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Predicting species’ capacity to respond to climate change is an essential first
step in developing effective conservation strategies. However, conservation
prioritization schemes rarely take evolutionary potential into account. Eco-
tones provide important opportunities for diversifying selection and may
thus constitute reservoirs of standing variation, increasing the capacity for
future adaptation. Here, we map patterns of environmentally associated
genomic and craniometric variation in the central African rodent Praomys
misonnei to identify areas with the greatest turnover in genomic composition.
We also project patterns of environmentally associated genomic variation
under future climate change scenarios to determine where populations
may be under the greatest pressure to adapt. While precipitation gradients
influence both genomic and craniometric variation, vegetation structure is
also an important determinant of craniometric variation. Areas of elevated
environmentally associated genomic and craniometric variation overlap
with zones of rapid ecological transition underlining their importance as
reservoirs of evolutionary potential. We also find that populations in the
Sanaga river basin, central Cameroon and coastal Gabon are likely to be
under the greatest pressure from climate change. Lastly, we make specific
conservation recommendations on how to protect zones of high evolution-
ary potential and identify areas where populations may be the most
susceptible to climate change.
1. Introduction
Anthropogenic climate change is one of the greatest threats currently facing bio-
diversity [1]. The future survival of animal populations is likely to depend not
only on their capacity to move to suitable habitats but also their ability to respond
genetically or plastically to rapidly changing environments [2]. Standing genomic
and phenotypic variation provides the rawmaterial upon which natural selection
can act (e.g. [3–5]), and as suchmay facilitate rapid evolutionary change [2]. In this
regard, the development of methods for inferring gene–environment associations
(GEAs) has provided opportunities to identify the environmental drivers under-
lying genomic differentiation [6] and to map areas of elevated genomic turnover,
defined as the change in allelic composition with geographical distance. Such
areas of elevated genomic turnover are likely to be important to conservation
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because they may harbour populations that have the greatest
capacity to adapt (e.g. [7,8]). In particular, populations
distributed across strong ecological gradients may be impor-
tant reservoirs of both phenotypic and genomic variation
(e.g. [7,9,10]), since strong selection pressures imposed by
environmentally heterogeneous landscapes are likely to have
driven differentiation over time. Shifts in GEAs under climate
change have also been used to identify areas with high geno-
mic mismatch or ‘offset’, defined as the difference in allele
frequencies predicted under future and current environmental
conditions. These areas have been shown to be predictors of
demographic decline and as such may constitute important
regions where species are most vulnerable to climate change
[11,12]. Therefore, mapping spatial patterns of environmen-
tally associated variation under current and future climate
conditions may not only help us to identify where species’
adaptive capacity is likely to be the greatest but also pinpoint
areaswhere adaptation to future climates is expected to require
significant shifts in allele frequencies (e.g. [11,12]).

Tropical forests are one of the most important reservoirs
of terrestrial biodiversity andhave become increasingly vulner-
able to climate change. Equatorial Africa in particular is likely
to be severely impacted by future changes in temperature and
precipitation [13]. This region harbours the second largest
block of contiguous rainforest in the world [14] and is home
to an estimated one-fifth of all knownplant and animal species.
Within this major rainforest block, the Lower Guinean
phytogeographic region constitutes an important centre of
plant endemism [15]. Environmental heterogeneity across the
region is high and strong selection pressures are likely to oper-
ate along existing gradients structured by precipitation,
elevation and habitat differences across the forest–savanna
ecotone [9,16]. Although previous phylogeographic studies
have focused primarily on the role of riverine barriers and
Pleistocene refugia in shaping patterns of genetic differen-
tiation, more recent studies on rainforest vertebrates [8,17–21]
and trees [22] support the influence of environmental gradi-
ents. However, most molecular research to date has been
limited to a handful of neutral molecular markers and
has not included genome-wide surveys that might capture
potential targets of environmentally mediated selection.

