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METHODOLOGY

Categorizing the geometry of animal 
diel movement patterns with examples 
from high-resolution barn owl tracking
Ludovica Luisa Vissat1†, Shlomo Cain2†, Sivan Toledo3, Orr Spiegel2† and Wayne M. Getz1,4*† 

Abstract 

Background Movement is central to understanding the ecology of animals. The most robustly definable segments 
of an individual’s lifetime track are its diel activity routines (DARs). This robustness is due to fixed start and end points 
set by a 24-h clock that depends on the individual’s quotidian schedule. An analysis of day-to-day variation in the 
DARs of individuals, their comparisons among individuals, and the questions that can be asked, particularly in the 
context of lunar and annual cycles, depends on the relocation frequency and spatial accuracy of movement data. 
Here we present methods for categorizing the geometry of DARs for high frequency (seconds to minutes) movement 
data.

Methods Our method involves an initial categorization of DARs using data pooled across all individuals. We 
approached this categorization using a Ward clustering algorithm that employs four scalar “whole-path metrics” of 
trajectory geometry: 1. net displacement (distance between start and end points), 2. maximum displace-
ment from start point, 3. maximum diameter, and 4. maximum width. We illustrate the general approach 
using reverse-GPS data obtained from 44 barn owls, Tyto alba, in north-eastern Israel. We conducted a principle com-
ponents analysis (PCA) to obtain a factor, PC1, that essentially captures the scale of movement. We then used a gen-
eralized linear mixed model with PC1 as the dependent variable to assess the effects of age and sex on movement.

Results We clustered 6230 individual DARs into 7 categories representing different shapes and scale of the owls 
nightly routines. Five categories based on size and elongation were classified as closed (i.e. returning to the same 
roost), one as partially open (returning to a nearby roost) and one as fully open (leaving for another region). Our 
PCA revealed that the DAR scale factor, PC1, accounted for 86.5% of the existing variation. It also showed that PC2 
captures the openness of the DAR and accounted for another 8.4% of the variation. We also constructed spatio-
temporal distributions of DAR types for individuals and groups of individuals aggregated by age, sex, and seasonal 
quadrimester, as well as identify some idiosyncratic behavior of individuals within family groups in relation to location. 
Finally, we showed in two ways that DARs were significantly larger in young than adults and in males than females.

Conclusion Our study offers a new method for using high-frequency movement data to classify animal diel move-
ment routines. Insights into the types and distributions of the geometric shape and size of DARs in populations may 
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Introduction
The field of movement ecology focuses on the causes, 
patterns, consequences and mechanisms of organismal 
movement, analyzed primarily using relocation data, 
often collected in association with remotely sensed 
landscape data [1–3]. These data are then used to address 
questions of why and how animals move and when and 
where they go [4, 5]. To address these questions in the era 
of big data [3], a framework is required for classifying the 
movement tracks of animals, as well as segments of such 
tracks at various spatiotemporal scales [6, 7].

Although some segments of animal movement tracks 
may be usefully classified using a random or stochastic 
walk typology [8–10], ultimately many segments need 
to reflect both underlying landscape structures and the 
motivation of individuals in the context of their emergent 
behavioral ecology. It has been proposed that the lifetime 
track (LiT) of any individual can undergo a hierarchical 
segmentation process ([6], also see Glossary) that parses 
LiTs into segments of various lengths, based on two 
pivotal concepts: fundamental movement elements 
(FuMEs) and diel activity routines (DARs). FuMEs are 
elemental biomechanical movements and constitute a 
set of building blocks out of which all movement track 
segments are constructed (much as DNA is constructed 
from pairs of nucleic acids). Although the life-history 
of many animals are strongly impacted by seasonal 
and even lunar rhythms [11], DARs are the biological 
anchors of an ecological analysis. This follows because 
they have a temporal duration fixed by the diel clock 
that regulates the physiology and related behaviors of 
almost all animals, apart from species inhabiting extreme 
polar regions, the deepest caves or greatest ocean depths 
[12–14].

In this paper, we propose a method for categorizing 
DARs in a way that should prove useful to building 
models of how individuals may respond to changes in 
their environment (climate and landscape). This method 
takes cognizance of the central and anchoring role that 
DARs play in a hierarchical deconstruction of the LiT of 
an individual [6]. If these DAR segments can be related 
to environmental factors, then a reassembling of DAR 
segments under different environmental factors provides a 
way to anticipate how the structure of LiTs may respond 
to environmental change. In particular, these DARs can 
be strung together in ways that anticipate how multi-day 

(e.g., migrations) to seasonal-length lifetime movement 
phases (LiMPs) may respond to environmental change, 
with strings of these responding LiMPs then assembled 
to predict how the LiTs themselves may change.

At each hierarchical level, we need to categorize 
the different types of segments that may occur—their 
length, amount of space covered, and various modes of 
movement. At the canonical activity mode (CAM) level 
(e.g., corresponding to behavioral modes of searching, 
resting, or heading towards desired locations) [15–18], 
several or many of which constitute one DAR [6], various 
local path metrics (i.e., computed using a sliding window 
along the relocation data time series) are likely useful 
for discriminating among CAM types. Examples of such 
metrics include tortuosity, distance moved, and area 
searched. At the DAR level itself geometric whole-path 
metrics that are relatively insensitive to data resolution 
(relocation frequency; [19–21]), such as various types 
of width, breadth and displacement measures, may be 
more useful than those used to characterize CAMs. Here 
we propose and demonstrate the application of four 
geometric whole-path metrics (Fig.  1) that can be used 
to characterize the relative size, the degree of elongation, 
and the openness (with respect to start and end points 
being close or far from one another) of different DARs. 
These metrics can also be used, if desired, to assess the 
orientation of the trajectory with respect to its end points 
(viz., in relatively closed DARs the start/end locations 
may lie either to one side of the trajectory or may be 
more centrally located).

We note, because we are interested in characterizing 
a daily track using a single DAR rather than with a 
sequence of several or many CAMs, that the measures 
we use are all scalar (1-dimensional) distance metric 
characterizations of the geometry of the track (see Fig. 1). 
For applications where the space filled by the track is 
important, 2-dimensional area-related metrics are more 
appropriate: for example, in classifying multi-day LiMPs 
or even complete LiTs, where we may be contrasting 
central place foraging, territorial, migratory and nomadic 
movement syndromes [22, 23].

As with many analytical methods in movement ecol-
ogy [24, 25], the method we propose here for categoriz-
ing DARs will exhibit some sensitivity to the relocation 
frequency of the data used. Thus, we recommend using 
data that has a sub-hourly or multi-minute frequency 

well prove to be more invaluable for predicting the space-use response of individuals and populations to climate and 
land-use changes than other currently used movement track methods of analysis.

