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Machine learning models 
for predicting blood pressure 
phenotypes by combining multiple 
polygenic risk scores
Yana Hrytsenko 1,2,3,37, Benjamin Shea 3,37, Michael Elgart 1,2, Nuzulul Kurniansyah 1, 
Genevieve Lyons 4, Alanna C. Morrison 5, April P. Carson 6, Bernhard Haring 7,8, 
Braxton D. Mitchell 9, Bruce M. Psaty 10,11,12,13, Byron C. Jaeger 14, C. Charles Gu 15, 
Charles Kooperberg 16, Daniel Levy 17,18, Donald Lloyd‑Jones 19, Eunhee Choi 20, 
Jennifer A. Brody 10,12, Jennifer A. Smith 21,22, Jerome I. Rotter 23, Matthew Moll 1,2,24,33, 
Myriam Fornage 5,25, Noah Simon 26, Peter Castaldi 1,2, Ramon Casanova 14, Ren‑Hua Chung 27, 
Robert Kaplan 7,16, Ruth J. F. Loos 28,29, Sharon L. R. Kardia 21, Stephen S. Rich 30, 
Susan Redline 1,2,31, Tanika Kelly 32, Timothy O’Connor 9,35,36, Wei Zhao 21,22, Wonji Kim 33, 
Xiuqing Guo 23, Yii‑Der Ida Chen 23, The Trans-Omics in Precision Medicine Consortium * & 
Tamar Sofer 1,2,3,4,34*

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood 
pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). 
We developed a two-model ensemble, consisting of a baseline model, where prediction is based 
on demographic and clinical variables only, and a genetic model, where we also include PRSs. We 
evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model 
levels and assess the improvement in performance when incorporating multiple PRSs. We report the 
ensemble model’s performance as percentage variance explained (PVE) on a held-out test dataset. 
A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) 
compared with a linear baseline model. Including seven PRSs in the genetic model computed based 
on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) 
and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on 
two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE 
differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting 
from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in 
models incorporating diverse populations.
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Polygenic (risk) scores (PRSs) summarize information from many genetic variants across the genome. PRSs are 
being increasingly developed for risk prediction and for quantifying the inherited predisposition for a given 
trait or condition. The number/dosage of associated alleles, typically weighted according to effect size estimates 
from a genome-wide association study (GWAS) for a given phenotype, are summed to produce a PRS for an 
individual1. Commonly, PRS studies involve testing for the association between a PRS and a trait in the target 
data and estimating its effect. However, PRSs rely on linear relationship between allele counts and the outcome2 
and do not account for potential interactions between SNPs3 and non-linear associations between genetic variants 
and the outcome of interest. Linear prediction models that rely on standard PRS therefore usually only explain 
a fraction of observed genetic variance. Recently, we developed a non-linear machine learning (ML) model that 
incorporated both individual SNPs and a PRS for predicting predisposition to a certain trait. We showed that 
it improves Percent Variance Explained (PVE) in an independent test dataset over the standard approach, in 
which a single PRS is incorporated into a linear prediction model, in a dataset comprising diverse individuals 
from multiple self-reported race/ethnic groups4. However, due to their potential large number, inclusion of indi-
vidual SNPs may lead to both high computational burden and to model overfitting to the training dataset, where 
a model performs poorly on a new dataset (i.e., data that were not used in the training dataset). While feature 
selection tools may be applied to reduce the number of SNPs, e.g., using least absolute shrinkage and selection 
operator (LASSO5; used in Elgart et al.4), these tools may be limited by incorporating an assumption of linearity.

Other PRS prediction approaches improve upon the single-PRS models by employing multiple PRSs calcu-
lated from several GWASs, also known as “multi-PRS” approaches6. The goal of incorporating multiple PRSs 
in the model is to utilize the discoveries of multiple GWASs (multi-trait, multi-ancestry) and thus boost the 
model’s performance. Increase in PVE using multi-PRS model compared with the best single-score predictions 
was reported by7 in the context of using PRSs of multiple traits. Other studies also reported improvement in 
association analysis when utilizing multiple PRSs compared with a single PRS for a single trait association, with 
and without a PRS selection step7–12. Overall, studies comparing “single-PRS” approaches and “multi-PRS” 
approaches showed higher performance of multiple PRS models6,13–15. While some multi-PRS models combine 
PRSs based on different GWASs, other multi-PRS models construct several PRSs from the same GWAS, usually 
based on multiple p-value (significance) thresholds—typically when using the clump & threshold methodology. 
With the clump & threshold methodology, PRS construction requires setting a p-value parameter, for which a set 
of optimal SNPs is selected to calculate the score. However, there is no single optimal p-value threshold that is 
known a priori. Thus, one strategy for multiple clump & threshold PRSs is to construct PRS for several different 
p-value thresholds and then include all PRSs in the analysis16. Coombes et al.17 proposed to perform a principal 
component analysis over a set of PRSs calculated for a range of clump & threshold parameter settings and then 
using the first “PRS-PC” for the association testing. The main motivation behind the method is that the largest 
amount of variation in the computed PRSs is captured by the first PRS-PC, thus potentially improving discrimina-
tion of the phenotype tested. Thus, multi-PRS approaches combining PRSs from multiple GWAS, and approaches 
combining multiple PRSs from the same GWAS, have been shown to improve PRS models, where the first 
approach (multiple GWAS PRSs) has been particularly useful for improving PRS models in diverse populations.

Blood pressure (BP) is highly polygenic and, when elevated, is one of the primary risk factors for the devel-
opment of several cardiovascular diseases such as coronary artery disease and stroke18,19. Nearly half of the 
adults in the U.S have hypertension20, with higher prevalence among adults who are Black, compared to other 
subgroups21,22. PRSs have been developed to predict BP phenotypes across the lifespan23–26. In prior work, we 
showed that combining multiple PRSs based on a few GWASs, from populations of differences ancestral make-
ups, improves BP PRS models in ancestrally and race/ethnicity diverse population13. Our work also noted that 
PRS effect sizes and performance vary by strata defined by important clinical BP predictors, such as age groups, 
biological sex, and obesity. Non-linear ML models more naturally account for differences in relationship between 
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variables across population subsets. Thus, BP phenotypes may especially benefit from non-linear ML models. 
Finally, another important motivation for the development of non-linear ML models that include multiple 
PRSs is the potential for improved prediction accuracy across diverse populations, in a single model. The hope 
is that the developed model will use both clinical- and genetic ancestry-related characteristics, including their 
interaction, as needed.

Here, we develop multi-PRS non-linear ML models and assess their association with systolic and diastolic 
BP. For each of the two BP outcomes, we develop an ensemble machine learning model that makes a BP predic-
tion based on demographic (age, sex, self-reported race/ethnic background, and study center), BMI, and SBP/
DBP PRSs. The ensemble model consists of two consecutive components—a baseline model and a genetic model. 
The baseline model predicts a phenotype using the set of covariates without the genetic component, and the 
genetic model further explains the residuals from the baseline model. We evaluate the use of a linear versus a 
non-linear model at both the baseline and the genetic model level and assess the improvement in performance 
when incorporating multiple PRSs based on several GWAS and p-value thresholds. We compare the ensemble 
model’s performance on the held-out test dataset stratified by self-reported race/ethnic groups. In secondary 
analyses, we also developed PRSs specific to linkage disequilibrium (LD) regions, referred to as local-PRSs, and 
evaluated the possibility of using multi-local-PRSs.

