cardinality

estimation. Other techniques for numeric data encompass sampling [18], histograms

134

[23], wavelets [17], kernel density estimation [19], and graphical models.

Various DL-based approaches have been used for cardinality estimation [16, 31,

17, 18, 19, 78, 20, 206, 207, 112, 113, 30, 65, 208, 209, 210, 211]. A recent work [19] used

auto-regressive models for cardinality estimation. An effort [31] focuses on cardinality

estimation with uncertainties. An empirical analysis of various approaches can be

found in [19, 78]. Recent studies have addressed the challenges of more complex

query types, such as group-by [206] and range queries [78]. Meanwhile, unsupervised

approaches [208] also offer promising estimation results. The use of (deep) learning

for approximate query processing, such as in [212], is another promising area of

research. In addition, there has been some preliminary work for approximating the

edit distance [210] and use it for nearest neighbor search [112]. Unfortunately, there

is limited support for string predicate queries.

Chapter 8

Conclusion and Future Work

Conclusions. We have explored two data-intensive applications including data label-

ing on mobile devices, cardinality estimation for numeric and non-numeric columns

in database system, and data loading for large-scale DNNs training. We also demon-

strated how to optimize the performance for these data-intensive applications. In this

chapter, we summarize the topics of this dissertation and directions that we plan to

study in the future.

This dissertation first presents Flame, the first auto-labeling system for mobile

devices, named Flame, to address the above problem. Flame includes auto-labeling

algorithms to detect unknown labels from dynamic data; It also includes an execution

engine that executes labeling workloads on heterogeneous mobile processors.

Then this dissertation proposes Fauce to address this problem. Fauce has a new

query featurization method which can make the input feature vectors more infor-

mative for the cardinality estimation. It also includes uncertainty information for

estimation results. Experimental results show that Fauce has up to 1.16-91× higher

accuracy than state-of-the-art solutions. By leveraging the uncertainty information,

Fauce’s estimation can be further improved.

This dissertation also investigates the data loading probolem for large-scale DNNs

training. Data loading is becoming a major performance bottleneck in distributed

DNN training. Prior studies of data loading performance for distributed DNN train-

ing have conducted neither a holistic analysis of all training pipeline stages not a

fine-grained analysis of the load of individual GPUs, two areas that present oppor-

tunities for further optimization. To fill this gap, we have proposed Lobster, a data

135

136

loading runtime that exploits several observations related to load imbalance, perfor-

mance bottlenecks in various stages of the training pipeline, and the reuse distance

of training samples to propose a new flexible thread management strategy and cache

eviction policy that complements deterministic prefetching. These methods allow

Lobster to consistently outperform the state-of-art PyTorch I/O, DALI, and NoPFS

systems by 1.3–2.0×. Finally, this dissertation investigates how to make accurate

cardinality estimations for LIKE predicates is a significant challenge problem. Our

solution, ArbiLIKE, addresses this with a novel embedding method which make the

input feature vectors more informative for the cardinality estimation. ArbiLIKE also

leverages a substring-importance boosted sequence model and can effectively process

generic LIKE predicates with different number of wildcards (“%”, “ ”). Experiments

indicate ArbiLIKE’s accuracy to be up to 165.1× greater than leading solutions.

Future work. Although we believe that the optimization for data-intensive applica-

tions of this dissertation are beneficial and useful, they also have limitations.

• In Chapter 3 proposes runtime solutions to solve the data placement of data

labeling workload on the heterogeneous mobile processors. In this work, we as-

sume a single component of Flame occupies a particular kind of computing unit.

However, in current mobile processors, it is also common for multiple computing

components to share the same computing unit in the mobile processors.

• In Chapter 4, we can explore some advanced embedding techniques for com-

plex queries in our future work. Develop sophisticated embedding techniques

that can accurately represent complex query patterns, including those involving

LIKE predicates or nested queries. This could involve leveraging advancements

in natural language processing (NLP) and graph neural networks (GNNs) to

better capture the semantics and structure of queries in a high-dimensional

space, enhancing the accuracy of cardinality estimates.

• In Chapter 5, the caching of the training samples in the node-local memory

hierarchy suffers from inefficient eviction. This is another point that can be

optimized for large-scale DNNs training. Caching is essential for reducing the

I/O overheads associated with accessing a remote storage repository and is of-

ten implemented in a distributed fashion: each compute node exposes its local

137

cache to other compute nodes, greatly reducing the need for the compute nodes

as a group to interact with the storage repository. By using a pseudo-random

number generator to sample the training data, it is possible to obtain fore-

knowledge of the order in which the training samples will be accessed in future

iterations. State-of-the-art approaches leverage such foreknowledge to prefetch

training samples in advance, further reducing the I/O overheads. However,

prefetching also causes evictions from the cache, which may lead to an unde-

sired situation where the cache is used for samples that will be accessed in the

far future, at the expense of those needed in the near future.

Bibliography

[1] Lucian Codrescu, Willie Anderson, Suresh Venkumanhanti, Mao Zeng, Erich
Plondke, Chris Koob, Ajay Ingle, Charles Tabony, and Rick Maule. Hexagon
dsp: An architecture optimized for mobile multimedia and communications.
IEEE Micro, 34(2):34–43, 2014.

