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Study sample sizes in human genetics are growing rapidly, and
in due course it will become routine to analyze samples with
hundreds of thousands, if not millions, of individuals. In addition
to posing computational challenges, such large sample sizes call
for carefully reexamining the theoretical foundation underlying
commonly used analytical tools. Here, we study the accuracy of
the coalescent, a central model for studying the ancestry of a
sample of individuals. The coalescent arises as a limit of a large
class of random mating models, and it is an accurate approxima-
tion to the original model provided that the population size is
sufficiently larger than the sample size. We develop a method for
performing exact computation in the discrete-time Wright–Fisher
(DTWF) model and compare several key genealogical quantities of
interest with the coalescent predictions. For recently inferred de-
mographic scenarios, we find that there are a significant number
of multiple- and simultaneous-merger events under the DTWF
model, which are absent in the coalescent by construction. Fur-
thermore, for large sample sizes, there are noticeable differences
in the expected number of rare variants between the coalescent
and the DTWF model. To balance the trade-off between accuracy
and computational efficiency, we propose a hybrid algorithm that
uses the DTWF model for the recent past and the coalescent for
the more distant past. Our results demonstrate that the hybrid
method with only a handful of generations of the DTWF model
leads to a frequency spectrum that is quite close to the prediction
of the full DTWF model.

Human genetics has entered a new era in which the study
sample sizes regularly exceed 10,000, a number commonly

cited as the effective population size of humans (1–4). A con-
sistent finding arising from recent large-sample studies (5–8) is
that human genomes harbor a substantial excess of rare variants
compared with that predicted using previously applied de-
mographic models. For example, Nelson et al. (6) found that
over 70% of single-nucleotide variants are singletons and dou-
bletons, which corresponds to a minor allele frequency on the
order of 0.01% for their study sample. There are several factors
that may contribute to the discrepancy between observations in
the data and theoretical predictions, including the following
possible explanations:

i) Previously applied demographic models are wrong. In partic-
ular, the observed polymorphism patterns are indicative of
a recent rapid growth of the effective population size, much
more rapid than in previously applied demographic models.
This conclusion would be consistent with historical records of
census population size (9).

ii) Population substructure (10, 11) and natural selection have
distorted the observed polymorphism patterns while previous
demographic inference studies have failed to adequately ac-
count for these factors.

iii) Theoretical predictions for a given demographic model are
inaccurate when the sample size is very large. Coalescent
theory, which arises as a limit of a large class of discrete-time
random-mating models, provides an accurate approxima-
tion to the original discrete-time model only if the effective
population size is sufficiently larger than the sample size.

Violation of this assumption may distort genealogical prop-
erties in a way that may inflate rare variants relative to the
predictions of coalescent theory.

The goal of this paper is to investigate the last possibility in
detail, by examining the deviation between the coalescent and
a well-known discrete-time random model, namely the Wright–
Fisher (WF) model.
Kingman’s coalescent (12–14), henceforth simply referred to

as the coalescent, is a central model in modern population ge-
netics for studying the ancestry of a sample of individuals taken
from a large randomly mating population. The coalescent is
a continuous-time Markov process that can be constructed as
a scaling limit of a discrete-time Wright–Fisher (DTWF) model,
by taking the population size to infinity while rescaling the unit
of time by the population size. The dynamics of a DTWF model
can be complicated, in which multiple sets of lineages can find
common ancestors in a single generation. In contrast, at most
two lineages can find a common ancestor at any given time under
the coalescent, and hence it is a mathematically and algorith-
mically more tractable model. The coalescent is an excellent
approximation to the original discrete-time model if, for all
times, the population size is sufficiently large relative to the
number of ancestral lineages of a sample, in which case multiple
and simultaneous mergers of lineages in a single generation
are unlikely.
In this paper, we investigate whether the coalescent continues

to be a good approximation to the DTWF model in the case in
which the sample size increases to the point where the coalescent
assumptions may be violated. We compare the two models under
certain demographic scenarios previously considered in the lit-
erature, including the case of recent rapid population growth for
humans (7, 15). We examine several key genealogical statistics of
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interest such as the number of multiple and simultaneous
mergers in the DTWF model, the number of lineages as a func-
tion of time (NLFT), and the sample frequency spectrum. A key
feature of our work is that all our results, under both the co-
alescent and the DTWF model, are based on exact deterministic
computations rather than Monte-Carlo simulations.
To perform exact computation in the DTWF model, we ex-

