
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Learning from Sequences in Education, History, and Natural Language

Permalink
https://escholarship.org/uc/item/6gq4k5t3

Author
Alkaoud, Mohamed

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gq4k5t3
https://escholarship.org
http://www.cdlib.org/


Learning from Sequences in Education, History, and Natural

Language

By

Mohamed A. Alkaoud

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Mairaj U. Syed, Chair

Kenji Sagae

Emily R. Merchant

Committee in Charge

2021

-i-



Copyright © 2021 by

Mohamed A. Alkaoud

All rights reserved.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Learning from Sequences in Education: Representing Academic Degrees 4

1.1.2 Learning from Sequences in History: Identifying Narrators in Classical

Arabic Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Learning from Sequences in Natural Language: Incorporating Mor-

phology in Traditional Word Embeddings . . . . . . . . . . . . . . . . 5

1.1.4 Learning from Sequences in Natural Language: Rethinking Tokeniza-

tion and Word Segmentations . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Traditional word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 FastText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Contextual word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Learning from Sequences in Education: Representing Academic Degrees 15

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

-ii-



3.5.1 Curriculum Contraction . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Learning from Sequences in History: Identifying Narrators in Classical

Arabic Texts 25

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Narrator Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Narrator Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6.1 The Automatic Identification of Narrators System . . . . . . . . . . . 37

4.6.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.3 Dealing with Special Cases . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Learning from Sequences in Natural Language: Incorporating Morphology

in Traditional Word Embeddings 48

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.2 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.3 OOV Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.4 Extrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

-iii-



5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Learning from Sequences in Natural Language: Rethinking Tokenization

and Word Segmentation 61

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusion and Future Directions 69

7.0.1 Learning from Sequences in Education: Representing Academic Degrees 69

7.0.2 Learning from Sequences in History: Identifying Narrators in Classical

Arabic Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.0.3 Learning from Sequences in Natural Language: Incorporating Mor-

phology in Traditional Word Embeddings . . . . . . . . . . . . . . . . 70

7.0.4 Learning from Sequences in Natural Language: Rethinking Tokeniza-

tion and Word Segmentation . . . . . . . . . . . . . . . . . . . . . . . 70

-iv-



List of Figures

1.1 The process of training word embeddings. . . . . . . . . . . . . . . . . . . . 2

2.1 Illustration of Skip-gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Illustration of CBOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Examples of token masking in BERT. . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Examples of next sentence prediction task in BERT. . . . . . . . . . . . . . . 13

3.1 A sequence of courses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Applying word embeddings to course sequences. . . . . . . . . . . . . . . . . 17

3.3 Finding math and economics courses that are similar/dissimilar to computer

science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Visualization of the t-SNE projection of our embeddings for majors (blue)

and minors (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The input and output of the automatic narrator identification system. . . . . 32

4.2 The interface of our automatic identification of narrators system. . . . . . . . 38

4.3 Our automatic identification of narrators system identifying Muh. ammad ibn

Ish. āq in the text: “Muh. ammad ibn Maslama told us that Yaz̄ıd ibn Hārūn
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Abstract

Learning from Sequences in Education, History, and Natural Language

One of the most powerful ideas in natural language processing is the distributional hypothesis

which indicates that words with similar distributions tend to have similar meanings. This

led to huge movement in learning from word sequences and as a result sequential-based

learning is considered one of main tools in natural language processing today. In fact, many

of the recent breakthroughs in natural language processing (Word2Vec, BERT, . . . ) learn

by exploiting sequential properties of natural language.

In this dissertation, we further explore learning from sequences more and push the bound-

aries on what can be learned solely from sequences. We investigate di↵erent sequences in

diverse settings, ranging from educational and historical sequences to sequences of mor-

phologically rich languages. These investigations provide us with insights and answers to

questions such as: 1) can we learn good representations of non-linguistic items from their

sequences?, 2) is it possible to create state of the art natural language processing models

by simply rethinking sequences?, and 3) is learning an end-to-end named-entity disambigua-

tion/entity linking system entirely from sequences feasible? Answers to these questions

enlighten the machine learning, natural language processing, and computational linguistics

communities on the potential, yet to be harnessed, in sequences.

-viii-



Chapter 1

Introduction

The distributional hypothesis [41, 35], a basis of modern word embedding techniques, sug-

gests that words that appear in similar contexts tend to have similar meanings: for example,

given a corpus of documents, the words, ‘dog’ and ‘cat’ will appear in similar contexts and,

hence, have similar meanings. Word embedding methods, operationalize the distributional

hypothesis in order to produce numerical vectors as representations of words as shown below:

dog = [1.36,�0.23, 3.12, · · · ]

cat = [1.59, 0.04,�1.02, · · · ]

cab = [�2.46, 4.25,�2.12, · · · ]

(1.1)

In a seminal paper, Mikolov et al. [58] popularized word embeddings when they introduced

Word2Vec and showed that it produces meaningful rich word representations, which was

always a challenge for the natural language processing community. Figure 1.1 shows an

overview of how these embeddings/representations are trained. Each row of squares in

Figure 1.1 represents a vector. One of the things that made word embeddings popular is

that they are unsupervised; they just require a large sequence of words with no additional

information or extra knowledge. Moreover, the representations produced by such techniques

capture interesting semantics; one popular example is how the produced vectors capture

relationships between words. For example, if we subtract the vector for the word ‘man’ from

vector of the word ‘king’, and then add the vector of the word ‘woman’ we get very close to
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Figure 1.1: The process of training word embeddings.

the vector of the word ‘queen’. Other interesting examples, relating to geography, grammar,

and universities, are shown below:

London ⇡ Paris� France + England

swimming ⇡ going� go + swim

UMass Amherst ⇡ UC Davis� California +Massachusetts

(1.2)

We can also measure similarities between words since every word is a vector. For example,

the vector of the word ‘cat’ will be closer to the vector of the word ‘dog’ than it is to the

vector of the word ‘cab’ even though that the word ‘cat’ is phonetically more similar to ‘cab’

than ‘dog’.

Sequence driven word embeddings are today considered one of the main pillars of modern

natural language processing which led many scientists to research them in more detail,

ranging from algorithmic-focused improvements such as better ways to train them [59, 65, 17,

47], exploiting new ways to represent them [78, 66, 29, 84], and utilizing them in information

retrieval [91] to more social-centric issues such as understanding their biases [19, 23] (e.g.

associating nurse with female pronouns and doctor with male ones) and employing them
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as a tool to study culture [49]. Word embeddings have also been applied to many other

fields such as software engineering, [30] in which researchers have exploited the locality of

software [6, 42] to create vector representations of software constructs [82, 7, 40]. They have

been also used in medical and clinical texts [48, 37, 50].

Unfortunately, while there has been a huge interest in word embeddings and their ap-

plications, there has not been a focus on exploring learning from sequential properties in

di↵erent settings in natural language processing. Word embeddings have shown us that

learning from sequences can be a very powerful tool. It seems logical that we should explore

them more in natural language processing and computational linguistics.

In this dissertation, we further explore sequential based learning and push the boundaries

on what can be learned from sequences. This dissertation discusses how we can learn from

sequences in four di↵erent settings. First, we show that we can use sequences to learn from

non-linguistic entities. We propose a sequence-based approach to generate representation of

academic degrees. The second setting concerns sequences in history: we learn an end-to-end

entity linking system that automatically identifies narrators in historical classical Arabic

texts. The third and fourth settings relate to sequences in language. In the third setting,

we learn better word embeddings by utilizing the richness of words’ structures in highly

inflected languages to decompose words into more granular sequences. Lastly, we explore

the sequences resulting from BERT’s [29] subword tokenizer, show that they are not optimal,

and propose a simple way to tackle this issue. While the experiments in the third and fourth

setting focus on Arabic, the techniques we propose can generalize to other highly inflected

languages.