[2] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. Adaptive Neural Network-
Based Approximation to Accelerate Eulerian Fluid Simulation. In Interna-
tional Conference for High Performance Computing, Performance Measure-
ment, Modeling and Tools (SC), 2019.

[3] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. Smart-PGSim: Us-
ing Neural Network to Accelerate AC-OPF Power Grid Simulation. In Inter-
national Conference for High Performance Computing, Performance Measure-
ment, Modeling and Tools , 2020.

[4] Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. Md-hm:
memoization-based molecular dynamics simulations on big memory system. In
Proceedings of the ACM International Conference on Supercomputing, pages
215–226, 2021.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[6] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia.
PipeDream: Generalized pipeline parallelism for DNN training. In 27th ACM
Symposium on Operating Systems Principles, page 1–15, Huntsville, Canada,
2019.

[7] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.
Data movement is all you need: A case study on optimizing transformers. In
4th Conference on Machine Learning and Systems, Virtual, 2021.

[8] Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad Awan, Kawthar Shafie Kho-
rassani, Hari Subramoni, and Dhabaleswar K. Panda. NV-group: Link-efficient
reduction for distributed deep learning on modern dense GPU systems. In 34th
ACM International Conference on Supercomputing, pages 1–12, Virtual, 2020.

138

139

[9] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid training data creation with weak supervision.
Proceedings of the VLDB Endowment, 11(3):269–282, 2017.

[10] Paroma Varma and Christopher Ré. Snuba: Automating weak supervision to
label training data. PVLDB, 12:223–236, 2018.

[11] Yitao Chen, Saman Biookaghazadeh, and Ming Zhao. Exploring the capabil-
ities of mobile devices in supporting deep learning. In Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pages 127–138, 2019.

[12] Sebastian Kruse and Felix Naumann. Efficient discovery of approximate depen-
dencies. Proceedings of the VLDB Endowment, 11(7):759–772, 2018.

[13] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional
dependency discovery. In Proceedings of the 2016 International Conference on
Management of Data, pages 821–833, 2016.

[14] Falco Dürsch, Axel Stebner, Fabian Windheuser, Maxi Fischer, Tim Friedrich,
Nils Strelow, Tobias Bleifuß, Hazar Harmouch, Lan Jiang, Thorsten Papen-
brock, et al. Inclusion dependency discovery: An experimental evaluation of
thirteen algorithms. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pages 219–228, 2019.

[15] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 855–864, 2016.

[16] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. Learned cardinalities: Estimating correlated joins with deep
learning. arXiv preprint arXiv:1809.00677, 2018.

[17] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. Deepdb: learn from data, not from queries!
arXiv preprint arXiv:1909.00607, 2019.

[18] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan,
Xi Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica.
Deep unsupervised cardinality estimation. arXiv preprint arXiv:1905.04278,
2019.

[19] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. Neurocard: one cardinality estimator for all tables. arXiv
preprint arXiv:2006.08109, 2020.

[20] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. Flat: Fast, lightweight and accurate method for
cardinality estimation. arXiv preprint arXiv:2011.09022, 2020.

140

[21] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. Cardinality estimation done right: Index-based join sampling. In
Cidr, 2017.

[22] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler. Clair-
voyant prefetching for distributed machine learning i/o. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15, 2021.

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. How good are query optimizers, really? Proceedings of
the VLDB Endowment, 9(3):204–215, 2015.

[24] Melanie Weis, Felix Naumann, and Franziska Brosy. A duplicate detection
benchmark for xml (and relational) data. In Proc. of Workshop on Information
Quality for Information Systems (IQIS), 2006.

[25] Korry Douglas and Susan Douglas. PostgreSQL: a comprehensive guide to build-
ing, programming, and administering PostgresSQL databases. SAMS publish-
ing, 2003.

[26] P Krishnan, Jeffrey Scott Vitter, and Bala Iyer. Estimating alphanumeric selec-
tivity in the presence of wildcards. In Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, pages 282–293, 1996.

[27] HV Jagadish, Olga Kapitskaia, Raymond T Ng, and Divesh Srivastava. One-
dimensional and multi-dimensional substring selectivity estimation. The VLDB
Journal, 9:214–230, 2000.

[28] Franz Pernkopf. Bayesian network classifiers versus selective k-nn classifier.
Pattern recognition, 38(1):1–10, 2005.

[29] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity estimation
for string predicates: Overcoming the underestimation problem. In Proceedings.
20th International Conference on Data Engineering, pages 227–238. IEEE, 2004.

[30] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das.
Astrid: accurate selectivity estimation for string predicates using deep learning.
Proceedings of the VLDB Endowment, 14(4), 2020.

[31] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. Fauce: Fast and accurate
deep ensembles with uncertainty for cardinality estimation. Proceedings of the
VLDB Endowment, 14(11):1950–1963, 2021.

[32] Jie Liu, Bogdan Nicolae, and Dong Li. Lobster: Load balance-aware i/o for
distributed dnn training. In Proceedings of the 51st International Conference
on Parallel Processing, pages 1–11, 2022.

141

[33] Jie Liu, Jiawen Liu, Zhen Xie, and Dong Li. Flame: A self-adaptive
auto-labeling system for heterogeneous mobile processors. arXiv preprint
arXiv:2003.01762, 2020.