Keywords Hierarchical movement path segmentation, Biotelemetry, Diel activity routines (DARs), Canonical activity 
modes (CAMs), cluster analysis, ATLAS tracking system
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(e.g., 2–20 points an hour). In organizing the data for 
DAR analysis, we need to decide where to break multi-
day tracks into 24-h diel segments: the most appropri-
ate start/finish points will depend on the daily rhythms 
of the movement of individuals within a population (e.g., 
in the context of rhinos see [26]). Once this is done, our 
method then employs a hierarchical clustering algorithm 
to identify a set of n cluster types [27, 28]. The number of 
clusters is determined using various heuristics [27] that 
recognize that the optimal choice is actually a subjective 
trade-off among several criteria. These include: capturing 
a desired level of the variation when the DARs are organ-
ized into descriptive spaces of lower dimension than the 
factor space itself; having sufficiently many categories to 
reveal novel phenomena that may be masked if particular 
categories are not separated out; and, having few enough 
categories so that the number of DARs are sufficient to 
generate reliable average statistics in all categories. We 
stress, however, that any reliable cluster analysis suf-
fices for our method, including various machine learning 
methods [29, 30].

In addition to using hierarchical clustering to 
categorize our DARs, we also conducted a PCA [31]. This 
analysis is typically used to reduce the dimensionality of 
data, while minimizing information loss, by generating 

a set of uncorrelated factors [32], the factors themselves 
often having meaningful interpretations (e.g., see [33]). 
A PCA is most useful when the number of variables 
underpinning the data is large (e.g., a dozen or more). 
When this is not the case, as in our study, a PCA 
may still be useful because the first PCA factor (PC1) 
represents the “best composite of comparable measures” 
(in the sense of explaining more variation than any 
other composite of these measures) for implementing 
regressions and other types of statistical analyses. We 
demonstrate this here, using a generalized linear mixed 
model (GLMM) approach to evaluate the effect of age 
and sex on DAR size. In addition, when the first two PCA 
factors (PC1 and PC2) together account for most of the 
variance, then we can plot the data in a two dimensional 
space with these factors as axes without much lost of 
information.

In applying our methods to real data, we might expect 
that the diel activity routines (DARs) of individuals varies 
seasonally [34, 35] or even with phases of the moon [36, 
37]. We should also expect some day-to-day variation 
in the DARs of many animals due to daily vagaries 
in the acquisition of resources needed to sustain life. 
Additionally, we should expect these patterns of variation 
to differ among individuals reflecting to some extent 

Fig. 1 An example of a real DAR laid over the landscape where it occurred (left panel). The insets are used to depict the geographic location of 
our Harod valley study area. The plot uses Israeli Transverse Mercator (ITM) projection coordinates. The coordinate time series data is then used to 
compute the measures listed below, as illustrated using an imaginary trajectory (right panel). The whole-path metrics we used were: the maximum 
displacement from the green starting point (blue dashed segment), the maximum diameter (maximum distance between any two points; 
orange dashed segment); the maximum width (sum of the two purple dashed segments, which uses the points furthest on either side of the 
orange maximum diameter line), and net displacement (the green dotted line which is distance between the green start and red end points), 
which provides a sense of “DAR openness”
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different personality types (e.g., risk prone versus risk 
averse; [22]), although we expect environmental factors 
to be important drivers of DAR variation [38].

We develop and present our method using movement 
data obtained by sampling the flight paths of Barn owls 
(Tyto alba) ([39, 40]), tracked by an ATLAS (Advanced 
Tracking and Localization of Animals in real-life 
Systems) installed in the Harod valley, Israel. Since barn 
owls have an eclectic diet (they are nocturnal predators 
of small vertebrates, primarily rodents inhabiting both 
sylvan and agricultural habitats [41, 42]), we anticipated 
identifying several different types of DARs in these data, 
representing a diversity of movements, spatial locations, 
and size of foraging bouts.

Our method allowed us to identify 7 DAR categories 
that we then used to assess an individual’s temporal 
implementation of different DARs and to compare 
DAR distributions across groups of individual based on 
various factors (sex, age, location). We anticipated, for 
example, that we might be able to distinguish among 
explorers (larger, possibly open DARs) and exploiters 
(smaller likely closed DARs) across similar environments, 
as well as among individuals within families [43]. Finally, 
we note with hindsight that though most of the DARs 
we identified in our owls were lopsided with respect to 
DAR start/end points (leading to a very high correlation 
between two of our measures), which is not unexpected 
for central place foragers, all four measures are needed 
if our method is to be generally applied to sets of DARs 
that include tracks moving to both sides of identified 
start/end points (as in the right panel of Fig. 1).

Methods
Study site and species
We tracked barn owls (Tyto alba) using an ATLAS 
(Advanced Tracking and Localization of Animals in real-
life Systems) installation in Israel’s Harod valley (32◦ 30’ 
N 35◦ 29’ E; Fig. 1, left panel). This valley is a mosaic of 
intensive agricultural landscapes (field crops, fishponds, 
and orchards), rural settlements, and open natural areas. 
Barn owls are cavity nesters considered as an effective 
pest-control agent mitigating rodent outbreaks in agri-
cultural fields. Thus, dozens of nesting boxes have been 
deployed through the region over the last three decades 
to mitigate nest site limitations and enhance the local res-
ident populations [44]. Owls have been captured in these 
nest boxes during the day (inactivity period), as part of 
the ongoing monitoring. Individuals were banded with 
metal rings for individual identification, measured (wing 
length, body mass), aged, and sexed (feathers were taken 
for sex testing in the lab). Mature fledglings and adults 
in good body condition were fitted with tracking devices 
attached with a Teflon harness in a backpack or leg-loop 

configuration. Total mass of an ATLAS tag and harness is 
13± 1 g, which is < 4.3% of the body mass of the smallest 
tagged individual. Trapping and tagging procedures were 
authorized by permits 2019/42155 and 2020/42502 from 
Israel Nature and Parks Authority.

Data collection and processing
The ATLAS system is designed to collect movement 
data at the resolution of seconds and higher. This system 
includes radio transmitters with unique tag-IDs, a set 
of ground stations with tower-mounted antennas, and 
central data-processing and storage servers [45, 46]. The 
ground stations receive tags’ transmissions at ca. 1/4 or 
1/8 Hz (depending on settings) and if received by ≥ 3 
ground stations locations are computed at high accuracy 
(±5m) from differences in the 3 or more signals’ time 
of arrival [40, 47]. The ATLAS reverse-GPS approach 
(localizations are estimated at the receivers’ side, while in 
GPS by the tags themselves) allows tags to be inexpensive 
and lightweight compared with standard GPS 
approaches, thereby providing many more data-points 
per unit weight of tag compared to other wildlife tracking 
systems [3]. These features make this system particularly 
effective in collecting high resolution and accurate 
data over extended periods (months) and therefore 
appropriate for investigating diel activity routines (DARs) 
simultaneously across many individuals.

During 2020 and 2021 we tagged 92 owls. To ensure 
data quality we filtered out localizations and smoothed 
trajectories according to a previously described pipeline 
[48]. Specifically, we excluded fixes with low system-
accuracy estimate (STD > 50), or those requiring 
movement speed > 15 m s −1 from a preceding location. 
Collected data points were assigned an (X,Y) value 
using Israeli Transverse Mercator (ITM) coordinates and 
dateTime stamps. Due to the nocturnality of the owls, 
we segmented the smoothed trajectories to nights (i.e., 
giving individual night.IDs) by segments from 10 a.m. to 
10 a.m. the following day. The function AdpFixedPoint 
from the R package toolsForAtlas was used to assign 
string of locations in each such DAR into either move/
flying or stop segments. Move/flying segments were 
associated with a seg.ID value.