Two ideas that we strongly believe in are 1) diversity, and 2) simplicity. One manifesta-

tion of these ideas is the problems we try to tackle when doing research. All the problems

tackled in this dissertation relate to diversity and NLP: Chapters 3 and 4 focus on applica-

tions of natural language techniques in fields where NLP is not commonly used: education

and history. Chapters 5 and 6 focus on solutions that explore a property (morphology) that

is not important in English and other common European languages since many of them are

3



morphologically poor [70]. The same can be said about simplicity: we try to propose simple

solutions when tackling our problems. For instance, our state-of-the-art model we discuss

in Chapter 6 does not require any pretraining. This is not only important due to the many

benefits inherently found in simplicity, but also because it goes against the current trends of

machine learning and natural language processing communities that push for more complex

models neglecting the negative impact money-wise, time-wise, and environment-wise of these

huge models [80].

1.1 Summary of Contributions
In this dissertation, we explore di↵erent settings where we learn from sequences. Our con-

tributions can be summarized as:

1.1.1 Learning from Sequences in Education: Repre-

senting Academic Degrees

• We propose a way to learn representations of educational degrees from sequences of

courses and show the richness of these representations by showing examples of academic

degree analogies.

• We create an automatic degree curriculum contraction method based on the degree

embeddings we propose and illustrate its capabilities by evaluating it on academic

majors and minors.

1.1.2 Learning from Sequences in History: Identifying

Narrators in Classical Arabic Texts

• We build the first automatic narrator identification system, to the best of our knowl-

edge, for classical Arabic texts.

• We use our system to find potential mistakes in one of the largest corpora of annotated

classical Arabic texts.

4



• We show the e↵ectiveness of utilizing sequences in learning end-to-end entity linking

systems.

1.1.3 Learning from Sequences in Natural Language:

Incorporating Morphology in Traditional Word

Embeddings

• We create new morphological-based word embeddings that are smaller in size, better

in performance, and have superior out-of-vocabulary handling than traditional word

embeddings.

• We propose a novel algorithm for generating word vectors from subword vectors.

1.1.4 Learning from Sequences in Natural Language:

Rethinking Tokenization and Word Segmenta-

tions

• We investigate word segmentation in BERT and showcase issues with current word

segmenters.

• We propose two NLP models: MorphBERT and CharBERT to avoid these word

segmentation issues. Our models achieve state-of-the-art performance on two NLP

datasets without requiring pretraining. In addition to that, they can be layered on top

of any existing pretrained BERT model.
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Chapter 2

Background

We will start by giving an overview of the most popular word embedding techniques. First,

we will detail two traditional word embeddings: Word2Vec and fastText. After that, we will

discuss contextual word embeddings and go over the most popular such technique: BERT

(Bidirectional Encoder Representations from Transformers).

2.1 Traditional word embeddings

2.1.1 Word2Vec

Word2Vec introduced two main techniques to learn word representations: Skip-gram and

Continuous Bag of Words (CBOW). In Skip-gram the goal is to predict the surrounding

words given the word itself as shown in Figure 2.1, and in CBOW, the goal is to predict a

word given its surrounding words as shown in Figure 2.2

Skip-gram

When given a word, we get representations by predicting its surrounding words. For example,

if we have the following corpus: “ the brown fox jumped over ...”, the probability of ‘brown’

given ‘fox’ (P (brown|fox)) should be high. More generally, the conditioned probability on

any word w should be high when it is of a word that appears in the context of w:

P (wt+i|wt) (2.1)
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The      quick      brown      fox      jumped      over      the      lazy …

The      quick      brown      fox      jumped      over      the      lazy …  fox

The      quick      brown      fox      jumped      over      the      lazy …  jumped

…

Given: fox try to predict: quick, brown, jumped, and over.  

Given: jumped try to predict: brown, fox, over, and the.  

Figure 2.1: Illustration of Skip-gram.

where wt is the word occurring at position t in our corpus. Now let’s define the following

function that computes the product of all such probabilities that appear in our corpus:

L(✓) =

TY

t=1

Y

�mim

P (wt+i|wt) (2.2)

where T is the number of words in our training corpus and m is the window size we are using

and ✓ represents all model parameters and in this case will include two matrices (u and v)

as we will see later. Our goal is to find the parameters ✓ (the word vectors) that maximize

the function L(✓):

argmax
✓

L(✓) = argmax
✓

TY

t=1

Y

�mim

P (wt+i|wt) (2.3)
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The      quick      brown      fox      jumped      over      the      lazy …

The      quick      brown      fox      jumped      over      the      lazy …  fox

Given: quick, brown, jumped, and over, try to predict:  fox 

The      quick      brown      fox      jumped      over      the      lazy …  jumped

Given: brown, fox, over, and the, try to predict:  jumped 
…

Figure 2.2: Illustration of CBOW.

Taking the logarithm will not change the maximum and will make the computation easier.

We will define J(✓) to be the following:

J(✓) = log(L(✓)) =

TX

t=1

X

�mim

logP (wt+i|wt) (2.4)

That will give us:

argmax
✓

J(✓) = argmax
✓

TX

t=1

X

�mim

logP (wt+i|wt) (2.5)

When optimizing in machine learning we often minimize a loss function so we will minimize

the negative of our quantity instead of maximizing it:

argmin
✓

�J(✓) = argmin
✓

�
TX

t=1

X

�mim

logP (wt+i|wt) (2.6)

8



How are we going to compute the probabilities? We will use the following approximations:

P (a|b) = exp uTa vbP
w2V exp uTwvb

(2.7)

where u and v are two matrices that include the representations of our entire vocabulary. We

learn two representations: u and v contain context and center representations respectively

(uw is w’s representation when it occurs as a context word and vw is its representation when

it occurs as a center word). We take the exponential of the dot product of the two vector

representations of words a and b and then divide by the sum of the exponential of the two

vector representations of all words in our vocabulary V . Keep in mind that the dot product

of the transpose of a vector and another vector is basically the summation of the product of

every dimension:

uTa vb = uv =

nX

i=1

uivi (2.8)

Let’s rewrite our optimization:

argmin
✓

�
TX

t=1

X

�mim

log
exp uTwt+i

vwtP
w02V exp uTw0vwt

(2.9)

So how do we optimize this quantity to find the values of u and v? We will use derivatives

to analyze the rates of change and iteratively change the quantities of our parameters by

adjusting them according to their rate of change:

✓ = ✓ � ↵r✓J(✓) (2.10)

where ↵ is the learning rate and r✓J(✓) is the gradient. We use ↵ in order to move in

small steps and not overshoot the minimum. Now we can keep calculating the gradient and

adjusting the parameters as follow:

while true do

grad = calculate gradient(✓, J, corpus)

✓ = ✓ � ↵ · grad

9



After a predetermined number of iterations or after the improvement in the loss function

is negligible we can break from the loop and return our parameters ✓. We then take the

average of u and v to be our learned embeddings and return it.

There’s a problem with the above algorithm: the J(✓) is a function of all words in

our corpus which makes computing r✓J(✓) expensive, which leads us to make infrequent

parameter updates. So instead, we sample a couple of words from the corpus, calculate the

gradient, and then update as shown below.

while true do

sample = get sample(corpus)

grad = calculate gradient(✓, J, sample)

✓ = ✓ � ↵ · grad

There’s another problem that will slow down the algorithm. If we look again at equa-

tion 2.7, we notice that for each probability we have to go over all the words in our corpus

which is expensive. One way to solve this is with a technique called negative sampling. In

negative sampling, instead of going through all the words, we get k negative random sam-

ples and try to maximize P (wt+i|wt) and minimize the probability that a random word will

appear with our center word:
PK

k=1 P (wk|wt). One of the disadvantages of both Skip-gram

and CBOW, discussed in the next paragraph, is that they cannot produce representations

for words that have never been seen before in their training corpora.

CBOW

In CBOW, the goal is to predict a word given its surrounding words. Given the following

corpus: “he ordered a strawberry banana mango protein smoothie.”, the probability of

‘mango’ given words next to it:

P (mango|strawberry, banana, protein, smoothie)

should be high as shown below:

argmax
✓

L(✓) = argmax
✓

TY

t=1

P (wt|wt�m, ..., wt�1, wt+1, ..., wt+m) (2.11)
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The rest of the derivations are similar to the Skip-gram case.

