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ABSTRACT OF THE DISSERTATION

Data-driven Robotic Manipulation of Deformable Objects Using Tactile Feedback:

From Model-free to Model-based Approaches

by

Yi Zheng

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Veronica Santos, Chair

Perceiving and manipulating deformable objects with the sense of touch are essential skills in

everyday life. However, it remains difficult for robots to autonomously manipulate deformable

objects using tactile sensing because of numerous perception, modeling, planning, and control

challenges. We believe this is partially due to two fundamental challenges: (1) Establishing a

physics-based model describing physical interactions between deformable tactile sensors and de-

formable objects is difficult; (2) Modern tactile sensors provide high-dimensional data, which is

beneficial for perception but impedes the development of practical planning and control strategies.

To address these challenges, we developed systematic frameworks for the tactile-driven manipula-

tion of deformable objects that integrates state-of-the-art tactile sensing with well-established tools

used by other robotics communities.

In Study #1, we showed how a robot can learn to manipulate a deformable, thin-shell object

via tactile sensor feedback using model-free reinforcement learning methods. A page flipping

ii



task was learned on a real robot using a two-stage approach. First, we learned nominal page

flipping trajectories by constructing a reward function that quantifies functional task performance

from the perspective of tactile sensing. Second, we learned adapted trajectories using tactile-

driven perceptual coupling, with an intuitive assumption that, while the functional page flipping

trajectories for different task contexts (page sizes) might differ, similar tactile sensing feedback

should be expected.

In Study #2, we showed how a robot can use tactile sensor feedback to control the pose and ten-

sion of a deformable linear object (elastic cable). For a cable manipulation task, low-dimensional

latent space features were extracted from high-dimensional raw tactile sensor data using unsuper-

vised learning methods, and a dynamics model was constructed in the latent space using supervised

learning methods. The dynamics model was integrated with an optimization-based, model predic-

tive controller for end-to-end, tactile-driven motion planning and control on a real robot.

In summary, we developed frameworks for the tactile-driven manipulation of deformable ob-

jects that either circumvents sensor modeling difficulties or constructs a dynamics model directly

from tactile feedback and uses the model for planning and control. This work provides a founda-

tion for the further development of systematic frameworks that can address complex, tactile-driven

manipulation problems.
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2.3 Representative tactile sensing traces from the artificial apical tuft (electrodes 7, 8, 9,
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gers during the flipping of small pages when using the three categories of trajectories

(15 rollouts each) described in Section 2.4.3. The semi-circular trajectories (green)

generate smoother tactile signals than both warping trajectories (blue) and aggressive

trajectories (red). As indicated by the periods shaded in gray, spikes in the tactile sig-

nals occur near the end of the page flipping movement for the warping trajectories and

near the beginning and end of the movement for the aggressive trajectories. . . . . . . 17
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2.4 (a) The multimodal BioTac sensor is comprised of a rigid core, elastomeric skin, and

fingernail (Image from [28]). (b) The rigid core of the BioTac is shown with impedance
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of cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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2.6 Individual reward components from Equation 2.15 are shown for the nominal trajec-
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displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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warping period shaded in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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2.8 Low frequency pressure data are shown for the (a) top and (b) bottom fingers for learn-

ing a nominal trajectory for flipping a large page. A total of 15 rollouts are shown for

each the initial policy after a single policy update (red) and final policy after 41 policy

updates (green). The initial policy generates undesired spikes in the low frequency

pressure data during the page warping period shaded in gray. . . . . . . . . . . . . . . 31
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performed for each of six trajectories on a binder containing small pages: an ideal

semi-circular trajectory (Functional), three trajectories that cause page warping and

snapping, and two aggressive trajectories. The Warped 1 trajectory is the nominal

trajectory learned for large pages, but purposely applied to small pages. . . . . . . . . 34

2.10 Learning curves are shown for the simplified experiment on adaptation of the learned

nominal trajectories to a novel context using the (a) artificial apical tuft and (b) PCA

eigenvalue representations of tactile sensing traces. The goal position for small pages

is known a priori. Mean and variance are presented for batches of 10 rollouts. . . . . . 36
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tuft and (b) PCA eigenvalue representations of tactile sensing traces. The goal posi-

tion for small pages is known a priori. Tactile data are shown for a nominal trajectory

learned for large pages and applied to large pages (green) and to small pages prior to

adaptation learning (red), for 10 rollouts each. Three independent learning trials (9

policy updates each) show how the tactile sensing traces change as the initial nominal

trajectory for large pages is adapted to small pages during adaptation learning. . . . . . 37
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context. The goal position for small pages is not known a priori and must be learned.
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(red), for 10 rollouts each. Three independent learning trials (16 policy updates each)

show how the distributions change as the initial nominal trajectory for large pages

is adapted for small pages after learning. The distribution of tactile feedback is also

shown for the ideal case of a nominal trajectory learned for small pages and applied to

small pages (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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3.1 A 7-DOF robot arm controls the pose angle and tensile state of an elastic cable using

a gripper outfitted with the vision-based GelSight tactile sensor [112]. One end of the

tethered cable is manipulated by the gripper through a rigid rig. The left and right

columns show different cable states and their tactile representations, respectively. . . . 49

3.2 Two different types of inference models were considered for capturing the latent space

dynamics of the observation-action pairs. (L) The static inference model (section 3.3.4.1)

assumes that each transition tuple is i.i.d. Representative tactile sensor data are shown

as outputs of the generative process. (R) The sequential inference model (section 3.3.4.2)

considers temporal relationships within the tactile sensor data. Solid and dashed ar-

rows represent generative processes and inference functions, respectively. Grey and

white shading denote whether the variables are observed or unknown, respectively.

Squares and circles indicate whether variables are treated as deterministic or stochas-

tic, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Experimental procedure: (Left) We collected tactile observation – robot action pairs

for use as training data. (Center) System dynamics were mapped from a high-dimensional

tactile sensor data space to a low-dimensional latent space. (Right) The learned latent

space dynamics model was integrated with an optimization-based model predictive

control framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Experiment setup: The robot gripper moves within a 2D plane defined by the x- and

y-axes. The top finger of the gripper is outfitted with a camera-based tactile sensor

(GelSight). The configuration of the elastic cable is specified as the angle α between

the cable and the x-axis, and the distance d between the grasping point and the anchor

point. The Aruco marker is used solely for visualization within the latent space and is

not used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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3.5 The training and validation loss curves are shown for three random seeds for the GP-

based static inference model of latent space dynamics. From left to right, the first three

plots show the training loss for the encoder-decoder reconstruction loss, GP latent

space transition likelihood, and negative entropy encoder regularization, respectively

(terms I, II, and III in Eqn. Equation Equation (3.24)). The plot on the far right shows

the validation loss defined in Section 3.4.3. . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 For the GP-based static inference model of latent space dynamics, the original Gel-

Sight marker displacement vector fields (Row 1) are shown alongside the tactile se-

quences reconstructed from the learned dynamics model at epochs 2, 18, and 30 (Rows

2, 3, and 4, respectively). The solid arrows in Rows 2-4 are reconstructed by sending

the GP predictive mean to the decoder network. The shaded arrows are reconstructed

by sending 20 predictions sampled from the GP predictive distribution to the decoder

network. The data shown are for the worst performing trial (purple trace) in Figure 3.5. 82

3.7 (Row 1) The latent space structure is shown, parameterized by α and d, after map-

ping all observations from the validation dataset through the trained encoder network

at epochs 2, 18, and 30 for the GP-based static inference model of latent space dy-

namics. The colormaps for α and d are based on data from the Aruco marker shown

in Figure 3.4. (Row 2) All reconstructed and original sequences of validation data, as

encoded in the latent space, are shown at epochs 2, 18, and 30. The start and end of an

individual trajectory (purple trace in Figure 3.5) are highlighted with a red cross and

blue triangle, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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3.8 The training and validation loss curves are shown for the GP-based sequential infer-

ence model of latent space dynamics. For brevity, the recurrent state space model was

trained only once using 26 epochs. The SVGP was then trained with the latent state

encoded by the inference model q. The plot on the left shows the reconstruction loss

(red) and KL divergence regularization loss (blue) (terms I and II from Eqn. Equation

Equation (3.29)). The plots in the center and on the right show the SVGP negative log

likelihood and validation loss, respectively, for the same three random seeds used to

evaluate the GP-specific static inference model. . . . . . . . . . . . . . . . . . . . . . 87

3.9 For the GP-based sequential inference model of latent space dynamics, the original

GelSight marker displacement vector fields (Row 1) are shown alongside the tactile
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model at epochs 2, 38, and 40 for the GP-based sequential inference model of latent

space dynamics. The colormaps for α and d are based on data from the Aruco marker

shown in Figure 3.4. (Row 2) All reconstructed and original sequences of validation

data, as encoded in the latent space, are shown at epochs 2, 38, and 40. The start and

end of an individual trajectory (red trace from the center and right plots in Figure 3.8)

are highlighted with a red cross and blue triangle, respectively. . . . . . . . . . . . . . 91
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3.11 The distribution of differences between the original and reconstructed latent space
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3.12 Snapshots are shown of the real robot (Rows 1 and 3) and corresponding the latent

space (Rows 2 and 4) for each of two manipulation experiments. The first trial required

9 MPC iterations; snapshots are shown for MPC iterations 1, 3, 5, 7 and 9. The
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3.14 The detailed network structure is shown for the sequential inference model described in

Section 3.4.4 and on the right of Figure 3.2. The top two networks on the left describe

the inference model. The top two networks on the right describe the generative process.

The recurrent neural networks on the bottom left connect the inference model and
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CHAPTER 1

Introduction

1.1 Motivation

The sense of touch is ubiquitous in the everyday life of human beings. People rely on the sense

of touch to feel the world and explore their surroundings. When people use touch to perceive and

manipulate an object, the contact between the hands and the object or the environment provides

information about the interaction that can be leveraged to recognize objects or make decisions. In

particular, there are many cases in which touch is critical to manipulating deformable objects in

our daily life. For example, we use the finger and palm to feel the magnitude and direction of

tension when tightening a pair of shoe laces, or we use our hands to feel the shape and hardness of

dough when making pizza, etc.

To bring robots into the daily life of human beings, we believe it is important to equip robots

with the capability of leveraging the sense of touch to interact with deformable objects intelligently.

Currently, there are few works on the tactile-driven manipulation of deformable objects, and nu-

merous modeling, planning, and control challenges remain to be solved for realizing such a goal.

One fundamental challenge is that many of the existing frameworks for planning and control in

robotics were developed under the assumption of a world filled with rigid bodies. However, for the

tactile-driven manipulation of deformable objects, both state-of-the-art tactile sensors and the ob-

jects are deformable. Hence, it is extremely difficult to establish a physics-based model to describe
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physical interactions between the sensor and the object, and to apply the rich, well-established

theories for planning and control, accordingly. Another fundamental challenge is that, for many

modern tactile sensors, the tactile information is provided in the form of high-dimensional data,

as with camera-based tactile sensors. Intuitively, high-dimensional tactile data can benefit percep-

tion since high-dimensional data usually means enhanced spatial resolution. Yet, high-dimensional

tactile data can impede the development of practical and effective planning and control methods

because it is difficult to directly describe how the system state changes as a consequence of a con-

trol action. Therefore, to address these challenges and develop robots capable of the tactile-driven

manipulation of deformable objects, we conducted studies to construct systematic frameworks for

tactile perception, modeling, planning, and control that were inspired by many of the recent ad-

vances in robotics and machine learning.

1.2 Contributions

This dissertation aims to develop systematic frameworks for the tactile-driven manipulation

of deformable objects. We propose to bring recent technical advances from machine learning,

optimization, and control theory into the construction of the systematic frameworks such that the

difficulty of hard-to-model and high-dimensional tactile feedback related to deformable object

manipulation can be circumvented or practically addressed for real robot experiments. We believe

our works provide initial foundations for developing systematic frameworks that can handle more

complex, tactile-driven deformable object manipulation problems for semi-autonomous robots in

our physical world and everyday life.

Chapter 2 presents a framework that combines model-free learning and imitation learning for

the tactile-driven manipulation of thin-shell deformable objects. We demonstrated the effective-
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ness of the framework on a real robot for the task of flipping a notebook page. The robot relied

directly on tactile feedback in order to learn a functional behavior after starting from an non-

functional behavior. Moreover, for similar tasks with a different task context (page size), tactile

feedback generated from the functional behavior learned for one task context was used to guide

the adaptation of robot behavior for a novel task context.

Chapter 3 presents a framework that uses both unsupervised learning and supervised learning

for the tactile-driven manipulation of deformable linear objects. We demonstrated the effectiveness

of the framework on a real robot for the task of controlling the pose and tension of an elastic

cable. Data-driven approaches were leveraged in order to identify a system dynamics model for

physical interactions between a deformable tactile sensor and the elastic cable. A recurrent neural

network and probabilistic generative modelling techniques were leveraged in order to extract low-

dimensional latent space features from high-dimensional raw tactile sensor data. The recurrent

neural network was then used to guide the supervised learning of a Gaussian process model, which

has fewer parameters than a recurrent neural network but retains sufficient representative power.

The Gaussian process model that encoded the latent space dynamics was further integrated with

an optimization-based, model predictive control framework for motion planning and control. The

overall framework has an “end-to-end” flavor since the input information is high-dimensional raw

tactile data and the output is a manipulation behavior.

Chapter 4 summarizes the dissertation and presents opportunities for future work that build on

the research in this dissertation.
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CHAPTER 2

Autonomous Learning of Page Flipping Movements via Tactile

Feedback

2.1 Abstract

Robotic manipulation is challenging when both the objects being manipulated and the tactile

sensors are deformable. In this work, we addressed the interplay between the manipulation of

deformable objects, tactile sensing, and model-free reinforcement learning on a real robot. We

showed how a real robot can learn to manipulate a deformable, thin-shell object via feedback

from deformable, multimodal tactile sensors. We addressed the learning of a page flipping task

using a two-stage approach. For the first stage, we learned nominal page flipping trajectories

for two page sizes by constructing a reward function that quantifies functional task performance

from the perspective of tactile sensing. For the second stage, we learned adapted trajectories

using tactile-driven perceptual coupling, with an intuitive assumption that, while the page flipping

trajectories for different task contexts (page sizes) might differ, similar tactile feedback should

be expected from functional trajectories for each context. We also investigated the quality of

information encoded by two different representations of tactile sensing data: one based on the

artificial apical tuft of bio-inspired tactile sensors, and another based on PCA eigenvalues. The

results and effectiveness of our learning framework were demonstrated on a real 7-DOF robot arm

4



and gripper outfitted with tactile sensors.

2.2 Introduction

Manipulation skills are important human capabilities. With these skills, humans are able to

tackle a wide range of tasks requiring different levels of dexterity, using a large variety of objects,

and having distinct desired outcomes. For tasks requiring dexterity, the sense of touch plays a

major role in enabling the prediction of key state transitions that occur during manipulation ac-

tions. Distinct tactile patterns are associated with transitions such as the making and breaking of

contact with an object, or changes in weight during the lift and replacement of a grasped object.

Predicting such state transitions allows the human to detect and react to undesired events that pro-

duce deviations from the desired task states. This capability is particularly relevant when vision

is occluded and the task state cannot be visually inferred [46]. When the sense of touch is taken

away, complementary sensory mechanisms such as vision are often insufficient for completing ma-

nipulation tasks with the same level of functional performance. This importance of the sense of

touch is demonstrated by a human perception study in which a subject, whose sense of touch at the

fingertip is temporarily impaired by anesthetization takes much longer to execute a match-lighting

task that seems trivial before the anesthesia [45]. Although one could argue that this demonstrates

that humans can still perform manipulation tasks using complementary sensory mechanisms, it

also demonstrates the importance of tactile sensing for tasks requiring dexterity.

To achieve performance with dexterity comparable to the humans, robots could be equipped

with tactile sensors that provide rich information about the contact interactions between them-

selves and their environment [120], [22]. Once equipped with such sensors, we believe that the

ability to complete complex manipulation tasks is dependent on how three learning challenges are

5



Figure 2.1: Three joints (J2, J4, J6) of a 7-DOF Kinova robot arm are controlled to perform

page flipping movements in the y-z plane using two fingers outfitted with deformable, multimodal

BioTac tactile sensors. Large and small notebook pages (shown) were held by rigid binders placed

on a flat support surface parallel to the x-y plane. Passive motion capture markers are attached to

the binders for tracking displacement.

addressed: Firstly, the robot needs to learn how to associate specific task state transitions with

corresponding sensory events and use this association, or mapping, to detect undesirable states

and evaluate the functional performance of the task. Second, once the ability to detect undesirable

states through sensory events is acquired, the next problem is to learn which actions to perform

in order to compensate for the observed sensory deviations and to return to states associated with

acceptable functional task performance. Examples of such corrective actions are incremental ad-

justments to grasp forces after sensing slippage between the fingertips and the surface of a grasped
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object, or adjustments of wrist positions to make sure a scraping tool maintains sufficient contact

with a tilted surface [96]. Finally, once the previous two learning challenges have been overcome,

it is crucial to achieve generalization of these capabilities to novel contexts or scenarios [51, 98].

In the past, a major bottleneck for solving the three aforementioned learning challenges lay

in the limitations of tactile sensing hardware technology. Traditional tactile sensors composed

of pressure sensing arrays have low deformation capabilities [42], which may not encode suffi-

cient information for tasks that require detailed knowledge of the finger-surface interactions. In

recent years, efforts have been made to develop deformable tactile sensors that can provide multi-

modal and high-resolution spatial information, such as the BioTac [116], GelSight [122] and Tac-

Tip [114]. Although several successful applications of these sensors exist for tasks such as slip

detection [106, 43] or object property classification [61], there have been few examples of their

application to more general forms of object manipulation [107, 55, 25, 99]. When the manipulated

object is highly deformable (e.g., thin-shell objects such as paper), the application of tactile sensing

seems to be even more rarer.

Currently, there are two key challenges that limit the application of state-of-the-art tactile sen-

sors to dexterous object manipulation problems: (i) the dynamics of the interactions between the

sensors and the manipulated objects are nontrivial to model, especially for cases where both the

sensor and the object are deformable, and (ii) in most cases, it is difficult to quantify the overall

functional performance of a manipulation task solely based on tactile information that is inherently

localized to finger-object interactions.

To overcome the aforementioned challenges, we propose an approach that begins by deploy-

ing a model-free reinforcement learning process seeded via human demonstrations that is then

guided by a tactile-based reward function in order to learn a nominal movement trajectory for a

specific task context. Using model-free reinforcement learning, we do not require explicit models
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of the system components (e.g., the tactile sensors, the manipulated objects, and the interactions

between them) and are able to extract the necessary information solely from the tactile and pro-

prioceptive data acquired during the process, as shown in other motor skill acquisition tasks using

real robots [50], [23]. Once the nominal movement trajectory has been learned, the corresponding

sensor readings are considered as the nominal sensing traces. In order to generalize the learned

movements to different task contexts, we operate under the assumption that, for tasks where the

trajectories required for each context are different, the resultant nominal sensing traces associated

with the functional behavior should still be similar. Under this assumption, we can use the differ-

ences between sensing traces in order to adapt the movement trajectory to a different context. Such

an adaptation is achieved by a separate reinforcement learning process, where adjustments to the

nominal trajectory are learned using the differences between the nominal sensing traces and the ac-

tual sensor traces, acquired during execution of the learned movement trajectory in a new context.

We use our approach to tackle a notebook page flipping task, where both the tactile sensors and

manipulated objects are highly deformable. Different contexts result from using different notebook

page sizes that require different movement trajectories to flip pages at an acceptable performance

level.