We then identified all individuals in our data set with 
> 30 complete nights (i.e., comprising > 1000 successful 
localizations per night) to obtain a sample of 44 birds 
tracked over 142± 103 (mean ± sd) nights. From these 
data we extracted DARs by grouping data by night ID 
and selecting the ones with data collection (of a complete 
night) started before 9 p.m. and ended after 2 a.m. of the 
following day. Although we rejected DARs with < 1000 
points, it is still possible that some of our DARs had 
missing points because the individual moved outside 
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of the range of the ATLAS sensing area. In such cases, 
the possibility exists for the DAR to be misclassified 
as belonging to a smaller excursion type than it really 
should. We did not undertake a thorough search for 
such cases because of our methodological rather than 
ecological focus.

For each of the 6230 DARs so obtained, we extracted 
first and last flight segment using seg.ID and then 
calculated the initial point and the end point 
of the DAR. The latter were obtained by calculating the 
average coordinates considering the n points ( n = 20 
in our case) before the first flight segment to extract 
the initial point and the n points after the last 
flight segment to extract the end point. Also, the 
data we collected were at a higher relocation frequency 
(i.e., 4 or 8 s intervals) than needed for our analyses. 
Thus, we subsampled our data down to a frequency 
of one point every 5 min and compared these with 2 
min, as well as 10 min, subsamples to ensure that our 
results were insensitive to this subsampling choice (e.g., 
see Additional file  1: Fig.  B.1 where sensitivity of our 
measures to this subsampling is discussed in the captions 
of Additional file  1: Figs.  B.2 and B.3 in Appendix B). 
For each of the DARs so obtained, we computed the 
following four measures (Fig. 1) for the purpose of DAR 
categorization: net displacement, bee-line distance 
between start and end points of each DAR; maximum 
displacement, distance from the starting point 
to the most distant point in the DAR data; maximum 
diameter, the greatest distance between any two points 
on the trajectory, with the line segment joining these two 
points referred to as the diameter; maximum width, 
the sum of the maximum distances of the trajectory 
points from either side of the diameter line. We chose 
these metrics because they are much less sensitive to 
variation in sampling rates than distance-traveled-along-
the-track or turning angles [6], and they capture the 
spatial geometry of the DAR as a whole, including extent 
(or scale), elongation, and openess.

Clustering and factors
We used the R packages stats (in particular functions 
dist, hclust and cutree) and factoextra 
(function fviz_nbclust) to perform the 
hierarchical clustering of DARs characterized by the 
four measurements listed above. This was done after 
removing any rows presenting NAs in the resulting 
dataframe of measurements. These NAs were mostly 
connected to the net displacement calculation, because 
flight segments could be detected right at the start or at 
the end of the DAR, thereby not providing enough points 
to calculate the average coordinates for the start/end 
point. We normalised values by computing the z-score 

transformation of the variables using the R function 
scale. We proceeded with a cluster analysis, using the 
R package stats.

The number of DAR clusters k that we use to compare 
DAR distributions among individuals grouped by type 
(i.e., age, sex, or location) depends on the extent to which 
we trade deeper ecological insights for greater statisti-
cal power. Higher numbers of clusters provide greater 
potential for differentiating increasingly homogeneous 
syndromic movement groups [22, 53] but weaken the 
statistical power of the analysis through an increased 
number of categories that have diminished sample 
sizes. Various hierarchical clustering methods use the 
within-sum-of-squares (wss) values (a measure of the 
variability of the samples/observations assigned to each 
cluster) to select the number of categories by comput-
ing wss(k) (i.e., wss as a function of the number of clus-
ters k ) and identifying the point at which an increase in 
k no longer leads to a relatively strong decrease in the 
computed wss value. The “elbow method” is based on 
identifying the point k on a plot of wss( k ) as function 
of k (e.g., for our data see Fig.  2A) at which the slope 
s(k) = wss(k + 1)− wss(k) (e.g., Fig.  2B) changes in a 
way that looks like an elbow [28]. If no obvious elbow can 
be visually identified, then the relative change in slope  
f (k) = (s(k − 1)− s(k))/s(k − 1) can be plotted to iden-
tify the values of k for which this change is markedly 
larger than its preceding neighbor (e.g., Fig. 2C).

Our computation of the change in slope f (k) for our 
data produced several points where f (k) was notice-
ably higher than its preceding point, namely k = 2 , 4, 7, 
10 and 13 (Fig.  2C). The value k = 2 provides minimal 
opportunities for behavioral/ecological insights, while 
k = 10 and 13 meant that some of the clusters contained 
only a few observations. Thus, k = 4 and 7 are more obvi-
ous choices in our case for balancing ecological insights 
with statistical power. In a focused behavioral/movement 
ecology study, both options could be analyzed. Here, we 
opted to illustrate our methods using the more diverse 
case k = 7 but could equally have analyzed the case 
k = 4 as well if we needed to obtain stronger statistical 
results in comparing cluster distributions among differ-
ent groups of individuals. Finally, we note that whatever 
value for k is chosen, all conclusions that are reached are 
regarded as ecological differences among groups condi-
tioned on the diversity and ecological interpretation of 
the types that constitute the identified clusters.

None of our measures on its own provides a reliable 
measure of the size of a DAR because long thin DARs 
(those with large max diameter but relatively small 
max width) will facilitate less sensory coverage of a 
landscape than shorter fatter DARs of the same length 
if the width is comparable to the visual detection range. 
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The dominant eigenvector (PC1) of a PCA, however, is 
known to explain more variance than any other eigen-
vector of the covariance matrix of the data used in this 
analysis. Since the weightings of all the variables defining 
PC1 are positive and use the same type of measure (all 
length in our case; also see [33] where units are concen-
tration), PC1 can be regarded as a composite variable in 
this measure that accounts for more of the variation in 
the data than any other composite of underlying vari-
ables. Thus we performed PCA to obtain this variation-
maximization factor (PC1), using the R package stats, 

and then used the R package ggbiplot to visualize the 
results.

We used our cluster and PCA results to provide 
us with a sense of how the diel movement activity of 
individuals varied with respect to sex and age. First, 
we analyzed cluster distributions across individuals, 
time, and space. Specifically, we used demographic 
and temporal information to compare the cluster 
frequencies with respect to sex, age, and season. Barn 
owls, like many birds in Mediterranean climates, have 
a biological annual cycle that can be conveniently split 

Fig. 2 A A plot of the within sum-of-squares as a function of the number of clusters k (denoted wss(k)). The so-called elbow method can be used 
to determine the number of clusters, if a point on this graph exists that looks like an elbow (i.e. dramatic change in slope). B A plot of the slope of 
the line s(k) between the points wss(k) and wss(k + 1) . C A plot of the relative change f(k) in the slope s(k) (i.e., f (k) = s(k−1)−s(k)

s(k−1)
 ). Note: the relative 

change of slope is highest for k = 2 , then for k = 4 and next for k = 7 (point shown in red). D A plot of the results of our cluster analysis in the 
2-dimensional space spanned by the two principal components of a PCA, which together explain 94.9% of the observed variation
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into 3 quadrimesters. In the case of barn owls, the first 
quadrimester (February–May) corresponds to the local 
breeding season. The second quadrimester (June–
September) corresponds to the rearing/post breeding 
period. The last quadrimester (October–January) 
corresponds to the the fall-winter season, during which 
owls recover and prepare for the next breeding season 
(see [49] for more details).