2.1.2 FastText

FastText [47, 18, 46], a technique developed by Facebook, aims to fix the out-of-vocabulary

problem with traditional word embeddings. It does so by modifying the optimization func-

tion. Let’s revisit these two equations:

TX

t=1

X

�mim

logP (wt+i|wt) (2.12)

P (a|b) = exp s(ua, vb)P
w02V exp s(u0w, vb)

(2.13)

where the s() is a similarity function that we defined as the dot product of the transpose of

the first vector with second: s(ua, vb) = uTa vb. FastText modifies this similarity function to

be:

s(w0, b) =
X

g2Gw

zTg vb (2.14)

where Gw is a set of all the n-grams of a certain size. For example setting the n to be equal

three will give us the following n-grams of the word <where>1: <wh, whe, her, ere, re>.

The model will be trained in a similar fashion to what we mentioned in the previous sections.

After training, a new word r that does not appear in the training corpus can be represented

as follows:

r =
1

|Gr|
X

g2Gr

zg (2.15)

2.2 Contextual word embeddings
In traditional embeddings such as Word2Vec, each word is encoded in a fixed representa-

tion of a vector. This may cause problems since many words can have multiple meanings

depending on the context; bear in “The right of the people to keep and bear arms shall

not be infringed.” and “A wild bear was seen in Davis, CA.” have two di↵erent mean-

ings. Yet, traditional embeddings will only capture one fixed representation. Contextual

1< and > denote the beginning and ending of the word respectively.
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John was accepted to the [MASK] of 
California, Davis.

John was accepted to the University 
of California, Davis.

Mary was [MASK] the best 
dissertation award.

Mary was awarded the best 
dissertation award.

[MASK] are planning to invade the 
solar system.

Aliens are planning to invade the 
solar system.

The administration decided to 
[MASK] the use of assault rifles.

The administration decided to ban 
the use of assault rifles.

Figure 2.3: Examples of token masking in BERT.

word embeddings aim to solve this issue by modeling embeddings where the context is taken

into consideration when generating the embeddings. Traditional embeddings map words to

vectors: f(word) 7! Rn. Contextual embeddings, on the other hand, map a word given a

context to a vector: f(word, context) 7! Rn. For example:

f(bear, “... and bear arms, shall not be infringed.”) = [1.04, 1.42, · · · ]

f(bear, “A wild bear was seen in Davis, CA.”) = [2.14, 4.54, · · · ]

2.2.1 BERT

BERT [29] is a Transformer-based [85] natural language processing model from Google. It

consists of multiple encoders stacked on top of each other. Each encoder takes a vector and

encodes it into another vector which becomes the input to the next encoder. In contrast to
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S1: John was accepted to the 
University of California, Davis.

S2: He is excited to live in a college 
town.

S1: John was accepted to the 
University of California, Davis.

S2: Aliens are planning to invade 
Earth.

S1: Mary was awarded the best 
dissertation award.

S2: The committee were very 
impressed with her work. 

S1: Mary was awarded the best 
dissertation award.

S2: The administration decided to 
ban the use of assault rifles.

label: isNextSentence

label: isNextSentence

label: notNextSentence

label: notNextSentence

Figure 2.4: Examples of next sentence prediction task in BERT.

previous models that read the input sequence left-to-right or right-to-left, BERT reads the

entire sequences of words at the same time. This allows it in theory to learn long distance

relationships between words better. One potential problem with BERT is that words can

see themselves in multi-layered context if we allow bidirectionality. The authors of BERT

propose a solution to that: mask out a percentage on the input tokens and try to predict

those masked tokens. In the BERT paper [29], the percentage is set to 15%, i.e. 15% of

the tokens are masked and replaced with a special token ([MASK]) as shown in Figure 2.3.

Then they train the model to predict the original tokens that were masked with a [MASK]

token. They also train the model on next sentence prediction: given two sentences S1 and

S2, predict whether S2 is a sentence that proceeds sentence S1 or not as shown in Figure 2.4.

BERT is considered one of the main pillars of natural language processing and many variants
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of it [53, 72, 52, 63, 90, 28, 14] exist today.

Pre-training and Fine-tuning

The terms pre-training and fine-tuning come up frequently when talking about BERT. We

will explain the two terms and what they mean. Pre-training refers to the process of training

a model from scratch on an unlabeled natural language corpus. The resulting model, called

a pre-trained model, will include a generic knowledge about the natural language it was

trained on. Fine-tuning refers to the task of adjusting a pre-trained model on a specific

task (text classification, sequence tagging, etc.) given labeled data to benefit from what

the pre-trained model has learned. For example, instead of training a sentiment analyzer

that classifies English movie reviews to either positive or negative from scratch, we will

utilize a pre-trained model that was trained on English Wikipedia to help us in training the

classifier. Pre-training is usually much more expensive and slower than fine-tuning. In fact,

the majority of people today do not have the adequate hardware requirements to pre-train

a BERT model from scratch [77, 73].

While this pattern of pre-training and fine-tuning is the most common when it comes to

BERT today, we can also generate vectors from BERT that can be used by other tasks or

systems. One way to generate vectors is to return the last hidden layer. The BERT [29]

paper goes into more detail about which layer to use when generating vectors.
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Chapter 3

Learning from Sequences in

Education: Representing Academic

Degrees

3.1 Summary
In this work [4], we showcase the ability of word embedding models to generate representa-

tions of academic degrees from a sequence of courses. It is a common fact that a lot can be

learned from sequences of words; however, it is not clear whether the same can be said for

other sequences. In addition, we showcase how we can contract degrees using our represen-

tations and evaluate our approach on the majors and minors of the University of California,

Berkeley.

3.2 Introduction
Both traditional and non-traditional educational institutions have been investing in automat-

ing many of their operations. One of the fundamental problems that arrive in these settings

is how to create numerical representations of academic degrees, which are the essential of-

This chapter is based on work that was published at The 20th International Conference on Artificial
Intelligence in Education (AIED 2019).
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Figure 3.1: A sequence of courses.

ferings of these institutions. A degree usually consists of a set of courses and each course

contains a name, a description, a syllabus, some learning outcomes, and much more. Model-

ing such complex entities is not straightforward, especially with all the di↵erent components

involved. We propose a sequence driven method to learn such complex representations in

academic settings without requiring any additional details.

3.3 Data
Before exploring the idea of learning degree representations from their sequences, we need a

sequence of courses to use in learning the vectors as shown in Figure 3.1. The good news is

that in academic settings we have a course sequence very similar to the one in Figure 3.1:

student enrollments. All students, who graduated, have taken a sequence of courses that

lead them to their degrees; we can learn from these sequences.

We use anonymized student enrollment data to train our embeddings. The dataset,

provided by UC Berkeley, contains all student enrollments (over 140,000 students) from 2008-

2015 across all departments and divisions. Table 3.1 shows the structure of the dataset. We

preprocess the data by removing graduate students and filtering out graduate courses from

undergraduates who have taken them, in order to focus the models on only the undergraduate

curriculum. We also removed students who had been enrolled for less than eight semesters

or more than twelve.
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Table 3.1: The student enrollment dataset of the University of California, Berkeley

Student Masked ID Year Semester Course ID

111 2010 Fall Integrative Biology 127

222 2012 Spring Mathematics 55

Student Masked ID Major

111 Bioengineering

222 Computer Science

ECS 32A, MAT 
21A, ECON 10, 
STAT 60, MAT 

22B, …

fastText

Model

Student enrollments 
(sequence of courses)

Embeddings algorithm

ECS 32A =

…

MAT 21A =
ECON 10 =

Figure 3.2: Applying word embeddings to course sequences.
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3.4 Approach
Word embedding algorithms, such as word2vec [59], GloVe [65], and fastText [17], are power-

ful tools that allow us to represent a word by a high-dimensional vector while still capturing

semantic information. To learn academic degree representations, we start by representing

each student to be a sequence of the courses they’ve taken:

si = [ci1 , ci2 , ci3 , . . . , cin ] (3.1)

where si is student i and [ci1 , . . . , cin ] is the sequence of all the courses student i has taken.