Our work contributes to the development of new reinforcement learning approaches for the

manipulation of deformable objects while explicitly leveraging state information encoded in tactile

sensor data. More specifically, the contributions of this paper are the following: (i) we show

that a nominal trajectory with functional behavior can be learned using model-free reinforcement

learning and a tactile-based reward function, (ii) we achieve the adaptation of such functional

behaviors to a novel context by relying solely on the differences between tactile sensing traces

generated by a nominal trajectory and those generated for a novel context, and (iii) our learning

approach demonstrates the manipulation of highly deformable thin-shell objects with a real robot.
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Section 2.3 outlines related work. Section 2.4 details the manipulation task and our general

methodology. Section 2.5 provides a description of the hardware used in our experiments as well

as a discussion of our experimental results. Section 2.6 summarizes contributions and limitations

of this work, and suggests directions for future work.

2.3 Related Work

The three topics that interplay in this paper are object deformability, modeling of tactile sensors,

and object manipulation in robotics. In this section, we provide brief introductions to related work

on each of these topics.

Robotic manipulation of objects (rigid or deformable) has been an active area of research for

quite some time. Regarding the manipulation of rigid object, several efforts have focused on grasp-

ing or contour-following tasks, with approaches that rely on tactile sensing to enable the detection

of salient discrete events (e.g. slip detection, stability estimation, force thresholding) [58, 93, 107],

or utilizing tactile information as continuous feedback signals that drive corrective actions [55, 25].

While the manipulation of rigid objects has been extensively investigated, the same cannot

be said for the manipulation of deformable objects, especially when considering approaches that

leverage tactile sensing. Currently, state-of-the-art approaches to the manipulation of deformable

objects rely predominantly on visual sensing [77], with tactile sensing mainly being explored for

the classification of object properties [121, 123] or shape estimation [78, 111]. Such limited ap-

plication of tactile sensing to the manipulation of deformable objects is not surprising, considering

that it is extremely difficult to accurately model deformable objects, deformable tactile sensors,

and their complex interactions during contact.

Nonetheless, some efforts have been made to model deformable linear objects (DLOs), [67]

9



such as ropes and cables [11, 83], as well as thin-shell objects, such as paper [26] and gar-

ments [73]. Still, all of these approaches either require complex models of internal physical states

of deformable objects that are difficult to deploy in real robot experiments, or require sufficiently

accurate complementary sensing mechanisms (e.g., fixed visual tracking markers) instead of tactile

sensing.

A recent work by She, et al. uses tactile sensing to manipulate a deformable object. A de-

formable, computer vision-based tactile sensor (GelSight [122]) is applied to a cable following

task [84]. The authors used a model-based approach for manipulation because the tactile images

from the sensor enabled the state of the cable to be continuously observed throughout task ex-

ecution. In this work, we sought to manipulate a deformable thin-shell object (notebook page).

We employed a deformable tactile sensor (BioTac [116]) that does not enable a direct observa-

tion of system state for this particular manipulation task, and so we elected to use a model-free

reinforcement learning approach.

Typically, endowing a robot with predictive tactile sensing capabilities has been approached

as a forward modeling problem, which is nontrivial for deformable tactile sensors that engender

soft contact (e.g. BioTac [116], GelSight [122], TacTip [114]). Successful predictive approaches

include building latent space dynamics models for the BioTac sensor using deep representation

learning to enable object surface servoing [97], and training deep recurrent neural networks to

predict sequences of future GelSight tactile images from the current tactile image and applied

control actions for the implementation of a model predictive control framework [99]. Note that

in both of these examples, the objects being manipulated were rigid and the manipulative actions

could be accurately observed and evaluated based on the tactile sensor information.

Recent manipulation approaches attempt to capitalize on the recent successes of reinforcement

learning. Some approaches leverage simulation in order to pre-learn policies that are then trans-
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ferred to real robotic systems [108, 39]. Other approaches begin directly with real robotic systems

either by first learning how to evaluate the quality of their actions and using the quality assessments

to guide the learning [18], or by focusing on a single manipulation action and only considering one

object [105].

In order to deploy reinforcement learning on real robots and tackle more complex manipulation

tasks, we elected to use policy representations with a limited number of parameters to encode the

movement of the robot. Several policy representations have been proposed, including deterministic

representations such as dynamic movement primitives (DMPs) [80] and probabilistic representa-

tions such as probabilistic movement primitives [70] or Gaussian mixture regression (GMR) [15].

In this work, we use the DMP framework mainly due to its successful application to motor skill

learning problems with real robots [23].

2.4 Learning to Manipulate a Thin-shell Object via Tactile Sensor Feedback

We partition the learning challenges into two sub-problems in order to show, first, that a robot

can learn a page flipping task using quantitative performance measures based on tactile sensing,

and second, that deviations from expected tactile sensor feedback can be used to adapt nominal

actions to different contexts. First, we learn nominal trajectories leading to the functional behav-

ior of page flipping. To learn these nominal trajectories efficiently, we bootstrap a model-free

reinforcement learning process seeded by human demonstrations via kinesthetic teaching. The re-

inforcement learning process is guided by a reward function based on tactile signals and motion

tracking data. The tactile signals provide information about the contact state between the fingertips

and grasped notebook pages. The motion capture data tracks the movement of the notebook for

the evaluation of task performance.
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Second, after learning a nominal page flipping trajectory, we learn an additional tactile-based

feedback term that adapts the nominal trajectory to a different-sized notebook (a different context).

The additional feedback term is denoted as a perceptual coupling term [49] and is in fact a separate

correction policy. As previously mentioned, the correction policy is learned based on the assump-

tion that, while the nominal movement trajectories for different page sizes might differ, the sensing

traces corresponding to functional behaviors should remain similar. Hence, the correction policy

for a novel page size should adapt the movement trajectory such that it reproduces the nominal

sensing traces corresponding to the functional page flipping behavior generated by learning with

the nominal page size. While this correction policy is also learned via a model-free reinforce-

ment learning process, the reward function that guides this process is now purely based on tactile

information.

In this section, we provide a brief introduction to the DMPs policy representation (Section 2.4.1)

and the reinforcement learning algorithm used for both learning sub-problems (Section 2.4.2). We

then describe a qualitative study aimed at establishing the relevance of tactile information to the

page flipping task (Section 2.4.3). Leveraging insights from the qualitative study, we describe how

we use tactile and marker tracking information to learn the nominal movement trajectories (Sec-

tion 2.4.4) and how we use tactile sensor feedback exclusively to adapt the nominal trajectory to

a different page size (Section 2.4.5). Finally, we describe several alternative representations for

tactile information that ensure that maximal tactile information is provided to the reinforcement

learning process in a computationally efficient (e.g. low-dimensional) manner (Section 2.4.6).

2.4.1 Dynamic Movement Primitives

In order to learn a nominal movement trajectory, the parameters of a trajectory representation

are adjusted to reproduce a demonstrated trajectory and fine-tuned by a reinforcement learning
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algorithm. In this work, we choose the Dynamic Movement Primitives (DMPs) as the parametric

representation of a trajectory [80]. A DMP typically consists of (i) a transformation system (tra-

jectory generator), (ii) a phase system, and (iii) a nonlinear forcing function. We also include a

gating system to scale the magnitude of the forcing term [91]. We choose a transformation system

for discrete movements [40] [91] ż

ẏ

=

 (αy(βy(yg − y)− z)+ v f (s))/τ

z/τ

 , (2.1)

where y, yg are the actual position and goal position of a robot movement respectively, αy is a

spring constant, βy is a damping constant, τ is a temporal scaling factor of the movement duration,

and f (s) is a non-linear forcing function of a phase variable s that determines the shape of the robot

trajectory.

The forcing function is defined as

f (s) =
∑

N
i=1 Φi(s)ωi

∑
N
i=1 Φi(s)

s(yg − y0), (2.2)

with Gaussian kernel

Φi(s) = exp((s− ci)
2/hi). (2.3)

where ci and hi represent the center and width of the Gaussian kernel, respectively. The forcing

function is scaled by the difference between the start y0 and goal position yg, and by a gating

variable. The gating variable v evolves as a sigmoid system [91] scaled by a time constant αv,

v̇ =−αvv(1− v/vmax). (2.4)

In addition, the forcing function depends on the phase variable s instead of explicitly depending

on time. The phase variable evolves as a constant decaying system [91]

ṡ =−1/τ. (2.5)
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Note that each degree of freedom for the robot has its own transformation system and forcing

function. The synchronization of the multiple degrees of freedom is achieved via a shared phase

variable.

To encode a demonstration movement ydemo as a DMP, the weights {ω}i associated with the

forcing function need to be adapted such that the generated robot movement matches the recorded

human demonstration used to seed the learning process. The initial fitting of the DMP weights is

achieved by solving the linear regression problem

{ω}i = argmin{ω}i ∑
s
( ftarget(s)− f (s)) (2.6)

where ftarget is the target forcing function (human demonstration) and is computed by integrating

the transformation system (Equation 2.2) using variables extracted from the demonstration.

2.4.2 Model-based Relative Entropy Policy Search

We rely on reinforcement learning to fine-tune the initial movement trajectory that matches the

demonstration and then to learn the correction policy to adapt the nominal movement trajectory.

Specifically, we use an information-theoretic policy search approach: Model-based Relative En-

tropy Policy Search (MORE) [1]. By bounding the KL-divergence of two subsequent policy search

distributions KL(π(θ)||q(θ)) and the co-variance matrix shrinkage of π(θ), MORE achieves an

effective trade-off of exploration and exploitation.

For MORE, the learning problem of maximizing the reward function under the expectation of

generated trajectory samples can be formulated as

max
π

J(π) =
∫

R(θ)π(θ)dθ s.t. (2.7)

∫
π(θ) log

π(θ)

q(θ)
dθ ⩽ ε (2.8)
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−
∫

π(θ) logπ(θ)dθ ⩽ β (2.9)∫
π(θ)dθ = 1. (2.10)

with the updated policy π(θ), KL-divergnce constraints and entropy bound constraints.

With an additional constraint that π(θ) is a proper probability distribution, the Lagrangian dual

for this constraint optimization problem can be obtained in closed form and yields the following

solution

π(θ) ∝ q(θ)
(

η

η+γ

)
e
(

R(θ)
η+γ

)
. (2.11)

The new policy π(θ) is a geometric average of the current policy q(θ) and an exponential trans-

formation of the reward function. The Lagrangian dual variables η and γ serve as “temperature”

parameters that weight each sample drawn using the current policy.

MORE fits a quadratic surrogate model to reward function samples Rθ ≈ θ T Rθ +θ T r+r0 and

assumes that the current policy search distribution is Gaussian q(θ) = N(θ |µ,Σ). The new policy

search distribution can be obtained in closed form as

π(θ) = N(θ |F f ,F(η + γ)) (2.12)

where

F = (ηΣ
−1 −2R)−1 (2.13)

f = ηΣ
−1

µ + r. (2.14)

In practice, η needs to be restricted such that F is positive definite.

2.4.3 Relevance of Tactile Information to a Page Flipping Task

To gain insights into which page flipping behaviors are detectable via tactile sensing, multiple

sets of DMPs parameters are fitted using different human demonstrations via kinesthetic teaching.
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Figure 2.2: Representative snapshots of the three categories of page flipping trajectories described

in Section 2.4.3 are shown in 15 sec increments and the supplemental video. (Top) The Semi-

circular trajectory represents the ideal page flipping movement. (Middle) For the Warping trajec-

tory, page warping is especially pronounced in subfigure (f) and page snapping results in the page

configuration shown in subfigure (g). (Bottom) For the Aggressive trajectory, the binder is pulled

aggressively from subfigures (d) through (g), resulting in large and numerous displacements of the

binder in the y-z plane defined in Figure 3.1.

The demonstrated page flipping movements can be categorized into three groups (Figure 2.2):

1. Semi-circular Trajectories: In these demonstrations, the robot flips the pages with a rela-

tively semi-circular movement, where the radius of the semi-circle is approximately equal to

the width of the page.

2. Warping Trajectories: In these demonstrations, the trajectory is either mostly horizontal and

parallel to the binder’s support surface, or it will begin along a semi-circular path and then

move downward toward the support surface prematurely, prior to the page being fully flipped.

These trajectories cause the page to warp, leading to “page snapping” as the curvature of the

page abruptly changes.

3. Aggressive Trajectories: In the initial period of these trajectories, the robot pulls the page
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excessively. The unnecessarily large movement can undesirably slide the binder along the

support surface or lift the binder off the support surface.

We use a deformable, multimodal tactile sensor called the BioTac (SynTouch, Inc., Montrose,

CA, USA) to record tactile data ((Figure 2.4). Each BioTac measures low frequency pressure (Pdc),

high frequency pressure (Pac), data from 19 impedance electrodes (E), internal temperature (Tdc),

and temperature flux (Tac). All tactile sensing channels are provided at 100 Hz except for the high

frequency pressure data, which are provided at 2200 Hz. For each of two fingers, 44 tactile signals

are sampled at 100 Hz. In this work, we use the low frequency pressure (Pdc) and impedance

electrodes (E) only.

After executing the DMPs for each trajectory category, several repeatable patterns can be ob-

served in the tactile sensor data recorded by the deformable, multimodal BioTac sensor [116] used

Figure 2.3: Representative tactile sensing traces from the artificial apical tuft (electrodes 7, 8, 9,

10 in Fig. 2.4) are shown in arbitrary units (AU) for the (a) top and (b) bottom fingers during the

flipping of small pages when using the three categories of trajectories (15 rollouts each) described

in Section 2.4.3. The semi-circular trajectories (green) generate smoother tactile signals than both

warping trajectories (blue) and aggressive trajectories (red). As indicated by the periods shaded in

gray, spikes in the tactile signals occur near the end of the page flipping movement for the warping

trajectories and near the beginning and end of the movement for the aggressive trajectories.
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in the experimental evaluation (Figure 2.3). For semi-circular trajectories, the tactile signals cap-

tured during the page flipping movement are relatively smooth, with very few, if any, movements

of the binder during the execution of the trajectory. For the warping trajectories, the page snapping

causes spikes in the low frequency pressure signal (Pdc) and in the electrode voltages (E) provided

by the BioTac sensors. As the horizontal gripper trajectory moves closer to the binder’s support

surface, the more severe the page warping and snapping, making the spikes in the tactile signals

more pronounced. For aggressive trajectories, signal spikes are observed when the binder is pulled

toward the robot and hits the border of the support surface, when the binder is lifted from and re-

turned to the support surface, and when the gripper moves to flip the page. In addition, aggressive

pulling of the notebook pages can tear the page, effectively damaging the notebook.

Based on the above observations, it is clear that undesirable events can be detected as large

shifts or transient spikes in several of the tactile sensor data streams. The signal spikes can be

interpreted as contact state instabilities during the page flipping movements caused by sub-optimal

trajectories. By design, optimal trajectories will attempt to minimize abrupt changes in the tactile

signals in order to maintain stable contact throughout the page flipping movement. In order to track

undesired gross movement of the binder, which cannot be fully characterized by tactile signals,

passive motion capture markers are attached to the binder. Optimal trajectories will also attempt to

minimize the movement of the markers, thus minimizing the pulling of the binder.

2.4.4 Learning a Nominal Trajectory from Tactile Feedback

For the first learning sub-problem, we learn a functional movement for flipping pages of a

notebook by relying on tactile and marker tracking information. We begin by fitting the parameters

of a DMP to a demonstration of a warping trajectory, as this category of trajectories exhibited

the undesirable behavior during the pilot study presented in Section 2.4.3. We then use MORE

18



to further optimize the trajectory for improved functional performance. The policy distribution

parameter θ in the problem formulation specified in Section 2.4.2 corresponds to the DMP weights

{ω}i.

We design a novel reward function that simultaneously enforces that the contact areas between

the fingers and notebook pages remain stable throughout the trajectory, and that the movement

of the binder is minimized. Consider i ∈ [1,2, . . . ,n] BioTac signal instances recorded during the

page flipping trajectory with a sampling frequency of φ , and with low frequency pressure channels

denoted as Pdc, electrode voltages denoted as E, and total displacement distances of the binder

markers denoted as Dmarkers, the reward function is defined as

R(τ) = RPdc +RE +Rmarkers (2.15)

where

RPdc =−α(Γ1 +Γ2)
2 (2.16)

penalizes trajectories with large shifts in the Pdc channels by considering the maximum shift cap-

tured during the trajectory for each of the d fingers, where

Γd = max
i

(∣∣∣∣∣dPi+1
dc −d Pi

dc
φ

∣∣∣∣∣
)
, i ∈ [1,2, . . . ,n] . (2.17)

In a similar fashion,

RE =−σ(Λ1 +Λ2)
2 (2.18)

penalizes large shifts in the electrode values by considering the maximum average shift captured

across the 19 electrodes for each of the d fingers, where

Λd = max
i

(
1

19φ

19

∑
j=1

|E i+1
j −E i

j|

)
, i ∈ [1,2, . . . ,n] . (2.19)

Finally, marker movement is also penalized via

Rmarkers =−λDmarkers. (2.20)
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Note that the pressure, electrode, and marker movement reward terms are scaled by −α , −σ and

−λ respectively. The overall reward R(τ) depends quadratically on the tactile signals of each

individual finger and linearly on the displacement distance of the binder.

The reward function defines the task accomplishment via salient tactile features throughout the

trajectory. For the page flipping task in this work, a salient tactile signal indicating overall task

success/failure at the end of the trajectory is not pronounced. However, there may be other tasks,

such as the closure of a ziplock bag, where a salient tactile signal, such as a “click” upon bag

closure might exist. For those cases, one could add an additional term to the reward function that

acknowledges overall task accomplishment.

2.4.5 Adapting Learned Nominal Trajectories to a Novel Context

For the second learning sub-problem, we show that nominal page flipping trajectories learned

for the first sub-problem can be adapted to different page sizes while relying solely on tactile

information. In contrast to the first learning sub-problem that considered binder displacement in

the reward function, the second learning sub-problem does not use any visual feedback related

to binder displacement. Specifically, we use the tactile sensing traces produced by executing the

optimal page flipping trajectory learned in Section 2.4.4 for a specific page size as the nominal

tactile sensing traces.

We still require that pages of different sizes be flipped with semi-circular trajectories for func-

tional behavior. As such, we propose that, while the movement trajectory needs to adapt to different

page sizes, the tactile sensing traces should remain constant. The robot then learns how to adapt

the nominal trajectory to a different page size by trying to match the new tactile sensing traces to

the nominal sensing traces. In this manner, we extend learning based on a single demonstration to

a different task context.

20



In order to adapt the nominal trajectories, the nominal DMP needs to be modified to adapt to

step-based tactile signals. In this paper, we leverage “Perceptual Coupling Dynamic Movement

Primitives” [49], also known as “Associative Skill Memories” [71]. After defining the nominal

signal trace instance Snom(s) and the current sensing trace instance Scur(s), the adaptation actions

are decided based on the difference between the nominal and current signal traces (i.e., the per-

ceptual coupling term) during the execution of the current page flipping trajectory on pages with

a different size. Since concurrent reactions to sensing trace differences depends on which sensing

channel diverged from the nominal sensing trace, it is necessary to maintain separate weights for

each sensing channel in the adaptation policy.