[34] Jie Liu, Jiawen Liu, Wan Du, and Dong Li. Performance analysis and char-
acterization of training deep learning models on mobile device. In 2019 IEEE
25th International Conference on Parallel and Distributed Systems (ICPADS),
pages 506–515. IEEE, 2019.

[35] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chi-
dambaram. Analyzing and mitigating data stalls in DNN training. arXiv
preprint arXiv:2007.06775, 2020.

[36] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver: An informed stor-
age cache for deep learning. In 18th USENIX Conference on File and Storage
Technologies, pages 283–296, 2020.

[37] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. Under-
standing and co-designing the data ingestion pipeline for industry-scale recsys
training. arXiv preprint arXiv:2108.09373, 2021.

[38] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and
Prashant J Nair. Accelerating recommendation system training by leveraging
popular choices. Proceedings of the VLDB Endowment, 15(1):127–140, 2021.

[39] Ricardo Macedo, Cláudia Correia, Marco Dantas, Cláudia Brito, Weijia Xu,
Yusuke Tanimura, Jason Haga, and Joao Paulo. The case for storage optimiza-
tion decoupling in deep learning frameworks. In IEEE International Conference
on Cluster Computing, pages 649–656. IEEE, 2021.

[40] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae
Shin, and Byung-Gon Chun. Refurbish your training data: Reusing partially
augmented samples for faster deep neural network training. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 537–550, 2021.

[41] Jingru Yang, Ju Fan, Zhewei Wei, Guoliang Li, Tongyu Liu, and Xiaoyong Du.
Cost-effective data annotation using game-based crowdsourcing. Proceedings of
the VLDB Endowment, 12(1):57–70, 2018.

[42] Ahsanul Haque, Hemeng Tao, Swarup Chandra, Jie Liu, and Latifur Khan. A
framework for multistream regression with direct density ratio estimation. In
Thirty-second AAAI conference on artificial intelligence, 2018.

[43] Swarup Chandra, Ahsanul Haque, Hemeng Tao, Jie Liu, Latifur Khan, and
Charu Aggarwal. Ensemble direct density ratio estimation for multistream
classification. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 1364–1367. IEEE, 2018.

142

[44] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. Fauce: Fast and accurate
deep ensembles with uncertainty for cardinality estimation.

[45] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. Adaptive neural network-
based approximation to accelerate eulerian fluid simulation. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–22, 2019.

[46] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani Thuraisingham, and
Charu Aggarwal. Efficient handling of concept drift and concept evolution over
stream data. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 481–492. IEEE, 2016.

[47] Zhuoyi Wang, Zelun Kong, Swarup Changra, Hemeng Tao, and Latifur Khan.
Robust high dimensional stream classification with novel class detection. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages
1418–1429. IEEE, 2019.

[48] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Dsp.
ear: Leveraging co-processor support for continuous audio sensing on smart-
phones. In Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems, pages 295–309, 2014.

[49] Daniel Maier, Nadjib Mammeri, Biagio Cosenza, and Ben Juurlink. Approxi-
mating memory-bound applications on mobile gpus. In 2019 International Con-
ference on High Performance Computing & Simulation (HPCS), pages 329–335.
IEEE, 2019.

[50] Qp solver. Quadratic programming solving kit. https://github.com/

hjkuijf/ALGLIB.

[51] Snapdragon. qualcomm cpu sleep benchmarking. https://developer.

qualcomm.com/docs/snpe/benchmarking.html.

[52] Yann Lecun. The mnist batabase. http://yann.lecun.com/exdb/mnist/.

[53] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Em-
nist: Extending mnist to handwritten letters. In 2017 International Joint Con-
ference on Neural Networks (IJCNN), pages 2921–2926. IEEE, 2017.

[54] toronto. The cifar100 batabase. https://www.cs.toronto.edu/~kriz/cifar.
html.

[55] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and
Daan Wierstra. Matching networks for one shot learning. arXiv preprint
arXiv:1606.04080, 2016.

[56] Kishore K Reddy and Mubarak Shah. Recognizing 50 human action categories
of web videos. Machine vision and applications, 24(5):971–981, 2013.

https://github.com/hjkuijf/ALGLIB
https://github.com/hjkuijf/ALGLIB
https://developer.qualcomm.com/docs/snpe/benchmarking.html
https://developer.qualcomm.com/docs/snpe/benchmarking.html
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

143

[57] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[58] github. Ffmpeg software development kit. https://github.com/tanersener/
mobile-ffmpeg.

[59] Bo Dong, Md Shihabul Islam, Swarup Chandra, Latifur Khan, and Bhavani
Thuraisingham. Gci: A transfer learning approach for detecting cheats of com-
puter game. In 2018 IEEE International Conference on Big Data (Big Data),
pages 1188–1197. IEEE, 2018.

[60] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[61] Sahin. Introduction to apple ml tools. In Develop Intelligent iOS Apps with
Swift, pages 17–39. Springer, 2021.

[62] PassMark.2015. Passmark software - performancetest system benchmarks.
http://www.passmark.com/baselines/index.php.

[63] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and
Santhoshkumar Saminathan. subgraph2vec: Learning distributed representa-
tions of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928,
2016.