Notice that ci only refers to the symbol of the class (e.g. Physics 7A) without any auxiliary

information such as the course description and syllabus. Now we can train an embedding

algorithm on these course sequences to get a vector representation for each course. Word

embedding algorithms learn embeddings given a sequence of words; however, here we give

them a sequence of courses which will result in course representations produced as shown in

Figure 3.2. Now we can get a representation of any course:

course2vec(ci) = [z1, z2, z3, . . . , zn] (3.2)

where ci is course i and zi’s are real numbers learned by the word embedding algorithm. We

can learn degree representations by averaging their course requirements as follow:

1

|req(d)|
X

c2 req(d)

course2vec(c) (3.3)

where d is a degree and req(d) is the degree requirements of degree d. There are two problems

with such representation: 1) it requires the collection of the degree requirements which can

be cumbersome if there are many requirements or degrees, and 2) the degree requirements

are not defined clearly in some cases. To avoid that, we present a dynamic way to represent

degrees as vectors learned from students’ enrollments as follow:

degree2vec(d) =
1

|Sd||Cs|
X

s2Sd

X

c2Cs

course2vec(c) (3.4)
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Similar to computer science Dissimilar to computer science

Math

Econ.

Classical 
Geometries

Math. Methods 
for Optimization

Linear Algebra

Linear Algebra & 
Dif. Equations

Elementary 
Algebraic 
Geometry

Math. of 
Secondary 

School I

Math. of 
Secondary 
School II

Introduction to 
Analysis

Introduction to 
Economics

Microeconomic 
Theory

History of 
Economic 
Thought

Game Theory

Global Poverty 
& Impact 

Evaluation

Applied 
Econometrics & 

Public Policy

Economic 
Development

Economic 
Demography

Figure 3.3: Finding math and economics courses that are similar/dissimilar to computer
science.

where d is a degree, Sd is the set of all students majoring in d, and Cs is the set of all courses

that student s has taken. This representation can be learned from the student enrollments

without requiring additional information.

3.5 Experiments and Results
We trained a fastText [17] embedding model on the student enrollment dataset and computed

the representations of the academic degrees of UC Berkeley. We noticed some interesting

analogies in the representations such as:

Mathematics� Computer Science +Mechanical Engineering ⇡ Physics (3.5)

which means that computer science has the same relationship to mathematics as mechanical

engineering has to physics. Other interesting observations: History of Art and Geology are

near the averages of History and Art ; and Geography and Geophysics, respectively. Since

we have representations for both degrees and courses, we can create a simple personalized
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course recommendation system that can answer queries such as: “find me math courses that

are similar to computer science.” This can be translated to: “find math course vectors that

are close to the computer science degree vector”. The results of such query for example will

include mathematical methods in optimization and linear algebra which are math classes

that are indeed important for computer scientists. We can also ask the inverse: which

math courses are very dissimilar from computer science. Our results show courses such

as elementary algebraic geometry and mathematics of the secondary school curriculum as

examples of answers to this query. Figure 3.3 shows the result of asking the model of the

mathematics and economics courses that are similar to the degree of computer science, and

also the ones that are not similar to computer science.

While we can see the relevance of these representations in the examples we provided, a

more thorough evaluation should be made before reaching conclusions. Evaluating vector

representations in relation to human needs is a complicated task since they are simply nu-

merical representations that make sense to machines and not humans. One of the standard

ways of evaluating them is to use them in downstream tasks that we, humans, can evaluate;

e.g. we can use word embeddings to classify emails to spam and not spam and then evaluate

the performance of the spam classifier. The task we use for evaluating our academic degree

representations is curriculum contraction: we take an existing degree program, with a full

roster of courses, and attempt to define a smaller set of courses that approximate it.

This task is becoming more important nowadays since educational platforms and insti-

tutions are looking to “right-size” the curricular experience of learners. This ranges from

o↵ering traditional four-year bachelor’s degrees to six course “micro degree” credentials [38].

Curriculum contraction can be defined, in an academic context, as the process of contract-

ing the length of a university degree program while retaining as much of the core value as

possible (i.e., which courses should be chosen in a 1-year version of a 4-year program?). This

problem does not arise only in traditional academic settings; but also in training and online

course providers who are looking to “right-size” the curricular experience of learners. For

instance, edX, the massive open online course provider, has introduced a program called
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MicroMasters [38] that is like a contracted version of a typical master’s program. One of the

main selling points they use for the new program is that is faster and more flexible.

3.5.1 Curriculum Contraction

Let D be a degree plan consisting of courses. The high-level description of our contraction

technique is as follow:

1. Embed the courses in a vector space.

2. Calculate a degree representation vector.

3. Find the best set of classes of size k that approximates the degree representation.

For steps one and two, we use course2vec and degree2vec respectively. For the third step,

we want the best subset of courses that are closest to the degree D:

contract(D, k) = arg min
d2Pk(D)

s
[degree2vec(D)� 1

|d|
X

c2 d

course2vec(c)]2 (3.6)

where Pk(D) is all subsets of D that are of size k. Finding all subsets is computationally

expensive and is not feasible for typical classes sizes; picking 10 classes from a 100 class will

yield more than ten trillion sets! One way to make it faster is to use a greedy approach

to find the closest k courses instead of finding the closest set of size k. While the greedy

solution works well in some problems, in our problem it does not. Degrees often consist of

a mixture of topics where their composition is close to the degree but each topic on its own

may not; the composition of programming and math is close to computer science but each

of these topics on its own may not be. So, we want to avoid using a greedy solution since we

do not want to lose semantic relationships; two courses may be far from the degree vector,

but their average may be closer than any other course vector. We make the assumption

that although degrees consist of compositions, these compositions do not usually involve

many components. As a result, we propose a hybrid approach where we do not explore all

k-subsets but also do not lose compositional semantics. Instead of finding the closest set of
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size k, we find the closest set of size of size four. After that, we remove the best four courses

{x1, x2, x3, x4} from D and repeat the process by updating the value of k to be k � 4 and

picking the best set of size four from D � {x1, x2, x3, x4} and so on. Eventually, when k is

small, we take combinations of sets of sizes: three, two, and/or one.

We use academic majors and minors to evaluate our contraction technique. Minors

can be thought of as a compressed version of a major. In addition to that, they were

carefully designed by educators who know a lot about their fields. We use majors and

minors of the University of California, Berkeley to evaluate our representations: we take an

academic major, contract it, and then compare it with its corresponding minor. A successful

approximation should be very similar to the corresponding minor. We picked the ten most

popular majors in UC Berkeley from 2010-11 to 2014-15 [64] that have corresponding minors

to evaluate our approach. We apply degree2vec on each major m to get its embedding.

After that, we create a set containing all department courses that students majoring in m

have taken and remove courses from other departments. While some minors contain courses

from other departments, we do not want to handpick these departments as it may add bias

to the evaluation. We then run our contraction to get k courses. We pick k to be equal

to the number of courses in the corresponding minor for each major. The recall@k is then

measured for each major. Recall@k gives us the proportion of the minor classes we found

in the contraction. Another way to think about recall@k is to view it as an answer to the

question: if I take the classes proposed by the contraction, what percentage of the real minor

would I cover? A recall@k value of 100% means that the contraction completely satisfies the

minor, a recall@k value of 50% means that the contraction satisfies half the minor, and a

recall@k value of 0% means that the contraction does not satisfy any minor requirements.

Table 3.2 shows the performance of our representations in contracting majors. It is important

to note that it is impossible for us to achieve perfect recall@k since we only take department

courses; the maximum recall@k we can achieve is 87.88%. Figure 3.4 shows the t-SNE1 [55]

1t-SNE is a popular visualization technique that is used to project high-dimensional spaces to two dimen-
sions that still capture relationships found in those higher dimensions.
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Table 3.2: Performance of our approach for each major.