Therefore, we model the adaptation policy as a mixture of Gaussians that takes the sensing

trace differences as inputs and adds the adaptation policy to the nonlinear forcing function of the

nominal DMP as shown

f̂ (s) = f (s)+
m

∑
j=1

n

∑
k=1

ω̂ jke
(s−ck)

2

hk (S j
nom(s)−S j

cur(s))s. (2.21)

Here, m represents the total number of sensing channels used as tactile feedback, n represents

the total number of basis functions for each tactile channel, and {ω̂} jk represents the learnable

weights of the adaptation policy for a single degree of freedom of the robot arm, which are also

trained using the MORE algorithm. Since this task involves three robot joints (described further

in Section 2.5.1), the total dimensionality of the learning problem is m×n×3. For simplicity and

better synchronization of the nominal DMP and the perceptual coupling element, the centers {c}k

and widths {h}k of the Gaussian kernels are set to be identical across all three robot joints. Con-

sidering the above, a natural reward function to learn the adaptation policy is the sum of squared

differences between the nominal and the current sensing traces over the course of an entire page

flipping trajectory. In other words, we set the reward function equal to the square of the perceptual
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Figure 2.4: (a) The multimodal BioTac sensor is comprised of a rigid core, elastomeric skin, and

fingernail (Image from [28]). (b) The rigid core of the BioTac is shown with impedance electrodes

individually numbered. The red ellipse highlights the artificial apical tuft (flat region of the distal

phalanx), where contact is made with the page in the majority of cases.

coupling term.

R(τ) =−[Snom(τ(s))−Scur(τ(s))]2 (2.22)

2.4.6 Representation of the Tactile Sensing Traces

Our choice of representation of the tactile sensing traces requires a careful balance between

richness of tactile information for effective learning and computational tractability for deployment

on a real robot. In one extreme case, we could naively use all sensing channels from both BioTacs

on the gripper, resulting in 88 total tactile sensing channels (1 Pdc channel, 19 E channels, 2

channels associated with temperature, and 22 high frequency pressure values.

Hypothesizing that some of the native BioTac sensing channels would not be necessary for

learning the page flipping task, we consider two possible representations for the sensing traces.
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The first representation that we consider is comprised of a subset of the complete set of BioTac

channels. Upon inspection of the page flipping trajectories, we observed that electrodes 7, 8,

9, and 10, located on the artificial apical tuft (flat surface of the distal phalanx) of the BioTac

(Figure 2.4b), are stimulated most strongly and most often during contact with the page in the

majority of trials. By focusing only on the Pdc, E7, E8, E9, and E10 values from each finger, we

reduce the dimensionality of the representation of tactile sensing traces from 88 to 10 values.

To further reduce complexity, we average signals over the four electrodes for each individual

finger, which results in a total of 4 values (one Pdc value and one mean electrode value E7−10

per finger) sampled at 100 Hz. We believe that averaging over the four apical tuft electrodes

is reasonable since we are primarily interested in the average skin deformation of that specific

area of the sensor. To appropriately scale Pdc and E7−10, we normalize the data on each signal

individually using sensing traces collected from the nominal trajectory learning experiments and

assume that they provide a reasonable range for sensing traces that the robot can experience during

page flipping.

The second representation that we consider uses Principal Component Analysis (PCA) to re-

duce the complete set of BioTac channels to a subset that captures most of the variance in the tactile

sensing traces that can be leveraged for learning. Again, we begin by focusing only on the Pdc, E7,

E8, E9, and E10 values from each finger. Upon normalizing the signals as described previously, we

pool the tactile signals across both fingers and apply PCA to further reduce the representation of

tactile sensing traces from 10 dimensions to 3 dimensions.

Note that different sensing channels on different fingers (2 Pdc + 8 electrodes) form the state

vector. Prior to performing PCA, the data from each signal channel are individually normalized.

This normalization is performed to ensure that the PCA results will not be biased by large mag-

nitude changes resulting from differences in measurement units, measurement ranges, or channel
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sensitivity.

The first three principal components explain 96% of the total variance in the original 10-D

tactile sensing space. The 1st, 2nd, and 3rd principal components explain 45.8%, 38.7%, and

11.5% of the total variance, respectively. We obtain the PCA projection matrix once at the start of

the experiment. During runtime, the 10-D normalized BioTac signals are passed through the PCA

projection matrix comprised of the first three principal components in order to yield three PCA

eigenvalues for learning.

2.5 Experimental Procedure and Evaluation

In this section, we present the experimental procedures that were used to evaluate our approach

and discuss the results of those experiments. First, we describe the hardware setup used in our

experiments in Section 2.5.1. We then present the training procedure and results for the nomi-

nal trajectory learning sub-problem in Section 2.5.2. In Section 2.5.3, we present the results of a

simplified version of the trajectory adaptation learning sub-problem and assess the impact of the

choice of the representation of the tactile sensing traces introduced in Section 2.4.6. In this sim-

plified version of the trajectory adaptation learning sub-problem, some partial knowledge of the

novel task context (novel page size) is provided in order to make the adaptation policy learning

problem more tractable while we focused on the assesment choice of tactile sensing trace repre-

sentation. Finally, in Section 2.5.4, we present the results of the complete trajectory adaptation

learning sub-problem, without the benefit of a priori knowledge of novel page size. For this final,

complex learning experiment, we used the PCA eigenvalue representation of the tactile signals

(Section 2.4.6) generated from the nominal trajectory (Section 2.4.4) learned for large pages.
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Figure 2.5: Learning curves are shown for learning nominal trajectories for flipping (a) small pages

over the course of 25 policy updates and (b) large pages over the course of 41 policy updates. Mean

and variance are presented for batches of 10 rollouts.

2.5.1 Experimental Set-up

For all experiments, we used a 7 degree-of-freedom (DOF) robot arm (JACO, Kinova, Bois-

briand, Quebec, Canada) outfitted with a 4-DOF, three-digit gripper (KG-3, Kinova, Boisbriand,

Quebec, Canada) (Figure 3.1). The ulnar digit was removed from the gripper in order to enable a

two-digit precision grip. Each fingertip was equipped with a BioTac tactile sensor, as introduced

in Section 2.4.3.

The robot was commanded to grasp and flip two different sizes of notebook pages (small page:

8.5” x 11”, large page: 11” x 11”). Retroreflective markers and six T-Series cameras sampled at

100 Hz (Vicon, Culver City, CA, USA) were used to track a rigid binder, containing the notebook

pages, that was placed on a support surface parallel to the x-y plane (Figure 3.1). The binder

displacement values in the y-z plane were used by the reward function described in Section 2.4.4

for learning a nominal trajectory for the page flipping task.

As shown in Figure 2.2, the page flipping movement occurs within the y-z plane defined in

Figure 3.1. Through purposeful placement of the robot arm with respect to the binder, we simplify

the policy learning problem. Specifically, we operate the robot arm within the y-z plane only. We

control only joints 2, 4, and 6 (Figure 3.1) and constrain all remaining joints, thereby reducing the
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Figure 2.6: Individual reward components from Equation 2.15 are shown for the nominal trajec-

tory learning curves in Figure 2.5 for flipping (a) small pages over the course of 25 policy updates

and (b) large pages over the course of 41 policy updates. Mean and variance are presented for

batches of 10 rollouts. This figure illustrates that the improvement of tactile-related reward com-

ponents plays a major role in the improvement of the overall reward function as compared to any

losses resulting from binder displacement.

dimensionality of the policy weights to be tuned during learning.

2.5.2 Learning a Nominal Trajectory from Tactile Feedback

Using the proposed framework introduced in Section 2.4.1 and Section 2.4.2, along with the

reward functions defined from Equation 2.15 to Equation 2.20 in Section 2.4.4, we learn nominal

trajectories for flipping pages of two different sizes. In each learning trial, the robot first moves to

a “home” position and grips a pre-set stack of 20 pages.The home position is determined from a

single human demonstration per page size at the start of the experimental session. An experimenter

kinesthetically teaches the robot by grasping the robot and guiding it through a suboptimal Warping

trajectory, as described in Section 2.4.3. Throughout the kinesthetic teaching, joint angles and joint

angular velocities are recorded at 50 Hz. The kinematic data from the human demonstration are

used to initialize ten parameters for each of three DMPs (one DMP for each of joints 2, 4, and 6 of
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Figure 2.7: Data for each of 19 electrodes are shown for the bottom finger for learning a nominal

trajectory for flipping a large page. A total of 15 rollouts are shown for each the initial policy

after a single policy update (red) and final policy after 41 policy updates (green). The initial policy

generates undesired spikes in the electrode signals during the page warping period shaded in gray.

the robot arm).

Upon initializing the DMP parameters, a reinforcement learning process, introduced in Sec-

tion 2.4.2, refines the DMP parameters using the reward function defined in Section 2.4.4. The

MORE policy search space has a dimensionality of 30 (three DMPs, each with ten parameters).

The MORE ε and β parameters are set to 0.1 and 0.075, respectively. To fill a sample buffer, a to-

tal of 40 rollouts are executed and corresponding rewards are generated based on the initial policy

distribution, which was defined as a multivariate Gaussian with mean values set equal to the initial

DMP weights and a diagonal covariance matrix that was tuned based on preliminary data. Once

the sample buffer is filled, the policy distribution is updated every five rollouts.

The learning curves for the nominal trajectory learning experiments are shown in Figure 2.5

for the small and large pages. Rewards from the updated policies are shown in increments of 3
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policy updates (10 rollouts each) for three independent learning trials for the small pages, and in

increments of 5 policy updates (10 rollouts each) for three independent learning trials for the large

pages.

Since the reward values converge to zero, we see that a policy is successfully refined and

learned for each of the two page sizes. The supplemental video shows that the robot learns page

flipping trajectories that do not induce undesired page warping or page snapping, thereby avoiding

spikes in the tactile signals by design of the reward function.

For brevity, we present tactile sensing traces for the nominal trajectory learning sub-problem

for large pages only. Reflecting local deformation of the fluid-filled BioTac fingerpad, data from

19 electrodes are presented for the bottom finger in Figure 2.7. A total of 15 rollouts are shown

for two policies: the initial policy after a single policy update and the final policy after 41 policy

updates. The corresponding Pdc data are presented in Figure 2.8. The results for learning a nom-

inal trajectory for small pages are similar to Figures 2.7 and 2.8 except that the final policies are

learned after only 25 policy updates. Figures 2.7 and 2.8 show that rollouts of the initial policy,

shown in red, generate undesired spikes in the tactile sensing traces during the page warping period

shaded in gray. However, the rollouts of the final policy, shown in green, result in much smoother

tactile sensing traces characterized by a significant reduction in spiking behaviors. The associated

reduction in page warping is also demonstrated in the supplemental video.

Figure 2.6 and Table 2.1 show that tactile state is more relevant and plays a more significant

role in the nominal trajectory learning process than binder displacement. Figure 2.6 illustrates how

individual components of the reward function defined in Equation 2.15 contribute to the learning

process and change over the course of learning. The improvement in the tactile reward components

(RPdc +RE) play a major role in the improvement of the overall reward function. We also observe

that the tactile reward components for the large pages are worse when compared with those for the
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small pages. Given that large pages are heavier than small pages, it makes sense that the negative

tactile consequences of page warping and page snapping would be more pronounced in the tactile

reward components for the large pages.

Table 2.1 compares the mean and standard deviation of binder displacement distances before

and after the learning process. Binder displacement values are reported from 15 rollouts for each

combination of page size (small or large) and learning stage (before or after learning). Although

Table 2.1 shows that binder displacements are larger after learning, the negative effects of binder

displacement on the overall reward function are dwarfed by the significant improvements in the

tactile reward components, indicating that the learning process is dominated by tactile state, as

desired.

Tactile state is more relevant for learning nominal trajectories for two main reasons. First, the

magnitudes of the changes in tactile data due to page warping and page snapping are greater than

those for marker movement resulting from binder displacement. Second, we chose the magnitudes

of the scaling factors α,σ ,λ in Equations 2.16, 2.18, and 2.20, respectively, such that marker

movement would be considered but not heavily weighted in the overall reward function (Equa-

tion 2.15). If we were to increase λ to more heavily weight marker movement than tactile state, we

would contradict our definition of what constitutes a functional page flipping behavior, as trajec-

tories that result in page warping and page snapping would be improperly rewarded. Specifically,

α was -0.0075 and λ was -2.5 for both page sizes, and σ was -0.0125 for the large page size and

-0.05 for the small page size. The scaling constant σ was increased manually for the small page

size in order to compensate for the fact that smaller tactile signal spikes result from the snapping

of smaller pages.

Although we show that it is possible to learn functional page flipping behaviors for different

page sizes using tactile information, some limitations were observed. For example, if the initial
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Table 2.1: Binder displacement distances are reported as mean (standard deviation) from 15 roll-

outs for each combination of page size and learning stage. “Before learning” refers to the initial

policy after a single policy update. “After learning” refers to the final policy after 25 and 41 policy

updates for the small and large pages, respectively.

Before learning After learning

Small pages 32.7 (0.5) mm 96.0 (3.7) mm

Large pages 24.0 (5.3) mm 184.9 (9.9) mm

policy produces a trajectory that is too low and close to the support surface, the pages warp and

then contact the binder during the page warping period. As a result, transient perturbations due to

page snapping are absorbed by the friction between the binder and the pages, and are not sensed

by the BioTacs, whose tactile signals will be smooth. The policy search then gets stuck in a local

optimum in which the trajectories appear to maximize the reward function when, in fact, the page

flipping behaviors are unacceptable. We acknowledge that the reward function may not capture

the tactile consequences of all possible notebook page flipping trajectories. To address this, one

could supplement tactile sensing with a complementary sensing modality, such as vision, during

learning.

Another example of a limitation is the aforementioned binder displacement after learning.

Sometimes, the increased displacement of the binder after learning results in a learned trajec-

tory that is not perfectly semi-circular (as seen in the supplemental video). One possible reason

for this result is that perturbations around the set of DMP weights that generate perfectly semi-

circular trajectories, can actually cause the robot to move toward the support surface prematurely,

resulting in page warping. Page warping would cause the rewards to deteriorate significantly due

to the dominant role of the tactile reward components. Thus, page warping is avoided through
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Figure 2.8: Low frequency pressure data are shown for the (a) top and (b) bottom fingers for

learning a nominal trajectory for flipping a large page. A total of 15 rollouts are shown for each

the initial policy after a single policy update (red) and final policy after 41 policy updates (green).

The initial policy generates undesired spikes in the low frequency pressure data during the page

warping period shaded in gray.

learned trajectories that are not perfectly semi-circular. Specifically, minor perturbations in DMP

weights from semi-circular trajectories can result in task performance and rewards having a large

variance. A large variance in the reward function values will be deemed undesirable during policy

updates, especially if the values of β and γ , which bound the KL-divergence and entropy reduction

constraints of the MORE algorithm, are set to make the learning process risk-averse.

As is commonly done when performing reinforcement learning experiments on a real robot,
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we tuned hyperparameters in order to ensure that the learning process would converge within a

reasonable number of samples. Specifically, the hyperparameters were tuned such that the initial

policy distribution would have sufficient variance to generate samples of DMP weights that would,

in turn, generate page flipping movements with different degrees of page warping and snapping.

In addition, covariance matrix values were increased for robot joint activations that were observed

to be especially sensitive to changes in DMP weights during different phases of the page flipping

trajectories. This variance in behavior provides a wide and meaningful range of page flipping

behaviors and reward function samples that enable productive policy updates.

2.5.3 Impact of Chosen Representation of Tactile Sensing Traces

Once we successfully learned nominal trajectories for the page flipping task for both page

sizes, we paused to examine the impact of the choice of representation of the tactile information

on a simplified version of the sub-problem for learning adapted trajectories. Using the methods

described in Section 2.4.6, we sought to reduce the dimensionality of the tactile sensing traces

before attempting the full experiment on the adaptation of the learned nominal trajectories to a

novel context. Specifically, we investigated how the values of the reward function samples were

affected by two different simplified representations of the tactile sensing traces: (i) one mean Pdc

and one mean electrode value E7−10 for the artificial apical tuft, per finger, and (ii) three PCA

eigenvalues.

Figure 2.9 shows the reward function values for the two different representations of the tactile

sensing traces. The reward function samples (specified for learning adapted trajectories in Sec-

tion 2.4.5) are the result of 15 rollouts performed for each of six trajectories on a binder containing

small pages. An ideal semi-circular trajectory is denoted as Functional. Three trajectories causing

page warping and page snapping are denoted as Warped 1, Warped 2 and Warped 3. The Warped 1
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trajectory is special in that it is the nominal trajectory learned for large pages, but purposely ap-

plied to small pages (a different task context). One aggressive trajectory (Aggressive 1) pulls the

binder upwards and away from the support surface. Another aggressive trajectory (Aggressive 2)

pulls the binder toward the base of the robot arm.

Two comments can be made about the similarity in reward distributions between the Functional

and Aggressive 2 trajectories. First, the Functional trajectory was provided by a human demon-

stration, which could have resulted in a small degree of aggressiveness since the demonstrator had

to manually move the robot arm in order to flip the page. Second, from a utilitarian perspective, a

trajectory that is labeled Aggressive 2 could be acceptable if it is close enough to a trajectory that

is deemed Functional.

As expected, the desired Functional trajectories generate the best reward distributions, regard-

less of the representation of tactile sensing traces (Figure 2.9). For both the apical tuft and PCA

eigenvalue representations, the reward distributions can be used to distinguish between functional

page flipping trajectories and those that cause undesired page warping and snapping. Unfortu-

nately, the reward distributions for the Functional and Aggressive 2 trajectories overlap, which

make these two categories of trajectories more difficult to be distinguished from one another when

using the tactile-based reward function specified in Section 2.4.5 with either of the two represen-

tations.

Nonetheless, the PCA eigenvalue representation generates a broader reward landscape com-

pared to that generated by the apical tuft representation (Figure 2.9). In particular, the PCA eigen-

value representation results in a larger difference in mean reward function values between the

Functional and the Aggressive 2 trajectories than the apical tuft representation. As a result, func-

tional and non-functional behaviors can be better distinguished when using the PCA eigenvalue

representation. It is possible that, by averaging the four electrode measurements across the artifi-
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Figure 2.9: Distributions of reward function samples are shown for two representations of tactile

sensing traces: (a) artificial apical tuft, and (b) PCA eigenvalues. Fifteen rollouts were performed

for each of six trajectories on a binder containing small pages: an ideal semi-circular trajectory

(Functional), three trajectories that cause page warping and snapping, and two aggressive trajec-

tories. The Warped 1 trajectory is the nominal trajectory learned for large pages, but purposely

applied to small pages.

34



cial apical tuft, we lose information that may have encoded differences in page flipping behaviors.

In order to further test the impact of the tactile sensing representations, the first batch of experi-

ments for learning an adaptation policy is conducted under the assumption that the goal position for

small pages is known a priori. Specifically, the joint-specific values of the goal position parameter

yg in the perceptual coupling DMPs are set to the goal position values that were obtained from the

human demonstration for small pages. Three independent learning trials are conducted with each

tactile sensing trace representation. We initialize all DMP weights {ω}i to the weights learned

for large pages and all perceptual coupling feedback weights {ω̂}i are set to zero. The number of

Gaussian basis functions in the perceptual coupling term is set to three. Since three robot joints are

subject to control, the learning process explores a 36-D space (4 tactile traces × 3 basis functions

per tactile trace × 3 robot joints) for the apical tuft representation and a 27-D space (3×3×3) for

the PCA eigenvalue representation.

Figure 2.10 shows the learning curves using the apical tuft and PCA eigenvalue tactile sensing

representations, respectively. For both tactile sensing representations, the MORE algorithm en-

ables learning, as evidenced by an increase in the mean and the maintenance of a relatively small

variance for the distribution of reward function samples. These results suggest that the perceptual

coupling term in Equation 2.22 enables the tactile feedback to drive the adaptation of the initial

trajectory intended for flipping large pages toward that necessary for flipping small pages.