Second, we evaluated the spatial distribution of clus-
ters with respect to starting points and also sequences 
of cluster types over time for each of the individuals. 
Third, we used the lme4 and effects R packages to 
implement a GLMM evaluation of the extent to which 
DAR size is dependent on the fixed binary variables 
sex (male/female) and age (young/adult). The model 
included two random variables: RingID to account for 
repeated measures from the same individuals and date 
to account for some expected dependence on time. We 
carried out this analysis with respect to a square-root 
transformation of the dependent composite-size vari-
able PC1 and then, for purposes of comparison, we 
repeated the analysis with respect to the square-root of 
the partial-size variable maximum displacement. 
We plotted model residuals—their distributions and 
QQplots—to ensure a reasonable fit for normality and a 
lack of heteroscedasticity (see Additional file 1: Fig. C.1 
in Appendix C).

Results
DAR clusters
As mentioned, we clustered our DARs according to their 
measures of net displacement, maximum dis-
placement (from starting point), maximum diam-
eter, and maximum width. Information on cluster 
sizes is provided in Table  1. From our PCA [31], we 
identified the first three principal components. The first, 
PC1, with the weights of maximum displacement, 
maximum diameter, and maximum width provid-
ing equal contributions and being twice as important as 
net displacement (i.e., a composite measure of size 
or “extent”) explained 86.5% of the variation. The second, 
PC2, with net displacement being overwhelm-
ingly responsible for the separation of points along this 
axis (i.e., a measure of “openness”) explained 8.4% of the 
variation. The third, PC3, contrasted [maximum dis-
placement + maximum diameter] with maxi-
mum width (i.e., a measure of “elongation”) explained 
4.3% of the variation. Thus, these three principal compo-
nents together explained > 99% of the variation. We note 
that weak correlations ( < 1/3 ) exist between net dis-
placement and the other three factors, while maxi-
mum displacement and maximum diameter are 
highly correlated (see Additional file 1: Eq. A.1 in Appen-
dix A for details). This occurs when most of the DARs are 
highly elongated round trip flights to a particular area 
(e.g. types 4–6 in Fig. 3), unlike the constructed example 

Table 1 The results of our cluster category identification using the Ward method [50]

In the table on the left, we list the identification numbers, cluster sizes and associated colors (to help identify clusters in figures) of the 7 identified DAR clusters. We 
use a yellow to red color scheme for closed DARs, and blue for partially open and wide open DARs, as described in Table 2 and depicted in Fig. 3. In the table on the 
right we list the four variable weightings that define the directions of our first three principal components of the PCA analysis

Cluster ID DARs
(color) n (%)

1 (yellow) 1680 (27%)

2 (dark yellow) 1719 (28%)

3 (light blue) 972 (16%)

4 (orange) 514 (8%)

5 (light red) 627 (10%)

6 (dark red) 531 (8%)

7 (blue) 187 (3%)

Components PC1 PC2 PC3
Variation explained 86.5% 8.4% 4.3%

Factors

 net displacement 0.28 0.95 − 0.10

 max. displacement 0.57 − 0.13 0.44

 max. diameter 0.58 − 0.13 0.33

 max. width 0.50 − 0.24 − 0.83

Interpretation Extent Openness Elongation
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in Fig. 1 where the maximum displacement is notice-
ably shorter then the maximum diameter.

The 7 different types of DAR clusters we identified can 
be interpreted in terms of the average value of the four 
measures with each DAR type (Table 2). Specifically, we 
paid attention to the openness, size, and eccentricity of 
the DARs, defining transverse DARs to be those in which 
the average maximum diameter is considerably less than 

the maximum width (less than 1/4 in our case—see 
Table 2). Thus, among the 5 closed (i.e., returns to staring 
point) DAR categories we identified five excursion types: 
local (1, yellow), small (2, dark yellow), transverse (4, 
orange), medium (5, light red) and large (6, dark red). We 
also had one partially-open DAR category with primar-
ily small to medium excursions with a net displacement 
of around half a kilometer (3, light blue; see Table 2) and 

Table 2 The means and standard deviations of the four distance measures (all in kilometers) within the 7 categories of DARs (also see 
Fig. 3 and Additional file 1: Fig. B.4 in Appendix B)

DAR ID (color, %) Net displ. (km) Max. displ. (km) Max. diam. (km) Max. width (km) Spatial description

1 (yellow, 27%) 0.11 ± 0.16 0.66 ± 0.35 0.79 ± 0.38 0.32 ± 0.15 Closed, very small local

2 (dark yellow, 28%) 0.10 ± 0.13 1.5 ± 0.5 1.7 ± 0.5 0.71 ± 0.23 Closed, local excursions

3 (light blue, 16%) 0.41 ± 0.58 2.1 ± 0.6 2.4 ± 0.6 1.2 ± 0.4 Partially open, small extensive excursions

4 (orange, 8%) 0.07 ± 0.07 3.4 ± 0.5 3.6 ± 0.5 0.70 ± 0.26 Closed, transverse excursions

5 (light red, 10%) 0.09 ± 0.14 3.0 ± 0.6 3.5 ± 0.6 1.9 ± 0.5 Closed, medium extensive excursions

6 (dark red, 8%) 0.13 ± 0.33 5.6 ± 1.7 6.1 ± 1.9 2.0 ± 1.3 Closed, large excursions

7 (blue, 3%) 4.1 ± 2.1 4.4 ± 2.2 4.8 ± 2.5 1.7 ± 1.2 Wide open, large extensive excursions

Fig. 3 The seven panels depict two randomly chosen examples for each DAR plotted at the same scale and same north/south (vertical) and east/
west (horizontal) orientations (using a 5-min subsampling to generate the plots), while the wheel depicts the proportions of each. The colors and 
percentages, as listed in Tables 1 and 2
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one wide-open DAR category of relatively large excur-
sions essentially representing a one way excursion, even if 
circuitous (7, blue; see Table 2 and Fig. 3).

In Table  1 we see that over 81% of the DARs were 
closed, 16% partially open, and only 3% were wide open 
(i.e., essentially one-way excursions). Around 55% of the 
closed DARs were local (average diameter 0.8 km) or 
relatively local excursions (average diameter 1.7 km; see 
heavy yellow band in Fig.  3 wheel) while 26% involved 
more extensive excursions (average diameter > 3.0 km; 
heavy orange band in Fig. 3 wheel). Of this latter group, 
8% were transverse-type trips (type 4, orange, i.e., head-
ing to a destination and then returning with relative little 
deviation). Two examples of DARs in each category are 
shown in Fig. 3, along with the proportions of each type.

Cluster distribution results
After having extracted the 7 clusters based on the chosen 
DAR measures, we proceeded by considering the starting 
points to observe DAR frequencies as well as by analysing 
the affects of seasonality, demographic factors and the 
landscape on the various DAR type distribution.