Major Recall@k

Electrical Engineering & Computer Sciences (EECS) 57.14%

History 83.33%

Mechanical Engineering 71.43%

Anthropology 75%

Architecture 37.5%

Chemical Engineering 40%

Statistics 44.44%

Rhetoric 57.14%

Environmental Economics & Policy 50%

Philosophy 66.67%

Average Recall@k 58.27%

projection of the resulting representations of all the majors and minors.

As we see in the results in Table 3.2, we are able to use these representations in performing

a complicated task (contraction) with impressive results and show that these representations

learned from courses sequences capture rich semantics.

3.6 Conclusion
We showed in this work that we can achieve good performance in curriculum contraction by

using a simple vector space model that does not incorporate any textual information about

the courses. There are many ways in which this work can be extended including a more

sophisticated way of combining courses instead of averaging, and a more comprehensive

technique to include possibly relevant courses from departments outside of the major by

finding department vectors that are close to the main department vector.
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Chapter 4

Learning from Sequences in History:

Identifying Narrators in Classical

Arabic Texts

4.1 Summary
One widespread historical method of transmitting and recording information about impor-

tant events and people in the Middle East is the narration-based method. In this method,

each saying about a person or event is transmitted from person to person until a systematic

collector records and compiles such sayings in a stable collection. At each stage of trans-

mission, the narrator not only transmits the saying but also the person he got it from going

back to the earliest narrator. Identifying each narrator in these collections is important to

better measure the accuracy of the narrations and identify the date and geographies of the

circulation of the sayings. In this work, we propose a natural language processing technique

to automate the identification of narrators in classical Arabic texts. Our proposed technique

consists of two models: 1) a model for detecting the narrators in the text, and 2) a model

This chapter contains work that was presented at The Islamicate Digital Humanities Network (IDHN)
Conference on Digital Hadith Studies. Parts of this chapter are currently under review at The Arabic
Computational Linguistics Conference (ACLing).
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for linking narrators to their biographies. We train our two models on a large collection of

annotated classical Arabic texts and achieve F1-scores of 96.15% and 95.74% for narration

detection and linking respectively. Additionally, our model was able to find a mistake in the

largest annotated classical Arabic texts corpus.

4.2 Introduction
There are many ways to record the sources of information transmitted about historical

events and people. In the modern age, historians cite archival documents by referencing

some combination of identifiers uniquely identifying them. Journalists indicate names of

individuals or institutions as the source of a quote. During the 7th to 9th centuries, Muslim

scholars developed and used a citation system that consisted of documenting the series of

names signifying the transmission of a text from person to person before it was recorded by

a systematic collector [22, 60]. This list of names, called the isnad, preceded each unique

text or quotation found in the work of the systematic collector, and often took the following

forms:

It has been related to me by A on the authority of B on the authority of C that

E said . . .

and:

A reported that: B narrated to us from C from D from E from F from G who

said, ‘I heard the H saying that J was next to K when he said . . . ’

The isnad-based system of citation was especially used to record the transmission history

of reports about past events and peoples and remained a mainstay of scholarly citation

practice for nearly a millennium. There exist hundreds of systematic works devoted to

collecting these reports. Though, to our knowledge, no one has counted them, we conjecture

that the number of reports in the systematic collections reaches in the hundreds of thousands,

and that the number of unique individual narrators cited in them numbers in the tens
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of thousands. These narrations serve as an important source for knowledge of early and

medieval Islam.

One important subset of these reports are those that purport to go back to the Prophet

Muhammad, called hadiths. In fact, some scholars have argued that the isnad-based system

of citation first emerged in response to the desire to discriminate between authentic and

fabricated reports about the Prophet and other important figures from the first generations

of Islam. In addition to requiring that transmitters of hadith cite their sources, some schol-

ars started collecting basic biographical information about the transmitters themselves, in

addition to recording the judgments of hadith experts about the reliability and precision

of their transmission practices. Eventually, some scholars of hadith created biographical

dictionaries devoted to transmitters found in the isnads of hadiths. At a minimum, hadith

literature consists of two basic types of works: those that contain hadiths with isnads, and

those that contain information about the transmitters found in the isnads. Scholars of ha-

dith use information in both of these sources to make judgements about when and where

a text circulated and whether it can be authenticated to its purported source. However,

the process of identifying narrators in the isnads and searching through the many volumes

of biographical dictionaries is laborious; the names of the narrators cited in the isnads of

the reports can be ambiguous; they can be first names, nicknames, a relationship (e.g. ‘I

heard my uncle say’), or something else. Moreover, the same narrator and the way they are

mentioned in the text often di↵ers from one text to the next. Manually finding biographical

information on every narrator found in even a set of 10-20 hadiths can take many days. An

example of a real narration is shown below:

Ah.mad reported that: \Abd al-Rah.mān narrated to us from Mālik from al-Zuhr̄ı

from \Abbād ibn Tamı̄m from his uncle who said: I saw the Messenger of God

. . .

At a fundamental level, the isnad is simply a sequence of narrators that transmitted

a text in serial fashion. While this structure is clearly important for dating and studying
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the authenticity of historical texts, it has uses in other domains due to its rich structure.

Since all narrators, except the first and last, are linked to two other narrators, a large

transmission social network can be constructed from the narrators. This network will have

multiple dimensions: spatial, cities where the narrators lived; temporal, the time when the

narrator lived, etc.; resulting in a huge historical social network that would be valuable to

network scientists and researchers. In addition, these transmitted sayings can be beneficial

in understanding the evolution of language across geographical regions since we can date and

know from which region the transmitters came. Furthermore, there are over thirty countries

in the world that rely on isnad-based transmission to authenticate authoritative legal texts

in their legal systems [26] which is why this issue is also of importance to legal scholars.

While the information contained in the isnad is clearly important, extracting that infor-

mation is challenging because it is all documented in unstructured texts, and getting from

the unstructured textual representation such as this:

Ibn Ab̄ı \Umar told me that Sufyān told him on the authority of al-A\mash on

the authority of Shaq̄ıq on the authority of \Abdullāh: that the Messenger of

God said: “Whenever there are three of you, then let two not converse to the

exclusion of their companion.”

to a structured construct where each narrator is detected and identified is no small problem.

For example, there are over 20 narrators named Sufyān and over 200 narrators are called

Ibn Ab̄ı \Umar. To our knowledge, no one has succeeded in automating the identification of

narrators in isnads. In this work, we propose a method to do so that utilizes state-of-the-art

natural language processing techniques. Our contributions can be summarized as:

• We develop a system that automatically identifies narrators in classical Arabic texts.

• We build ukhBERT: a BERT-based NLP model that is fine-tuned for hadith data.

• We propose a new way to tackle named-entity disambiguation (NED) problems in

Arabic by posing them as token classification problems.
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• We find a potential error in the largest annotated classical Arabic texts corpus.

The rest of the paper is structured as follows: Section 4.3 discusses related work; Section 4.4

defines the data collection process; Section 4.5 formulates the problem and our approach in

solving it; Section 4.6 details the experiments and the results; and Section 4.7 concludes by

recapitulating our findings and discussing potential directions for future work.

4.3 Related Work
There has been a growing interest in computational research in the area of hadith science

recently [20, 12]. Muther and Smith [62] studied the problem of locating the start points of

isnads in classical Arabic texts. Altammami et al. [8] used an n-grams model to segment

hadiths into isnad and matn (body). Siddiqui et al. [61] used naive Bayes, decision trees, and

k-nearest neighbors to segment hadiths. Azmi and Bin Badia [13] and Maraoui et al. [56]

both worked on the problem of detecting isnads by using rule-based approaches. While

our work extends this research, it di↵ers in many ways to what has been done. First, the

problems we tackle are much more complicated; we locate all narrators in the text and

identify who each narrator is, a problem that no one has yet to solve. In addition, we rely

on a dataset that is several times larger than data used in previous studies. Much previous

work relied on one book (S. ah. ı̄h. al-Bukhār̄ı). In contrast, our data consists of hadiths drawn

from around 1,400 books. In fact, our testing dataset alone is larger than the combined data

of all the previous work we mentioned.