Figure 1.   Study design. (a) The proposed ensemble model framework. The ensemble is composed of two 
models. The baseline model, trained on covariates ( Xb ) only for prediction of SBP and DBP ( ̂yb ). To assess 
the accuracy of the baseline model we calculated the residuals (baseline residuals rb ) by subtracting the 
predicted value of SBP/DBP from the actual value of SBP/DBP. The genetic model was trained on a subset of 
the covariates, and genetic components (global PRSs) for prediction of the baseline model residuals rb . We 
measured the accuracy of the genetic model by subtracting predicted genetic residuals r̂g from baseline residuals 
rb . The overall prediction of BP by the ensemble model is the sum of the predicted baseline BP ŷb (by the 
baseline model) and the predicted baseline residuals r̂b (by the genetic model). The accuracy of the ensemble 
model was assessed by calculating percent variance explained (PVE) by two models jointly. (b) The split of the 
primary, TOPMed dataset, into training and testing sets followed by the fivefold cross validation procedure 
where the training dataset is further split into 5 equal parts with one part designated for testing (repeated 5 
times with 1/5 of the training data being designated at random for testing at each iteration). (c) Increasing levels 
of genetic models’ complexity where each new model included additional PRSs. (d) The process of calculating 
local PRSs per LD-blocks (secondary analysis). BBJ BioBank Japan, BP blood pressure, GWAS genome wide 
association study, LD linkage disequilibrium, Level model complexity level, MVP Million Veteran Program, P 
p-value threshold, PRS polygenic risk score, SNPs single-nucleotide polymorphisms, TOPMed Trans-Omics 
for Precision Medicine, UKBB + ICBP UK Biobank and International Consortium for Blood Pressure.
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Results
Figure 1 visualizes the study design and major steps in development and assessment of the ensemble model. 
The ensemble model included two components: a baseline and a genetic model, where we compared multiple 
constructions of genetic models. We used cross validation to tune model parameters in the training dataset and 
evaluated the models in the independent test dataset. Models were trained using 70% of the available data from 
our multi-ethnic dataset and tested in the remaining 30%.

TOPMed participant characteristics
We used a multi-ethnic dataset from the TOPMed consortium (freeze 8 release) to train non-linear ML models 
using PRSs for systolic and diastolic BP (SBP and DBP, respectively). The dataset included 62,295 unrelated 
participants from fifteen U.S.- and Taiwan-based studies. Participant characteristics are provided in Table 1. 
Individuals self-identified according to categories of race and ethnicity: there were 14,587 Black participants, 
30,668 White participants, 4655 Asian participants, 11,904 Hispanic/Latino participants and 481 participants 
of “Other” or “Unknown” decent. Descriptions of each of the contributing TOPMed studies are provided in 
Supplementary Note 1.

The TOPMed dataset was randomly split into a training dataset (70% of the individuals) in which fivefold 
cross-validation was used to choose tuning parameters for models, and a held-out test dataset (30% of the 
individuals) in which the trained models’ predictions were evaluated. Supplementary Table 1 characterizes the 
training TOPMed dataset. Characteristics of the held-out test TOPMed dataset are provide in Supplementary 
Table 2. Characteristics broken down by specific TOPMed studies are provided in Supplementary Table 3. In 
brief, due to the random split to the training and test datasets, both datasets have similar characteristics, includ-
ing about 49% self-reported White, 23% Black, 19% Hispanic/Latino, 7% Asian individuals and < 1% of Other or 
Unknown race/ethnicity. The mean age is approximately 55 years, 63% of the participants are female, and 59% 
are hypertensive, with hypertension being more common in self-reported Black individuals and least common 
in self-reported Asian individuals.

Non‑linear ML models improve modelling of covariate effects compared to linear models
For each BP outcome, we trained ensemble models using the TOPMed training dataset. The first model in the 
ensemble, referred to as the baseline model, included the covariates age, sex, BMI, race/ethnic background, and 
study center, where the latter is a dataset-specific variable. Figure 2 visualizes the phenotypic independent test 
dataset PVE obtained from the baseline model when fitted using a non-linear ML model (a gradient boost-
ing trees model fitted using the XGBoost package) and using a linear model (see Supplementary Table 4 for 
baseline model complete results). The non-linear ML model had higher PVE for both SBP and DBP, both when 
evaluated over the complete dataset and by groups defined by self-reported race/ethnic background. Therefore, 
we proceeded with ensemble models with non-linear ML baseline model. Complete results, including from 
cross-validated PVE in the training datasets, are provided in Supplementary Table 5. Surprisingly, we observed 
slightly lower performance in models trained using global SBP/DBP PRSs developed using Bayesian approach, 
PRS-CSx (complete results are reported in the Supplementary Table 6). The hyperparameters for the XGBoost 
model and their values selected after tuning are listed in Supplementary Table 7. For the baseline non-linear ML 
model, the phenotypic PVE was higher for SBP prediction (30% PVE in the race/ethnicity combined dataset) 
than for DBP (17.4% phenotypic PVE), as reported in other PRS studies of the two phenotypes. When tested on 
the testing set stratified by race/ethnicity, the PVE was highest in the group of Black individuals, for both SBP 
and DBP (33.4% and 22.4%, respectively). PVE was lowest in the group of Asian individuals (19.7% and 11.9% 
for SBP and DBP, respectively).

In Supplementary Fig. 1, we also report results from a secondary analysis comparing baseline models with 
and without inclusion of genetic PCs, demonstrating that PCs inclusion does not improve the baseline model 
PVE. Thus, and given that use of PCs challenges the transferability of prediction models between datasets, we 
did not include them.

Table 1.   TOPMed dataset (training and testing sets combined) characteristics aggregated over the studies, 
stratified by self-reported race/ethnic background. Hypertension was defined as SBP ≥ 130, DBP ≥ 80 , or use 
of antihypertensive medications. IQR interquartile range.

Characteristic White Black Hispanic/Latino Asian Other/unknown

N 30,668 14,587 11,904 4655 481

Gender (N (%))

 Female 20,218 (66%) 9165 (63%) 7108 (60%) 2376 (51%) 198 (41%)

 Male 10,450 (34%) 5422 (37%) 4796 (40%) 2279 (49%) 283 (59%)

Age, years (median, IQR)) 60 (50, 69) 55 (47, 64) 52 (43, 61) 48 (40, 57) 59 (50, 67)

SBP, mmHg (median, IQR)) 126 (113, 142) 133 (119, 150) 126 (113, 144) 122 (110, 138) 134 (116, 152)

DBP, mmHg (median, IQR)) 75 (68,83) 80 (72, 89) 76 (68, 84) 75 (68, 85) 76 (66, 86)

BMI, kg/m2 (median, IQR)) 26.4 (23.5, 30.0) 29.0 (25.1, 34.0) 29.0 (26.0, 33.0) 23.9 (21.8, 26.2) 27.3 (24.3, 31.5)