While the learning curves are similar for both representations (Figure 2.10), the resultant

adapted page flipping trajectories are quite different. Our observation is that the adapted trajec-

tories are more aggressive when learned with the apical tuft representation than with the PCA

eigenvalue representation. While avoiding page warping and snapping, the aggressive trajectories

pull the binder closer toward the base of the robot before initiating page flipping and can even

result in the binder hitting the edge of the support surface. The gentler page flipping trajectories
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Figure 2.10: Learning curves are shown for the simplified experiment on adaptation of the learned

nominal trajectories to a novel context using the (a) artificial apical tuft and (b) PCA eigenvalue

representations of tactile sensing traces. The goal position for small pages is known a priori. Mean

and variance are presented for batches of 10 rollouts.

learned with the PCA eigenvalue representation result in smaller displacements of the binder to-

ward the base of the robot. Differences between the trajectories learned using the apical tuft and

PCA eigenvalue representations can be seen in the supplementary video. Just as the PCA eigen-

value representation was preferred for distinguishing the functional trajectories from the aggressive

trajectories (Figure 2.9), we conclude that the PCA eigenvalue representation is also preferred for

learning adapted trajectories.

Figure 2.11 shows in greater detail how the tactile sensing traces for both representations

change as the adapted trajectory is learned. The nominal tactile sensing traces are taken from
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Figure 2.11: Distributions of tactile sensing traces are shown for the simplified experiment on

adaptation of the learned nominal trajectories to a novel context using the (a) artificial apical tuft

and (b) PCA eigenvalue representations of tactile sensing traces. The goal position for small pages

is known a priori. Tactile data are shown for a nominal trajectory learned for large pages and

applied to large pages (green) and to small pages prior to adaptation learning (red), for 10 rollouts

each. Three independent learning trials (9 policy updates each) show how the tactile sensing traces

change as the initial nominal trajectory for large pages is adapted to small pages during adaptation

learning.

10 rollouts of a nominal trajectory learned for large pages (green). When the nominal trajectory

learned for large pages is directly applied to small pages (a different task context), a much differ-

ent set of tactile sensing traces results before any learning takes place (red). The results from three

independent learning trials are shown, with each trial being comprised of 10 rollouts and 9 policy

updates.

The adaptation of the tactile sensing traces encouraged by the perceptual coupling term in

Equation 2.22 is most clearly illustrated in Figure 2.11 for the 1st and 2nd principal components

of the PCA eigenvalue representation, which combine to explain 84.5% of the total variance in the

original 10-D tactile sensing space. After learning to adapt the initial nominal trajectory for large

pages to small pages, the tactile sensing traces for the the learning trials converge toward those
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for the ideal case in which the nominal trajectory learned for large pages is appropriately applied

to large pages. For the apical tuft representation, the adaptation of the tactile sensing traces after

learning is most clearly shown for the top finger of the gripper in the Pdc and E7−10 data.

2.5.4 Adapting Learned Nominal Trajectories to a Novel Context

Based on the encouraging results described in Section 2.5.3, we adopted the PCA eigenvalue

representation for the tactile sensing traces for the full experiment on adaptation of the learned

nominal trajectories to a novel context. For the full experiment, we no longer provide any informa-

tion about page size. As a result, the goal position yg now becomes another axis in the policy search

space. We show that a nominal trajectory learned for large pages can be successfully adapted to

an unknown, novel page size (small, in this case) using perceptual coupling driven by a 3-D PCA

eigenvalue representation of tactile feedback. In the simplified version of the sub-problem for

learning adapted trajectories, the goal positions that were provided a priori were encoded in joint

space. The learning problem becomes much harder when the joint-specific goal positions are no

longer provided. Without the provision of such joint-specific constraints, it is possible that naive

sampling of trajectories could lead to damage of the robot or movements that do not flip the page

at all. To address this issue, we leverage the fact that the page flipping trajectories lie within a 2-D

plane. As seen in Figure 3.1, the z-coordinates for the support surface and binder are constant.

Accordingly, we assume that the z-coordinate of the goal position will be constant for the gripper

regardless of page size. Since the y-coordinate of the gripper will vary according to page size, we

represent different goal positions using the gripper’s final y-coordinate.

During learning, the MORE algorithm samples values for the gripper’s goal y-coordinate at

the end of the page flipping trajectory. The pair of goal (y,z) coordinates for the gripper is then

transformed into goal positions in joint space via an inverse kinematics solver. Using the PCA
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Figure 2.12: Learning curves are shown for the full experiment on adaptation of the learned nomi-

nal trajectories to a novel context using the PCA eigenvalue representation of tactile sensing traces.

The goal position for small pages is not known a priori and must be learned. Mean and variance

are presented for batches of 10 rollouts.

eigenvalue representation of the tactile sensing traces, the learning algorithm searches a 28-D space

(3 tactile traces × 3 basis functions per tactile trace × 3 robot joints + goal y-coordinate. As

before for the simplified experiment on learning adapted trajectories (Section 2.5.3), all perceptual

coupling feedback weights {ω̂}i are set to zero. We use the final y-coordinate of the gripper from

the learned nominal trajectory to generate the initial estimate for yg in joint space.

As shown by the learning curves in Figure 2.12, learning of the adapted trajectories was suc-

cessful for the full experiment in which a nominal trajectory learned for large pages was applied to

a novel task context (small pages). The initial trajectory rollouts result in aggressive movements in

which the robot lifts the binder off of the support surface and drags the binder farther than neces-

sary for small pages. As the adapted trajectory is learned using tactile-driven perceptual coupling,

the distributions of reward function values improve, as reflected by the increase in mean and de-

crease in variance. After 16 policy updates, the small page is flipped gently, without lifting the

binder from the support surface, and with less displacement of the binder.

Prior to adaptation learning, ten rollouts of a nominal trajectory learned for large pages and
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Figure 2.13: Distributions are shown for the PCA eigenvalue representation of tactile sensing

traces for the full experiment on adaptation of the learned nominal trajectories to a novel context.

The goal position for small pages is not known a priori and must be learned. Distributions (mean

and variance) are shown for a nominal trajectory learned for large pages and applied to large pages

(blue) and to small pages prior to adaptation learning (red), for 10 rollouts each. Three independent

learning trials (16 policy updates each) show how the distributions change as the initial nominal

trajectory for large pages is adapted for small pages after learning. The distribution of tactile

feedback is also shown for the ideal case of a nominal trajectory learned for small pages and

applied to small pages (green).
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applied to small pages result in a mean value of -48.2 mm for the y-coordinate of the goal position.

The mean value for the y-coordinate of the goal position is 40.0 mm for the ideal case in which

a nominal trajectory learned for small pages is applied small pages. The final policies from three

independent learning trials (16 policy updates each) result in mean values for the y-coordinate

of the goal position of -40.8 mm, -41.0 mm, and -41.8 mm. In all cases, all standard deviation

values were less than 0.03 mm. The mean value of the goal y-coordinate decreases by at least 6

mm (approximately 12%) as the trajectory is adapted from large pages to small pages. By the end

of three independent learning trials, the mean goal y-coordinates are most similar to that for the

ideal case in which a nominal trajectory learned for small pages is applied to small pages. This

illustrates that the y-coordinate of the goal position is also learned and is successfully adapted

from a value suited for large pages to a value appropriate for small pages. This demonstrates that a

learned nominal trajectory can be successfully adapted to a novel task context using only the tactile

sensing traces of a functional behavior as a reference.

Figure 2.13 shows in greater detail how the tactile sensing traces for the PCA eigenvalue rep-

resentation change as the adapted trajectory is learned. Tactile sensing trace distributions (mean

and variance) are shown in red for 10 rollouts of a nominal trajectory learned for large pages and

naively applied to small pages (a novel task context). The ideal tactile sensing traces are shown in

green for a nominal trajectory learned for small pages and applied appropriately to small pages. As

desired, after 16 policy updates, the tactile sensing traces for the three independent learning trials

converge upon those for the ideal case after learning the adapted trajectory and goal position using

tactile-driven perceptual coupling.

For comparison, tactile sensing traces are shown in blue for a nominal trajectory learned for

large pages that is applied appropriately to large pages. First, we see that task context does affect

the tactile feedback, as exemplified by the slight differences between the tactile sensing traces
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for the rollouts that do not require adaptation, but are learned for different page sizes (blue for

large pages, green for small pages). Nonetheless, the tactile feedback for the rollouts that do not

require adaptation (blue, green) are more similar to one another than to the tactile feedback for the

rollouts that do require adaptation (red). This supports our assumption that, while the page flipping

trajectories for different page sizes might differ, similar tactile sensing traces should be expected

from functional trajectories for each of the page sizes. Second, we see that the learning trials that

adapt to small pages lead to tactile sensing traces that are most similar to those from rollouts for

small pages that do not require adaptation (ideal green case). This trend is most clearly visible for

the 3rd principal component.

Figure 2.14 compares distributions of reward function values for different cases of trajectory

rollouts. Reward function samples are shown in red for 10 rollouts of a nominal trajectory learned

for large pages and naively applied to small pages (a novel task context). Reward function samples

are shown in green for the ideal case in which a nominal trajectory learned for small pages is

applied appropriately to small pages.

After 16 policy updates, the reward function samples for the three independent learning trials

generally converge upon those for the ideal case after learning the adapted trajectory and goal

position. The improvement in reward function values is most clearly seen in the boxplots for the

2nd and 3rd principal components. For the 1st principal component, it was initially surprising to

see little improvement in reward function values with learning. We believe this may be caused

by the fact that the trajectory is being adapted from a nominal trajectory learned for a different

task context. Some of the undesired properties of the initial trajectory may remain prevalent in

the adapted trajectory and are reflected in the 1st principal component of the tactile feedback

representation.
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Figure 2.14: Distributions are shown for reward function samples using the PCA eigenvalue rep-

resentation of tactile sensing traces for the full experiment on adaptation of the learned nominal

trajectories to a novel context. Goal position is not known a priori and must be learned. Distribu-

tions are shown for a nominal trajectory learned for large pages and applied to small pages prior to

adaptation learning (red), for 10 rollouts each. Three independent learning trials (16 policy updates

each) show how the distributions change as the initial nominal trajectory for large pages is adapted

for small pages after learning. The distribution of reward function samples is also shown for the

ideal case of a nominal trajectory learned for small pages and applied to small pages (green).
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2.6 Conclusion

With experiments on real robots, we demonstrated a learned manipulation of deformable, thin-

shell objects via a page flipping task. We showed that the functional performance of the task can

be quantified from the perspective of tactile sensing. We also verified our intuitive assumption that

there exist tactile features that can be used to adapt learning to novel task contexts for the manipu-

lation of deformable objects. This insight could facilitate the design of tactile-based controllers for

more complex manipulation tasks involving deformable objects and deformable tactile sensors.

2.6.1 Summary of Contributions

In this paper, we demonstrated the ability for a real robot to learn how to manipulate a de-

formable thin shell and adapt the learned functional behavior to other task contexts. More specifi-

cally, we demonstrated that a real robot can learn a page flipping task via tactile information. We

addressed the learning of this task using a two-stage approach. For the first learning sub-problem,

we learned nominal page flipping trajectories by constructing a reward function that quantifies

functional task performance and is driven by tactile feedback. Nominal trajectories were learned

specifically for small or large pages using human demonstrations via kinesthetic teaching.

For the second learning sub-problem, we learned adapted trajectories by constructing a reward

function that used tactile-driven perceptual coupling. We assumed that, while the page flipping

trajectories for different task contexts (page sizes) might differ, similar tactile feedback should be

expected from functional trajectories for each of the contexts. We performed a simplified experi-

ment on adaptation of the learned nominal trajectories to a novel context in which the goal position

for small pages was known a priori. Using this simplified case, we compared two different rep-

resentations of tactile sensing traces and concluded that a PCA eigenvalue representation encodes
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essential tactile information to enable learning. Finally, we performed a full experiment on adap-

tation of the learned nominal trajectories to a novel context in which the goal position for small

pages had to be additionally learned. We showed that functional behaviors for different task con-

texts shared features in the tactile feedback that enabled successful learning of adapted trajectories

via tactile-driven perceptual coupling.

2.6.2 Limitations and Future Work

One limitation of this work is that, for practical purposes, we reduced the control of the 7-DOF

robot arm to three joints such that the page flipping movement would be constrained to a 2-D

plane. If all 7 DOFs of the robot were enabled, the learning algorithm might encounter regions

of the policy parameter space associated with unnecessarily complex robot motions, such as the

twisting of notebook pages through wrist rotation. Defining an effective reward function based on

raw tactile sensor data becomes very challenging for such complex scenarios.

Another limitation is that this work does not address additional factors, such as object texture,

that might affect the generalizability of a tactile-driven policy. Further investigations are needed to

assess the applicability of the “tactile invariance” notion to other tasks and scenarios, when more

factors that might affect tactile sensor signals are introduced. Specifically, we believe that one

interesting direction is to investigate tactile invariance not only in the context of a specific task, but

rather taking it to a higher level of abstraction. For example, many contact manipulation tasks can

be decomposed into a sequence of different subtasks (primitives). If they exist, intra-subtask tactile

invariances could be used to compose a skill with varying task context, or speed up the learning of

a new skill [68, 92].

Another interesting line of investigation is the use of multiple sensing modalities to capture

task-relevant features across different task contexts. If low-level representations that encode infor-
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mation related to “task invariance” could be extracted from high-dimensional multimodal sensory

data, the representations could enable the generalization of learned policies to new task instances

more efficiently [53].
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CHAPTER 3

End-to-End Model Predictive Control Framework for

Tactile-Driven Manipulation of Deformable Linear Objects

Manipulating deformable objects is a common activity in everyday life, yet it remains diffi-

cult for robotic systems. Numerous modeling, planning, and control challenges remain for the

manipulation of deformable objects by robots endowed with tactile sensors. This work provides

a systematic framework for the autonomous, tactile-driven manipulation of deformable linear ob-

jects. Our framework leverages advancements in non-parametric supervised learning, model-based

reinforcement learning, and optimization-based model predictive control (MPC). We demonstrate

the framework for the task of manipulating the pose angle and tensile state of an elastic cable using

high-dimensional image data from a deformable, vision-based tactile sensor. A real 7-DOF robot

arm and gripper were used to grasp a tethered elastic cable and perform random planar motions in

order to collect observation-action pairs. The observation-action pairs were used to develop a low-

dimensional latent space dynamics model using a variational non-parametric data-driven approach.

The learned latent space dynamics model was used to predict the latent space representations of

the high-dimensional tactile sensor data, which encoded the pose and tensile state of the elastic

cable’s tensile state in response to a control action. Eventually, the dynamics model was embedded

in a nonlinear MPC framework for the tactile-driven feedback control of the elastic cable. We

demonstrate that a real robot was able to plan trajectories to transition from an initial pose angle
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and tensile state to a goal pose angle and tensile state while relying solely on tactile information.

Our novel, end-to-end framework has the potential to be scaled to more complex tactile-driven

manipulations of deformable linear objects.

3.1 Introduction

Many daily activities, such as unplugging a cellphone charger, tightening a pair of shoelaces,

disentangling a rack of cables, etc., necessitate the manipulation of deformable linear objects

(DLOs). Yet, the autonomous manipulation of deformable linear objects, such as a cables and

ropes, remains challenging for robotic systems. Typically, the manipulation of deformable ob-

jects, in general, requires an integrated framework of modelling, perception, planning, and control.

Such a requirement undoubtedly introduces compounding challenges and complexity. Therefore,

despite its importance, the manipulation of deformable objects has, historically, been investigated

less frequently than the manipulation of rigid objects.

Recent achievements in the field of computer graphics have enhanced the feasibility of expen-

sive, nonlinear, numerical simulation of elastic deformable objects. Additionally, progress in rein-

forcement learning has enabled the planning and control of complex physical interactions between

a robotic agent and its environment, either in simulation or directly in the real world environment.

Together, these advancements provide valuable modelling techniques and data-driven paradigms

that can overcome some of the challenges of modelling, planning and control for the manipulation

of deformable objects.

However, in order to implement these modeling and data-driven paradigms, one must operate

under a few assumptions and constraints. First, the simulation environment must include a model

that is sufficiently accurate for the task of interest [27, 63]. Second, the state of the deformable
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Figure 3.1: A 7-DOF robot arm controls the pose angle and tensile state of an elastic cable using a

gripper outfitted with the vision-based GelSight tactile sensor [112]. One end of the tethered cable

is manipulated by the gripper through a rigid rig. The left and right columns show different cable

states and their tactile representations, respectively.
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object must either be directly accessible from the simulation output [126], or observable from

real-world sensor data, such as images [34].

Although computer vision has been used to great effect for the manipulation of DLOs, the use

of tactile sensors for the manipulation of DLOs is less common in the robotics literature. One likely

reason is that vision-dependent approaches have focused on tasks that change the configuration,

or pose, state of DLOs. Computer vision has been used to plan and control the manipulation of

deformable linear objects for knot-disentangling [94, 109], rope casting [59], and surgical thread

suturing [60]. In such cases, tactile sensors can be disadvantageous due to their relatively narrow

field-of-view as compared to cameras, or entirely irrelevant, as when the task does not involve the

control of the tensile state of the DLO.

A computer vision-based approach is useful when a DLO is slack, but not when the DLO

becomes taut and visually straight due to nonzero tension. In order to simulate changes in the

tensile state of a DLO, one needs a high-fidelity simulation of the DLO as well as the physical

interactions between the DLO and tactile sensors. The simulation of deformable tactile sensors

is a highly challenging research topic by itself, and state-of-the-art models of deformable tactile

sensors are not easily integrated with state-of-the-art planning and control pipelines. In this work,

we leverage tactile sensors to address the visual ambiguity of a taut DLO in order to perceive pose

angle and tensile state simultaneously.

The ultimate goal of this work is to develop a principled optimization-based model predic-

tive control (MPC) framework that enables the robotic manipulation of deformable linear objects

(DLOs) using tactile data. Our proposed framework consists of three components: (i) a deep

representation model that maps high-dimensional tactile sensor observations related to pose and

tensile states to a compact, low-dimensional, latent space, (ii) a supervised learning model to en-

code tactile-related transition dynamics in the compact latent space with sufficient representational
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power, and (iii) an optimization-based MPC framework that uses the learned dynamics model in

latent space in order to perform motion planning and control, for which an off-the-shelf nonlinear

optimization solver can be leveraged.

To the best of our knowledge, this work is the first to drive an optimization-based model pre-

dictive controller on a real robot using a system dynamics model identified directly from high-

dimensional tactile observations. This work addresses the following observations from the robotics

literature:

• While prior research has traditionally focused on the control of DLO configuration only [118,

94, 109], we aim to control simultaneously the pose angle and tensile state of a DLO.

• While “end-to-end” reinforcement learning has been accomplished using vision-based ap-

proaches [57, 35, 36], there are few works that use tactile data as inputs to “end-to-end”

learning frameworks and further demonstrate the results for a real robot manipulation task.

Our proposed framework has an “end-to-end” nature because high-dimensional tactile data

are used as inputs to plan robot behaviors that control the pose and tensile state of a DLO.

• Our proposed approach bridges the tactile-driven manipulation community with other robotics

communities where well-established technical tools, such as MPC, are available. Such a

bridge is beneficial for advancing the use of tactile data in robot manipulation applications.

The remainder of the manuscript is organized as follows: Section 3.2 outlines related work.

Section 3.3 introduces our proposed framework and individual technical components. Section 3.4

describes the development and deployment of the framework on a real robot. Section 3.5 summa-

rizes the limitations, novel contributions, and future directions of this work.
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3.2 Related Work

In this section, we introduce related work and distinguish our approach from prior studies for

the following topics: model-based reinforcement learning, the robotic manipulation of deformable

linear objects, and the simulation of tactile sensor behavior.