Advances in high throughput sequencing provide opportu-
nities to characterize patterns of environmentally associated
variation across the genome [23,24]. Two complementary
approaches have been applied to modelling GEAs and
mapping turnover in genomic composition at the landscape
level: gradient forest (GF) [25] and generalized dissimilarity
modelling (GDM) [26]. GF is based on the nonparametric,
tree-based machine learning random forest (RF) approach.
Nonlinear regressions are used to estimate turnover or change
in allele frequencies as a function of changes in the values of
environmental predictors [25,27]. Although GF can incorporate
potentially complex interactions between predictor variables, it
cannot directly incorporate geographical distances. Spatial
effects may be incorporated via Moran eigenvectors (MEMs),
however, their interpretation may be complicated by their
potential to capture unmeasured environmental variation
[27]. GF has also been used extensively to predict changes in
GEAs under future climate change in order to identify areas
of maximal genomic offset where populations are likely to
have to adapt the most in response to future change (e.g.
[11,12,28–30]). In contrast to GF, GDM uses nonlinear pairwise
matrix regression tomodel genomic differentiation between site
pairs as a function of pairwise geographical and/or environ-
mental distances [26,27]. An advantage of this approach is
that it can directly incorporate resistance matrices that capture
the effect of historical barriers to gene flow in order to assess
their relative importance in driving patterns of genomic differ-
entiation (e.g. [7,17]). Recent studies using bothGFandGDM to
model GEAs have argued that both methods are comple-
mentary as they differ in the way that they model these
associations [27,28].

The central African rodent Praomys misonnei is widely
distributed across the Lower Guinean region and inhabits a
broad range of forest habitats, making it well-suited to land-
scape-level studies of genomic and phenotypic variation.
Previous mitochondrial phylogeographic studies of this
species have uncovered considerable historical structure that
has been attributed to the impacts of past forest refugia
and/or riverine barriers [31]. Analyses of morphological vari-
ation have also shown that craniometric variation (i.e. skull
shape) is highly variable and differs between geographically
distinct clades [32]. Skull shape is known to be under envir-
onmentally mediated selection in other vertebrate species
(e.g. [4,33]), providing a strong precedent for examining
the role of environmental variables in shaping patterns of
differentiation in this trait.

Here, we characterize patterns of genomic and craniometric
variation in central African populations of P. misonnei to
address the following five questions. (1) Which are the most
important environmental predictors of genomic differentiation?
(2) Where are the areas of greatest turnover in genomic compo-
sition and genomic offset? (3) Can genomic differentiation
be better predicted by historical barriers to gene flow or current
environmental conditions? (4) Is craniometric variation shaped
by the same environmental variables as those influencing geno-
mic variation? (5) Which single nucleotide polymorphisms
(SNPs) are associated with craniometric variation and what is
their function?

The approaches used to address these questions are illus-
trated in electronic supplementary material, figure S1. We
first used GF to model patterns of environmentally associated
genomic variation in order to identify areas of elevated turn-
over and then projected these associations under different
climate change scenarios to identify regions of greatest geno-
mic offset. Next, we used GDM to examine the relative
importance of historical landscape barriers versus contempor-
ary environmental factors in driving patterns of genomic
differentiation. Lastly, we used RF to identify environmental
predictors of craniometric variation and latent factor mixed
modelling (LFMM) [34] to identify SNPs associated with one
or more principal components (PCs) describing skull shape.
2. Methods
(a) Environmental, genomic and morphological