ploit the Markov property of the model and devise dynamic
programming algorithms to compute various genealogical quan-
tities of interest exactly. These algorithms are computationally
expensive, so we also consider a hybrid method that uses the
DTWF model for the recent past and the coalescent for the more
distant past. We demonstrate that this hybrid approach produces
substantially more accurate predictions than does the coalescent,
while being more efficient than performing computation in the
full DTWF model.

Results
Demographic Models. In addition to the case of a constant pop-
ulation size, we consider three models of variable population
size. The details of the demographic models we consider are
provided below and illustrated in SI Appendix, Fig. S1.
Model 1. This model has a constant population size of 10,000
diploid individuals (3, 4).
Model 2. Proposed by Keinan et al. (16), this model has two
population bottlenecks, the most recent of which lasted for 100
generations starting from 620 generations in the past, and a more
ancient bottleneck lasting 100 generations, starting from 4,620
generations in the past. Further back in time, the population size
is fixed at 10,085 diploids.
Model 3. This demographic model was inferred by Gravel et al.
(15) for the CEU subpopulation from the 1000 Genomes (17)
exon pilot data. In this model, a population expansion in the last
920 generations occurs at a rate of 0.38% per generation.
Model 4. This demographic model was inferred by Tennessen
et al. (ref. 7, figure 2B) for the CEU subpopulation from exome
sequencing of 2,440 individuals. The ancient demography is
similar to that in model 3. However, following the most recent
bottleneck, there are two epochs of exponential expansion in the
most recent 920 generations—a slower expansion phase for 716
generations at 0.307% per generation, followed by a rapid ex-
pansion rate of 1.95% per generation for 204 generations.
Although other models exhibiting recent rapid population

expansion have been inferred (6, 8), we focus on model 3 and
model 4 in this paper because we want to consider sample sizes
that are on the order of the current effective population size
while also considering demographic models that incorporate
realistic changes in the population size. Due to computational
limitations, the largest sample size for which we can perform
exact computation in the DTWF model is on the order of 105

haploids, which is of the same order of magnitude as the effective
population size in model 3, and about 10% of the current ef-
fective population size of model 4.
Using the above four demographic models, we examine devi-

ations in the following quantities between the coalescent and
the DTWF model: (i) multiple and simultaneous mergers in
the DTWF model, (ii) NLFT, and (iii) expected sample fre-
quency spectrum.

Multiple and Simultaneous Mergers in the DTWF Model. For a given
demographic model in the DTWF framework, it becomes more
likely that multiple lineages may be lost in a single generation as
the sample size n increases. The first-order approximations used
in the derivation of the coalescent from the DTWF model as-
sume that the sample size n is smaller in order than

ffiffiffiffi
N

p
, with N

being the population size. For example, consider a sample of size
n = 250 with an effective population size of n = 20,000 hap-
loids. SI Appendix, Fig. S2, shows the probability distribution of

the number of parents of the sample in the previous generation.
There is a high probability that the sample will have less than
n − 1 parents in the previous generation, an event that is ignored
in the asymptotic calculation used in the coalescent derivation
from the DTWF model. SI Appendix, Fig. S3, shows the expected
fraction of lineages (relative to n − 1) that are lost due to either
multiple or simultaneous mergers, from the present up to time t
in the past. SI Appendix, Table S1, shows the numerical values of
the expected fraction as t → ∞. The sharp jump in the plot for
model 2 (SI Appendix, Fig. S3b) corresponds to the beginning
(backward in time) of population bottlenecks when the pop-
ulation size declines substantially, thus instantaneously increasing
the rate at which lineages find common ancestors and are lost. For
small sample sizes relative to the population size, it is unlikely for
more than one lineage to be lost in a single generation, as can be
seen in the plots for n = 20 and n = 200. In contrast, for large
sample sizes (n = 2 × 104), almost all of the lineages are lost in
generations when more than one lineage is lost.
When multiple lineages are lost in a single generation of the