3.2.1 Model-based Reinforcement Learning

Reinforcement learning methods have been successfully demonstrated for a number of robotics

applications either on a real system or in simulation, such as dynamic quadruped locomotion across

non-homogeneous terrains [20, 65, 52, 76], in-hand manipulation to solve Rubik’s Cubes [69], ag-

gressive maneuvers of simulated race-car driving [31, 89] and agile drone flights [90]. Many

of these results were achieved using model-free deep reinforcement learning, in which the agent

learns a policy function represented by a neural network through direct interactions with the envi-

ronment.

Traditionally, the samples of agent-environment interactions often rely heavily on computer

vision data, even in the case of the in-hand manipulation of Rubik’s Cubes [69]. For the tactile-

driven manipulation of objects, the complex contact dynamics between deformable objects and

deformable tactile sensors can render the construction of physics-based simulations infeasible. It

can also be impractical to collect large numbers of samples of agent-environment interactions for

the tactile sensing modality.

In model-based reinforcement learning, the agent infers a predictive model of the world from

sensor data obtained via interaction with real environment and then uses the predictive model for

planning and control [74]. Model-based approaches offer some potential advantages over model-

free approaches. For example, instead of relying solely on propagated rewards from repetitive

52



rollouts, richer signals (i.e. sequential dependencies) from the learned transition model can be

leveraged to increase sampling efficiency.

Importantly, the use of model-based approaches can bridge reinforcement learning methods

with state-of-the-art technical tools for planning and control. In turn, such a bridge could en-

able the principled treatment of properties such as state or input constraints and system stability,

which cannot currently be addressed directly or can only be represented as penalty terms in reward

functions when using model-free methods [19, 103]. Some studies [115, 4, 125] proposed locally

linear models for transitions in the latent space and planned for actions using linear quadratic regu-

lators. However, the locally linear formulation limits the application of this approach to tasks with

relatively well-defined dynamics because of a lack of representative power. For our purposes, well-

defined contact dynamics for physical interactions between DLOs and deformable tactile sensors

are not yet established.

More recent works [35, 9, 36] propose to learn non-local nonlinear dynamics models such that

the asymptotic performance of model-based methods can match model-free exemplars in complex

image-based domains. Our work takes inspiration from [35, 9, 36] in order to develop a variational,

latent space dynamics learning method such that the latent space dynamics generated from high-

dimensional, noisy tactile sensor data from real robot experiments can be captured and further

incorporated into an optimization-based MPC module.

Both [35] and [36] use convolutional neural networks to construct latent space models from raw

RGB camera images, and then use recurrent neural networks to encode the transition dynamics in

the latent space. While this structure offers a rich representation from which to learn, the complex

structure cannot be directly incorporated into an optimization-based MPC framework. Moreover,

in [35] and [36], the learned latent space dynamics model is not used directly for planning. Rather,

a different reward prediction network is used that takes the latent state as input. On a real robot,
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it may be unrealistic to learn different reward prediction networks for different scenarios, such as

different initial and goal conditions for a tactile-driven manipulation task. Thus, in this work, we

aimed to learn a transition dynamics model that could be used directly for planning.

In [9], the state transition dynamics in latent space and the reward prediction model are mod-

elled through Gaussian processes (GPs) instead of neural networks. Nonetheless, as with [35, 36],

the learned latent space dynamics are not used directly to perform planning. In order to incorpo-

rate GPs into a variational inference framework, [9] treats each observation-action pair from the

sequence as independent and identically distributed instead of taking sequential relationships into

consideration, and accordingly formulates the training objective based on probabilistic generative

modelling principles.

In preliminary studies, when we applied the approaches of [35, 9, 36] to our tactile sensor data,

we observed that neural networks and GPs could easily overfit observations and did not sufficiently

capture latent space dynamics for planning. We suspect that the tactile sensor from real robot

experiments were noisier and less Markovian as compared to sensor data from a structured, one-

dimensional pendulum swing-up scenario [9]. As such, our work considers sequential relationships

in the data, as will be discussed in Section 3.4. Finally, while evaluations were performed in

simulation environments in [35, 9, 36], we evaluated our proposed framework on a real robot

platform.

3.2.2 Robotic Manipulation of Deformable Linear Objects

The robotic manipulation of deformable linear objects is an active area of research. State-of-

the-art approaches to the manipulation of deformable linear objects currently rely predominantly

on computer vision [119]. In [59], a self-supervised framework is proposed to tune differentiable

simulators for dynamic rope casting behavior using camera data collected from real robot inter-
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actions, specifically the endpoint of the rope as obtained from visual inspection. In [94], a robust

knot untangling system was developed, in which constant visual monitoring and refinement ac-

cording to RGB-D images were key components. In [118], a vision-based system was developed

that enabled a robot to manipulate a deformable linear object until it matched a goal state that was

represented visually using segments inferred from top-down images of the rope configuration.

In contrast, the application of tactile sensing for the manipulation of deformable linear objects

is less common. Most works related to the robotic manipulation of DLOs use tactile sensing for

perception, but not for planning or control. Examples of tactile perception include shape estima-

tion [79], texture classification [124, 37], and the estimation of a physical properties, such as those

unique to different liquids in a container [41]. There are a few exceptions in which tactile sensing

is used for the manipulation of deformable objects. In [85], a system was developed to perform

a planar cable following task using a linear quadratic regulator whose linear model coefficients

were inferred directly from camera-based tactile sensor data about cable state. The prior work was

extended to a cloth unfolding task in [95], where the folding state of a cloth garment was first clas-

sified via vision-based tactile sensor data, and then a hierarchical state-machine performed motion

primitives based on the classified state.

This work differs from [85, 95] significantly when considering the information that is gleaned

from the camera-based tactile sensor data. For the tasks of cable following [85] and cloth un-

folding [95], intuitive, salient, local geometric features about pose state can be obtained directly

from tactile images (e.g. position and orientation of a cable or cloth edge). As a result, interac-

tions between the robot fingerpad and target object can be considered linear time invariant, and

linear quadratic regulators can be used for system identification, planning, and control. Similar

to [85, 95], this work results in tactile consequences that are geometrically aligned with actual

robot motion. However, [85, 95] did not consider tensile state in addition to pose. Additionally, we
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aim to develop a framework that has the potential to be extended to more complex manipulations

of deformable objects, without relying on the experimental assumption that local features can be

easily and directly obtained from high-dimensional tactile data.

The study presented in [100] is most closely related to this work, but involves the manipulation

of rigid objects instead of deformable objects. The authors used camera-based tactile sensor data

from real robot-object interactions and a complex neural network in order to build a model of sys-

tem dynamics in the form of an image sequence prediction network. Then an evolutionary strategy

method [8] was used for planning control actions for manipulation tasks such as positioning a ball

bearing. In this work, we conducted an investigation of system dynamics in a low-dimensional

latent space, and we integrated the latent space dynamics model with an optimization-based model

predictive control framework, whose parameters could be extended for future works.

3.2.3 Simulation of Tactile Sensor Behavior

Innovations in tactile sensor design continue, with recent designs leveraging marker-tracking

with a low-cost camera [56], tracking of dense optical flows [82], and measurement of electrode

voltage changes within a conductive fluid [54]. While tactile sensor technology and data analysis

techniques advance, the development of task-relevant models of tactile sensor behavior remains

a challenge. The difficulty of developing tactile sensor models from first-principle physics or by

collecting tactile data via real robot-environment interactions negates the widespread use of sim-to-

real paradigms and well-established model-based planning and control methods for tactile-driven

manipulation. In order to leverage tactile sensor data for planning and control, one needs a model

that captures and predicts how a given robot action directly changes the state of the tactile sensor

as well as the state of the object. The dynamics model can be difficult to build when both the tactile

sensor and object are deformable, and especially when multiphysics modeling is required.
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Progress is being made in the important area of tactile sensor modeling and simulation. In [113],

a simulator for a vision-based tactile sensor was developed based on RGB-D image rendering

heuristics [86]. The simulator was demonstrated for the task of manipulating rigid objects having

simple shapes (e.g. cube, sphere) in the plane with homogeneous contact geometry. However, in

this work, contact between the deformable tactile sensor fingerpad and elastic cable is affected by

both the pose and tensile state of the cable.

In [87], the authors employed a linear displacement relationship and superposition principle

in order to compute marker motion for an elastomeric, camera-based tactile sensor (GelSight).

The linear superposition principle requires that the initial displacement of the fingerpad caused

by external loads be known a priori. In this work, such displacement information is not known a

priori.

In [81], finite element model simulations based on hyperelastic material models and the ideal

pinhole camera model were used to generate a supervised learning dataset. The goal of the simu-

lator was to estimate the distribution of contact force across an elastomeric, camera-based tactile

sensor from tactile images acquired during real robot-object interactions. The construction of the

dataset required a regularized indentation process such that the contact force distribution and node

displacement field could be extracted at each point along the indentation trajectory. In this work,

physical interactions with the elastic cable were relayed to the elastomeric tactile sensor fingerpad

through the grasp of a rigid rig and not through direct indentation of the cable into the fingerpad.

Furthermore, both normal and shear forces from manipulations of the elastic cable affected the

tactile sensor data.
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3.3 Framework for the Tactile-driven Model Predictive Control of Deformable

Linear Objects

In this work, we aim to develop a principled optimization-based model predictive control

framework for the tactile-driven manipulation of deformable linear objects. In order to realize

such a goal we need to overcome two challenges: (i) How to identify a system dynamics model

that accurately captures the effects of robot control actions on high-dimensional tactile sensor data;

(ii) How to ensure that the system dynamics model is computationally feasible for integration with

an optimization-based MPC framework.

In order to tackle these two challenges, we employed a combination of unsupervised repre-

sentation learning and supervised learning. First, we used deep probabilistic generative modeling

techniques to allow for the automatic discovery of dynamics in a low-dimensional latent space

from high-dimensional observation-action pairs. Second, the generative neural network was used

to guide the training of a Gaussian process (GP) model. With proper approximation techniques,

the GP model was made computationally feasible for integration with an optimization-based MPC

framework for planning and control on a real robot.

We briefly introduce the problem formulation at the highest level here. At a time step t we

denote the high-dimensional raw tactile sensor observation as ot , the control action ut and the

underlying low-dimensional latent state as xt . The parameterized inference function that estimates

the low-dimensional latent state is qΘ(xt |ot), with Θ representing the weights and bias of the neural

networks. The dynamics model describing the change of low-dimensional latent state caused by

a control action is identified and denoted as xt+1 = f (xt,ut|Θ), where the conditioning symbol is

used to emphasize that the latent space dynamics model depends on the inference function q.

Denoting the reference trajectory in the latent space as Xr = {x0, . . . ,xN}, the general MPC
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formulation of an optimal control problem is expressed as the following:

min
Π(x)

E

(
l f (xN −xr

N)+
N−1

∑
t=0

l (xi −xr
i ,ui)

)
(3.1a)

s.t. xi+1 = f (xi,ui|Θ), (3.1b)

ui = πi(xi), (3.1c)

Pr(ui ∈ U )≥ pu, (3.1d)

x0 = q(o0) (3.1e)

The optimization is carried out over a sequence of input policies Π(X) = {π0(x), . . . ,πN(x)}

with terminal loss l f (xN −xr
N) and intermediate loss l (xi −xr

i ,ui), where N is the length of the

planning window. A stochastic optimization framework also allows the treatment of chance con-

straints Eqn. Equation (3.1d) with principled approaches, which is a prescription of maximum

probability constraint violation. At the start of the optimization process we obtain the initial la-

tent state x0 from the current tactile observation o0, and the optimization is carried out with the

latent space dynamics xi+1 = f (xi,ui|Θ). It should be noted that the unsupervised representation

learning model is not used directly in the optimization process except to provide the initial latent

state. Nonetheless, the model is still important to the optimization process because the quality of

the latent space dynamics function f heavily depends on the model.

In this section, we provide background on Gaussian process models (Section 3.3.1) and an

approximation technique (Section 3.3.2) that make GP models practical for an optimization-based

MPC framework. We present how to replace the original MPC formulation in Eqn. Equation (3.1)

with a tractable approximation (Section 3.3.3). We then introduce the probabilistic generative mod-

eling principles in Section 3.3.4) and the unsupervised representation learning methods explored

in this work (Sections 3.3.4.1 and 3.3.4.2).
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3.3.1 Gaussian Process Models

Gaussian process models provide a data-efficient framework for nonlinear regression prob-

lems. A GP is a collection of random variables, such that any finite number of which have a joint

Gaussian distribution [75]. For a dynamical system, we denote the collected state-action triples as

{xii+1,xti,uti}i=1,...,M, Hence, the training dataset for a GP model is

D := {X := [(xt1,ut1)
⊺, . . . ,(xtM ,xtM)

⊺] ∈ RM×(nx+na),

Y := [x⊺t1+1, . . . ,x
⊺
tM+1] ∈ RM×nx}

For the state dimension nx > 1, given the input data pair (xt ,ut), we assume that each dimension of

GP output is conditionally independent. A Gaussian process models the output data using a joint

normal distribution. For each output dimension l ∈ {1, . . . ,nx}, a prior mean function ml(·) and

prior pair-wise covariance function kl(·, ·) are specified, which results in the following joint normal

distribution,

[Y]·,l ∼ N(ml(X),Kl
XX + Iσ

2
nl
) (3.2)

where Kl
XX is the covariance matrix of the data. More specifically, suppose x̂t = (xt ,ut)

⊺, we have

ml(X) = [ml(x̂t1), . . . ,m
l(x̂tM)] and [Kl

XX]i j = kl(x̂ti, x̂t j). In practice, the prior mean function ml(·)

is often set to zero and the kernel function captures the features of the data. In this work, we chose

the commonly used squared exponential kernel,

kl(x̂ti, x̂t j) = σ
2
fl exp

(
−1

2
(x̂ti − x̂t j)

⊺Wl(x̂ti − x̂t j)

)
+δi jσ

2
nl

(3.3)

where Wl is the diagonal length scale matrix determining how relevant each input dimension l is

with respect to the output data, σ2
fl is the signal variance, and σ2

nl
is the noise variance. As such, the

hyperparameters are ({Wl},σ2
fl ,σ

2
nl
). Optimization of the hyperparameters are achieved through

Bayesian inference with the log marginal likelihood as the evidence [75].
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For prediction, the joint distribution of training data and a test data point x∗ in an output di-

mension l can be written as [Y]·,l

[y∗]·,l

∼ N


ml(X)

ml(x∗)

 ,
Kl

XX + Iσ2
nl

Kl
Xx∗

Kl
x∗X Kl

x∗x∗


 (3.4)

Given the training inputs, the predicted output of the test data in dimension l is expressed with the

resultant conditional distribution p([y∗]·,l|[Y]·,l,X) = N(µl(x∗),Σl(x∗))

µl(x∗) = Kl
x∗X(K

l
XX + Iσ

2
nl
)−1[Y]·,l (3.5a)

Σl(x∗) = Kl
x∗x∗ −Kl

x∗X(K
l
XX + Iσ

2
nl
)−1Kl

Xx∗ (3.5b)

The final multivariate GP prediction for the output is expressed by stacking the mean and covari-

ance functions for each individual output dimension, as follows,

Ψ = [µ1(x∗), . . . ,µM(x∗)], (3.6a)

Ω = diag(Σ1(x∗), . . . ,ΣM(x∗)) (3.6b)

For the above, full GP model, the complexity of evaluating the mean and covariance in Eqn. Equa-

tion (3.5) are O(n2) and O(n3) respectively, and it is, in principle, to incorporate all training points

for the evaluations in Eqn. Equation (3.5). Unfortunately, for the large amounts of data required

for MPC on real robots, such complexity limits the use of GP models for our application. A second

issue with the full, dense GP model is that the predictive distributions in Eqn. Equation (3.5) are

derived with deterministic inputs. In order to fully align with the MPC framework and transcribe

multi-step predictions from learned dynamics, it is necessary to consider stochastic (tactile) inputs.

We will now briefly outline techniques for solving both issues.
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3.3.1.1 Stochastic Variational Gaussian Process Models

The marginal likelihood of the full dense GP does not attain a mini-batch formulation due to

the O(n3) complexity. To alleviate this issue, a set of inducing points are introduced. The inducing

points jointly form the GP prior with the full training dataset and the test data point. The motivation

is that the information from the full training dataset can be effectively summarized by the inducing

dataset. The marginal likelihood then factorizes into:

p(y) =
∫

p(y|X)p(X|xm)p(xm)dXdxm (3.7)

We can apply the variational approximation principle, which is further described in Section 3.3.4,

and notice that if the variational approximation distribution is chosen as q(X,xm) = p(X|xm)q(xm),

the conditional probability p(X|xm) naturally cancels out in the derivation of the evidence lower

bound (ELBO L):

Eq(X,xm)[log p(X)] =Eq(X,xm)[log
p(y|X)p(xm)

q(xm)
]︸ ︷︷ ︸

ELBO

+

DKL[q(X,xm)||p(X,xm|y)]

(3.8)

Importantly, due to the expectation formulation, we can now use stochastic gradient descent with

mini-batch sampling to train the GP model. After the maximization of the ELBO, predictive dis-

tributions similar to Eqn. Equation (3.5) can be obtained from the joint prior. Now, the dominant

computational expense depends on the m inducing points xm, and the evaluation complexity be-

comes O(nm2), which provides a significant speed-up when m ≪ n. In this work, we use the

stochastic variational Gaussian process (SVGP) model in preparation for eventual integration with

an optimization MPC framework. For additional details regarding SVGP models, we refer the

reader to [64, 101].
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3.3.2 Uncertainty Propagation

As stated in Section 3.3.1, inputs to GP models are assumed to be deterministic. As a result, the

Gaussian output distribution is useful for predicting one timestep ahead. However, since the MPC

framework in the latent space normally requires predicting several timesteps ahead, a stochastic

output from one timestep will be used as the (stochastic) input for the next prediction.

Suppose the joint distribution for the state-action pair at a specific timestamp t is Gaussian, i.e.

p(st,at) = N(µ̃, Σ̃), then the probabilistic state transition function will have the form

p( f (st,at)|µ̃, Σ̃) =
∫

p( f (st,at)|st,at)p(st,at)dstdat (3.9)

This represents an integration of a nonlinear mapping of Gaussian-distributed random variables to

the GP prediction mean and covariance with Eqn. Equation (3.5a) and Equation (3.5b), which, in

general, is non-Gaussian and cannot be computed analytically. To make the learned GP dynamics

tractable for an optimization-based MPC framework, a first-order Taylor approximation is applied

to the GP predictive distribution with the uncertain input:

µpred = µ(µ̃) (3.10a)

Σpred = Σ(µ̃)+∇(µpred)Σ̃∇(µpred)
⊺ (3.10b)

For further details, readers are referred to [16, 24].

A more complicated method that can capture the uncertainty propagation more accurately is

also proposed in [24]. For this work, we find that the Taylor approximation offers a reasonable

trade-off between computation speed and representation accuracy of the transition dynamics. How-

ever, for tactile sensors whose noise can be better characterized and/or for more high-consequence

manipulation scenarios, the selection of the uncertainty propagation method could be significant

and a more complicated method such as in [24] should be considered.
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3.3.3 Tractable Model Predictive Control Formulation

With the tools and approximations introduced above, we can replace the original MPC formula-

tion in Eqn. Equation (3.1) with a tractable MPC formulation. First, we restrict the controller class

to be a linear state feedback controller. This allows us to avoid the infinite dimensional optimiza-

tion problem of searching over a general form of feedback control policy πi(x) at each planning

step.

ui = K(µx
i −xr

i )+vi (3.11)

The feedback gain K is selected heuristically and the optimization is conducted with respect to

the feedforward component vi. With the control law in Eqn. 3.11, the mean and covariance of the

stochastic input to the GP in Eqn. Equation (3.9) can expressed as

ũ = [µx
i ,Kµ

x
i ]

⊤, Σ̃ =

 Σx
i Σx

i K⊤

KΣx
i KΣx

i K⊤

 (3.12)

The first order Taylor approximation in Eqn. Equation (3.10) can be applied accordingly.