[64] David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The randomized de-
pendence coefficient. Advances in neural information processing systems, 26:1–
9, 2013.

[65] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment, 12(9):1044–1057,
2019.

[66] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
An empirical analysis of deep learning for cardinality estimation. arXiv preprint
arXiv:1905.06425, 2019.

[67] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems (TODS), 32(2):9–es, 2007.

[68] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter.
Bayesian optimization with robust bayesian neural networks. Advances in neu-
ral information processing systems, 29:4134–4142, 2016.

https://github.com/tanersener/mobile-ffmpeg
https://github.com/tanersener/mobile-ffmpeg
http://www.passmark.com/baselines/index.php

144

[69] Yijun Xiao and William Yang Wang. Quantifying uncertainties in natural lan-
guage processing tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7322–7329, 2019.

[70] binghamton. Variance proof. https://www2.math.binghamton.edu/lib/exe/
fetch.php/people/renfrew/447-4-17.pdf.

[71] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pages 1050–1059, 2016.

[72] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[73] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[74] Byung-Jae Kwak, Nah-Oak Song, and Leonard E Miller. Performance analysis
of exponential backoff. IEEE/ACM transactions on networking, 13(2):343–355,
2005.

[75] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: a multidimen-
sional workload-aware histogram. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 211–222, 2001.

[76] microsoft. queries contain correlations. https://support.microsoft.com/

en-us/topic/kb2658214-fix-poor-performance-when-you-run-a-query-that-contains-correlated-and-predicates-in-sql-server-2008-or-in-sql-server-2008-r2-or-in-sql-server-2012-86e1a4a8-5793-f1a4-dd10-bc42347a7208.

[77] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality
estimation: Tighter upper bounds for intermediate join cardinalities. In Pro-
ceedings of the 2019 International Conference on Management of Data, pages
18–35, 2019.

[78] Rojeh Hayek and Oded Shmueli. Nn-based transformation of any sql car-
dinality estimator for handling distinct, and, or and not. arXiv preprint
arXiv:2004.07009, 2020.

[79] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An
efficient algorithm for discovering functional and approximate dependencies.
The computer journal, 42(2):100–111, 1999.

[80] Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. Detecting
unique column combinations on dynamic data. In 2014 IEEE 30th International
Conference on Data Engineering, pages 1036–1047. IEEE, 2014.

[81] Peter A Flach and Iztok Savnik. Database dependency discovery: a machine
learning approach. AI communications, 12(3):139–160, 1999.

https://www2.math.binghamton.edu/lib/exe/fetch.php/people/renfrew/447-4-17.pdf
https://www2.math.binghamton.edu/lib/exe/fetch.php/people/renfrew/447-4-17.pdf
https://support.microsoft.com/en-us/topic/kb2658214-fix-poor-performance-when-you-run-a-query-that-contains-correlated-and-predicates-in-sql-server-2008-or-in-sql-server-2008-r2-or-in-sql-server-2012-86e1a4a8-5793-f1a4-dd10-bc42347a7208
https://support.microsoft.com/en-us/topic/kb2658214-fix-poor-performance-when-you-run-a-query-that-contains-correlated-and-predicates-in-sql-server-2008-or-in-sql-server-2008-r2-or-in-sql-server-2012-86e1a4a8-5793-f1a4-dd10-bc42347a7208

145

[82] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32:8026–8037, 2019.

[83] Mahdi Zolnouri, Xinlin Li, and Vahid Partovi Nia. Importance of data loading
pipeline in training dnns. arXiv preprint arXiv:2005.02130, 2020.

[84] Dong Li, Bronis de Supinski, Martin Schulz, Dimitrios S. Nikolopoulos, and
Kirk W. Cameron. Hybrid MPI/OpenMP power-aware computing. In Interna-
tional Parallel and Distributed Processing Symposium, 2010.

[85] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopou-
los, Bronis R. de Supinski, and Martin Schulz. Prediction models for multi-
dimensional power-performance optimization on many cores. In International
Conference on Parallel Architectures and Compilation Techniques, 2008.

[86] Vasilis Sourlas, Lazaros Gkatzikis, Paris Flegkas, and Leandros Tassiulas. Dis-
tributed cache management in information-centric networks. IEEE Transac-
tions on Network and Service Management, 10(3):286–299, 2013.

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[88] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An
extremely efficient convolutional neural network for mobile devices. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856,
2018.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[90] A Handa, V Patraucean, V Badrinarayanan, S Stent, and R Cipolla. SceneNet:
Understanding real world indoor scenes with synthetic data. arXiv preprint
arXiv:1511.07041, 2015.

[91] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[92] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252, 2015.

[93] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-
21k pretraining for the masses. arXiv preprint arXiv:2104.10972, 2021.

146

[94] Luca Bonomi, Li Xiong, Rui Chen, and Benjamin CM Fung. Frequent grams
based embedding for privacy preserving record linkage. In Proceedings of the
21st ACM international conference on Information and knowledge management,
pages 1597–1601, 2012.

[95] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans
by bounding the impact of cardinality estimation errors. Proceedings of the
VLDB Endowment, 2(1):982–993, 2009.

[96] Tugkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings
and edit distance approximations. In SODA, volume 6, pages 792–801, 2006.