DTWF model, there are several ways this could happen. For
example, suppose two out of m lineages are lost in one genera-
tion. This could be the result of three lineages finding the same
parent in the previous generation, or two pairs of lineages each
finding a common parent, with the two parents being different.
In general, there are S(m, j) different ways that m labeled line-
ages can have j distinct parents in the previous generation, where
S(m, j) is the Stirling number of the second kind, counting the
number of ways of partitioning a set of m labeled objects into j
nonempty subsets. A particular pattern of mergers of m lineages
that leads to j distinct parents, where ⌈m2⌉≤ j≤m, is illustrated
in SI Appendix, Fig. S4. Here, m − j pairs of lineages each find
a common parent distinct from all other parents, and the
remaining 2j − m lineages do not merge with any other lineages.
There are j ancestral lineages left after this type of merger. We
call this an “(m − j)-pairwise simultaneous merger.” For k ≥ 2,
we use the term “k-merger” to denote an event where exactly k
lineages find the same common parent in the previous genera-
tion. It is possible to have several multiple merger events in
a single generation. For example, a j-pairwise simultaneous
merger is equivalent to there being exactly j 2-merger events
and no other merger events in a single generation.
In the coalescent, because at most two lineages find a common

ancestor in any given time, the only kind of possible merger is
a single 2-merger (or equivalently, a 1-pairwise simultaneous
merger). However, in a DTWF model with m lineages at a given

time, there are 1
2

�
m

2

��
m− 2

2

�
possible 2-pairwise simultaneous

mergers, and
�

m

3

�
possible 3-mergers, yielding the following

expression for the total number of different ways for m lineages
to find m − 2 distinct parents in the previous generation:

Sðm;m− 2Þ=
�
m
3

�
+

1
2

�
m
2

��
m− 2
2

�
: [1]

Because the second term is O(m4), whereas the first term is
O(m3), for large m we expect 2-pairwise simultaneous mergers to
be the dominant reason for losing two lineages in a single gen-
eration.
SI Appendix, Fig. S5, illustrates the ratio of the sum of the

expected number of lineages lost due to k-pairwise simultaneous
mergers, for k ≥ 2, to the results shown in SI Appendix, Fig. S3,
the expected number of lineages lost due to multiple or simul-
taneous mergers, from the present up to time t in the past. As SI
Appendix, Fig. S5, shows, a substantial fraction of the lineages
that are lost in generations with multiple lost lineages (i.e., in
generations with mergers forbidden in the coalescent) are due to
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pairwise-simultaneous mergers. Incidentally, that the curves for
n = 20 start out near 0.93 can be attributed to the fact that the
ratio of the second term in the right-hand side of Eq. 1 to S(m,
m − 2) is 51

55 for m = 20.
The expected fraction (relative to n − 1) of lineages lost due to

k-mergers is shown in Table 1. A substantial number of lineages
are lost to 3-mergers in model 1, model 2, and model 3 for n =
2 × 104 because the sample size is of the same order as the
population size at time 0. Even in model 4, about 1.9% of line-
ages participate in 3-mergers. SI Appendix, Fig. S6, shows the
fraction of 3-mergers up to time t relative to the total expected
number of 3-mergers as t→∞. As expected, in model 1, model 2,
and model 3, due to the large sample size relative to the pop-
ulation size at time 0, a substantial portion of the 3-mergers take
place very early when the number of surviving lineages drops
quickly. It is rather surprising that, in model 4, where there is
a rapid exponential population growth, a large fraction of the
3-mergers in fact take place during this period of growth. In par-
ticular, more than 25% of the expected 3-mergers for n = 2 × 104

occur in the most recent 32 generations when the effective
population size is at least 5.5 × 105.
Based on the results described above, one would expect that

the number of ancestral lineages remaining at a given time
decreases more rapidly under the DTWF model than under the
coalescent, and we investigate this quantity next.