The task we consider in this work is analogous to a reaching task that involves an initial state

and goal state. Thus, the cost function is chosen to be the quadratic distance of every random state

on the trajectory with respect to the goal point xg

E(l(xi,xg)) = ||µx
i −xg||2Q + tr[QΣ

x
i ] (3.13)

We also bound the control signal through chance constraints in order to demonstrate the full

flexibility of the framework, similar to [38]. With an application of Boole’s inequality [6], a prob-

abilistic polytopic constraint on a Gaussian random variable Pr(u1 ≤ Kx+ v ≤ u2) ≥ δ can be

made deterministic, as follows,

Kµx +v ≤ u2 −
√

2K⊤ΣxKΦ
−1(δ )

Kµx +v ≥ u1 +
√

2K⊤ΣxKΦ
−1(δ )

(3.14)
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where Φ−1 denotes the inverse quantile function of a standard univariate Gaussian distribution.

Eventually we obtain a tractable MPC formulation with the multiple shooting scheme [7]

min
v0:N−1,µ

x
0:N ,Σ

x
0:N

N−1

∑
i=0

(
||µx

i −xg||2Q + tr[QΣ
x
i ]
)

s.t. µ
x
i+1 = µpred(µ

x
i ,ui),

Σ
x
i+1 = Σpred(µ

x
i ,Σ

x
i ,ui),

ui = Kµ
x
i +vi,

Pr(ui ∈ U )≥ pu, according to Equation(3.14)

µ
x
0 = q(o0), Σ

x
0 = 0

(3.15)

3.3.4 Unsupervised Learning of Dynamics Using Probabilistic Generative Modeling

In order to perform MPC on a real robot for our tactile-driven manipulation task, we need a sys-

tem dynamics model describing how the state of the elastic cable (as encoded by high-dimensional

tactile sensor data) changes due to control actions. In turn, to make the dynamics model compu-

tationally feasible for MPC, the model needs to be represented in a low-dimensional latent space

instead of the high-dimensional tactile sensor data space. This requirement naturally falls within

the class of problems necessitating unsupervised feature extraction, which is commonly tackled

with probabilistic generative modeling [48].

In probabilistic generative modeling we assume a set of observed variables O = {o}i is inde-

pendent and identically distributed (i.i.d.) and generated from an unknown random process involv-

ing an unobserved random variable x. Probabilistically, the process factorizes into two steps: (1)

A value of x is sampled from a prior distribution pθ (x); (2) A value of the observation is sampled

from the conditional distribution pθ (o|x). For applications with high-dimensional data, such as

65



image and speech waveforms, neural networks are commonly used for modelling the density func-

tions, where both the unobserved random variable x and neural network parameters θ are unknown

to us.

The learning objective of probabilistic general modeling is to search over parameter θ such

that the modelled marginal data distribution
∫

pθ (o|x)pθ (x) = pθ (o) matches the unknown true

data distribution. However, in general, directly computing the marginal probability distribution

through integration is non-analytical. In order to circumvent this problem and to develop an in-

ference scheme for the marginal distribution, Bayes rule is applied. Applying Bayes rule to the

marginal distribution p(o) = p(o,x)
p(x|o) , introducing another auxiliary distribution q(x), and noting that

log p(o) = Eq(x)[p(o,x)], the log marginal likelihood can be rewritten as:

log pθ (x) = DKL(q(x)||p(x|o))+Eq(x)[p(o|x)]

−DKL(q(x)||p(x))
(3.16)

It should be noted that the generative distribution is modelled using a neural network with pa-

rameter θ . If the auxiliary function is modelled to be dependent upon the observation o using a

neural network with parameter φ , similar to the generative distribution, the first term on the right-

hand side of Eqn. Equation (3.16) becomes the Kullback-Leibler (KL) divergence of the auxiliary

posterior from the true posterior. The remaining terms on the right-hand side of Eqn. Equation

(3.16) are called the evidence lower bound (ELBO), which consists of the reconstruction error of

the observation from the encoder-decoder structure and the KL divergence of the encoder from the

unobserved state prior. Maximization of the ELBO with respect to θ and φ will approximately

maximize the marginal observation distribution p(o) and minimize the KL divergence of the aux-

iliary posterior from the true posterior.

The generative inference framework described above is “static” in the sense that observations

are assumed to be i.i.d. However, tactile sensor data generated from task-specific action sequences
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on a real robot are likely to be temporally correlated. Such temporal relationships may need to be

considered when developing an inference framework for sequential data.

Consider a sequence of random observed variables o1:T = {ot ∈ Rno}, unobserved variables

x1:T = {xt ∈ Rnx}, and control sequence u1:T = {ut ∈ Rnu}. For control-related tasks, we are

interested in the generative process of o1:T and x1:T given control action u1:T . We assume that

u1:T is deterministic and, therefore, only focus on modelling the conditional marginal probability∫
p(o1:T ,x1:T |u1:T )pθ (x1:T |u1:T ) = p(o1:T |u1:T ).

After imposing a causal relationship and applying the chain rule, the conditional joint distribu-

tion can be factored as follows,

p(o1:T ,x1:T |u1:T ) =
T

∏
t=1

p(ot |o1:t−1,x1:t ,u1:t)

p(xt |o1:t−1,x1:t−1,u1:t)

(3.17)

Without any further assumptions, the exact posterior is non-causal and attains the following

general form,

p(x1:T |o1:T ,u1:T ) =
T

∏
t=1

p(xt |x1:t−1,o1:T ,u1:T ) (3.18)

The formulation of the inference model q(x1:T ) should also maintain the structure of the exact

posterior:

q(x1:T |o1:T ,u1:T ) =
T

∏
t=1

q(xt |x1:t−1,o1:T ,u1:T ) (3.19)

After applying the formulation in Eqns. Equation (3.17), Equation (3.18) and Equation (3.19)

to the log marginal decomposition Eqn. Equation (3.16), we obtain the ELBO for a sequential
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Figure 3.2: Two different types of inference models were considered for capturing the latent space

dynamics of the observation-action pairs. (L) The static inference model (section 3.3.4.1) assumes

that each transition tuple is i.i.d. Representative tactile sensor data are shown as outputs of the

generative process. (R) The sequential inference model (section 3.3.4.2) considers temporal rela-

tionships within the tactile sensor data. Solid and dashed arrows represent generative processes

and inference functions, respectively. Grey and white shading denote whether the variables are

observed or unknown, respectively. Squares and circles indicate whether variables are treated as

deterministic or stochastic, respectively.
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inference model as the following:

L(θ ,φ ,o1:T ,u1:T ) =Eqφ (x1:T |o1:T ,u1:T )[log pθ (o1:T ,x1:T |u1:T )]−

Eqφ (x1:T |o1:T ,u1:T )[logqφ (z1:T |x1:T ,u1:T )]

=
T

∑
t=1

Eqφ (x1:t |o1:T ,u1:T )[log pθ (ot |o1:t−1,x1:t ,u1:t ]−

T

∑
t=1

Eqφ (x1:t−1|o1:T ,u1:T )[DKL(qφ (xt |x1:t−1,o1:T ,u1:T )||

pθ (xt |o1:t−1,x1:t−1,u1:t)]

(3.20)

The ELBO for the sequential inference model contains a reconstruction accuracy term and a

regularization term, as for the ELBO for a static inference model (Eqn.Equation (3.16)). The reg-

ularization term in Eqn. 3.20 for the sequential inference model has an interesting interpretation.

Specifically, pθ (xt |o1:t−1,x1:t−1,u1:t) can be viewed as the “predictive” distribution because it out-

puts the probability of the latent state at step t based on information up to step t −1 and a control

signal applied up to step t. At the same time, qφ (xt |x1:t−1,o1:T ,u1:T ) can be viewed as the “up-

date and smoothing” distribution because it infers the probability of the latent state at step t with

future observations and control signals in addition to past latent state information. By minimizing

the KL divergence between pθ (xt |o1:t−1,x1:t−1,u1:t) and qφ (xt |x1:t−1,o1:T ,u1:T ), the ELBO for

the sequential inference model aims to match the “predictive” distribution with the “update and

smoothing” distribution.

Many of the recent works in the generative modelling literature use specific instances of the

general definition of ELBO expressed in Eqn. Equation (3.20). By applying more conditional in-

dependence assumptions to the generative model, the exact posterior pθ (xt |x1:t−1,o1:T ,u1:T ), ap-

proximate posterior qφ (xt |x1:t−1,o1:T ,u1:T ), and ELBO in Eqn. Equation (3.20) can be simplified

further. We refer the interested reader to [33].

In Sections 3.3.4.1 and 3.3.4.2, we describe the formulations that we used to investigate whether
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a “static” or “sequential” inference model, implemented with Gaussian processes, would be more

appropriate for our goal of tactile-driven manipulation of deformable linear objects.

3.3.4.1 Static Model of Latent Space Dynamics – Deep Gaussian Process Model

The structure of the static inference model is shown in Figure 3.2 (left). Our use of this in-

ference framework was inspired by [10]. As will be discussed in Section 3.4.3, we show that a

GP-specific static inference model fails to capture the latent space dynamics accurately enough for

the the tactile-driven manipulation of DLOs in this work.

To infer latent space dynamics using probabilistic generative modelling with a static inference

framework, each transition tuple {ot:t+1,xt:t+1,ut} is treated as i.i.d. and we maximize the obser-

vation transition probability p(ot+1|ot ,ut) as follows.

log p(ot+1|ot ,ut) = log
p(ot+1,xt+1,xt |ot ,ut)

p(xt+1,xt |ot+1,ot ,ut)

= log
p(ot+1,xt+1|xt ,ot ,ut)p(xt |ot ,ut)

p(xt+1,xt |ot+1,ot ,ut)

= log
p(ot+1|xt+1)p(xt+1|xt ,ut)p(xt |ot)

p(xt+1,xt |ot+1,ot ,ut)

(3.21)

After applying an assumption of conditional independence and Bayes rule, the posterior distribu-

tion on the denominator can be decomposed as

p(xt+1,xt |ot+1,ot ,ut) = p(xt+1|ot+1,ot ,ut)p(xt |xt+1,ot+1,ot ,ut)

≈ p(xt+1|ot+1)p(xt |ot)

(3.22)

Introducing the variational distribution q on {xt+1,ot+1} we obtain the following:

log p(ot+1|ot ,ut) = Eq(xt+1|ot+1)[ log
p(ot+1|xt+1)p(xt+1|xt ,ut)

q(xt+1|ot+1)
+

log
q(xt+1|ot+1)

p(xt+1|ot+1)
]

(3.23)
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Given that Eq[log q
p ] = DKL(q||p), we obtain the GP-specific ELBO for the static inference model

as follows:

L= Eq(xt+1|ot+1) log(p(ot+1|xt+1))︸ ︷︷ ︸
(I): Reconstruction accuracy

+

Eq(xt+1|ot+1) log(p(xt+1|xt ,ut))︸ ︷︷ ︸
(II): Latent space dynamics

+

Eq(xt+1|ot+1)− log(q(xt+1|ot+1))︸ ︷︷ ︸
(III): Entropy regularization

(3.24)

The ELBO expression in Eqn. 3.24 contains three terms: (I) reconstruction accuracy, (II) la-

tent space dynamics, and (III) entropy regularization. Importantly, (II) is the cost term that we

use GP to represent because the cost term describes the likelihood of latent state transitions over

the expectation of the encoder distribution. Maximization of the cost term (II) is equivalent to

maximization of the mean of GP marginal likelihood evaluated with Monte Carlo samples gen-

erated from the encoder distribution q(xt+1|ot+1). The remaining terms (I, III) in the ELBO are

computed with the encoder q(x|o) and decoder p(o|x), which are modelled with neural networks.

All model parameters for the GP model and neural networks are trained jointly using stochastic

gradient descent.

3.3.4.2 Sequential Model of Latent Space Dynamics – Deep Recurrent Guided Variational

Gaussian Process Model

The structure of the sequential inference model is shown in Figure 3.2 (right). The motivation

for this structure is to combine the stochastic state transition of the traditional state space model

with the nonlinearity of recurrent neural networks (RNNs) in order to create a system capable of

modeling time series data in a complex domain. The use of an RNN also allows the deterministic

hidden state from long short-term memory (LSTM) cells or gated recurrent units (GRUs) to act as
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an internal memory, which is crucial for capturing sequential relationships within complex time

series data. The combination is highlighted by the deterministic hidden states {h1:T} that split

the model into a deterministic path and stochastic path (Figure 3.2, right). This approach was

discovered and explored by the model-based reinforcement learning community [21, 30, 35, 14],

but has not been widely applied to experiments on real robots. In this work, we use the model

structure in [35], but we present the derivation of the ELBO in a more systematic way, as inspired

by [33, 29].

With the incorporation of the deterministic latent states {h1:T}, and the conditional indepen-

dence assumption (Figure 3.2, right), the generative process can be factorized as follows,

p(o1:T ,x1:T ,h1:T |u1:T−1) = p(o1:T |x1:T ,h1:T )p(x1:T ,h1:T |u1:T−1)

=
T

∏
t=1

p(ot |xt ,ht)p(xt |ht)

p(ht |xt−1,ht−1,ut−1)

(3.25)

With Bayesian networks, every variable is conditionally independent of its non-descendants

given its parents. As a result, the true posterior for the graphical model shown in Figure 3.2 (right)

can be factorized as follows,

p(x1:T ,h1:T |u1:T−1,o1:T ) =
T

∏
t=1

p(xt |ht ,ot)

p(ht |ht−1,xt−1,ut−1,ot)

(3.26)

It should be noted that the information flow related to ht is deterministic. Thus, with known

parents, there is no stochasticity remaining in ht , and p(ht |ht−1,xt−1,ut−1) in Eqn. Equation (3.25)

and p(ht |ht−1,xt−1,ut−1,ot) in Eqn. Equation (3.26) each reduce to the same delta function cen-

tered at the RNN output. If we impose the same structure assumption on the inference function,
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we get the following,

q(x1:T ,h1:T |u1:T−1,o1:T ) =
T

∏
t=1

q(xt |ht ,ot)p(ht |ht−1,xt−1,ut−1) (3.27)

The GP-specific ELBO for the sequential inference model can be computed as

L=
T

∑
t=1

Eq(x1:t ,h1:t |u1:t−1,o1:t)[log p(ot |xt ,ht)]−

T

∑
t=1

Eq(x1:t−1,h1:t |u1:t−1,o1:t)[DKL(q(xt|ht,ot)||p(xt|ht))]

(3.28)

Given that ht is the output of the RNN , ht is essentially a function of (x1:t−1,u1:t−1). Applying

this observation to Eqn. Equation (3.28), we obtain the final representation of the GP-specific

ELBO for the sequential inference model,

L=
T

∑
t=1

Eq(x1:t |u1:t−1,o1:t)[log p(ot |x1:t ,u1:t−1)]︸ ︷︷ ︸
(I): Reconstruction accuracy

−

T

∑
t=1

Eq(x1:t−1|u1:t−1,o1:t)[DKL(q(xt|x1:t−1,ot,u1:t−1)||

p(xt|x1:t−1,u1:t−1))]︸ ︷︷ ︸
(II): KL Regularization

(3.29)

The ELBO expression in Eqn. 3.29 contains two terms: (I) reconstruction accuracy and (II)

KL regularization. Comparing the GP-specific form of ELBO for the sequential inference model

(Eqn. Equation (3.29)) with the general form of ELBO for sequential inference models (Eqn. Equa-

tion (3.20)), the GP-specific simplification of the sequential inference model used in this work can

be identified clearly. Considering the reconstruction accuracy term (I) in Eqn. 3.29, we assume

that the latent state and observation at the current timestep depend on previous latent states and

control signals but not on previous observations. Considering the KL regularization term (II) in

Eqn. 3.29, all future (t +1 to T ) information about the observation data sequence is discarded such
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that q(x1:t |u1:t−1,o1:t) acts only as an “update” distribution. Since q(x1:t |u1:t−1,o1:t) still contains

information up to and including the current timestep, the temporal relationship of the observation

data sequence remains partially encoded.

To use this GP-specific formulation of the sequential inference model, we first train the model

with sequences of collected tactile data. Then we use the output of the model in latent space as

a training dataset to guide the Gaussian process. As will be discussed in Section 3.4.4, we show

that a GP-specific sequential inference model, as described here, outperforms a GP-specific static

inference model, as described in Section 3.3.4.1.

3.4 Experimental Procedure and Evaluation

In this section, we describe our experimental procedure and address two questions. For Q1,

we ask, when learning a latent space dynamics model based on high-dimensional tactile sensor

data, is a sequential inference model (Section 3.3.4.2) preferred over a simpler static inference

model (Section 3.3.4.1)? For Q2, we ask, how well does a latent space dynamics model learned

from high-dimensional tactile sensor data work in an optimization-based model predictive control

framework for the manipulation of deformable linear objects on a real robot?

In Sections 3.4.1 and 3.4.2, we describe the hardware setup and data collection procedure, re-

spectively, for the real robot experiments. In Sections 3.4.3 and 3.4.4, we address Q1 by describing

the training procedures and results for learning a latent space dynamics model using a static infer-

ence model and sequential inference model, respectively. Finally, in Section 3.4.6, we address Q2

and evaluate the use of a learned latent space dynamics model within an optimization-based MPC

framework for a tactile-driven manipulation task on a real robot. Our experimental procedure is

illustrated at a high level in Figure 3.3.
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Figure 3.3: Experimental procedure: (Left) We collected tactile observation – robot action pairs

for use as training data. (Center) System dynamics were mapped from a high-dimensional tactile

sensor data space to a low-dimensional latent space. (Right) The learned latent space dynamics

model was integrated with an optimization-based model predictive control framework.
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3.4.1 Experimental Setup

A 7-degree-of-freedom (DOF), tendon-driven robot arm (WAM Arm, Barrett Technology) was

used to manipulate an elastic cable in a plane (Figure 3.4). The fixed end of the elastic cable

was attached to the base of a rigid frame. The cable was passed over a rigid rod, which will be

hereafter referred to as the “anchor point” in our system. The grasped end of the elastic cable

was attached to a rigid rig that could be easily grasped by a 1-DOF, parallel gripper [85]. Each

fingerpad of the gripper was outfitted with an elastomeric camera-based tactile sensor (wedge

GelSight sensor [112]).

The anchor point serves as the origin for an x−y plane, in which the robot moves the grasped

end of the elastic cable or “grasp point”. The (x,y) coordinates of the grasp point are parameterized

in terms of cable length d and cable angle α . Cable length d is defined as the distance between

the grasp point and the anchor point. Cable angle α is measured positive counter-clockwise from

the x-axis to the stretched cable. An Aruco marker attached to the rigid rig is used to track d

and α . The Aruco marker data are not used for learning a latent space dynamics model or model

predictive control, and are only used for post hoc visualizations of the latent space after a latent

space dynamics model has been learned.