Spatial location clusters
We used the (X,Y) coordinates of the start points of 
each DAR and then relied on a visual inspection (top 
left panel, Additional file 1: Fig. B.5) to select an appro-
priate number of clusters based on the “elbow” method 
(as described in the caption to Fig. 2A). In this way, we 
identified three start location categories of DARs, as 
illustrated in Additional file 1: Fig. B.5 (top right panel), 
which represent the western, central and eastern part 
of the studied area. In addition, the various areas differ 
in altitude, aridity and soil type. From Additional file  1: 
Fig.  B.5 (bottom panel) we observe that the start point 
is quite consistent over time for each individual, show-
ing consistent preference for particular areas. We use 
these spatial subdivision to group the DAR clusters and 
observe the effect of the initial location on their distribu-
tion (Fig. 4), as well as demographic factors, as explained 
in the next section.

Clustering subgroups by demographic and spatial attributes
The distribution of DAR types for different individuals 
is provided in Additional file 1: Table A.2 (Appendix A). 

Fig. 4 Bar plots of the frequency of DARs of each type (types 1–7 plotted from left to right using the same colors as referenced in Tables 1, 2, 
and used in Fig. 3) between sexes (top left two plots), ages (bottom left two plots) and DARs originating at three different locations (see text for 
discussion). Chi-squared contingency table analyses of these three comparisons (sex, age, location) are all highly significant ( p < 0.001)—see 
Additional file 1: Table A.3 in Appendix A for details
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These individuals can be organized into subgroups by, 
among other things, sex, age, and location (27 female, 
of which 11 young and 16 adults, and 17 males, of which 
11 young and 6 adults). Bar plots of the number of DARs 
(i.e., charts of the distribution of DAR types when nor-
malized to represent frequencies) of females compared 
with males, young ( ≤ 1 year) compared with adults ( > 1 
year), and compared across locations 1 (west), 2 (center) 
and 3 (east), are illustrated in Fig. 4, with actual numbers 
provided in Additional file  1: Table  A.3 (Appendix A). 
Note in the case of individuals maturing over time, the 
age of the individual is that assigned at the beginning of 
the data collection period, except for our GLMM analy-
sis where we used the individual’s age at the time it exe-
cuted the DAR under consideration. In a paper focusing 
on the ecology of the barn owl, it would be important to 
associate the appropriate developmental age of each indi-
vidual at the time the particular DAR occurred. In Fig. 4 
we show the aggregated distribution, while in the Addi-
tional file 1: Appendix B (Fig. B.6) we present the mean 
and standard deviation of the DAR frequency for each 
individual, organized by sex, age and location, presenting 
similar trends, as discussed in this section.

In the breeding season, males have greater home ranges 
than females [51]. This notable difference between sexes 
( p < 0.001 , Table A.3) formed as a result of the involve-
ment of males in comparatively more medium and large 
excursions than females (light red and dark red bars; 24 
vs 16%) and, conversely, females are involved in compara-
tively more local or small excursions than males (yellow 
and dark yellow bars; 58 vs 47 %). On the other hand, an 
obvious difference between young and adult individuals 
is that young embarked on a much greater proportion 
of large excursions then adults (dark red bar; 13 vs 4%) 
while adults embarked on a much greater proportion of 
local excursions than young individuals (yellow bar: 32 
vs 23 %). These results suggest that adult females remain 
local during periods when they are involved in brood care 
and do happen to move—often though, while involved 
in brood care, females remain on the nest all night (and 
these events are not included in our analysis.

With regard to locations, a preponderance of trips at 
east locations were local or small (yellow and dark yellow; 
72%), less so at west locations (54%), and even less so at 
central locations (45%). This consistent with the fact that 
the east location, being an agricultural grain field, is the 
richest of the three locations in food resources (highest 
density of rodents).

Temporal patterns
We plotted the sequence of DARs, as they occurred for 
each of the individuals in the study (top panel in Fig. 5). 
We observe that the DAR distribution differs over time 

across individuals, and the different distributions can 
be explored to extract variations depending on age, sex, 
and choice of home area. We aggregated the individual 
DAR data for each individual bird and by quadrimesters 
as well, choosing 4 individuals from the same family 
(mother and her 3 young). Details of the family member-
ship of individuals are known from regular monitoring of 
nest boxes. By evaluating the individual temporal distri-
bution, we observe that certain DARs are more frequent 
during particular times of the year. For example (bot-
tom panel in Fig.  5), during the 1st, 2nd and 3rd quad-
rimesters of 2021 (February–May 2021, June–September 
2021, October 2021–January 2022) the female individual 
(mother) mostly shows closed local and small excursion 
DARs, which can connect with the behavior during and 
following the breeding period. In addition, the two young 
in the 3rd quadrimester of 2021 show a high frequency of 
type 4 DARs (closed, transverse excursion).

Landscape resources
By analysing the spatial locations of the closed, transverse 
excursion DAR (type 4, orange) performed by the 2 
young individuals (highest frequency in bar plots in 
Fig. 5), we observe a very similar use of the landscape and 
resources, as shown in Fig. 6 (right panel). Note that for 
the two young we have a total of 36 and 57 DARs of type 
4 for the considered quadrimester, over a different sets of 
days with 15 days in common.

In addition, we analyzed the DAR distributions and tra-
jectories of a second family of four owls: mother, father, 
and two young individuals. For this family we were able 
to track both parents during the brood rearing period. 
The DAR distributions and trajectories of this family are 
presented in Additional file 1: Appendix B (Figs. B.7 and 
B.8).

Generalized linear mixed model results
The detailed results of fitting a GLMM to the data—
dependent variable was the square-root PC1, inde-
pendent fixed binary variables were sex (male/female) 
and age (young/adult), random variables were RingID 
and date—are given in Additional file 1: Appendix C. 
The assumption that the square-root transformed PC1 
is normally distributed appears to be reasonable from 
Q-Q and histogram plots of the residuals (Additional 
file 1: Fig. C.2B). For purposes of comparison, we also 
report the results for the same GLMM fit, except in this 
case the dependent variable was now the square-root of 
the DAR measure maximum displacement (Addi-
tional file 1: Fig. C.2B). The results of these two GLMM 
fits are almost identical (compare panels A and B in 
Additional file  1: Fig.  C.2) apart from the fact that, as 
expected (because of its property in being the DAR-size 
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composite variable that accounts for more of the varia-
tion than any other DAR-size variable), the PC1 fit pro-
vides marginally stronger statistical results. In the case 
of both GLMM fits, as was evident from our cluster 
results as well, DARs of young are significantly larger 

than those of adults at the highest level ( p < 0.001 ), 
while males have significantly larger DARs ( p < 0.05 ) 
than females. Adding the cross-product sex × age 
of the two variables to the GLMM did not improve 
the performance of the model sufficiently to justify its 

Fig. 5 Top panel: Temporal distribution of the seven clusters, ordered by individual ID number (see Additional file 1: Table A.1), with dashed vertical 
lines dividing the different quadrimesters and small gray dots representing NA values in our measure extraction. For both panels, the color scheme 
is the same as that presented in Table 1. Bottom panel: Temporal distribution of the seven clusters. From the top: mother (ID 13) and her 3 fledglings 
(IDs 38, 39, and 40). We also show the temporal progression of the DAR types across quadrimesters, above each bar plot
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acceptance on information theoretic grounds (Addi-
tional file 1: Appendix C).