[97] Francesco Pappalardo, Cristiano Calonaci, Marzio Pennisi, Emilio Mastriani,
and Santo Motta. Hamfast: fast hamming distance computation. In 2009 WRI
World Congress on Computer Science and Information Engineering, volume 1,
pages 569–572. IEEE, 2009.

[98] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering:
an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(1):86–97, 2012.

[99] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical clustering
method: clustering criterion and agglomerative algorithm. arXiv preprint
arXiv:1111.6285, 2011.

[100] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and
Phillip Isola. What makes for good views for contrastive learning? Advances
in neural information processing systems, 33:6827–6839, 2020.

[101] Ziyu Jiang, Tianlong Chen, Bobak J Mortazavi, and Zhangyang Wang. Self-
damaging contrastive learning. In International Conference on Machine Learn-
ing, pages 4927–4939. PMLR, 2021.

[102] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss ob-
jective. Advances in neural information processing systems, 29, 2016.

[103] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 2623–2631, 2019.

[104] Tian Tian and Jun Zhu. Max-margin majority voting for learning from crowds.
Advances in neural information processing systems, 28, 2015.

[105] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

147

[106] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[107] Hongrae Lee, Raymond T Ng, and Kyuseok Shim. Approximate substring
selectivity estimation. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pages 827–
838, 2009.

[108] Arturas Mazeika, Michael H Böhlen, Nick Koudas, and Divesh Srivastava. Es-
timating the selectivity of approximate string queries. ACM Transactions on
Database Systems (TODS), 32(2):12–es, 2007.

[109] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and
Gábor Tardos. Linear hash functions. Journal of the ACM (JACM), 46(5):667–
683, 1999.

[110] Edith Cohen. Size-estimation framework with applications to transitive closure
and reachability. Journal of Computer and System Sciences, 55(3):441–453,
1997.

[111] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke,
Viktor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. Estimat-
ing cardinalities with deep sketches. In Proceedings of the 2019 International
Conference on Management of Data, pages 1937–1940, 2019.

[112] Yaoshu Wang, Chuan Xiao, Jianbin Qin, Xin Cao, Yifang Sun, Wei Wang, and
Makoto Onizuka. Monotonic cardinality estimation of similarity selection: A
deep learning approach. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 1197–1212, 2020.

[113] Suyong Kwon, Woohwan Jung, and Kyuseok Shim. Cardinality estimation of
approximate substring queries using deep learning. Proceedings of the VLDB
Endowment, 15(11):3145–3157, 2022.

[114] Long Short-Term Memory. Long short-term memory. Neural computation,
9(8):1735–1780, 2010.

[115] Mehmet Aytimur and Ali Cakmak. Using positional sequence patterns to es-
timate the selectivity of sql like queries. Expert Systems with Applications,
165:113762, 2021.

[116] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. Bao: Making learned query optimization practical.
In Proceedings of the 2021 International Conference on Management of Data,
pages 1275–1288, 2021.

148

[117] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. Queryformer: a tree
transformer model for query plan representation. Proceedings of the VLDB
Endowment, 15(8):1658–1670, 2022.

[118] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and
Ion Stoica. Balsa: Learning a query optimizer without expert demonstrations.
In Proceedings of the 2022 International Conference on Management of Data,
pages 931–944, 2022.

[119] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems, 24, 2011.

[120] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the
dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 497–506,
2009.

[121] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. Sindex: a
scalable learned index for string keys. In Proceedings of the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems, pages 17–24, 2020.

[122] Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Min-
has, and Tim Kraska. Bounding the last mile: Efficient learned string indexing.
arXiv preprint arXiv:2111.14905, 2021.

[123] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems, pages 183–196, 2012.

[124] Xingbo Wu, Fan Ni, and Song Jiang. Wormhole: A fast ordered index for
in-memory data management. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, pages 1–16, 2019.

[125] Mean Absolute Error. Mean absolute error. Retrieved September, 19:2016, 2016.

[126] Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learn-
ing in online scenario. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 13926–13935, 2020.

[127] Bo Dong, Cristian Lumezanu, Yuncong Chen, Dongjin Song, Takehiko Mi-
zoguchi, Haifeng Chen, and Latifur Khan. At the speed of sound: Efficient
audio scene classification. In Proceedings of the 2020 International Conference
on Multimedia Retrieval, pages 301–305, 2020.

[128] Fulton Wang and Cynthia Rudin. Falling rule lists. In Artificial Intelligence
and Statistics, pages 1013–1022, 2015.

149

[129] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and
Perry MacNeille. Or’s of and’s for interpretable classification, with application
to context-aware recommender systems. arXiv preprint arXiv:1504.07614, 2015.

[130] Xueqing Deng, Yi Zhu, Yuxin Tian, and Shawn Newsam. Scale aware adapta-
tion for land-cover classification in remote sensing imagery. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2160–2169, 2021.

[131] Bo Dong, Yifan Li, Yang Gao, Ahsanul Haque, Latifur Khan, and Moham-
mad M Masud. Multistream regression with asynchronous concept drift detec-
tion. In 2017 IEEE International Conference on Big Data (Big Data), pages
596–605. IEEE, 2017.

[132] Yuxin Tian, Xueqing Deng, Yi Zhu, and Shawn Newsam. Cross-time and
orientation-invariant overhead image geolocalization using deep local features.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 2512–2520, 2020.