Importantly, the (d,α) pair contains information about both pose state and tensile state of the

elastic cable. Specifically, d and α capture magnitude and direction information, respectively,

about the tensile force vector acting along the length of the elastic cable. We believe that tactile

sensors are uniquely suited for encoding tensile force vector information that cannot be gleaned

from images of taut (and, therefore, straight) cable configurations without a priori knowledge of

the elastic properties of the cable.
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Figure 3.4: Experiment setup: The robot gripper moves within a 2D plane defined by the x- and

y-axes. The top finger of the gripper is outfitted with a camera-based tactile sensor (GelSight). The

configuration of the elastic cable is specified as the angle α between the cable and the x-axis, and

the distance d between the grasping point and the anchor point. The Aruco marker is used solely

for visualization within the latent space and is not used for training.
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3.4.2 Collecting and Augmenting Observation-Action Pairs for Training

In order to learn a latent space dynamics model, we collected observation-action pairs using a

total of 260 rollouts on the real robot system shown in Figure 3.4. Prior to each rollout, baseline

tactile sensor data were collected with the grasp point close to the anchor point such that the elastic

cable was not quite taut. We then commanded the robot to move to a starting position where

the cable was minimally stretched, and began sending velocity commands in Cartesian space.

Marker displacement vector fields were extracted from the raw GelSight image data. We used the

GelSight marker displacement vector fields and Cartesian velocity vector for each timestep t as an

observation-action pair {ot ,ut}.

Velocity commands in the Cartesian space were designed to randomly sample combinations of

cable angle α and cable length d. First, the [0◦,360◦] range was divided into six non-overlapping

sectors 60◦ wide. The direction of the velocity command vector was sampled from each of the six

sectors using a resolution of 5◦. The magnitude of the velocity command vector was set at 3 cm/s

for all rollouts. Each rollout lasted for 90 sec.

We augmented the original observation-action pair dataset by dividing each rollout into mul-

tiple sequences, each having a manually selected sequence length of 50 datapoints. Sequences

were sampled at each timestep until insufficient datapoints remained for a 50-datapoint sequence

(i.e. sampling occurred at [t1, t2, · · · , tT−50+1]). We also reversed the data sequences and injected

noise into the displacement vector (magnitude and direction) of each marker. The noise for each

marker’s displacement vector was sampled from a normal distribution having a mean and standard

deviation that were calculated from a 30 sec batch of tactile sensor data, collected after the gripper

reached and remained briefly at a commanded location where the cable was moderately taut. The

original dataset was augmented through the inclusion of the reversed and noise-injected sequences.
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Figure 3.5: The training and validation loss curves are shown for three random seeds for the GP-

based static inference model of latent space dynamics. From left to right, the first three plots show

the training loss for the encoder-decoder reconstruction loss, GP latent space transition likelihood,

and negative entropy encoder regularization, respectively (terms I, II, and III in Eqn. Equation

(3.24)). The plot on the far right shows the validation loss defined in Section 3.4.3.

All control action and tactile sensor data were recorded at a frequency of 5 Hz for each 90

sec rollout. After augmentation, we had approximately 180k observation-action pairs and 40k

observation-action pairs in the training and validation datasets, respectively.

3.4.3 Learning a Latent Space Dynamics Model from Tactile Sensor Data Using a Static

Inference Model

In this section, we describe the methods and results for learning a latent space dynamics model

from high-dimensional tactile sensor data using a GP-based static inference model. Applying

the physical intuition that the cable state for our manipulation task has two “general coordinates”

(magnitude and direction), we defined the latent state as a two-dimensional real vector xt ∈R2. The

observation ot is the stacked displacement vector (magnitude and direction) for all 130 markers on

the elastomeric GelSight fingerpad. Hence, ot has a dimensionality of 260.

Both the encoder qφ and decoder pθ were modelled as feedforward neural networks. Details
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on the structure of the encoder and decoder can been found in the Appendix (Section 3.6). The

number of inducing points for the stochastic variational Gaussian process was set at 300. For

the SVGP model, we assumed a constant, nonzero mean for the prior distribution. The constant

unknown mean becomes an additional hyperparameter alongside the length scales, signal variance,

and noise variance introduced in Section 3.3.1.

The neural networks and SVGP were implemented using PyTorch [72] and GPytorch [32],

respectively. Neural network parameters and SVGP hyperparameters were jointly optimized using

stochastic gradient descent via Adam [47]. The learning rates for the neural network paramters and

GP hyperparameters were set to 5e−4 and 1e−3, respectively. We trained the model for 30 epochs,

and performed validation every 2 epochs.

The training loss was implemented as in Eqn. Equation (3.24). Given that the input vector has a

much higher dimensionality (260-D) than the latent state vector (2-D), we expected that the training

loss would be dominated by the reconstruction loss. It should be noted that our ultimate goal is not

to absolutely minimize reconstruction loss, but rather to learn a GP-based inference model that can

capture dynamics in the latent space well enough to achieve our tactile-driven manipulation task

later.

We defined the validation loss as the difference between the original and reconstructed latent

space trajectories for a given (50-datapoint) observation-action sequence sampled from the valida-

tion dataset. The original latent space trajectory was obtained by sending the complete observation-

action sequence to the encoder. The reconstructed latent space trajectory was obtained by sending

the first encoded latent state and complete control action sequence to the SVGP in order to re-

construct the remainder of the sequence in the latent space. The overall validation loss at each

validation epoch was defined as the average of validation losses computed for every observation-

action sequence in the validation dataset.
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To check whether neural network initialization and training data shuffling influenced the train-

ing, we examined the training experiment results for three different random initialization seeds.

We will refer to the results from each seed as a trial. The training loss (encoder-decoder recon-

struction loss, GP latent space transition likelihood, and negative entropy encoder regularization)

and validation loss curves for the three trials are shown for the SVGP static inference model in

Figure 3.5. The reconstruction loss decreases consistently for the majority of the 30 epochs. As

expected, the magnitude of the reconstruction loss is much greater than that for the latent space

transition likelihood and the negative entropy encoder regularization terms.

For all three trials, the validation loss stopped decreasing during the training. For one trial

(purple trace), the validation loss increased significantly at epoch 24. This indicates that the dif-

ference between the original and reconstructed latent space trajectories dramatically worsened at

epoch 24. We also observed that the GP latent space transition likelihood, and negative entropy

encoder regularization terms began increasing in the early or middle stages of the training process.

This indicates that the latent space dynamics prediction was getting worse and the uncertainty of

the GP model was increasing.

The training and validation loss trends in Figure 3.5 suggest that the latent space dynamics

model using a GP-based static inference model is overfitted to the encoder-decoder reconstruction

and does not capture the latent space dynamics well. To further investigate this issue, we compared

an original tactile sensor data sequence with reconstructed sequences at different epochs.

Figure 3.6 shows an original sequence of GelSight marker displacement vector fields from the

validation dataset (Row 1) as compared to sequences reconstructed from the learned dynamics

model at epochs 2, 18, and 30 (Rows 2, 3, and 4, respectively). The data are shown for the worst-

performing trial (purple trace) shown in Figure 3.5. Epoch 18 marks the epoch where the lowest

validation loss was obtained for this particular trial. This particular rollout sequence, comprised
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Figure 3.6: For the GP-based static inference model of latent space dynamics, the original GelSight

marker displacement vector fields (Row 1) are shown alongside the tactile sequences reconstructed

from the learned dynamics model at epochs 2, 18, and 30 (Rows 2, 3, and 4, respectively). The

solid arrows in Rows 2-4 are reconstructed by sending the GP predictive mean to the decoder

network. The shaded arrows are reconstructed by sending 20 predictions sampled from the GP

predictive distribution to the decoder network. The data shown are for the worst performing trial

(purple trace) in Figure 3.5.
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of 50 datapoints, lasts for 10 sec. We show the marker displacement vector fields in 1.25 sec

increments, beginning with t = 0 sec on the far left and ending at t = 10 sec on the far right.

The tactile sensor data reconstruction is performed similarly to how the validation tests are con-

ducted. We set the initial latent state of the GP by encoding the first recorded marker displacement

vector field into the latent space. Then we predict the GP distributions in the 2-D latent space for

each timestep in the sequence using the latent state from the previous timestep, the known con-

trol action, and the learned static inference model of the latent space dynamics. For visualization

purposes, the mean and 20 random samples from the GP predictive distributions are sent to the

decoder for reconstruction in the 260-D space of marker displacement vector fields. The mean

displacement vectors are shown with solid arrows and the sampled vectors are shown with shaded

arrows in all reconstructed sequences in Figure 3.6.

By comparing the original sequence and the reconstructed sequence at epoch 2 (Figure 3.6), we

observe that the solid arrows reconstructed from the latent state means match those of the original

sequence fairly well. This suggests that the GP predictive distribution has already captured the

transition dynamics of the mean relatively well in the latent state space, and that the decoder

is doing a decent job with reconstruction. These observations are supported by the significant

decrease in the reconstruction loss and GP latent space transition likelihood from the training loss

curves in Figure 3.5.

From epoch 2 to epoch 18, we see further decreases in the reconstruction loss and GP latent

space transition likelihood, which reflects continued improvements in the reconstruction and latent

space predictions, respectively. Likewise, the regions spanned by the shaded arrows in the recon-

structions from epoch 18 (Figure 3.6) shrink substantially as compared to those from epoch 2. This

indicates that the covariance kernel of the latent space dynamics model has narrowed around its

predictive mean.
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From epoch 18 to epoch 30, we observe a degradation in the performance of the latent space

dynamics model reflected in the reconstructed sequences (Figure 3.6). By epoch 30, the solid

arrows that represent the predictive means of the marker displacement vector fields no longer

match well with those from the original sequence. The regions spanned by the shaded arrows

in the reconstructions from epoch 30 have increased as compared to those from epoch 18. This

reflects an increase in the uncertainty of the latent space dynamics model from epoch 18 to epoch

30 that correspond with increases in the the GP latent space transition likelihood and validation

loss in Figure 3.5.

Thus far, the results and analysis seem to indicate that the learned model at epoch 18 provides

a good combinatorial performance for both the latent space dynamics modelling and the recon-

struction. However, a closer look at the corresponding latent space structure at epoch 18 suggests

otherwise. Row 1 of Figure 3.7 shows the latent space structure, parameterized by α and d, after

mapping all observations from the validation dataset through the trained encoder network at epochs

2, 18, and 30. Row 2 of Figure 3.7 shows all reconstructed and original trajectories, as encoded in

the latent space, at epochs 2, 18, and 30. The start and end of an individual trajectory (purple trace

in Figure 3.5) are highlighted with a red cross and blue triangle, respectively.

From Figure 3.7, we can comment on three key aspects of the latent space structure: shape,

distribution of configurational states, and continuity. First, the geometric shape of the latent space

for epoch 2 aligns best with our physical tuition. The shape is an arc, which makes sense for the

range of cable angles that were randomly sampled during data collection.

Second, the distribution of configurational states, as reflected by the colormaps, make physical

sense for both α and d. For α , the values transition from 140◦ at the top of the arc toward 230◦

at the bottom of the arc. In this sense, the latent space structure parallels the sampled motions of

the gripper within the second and third quadrants of the planar x−y workspace (Figure 3.4). For
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Figure 3.7: (Row 1) The latent space structure is shown, parameterized by α and d, after mapping

all observations from the validation dataset through the trained encoder network at epochs 2, 18,

and 30 for the GP-based static inference model of latent space dynamics. The colormaps for α and

d are based on data from the Aruco marker shown in Figure 3.4. (Row 2) All reconstructed and

original sequences of validation data, as encoded in the latent space, are shown at epochs 2, 18,

and 30. The start and end of an individual trajectory (purple trace in Figure 3.5) are highlighted

with a red cross and blue triangle, respectively.
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d, the values increase as one moves radially outward from the virtual center of the arc. Again, the

latent space structure parallels the sampled motions of the gripper that placed the grasping point at

different radial distances relative to the fixed anchor point.

Third, we observe that the latent space for epochs 18 and 30 are more disjointed when compared

to that for epoch 2. Although the sampled motions of the gripper comprise a relatively continuous

region in the α and d space, only epoch 2 exhibits the most continuous latent space structure of the

three representative epochs. At epoch 30, the latent space structure is comprised of several disjoint

sets.

Furthermore, the similarity between the reconstructed and original trajectory highlighted in

Row 2 of Figure 3.7 is the greatest for epoch 2. For epoch 18, the original trajectory is disjoint.

For epoch 30, the original trajectory for is significantly shorter than the reconstructed trajectory.

Although results were only shown in Figure 3.6 and Row 2 of Figure 3.7 for one random trial

(purple trace in Figure 3.5), similar findings were made for the other two random trials described

in Figure 3.5.

Figures 3.5, 3.6, and 3.7 illustrate that it is not straightforward to identify a satisfying latent

space dynamics model using the GP-specific static inference model. The training and valida-

tion loss (Figure 3.5) and sample reconstruction of marker displacement vector fields (Figure 3.6)

would suggest that epoch 18 yields an effective latent space dynamics model. However, the la-

tent space structure for epoch 18 (Figure 3.7) has some undesirable attributes when considering

downstream integration with an optimization-based model predictive control framework.

Although results were only shown in Figure 3.6 and Row 2 of Figure 3.7 for one random trial

(purple trace in Figure 3.5), similar findings were made for the other two random trials described

in Figure 3.5.
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Figure 3.8: The training and validation loss curves are shown for the GP-based sequential infer-

ence model of latent space dynamics. For brevity, the recurrent state space model was trained only

once using 26 epochs. The SVGP was then trained with the latent state encoded by the inference

model q. The plot on the left shows the reconstruction loss (red) and KL divergence regularization

loss (blue) (terms I and II from Eqn. Equation (3.29)). The plots in the center and on the right

show the SVGP negative log likelihood and validation loss, respectively, for the same three ran-

dom seeds used to evaluate the GP-specific static inference model.
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Overall, we believe the results presented above suggest that the static inference model treats

each observation-action pair as i.i.d., which may be an inappropriate assumption for the noisy tac-

tile sensor data generated from real robot experiments in this work. To better capture the latent

space dynamics, we hypothesize that learning an inference model that captures temporal relation-

ships in the tactile sensor data will lead to improved performance.

3.4.4 Learning a Latent Space Dynamics Model from Tactile Sensor Data Using a Sequen-

tial Inference Model

In this section, we describe the methods and results for learning a latent space dynamics model

from high-dimensional tactile sensor data using a GP-based sequential inference model. The en-

coder q(xt |ht ,ot), decoder p(ot |xt ,ht), and generative model of the stochastic latent state p(xt |ht)

in Eqn. Equation (3.28) are modelled with feedforward neural networks. The deterministic latent

state transition probability p(ht |ht−1,xt−1,ut−1) in Eqn. Equation (3.27) is modelled with a gated

recurrent unit (GRU) network. Details on the network structure of the sequential inference model

can be found in the Appendix (Section 3.6).

The observation vector ot and latent state vector xt for the sequential inference model are the

same as those for the static inference model. For the sequential inference model, the dimensionality

of the deterministic latent state space h is set to 8.

As with the GP-specific static inference model (Section 3.3.4.1), the learning rate was set to

5e−4 for all neural network parameters for the GP-specific sequential inference model. However,

the learning rate for the SVGP hyperparameters was increased to 5e−3 based on findings from

preliminary experiments. The preliminary experiments showed that an SVGP learning rate of

1e−3 significantly slowed training and more epochs were required for the training to converge.
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The number of inducing points for the SVGP for the GP-specific sequential inference model

was decreased to 100 from the 300 that were used for the GP-specific static inference model.

The reduction of the number of inducing points was done for two reasons. First, an SVGP with

300 inducing points is too computationally expensive for a downstream optimization-based model

predictive controller. Second, we wanted to investigate whether the consideration of temporal

relationships in the tactile sensor data would lead to improvements in overall performance even if

the representational power of the SVGP was purposely degraded.

For brevity, we only trained the recurrent state space model once using 26 epochs. As in

Section 3.3.4.1, we trained the SVGP for 40 epochs and performed validation every 2 epochs. In

order to directly compare trial-specific results between the static and sequential inference models,

we used the same three random seeds as in Section 3.3.4.1. The same definition of validation loss

for the static and sequential inference models. That is, validation loss was defined as the difference

between the original latent space trajectory from the encoder q and the reconstructed latent space

trajectory from the SVGP.

The training loss for the recurrent state space model and SVGP as well as the validation loss are

shown in Figure 3.8. For the training of the recurrent state space model, the magnitude of recon-

struction loss (red) decreased dramatically from epoch 1 to epoch 2 and dominated the rest of the

training process. It is also notable that the KL divergence regularization loss (blue) decreased con-

sistently for the first few epochs. This indicates that the “predictive” distribution p(xt |x1:t−1,u1:t−1)

and the “update” inference distribution q(xt |x1:t−1,ot ,u1:t−1) began distinct from one another but

became more similar as training continued.

The behaviors of the GP latent space transition likelihood and validation loss terms (center and

right plots, respectively, in Figure 3.8) are much better for the sequential inference model than for

the static inference model (Figure 3.5). Even after a significant drop in both the GP latent space
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Figure 3.9: For the GP-based sequential inference model of latent space dynamics, the original

GelSight marker displacement vector fields (Row 1) are shown alongside the tactile sequences

reconstructed from the learned dynamics model at epochs 2, 38, and 40 (Rows 2, 3, and 4, respec-

tively). The solid arrows in Rows 2-4 are reconstructed by sending the GP predictive mean to the

decoder network. The shaded arrows are reconstructed by sending 20 predictions sampled from

the GP predictive distribution to the decoder network. The data shown are for the red trace from

the center and right plots in Figure 3.8.
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Figure 3.10: (Row 1) The latent space structure is shown, parameterized by α and d, after mapping

all observations from the validation dataset through the trained recurrent state space model at

epochs 2, 38, and 40 for the GP-based sequential inference model of latent space dynamics. The

colormaps for α and d are based on data from the Aruco marker shown in Figure 3.4. (Row 2) All

reconstructed and original sequences of validation data, as encoded in the latent space, are shown

at epochs 2, 38, and 40. The start and end of an individual trajectory (red trace from the center and

right plots in Figure 3.8) are highlighted with a red cross and blue triangle, respectively.

transition likelihood and validation loss terms over the first 10 epochs of training for the sequential

inference model (Figure 3.8), the terms continue to decrease at a slower rate for the remainder of

the training process.

For all three random seeds, the lowest validation loss was observed by epoch 38 or epoch 40.

Unlike the static inference model, the sequential inference model continues to improve upon its

ability to capture the latent space dynamics as training continues. Furthermore, it does not appear

as if the sequential inference model was overfit to the training data.
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Figure 3.9 shows an original sequence of GelSight marker displacement vector fields from the

validation dataset (Row 1) as compared to sequences reconstructed from the learned dynamics

model at epochs 2, 38, and 40 (Rows 2, 3, and 4, respectively). The data are shown for the GP-

specific sequential inference model for one random seed (red trace from the center and right plots

in Figure 3.8). At the initial phase of the training (epoch 2), the uncertainty associated with the

SVGP predictive covariance is already much less for the sequential inference model (Figure 3.9)

as compared to that for the static inference model (Figure 3.6). While the uncertainty increased

with training from epoch 18 to epoch 30 for the static inference model (Figure 3.6), the uncertainty

does not increase with training for the sequential inference model. As seen in Figure 3.9, the

reconstructed marker displacement vector fields in epochs 38 and 40 match those of the original

tactile sensor data quite well.

Figure 3.10 facilitates a closer look at the corresponding latent space structure. Row 1 of Fig-

ure 3.10 shows the latent space structure, parameterized by α and d, after mapping all observations

from the validation dataset through the trained recurrent state space model at epochs 2, 38, and 40.

Row 2 of Figure 3.10 shows all reconstructed and original sequences of validation data, as encoded

in the latent space, at epochs 2, 38, and 40. The start and end of an individual trajectory (red trace

from the center and right plots in Figure 3.8) are highlighted with a red cross and blue triangle,

respectively.