Discussion
The primary purpose of this paper is to present a geo-
metric method for categorizing diel activity routines 
(DARs) across days and across individuals in a popula-
tion, and to demonstrate the utility of such categorization 
in providing insights into their behavior and movement 
ecology. Our approach may be best applied to groups of 
individuals for which relocation data support, at least, 

several points per hour. Since we had many more points 
than needed, we subsampled our 4–8 s interval data at 5 
min intervals to save computation time in generating our 
measures with little observed loss of accuracy—e.g., com-
pare tracks in Additional file 1: Fig. B.1 in Appendix B.

Of course, DAR categorization methods may use 
factors that differ and complement our geometric 
approach. Such approaches may be useful in uncovering 
area-related features (e.g., the amount of area searched in 
each diel cycle), or in identifying regions of the landscape 
where particular types of movement behavior occur 

Fig. 6 Left panels. Plots on the same scale of type 4 (orange) DARs for sibling fledglings (ID 39, top; ID 40 bottom)—these occurred over the same 
quadrimester (Oct 2021–Jan 2022) with other DARs from this quadrimester superimposed in gray. X and Y axes represent Israeli Transverse Mercator 
(ITM) coordinates. Right panels. Satellite image examples of single DARs (ID 39 on 2021-11-16, top; ID 40 on 2021-12-21 bottom)
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(e.g., movement corridors or foraging areas  [52]). We 
believe, however, that our geometric approach provides 
an appropriate first cut to characterizing segments at 
the DAR scale. The particular set of measures that we 
used in our study (net displacement, maximum 
displacement, maximum diameter, and maximum 
width) appear to have worked well in providing us with 
7 meaningful types of DARs that we could then use to 
obtain ecologically useful information on the movement 
behavior of barn owl individuals. As we saw in our barn 
owl analysis, for example, the spatial results we obtained 
using a geometric categorization of DARs provides a 
daily-resolution lens on potential links between the 
movement and resource ecology of individuals. Our 
results also provide some insights into the variations 
in DAR ecology with respect to age and sex, as well the 
spectrum of personality types (behavioral syndromes; 
[22, 53]) that one may expect to encounter and how 
landscape and other environmental factors may alter this 
spectrum. Our results also allowed us to identify both 
similarities and differences among nest mates, as well as 
age-dependent seasonal response, spatial associations 
among DAR types, and the locations where these 
associations occurred.

According to the results that we presented in Fig. 2C, 
the values k = 2 and k = 4 are indicated as possible 
break-point values for selecting the number of clusters 
on which to conduct a comparative analysis. As we have 
mentioned, we decided to carry out our analysis using 
7 clusters because of the greater diversity it offered to 
us in making the various comparisons across sex, age, 
and location, as illustrated in Figs. 4 and 5. We suggest, 
however, that four clusters may be a suitable alternative 
when the focus is on the coarse-grain movement 
patterns, or if the sampling rate is infrequent, though 
some understanding may be lost when the diversity of 
DAR movement patterns performed is reduced to four, 
and even more so to two.

Of course, we could have also carried out our compari-
sons using k = 2 and 4. Such analyses are recommended 
when the focus is on the movement ecology of the popu-
lation under consideration rather than on a methodologi-
cal exposition, which is the purpose of the current paper. 
Additionally, because the main scope of this study is to 
showcase the relevance of our approach, we have limited 
our presentation to a few illustrative examples, as well as 
to the k = 7 cluster selection. A more extensive ecologi-
cal analysis of considerably more data than that reported 
here is analysed and discussed elsewhere [49].

The process of finding a useful DAR categorization 
scheme does not require a PCA to be undertaken. Fur-
ther, as we mentioned, PCA is most useful when the 
number of variables involved is on the order of tens 

rather than a few to several. The PCA analysis that we 
undertook, however, was useful because it provided a 
method for generating a DAR-size composite variable 
(PC1, has the natural interpretation of size or “extent”) 
that explains more of the variation than any other linear 
combination (and, of course, with all weights positive) of 
the underlying measures used to characterize our DARs. 
In our case, our DAR extent variable, PC1, accounted 
for a remarkable 86.6% of the observed variation among 
DARs. Additionally, beyond the utility of our PCA identi-
fying PC1, we note that 94.9% of the variation is captured 
by the first two principal components (PC1 and PC2—
with the latter have the interpretation of DAR openness; 
Table  2), so that 2-D plots using PC1 and PC2 as their 
axes (such as Fig. 2D) contain almost all of the informa-
tion extracted in our cluster analysis. Another advan-
tage of our PCA pertains to our selection of PC1 as the 
dependent variable for our GLMM analysis of the effects 
of age and sex on DAR size. Although, using max dis-
placement, as discussed below in the context of barn 
owl movement, provided better discriminative power, 
than max displacement (or any one of the geometric 
measures for that matter on its own).

We divide our ensuing discussion into three 
subsections. First, we discuss insights provided by the 
data on the movement patterns of the barn owls. Second, 
we discuss aspects of the current implementation of our 
method and overall approach. Third, we point out several 
ways forward, to obtain a deeper understanding of the 
nature and structure of the DARs of animals exhibiting 
strong day-to-day, seasonal and even lunar cycle variation 
in these routines.

Barn owl diel movement patterns
With 44 individuals tracked over almost half a year on 
average, our focal barn owl data set is sufficiently gen-
eral to obtain some useful insights into the movement 
behavior of individuals within our study population. We 
evaluated and compared the distribution DAR types 
with regard to sex, age and location/region. These com-
parisons nicely demonstrated some commonly known 
behavioral patterns regarding differences among sex and 
age, and individuals. In particular, our analysis reinforces 
results from other studies that adults move more locally 
compared to young [51]. Similarly, our results also sug-
gest that males forage over larger distances that females. 
This is inline with recent results from another ATLAS-
based study [39] and inline with the general notion that 
females move locally or very little while incubating their 
eggs. Individuals are expected to move less in areas 
of high resource availability, and indeed we find that 
that DAR distributions are strongly influenced by site 
location. Specifically, we found more local and closed 



Page 14 of 20Luisa Vissat et al. Movement Ecology           (2023) 11:15 

small-excursion DARs in the eastern relatively high 
resource region than the other two locations where nest 
box densities where higher and resources abundances 
were lower.

Our clustering method also provided some novel 
insights not revealed by prior analyses of movement data; 
in particular, insights obtained from observed differences 
in DAR distributions among different family groups. 
Among the 4 family members included in Fig. 5 (bottom 
panel), the mother (individual 13) has a very different 
DAR distribution over time compared with each of her 
three offspring (all 4 identified by arrows in the top panel 
of Fig. 5). The predominance of closed local DARs (type 
1, yellow) in the mother’s 1st quadrimester coincides with 
her known behavior during her egg incubation period. 
Further, because females remain nest bound during 
incubation [51], many of her DARs are recorded as NA 
during this quadrimester. Once the nestlings hatch, the 
mother is associated with two types of DARs: small-
excursion DARs (type 2, dark yellow), which suggests 
flights to bring food to the nest (central place foraging); 
and some partially open, small-medium excursion DARs 
(type 3, light blue), which suggests flights to nearby 
feeding areas, presumably undertaken to avoid local 
resource depletion. After the fledgling period, we observe 
that the mother returns to performing closed local DARs, 
perhaps because she has no need to feed the fledglings 
anymore and so the local habitat area provides enough 
resources for her alone. Within the same family, we see 
a predominance of closed, transverse-excursion DARs 
(type 4, orange) for young individuals 2 and 3 in the third 
quadrimester of 2021 (bottom two rows of panels in 
Fig.  5). These two young individuals perform consistent 
and similar commuting patterns (roosting-foraging 
areas) across space and time (Fig.  6). In particular, the 
individuals moved between their roosting areas (banana 
plantation located in the upper right corner of the map 
provided in Fig. 6) and a rodent-rich alfalfa crop area (in 
the lower left corner of this map), where the individuals 
could find staple diet items [54, 55].