[133] Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. Learning
the structure of generative models without labeled data. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 273–282.
JMLR. org, 2017.

[134] Paroma Varma, Bryan He, Payal Bajaj, Imon Banerjee, Nishith Khandwala,
Daniel L Rubin, and Christopher Ré. Inferring generative model structure with
static analysis. Advances in neural information processing systems, 30:239,
2017.

[135] Bo Dong, Yang Gao, Swarup Chandra, and Latifur Khan. Multistream clas-
sification with relative density ratio estimation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3478–3485, 2019.

[136] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.
Statistics and its Interface, 2(3):349–360, 2009.

[137] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):9, 2016.

[138] William Yang Wang, Kathryn Mazaitis, and William W Cohen. Structure
learning via parameter learning. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, pages
1199–1208, 2014.

[139] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Compre-
hensive and reliable crowd assessment algorithms. In 2015 IEEE 31st Interna-
tional Conference on Data Engineering, pages 195–206. IEEE, 2015.

150

[140] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another la-
bel? improving data quality and data mining using multiple, noisy labelers. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 614–622. ACM, 2008.

[141] Ni Lao and William W Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine learning, 81(1):53–67, 2010.

[142] Zhen Xie, Wenqian Dong, Jiawen Liu, Hang Liu, and Dong Li. Tahoe: tree
structure-aware high performance inference engine for decision tree ensemble
on gpu. In Proceedings of the Sixteenth European Conference on Computer
Systems, pages 426–440, 2021.

[143] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. Sparta: High-
performance, element-wise sparse tensor contraction on heterogeneous memory.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 318–333, 2021.

[144] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and comprehensive
bug detection for persistent memory programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 503–516, 2021.

[145] Jiawen Liu, Dong Li, Roberto Gioiosa, and Jiajia Li. Athena: high-performance
sparse tensor contraction sequence on heterogeneous memory. In Proceedings of
the ACM International Conference on Supercomputing, pages 190–202, 2021.

[146] Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang Chen, Weifeng Zhang, and
Dong Li. Enabling energy-efficient dnn training on hybrid gpu-fpga accelerators.
In Proceedings of the ACM International Conference on Supercomputing, pages
227–241, 2021.

[147] Jiawen Liu, Zhen Xie, Dimitrios Nikolopoulos, and Dong Li. {RIANN}: Real-
time incremental learning with approximate nearest neighbor on mobile devices.
In 2020 {USENIX} Conference on Operational Machine Learning (OpML 20),
2020.

[148] Robert LiKamWa and Lin Zhong. Starfish: Efficient concurrency support for
computer vision applications. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages
213–226. ACM, 2015.

[149] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Proceedings of the
15th International Conference on Information Processing in Sensor Networks
(IPSN), page 23. IEEE Press, 2016.

151

[150] Jiawen Liu, Dong Li, Gokcen Kestor, and Jeffrey Vetter. Runtime concurrency
control and operation scheduling for high performance neural network train-
ing. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 188–199. IEEE, 2019.

[151] Samuel S Ogden and Tian Guo. {MODI}: Mobile deep inference made efficient
by edge computing. In Workshop on Hot Topics in Edge Computing (HotEdge),
2018.

[152] Songtao Guo, Bin Xiao, Yuanyuan Yang, and Yang Yang. Energy-efficient
dynamic offloading and resource scheduling in mobile cloud computing. In
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications, pages 1–9. IEEE, 2016.

[153] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. Morphnet: Fast & simple resource-constrained structure learning
of deep networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1586–1595, 2018.

[154] Dawei Li, Xiaolong Wang, and Deguang Kong. Deeprebirth: Accelerating deep
neural network execution on mobile devices. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[155] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 907–922, 2020.

[156] Hongjia Li, Ning Liu, Xiaolong Ma, Sheng Lin, Shaokai Ye, Tianyun Zhang,
Xue Lin, Wenyao Xu, and Yanzhi Wang. Admm-based weight pruning for real-
time deep learning acceleration on mobile devices. In Proceedings of the 2019
on Great Lakes Symposium on VLSI, pages 501–506, 2019.

[157] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin
Ren, and Yanzhi Wang. Pconv: The missing but desirable sparsity in dnn
weight pruning for real-time execution on mobile devices. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 5117–5124, 2020.

[158] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Ja-
son Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 615–629. ACM, 2017.

[159] En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy. In Proceedings of the 2018
Workshop on Mobile Edge Communications, pages 31–36, 2018.

152

[160] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. Ionn:
Incremental offloading of neural network computations from mobile devices to
edge servers. In Proceedings of the ACM Symposium on Cloud Computing, pages
401–411, 2018.

[161] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proceedings of the
24th Annual International Conference on Mobile Computing and Networking
(MobiCom), pages 115–127. ACM, 2018.

[162] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 784–800,
2018.

[163] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao
Du. On-demand deep model compression for mobile devices: A usage-driven
model selection framework. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages
389–400. ACM, 2018.

[164] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Leo:
Scheduling sensor inference algorithms across heterogeneous mobile processors
and network resources. In Proceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), pages 320–333. ACM,
2016.