datasets
(i) Environmental data
A total of 26 environmental variables characterizing variation in
precipitation, temperature, altitude and vegetation were down-
loaded from various online resources (electronic supplementary
material, table S1). These include 19 bioclimatic variables,
elevation and five variables relating to vegetation structure (all
data sources detailed in electronic supplementary material, table
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S1). To reduce collinearity in our dataset, we selected a subset of 10
reduced-correlation variables as described in the electronic sup-
plementary material. All downstream analyses were performed
with this subset of variables, which comprise several measures
of temperature (bio03, bio06, bio09), precipitation (bio15, bio16,
bio18, bio19) and vegetation structure (tree cover, net primary pro-
ductivity (NPP), normalized difference vegetation index (NDVI)
and potential evapotranspiration (PET)).
(ii) Genomic data
Adult P. misonnei were sampled from 10 localities across Gabon
and Cameroon (figure 1c; electronic supplementary material,
figure S2A) using baited live traps [35]. Genomic DNA was
extracted using DNeasy kits (Qiagen, CA). Library preparation
for restriction site-associated DNA sequencing (RAD-seq) was
carried out following the protocol detailed in [36] and in the elec-
tronic supplementary material, methods. Processing of RAD-seq
data was carried out using either (a) the Stacks v. 1.48 pipeline
[37] followed by several additional steps outlined in [8], or (b)
the maximum exact matches algorithm implemented in Bur-
rows–Wheeler Aligner (BWA) to align RAD loci [38] before
filtering and SNP calling in SAMtools [39]. Since both workflows
gave similar results (see Results and electronic supplementary
material, figure S3), we present data from the SNP dataset gener-
ated using the STACKS pipeline. Following quality control and
filtering, we retained a single SNP randomly selected from
each RAD locus to generate a final dataset of 36 567 SNPs.
Further details regarding the STACKS parameter optimization,
quality control and filtering of RAD data can be found in the
electronic supplementary material, methods.
(iii) Morphological data
The skull of each individualwas extracted in the field andpreserved
in 70% ethanol. Measures of skull shapewere generated using land-
mark morphometric analyses. Each skull was photographed and
digitized using ImageJ [40], as described in the electronic sup-
plementary material, methods. Homologous landmarks were
chosen to cover all functional areas of the skull, including 20 land-
marks on the dorsal surface and 16 landmarks on the ventral
surface (figure 2). The effects of size, position and orientation were
removed [40], and covariance matrices describing shape variation
were generated from the resulting Procrustes shape coordinates.

Two sets of statistics were generated to describe shape vari-
ation in the dataset. First, matrices describing between-site shape
distances were constructed in MorphoJ using Procrustes distance,
which provides a measure of the absolute pairwise distance
between group means, and Mahalanobis distance, which takes
within-group variation into account [41]. Second, principal com-
ponents analysis (PCA) was used to summarize inter-individual
shape variation. PCA provides a method of reducing high
dimensionality shape information into a smaller number of non-
correlated axes [42] and was performed separately for each of the
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covariance matrices describing dorsal and ventral shape variation
in MorphoJ. The top three dorsal and ventral PC axes were
retained for downstream statistical analyses.
(b) Statistical analyses
(i) Gradient forest analyses of environmentally associated

genomic turnover and future projections of genomic offset
The GF method implements a machine learning approach orig-
inally developed for the RF algorithm that combines individual
decision trees to identify potentially complex relationships
between predictor and response variables. According to the RF
algorithm, each decision tree is grown from a random sample of
the response data with replacement (bootstrap aggregation or
‘bagging’). At each node in the tree, a random subset of the predic-
tor variables (features) is taken and used to partition the response
data in a way that maximizes homogeneity within partitions. This
process is repeated until the root-mean-squared error (MSE) of the
model can no longer be reduced by further partitioning of the
response variable. The bagging and feature randomness steps
reduce correlations between trees, which are then combined into
a single ensemble, or forest.

In GF, allele frequency data are treated as the biological
response variable and partitioned at numerous split values
along each environmental gradient. The amount of variation in
SNP allele frequencies explained by each split value is termed
the ‘split importance’. Moving along each environmental gradi-
ent, GF cumulatively sums split importance to create a step-
like allele frequency turnover function, the maximum height of
which reflects the overall importance of a given predictor in
explaining allele frequency variation. According to the method-
ology developed by Ellis et al. [25] and further described in
[27], SNPs with positive R2 values are retained to construct an
aggregate allele frequency turnover function, in which SNPs
are weighted according to their R2 value and environmental pre-
dictors are weighted according to their relative importance. All
GF modelling was carried out using the gradientForest R pack-
age. The analysis was run using 2000 regression trees for each
of the 10 environmental predictor variables.

To assess whether our GF model performed better than
random, the environmental-predictor matrix was shuffled to gen-
erate 200 randomized datasets and the performance of this
random model was compared to that built on the real dataset.
GF analyses were carried out both including (n = 10) and exclud-
ing (n = 9) the Gamba population, to ensure the small number of
individuals sampled from this site (electronic supplementary
material, figure S2A) did not affect model performance.