NLFT. Here, we compare the expected NLFT in the coalescent
and in the DTWF model. In what follows, we let AC

n ðtÞ and AD
n ðtÞ

denote the random variables for the number of lineages at
generation t in the coalescent and the DTWF model, re-
spectively, starting with a sample of size n at time 0. Under the
coalescent, the expectation and SD of the NLFT, E½AC

n ðtÞ� and
σðAC

n ðtÞÞ, can be computed exactly in a numerically stable fashion
for an arbitrary variable population size model as described in SI
Appendix, SI Text. An algorithm to compute E½AD

n ðtÞ� and
σðAD

n ðtÞÞ under the DTWF model is also described there.
For the four demographic models considered, SI Appendix,

Fig. S7, shows the expectation and SD of the NLFT under the
DTWF model, whereas SI Appendix, Figs. S8 and S9, show the
relative differences in the expectation and SD, respectively, of
the NLFT in the coalescent with respect to the NLFT in the
DTWF model. For large sample sizes under model 1, model 2,
and model 3, it can be seen that the lineages are lost at a faster
rate in the DTWF model than in the coalescent. This pattern is
consistent with the fact that these demographic models exhibit
a substantial number of 3-mergers in the DTWF model for large
sample sizes (Table 1), although the deviation in the expected
NLFT is still substantially less than the expected number of
3-mergers. The deviation disappears after about 1,000 gen-
erations when enough time has passed for the number of an-
cestral lineages to become sufficiently small that the coalescent
approximation holds.

For model 4, the expected NLFT in the coalescent provides
a fairly good approximation to that in the DTWF model for all
times and for all sample sizes considered. This is because the
population size remains much larger than the number of an-
cestral lineages at all times.

Expected Sample Frequency Spectrum.Given a sample of n haploid
(or n/2 diploid) individuals, a common summary of the sample
used in various population genetic analyses is the sample fre-
quency spectrum, τ̂n = ðτ̂n;1; . . . ; τ̂n;n−1Þ. Under the infinite-sites
model of mutation, the kth entry τ̂n;k corresponds to the number
of polymorphic sites in the sample that have k derived alleles and
n − k ancestral alleles, where 1 ≤ k ≤ n − 1. For a sample of
n haploids randomly drawn from the population, we denote the
expected value of τ̂n;k in the coalescent and the DTWF models by
τCn;k and τDn;k, respectively. In the case of a constant population
size, τCn;k under the infinite-sites model of mutation is given ex-
actly by the following expression:

τCn;k =
θ

k
; [2]

where θ denotes a population-scaled mutation rate. (Mutations
arise according to a Poisson process with intensity θ/2 in each
lineage, independently of all other lineages.) For variable pop-
ulation size models, the results of Polanski and Kimmel (18) can
be used to compute the expected sample frequency spectrum
numerically stably under the coalescent. In SI Appendix, SI Text,
we develop an algorithm to compute the expected sample fre-
quency spectrum under the DTWF model, denoted by τDn =
ðτDn;1; . . . ; τDn;n−1Þ.
Fig. 1 illustrates the relative difference between the coalescent

and the DTWF model in the number of singletons (τn,1) and
doubletons (τn,2) as a function of the sample size (n). As the
figure shows, the number of singletons predicted by the DTWF
model is larger than the coalescent prediction by as much as 11%
when the sample size is comparable to the current population
size. It is interesting to note that, even though there are a sub-
stantial number of 3-mergers and 4-mergers in model 1 and
model 2, the deviations in the frequency spectrum are not nearly
as large as one might have expected. This is probably because
even though the coalescent forbids multiple mergers by con-
struction, successive 2-mergers can be separated by arbitrarily
small amounts of time (as opposed to being separated by at least
one generation in a discrete model). This allows the coalescent
to simulate the effect of multiple mergers without explicitly
allowing them, leading to fairly similar frequency spectra as a
DTWF model.
The deviations in the singletons and doubletons for model 1

match those computed by Fisher (19) (and tabulated in ref. 20,
table 1) when the sample size equals the population size and in
the limit that the population size tends to infinity. For model 4
(Fig. 1D), we could not consider sample sizes >105 because of

Table 1. Expected percentage of lineages (relative to n − 1, where n is the sample size) lost due
to k-mergers in models 1–4

Model 1 Model 2 Model 3 Model 4

k n = 2 × 103 n = 2 × 104 n = 2 × 103 n = 2 × 104 n = 2 × 103 n = 2 × 104 n = 2 × 103 n = 2 × 104