Hypertensive (N (%)) 17,274 (56%) 10,103 (69%) 6733 (57%) 2381 (51%) 323 (67%)
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Using multiple PRSs from the same and from multiple GWASs improves model performance in 
Asian, Black, and Hispanic participants
The second part of the ensemble model is the genetic model, which included covariates that can be used across 
datasets, including age, sex, BMI, self-reported race/ethnic background, and SBP/DBP PRS measures. The ensem-
ble model used non-linear ML baseline model (because it performed better than linear regression), and genetic 
models fitted using either non-linear ML or using conventional linear regression. Further, genetic models were of 
increasing complexity where we included one or more PRSs according to the following logic: model complexity 
1 included a single PRS based on the clump & threshold methodology using p-value threshold of 10–2 and using 
summary statistics from the BP GWAS of the UK Biobank and the International Consortium of Blood Pressure 
(UKBB + ICBP), which yielded the most powerful single-GWAS PRSs in a past paper developing BP PRSs13. 
An analysis using the TOPMed training datasets, comparing the inclusion of only a single PRS in the genetic 
model, further suggested that this PRS yields the highest PVE in models that use all individuals and just a single 
one of the UKBB-ICBP based PRSs, however, notably, the training dataset optimal PRS threshold differed by 
race/ethnic group (Supplementary Table 8 summarizes the clump & threshold p-value threshold that yielded 
the highest PRS for each group, and Supplementary Table 9 provides the PVE values for each PRS and group). 
Model complexity 2 included 7 PRSs based on the clump & threshold methodology each using a different p-value 
threshold for SNP inclusion, and using the same UKBB + ICBP GWAS. Model complexity 3 included 21 PRSs, 
7 PRSs from each of the UKBB + ICBP, Million Veteran Program (MVP), and Biobank Japan (BBJ). PRSs based 
on all GWAS were constructed using the same clump & threshold approach with the same p-value thresholds 
used in model complexity 2.

Supplementary Table 5 reports the complete performance results as attained PVEs from the genetic models 
(PVEs of predicting residuals from the baseline model) and ensemble models (PVEs of predicting the raw trait) 
estimated in cross validation on the training dataset, and from the independent test dataset. Genetic models fitted 
using the non-linear ML approach tended to have similar or better performance than genetic model fitted using 
linear regression (see Supplementary Fig. 2). Two exceptions were linear model performed better at prediction 
of DBP in Black individuals (2.2% PVE by model complexity level 3 linear regression compared with 1.7% PVE 
of the ML model) and prediction of SBP in Hispanic/Latino individuals (5.7% versus 4.6% in linear regression 
versus ML level 3 models). We therefore here focus on the genetic models (non-linear ML fitted using XGBoost).

Figure 3 visualizes the genetic model performance, measured by PVEs in prediction of residuals from the 
baseline model, and the ensemble model performance, measured by PVEs at the phenotypic level. Genetic model 
performance improved with the addition of PRSs, with improvement being large for the non-White groups, 
and low and almost not existing, for the group of self-reported White individuals. This is likely because the self-
reported White individuals are mostly of European genetic ancestry, closely matching the genetic ancestry of 
the population participating in the UKBB + ICBP GWAS. Concretely, genetic model performance in the White 
group were 7.7%, 7.6%, and 7.8% for the three increasing complexity levels for SBP, and 7.3%, 6.7%, and 7.2% for 

Figure 2.   Estimated phenotypic PVE of baseline models fitted using non-linear ML and linear models. 
Estimated PVEs in the TOPMed test dataset for baseline model performance for prediction of SBP and DBP 
in the overall test dataset and stratified by self-reported race/ethnicity (White N = 10,877, Hispanic/Latino 
N = 3831, Black N = 3657, Asian N = 403 for DBP; White N = 10,823, Hispanic/Latino N = 3877, Black N = 3674, 
Asian N = 374 for SBP). The visualized 95% confidence intervals were computed as the 2.5% and 97.5% 
percentiles of the bootstrap distribution of the PVEs estimated over the test dataset. PVE percent variance 
explained, TOPMed Trans-Omics for Precision Medicine, SBP systolic blood pressure, DBP diastolic blood 
pressure.
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DBP. In other individuals the improvement was strongly apparent. In Hispanic/Latino individuals and prediction 
of SBP, the PVEs were 0.9%, 2%, and 4.6%, and for DBP they were 1.5%, 2.7%, and 5%. In the Asian group the 
SBP PVEs were 1.6%, 2.4%, and 3.8%, and for DBP they were 0.9%, 2.9%, and 3.4%. Finally, Black individuals 
had the lowest genetic model performance with PVEs by complexity for SBP being 0.7%, 1.1%, and 2.6%, and 
for DBP 0.8%, 0.3%, and 1.7%. Therefore, including PRSs based on non-European GWAS summary statistics 
substantially contributed to the model performance in non-White individuals but only to a small extent, and 
only for SBP, for White individuals.

At the phenotypic, ensemble-model level, the improvement in PVE achieved by increasing the complexity of 
the genetic models is less impressive, because the covariates explained the lion’s share of the phenotypic variance. 
Interestingly, while the genetic model had the highest level of PVE in the group of White individuals, the ensem-
ble model, as a whole, had the highest PVE in the group of Black individuals. This was true for both SBP and 
DBP, and is already seen when using model complexity level 2 (multiple PRSs based only on the UKBB + ICBP 
GWAS). Supplementary Table 7 provides the tuning parameters selected by the cross validation for each of the 
models. Supplementary Table 10 reports timing and RAM use comparison between the models. Level 3 non-
linear models fitted using XGBoost required the most time and memory, as expected, with 979 mebibytes and 

Figure 3.   Comparison of genetic and ensemble model performance in TOPMed test dataset. (a) Estimated 
PVEs in the TOPMed test dataset obtained by genetic models incorporating one or more PRSs according to 
the three complexity levels. Level 1: a single PRS based on the UKBB + ICBP GWAS. Level 2: PRSs based on 
the UKBB + ICBP GWAS based on seven p-value thresholds. Level 3: 21 PRSs, 7 PRSs based on each of the 
UKBB + ICBP, MVP, and BBJ GWAS. PVE is reported for predicting residuals from the baseline model, where 
the baseline model was a non-linear ML model and only used non-genetic covariates. (b) Estimated PVEs in 
the TOPMed test dataset for ensemble model at the raw phenotypic level. PVEs are reported for models of SBP 
and DBP, in the overall test dataset and stratified by self-reported race/ethnicity (White N = 10,877, Hispanic/
Latino N = 3831, Black N = 3657, Asian N = 403 for DBP; White N = 10,823, Hispanic/Latino N = 3877, Black 
N = 3674, Asian N = 374 for SBP). The visualized 95% confidence intervals were computed as the 2.5% and 
97.5% percentiles of the bootstrap distribution of the PVEs estimated over the test dataset. PVE percent variance 
explained, TOPMed Trans-Omics for Precision Medicine, SBP systolic blood pressure, DBP diastolic blood 
pressure, PRS polygenic risk score.
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Figure 4.   Integration of LASSO feature selection tool into the ensemble model workflow. (a) The workflow of the ensemble model 
with the integration of the LASSO variable selection tool. To include local PRSs in the ensemble model while attempting to avoid 
overfitting, we added a LASSO selection step to the ensemble model development. As visualized, the residuals of the baseline model 
were used as the outcome in LASSO penalized regression with the local PRSs as features. LASSO substantially reduced the number 
of local PRSs (to 827 for SBP and 224 for DBP). The local PRSs selected by LASSO were then used as an input into the genetic model 
for prediction of the baseline residuals ( ̂rb ). (b) Genomic locations of local PRSs, calculated over predefined LD-regions, selected by 
LASSO for SBP and DBP. (c) Comparison between the estimated PVE in the TOPMed test dataset for ensemble model Level 3 using 
global PRSs and the ensemble model using Linear regression and local PRSs. PVEs are reported for models of SBP and DBP, in the 
overall test dataset and stratified by self-reported race/ethnicity (White N = 10,877, Hispanic/Latino N = 3831, Black N = 3657, Asian 
N = 403 for DBP; White N = 10,823, Hispanic/Latino N = 3877, Black N = 3674, Asian N = 374 for SBP). The visualized 95% confidence 
intervals were computed as the 2.5% and 97.5% percentiles of the bootstrap distribution of the PVEs estimated over the test dataset. 
BP blood pressure, DBP diastolic blood pressure, LASSO least absolute shrinkage and selection operator, PRS polygenic risk score, SBP 
systolic blood pressure.
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close to 11 min (n ≈ 45 K individuals). Predictions from fitted models took less than a second for all models, 
and used up to 400 mebibytes (n ≈ 18.5 K).