Using the three most important environmental predictors in
the model, a continuous GEA surface describing environmentally
associated allele frequency turnover was extrapolated across the
study region using current climate conditions drawn from a set
of 100 000 random points distributed across this area. This GEA
surface was then projected under future climate, according to the
four Intergovernmental Panel on Climate Change representative
concentration pathways (RCPs) for 2080 [43]. The RCP predictions
used in this study represent an aggregate of 20 global climate
models (GCMs) [43] (see electronic supplementary material). To
identify areas where GEAs are predicted to shift the most over
the next 60 years, the model predicting allele frequencies under
current conditions was subtracted from those predicted under
the 2080 climate projection [44] in order to visualize areas where
genomic offset is greatest.

(ii) Using generalized dissimilarity modelling to assess the
importance of historical barriers versus contemporary
environmental drivers

GDM uses permutational regression of site-by-site dissimilarity
matrices to model pairwise differences in a biological response
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variable as a function of pairwise dissimilarities in a range of pre-
dictor variables [26]. To accommodate nonlinear relationships
between predictor and response variables, GDM fits a general-
ized linear model using I-spline transformed predictor
variables. These I-spline turnover functions describe the rate of
turnover in biological variation along each of a range of predictor
variables. The height of each spline represents the total amount
of biological variation explained by a given predictor, holding
all other predictor variables constant.

The biological response matrix was based on either (1) Bray–
Curtis dissimilarity between pairs of sites, based on the pres-
ence/absence of individual SNPs, or (2) pairwise FST values (see
electronic supplementary material). Response matrices were cre-
ated using SNPs that were either ‘environmentally associated’ or
‘background’. The former subset contained all SNPs included in
the GF model (i.e. SNPs with positive R2 values; see above)
whereas the latter subset was made up of all remaining SNPs.
Analyseswere performedwith andwithout theGambapopulation.

Biological response matrices were regressed against a total of
13 predictor variable matrices describing pairwise environmental,
geographical and resistance distances (designed to capture land-
scape features that may have historically represented barriers to
gene flow). Environmental distances were based on pairwise
site-site differences in the values of each of the 10 environmental
variables described in section 2(a(i)) and electronic supplementary
material, table S1. The geographical distance matrix was based on
straight-line distances between sites. Two pairwise resistance
matrices accounting for the presence of riverine barriers and
shifts in habitat suitability during the last glacial maximum
(LGM) of the Pleistocene were modelled using Circuitscape [45].
Past habitat suitability was predicted by constructing hindcast
species distribution models (SDMs), using the maximum entropy
modelling approach implemented in Maxent 3.4.1 [46] (see elec-
tronic supplementary material, methods). Given that the large
number of predictor variables relative to the number of data
points (n = 45) could lead to model over-fitting, we repeated our
GDManalyses using only the threemost important environmental
variables identified by the GF analysis, alongside the geographical
and two resistance distances, reducing the number of predictors to
six. For all GDM runs, I-spline turnover functions describing the
relationship between the biological response variable and each of
the predictor matrices were visualized using rug plots and their
significance was tested using 1000 permutations.

(iii) Multivariate analyses of craniometric variation
The significance of pairwise shape distances between sampling
localities was assessed using permutation tests, which involve
repeatedly randomizing the dataset and recalculating Procrustes
and Mahalanobis distances to determine whether observed dis-
tances between populations are significantly greater than those
calculated using randomized data. A total of 10 000 permutations
were performed. The Gamba population was excluded from this
analysis due to the low sample size (electronic supplementary
material, figure S2A).

The influence of sex and sampling locality on inter-individ-
ual shape variation along the three major dorsal and ventral
PC axes was examined using ANOVA using the aov() R function
[47]. The influence of each of the 10 environmental variables on
inter-individual shape variation along the major PC axes was
tested using RF regression models, performed using individuals
from all sampled populations and the randomforest R package
[48]. Details on run parameters can be found in the electronic
supplementary material, methods.