[165] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crow-
der: Crowdsourcing entity resolution. Proceedings of the VLDB Endowment,
5(11):1483–1494, 2012.

[166] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[167] Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella, and Barzan Moza-
fari. Database learning: Toward a database that becomes smarter every time.
In Proceedings of the 2017 ACM International Conference on Management of
Data, pages 587–602, 2017.

[168] Utkarsh Srivastava, Peter J Haas, Volker Markl, Marcel Kutsch, and Tam Minh
Tran. Isomer: Consistent histogram construction using query feedback. In 22nd
International Conference on Data Engineering (ICDE’06), pages 39–39. IEEE,
2006.

[169] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. Leo-db2’s
learning optimizer. In VLDB, volume 1, pages 19–28, 2001.

153

[170] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. Auto-
matic database management system tuning through large-scale machine learn-
ing. In Proceedings of the 2017 ACM International Conference on Management
of Data, pages 1009–1024, 2017.

[171] Max Heimel, Martin Kiefer, and Volker Markl. Self-tuning, gpu-accelerated ker-
nel density models for multidimensional selectivity estimation. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 1477–1492, 2015.

[172] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. Estimating join
selectivities using bandwidth-optimized kernel density models. Proceedings of
the VLDB Endowment, 10(13):2085–2096, 2017.

[173] James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum
product networks. arXiv preprint arXiv:1411.7717, 2014.

[174] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep ar-
chitecture. In 2011 IEEE International Conference on Computer Vision Work-
shops (ICCV Workshops), pages 689–690. IEEE, 2011.

[175] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. Lightweight graph-
ical models for selectivity estimation without independence assumptions. Pro-
ceedings of the VLDB Endowment, 4(11):852–863, 2011.

[176] Conor Durkan and Charlie Nash. Autoregressive energy machines. In ICML,
2019.

[177] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made:
Masked autoencoder for distribution estimation. In International Conference
on Machine Learning, pages 881–889, 2015.

[178] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning
multi-dimensional indexes. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 985–1000, 2020.

[179] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The
case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, pages 489–504, 2018.

[180] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. Learning scheduling algorithms for data processing
clusters. In Proceedings of the ACM Special Interest Group on Data Communi-
cation, pages 270–288. 2019.

[181] Idan Burstein. Nvidia data center processing unit (dpu) architecture. In 2021
IEEE Hot Chips 33 Symposium (HCS), pages 1–20. IEEE, 2021.

154

[182] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim. Trainbox: An extreme-
scale neural network training server architecture by systematically balancing
operations. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 825–838. IEEE, 2020.

[183] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of deep
neural networks with natural gradient and parameter averaging. arXiv preprint
arXiv:1410.7455, 2014.

[184] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

[185] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeon-
min Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. Parallax: Sparsity-
aware data parallel training of deep neural networks. In 15th EuroSys Confer-
ence, pages 1–15, 2019.

[186] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learn-
ing beyond the gpu memory limit via smart swapping. In 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1341–1355, 2020.

[187] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communi-
cation quantization for data-parallel training of deep neural networks. In 2016
2nd Workshop on Machine Learning in HPC Environments (MLHPC), pages
1–8. IEEE, 2016.

[188] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload:
Democratizing billion-scale model training. arXiv preprint arXiv:2101.06840,
2021.

[189] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yux-
iong He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. arXiv preprint arXiv:2104.07857, 2021.

[190] Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. Merchandiser: Data placement
on heterogeneous memory for task-parallel hpc applications with load-balance
awareness. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, pages 204–217, 2023.

[191] Jie Liu, Bogdan Nicolae, Dong Li, Justin M Wozniak, Tekin Bicer, Zhengchun
Liu, and Ian Foster. Large scale caching and streaming of training data for
online deep learning. In Proceedings of the 12th Workshop on AI and Scien-
tific Computing at Scale using Flexible Computing Infrastructures, pages 19–26,
2022.

155

[192] Wei Shu and Nian-Feng Tzeng. Relinquishment coherence for enhancing di-
rectory efficiency in chip multiprocessors. In 2016 IEEE 34th International
Conference on Computer Design (ICCD), pages 372–375. IEEE, 2016.

[193] Deepak Narayanan, Keshav Santhanam, and Matei Zaharia. Accelerating model
search with model batching. In 1st Conference on Systems and Machine Learn-
ing (SysML), SysML, volume 18, 2018.

[194] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. The case for unifying data loading in machine learning clusters.
In 11th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

[195] Wei Shu and Nian-Feng Tzeng. Compressed sharer tracking and relinquish-
ment coherence for superior directory efficiency of chip multiprocessors. IEEE
Transactions on Computers, 66(11):1975–1981, 2017.

[196] Wei Shu and Nian-Feng Tzeng. Nuda: Non-uniform directory architecture for
scalable chip multiprocessors. IEEE Transactions on Computers, 67(5):740–
747, 2017.

[197] Suyash Mahar, Hao Wang, Wei Shu, and Abhishek Dhanotia. Workload
behavior driven memory subsystem design for hyperscale. arXiv preprint
arXiv:2303.08396, 2023.

[198] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: A data system for
optimized deep learning model selection. Proceedings of the VLDB Endowment,
13(12):2159–2173, 2020.