During the early stages of training (epoch 2), the reconstructed and original trajectories in

the latent space are dissimilar (Row 2 of Figure 3.10). The similarity between the reconstructed

and original trajectories is the greatest for epoch 38. As expected from the slight increase in the

validation loss for the corresponding (red) random seed in Figure 3.8, the similarity between the

reconstructed and original trajectories worsens slightly for epoch 40 as compared to epoch 38.

With regards to shape and distribution of configurational states, the latent space structure for
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the sequential inference model (Figure 3.10) does not align with physical intuition as directly as the

latent space structure for the static inference model (Figure 3.7). Nonetheless, the sampled cable

angles and lengths smoothly transition across the latent space, as evidenced by the color transitions

in Row 1 of Figure 3.10. Additionally, the relatively continuous nature of the latent space structure

is promising for the downstream integration with the optimization-based model predictive control

framework.

3.4.5 Comparing the Performance of the Static and Sequential Inference Models

In this section, we directly compare the performance of the GP-based static inference model to

that of the GP-based sequential inference model. We first chose the model with the lowest valida-

tion loss for each of the three experiment trials for both the static and sequential inference model

learning experiments. For the static inference model, we ran the training dataset through the best

performing encoder-decoder. For the sequential inference model, we ran the same training dataset

through the best performing recurrent state space model. The resulting latent space structures were

normalized so that we could directly compare reconstructed trajectories between the static and

sequential inference models.

For each model, we sampled a total of 50k sequences from the validation dataset. Each se-

quence was comprised of 50 datapoints. For each sequence, we calculated the difference between

the original and reconstructed latent space trajectories, similar to those highlighted in Row 2 of

Figures 3.7 and 3.10. Finally, we computed the mean of the differences for prediction windows of

30, 40, and 50 datapoints using the results pooled from all three random seeds.

Figure 3.11 shows the distribution of differences between the original and reconstructed latent

space trajectories on a normalized scale to enable the direct comparison of the GP-specific static

and sequential inference models. The distributions of differences for 50k sample sequences are
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Figure 3.11: The distribution of differences between the original and reconstructed latent space

trajectories are shown on a normalized scale to enable the direct comparison of the GP-specific

static and sequential inference models. Differences for 50k sample sequences are shown for pre-

diction windows of 30, 40, and 50 datapoints. For each plot, the blue line denotes the mean while

the bottom and top bounds of the box denote the 25th and 75th percentiles, respectively. The

whiskers extend to the most extreme datapoints that are not considered as outliers.
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shown for prediction windows of 30, 40, and 50 datapoints. For each prediction window length,

the distributions of differences are narrower and have smaller mean magnitudes for the sequential

inference model as compared to the static inference model.

As expected, for both types of models, the distribution of differences widens and the mean

magnitude increases as the prediction window length increases. However, the sequential inference

model appears to be more robust to increases in prediction window length than the static infer-

ence model. The distribution of differences for the largest prediction window for the sequential

inference model is still narrower and has a smaller mean magnitude as compared to the smallest

prediction window for the static inference model (right-most and left-most boxplots, respectively,

in Figure 3.11).

Recall that the SVGP trained for the sequential inference model only used 100 inducing points

as compared to the 300 inducing points used for the static inference model. Still, Figures 3.7- 3.11

all indicate that the GP-specific sequential inferential model outperforms the GP-specific static

inferential model. By accounting for temporal relationships in the sequences of observation-action

pairs, we can more effectively capture the latent space dynamics in a way that can be practically

integrated with an optimization-based model predictive control framework.

3.4.6 Performing Model Predictive Control Using a Learned Latent Space Dynamics Model

To demonstrate our complete end-to-end model predictive control framework, we implemented

the tractable MPC formulation with the multiple schooting scheme [7], as shown in Eqn. 3.15.

Leveraging an automated differentiation tool for nonlinear optimization [2], we used a primal-dual

interior point method [110] to solve the non-convex nonlinear programming problem.

We set the planning horizon of the MPC to be 25 datapoints, with the aim of balancing the
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Figure 3.12: Snapshots are shown of the real robot (Rows 1 and 3) and corresponding the latent

space (Rows 2 and 4) for each of two manipulation experiments. The first trial required 9 MPC

iterations; snapshots are shown for MPC iterations 1, 3, 5, 7 and 9. The second trial required

15 MPC iterations; snapshots are shown for MPC iterations 1, 4, 7, 10, 13, and 15. The black

and red circles represent the initial and goal states, respectively, in the latent space after being

encoded from the corresponding GelSight marker displace vector fields. The blue solid lines and

ellipsoids indicate the predicted trajectory mean and uncertainty, respectively, at each planning

step as outputted by the MPC solver.
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computational time necessary to solve one MPC planning iteration with the length of the planning

horizon. The greater the length of the planning horizon, the greater the computational expense in

order to predict one complete sequence.

We evaluated the performance of the MPC after integrating the GP-specific sequential inference

model learned in Section 3.4.4 for capturing the latent space dynamics. Each MPC experimental

trial consisted of a rollout from a random initial state (cable angle and cable pose) to a random

goal state. First, the robot gripper was commanded to an initial configuration. The initial GelSight

marker displacement vector field was sent through the recurrent neural network state space model

in order to obtain the initial state in the latent space. The initial state in the latent space was used as

the initial SVGP state µx
0 of the MPC formulation (Eqn. Equation (3.15)). Next, the robot gripper

was commanded to a goal configuration. We followed the same procedure as described for the

initial configuration in order to obtain the goal SVGP state xg in Eqn. Equation (3.15).

Having identified the initial and goal SVGP states in the latent space, we commanded the robot

gripper to move back to the initial configuration and begin iteratively solving the MPC problem

in order to move to the goal configuration using only the high-dimensional tactile sensor data as

inputs. After completing each MPC planning iteration, the resultant control sequence is sent to the

robot. After the control action sequence has been applied and the robot gripper has achieved a new

configuration, the corresponding state in latent space is obtained in order to initialize µx
0 for the

next iteration of MPC planning.

Unlike the traditional MPC convention in which only the first control action is sent to the robot

while the rest of control action sequence is discarded, we sent the complete control action sequence

obtained from the MPC solver to the robot. We elected to sent complete control action sequences

to the robot because the SVGP dynamics model is highly nonlinear. Additionally, the SVGP used

in this work uses 100 inducing points, which is significantly more than in other applications of
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SVGP in MPC frameworks [38]. As a result, the computational time necessary to solve each MPC

iteration takes longer (approximately 3 sec) is greater than that for traditional implementations of

MPC. To ensure that the robot could complete each tactile-driven manipulation experiment within

a reasonable amount of time, we elected to send complete control action sequences to the robot.

We provide both qualitative and quantitative results of the MPC experiments for two represen-

tative tactile-driven manipulation experiments. Figure 3.12 shows snapshots of the real robot and

the latent space for each of two manipulation experiments. The two trials were selected for visual-

ization purposes because the initial-goal states require different trajectories across the latent space.

The black and red circles represent the initial and goal states, respectively, in the latent space after

being encoded from the corresponding GelSight marker displace vector fields. The blue solid lines

and ellipsoids indicate the predicted trajectory mean and uncertainty, respectively, at each planning

step as outputted by the MPC solver.

For the first trial (Rows 1 and 2 of Figure 3.12), the robot required 9 MPC iterations in order

to complete the tactile-driven manipulation task. Throughout the trial, the starting point for each

MPC iteration was relatively close to the predicted end point of the prior MPC iteration. For

the second trial (Rows 3 and 4 of Figure 3.12), the robot required 15 MPC iterations in order to

complete the manipulation task. For the early MPC iterations, the starting point for each MPC

iteration was relatively far from the predicted end point of the prior MPC iteration. This resulted

in a disjointed latent space trajectory for the second trial.

Figure 3.13 shows the distributions of differences between the starting point for each MPC

iteration and the predicted end point of the prior MPC iteration. Data are shown for 15 repetitions

of each of the two manipulation experiments. The distribution of differences for the second manip-

ulation experiment (corresponding to Rows 3 and 4 in Figure 3.12) is wider and has a higher mean

magnitude as compared to the first manipulation experiment (corresponding to Rows 1 and 2 in
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Figure 3.13: The distribution of differences between the starting point for each MPC iteration

and the predicted end point of the prior MPC iteration are shown for 15 repetitions of each of the

two manipulation experiments shown in Figure 3.12. For each plot, the red line denotes the mean

while the bottom and top bounds of the box denote the 25th and 75th percentiles, respectively. The

whiskers extend to the most extreme datapoints that are not considered as outliers.
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Figure 3.12). Nonetheless, the MPC solver built upon the GP-specific sequential inference model

was still successful in generating control action sequences that achieved the tactile-driven manip-

ulation task. Given that this work is one of the few to perform the manipulation of deformable

linear objects using high-dimensional tactile sensor data on a real robot, we believe our results

demonstrate the effectiveness of our proposed end-to-end model predictive control framework,.

There are a number of limitations that likely contributed to the degraded performance observed

for the second manipulation experiment (Rows 3 and 4 in Figure 3.12). First, the training data that

was collected per Section 3.4.2 may be insufficient for fully capturing the latent space dynamics.

Due to the time-consuming nature of data collection, we elected to sample from a larger region

of the workspace of the robot gripper while sacrificing full coverage of the [0◦,360◦] velocity

commands at each intermediate waypoint between the initial and goal states. This compromise

during data collection may have limited the generalizability of the latent space dynamics model

when using it for the MPC experiments.

Second, we observed multiple sources of noise in the experimental setup: noise in the tactile

sensor data and noise in the robot movements. With regards to noise in the tactile sensor data, the

tracking of each individual GelSight marker relies on RGB value magnitude thresholding, which is

noisy. As a result, the GelSight marker displacement vectors were observed to oscillate even when

the robot was not moving. Such noise-based oscillations were unavoidably encoded into the latent

space dynamics.

With regards to noise in the robot movements, we observed shaking of the tendon-driven robot

arm when the low-level controller was engaged to send control action sequences to the robot. This

phenomenon likely contributed greatly to the differences between the starting point for each MPC

iteration and the predicted end point of the prior MPC iteration (Figure 3.13). As an example,

even if the robot movement is repeated in order to traverse the same trajectory in the latent space,
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the tactile sensor data generated by one long movement will be different from that generated by

multiple short movements along the same trajectory. The differences in the observation-action pair

sequences can also degrade the performance of the learned latent space dynamics model.

At a more fundamental theoretical level, we did not explicitly regularize or impose any ge-

ometric properties on the latent space. According to a recent work in the unsupervised learning

community [13], it could be beneficial to craft a latent space structure that might generalize better

in terms of encoding the high-dimensional observations from the original physical space.

3.5 Conclusion and Future Work

This work presents a principled framework that leverages well-established system identification

and model predictive control theory for the tactile-driven manipulation of deformable linear objects

on a real robot. Original observations are in the form of high-dimensional data (260-D) from

a camera-based tactile sensor. Using principles and techniques from unsupervised learning and

probabilistic generative modelling, the dynamics of how tactile observations change due to robot

control actions are identified in a latent space having a much lower dimensionality.

We compared two different inference techniques in order to identify the latent space dynamics.

First, we considered a static inference model that treats each observation-action pair from the

data sequence as i.i.d. Then we considered a sequential inference model that considers temporal

relationships within sequences of data. We concluded that a sequential inference model was more

effective at capturing latent space dynamics accurately for the tactile-driven manipulation task in

this work.

We used latent space trajectories generated from the trained sequential inference model in order

to guide the training of a stochastic variational Gaussian process. Finally, we integrated the SVGP
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with an optimization-based MPC framework in order to control the pose and tensile state of an

elastic cable in experiments with a real robot.

To the best of our knowledge, we believe that this work includes the first successful demon-

stration of an end-to-end model predictive control framework for the tactile-driven manipulation

of deformable linear objects using a real robot. We believe that this work advances the integration

of tools and techniques across different subfields of robotics. For example, we extended the appli-

cation of unsupervised learning and probabilistic generative modelling techniques from traditional

application domains in vision, natural language, and simulated robotics environment [29, 35, 36]

to manipulation tasks on real robots. As another example, we integrated well-established technical

tools from other subfields in machine learning and controls into tactile-driven robotics research.

The principled framework developed for controlling the pose and tensile state of an elastic cable

using tactile sensing could inspire and be extended to more complex tactile-driven manipulation

tasks.

The limitations of this work motivate a number of future research directions. For example, we

observed that the GelSight marker displacement vector data and robot movements were noisy. If

modifications to the sensor and robot hardware are not possible, then algorithmic efforts could be

dedicated to enhanced filtering of the raw tactile sensor data or modifications to the unsupervised

learning process that enable the handling of noisy observation-action sequences.

Another limitation of this work is that, although SVGP is used to alleviate the computational

burden of MPC, performing multiple-shooting nonlinear optimization with SVGP is still compu-

tationally expensive and time consuming for realtime applications. A fundamental theoretical and

practical question arises from this limitation: For a quadratic cost function with system feasibility

constraints represented by a SVGP, could a better convergence rate be proven and could a specific

nonlinear optimization solver that takes into account the structure of the SVGP dynamics model
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be implemented? Recent works related to optimization with Reproducing Hilbert Kernel Space

(RHKS) might be useful to consider [5] given that a Gaussian Process is a specific example of

RHKS.

Finally, we acknowledge that we constrained the manipulation task to a 2D plane and used a

constant speed for all robot gripper motions. This was done in order to make the tactile-driven

manipulation task feasible on a real robot and without any simulations available for modeling how

the tensile state of an elastic cable affects camera-based tactile sensor data. We believe that the

principled framework could be extended to manipulation tasks that involve all 6 DoFs in Cartesian

space. One could pursue the representation of the infinite-dimensional configuration space of an

elastic cable using a low-dimensional tensile state vector [12, 66]. To release the constraint on the

control signal and learn richer system dynamics models, one challenging future direction would be

the development of realistic, physics-based simulations of multimodal tactile sensors. Specifically,

a combination of machine learning approaches and multiphysics finite element methods [104, 62]

could lead to high-impact results that would benefit a number of fields.

3.6 Appendix

This section provides details on the encoder (Table 3.1) and decoder (Table 3.2) architecture

for the static inference model described in Section 3.4.3.

We also provide details on the network structure (Figure 3.14) used for the sequential inference

model described in Section 3.4.4.
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Table 3.1: Encoder architecture for learning latent space dynamics using a static inference model.

Input: stacked Gelsight marker displacement vector fields (batch · 260)

Linear(256 → 512) + ReLu

Linear(512 → 256) + ReLu

Linear(256 → 128) + ReLu

µ: Linear(256 → 2), σ : Exp(Linear(256 → 2)·0.5)

Table 3.2: Decoder architecture for learning latent space dynamics using a static inference model.

Input: 2-dimensional latent state vector

Linear(2 → 128) + ReLu

Linear(128 → 256) + ReLu

Linear(256 → 512) + ReLu

Linear(256 → 260)
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Figure 3.14: The detailed network structure is shown for the sequential inference model described

in Section 3.4.4 and on the right of Figure 3.2. The top two networks on the left describe the

inference model. The top two networks on the right describe the generative process. The recurrent

neural networks on the bottom left connect the inference model and generative process.
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CHAPTER 4

Summary and Conclusion

The work presented in this dissertation addresses two fundamental challenges related to the

tactile-driven manipulation of deformable objects: (1) Establishing a physics-based system model

describing interactions between a deformable sensor and deformable object is very difficult; (2)

Modern tactile sensors provide information with high-dimensional data, which is beneficial for

perception but impedes the development of effective control methods. By incorporating technical

tools from machine learning and optimization, we can circumvent modelling difficulties or con-

struct dynamics models directly from high-dimensional tactile data and use such models for the

purpose of planning and control. We believe our work can serve as a foundation for new systematic

frameworks that can handle more complex tactile-driven manipulation problems.

4.1 Contributions

Development of a novel model-free framework with reinforcement learning approaches

for the manipulation of deformable objects while explicitly leveraging state information en-

coded in tactile sensor data: We show that a nominal robot trajectory having a functional behav-

ior can be learned using model-free reinforcement learning and a tactile-based reward function.

Moreover, we can adapt learned functional behaviors to novel contexts by relying solely on the

differences between tactile sensor data generated by a learned nominal trajectory and those gener-
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ated for a novel context. Our tactile-driven reinforcement learning approach was demonstrated on

a real robot for the manipulation of highly deformable thin-shell objects (notebook pages).

Development of a novel model-based framework for the “end-to-end” tactile-driven ma-

nipulation of the pose and tensile state of a deformable linear object: Deep probabilistic

general modeling techniques were used to map high-dimensional tactile sensor observations to

a low-dimensional latent space. In order to retain representative power of the system dynamics

in the low-dimensional latent space, we used recurrent neural networks to account for temporal

dependencies of sequential data from real robot sensor-object interactions, instead of treating each

observation-action pair independently. The generative neural network was then used to guide the

training of a non-parametric supervised learning method, which was finally integrated with an

optimization-based, model predictive control framework. Our framework was demonstrated on

a real robot for the manipulation of both pose and tension for deformable linear objects (elastic

cables).

4.2 Future Work

In this section, we discuss possible future works to advance tactile-driven manipulation capa-

bilities for real robots. Some ideas for future studies are natural extensions of the presented work.

Other ideas are interesting and important directions that we think are worth exploring in order to

further advance the field of tactile-driven manipulation.

4.2.1 Extending Manipulation Tasks from 2D to 3D and Incorporating Mechanics Models

The tasks presented in Chapters 2 and 3 were purposely constrained to two dimensions in

order to make the development and testing of the new frameworks tractable. However, most tasks
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in unstructured environments are three-dimensional in nature. The presented frameworks could be

extended for 3D manipulation tasks that require the planning and control of manipulation behaviors

for all 6 DOFs in the Cartesian space.

Manipulation tasks could also be considered for a larger variety of deformable objects, such

as rubber rods and resistance bands. For such deformable objects, one could leverage physics-

based models that incorporate well-established mechanics theory for the stretching, bending, and

twisting of deformable objects [3, 44]. At this time, there are very few works in the field of robotics

that explicitly leverage such energy-based mechanical models for the manipulation of deformable

objects [12, 66, 102]. It would be really interesting to investigate how tactile sensing, physics-

based models, and control theory could be combined to achieve the tactile-driven manipulations of

more complex deformable objects in the full 3D environment.

4.2.2 Hybrid Framework for Simulation of Tactile Sensor Behavior

The construction of accurate simulations of deformable, often multimodal, tactile sensors is

a crucial step for pushing the field of tactile-driven manipulation forward. Analytical or physics-

based models could open new avenues for learning tactile-based manipulation policies in simu-

lation and transferring the policy learned in simulation to a real robotic system. Moreover, the

process of constructing an accurate model could enhance understanding of the physics of tactile

sensing mechanisms.

Currently, there are only a few works aimed at exploring this approach [113, 87, 81, 117].

However, the application of the approach has, thus far, been limited to manipulation tasks such

as pendulum swing-up, ball repositioning, and peg insertion with rigid objects. An interesting

direction to explore would be to combine multi-physics simulation and machine learning [104, 62]

in order to build accurate simulations for more complex tactile-driven manipulation tasks, such

108



as those involving deformable objects. One could also explore trade-offs between spatiotemporal

resolution and ease of simulation when designing new tactile sensors.

4.2.3 Learning Policies from Multimodal Sensor Systems

Humans leverages multimodal sensing systems in order to perceive the world and manipulate

objects all the time. While tactile sensing provides rich, high-resolution information about finger-

object contact, its information is inherently local and expensive to obtain. Policies might be more

robust and generalizable if they were learned through a combination of complementary senses such

as touch and vision, through which a robot could obtain a more global estimate of the object or

environment [88, 17].
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