4.4 Data Collection
Recently, digitized collections of both hadiths and biographical dictionaries of transmitters

have emerged and made this part of historical research much easier. One such collection,

Gawāmi\al-Kalim (GK) [44], has not only digitized the largest collection of hadiths, but also

hyperlinked the names found in isnads of hadiths to a table containing biographical informa-

tion taken from the biographies of the narrators. They have done this for 447,205 hadiths,

restricting themselves only to texts that purport to originate with the Prophet Muhammad,
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Table 4.1: The structure of the hadith table.

ID bookID hadithID hadithText
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even though they digitized 828,841 total reports, including those that do not go back to the

Prophet. Thus, even within their own collection the narrators in isnads of 381,636 remain

unlinked to their biographical information. Over 350 researchers and scholars worked on

annotating the GK corpus and it contains, in total, around 1,400 sources: 900 are hadith

collections and the rest are sources relating to Islamic law, theology, literature, etc. We relied

on the data created by GK to create our dataset. One of the main downsides of the GK

project is that the data is encoded in a custom format with no documentation. We spent

months investigating that format and wrote multiple scripts to convert that format to a

MySQL database with several tables. We also wrote scripts to extract the locations/indices

of each narrator for every text giving us a mapping between every text and the IDs of its

narrators. One of the most important tables amongst them is the biographies table which

includes details of 48,937 narrators in addition to a special narratorID for unknown narra-

tors. Table 4.2 shows the structure of the biographies table. The table contains information

that was extracted from multiple sources and summarized into 30 columns. As we notice,

in additional to all the information about each narrator, everyone is assigned a unique iden-

tification number (narratorID). Other important tables are the hadith and narrator linking

tables which show the list of texts and a linking between narrators in the texts and their

ID number, respectively. Tables 4.1 and 4.3 show the structure of the hadith and narrator

linking tables.
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Table 4.2: The structure of the biographies table.

narratorID gender name teknonym (kunya)
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narratorID yearOfBirth yearOfDeath citiesLivedIn · · ·

1 150 204 Baghdad, Makkah, Egypt

2 N/A 63 N/A · · ·

Table 4.3: The structure of the narrator linking table.

ID bookID hadithID narratorAsMentionedInText narratorID

1 1 1 ˘

⌦

“J
⌦

“

⇣

JÀ @

⇣

È÷fl⌦Qª ˙

⌦

G

.

�

@
 

·K
.

’ŒÇ”

⇣

Ë YJ
⌦

J
.
´ ÒK

.

�

@ 31544

4.5 Approach
The problem of identifying narrators is a complicated problem even for humans: one first

has to understand the text itself, find which parts of the text correspond to narrator names,

find out possible narrators given their reported names, and then filter out the possibilities

based on who’s narrating from whom. We propose a natural language processing model that

looks at the text, finds the locations of narrators in the text, and identifies each narrator by

linking them to an entry in the biographies table. Our model is a BERT-based [29] model

and we call it ukhBERT ( ⇣
H

Q
�
.

 

g

�
�

@), which means ‘I was told’ in Arabic. ukhBERT consists

internally of two models that each solve an independent task. The two tasks solved by

ukhBERT are:

1. Narrator detection (ND): find the narrators, as they are mentioned, in a given text.
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input:

Musaddad narrated to me. He said, Yaḥyā narrated to us from 
Shuʿba, from Qatāda, from Anas …

Musaddad narrated to me. He said, Yaḥyā narrated to us from 
Shuʿba, from Qatāda, from Anas …

Name Year of birth Year of death Gender … …

Musaddad 150 223 male … …
Yaḥyā … … … … …

Shuʿba … … … … …

Qatāda … … … … …

Anas … … … … …

حدثنا  مسدد  قال  حدثنا  یحیى  عن  شعبة  عن  
قتادة  عن  أنس   …

حدثنا  مسدد  قال  حدثنا  یحیى  عن  شعبة  عن  
قتادة  عن  أنس  … 

output:

Figure 4.1: The input and output of the automatic narrator identification system.

2. Narrator linking (NL): identify the narrators given a sequence of narrators, i.e. link the

narrators to their corresponding entries in the biography table discussed in section 4.4.

In the first part, the goal is to extract the names of the narrators as reported in the text as

a list. In the narrator linking part, the goal is to take these names and relationships, who is

narrating from whom, and find the most likely narrator to correspond to the reported name

in the text. While both parts have their challenges, the latter problem is more di�cult since

it involves choosing between thousands of narrators for each name. Our system combines

both steps to build an automatic narrator identification system that accepts raw text and

then find all the narrators and identifies them as shown in Figure 4.1.
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4.5.1 Narrator Detection

The goal of this task is to find the names of the narrators, as they appear in the text, given the

text itself. Although the task seems similar in nature to a standard named-entity recognition

(NER) problem, it is more complicated due to the long spans of entities/narrators and the

fact that there are names in these texts that correspond to people but are not part of the

isnad/narration sequence. To solve this task, we take the text and classify each of its tokens

into one of three possible classes: B-NAR (beginning narrator), I-NAR (intermediate narrator)

or O (other). These tags follow the IOB2 (Inside–Outside–Beginning) tagging format [68].

Let us take the previous isnad example we have seen in the introduction:

Ah.mad reported that: \Abd al-Rah.mān narrated to us from Mālik from al-Zuhr̄ı

from Abbād ibn Tamı̄m from his uncle who said: “. . . ”

Processing it using the proposed tagging format will result in the following:

Ah.mad/B-NAR reported/O that/O \Abd/B-NAR al-Rah.mān/I-NAR narrated/O

to/O us/O from/O Mālik/B-NAR from/O al-Zuhr̄ı/B-NAR from/O Abbād/B-NAR

ibn/I-NAR Tamı̄m/I-NAR from/O his/B-NAR uncle/I-NAR who/O said/O

. . .

After the tagging step, we create a list where each component consists of every sequence of

tokens that begins with a B-NAR tag followed by zero or more I-NAR tags. That list contains

the names (as reported in the text) of the narrators. The previous example will generate

the following list: Ah.mad ! \Abd al-Rah.mān ! Mālik ! al-Zuhr̄ı ! Abbād ibn Tamı̄m

! his uncle. So how do we learn all of that? We use a BERT model [29] to learn this

sequence tagging task. We use the large set of annotated texts discussed in section 4.4 to

create training samples similar to the ones shown above. We then take a pretrained BERT

model and fine-tune it on our task to be able to generate a narrator list given a text.
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4.5.2 Narrator Linking

In this part we link each narrator in the list to one of ⇠50,000 narrators we have in our

biographies table. That is, given a sequence of narrators: Ah.mad ! \Abd al-Rah.mān !

Mālik ! al-Zuhr̄ı ! Abbād ibn Tamı̄m ! his uncle; we want to generate a narrator ID for

each narrator. How can we do this? One way is to search the biographies by name and try

to link the narrator to the corresponding row in the biography table. The problem is that

this process is not clearly defined. Comparing names is not straightforward. Names can

have multiple spellings. Furthermore, the spellings of the same names can change depending

on their grammatical case, e.g. ”Abū” can be written as ”Abā” or ”Ab̄ı” 1. A further

complexity is that narrators are cited many times by their relationships to other narrators

(’his uncle’, ’my father’, etc.) instead of names or nicknames. Even if we successfully applied

a set of predefined rules to account for these cases, we are not guaranteed to have a unique

narrator in the end. This problem can be considered an entity linking (EL) or named-entity

disambiguation (NED) task, which can be defined as the task of mapping some words of

interest from a text document to a target knowledge base. The approach we propose utilizes

the power of Transformer-based [85] models in learning these mappings by posing the problem

as a sequence tagging problem. This approach does not rely on any predefined rules and

just focuses on the sequential relationships between narrators, i.e. we treat the problem as a

sequence tagging problem. This is similar to the approach we use in the narrator detection

stage. However, we only had three possible outputs there (B-NAR, I-NAR, and O). Here we

have tens of thousands of possible tags (narrators) which makes the problem more complex.