Secondary analysis: using local PRSs in the genetic model
In secondary analysis, we developed a new model that included local PRSs (Fig. 4a), constructed based on the 
UKBB + ICBP GWAS, with each local PRS being based on summary statistics restricted to an LD-region, with 
regions defined according to European populations. These PRSs used the clump & threshold methodology with 
p-value threshold < 10–2. Because gradient boosting trees models tend to overfit to the training dataset when many 
features are included, due to higher model complexity (see for instance the XGBoost tutorial https://​xgboo​st.​
readt​hedocs.​io/​en/​latest/​index.​html), we extended the development of the ensemble model to include a feature 
selection step using LASSO penalized regression, as described in Fig. 4a.

As before, we considered either non-linear ML or linear regression genetic models (using the LASSO-selected 
local PRSs). For comparison, we additionally used an ensemble model that used the fitted LASSO model itself 
as the genetic model. Note that the difference between the ensemble model with linear regression and with 
LASSO genetic model is that the linear regression model re-evaluated the coefficients of the local PRSs, while the 
ensemble model with the LASSO genetic model used the ℓ1-penalized coefficients from the LASSO operation. 
We evaluated the SBP and DBP local PRS ensemble models’ PVE. LASSO selected a subset of local PRSs which 
are most salient in model’s prediction (i.e., with the lowest cost function). Specifically, out of 1670 local PRSs for 
SBP LASSO selected 827, and it selected 224 of the 1669 local PRSs for DBP. As shown in Fig. 4b, the selected 
local PRSs for SBP and DBP are concentrated in the same genomic regions, and, more generally, selected local 
PRSs are clustered in specific regions. As reported in Supplementary Table 10, the LASSO model took 18.6 min 
and 1735 mebibytes to tune and fit, and the subsequent non-linear ML model tunning and fitting took a little 
over 7.7 h and 1265 mebibytes of RAM.

Supplementary Figure 3 provides the PVE of the genetic and ensemble models implemented with the three 
models (non-linear ML, linear regression, and LASSO). Across self-reported race/ethnic groups the results 
varied and there is no one method that is always superior to others. Notably, non-linear ML genetic model is 
almost never the best model. Figure 4c compares the performance of the global PRS model (level 3) with the local 
PRS model that used a linear regression genetic model (because it tended to perform better than other genetic 
model specifications). The local PRS genetic model sometimes performed equally well compared to the global 
PRS model, despite using less information (local compared to genome-wide PRS). Potential reasons could be 
that the local PRS models allow for separately accounting for the contributions of different genomic LD-regions. 
Some regions may be more or less important than others in some individuals, based on genetics and/or covariate 
characteristics, so the flexibility of the local models may be useful especially in datasets including individuals 
representing diverse genetic backgrounds, lifestyles, and environmental exposures.

As the local PRSs are based on the UKBB + ICBP GWAS and were generated using the 10–2 p-value threshold, 
it is interesting to compare the genetic model that used them (results in Supplementary Fig. 3) to the genetic 
model with a single UKBB + ICBP PRS (model complexity level 1; results in Supplementary Fig. 2). Considering 
the combined TOPMed test dataset, for SBP, the genetic model using linear regression and local PRSs has better 
PVE (4.8%) compared to the linear regression genetic model with one global PRS (PVE = 4.4%). However, this 
was not true for DBP (linear regression local PRS model PVE = 2.6% versus 4.4% for global, single PRS linear 
regression). The non-linear ML global PRS model with complexity level 1 performed the same (for SBP) or better 
(DBP) than linear regression local PRS models. Surprisingly, when focusing on Hispanic/Latino individuals, local 
PRS models performed substantially better than global PRS complexity level 1 models: genetic local PRS model 
PVEs ranged from 1.6 to 5.7% (across methods and BP traits), while global PRS level 1 model PVEs were at most 
1.5% (see Supplementary Fig. 2). Supplementary Table 11 reports complete performance results (attained PVEs) 
from the genetic models (PVEs of predicting residuals from the baseline model) and ensemble models (PVEs 
of predicting the raw trait) estimated in cross validation on the training dataset, and from the independent test 
dataset using local PRS in TOPMed dataset.

Challenges of model generalization to clinical data
Figure 5 visualizes workflow with the application of the model trained on the TOPMed dataset to the MGB 
Biobank (MGBB) data. For calibration, we first trained a baseline model on the MGBB data (covariates only) 
and calculated residuals. Next, we applied the genetic model trained on the TOPMed dataset to predict the 
residuals for the MGBB dataset. Because MGBB data is enriched with data related to hospital-based visits, we 
restricted the analysis to individuals with no antihypertensive related codes in the 2 years prior to data extrac-
tion (5/25/2021–5/25/2023), and only participants with data from this time period were used. There were 9,494 
individuals meeting these inclusion criteria. Of these 7985 were White, 412 Black, and 200 Asian individuals. The 
mean age was 59, there are 63% female individuals. Supplementary Table 12 characterizes the study population.

Despite strict inclusion criteria, models performed less well on the MGBB dataset. The baseline model was 
fit in MGBB, for calibration purposes, i.e., to account for differences in populations between the TOPMed and 
MGBB datasets. Note that the MGBB baseline model was fit without a training–testing approach. We compared 
the approach of calibrating the baseline model to a new dataset. Figure 5b demonstrates the PVE of the TOPMed-
trained genetic models with the baseline model being either TOPMed-trained or MGB-trained. One can see that 
the calibration approach worked well, in that genetic model performance was usually better when applied over 
the MGBB-trained baseline model. Supplementary Fig. 4 provides the cross-validated PVEs from the baseline 
non-linear ML model trained on the MGBB dataset. The cross-validated PVEs are often lower than the TOPMed 
test dataset PVEs (Fig. 2), other than in the Asian group, where the PVEs are similar. Supplementary Figure 5 

https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
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provides the PVEs from both the TOPMed-trained genetic model applied on MGBB residuals (as in Fig. 5), and 
from the full calibrated ensemble (MGBB baseline model + TOPMed-trained genetic model).