[199] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,
Kento Sato, and Weikuan Yu. Entropy-aware i/o pipelining for large-scale
deep learning on hpc systems. In 2018 IEEE 26th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 145–156. IEEE, 2018.

[200] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu, Hequan Zhang, Shengen
Yan, and Qiong Luo. Diesel: A dataset-based distributed storage and caching
system for large-scale deep learning training. In 49th International Conference
on Parallel Processing, pages 1–11, 2020.

[201] Zhiyuan Chen, Nick Koudas, Flip Korn, and Shanmugavelayutham Muthukr-
ishnan. Selectively estimation for boolean queries. In Proceedings of the nine-
teenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 216–225, 2000.

[202] Mehmet Aytimur and Ali Cakmak. Estimating the selectivity of like queries
using pattern-based histograms. Turkish Journal of Electrical Engineering and
Computer Sciences, 26(6):3319–3334, 2018.

156

[203] Xiaochun Yang, Bin Wang, and Chen Li. Cost-based variable-length-gram se-
lection for string collections to support approximate queries efficiently. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 353–364, 2008.

[204] David Kosiur. Understanding Policy-Based Networking. Wiley, New York, NY,
2nd. edition, 2001.

[205] Donald E. Knuth. The Art of Computer Programming, volume 1 of Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., 3rd edition, 1998.
(book).

[206] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. Cost-based or
learning-based? a hybrid query optimizer for query plan selection. Proceed-
ings of the VLDB Endowment, 15(13):3924–3936, 2022.

[207] Rong Zhu, Ziniu Wu, Chengliang Chai, Andreas Pfadler, Bolin Ding, Guoliang
Li, and Jingren Zhou. Learned query optimizer: At the forefront of ai-driven
databases. In EDBT, pages 1–4, 2022.

[208] Anshuman Dutt, Chi Wang, Vivek Narasayya, and Surajit Chaudhuri. Effi-
ciently approximating selectivity functions using low overhead regression mod-
els. Proceedings of the VLDB Endowment, 13(12):2215–2228, 2020.

[209] Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. Lightweight
and accurate cardinality estimation by neural network gaussian process. In Pro-
ceedings of the 2022 International Conference on Management of Data, pages
973–987, 2022.

[210] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui
Zhou, and Kai Zheng. Efficient join order selection learning with graph-based
representation. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 97–107, 2022.

[211] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. Flow-loss: Learning cardinality esti-
mates that matter. arXiv preprint arXiv:2101.04964, 2021.

[212] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing
Zhou. Are we ready for learned cardinality estimation? arXiv preprint
arXiv:2012.06743, 2020.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Introduction
	Primary Contributions
	Outline and Previously Published Work

	Background
	Background on Mobile Processors
	Background of DNNs Training

	Flame: A Self-Adaptive Auto-Labeling System for Heterogeneous Mobile Processors
	Overview
	Model Design
	Labeling Functions Generation
	Labeling Functions Self-Adaption
	Labeling Results Guarantees

	System Design
	Leverage GPU
	Leverage DSP and CPU
	Implementation

	Evaluation
	Labeling Quality
	Analysis on Execution Time
	Analysis on Energy Consumption
	Micro-Benchmarking Results
	Evaluation on User Experience

	Summary

	Fauce: Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation
	Overview of Fauce
	Problem description
	Notations
	Formulation as a Regression Problem

	Query Featurization
	Tables and Joins Encoding
	Columns Encoding
	Range Representation

	Choice of regression methods
	Cardinality Transformation
	Training Data Generation

	Model Design
	Uncertainty Quantification
	Training and Inference
	Management of Estimation Uncertainty
	Integration with DBMS

	Evaluation
	Experimental Setup
	Estimation Quality
	Impacts on Query Performance
	Efficiency of Fauce
	Handling Data Updates
	Other Factors Impacting Fauce
	Data Profiling

	Summary

	Lobster: Load Balance-Aware I/O for Distributed DNN Training
	Overview
	Motivation
	Design
	Flexible Preprocessing Thread Management
	Coordinated Data Loading / Preprocessing
	Performance Model
	Heuristic Strategy
	Implementation Details

	Evaluation
	Experimental Setup
	I/O Performance
	Reduction of Load Imbalance
	End-to-End Training
	Resource Utilization
	Ablation Study

	Summary

	ArbiLIKE: An Accurate Cardinality Estimator for Arbitrary LIKE Predicates
	Overview of ArbiLIKE
	Problem Description
	LIKE Predicates Encoding
	Statistics Collection
	Cardinality-Distance Oriented Clustering
	Cluster-Centroid Embedding
	Cardinality-Aware Substrings Embedding

	Sequence model-based estimator
	Cardinality Estimation via Sequence Model
	Substring-importance Boosted Model

	Extension to Generic LIKE Predicates
	Formulation as a Set Resemblance Problem
	Signature Vector of Inverted List
	Extend to Multiple Columns

	Evaluation
	Experimental Setup
	Estimation Quality
	Estimations on Standard Benchmarks
	Impacts on Query Performance
	Hyper-parameter Tuning
	Efficiency of ArbiLIKE
	Handling String Indexing
	Handling Data Updates
	Impact of Embedding Methods
	Ablation Study of ArbiLIKE
	Varying Number of Wildcards

	Summary

	Related Work
	Conclusion and Future Work
	Bibliography