For the other family where we were able to track 
both parents during the brood rearing period, the DAR 
distributions and trajectories, presented in Additional 
file  1: Appendix B (Figs.  B.7 and B.8), revealed the 
following. Their eggs hatched at the beginning of April, 
and the nestlings fledged and left the nest during the 
2nd quadrimester. During this quadrimester, these 
young executed small, transverse excursions, visiting 
areas different from their parents, thereby establishing 
independent home ranges. The mother performed mostly 
closed, local DARs (type 1, yellow) and the father mostly 
closed, medium excursion (type 5, light red) [39]. In 
addition, we observed that during the 1st quadrimester 

the father showed a prevalence of partially open, small-
medium excursion DARs (type 3, light blue). This 
supports the supposition that the father does not always 
roost in the nest during the incubation period [51], but 
spends some nights away from the nest.

Our two GLMM analyses in which PC1 and then 
the max displacement variable were regressed 
against the fixed binary variables of sex and age, and 
the random variables ringID and date, identified 
significant age and sex differences in DAR size: young 
males executed the most extensive and adult females 
the least extensive DARs. It is worth noting that both 
these analyses only considered non-zero DARs (i.e., the 
individual left its nest for some period of time during the 
day) because brooding females usually do not perform 
DARs while incubating eggs on their nests [49].

Method applications
Any in depth study should consider appropriate measures 
for the DAR classification, as well as evaluate whether the 
initial number of clusters identified (7 in our case) is the 
most appropriate categorization scheme for addressing 
particular questions, in terms of the generality/specificity 
trade-offs discussed in the Introduction. In fact, the best 
number of clusters used to address particular questions 
may differ from question to question. In our case, the 
7 groups we identified could be categorized rather 
succinctly into four size classes (local, and small, medium 
and large non-local excursions; see Fig.  3), and then in 
terms of whether larger excursions were closed, partially 
open or wide open (Table  1). The measures we used 
provided a geometric categorization of our set of DARs, 
where other types of categorization are possible, such 
as related to space use (amount of area searched, use of 
corridors, etc.).

The temporal patterns we obtained (as in Fig.  5) may 
be particularly germane to understanding the influence 
of lunar and solar cycles on the ecology of species. In 
addition, our approach can help identify individual 
behaviors. In particular, by summarizing temporal, 
spatial and DAR distribution patterns, we can evaluate 
behavior differences across individuals and therefore 
extract and quantify individual variations in behavior, an 
endeavor that has received growing attention over the 
last few years [22, 56].

An alternative to the approach we took, could use 
measures such as tortuosity [19, 57], but such measures 
are more relevant to canonical activity mode (CAM) 
than DAR categorizations. The reason is that different 
CAM segments of a single DAR will vary greatly with 
respect to tortuosity as individuals switch from a directed 
movement CAM (low tortuosity) to a forage or search 
CAM within a relatively small area (moderate to high 
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tortuosity). One could also estimate average speed or 
distance travelled along CAM segments but this requires 
that relocation points are collected at a sufficiently high 
frequency and methods are sufficiently robust to be 
as scale independent as possible [21]. We also did not 
use 2-dimensional measures that are more suitable for 
characterizing the multi-day coverage of a collection of 
DARs [23] constituting a single LiMP than characterizing 
any single flight segment, unless the measure relates to 
the efficiency of a within patch search segment (i.e., a 
single search CAM).

In general, the geometry of clearly demarcated flight 
segments (i.e., segments with clear start and end points, 
book-ended by extended periods of rest)—such as our 
DARs—are most appropriately characterized using a 
set of scalar (1-dimensional) whole-path metrics (with 
respect to the DARs as a whole), such as maximum 
diameter, maximum width, net displacement, 
and maximum displacement. On the other hand, 
component segments—such as CAMs—require some 
type of behavioral change point analysis (BCPA) to 
separate them out, using various local type measures, 
such as tortuosity, average speed, and possibly area 
covered if the CAM is a within-patch search activity. 
Finally, multi-DAR segments, such as LiMPS or LiTs, 
are most appropriately characterized using a set of 
2-dimensional measures relating to seasonal home-range 
size and overlaps between such home ranges in different 
seasons [23, 58], although 1-dimensional local metrics 
applied at an appropriate scale (likely at the hourly or 
subhourly rather than minute or subminute level) relating 
to total distance covered within seasons, or mean and 
variance of distances covered across days within different 
seasons may prove useful for categorizing LiMPs and 
LiTs.

Next steps in the hierarchical segmentation of movement 
paths
Past studies on the spatial categorization and tempo-
ral patterning of DARs have involved relatively low fre-
quency data (e.g., a couple of points per day to hourly 
or half-hourly relocation periods; [59–63]). As the first 
study to undertake a comprehensive categorization of 
the spatial structure and temporal patterning of DARs 
using minute resolution data, our focus has been on spa-
tial categorization and temporal patterning methodol-
ogy with only superficial links to landscape factors. Thus, 
our ability to drill deeply into links between movement 
and resource ecology of the barn owl in Israel has been 
limited. Future studies, no doubt will be able to combine 
our methodology with much more detailed landscape 
information to dig more deeply into the nexus among 

resource, movement, and other components of behavio-
ral and feeding ecology than we have here.

Beyond extending an analysis of DARs to include vari-
ous types of environmental factors, we are motivated in a 
movement ecology context to delve further into the seg-
mentation of the DARs themselves into smaller definable 
units that provide a hierarchical framework for resolv-
ing movement trajectories [6]. In this framework, it has 
been proposed that DARs are themselves composed of 
a sequence of canonical activity modes (CAMs; [15]), 
which in turn are constructed from strings of statistical 
entities called meta fundamental movement elements 
(or metaFuMEs—see Glossary; [6, 7]). The criterion for 
identifying a particular kind of CAM is that it should 
stably classifiable (i.e., consistent and repeatable), and 
interpreted in terms some goal oriented activity [6], such 
as foraging for resources, heading towards a desired 
location, partaking in regenerative rest, or employing a 
sequence of risk avoidance related activities.

Methods for segmenting DARs into CAMs include the 
application of hidden Markov models (HMMs) [64] or 
other approaches falling under the rubric of behavioral 
change point analyses (BCPA) [65–67]. One or more of 
these BCPA methods can be applied to the problem of 
segmenting DARs into biologically meaningful subunits, 
although how we do this can vary greatly with regard to 
organization of DARs into sets of data for independent 
analyses.