Discussion
The objectives of this study were (a) to develop a non-linear ML-based prediction model for BP phenotypes 
that can more accurately predict BP phenotypes compared to standard linear regression model that includes a 
single genome-wide PRS model, (b) assess the usefulness of including multiple PRSs in the association model 
as an alternative to the inclusion of individual SNPs, as the latter option risks overfitting, and (c) examine an 

Figure 5.   Application of the model trained on the TOPMed dataset to the MGBB data. (a) The figure visualizes 
the workflow of the Ensemble model with the baseline being trained on the MGBB dataset and application 
of the genetic models, trained on the TOPMed data, incorporating one or more PRSs according to the three 
model complexity levels. Level 1: a single PRS based on the UKBB + ICBP GWAS. Level 2: seven PRSs based 
on the UKBB + ICBP GWAS, difference p-value thresholds. Level 3: 21 PRSs, 7 PRSs based on each of the 
UKBB + ICBP, MVP, and BBJ GWAS. (b) Estimated PVE in the MGBB test dataset for XGBoost genetic models 
fitted on the TOPMed dataset of three levels of complexity with baseline model fitted using TOPMed baseline 
model weights (top) and using MGBB baseline model weights (bottom). PVEs are shown for the performance in 
prediction of the second order of residuals for SBP and DBP phenotypes in the overall test dataset and stratified 
by race/ethnicity (White N = 7985, Black N = 412, Asian N = 200). BP blood pressure, MGBB Mass General 
Brigham Biobank, PRS polygenic risk score, TOPMed trans-omics in precision medicine project.
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approach for calibrating a non-linear ML model to a new dataset. To accomplish these goals, we constructed an 
ensemble model, successively training first on a set of commonly available covariates (demographic variables 
and BMI), and then on genetic components (SBP/DBP PRSs), to directly evaluate the usefulness of a non-linear 
ML compared with a linear regression-based models at both steps. We further developed and compared poly-
genic models that employ a few levels of PRS inclusion: a single genome-wide PRS constructed based on a single 
powerful GWAS, multiple genome-wide PRSs constructed based on the same GWAS, and multiple genome-wide 
PRSs from multiple independent GWASs. We examined the improvement that such models confer to BP models 
in groups defined by self-reported race/ethnicity. We also explored the construction of genetic models that use 
local PRSs, constructed based on LD-regions, and, finally, studied the potential to apply the constructed models, 
and to calibrate model, to an Electronic Health Records (EHR)-based dataset using the MGB Biobank dataset.

We quantified model performance using PVEs computed on both the overall, phenotypic level, and at the 
level of the residuals from the baseline (non-genetic) model. Consistently with other studies, higher PVE was 
achieved for SBP compared with DBP. For both phenotypes, it was clearly beneficial to use a non-linear ML 
model at the baseline level (consistent with other studies27), while a non-linear ML genetic model performed 
better than a linear regression genetic model primarily in self-reported White individuals. Regardless of type 
of model, using multiple PRSs, including those constructed based on the same GWAS using different p-value 
thresholds, improved model PVE especially in non-White individuals. In self-reported White individuals using 
multiple PRSs had relatively little improvement in test dataset PVE. These findings suggest that (a) well-powered 
GWAS from European-ancestry populations is sufficient to construct good PRS in White individuals (who are 
primarily of European genetic ancestries); this may be true for individuals of other genetic ancestries, yet data is 
not yet available to prove it, and (b) GWAS from non-European ancestry populations are useful for PRS in non-
White individuals, as is known, and (c) PRSs based on European ancestry GWAS are indeed useful in non-White 
individuals, and (d) flexibly allowing for potentially varying association effects of PRSs, each based on different 
p-value thresholds, is useful. Note that the usefulness of incorporating multiple PRSs based on the same GWAS 
is immediately apparent. On the face of it, one strong PRS based on a high p-value threshold should be sufficient. 
The usefulness of multiple PRSs based on the same GWAS resonates with the variability in the contribution of 
different genetic variants, beyond what is captured in GWAS. We hypothesized the local PRSs may capture this 
variability better, presumably because different genomic regions have potentially different associations with BP 
in different populations due to interactions with environment, lifestyle, and other factors. Yet, the local PRS 
model was less generally successful than global PRS models (with some exceptions, e.g., in Hispanic/Latino 
individuals), likely due to overfitting to the training dataset. In future work we will assess models using local 
PRSs in studies with larger sample sizes, which will potentially alleviate the overfitting problem. We also plan to 
study different potential constructions of local PRSs, in terms of both PRS derivation method, and definition of 
“locality”. While we here used LD-regions as the local information, PRSs based on specific pathways, which have 
been recently studied28–30, can also be viewed as local PRSs. Thus, both the definition of “local” and the method 
to construct local PRSs should be assessed.

We compared baseline models that included and not included genetic PCs, and ruled out using them in the 
model, as PCs did not improve model performance. This may not always be the case: other published work sug-
gested that, for some phenotypes, using PCs improves genetic prediction, with and without inclusion of PRSs 
in the prediction models31,32. Therefore, it is important to keep evaluating the potential use of PCs in prediction 
models.

The TOPMed dataset that we used is diverse in terms of both race/ethnicity and genetic ancestry composition. 
It is important to put this work in the context of many publications about the limited generalizability of PRSs that 
were developed primarily (or only) in population of European ancestries to populations of other ancestries33,34. 
Here, we studied the accuracy of BP prediction models via the “complexity levels” of the genetic models. First, 
level 1, used only a single PRS based on a large dataset of European ancestries (UKBB + ICBP). As shown in Sup-
plementary Table 8, the optimal p-value threshold when using a single PRS differed between self-reported race/
ethnic group, due to either genetic ancestry effects, covariate distributions, or both. The addition of multiple PRSs 
constructed based on the same and from different GWAS, each one as a separate variable, allowed the non-linear 
ML model to utilize the different PRSs in a way that increase prediction accuracy across groups, but without 
making an explicit choice of a single PRS for any group. This approach is different than models that attempt to 
construct a better, single, PRS by leveraging information across genetic ancestries or by prioritizing variants35–39. 
While both approaches are useful, our proposed multi-PRS approach within a non-linear ML model addresses 
the issue of interactions—potential differences in impact of PRS in different genetic ancestries or by different level 
of covariates, and further, by genomic region. It is also important to note that we compared the non-linear ML 
models to those using ancestry-specific PRSs developed using PRS-CSx, which were then summed to generate a 
single PRS (which is a standard application of PRS-CSx). However, these models performed less well. This could 
due in part to our summation of the PRSs: we used an unweighted sum, while an ideal implementation would 
use another independent dataset to compute PRS summation weights. The goals of improving PRS generaliz-
ability and of accounting for interactions in prediction models are both important and more work is needed for 
incorporating both purposes in the same framework.