For instance, given the following list: Ah.mad ! \Abd al-Rah.mān ! Mālik ! al-Zuhr̄ı !

Abbād ibn Tamı̄m ! his uncle; we will generate the following tags:

Ah.mad/ID:488 \Abd al-Rah.mān/ID:4493 Mālik/ID:6659 al-Zuhr̄ı/ID:7272

Abbād ibn Tamı̄m/ID:4130 his uncle/ID:4818

This is the first work, to our knowledge, that shows the e↵ectiveness of using Transformer-

1This phenomenon, the anomaly of narrators’ names, is discussed in more detail by Azmi et al. [12].

34



Table 4.4: Performance of ukhBERT on narrator detection and linking.

Narrator detection Precision Recall F1-score

ukhBERT (mBERT) 93.99% 98.25% 96.07%

ukhBERT (AraBERT) 94.09% 98.30% 96.15%

HMM 74.84% 70.50% 72.60%

CRF 81.52% 82.87% 82.19%

BiLSTM-CNN 89.84% 95.88% 92.76%

Narrator linking Precision Recall F1-score

ukhBERT (mBERT) 95.77% 95.71% 95.74%

ukhBERT (AraBERT) 95.77% 95.71% 95.74%

BiLSTM-CNN 73.31% 75.59% 74.43%

Search-based 50.25% 47.80% 49.00%

Table 4.5: The size of the training and testing splits.

Training set Testing set

Number of books 899 499

based models in solving entity linking problems in Arabic by posing them as a token classi-

fication problem, which are simpler in nature and in implementation.

4.6 Results and Evaluation
We evaluated ukhBERT on the dataset discussed in section 4.4. We split the dataset into

two splits: training and testing. To do so we start with the training set containing all books

and the test set containing none; we then iterate through the books. For each book, we

move it to the testing set if all the narrator IDs found in it are also found in the training set.

We did so to ensure that the testing set contained no narrator ID that did not exist in the

training set. In the end, the training set contained 899 books and the testing set consisted

of 499 books as shown in Table 4.5. We intentionally split the set by books instead of taking

a small sample from each book, because each individual work has a unique style of isnad
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citation and organizational structure, and we want to evaluate the model on texts with styles

that it had never seen before. As Siddiqui et al. [61] showed, a decrease in performance is

observed when training on one book and then testing on another.

After splitting the set, we trained ukhBERT on the two tasks: narrator detection and link-

ing by fine-tuning Google’s pretrained multilingual BERT model (mBERT) [29] for each task

for five epochs with the batch size set to eight to prevent memory issues on our GPU. We also

fine-tuned AraBERTv0.1 [11] using the same hyperparameters. We picked AraBERTv0.1,

instead of AraBERTv1, since it performs better on NER [11]. We compare our narrator de-

tector to three models: 1) HMM [67], 2) CRF [51], and 3) BiLSTM-CNN [24, 54]. All three

were trained on the same training data as our model. For the narrator linking problem we

compare our model to a BiLSTM-CNN model, but we do not compare our narrator linking

to the other sequence tagging solutions since they were not designed to be used with tens

of thousands of tags. For instance, we estimated the time needed for an HMM model to

predict our test set to be around nine years. We also compare our narrator linking model to

a search-based name linking approach that we developed. The search-based approach relies

on searching the entire biographies table, which contains extensive details about names for

each narrator (full name, teknonym, nickname, etc.) spanning five columns, for names that

match the narrator name as reported in the text. In the case where multiple narrators are

found, we select the one that has narrated more texts. On the other hand, in case no narra-

tors were found, we assign it the special ID that corresponds to unknown narrators. For both

BiLSTM-CNN models, we use FastText’s [17] pretrained Arabic word embeddings instead

of random initialization. We set the batch size to 16, the learning rate to 1.5e�2 with a

decay of 0.05, and dropout to 0.5. We train for 20 epochs and select the best performing one

out of the 20. Both the HMM and CRF models were implemented using NLTK [16], while

NCRF++ [89] was used for the BiLSTM-CNN implementation. Table 4.4 shows the perfor-

mance of our models. We notice that ukhBERT performs better than competing approaches

on both problems. What is more interesting is ukhBERT performance on the narrator link-

ing task. That task is complicated even for humans, and one would expect that a model that
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only takes into account sequential properties without looking at the knowledge base of the

entities it’s trying to link to perform poorly. Yet, ukhBERT achieves an F1-score of 95.74%

on the narrator linking task beating both BiLSTM-CNN and the search-based approach

by > 20% and > 45% respectively. We also notice in Table 4.4 the huge di↵erence in the

BiLSTM-CNN’s performance on the two problems: from an F1 of 92.76% for narrator detec-

tion to 74.43% for narrator linking. It is interesting to note that using AraBERT instead of

mBERT does not result in a huge increase in performance: in narrator detection we see a very

small (0.05�0.10%) improvement while in narrator linking, we do not see any improvement.

We think that fact that AraBERT was not pretrained on classical Arabic contributed to this.

4.6.1 The Automatic Identification of Narrators Sys-

tem

Figure 4.2 shows the interface of our automatic identification of narrators (AIN) system.

The system is built with the Gradio [2] framework. Additionally, we use the spaCy [43]

library to help in visualizing the tags. So why did we choose to name our system AIN (

 
·

�
⌦

´)? Due to following reasons: 1) it is an abbreviation formed from the initial letters of

automatic identification of narrators, 2) it means ‘eye’ in Arabic which explains part of what

the system is doing which is looking and investigating, and 3) it — AIN — also means an

important person or figure in Arabic which also explains a main function of what the system

is doing. In fact, a better question to ask is: why not name the system AIN?

4.6.2 Error Analysis

We investigated some of the error cases and will discuss two examples. We will try to

understand why the model behaved incorrectly in those two cases. The first case concerns

the following text:

Muh. ammad ibn Maslama told us that Yaz̄ıd ibn Hārūn said: Muh. ammad ibn

Ish. āq told me that \Abdullāh ibn Ab̄ı Naj̄ıh. narrated to me on the authority of
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Figure 4.2: The interface of our automatic identification of narrators system.
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Mujāhid on the authority of Ibn \Abbās who said: . . .
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In this example, the identifications produced by our system are the same as the ones from

the golden set except in one narrator: Muh. ammad ibn Ish. āq. In the labeled dataset this

narrator is identified as Muh. ammad ibn Ish. āq al-S. āghān̄ı (ID: 6807). Our model identifies

Muh. ammad ibn Ish. āq as Muh. ammad ibn Ish. āq al-Yasār (ID: 6811) as shown in Figure 4.3.

At first look, it seems like our results are incorrect but upon further investigation we found

something interesting: Muh. ammad ibn Ish. āq al-S. āghān̄ı died in 270 AH while Muh. ammad

ibn Ish. āq al-Yasār died in 150 AH. Now if we look at the narrator who Muh.ammad ibn

Ish. āq narrated from, Abdullāh ibn Ab̄ı Naj̄ıh. , we will find that he died in 131 AH. It almost

impossible for someone to narrate from a person that died 139 years before them. While we

cannot say with 100% certainty who is the Muh. ammad ibn Ish. āq mentioned in the text, we

can say with confidence that our model’s identification makes more sense than the original

identification.