2 96.68% 68.70% 96.66% 68.93% 98.77% 89.99% 98.96% 98.11%
3 3.24% 23.03% 3.26% 22.93% 1.22% 9.25% 1.03% 1.87%
4 0.08% 6.44% 0.08% 6.36% 0.01% 0.72% 0.01% 0.02%

In model 1 and model 2 for n = 2 × 104, a substantial number of lineages are involved in 3-mergers, and more
than 6% of the lineages are involved in 4-mergers, because the sample size is of the same order as the current
population size. Even in model 3 and model 4 for n = 2 × 104, around 9% and 2% of the lineages participate in
3-mergers, respectively.
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computational burden, but the results for models 1–3 suggest
that we should expect to observe ≥10% deviation when the
sample size n is increased to 106, the current population size in
model 4. The deviation in the number of doubletons is also
significant when the sample size is comparable to the current
population size; the DTWF prediction for doubletons is smaller
than the coalescent prediction by about 4.8%.
The findings described above are especially important given

that rare variants comprise a large fraction of segregating sites
when the sample size is large. In SI Appendix, Fig. S10, we plot
the cumulative distribution of the frequency spectrum in the
DTWF model for models 1–4. The number of singletons in
models 3 and 4 is higher than in models 1 and 2 due to expo-
nential population growth. The rapid population expansion in
model 4 results in about 51% of the segregating sites being
singletons and over 80% of the segregating sites having less than
five copies of the derived allele in a sample of size n = 2 × 104. SI
Appendix, Fig. S11, shows the expected proportion of rare var-
iants (derived allele frequency ≤ 0.01%) as a function of the
sample size n for models 3 and 4 under the coalescent. It can be
seen that as n approaches the current population size, the pro-
portion of rare variants increases substantially. SI Appendix, Fig.
S12, shows the expected proportion of segregating sites that are
singletons as a function of n for models 1–4 under the coalescent.
For small sample sizes (say, n < 100), the proportion of single-
tons in models 3 and 4 (which incorporate rapid recent pop-
ulation expansion) is not much larger than that in models 1 and
2. However, the difference increases considerably as the sample
size goes beyond a few hundred individuals, illustrating the need
for large sample sizes to infer recent population expansion from
frequency spectrum data.

A Hybrid Method for Computing the Frequency Spectrum. As
detailed in SI Appendix, SI Text, computation in the DTWF
model is substantially more involved than in the coalescent. In

particular, although the run time of the frequency spectrum
computation in the coalescent depends only on the number of
piecewise-exponential epochs and not the duration of each
epoch, the run time of our dynamic programming algorithm
for the DTWF model actually depends on the number of
generations over which the algorithm is run. Because notice-
able deviation between the DTWF model and the coalescent
arises when the number of ancestral lineages is not negligible
compared with the population size, a reasonable trade-off
between accuracy and run time would be to use the DTWF
model for the recent past and the coalescent for the more
distant past (when the number of ancestral lineages has decreased
sufficiently).
To explore this idea, we implemented a hybrid method for

computing the frequency spectrum that, for a specified switching
generation ts, uses the full DTWF model for generations 0 < t ≤
ts, followed by the coalescent for generations t > ts. In particular,
for ts = 0, this algorithm computes the frequency spectrum under
the coalescent, whereas for ts = ∞, it computes the frequency
spectrum under the full DTWF model. As Fig. 2 illustrates for
model 3 in the case in which the sample size n is equal to the
current effective population size N0, the difference in the fre-
quency spectrum between the full DTWF model and the hybrid
algorithm decreases rapidly as ts increases. With ts = 5 gen-
erations, the largest deviation in the number of singletons is less
than 1%, which is a substantial reduction from 11% for ts =
0 (Fig. 1C). SI Appendix, Fig. S13, shows these data in a different
way, in which the deviations in the frequency spectrum for model
3 between the full DTWF model and the hybrid algorithm are
shown as a function of sample size for several values of ts.