It is important to highlight the differences in results when considering genetic (residual prediction, after 
accounting for non-genetic covariates) versus ensemble (BP phenotype prediction) model performance: the 
highest PVE on the phenotypic level was achieved in Black individuals. On the other hand, at the genetic level, 
the highest PVE was reached in White individuals, and lowest in Black individuals. We interpret this as Black 
participants included in the TOPMed program having the most diverse distribution in some risk factors for BP, 
such that the variance was well explained by the baseline covariates. This is consistent with results we recently 
published, showing that BP PRS performance in All of Us dataset varied by strata of BP risk factors13. This further 
underscores the importance of incorporating multiple risk factors when developing genetic BP prediction models.
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Calibration of prediction models to new populations is a well-recognized problem40,41. For example, in the 
context of atherosclerotic cardiovascular disease, many publications suggested specific ways to recalibrate the 
pooled cohort equations for specific or modern populations42,43. Including, recent literature studied the poten-
tial addition of a PRS for coronary artery disease to the pooled cohort equations, with model recalibration (for 
example44,45). In the context of non-linear ML models in the medical literature, model calibration is offered to 
address model “drift”, where patient characteristics or prevalence/incidence of outcomes change over time46. Here, 
we attempted a new way to calibrate the models developed in TOPMed to the MGB Biobank dataset by a full 
refitting of the baseline model (only covariates), but with no update to the genetic model. Indeed, the (TOPMed-
trained) genetic model performed better on the MGB Biobank dataset when the baseline model was fit on an 
MGB-trained baseline model. Still, more comprehensive work is needed to evaluate this and other calibration 
approaches in the context of genetic models, especially in the context of interactions. An important limitation 
of the assessment of prediction model over BP phenotypes is that BP has circadian rhythm47, and while typically 
BP is measured in cohort studies early in the day, in the hospital settings it is measures at the time of the patient 
visit, adding noise to the MGB dataset. In our work, TOPMed-trained genetic models’ performance was lower 
in MGB Biobank than in TOPMed, consistent with previous results studying hypertension PRS48. Surprisingly, 
models’ performance in the subgroup of self-reported Asian individuals were high and similar to the performance 
in the TOPMed test dataset. However, as the number of Asian participants is low, the confidence intervals of the 
PVE estimates in this group are wide, limiting conclusions.

One of the strengths of this work is the use of primary, TOPMed dataset, which is comprised of large, racial/
ethnically diverse and prospectively collected data used for both training and testing of the models. The dataset 
is of high-quality deep sequencing, joint allele-calling and the phenotypes were harmonized across studies. We 
used independent training and testing datasets, ensuring the reliability of model validation results. This study has 
some limitations as described above, including, limited sample size relative to the number of features when fitting 
a genetic model using local PRSs, MGB Biobank dataset is in general a “noisier” dataset, as it relies on data from 
health care visits and thus suffers from limitation of such datasets (BP measures may not follow best standards, 
may be measured using sick rather than healthy visits, etc.). Another limitation of this study is the development 
of PRSs based on the UKB + ICBP GWAS that partly overlapped with White TOPMed participants. We esti-
mated the contribution of these participants to the BP GWASs by performing a GWAS using these individuals 
in TOPMed, and then applied a new algorithm to eliminate the contribution of this TOPMed White individuals-
specific GWAS from the UKBB + ICBP summary statistics. While mathematically our algorithm is accurate, 
the contribution may not be entirely eliminated as the relevant summary statistics used by the UKBB + ICBP 
meta-analysis may have been based on a slightly different set of individuals (e.g., if not all participants from, 
say, Framingham Heart Study, are in this TOPMed data freeze). Thus, there may be some low levels of effects 
due to genetic relatedness between TOPMed participants and other participants in the UKBB + ICBP GWAS 
that were not included in the TOPMed White participants-specific GWAS. However, we think that this effect is 
likely very small. Finally, it should be noted that the Level 3 models included 21 PRSs, which are correlated to 
some extent, some highly correlated (based on the same GWAS but different thresholds). While this should not 
impact the predictions themselves, it would impact application of potential interpretation approaches for these 
models, including effect estimates and feature importance analyses49.

In summary, we constructed and evaluated non-linear genetic association models with SBP and DBP, com-
posed of sequentially-trained ensembles of a baseline and a genetic model. We showed that using multiple PRSs 
for the same trait based on the same GWAS improves the genetic model, and further including multiple PRSs 
based on the same trait based on multiple GWAS further improves the model. These improvements are mostly 
in non-White, i.e., self-reported Black, Asian, and Hispanic, populations. We also proposed a new way to lever-
age ensemble dataset to calibrate a model to a new dataset: by refitting one component of the model and using 
the other component as it was previously trained. Our results point to the promising potential of non-linear 
ML to combine traditional epidemiological risk factors for hypertension with genetic score for BP prediction.

Methods
We used two datasets. The primary dataset is from the Trans-Omics in Precision Medicine (TOPMed) con-
sortium, which was used to train and evaluate multiple models. The second dataset is from the Mass General 
Brigham (MGB) Biobank and was used to evaluate selected model performance in an independent healthcare-
system dataset. Below we describe the datasets and the steps for constructing and evaluating models. Figure 1 
describes the framework for the development of multi-PRS non-linear ML model allowing for non-genetic 
components to be calibrated across datasets.

The TOPMed dataset
The TOPMed study population included 62,295 unrelated (3rd degree or less) participants from 15 studies based 
in the U.S. and in Taiwan. Data was extracted from the freeze 8 TOPMed dataset release. Information about 
the studies including ethics statements is provided in Supplementary Note 1. Blood pressure phenotypes were 
harmonized by the TOPMed Data Coordinating Center (DCC)50 and included systolic blood pressure (SBP), 
diastolic blood pressure (DBP), and status of antihypertensive medication use (HTNMED_V1). Medication status 
was used to increase values of SBP and DBP by 15 and 10mmHg, respectively, to account for the expectations 
that their values would be higher if the corresponding individuals did not use antihypertensive medications.

Genotype data
We used whole genome sequencing (WGS) data from Trans-Omics for Prevision Medicine (TOPMed) program51 
Freeze 8 dataset. Genome samples were sequenced through TOPMed and the National Human Genome Research 
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Institute’s Centers for Common Disease Genomics (CCDG) program and harmonized together via joint allele 
calling. The methods for TOPMed WGS data acquisition and quality control (QC) are described in https://​www.​
nhlbi​wgs.​org/​topmed-​whole-​genome-​seque​ncing-​metho​ds-​freeze-8. Genetic Principal Components (PCs) and 
kinship coefficients were computed for the genetic data by the TOPMed DCC using the PC-Relate and PR-AiR 
algorithms52,53 implemented in the GENESIS R package54. Based on the kinship coefficients, we identified related 
individuals and generated a dataset in which all individuals were degree-3 unrelated, i.e., all kinship coefficients 
were < 2(−9/2) (approximately 0.04). We extracted allele counts of variants that passed TOPMed quality control 
flags from GDS files using the SeqArray package version 1.28.1 and then further processed the genetic data using 
custom R version 3.6.2 and Python version 3.6.15 scripts. Only variants with minor allele frequency ≥ 0.01 in 
the TOPMed dataset and that passed TOPMed QC were used in this study. There were 63,093 participants and 
12,341,303 variants available for PRS development.

Blood pressure phenotypes
We trained non-linear ML models to predict two phenotypes: systolic blood pressure (SBP) and diastolic blood 
pressure (DBP). SBP and DBP values were extracted, when available, from a harmonized datasets created by 
TOPMed50, and for some TOPMed-parent studies they were prepared by study researchers. To address the exist-
ence of unrealistic values in the dataset, but without forcing a specific threshold, we removed individuals with 
outlying values defined by phenotypic values above the 99th quantile and values below the 1st quantile for each 
of the phenotypes. This amounted to 1047 and 1403 individuals from the analyses of SBP and DBP, respectively. 
The quantiles were computed over the complete dataset. Values for SBP and DBP for individuals that were taking 
antihypertensive medications were adjusted by increasing SBP and DBP values by 15 and 10 mmHg, respectively.