(iv) Associations between individual SNPs and craniometric data
To determine whether craniometric variation is associated
with variation at any of the 36 567 SNP loci, LFMM [34] was
used to identify relationships between allele frequencies at each
individual SNP with variation along each of the major PC axes
describing dorsal and ventral skull shape variation. RAD loci
containing SNPs that showed a significant association with skull
shape were further interrogated by surveying the most closely
related rodent genome (Mus musculus) for homologous loci
using the basic local alignment tool (BLAST) algorithm.
3. Results
(a) Generation of genomic and morphological datasets
(i) Genomic data
Genomic datawere generated for a total of 132 adultP.misonnei,
sampled from 10 populations distributed across Gabon and
Cameroon (see electronic supplementary material, figure S2A;
figure 1c). Results from PCA, fastSTRUCTURE [49] and GF
(see below) analyses were highly consistent for SNP datasets
generated either via STACKS or the BWA and SAMtools pipe-
line and reveal high population structure in our dataset
(electronic supplementary material, figures S2 and S3). Our
final, filtered SNP set comprised a total of 36 567 SNPs.
Although there was relatively low mean coverage range
across individuals (7.2−12.2×), the consistency obtained
across datasets indicates our findings are robust to the
potentially confounding effects of erroneously called alleles.

(ii) Craniometric data
Data describing skull shape variation were generated from
169 individuals sampled from the 10 populations shown in
electronic supplementary material, figure S2A and figure
S1C. Centroid size (CS) explains 26.33% of variation in
dorsal skull shape and 25.86% of variation in ventral skull
shape. Once the effect of size was removed, plots of major
PC axes indicated substantial overlap in skull shape between
males and females (electronic supplementary material, figure
S4), thus data from both sexes was combined for further
analysis. The top three PCs explain 26.89, 14.08 and 12.20%
of total dorsal shape variation, and 29.36, 16.08 and 13.85%
of total ventral shape variation.

(b) Statistical analyses
(i) Gradient forest modelling of genomic turnover and genomic

offset under future climate scenarios
In the GF model, 5649 out of 36 567 (15.45%) SNPs showed R2

values > 0 (range: 0.00021–0.64, mean: 0.17). Both the number
of SNPs with positive R2 values and the mean R2 value gener-
ated for the real dataset fell above the upper 95% quartile of
values from the randomized datasets (see electronic sup-
plementary material, figure S5), indicating the GF model
performed better than random.Of the environmental predictor
variables included in theGFmodel, the threewith the strongest
influence were the precipitation variables Bio15, Bio18 and
Bio19 (figure 1a). We obtained very similar results when the
Gamba population was excluded from the model, indicating
that low sample size did not influence our findings.

Using these top three environmental predictors, GF was
used to generate a continuous surface of environmentally
associated genomic turnover across the study region. This
projection provided strong support for high genomic turn-
over in several areas, notably: the forest–savanna transition
zone spanning central Cameroon, the Cameroon Volcanic
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Line (CVL) in southwest Cameroon, the region spanning the
equator separating Cameroon from Gabon and the coast
to interior precipitation gradient in Gabon (figure 1b,c). Sub-
tracting predicted allele frequencies under current conditions
from those predicted under future climate change (2080)
revealed several zones of high genomic offset in Cameroon
and to a lesser extent in coastal Gabon (figure 1d; electronic
supplementary material, figure S6).

(ii) Generalized dissimilarity modelling analyses of historical
barriers versus contemporary drivers of genomic
differentiation

In GDM analyses fitted with the full set of 13 explanatory vari-
ables, three environmental variables (Bio18, Bio19 and NPP)
and geographical distancewere consistently significant predic-
tors of genomic differentiation. This finding was true for both
the ‘environmentally associated’ and ‘background’ SNP data-
sets and for both biological response matrices constructed
from either pairwise Bray–Curtis dissimilarity matrices (envir-
onmentally associated SNPs—Bio18: p = 0.046, NPP: p = 0.018,
geographical distance: p < 0.001; background SNPs—Bio18:
p = 0.017, NPP: p = 0.026, geographical distance: p = 0.001) or
pairwise FST statistics (environmentally associated SNPs—
Bio18: p = 0.01, geographical distance: p < 0.001; background
SNPs—Bio19: p = 0.02, geographical distance: p = 0.001).
Neither of the two resistance matrices modelling the effects
of riverine barriers or the distribution of suitable habitat since
the LGM had any significant effect on the model.