Discussion
Several analyses of genomic sequence variation in large samples
of humans (6–9) have found a substantial excess of rare var-
iation compared with those predicted using previously applied

B

DC

A

Fig. 1. The percentage relative error in the number of singletons and doubletons between the coalescent and DTWF models, as a function of the sample
size n. When the sample size is comparable to the current population size, the number of singletons predicted by the DTWF model is larger than the co-
alescent prediction by as much as 11%, whereas the number of doubletons predicted by the DTWF model is smaller than the coalescent prediction by about
4.8%. In model 4, we could not consider a sample size comparable to the population size (106) because of computational burden, but we expect a similar
extent of deviation as in models 1–3 as n increases. Note that the y-axis scale for model 4 is different from that for models 1–3. (A) Model 1. (B) Model 2. (C)
Model 3. (D) Model 4.
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demographic models. The inference in these studies is that these
results are consistent with a rapid growth of the effective pop-
ulation size in the recent past (much more rapid than in pre-
viously applied demographic models), a conclusion consistent
with historical records of census population size (9). These
studies also used sample sizes that would appear to be large
enough to violate assumptions of the coalescent, potentially
distorting genealogical properties in a way that may inflate rare
variation relative to the predictions of coalescent theory. In this
paper, we have investigated this issue by developing a method for
performing exact computation in the DTWF model of random
mating. We have studied the deviation between the coalescent
and the WF model for several key genealogical quantities that
are used for population genomic inference.
For several recently inferred demographic scenarios for hu-

mans, our results show that there are a significant number of
multiple- and simultaneous-merger events under the WF model
that are ignored by construction of the coalescent. Furthermore,
there are noticeable differences in the expected number of rare
variants between the coalescent and the DTWF model, espe-
cially in the regime where the sample size is on the order of the
current effective population size. Even if the demographic
models considered here might underestimate the true current
effective population size of humans, sample sizes in population
genetic studies are rapidly increasing and might grow to be large
enough to cause the differences between the DTWF and the
coalescent to become amplified.
A number of demographic inference methods are based on

fitting the expected frequency spectra under the coalescent (5–7)
or the diffusion process (15, 21–23) to observed data. For in-
stance, the exponential growth parameters in models 3 (15) and
4 (7) were inferred using a likelihood method based on the dif-
fusion process approximation to the DTWF model, by fitting the
predicted frequency spectrum to polymorphism patterns ob-
served in a sample size of 876 individuals and 2,440 individ-
uals, respectively. Because the diffusion process approximation
to the DTWF model is equivalent to the coalescent approxima-
tion, the differences in the frequency spectrum (Fig. 1) between

the coalescent and the DTWF model indicate that we might infer
different demographies if the analysis were done using the
DTWF model. In particular, for a sample of size n analyzed
under the DTWF model, any inferred demography will have
a current effective population size of at least n. However, the
coalescent imposes no such restriction on the inferred current
effective population size. In fact, under the coalescent, it is even
possible to estimate a current effective population size N0 that
is smaller than the sample size n. This is because one can only
infer a scaling function of time in the coalescent, which is the
ratio of the variable effective population size to a fixed refer-
ence population size. The inferred scaling function can then be
transformed into an effective population size function by using
the empirically estimated per-generation mutation rate (15), or
by setting the reference population size to a specific value (5, 6)
[e.g., using an ancestral population size inferred by previous
studies (24)].
To balance the trade-off between accuracy and computational

efficiency, we have proposed a hybrid algorithm that uses the
DTWF model for the recent past and the coalescent for the
more distant past. This hybrid algorithm provides a way to obtain
more accurate predictions of the frequency spectrum than in the
coalescent, while being computationally more efficient than
considering the full DTWF model. We leave the exploration of
this method for demographic inference as future research.
Wakeley and Takahashi (20) have provided asymptotically