Summary statistics from published GWAS
We used summary statistics from published GWAS of SBP and DBP provided by BioBank Japan Project (BBJ), 
Million Veteran Program (MVP), as well as UK BioBank and the International Consortium of Blood-Pressure 
Genome Wide Associations Studies (UKBB + ICBP). Details are provided in Supplementary Table 12. Because 
some of TOPMed European ancestry participants also participated in the UKBB + ICBP meta-analysis, we per-
formed GWAS of SBP and DBP using all self-reported White individuals in the TOPMed dataset (i.e. participants 
included in both TOPMed training and testing datasets), and then applied a procedure to “remove” the contribu-
tion of this GWAS from the overall UKBB + ICBP GWAS summary statistics55 as described in Supplementary 
Note 2.

Polygenic risk scores
We developed two types of PRS—“global PRS”, using SNPs from the entire genome, and, in secondary analysis, 
“local PRS”, calculated from SNPs within LD-regions. In both cases SNPs were selected using the clump & 
threshold approach. We developed and constructed global PRSs using PRSice2 version 2.3.556, from the BP 
GWAS summary statistics described above. As tuning parameters, we set R2 = 0.1, distance = 1000 kB, and several 
p-value thresholds: 5 × 10–8, 10–7, 10–6,…, 10–2. We used the TOPMed data set as a reference panel for LD (used 
for clumping). In secondary analysis, we developed local PRSs. We used previously computed LD-regions57 
provided in BED files defining chromosomal segments (see Data Availability) based on a European reference 
panel to subset the UKBB + ICBP GWAS summary statistics to files consisting of variants falling within each 
LD-region (chromosomal segment). We developed local PRS based for each of these regions using the same 
clump & threshold approach using PRSice2, but now, due to the large number of segments and thus features, 
we used a single p-value threshold of 10–2. For this secondary analysis we only used the UKBB + ICBP GWAS 
because we saw before that, although it is based on single genetic ancestry (European) PRS based on it perform 
well when evaluated in various self-reported race/ethnic groups13. In a Supplementary Note 3 we also describe 
the comparison of the models’ performance using global SBP and DBP developed using PRS-CSx58, which is 
an extension of the Bayesian polygenic prediction method PRS-CS59, from the three GWAS summary statistics 
used in this study.

Non‑linear ML model training and hyperparameter tuning
We used the python version 3.6.15 library xgboost version 1.5.260 to fit ensembles of gradient boosted trees. We 
performed hyperparameter tuning using Optuna61 library version 3.0.6. Specifically, we split the training dataset 
at random into 5 independent datasets and performed a fivefold cross-validation procedure to select optimal 
values of relevant tuning parameters.

Ensemble model
As described in Fig. 1, the ensemble non-linear ML model consisted of two consecutive components—“baseline 
model” and “genetic model”. The goal behind the two-model construction was (1) separately assess the benefit of 
non-linear modelling of non-genetic measures and genetic measures, (2) allow for flexible combination of the 
two models (e.g., linear model for covariates and non-linear model for PRSs, or the other way around), and (3) 
facilitate model calibration and generalizability between datasets while acknowledging that some covariates are 
potentially dataset-specific, and these are included only in the baseline model. The genetic model is expected 
to be fully transferable to a new dataset by using features that are comparable (or harmonized) across datasets.

We compared two potential constructions of both the baseline and the genetic models: non-linear ML (allow-
ing for data-driven incorporation of interactions), and linear regression (without modeling interactions). We 
divided the dataset such that 70% of the data was used as training data and 30% of the data was held out as a 
validation set. First, we trained the baseline model using covariates only, including age, sex, self-reported race/

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8
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ethnicity, BMI, and study. The genetic model was trained on the same set of features as in the baseline model, 
other than study, which is dataset-specific, and it also included genetic components, i.e., PRSs, where we used 
the global PRSs described above, the local PRSs in secondary analysis (described later). The genetic model was 
trained to predict the residuals from the baseline model.

Model development using multiple PRSs
In primary analysis, we studied the use of multiple PRSs in the genetic model via multiple models of increased 
complexity (in the sense that they include higher number of PRSs). We refer to these models as Level 1, Level 
2 and Level 3 with Level X being shorthand for Model complexity levels (Fig. 1c). Note that all genetic models 
included the same non-genetic covariates as described above, and they only differed by the inclusion of additional 
PRSs. Level 1 of the genetic model included a single PRS developed from the UKBB + ICBP GWAS summary 
statistics using the p-value threshold 10–2. Level 2 included 7 PRSs, all from the UKBB + ICBP GWAS, and based 
on all considered p-value threshold: 5 × 10–8, 10–7, 10–6,…, 10–2. Level 3 included PRSs constructed based on all 
considered GWAS (UKBB + ICBP, MVP, and BBJ) GWASs and using all p-value thresholds, i.e., it included 21 
PRSs. Level 1 models included only a single PRS based on the 10–2 p-value threshold because we expected this 
PRS to have the best performance based on past work studying BP PRSs13. In secondary analysis, we also evalu-
ated model performance, based on the training dataset only, when using each of the other UKBB + ICBP based 
PRSs (i.e. based on each of the 7 thresholds). The models were fit using the combined, multi-ethnic dataset, with 
training dataset cross-validation performance reported on the combined group and stratified by self-reported 
race/ethnicity. The goal was to assess whether the same or different thresholds are useful across groups, and 
thus whether multi-PRS models are useful because they potentially allow for different utilization of PRSs across 
individuals (i.e. due to interactions).

Secondary analysis using local PRSs
We considered using local PRSs instead of global PRSs because they may result in more interpretable models, 
i.e., where one could hopefully explain why different genomic regions may have different potential contributions 
to the BP model. Due to the large number of PRSs when computed over all LD-regions, potentially resulting in 
model overfitting, we augmented the ensemble model approach with a variable selection step. Here, we applied 
LASSO regression from the python library scikit-learn62 version 0.24.2 using, as before, cross-validation for tun-
ing parameter selection, on a linear model predicting the residuals from the baseline model using all constructed 
local PRSs. We next use the selected PRSs in the genetic model (see Fig. 4a for visualization of the Ensemble 
model with integrated LASSO step). We evaluated this model performance on the test dataset, and also, for com-
parison, of the model that uses only the LASSO (without the following non-linear XGBoost ML genetic model).

Assessment of computational needs
We assessed computational runtime and memory (RAM) usage of the non-linear ML models in comparison with 
the linear regression models using python timeit and memit modules. These were measured on a 13-inch 2020 
MacBook Pro machine, with the Apple M1-chip, macOS Sonoma version 14.4.1, 16 Gb of RAM and 8 vCPUs. As 
the non-linear ML models require tuning parameters fitting, we measured their runtime and memory over the 
fivefold cross validation process. We also measured the runtime and memory for applying the various models for 
prediction over the test dataset. We performed each computing task 10 times and provide the average runtime 
and RAM measures, other than for local PRS models, which took longer time, and we therefore fit them once 
for this assessment. We performed this analysis only using SBP models, that used a slightly larger sample size 
compared to DBP.

Model performance evaluation
Models’ performance was assessed on the test dataset (30% of the TOPMed dataset of unrelated individuals). 
We report two performance measures: percent variance explained (PVE) at both the residual (of the baseline 
model) and at the phenotypic (original BP phenotypes) level. To explain how each is computed we introduce 
some notation. Including, we distinguish between the predicted values of the baseline model, the genetic model, 
and the combined ensemble, and between the residuals of the baseline and the genetic models.