WhenGDMmodelswere fitted using the top three environ-
mental predictors from the GF model, geographical distance
and the two resistance matrices, only geographical distance
and the precipitation variable Bio19 were found to significantly
influence genomic variation. This finding was true for both the
‘environmentally associated’ and ‘background’ SNP datasets
and for both for biological response matrices constructed
from pairwise Bray–Curtis dissimilarity matrices (environmen-
tally associated SNPs—Bio19: p = 0.021, geographical distance:
p < 0.01; background SNPs—Bio19: p = 0.029, geographical
distance: p = 0.01) and pairwise FST statistics (environ-
mentally associated SNPs—Bio19: p = 0.029, geographical
distance: p < 0.01; background SNPs—Bio19: p = 0.017, geo-
graphical distance: p < 0.01). Once again, neither of the two
resistance matrices had any significant effect on pairwise
genomic differentiation. Taken together, these results indicate
that precipitation variables Bio18 and/or Bio19 act in concert
with geographical distance to shape patterns of genomic
differentiation across the region.

(iii) Multivariate analyses of craniometric variation
Pairwise Procrustes and Mahalanobis distances were signifi-
cantly differentiated between most populations, with those
from Kessala in southeastern Gabon and Mbam et Djerem
national park in central Cameroon showing particularly
strong differentiation from all other sampled populations
(electronic supplementary material, table S2). ANOVAs
revealed a significant influence of population on variation
along the top three PCs describing inter-individual dorsal
craniometric variation (PC1: F-value = 7.375, p < 0.001; PC2:
F-value = 2.996, p < 0.01; PC3: F-value = 4.936, p < 0.001) and
the top two PCs describing ventral craniometric variation
(PC1: F-value = 8.346, p < 0.001; PC2: F-value = 4.202, p <
0.001). The influence of population on variation along ventral
PC3 was not significant (F-value = 1.874, p=0.068). Dorsal
PCs 1, 2 and 3 describe variation in the shape of the zygo-
matic arch and skull vault, the shape of the nasal bone, and
the depth of the skull vault, respectively (electronic sup-
plementary material, figure S7). Populations from Kessala
and Mbam et Djerem were distinct from one another and
all other sampled populations along dorsal PC1, while
dorsal PC2 differentiated Kessala from all other populations
(figure 2b,c). Ventral PCs 1, 2 and 3 describe variation in
the size and shape of the incisive foramen (electronic sup-
plementary material, figure S7). Ventral PC1 mainly
differentiates the southern Gabon populations adjacent to
Lopé national park and Kessala from populations in the
north and east of Cameroon, while PC2 mainly differentiates
Kessala from all other populations (figure 2d,e).

The total amount of variation in dorsal PC1 explained by
the environmental predictors in the RF model is 24.85%. NPP
is the most important predictor of dorsal PC1 (MSE 63.17%),
where MSE indicates the importance of each predictor vari-
able. The precipitation variables Bio19 and Bio15 were the
second and third most important predictors in the model
(MSE 48.95% and 47.65%, respectively). With respect to ven-
tral PC1, environmental variables were found to explain
21.67% of the total variation. Bio18 was identified as the
most important predictor (MSE 64.72%), followed by NDVI
and tree cover (MSE 46.08% and 44.6%, respectively). The
RF model, however, showed low power for predicting vari-
ation along both dorsal and ventral PCs 2 and 3 using
environmental predictors, hence we limit our interpretation
to the first PC for both dorsal and ventral skull shape.
(iv) Associations between individual SNPs and craniometric data
LFMM analyses revealed a significant association between
SNP variation and dorsal PC1, PC2 and PC3 axes (4, 9 and
31 SNPs, respectively) and ventral PC1, PC2 and PC3 axes
(4, 34 and 70 SNPs, respectively). However, there was no over-
lap in loci detected on each axis. BLAST identified 38 RAD loci
that were significantly associated with skull shape that
fall within coding and annotated genomic regions of the
M. musculus genome. These candidate genes have functions
related to nervous system functioning, insulin secretion,
response to nutrient levels, sensory perception of pain and
regulation of transcription (electronic supplementary material,
table S3).
4. Discussion
(i) Which are the most important environmental

predictors of genomic variation?
Both GF and GDM models indicate that precipitation has a
strong influence on patterns of genomic differentiation in
P. misonnei. Lower Guinean rainforests experience highly
variable patterns of rainfall, such that the timing, duration,
frequency and magnitude of rainy seasons can change over
short geographical distances [50]. Spatial and temporal vari-
ation in rainfall can be expected to have a profound
influence on resource availability and habitat structure, both
of which may exert strong selection pressures on local popu-
lations. Fine-scale analyses of genomic variation along
regional precipitation gradients may provide novel insights
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into the role of natural selection in driving the observed
patterns of variation.