accurate expressions (as the effective population size N→∞) for
the number of singletons and the number of segregating sites
under a variant of the DTWF model that allows for a larger
number of offspring than the effective population size, assuming
that the effective population size stays constant over time. Fu (25)
has also examined the accuracy of the standard coalescent model
and proposed an alternative continuous-time “exact” coalescent
model applicable in the regime when N(N − 1). . .(N − n + 1) ×
N−n � 0, where N denotes the effective population size and n
the sample size. That work was restricted to the case of a con-
stant population size, whereas in this paper we have considered
several demographic scenarios inferred from recent large-scale
population genomic studies. Moreover, for some of the de-
mographic scenarios and sample sizes considered here, the
assumption in Fu’s work (25) that N(N − 1). . .(N − n + 1) ×
N−n � 0 is violated. Wakeley et al. (26) have shown that it is
difficult to reject the coalescent even for data generated using
fixed pedigrees with random genetic assortment. Our work is
complementary to that study and compares the coalescent to the
DTWF random-mating model.
In this paper, we have focused on the DTWF model for sim-

plicity. However, it is known that under some weak conditions on
the limiting probabilities of a 2-merger and a 3-merger, a large
family of exchangeable random-mating models converge to the
same coalescent limit as the unit of time is rescaled appropriately
and the population size gets large (27, 28). The rate of conver-
gence to the coalescent differs between different random-mating
models (29), and hence the accuracy of coalescent predictions
for large sample sizes depends on the random-mating model
being considered. The deviation from the coalescent could be
amplified for other random-mating models. It would be in-
teresting to consider the accuracy of the coalescent for other
random and realistic models of relevance to human genetics;
e.g., models in which generations overlap and the distribution of
offspring number more closely reflects the observed pattern for
human populations [for example, the Swedish family data of Low
and Clarke (30) or the Saguenay-Lac-Saint-Jean population
considered by Moreau et al. (31)]. Despite having access to large
samples, recent studies (6–8) have inferred much smaller current
effective population sizes (on the order of millions) than the cur-
rent census size (on the order of billions) of the population from
which the samples were drawn. It is possible that demographic

Fig. 2. The percentage relative error, with respect to the full DTWF model,
in the number of singletons and doubletons in a hybrid algorithm with
switching time ts. The hybrid method uses the DTWF model for generations
≤ts and the coalescent model in generations >ts. The results are for model 3
in the case in which the sample size n is equal to the current effective
population size N0 = 67,627. The case of ts = 0 corresponds to using the
coalescent model only. This plot shows that the difference in the frequency
spectrum between the full DTWF model and the hybrid algorithm decreases
very rapidly as the switching time ts increases.
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inference methods that explicitly model realistic human mating
patterns might be able to infer census population size histories
more accurately than does the coalescent, which assumes ran-
dom mating and can only infer effective population sizes that do
not have a direct census interpretation.
Furthermore, it would be interesting to compare discrete-time

random models and the coalescent with respect to haplotype
sharing (identity-by-descent and identity-by-state), linkage dis-
equilibrium, and natural selection when the sample size is very
large. For example, Davies et al. (32) used simulations to dem-
onstrate that, for a constant population size model, recombination
and gene conversion can increase the number of ancestral line-
ages of a sample of chromosomes to the extent that multiple and
simultaneous mergers in the DTWF model can lead to sub-
stantial differences from the coalescent model in the rates of
coalescence and in the number of sequences carrying ancestral
material. It would be interesting to perform such comparisons
for more realistic demographic models for humans.
We will soon enter an era in which it will become routine to

analyze samples with hundreds of thousands if not millions of
individuals. For these large sample sizes, the standard coalescent
will no longer serve as an adequate model for evolution. The
DTWF model is mathematically cumbersome to work with,

which was one of the original motivations for adopting the co-
alescent for modern population genetics analyses. However, for
these very large sample sizes, we will need to develop new math-
ematically and computationally tractable stochastic processes that
better approximate realistic models of human population evolu-
tion, and under which we can efficiently compute genealogical
quantities like we have been able to under the coalescent.

Materials and Methods
The computation of the various genealogical quantities in the DTWF model,
such as the number of simultaneous and multiple mergers, the NLFT, and the
expected frequency spectrum, rely on the Markov property of the DTWF
model. By considering the types and counts of the mergers occurring in the
previous generation, one can write down one-step recurrence equations
relating these genealogical quantities over time and solve these recurrences
by dynamic programming. The details of these recurrence equations for the
various genealogical quantities considered in this manuscript are provided in
SI Appendix, SI Text, and software programs implementing them can be
downloaded from www.eecs.berkeley.edu/∼yss/software.
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