In the same way that BCPA methods can be used to 
segment DARs into CAMs, so CAMs can be segmented 
either in sequences of shorter duration CAMs (e.g., 
foraging bouts are segmented into moving between 
foraging points and harvesting resources around foraging 
points) or short duration CAMs themselves can be 
segmented into metaFuMEs, as discussed in [7]. Further, 
once several different sets of metaFuMEs have been 
identified, they can be used, also as discussed in [7], to 
simulate CAMs and DARs using metaFuME statistics and 
Markov matrices that control the transition probabilities 
of switches among metaFuME types and DARs. 
These simulations, however, are based solely on local 
information pertaining to step-size and turning angle 
distributions that defined particular metaFuME types, 
and Markov transition probabilities that switch among 
metaFuME types and particular CAM modes possible 
using time-of-day or location landscape information.

Realistic simulation of DARs, as a function of 
landscape and other environmental factors (including 
time and length of day), will generally require non-local 
information (i.e., beyond step-size and turning angle 
distributions). This information includes the location of 
desired destinations, stored in an individual’s memory 
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and approached through navigation that may involve 
landscape markers or celestial objects. It is only through 
knowing the relationship of CAM movement sequences 
to landscape factors and movement motivated by non 
local information that the movement of animals at 
the DAR scale can be used to evaluate the response of 
individuals to changes in the landscape (as happen as 
a consequence of global warming in human land use 
activities).

Conclusion
The methods we present here for categorizing the 
geometry of DARs are part of a broader program that 
involves gathering information at the diel scale to 
build models able to predict the ecological movement 
response of individuals to global change. These models 
are based on identifying sub-diel CAM segments, using 
behavioral change point analysis, and then associating 
these segments with particular environmental conditions 
and landscape structures [6]. These associations 
may then allow us to anticipate how DAR types and 
distributions will respond to changes in the landscape 
and environment. Once these models have been used 
to obtain a set of DARs adapted to these changes, 
they can then be strung together to predict how the 
LiMPS of individuals might respond to the same set of 
changes. This type of hierarchical, multiscale approach 
to constructing predictive movement models is likely to 
be much more flexible than single scale approaches in 
capturing the response of individuals to landscape and 
environmental change.

As we have seen with our barn owl study, the landscape 
structure of locations is key to influencing the frequency 
and distribution of DARs for individuals of particular 
ages, sex or behavioral types [49]. Thus a prediction 
of what sequences of DARs individuals will generate 
over a specific season in a particular location is very 
much dependent on the landscape changes that take 
place at that location over time. In particular, knowing 
how individuals will alter the structure of their DARs 
in response to landscape changes, and how these DARs 
are likely to be strung together into LiMPs (e.g., seasonal 
ranging, dispersal, migration) of the individual’s LiT [4] 
will provide the kind of information needed to mitigate 
the effects of global change on the movement ecology 
of individuals and, hence, the resource ecology of 
populations.

Currently, most movement models are fundamentally 
single scale. For example, one genre is based on fitting 
stochastic walks to movement trajectories: e.g., basic ran-
dom walks (i.e., Wiener process [68]), linear- and angular-
velocity-biased random walks (e.g., Ornstein-Uhlenbeck 
process [69], location-salient random walks imagined as 

movements in a force field [70]), or movements depend-
ent on the local landscapes [71], as well as time itself [72]. 
Other approaches involve using rule-based simulations 
to move individuals over rasterized landscapes [73, 74]. 
Although these single scale models may produce real-
istic tracks at the canonical activity mode (CAM) scale, 
they will fail to produce realistic tracks at the DAR scale, 
unless they incorporate non-local information when for-
mulating rules on where and how to move [7]. The chal-
lenge remains, however, on how reliably we can string 
CAMs together to produce an array of DARs that match 
the distributional features of the DAR types identified 
using our approach and also capture how these distribu-
tions will adapt to environmental and landscape change. 
Only time can tell how well we can meet this challenge.

Glossary
Acronyms
An expansion of the various acronyms used in the text 
are provided here in alphabetical order along with a very 
brief definition/explanation of their meaning. 

ATLAS  Advanced Tracking and Localization of 
Animals in real-life Systems [47].

BPCA  Behavioral (also Statistical) Change Point 
Analysis. This refers to a group of methods 
used to determine how the statistics of an 
independent biological variable (e.g., its 
mean, variance, autocorrelation, or rate 
of change in slope or curvature), switches 
at threshold points with changes in a 
dependent variable (e.g., space or time; 
[65, 75, 76]).

CAM  Canonical Activity Mode. This is a stably 
classifiable subdiel behavioral mode 
(pattern of movement) such as a foraging 
bout, resting period, or purposeful 
heading (i.e., traveling) to a distant target 
location.

DAR  Diel Activity Routine. This is a stably clas-
sifiable 24-hour sequence of CAMs that 
occur at characteristic frequencies and 
times of the day. We note that the start and 
end of a DAR cycle may vary for diurnal, 
nocturnal and crepuscular species.

FuME  Fundamental Movement Elements 
(pronounced “fume” and same as FME 
defined in [15]). This is a relatively rapid, 
highly repeatable, stereotypic set of body 
movements that forms the basis of the 
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locomotory capacity of an individual (e.g., 
a walk step, a running step, a wing flap, a 
jump, etc.).

GLMM  Generalized Linear Mixed Models. This 
is a statistical approach to identifying the 
extent to which different fixed variables, 
in our case age and sex, determine the 
value of a dependent variable, such as PC1 
or max displacement, in the presence 
of random effects variables that account 
for repeated measures or differences in 
times of the season when the data were 
collected.

HMM  Hidden Markov Models. A method for 
associating an unobservable state (e.g., 
a behavioral state) with an observable 
process (e.g., a time series of locations) 
[64].

LiMP  Lifetime Movement Phase. This is a path 
segment that typically reflects a life-
history relevant movement behavior 
such as dispersal (episodic), migration 
(periodic), or other periodic behaviors at a 
greater-than-diel scale.

LiT  Lifetime Track. This is the total movement 
path of an individual from its birth to its 
death.

MetaFuME  A correlated stereotypical or characteristic 
sequence of FuMEs of fixed duration 
equal to the time between consecutive 
relocation points (only applicable to 
relatively high frequency data: ideally, 
metaFuMEs should contain no more than 
several tens of FuMES).

PCA  Principal components analysis [31].
PCi  Principal component i, i = 1, 2, 3, 4.

Terms

Extent  in the context of our DARs, 
this could very loosely 
be thought of as the size, 
magnitude or amount of 
area encapsulated by a DAR.

Elongation  in the context of our DARs, 
this refers to DARs which 
have a large maximum 
diameter and small maxi-
mum width.

Maximum diameter
[MYAMP Diameter line]  in the context of our DARs, 

this refers to the greatest 
distance between any two 
points on the DAR, where 
the line segment joining 
these two points is referred 
to as the diameter line.

Maximum displacement  in the context of our DARs, 
this refers to the distance 
from the starting point to 
the most distant point on 
the DAR.

Maximum width  in the context of our DARs, 
this refers to the sum of the 
maximum distances of the 
trajectory points on either 
side of the diameter line.

Net displacement  in the context of our DARs, 
this is the distance between 
the locations of the start and 
finish of each DAR.

Openness  if the net displacement is of 
the order of several meters 
or less, then the DAR is 
closed (i.e., the individual 
returned essentially to its 
starting location), otherwise 
the DAR is open, where if 
net displacement is close 
to maximum displacement, 
the DAR can be thought of 
as maximally open or a one-
way translocation/journey.
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