(ii) Where are the areas of greatest turnover in genomic
composition and genomic offset?

The GF model predicted high environmentally associated
genomic turnover across the savanna-forest gradient in
Cameroon and along the CVL in southwestern corner of
the country. Both regions have previously been identified
as areas of high turnover in songbird populations, indicating
their importance as drivers of diversification in the Lower
Guinean region [8,16,21] as a result of strong diversifying
selection [8,21]. Similarly, the high species richness and ende-
mism in several taxonomic groups along the CVL has been
attributed in part to the refugial history and strong eleva-
tional gradients of this region [51,52]. Our study also
indicated a subtle break across the equator that may coincide
with the seasonal inversion in rainfall patterns. Previous
studies have suggested that this inversion may have played
an important role in driving population structure in some
rainforest trees [22]. While reproductive activity in central
African rodents is generally thought to be year-round,
peaks of elevated breeding have been reported during rainy
seasons [53], potentially creating a partial barrier to reproduc-
tion. Further work in P. misonnei and other central African
rodents is needed to test this hypothesis.

Regions of high genomic offset were predicted in several
areas of Cameroon, notably: the Sanaga river delta, the CVL,
and in the central Cameroon forest–savanna ecotone. While
the neighbouring country of Gabon shows less pattern,
much of the coast appears to be moderately vulnerable, pre-
sumably because this area generally receives greater rainfall
and is thus more sensitive to shifts in precipitation. Previous
studies in North American bird species have shown that pre-
dicted genomic offset is associated with recent population
declines, suggesting that this metric can be used to identify
areas where populations are struggling to adapt [11,12].
Although corresponding demographic data is not available
for the present study, we can nevertheless speculate that
areas of greatest genomic offset may suffer disproportionately
from changes in climate.

(iii) Can genomic differentiation be better predicted by
historical barriers to gene flow or current
environmental conditions?

Overall, our results show that contemporary environmental
variation plays an important role in shaping patterns of geno-
mic variation in P. misonnei populations. Consistent with a
previous mitochondrial phylogeographic study [31], we
find support for strong population structure. However, our
GDM analysis indicates that this structure is driven primarily
by contemporary environmental variation and geographical
distance rather than an effect of isolation due to riverine bar-
riers or shifts in suitable habitat during the LGM, as has been
hypothesized in previous studies of this species [31].

GDM identified a significant influence of environmental
variation on genomic differentiation, both in the ‘environmen-
tally associated’ SNPs that were included in the GF model and
the remaining ‘background’ SNPs. This lack of effect of the
choice of SNPs included in each model may be due to inherent
differences between the way that GF and GDM treat GEAs.
Whereas GDM models pairwise genomic distances using a
single statistic to summarize genomic differentiation, GF
models changes in allele frequency for each SNP independently
and then aggregates these responses to create a turnover func-
tion. Nevertheless, both models have merit in this analysis:
GDM is distance-based and can accommodate geographical
and resistance distanceswhereasGF can incorporate potentially
complex interactions between environmental predictors [25,27].
Importantly, our GDM results show that precipitation gradients
shape genome-wide pairwise differentiation between sites,
independent of other explanatory variables, and that both
GDM and GF recover the same environmental predictors of
genomic differentiation.

(iv) Is craniometric variation shaped by the same
environmental variables as those influencing
genomic variation?