Let Mb and Mg denote a baseline and a genetic model, xb and xg the sets of covariates used by Mb , and Mg 
respectively, and g the set of PRSs used by Mg . Let y denote a BP outcome. A trained model Mb uses xb to predict 
y , as:

With ŷb being the prediction of Mb applied on xb . The residuals of model Mb are obtained as the difference 
between the observed and the predicted BP value, and are denoted by rb:

The genetic model is trained to predict rb using xg and PRSs g  . Thus

The residuals of Mg are given as the difference between the value it attempts to predict and its prediction:

(1)Mb(xb) = ŷb.

(2)rb = y − ŷb.

(3)Mg

(
xg , g

)
= r̂b.

(4)rg = rb − r̂b.



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12436  | https://doi.org/10.1038/s41598-024-62945-9

www.nature.com/scientificreports/

Noting based on Eqs. (2) and (4) that the observed BP measure y can be decomposed as:

We denote the prediction BP based on the ensemble model Me by ŷensemble with:

With the residuals rg of the genetic models being also the residuals of the ensemble model. For a given out-
come out the PVE by the predicted outcome ôut is defined as the percent reduction in the variance of out when 
accounting for ôut , using this formula:

Finally, we define the performance measures of the various models. To assess the performance of baseline 
models we compute phenotyping PVE, PVE

(
y, ŷb

)
 . To assess the performance of the genetic models we compute 

the PVE at the level of the baseline model residuals, i.e., PVE(rb, r̂b) . To assess the performance of the ensemble 
model we compute again PVE at the phenotypic level, i.e., PVE

(
y, ŷensemble

)
.

To further interpret results, we computed 95% confidence intervals for the estimated PVEs using bootstrap 
sampling from the test dataset, with 100 repetitions. Specifically, we sampled with replacement individuals from 
the test dataset using the same sample size of the test dataset relevant for each analysis, and applied the predic-
tion models that were trained over the train dataset. When assessing genetic model, we applied both the baseline 
and the genetic model over the sampled individuals. The PVE was computed for each bootstrap sample, and the 
95% confidence interval was derived using the percentile method, i.e. using the 2.5 and 97.5 percentiles of the 
bootstrap distributions.

The Mass General Brigham (MGB) Biobank dataset
To assess how the patterns observed in the TOPMed dataset generalize to a healthcare-based medical system, we 
implemented all fitted models on the MGB Biobank dataset (MGB Biobank). In MGB Biobank, phenotypes are 
available from electronic health records (EHR). Because blood pressure, BMI, and medication data are available 
sporadically depending on patient visits, we restricted the datasets health records from two years, 5/25/2021 to 
5/25/2023, so that all time-varying variable correspond to approximately the same age and time. The initial MGB 
Biobank dataset included data for 142,476 individuals. Of these, N = 108,389 individuals did not take antihy-
pertensive medications (dataset codes “antihypertensive medications”, “antihypertensive-other”, “beta blockers/
related”, “calcium channel blockers”, “diuretics”, “direct renin inhibitor”, “antihypertensive combinations”). Next, 
we further filtered the dataset to only include individuals with available systolic or diastolic reading (N = 29,282). 
We then only included individuals with genetic data, who also are genetically unrelated to each other, resulting in 
9494 individuals in the final dataset. For each individual, we extracted the median SBP, DBP, and BMI values from 
these years. Individuals self-identified with categories of race and ethnicity. Individuals with Hispanic ethnicity 
were set to the “Hispanic” category, and otherwise individuals with non-Hispanic ethnicity and with Black or 
African American race to Black, and those with non-Hispanic White or Asian race were set to White or Asian, 
respectively, and non-Hispanic individuals with more than one self-identified race or with “other” or “unknown” 
were set to “other”. More details about the MGB Biobank dataset are provided in Supplementary Note 4.

To calibrate the ensemble model to the MGB Biobank dataset, we trained the baseline model on the set of 
covariates from MGB Biobank for prediction of the phenotype (SBP/DBP) and calculated the residuals. Next, 
we evaluated, separately, the genetic model (trained on the TOPMed training dataset) and the ensemble (MGB 
Biobank-trained baseline model + TOPMed trained genetic model) models. The genetic models included the 
three model complexity levels trained on the TOPMed dataset. To assess this calibration approach, we assessed 
the performance of the TOPMed-trained genetic model when applied over residuals from the MGB-trained and 
residuals from the TOPMed-trained baseline models.

Ethics statement
All methods were carried out in accordance with relevant guidelines and regulations. The presented analysis 
relies on observational data only, the experimental protocol is purely computational. This work was approved 
by the Mass General Brigham IRB (protocol #2021P001928) and by the Beth Israel Deaconess Medical Center 
Committee on Clinical Investigators (protocol #2023P000541). Informed consent was obtained from all partici-
pants, as described in Supplementary Note 1 (TOPMed participants) and Supplementary Note 4 (MGB Biobank 
participants).

 Data availability
TOPMed freeze 8 WGS data and harmonized BP phenotypes are available by application to dbGaP according to 
the study specific accessions: Amish: “phs000956” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​
cgi?​study_​id=​phs00​0956.​v1.​p1), ARIC: “phs001211” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​
cgi?​study_​id=​phs00​1211.​v4.​p3), BioMe: “phs001644” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​
cgi?​study_​id=​phs00​1644.​v2.​p2), CARDIA: “phs001612” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​
study.​cgi?​study_​id=​phs00​1612.​v1.​p1), CFS: “phs000954” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​
study.​cgi?​study_​id=​phs00​0954.​v4.​p2), CHS: “phs001368” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​
study.​cgi?​study_​id=​phs00​1368.​v3.​p2), COPDGene: “phs000951” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​

(5)y = ŷb + rb = ŷb + r̂b + rg .

(6)ŷensemble = ŷb + r̂b.

(7)PVE
(
out, ôut

)
=

(

1−
var(out)− var

(
ôut

)

var(out)

)

× 100%.
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https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001368.v3.p2
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cgi-​bin/​study.​cgi?​study_​id=​phs00​0951.​v5.​p5), FHS: “phs000974” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​
cgi-​bin/​study.​cgi?​study_​id=​phs00​0974.​v4.​p3), GENOA: “phs001345” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​
gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1345.​v3.​p1), GenSalt: “phs001217” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​
cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1217.​v3.​p1), HCHS/SOL: “phs001395” (https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1395.​v2.​p1), JHS: “phs000964” (https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​0964.​v5.​p1), MESA: “phs001211” (https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1211.​v4.​p3), THRV: “phs001387” (https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1387.​v3.​p1), WHI: “phs001237” (https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1237.​v3.​p1). Summary statistics from MVP BP GWAS are 
available from dbGaP by application to study accession “phs001672” (https://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​
gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1672.​v4.​p1). The summary statistics from the UKBB + ICBP BP GWAS are 
available at https://​grasp.​nhlbi.​nih.​gov/​FullR​esults.​aspx. MGB Biobank genotyping and phenotypic data are avail-
able to Mass General Brigham investigators with required approval from the Mass General Brigham Institutional 
Review board (IRB). Data needed to construct the selected BP PRSs generated in this study will become publicly 
available on a Zenodo repository upon paper acceptance and will include variants, alleles, and weights for each 
of the PRS based on GWAS of SBP and DBP. The BED files that define LD-regions used for construction of local 
PRSs are available under the Bitbucket repository in https://​bitbu​cket.​org/​nygcr​esear​ch/​ldete​ct-​data/​src/​master/.
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