Since the phenotype is the target of natural selection, main-
taining the processes that generate this diversity is likely to
be important for preserving species’ adaptive evolutionary
potential. Small mammals are good models for exploring
environmental drivers of phenotypic variation since skull
morphology has been linked to one or more environmental
variables (e.g. [34,54,55]). For example, temperature and pre-
cipitation were found to influence skull shape in two species
of mice in the Sigmodontinae subfamily [56]. In a Brazilian
spiny rat species, skull shape varied along a latitudinal and
environmental gradient characterised by changes in tempera-
ture, rainfall and altitude [54]. Lastly, in another study of red-
backed moles (Myodes gapperi), the shape of the zygomatic
arch varied between populations sampled from regions that
differ in temperature and precipitation [55]. It has been
suggested that such variation is associated with differences
in facial musculature, which may allow for improved proces-
sing of specific food types (reviewed in [55]). Hence
differences in food resources may lead to increased selection
pressures on craniometric variation (e.g. [57]).

We detected significant pairwise differences in skull shape
between populations. The precipitation variable Bio18 was
an important predictor of both genomic and ventral cranio-
metric variation, suggesting that both are shaped by the
same precipitation gradients. However, variables relating
to vegetation structure were also found to be important in
shaping craniometric variation along both dorsal and ventral
axes. Moreover, populations at Mbam et Djerem in north-
central Cameroon, Kessala in southeast Gabon and Lopé in
central Gabon have distinct skull morphologies. All three
sites lie in or close to forest–savanna ecotones and as such exhi-
bit high heterogeneity in forest cover and structure, lower
precipitation levels and greater variation in temperature and
humidity [58]. This heterogeneity may lead to differences in
food availability [59] that could ultimately drive craniometric
differentiation.

(v) Which SNPs associate with skull shape and what is
their function?

While phenotypic variation may have a plastic component,
correlations between craniometric variation and individual
SNPs might support an underlying genetic mechanism.
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Several SNP loci were found to be associated with skull shape
variation. Some of these loci map to annotated, coding
regions of the M. musculus genome. Three of these genes,
Fam3b, Cps1 and Abo, are involved in insulin secretion and/
or metabolic processes [60,61]. Several genes, including
Dlg2 and Cpne6, play roles in nervous system function and
sensory perception [62,63], traits that may be under diversify-
ing selection due to differences in predation pressure. Further
work should focus on characterizing the influence of selection
in shaping craniometric variation across the forest–savanna
ecotone and the role that these candidate genes might play
in adaptive diversification across this boundary.

(vi) Conservation implications
There are two schools of thought in prioritizing areas for
conservation (reviewed in [64]). Proactive schemes focus on
conserving sites in which threats to biodiversity are low,
thus maximizing the likely success of conservation efforts.
Reactive schemes focus on conserving sites under a high
degree of threat where biodiversity is unlikely to survive
without urgent intervention [64].

A proactive scheme would, therefore, prioritize areas with
high genomic turnover and low genomic offset. Within the
context of our study, the national park systems of both
Cameroon and Gabon encompass a wide range of environ-
mentally associated genomic variation, indicated by the
different colours portrayed in figure 1c. Within Cameroon,
Mbam et Djerem is of special note, since in addition to har-
bouring high levels of genomic turnover associated with the
forest–savanna transition zone, it also contains individuals
with unique craniometric variation. Within Gabon, individ-
uals sampled from the ecotone region surrounding the
Batéké Plateaux National Park in southeast Gabon also
have a unique skull phenotype. This region has been
shown to be an area of high genomic turnover in blue duikers
[17] and encompasses unusually high levels of plant and
amphibian diversity [65,66], suggesting that it too may war-
rant special conservation attention. However, while areas of
unique genomic and/or phenotypic diversity are thus well-
preserved by the national park systems, areas that capture
elevated turnover are not well represented and could be pro-
tected through corridors designed to span these gradients
and connect existing reserves together.

By contrast, a reactive schemewould focus on areas of high
genomic offset, regardless of levels of environmentally associ-
ated turnover. Areas of high genomic offset were found in the
Sanaga river basin, along the CVL and across the savanna-
forest transition in Cameroon (figure 1d). In Gabon, genomic
offset was generally low except along coastal areas to the
south, highlighting the potential vulnerability of this region
to future climate change. Since high genomic offset has been
found to predict demographic declines in wild populations
[11,12], future work should focus on areas of elevated offset
to determine how ongoing climate change may already be
impacting population viability in these regions.
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