The second case concerns the narrator \Al̄ı in the following text:

\Imrān ibn Bakkār told us, he said: \Al̄ı told us that \Abd al-Az̄ız ibn H. us.ayn

Abū Sahl al-Khurasān̄ı . . .
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The manual labels identify \Al̄ı as \Al̄ı ibn \Ayyāsh (ID:5804) while our model identifies him

as \Al̄ı ibn Mushir (ID:5816) as shown in Figure 4.4. Both narrators lived in the same era;

they died 210 AH and 189 AH respectively. There’s no other instance of either narrating
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Figure 4.3: Our automatic identification of narrators system identifying Muh.ammad ibn
Ish. āq in the text: “Muh. ammad ibn Maslama told us that Yaz̄ıd ibn Hārūn said: Muh. ammad
ibn Ish. āq told me that \Abdullāh ibn Ab̄ı Naj̄ıh. narrated to me on the authority of Mujāhid
on the authority of Ibn \Abbās who said: . . . ” as Muh. ammad ibn Ish. āq al-Yasār (ID: 6811).
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from \Abd al-Az̄ız al-Khurasān̄ı. \Al̄ı ibn \Ayyāsh occurs in 207 narrations, while \Al̄ı ibn

Mushir is more popular, occurring in 526 narrations. It seems that in this case, the model

chose the the more popular option. When looking at the probabilities assigned to each by

the model, we notice that \Al̄ı ibn \Ayyāsh is still ranked highly by the model (6th highest

probability amongst all narrators).

4.6.3 Dealing with Special Cases

In this subsection we will discuss interesting examples and see how our system deals with

them.

Dealing with relationships

We mentioned that sometimes a narrator is mentioned by their relationship to another

narrator. We will experiment with di↵erent made-up examples of relationships and see how

our system performs. The first two examples concern Ibn al-Zubayr (ID:4697), whose father

and mother are also narrators. In the first example we will give the following input to our

system:

Ibn al-Zubayr told us on the authority of his father
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The system correctly identifies the father of Ibn al-Zubayr as Zubayr ibn al-\Awwām (ID:1427):

Ibn al-Zubayr/ID:4697 told us on the authority of his father/ID:1427

In the second example we will look at the following input:

Ibn al-Zubayr told us on the authority of his mother
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Figure 4.4: Our automatic identification of narrators system identifying Al̄ı in the text:
“Imrān ibn Bakkār told us, he said: \Al̄ı told us that \Abd al-Az̄ız ibn H. us.ayn Abū Sahl
al-Khurasān̄ı . . . ” as Al̄ı ibn Mushir (ID:5816).
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This is a more interesting example since it is not common for people to narrate from their

mothers. In fact, female narrators are disproportionately represented when it comes to

narrators. In our database, female narrators represent ⇠ 2% of all narrators and participate

only in 0.90% of all transmissions. Nonetheless, the system correctly identifies ‘his mother’

as Asmā’ bint Ab̄ı Bakr (ID:553) who is Ibn al-Zubayr’s mother:

Ibn al-Zubayr/ID:4697 told us on the authority of his mother/ID:553

We decided to try more extreme examples where we have multiple consecutive relationships.

Luckily, we have a narrator (Muh. ammad al-Baqir, ID:7187) in our dataset whose father (\Al̄ı

Zayn al-\Ābid̄ın, ID:5739), grandfather (Husayn ibn \Ali, ID:1336), and great-grandfather

(\Al̄ı ibn Ab̄ı T. ālib, ID:5722) are all narrators. We tried the following example:

Muh. ammad al-Baqir told us that his father told him on the on the authority of

his father on the authority of his father
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The correct identification in this case would be:

Muh. ammad al-Baqir/ID:7187 told us that his father*/ID:5739 told him on

the on the authority of his father**/ID:1336 on the authority of his father***/ID:5722

Our system does not produce the correct result, instead it outputs the following identifica-

tions:
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Muh.ammad al-Baqir/ID:7187 told us that his father*/ID:7187 told him on

the on the authority of his father**/ID:5739 on the authority of his father***/ID:1336

While at first glance we see that all the identifications of ‘his father’ are wrong, a deeper

investigation reveals that is not exactly the case. The system associated the first instance of

‘his father’ ( his father* ) with Muh.ammad al-Baqir himself. On the one hand, this is odd

since narrators do not narrate from themselves. On the other hand, mistaking a father for

his son is better than mistaking him for someone who is not related to him whatsoever. If

we take into account that misidentification of his father* , the other identifications are all

correct if we shift them; his father**/ID:5739 is indeed the parent of his father*/ID:7187 ,

and his father***/ID:1336 is indeed the father of his his father**/ID:5739 .

Dealing with animals

What happens when we replace a narrator name with an animal? To answer this question,

we gave our system the three inputs shown in Table 4.6. As we notice, in two of the examples,

1 and 3, the animal is completely neglected. In the second example, the system identified

lion as the narrator with ID:541. If we look at the information of that narrator, we find that

his name is Asad ibn Mūsā. Since the word for lion2 in Arabic is ‘Asad’, the system thought

we were talking about a person named ‘Asad’ and not a lion.

Dealing with narrators that do not exist

We saw in the previous examples that replacing a narrator name with a name of an animal

will result in the system neglecting that name. What if we replace a narrator name with

a narrator that does not exist? What happens if we give the system a European name?

While there are no European narrators in our dataset, a human who reads a narration that

contains a European name will understand that it refers to a person even if they do not

know who that person is. We constructed similar examples to the ones we saw in Table 4.6

2Since there are no indefinite articles (a/an) in Arabic; ‘lion’ and ‘a lion’ are written in the same way.
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Table 4.6: Examples of texts where the narrator name is replaced with an animal.

Example 1

I
.

 ø
 

·´ Y“m
◊

A

 

J

⌘

K

Input Muh. ammad told us on the authority of a dog

Output Muh. ammad/ID:7016 told us on the authority of a dog

Example 2

YÉ

�

@
 

·´ Y“m
◊

A

 

J

⌘

K

Input Muh. ammad told us on the authority of a lion

Output Muh. ammad/ID:6864 told us on the authority of a lion/ID:541

Example 3

…‘
g

.

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of a camel

Output Muh. ammad/ID:7016 told us on the authority of a camel

to showcase the system behavior when encountering narrators with names that are unusual.

We created four examples with the following names: Jessica, Elizabeth, George, and John.

The system’s output when given these names is shown in Table 4.7. As shown in Table 4.7,

the system identifies the European narrators but labels them all with the ID:1131. What

does that mean? The ID:1131 is a special narrator ID that the system uses for unknown

narrators. Hence, the system is saying that it recognizes these people as narrators, but it is

not confident in linking it them to any of the narrators it already knows. Another interesting

note is how the system identified Muh.ammad di↵erently in each of the four examples. We

are not sure why the system decided that a Muh.ammad who narrated from George will

be a di↵erent person than a Muh.ammad narrating from Elizabeth. We tried replacing the

European names with ambiguous references to people: woman, girl, man, and boy; and the

system identified them all as unknown narrators with ID:1131 as shown in Table 4.8.
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Table 4.7: Examples of texts where the narrator name is replaced with an Western name.

Example 1

AæJ
⌦

Ç⌧
⌦

k
.

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of Jessica

Output Muh. ammad/ID:6764 told us on the authority of Jessica/ID:1131

Example 2

⌘
I⌧

⌦
K
.

@

 
Q

�
⌦

À @
�

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of Elizabeth

Output Muh. ammad/ID:6864 told us on the authority of Elizabeth/ID:1131

Example 1

h
.

P Òk
.

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of George

Output Muh. ammad/ID:6811 told us on the authority of George/ID:1131

Example 1

 

‡ Òk
.

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of John

Output Muh. ammad/ID:7016 told us on the authority of John/ID:1131

4.7 Conclusion
In this work, we built an automatic narrator identification system that can link narrators in

a given text to their biographies. We also showed the e↵ectiveness of Transformers in identi-

fying narrators; we achieved impressive performance even though we discard all information

contained in the biographies and treat the problem of linking narrators as a sequence tagging

problem. There are many ways in which this work can be extended including: training a

classical Arabic BERT model instead of using a generic pretrained model and incorporating

some of the biographical details into the model and see if that improves the performance.
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Table 4.8: Examples of texts where the narrator name is replaced with: woman, girl, man,
and boy.

Example 1

⇣

Ë

�

@Q” @
 

·´ Y“m
◊

A

 

J

⌘

K

Input Muh. ammad told us on the authority of a woman

Output Muh. ammad/ID:7016 told us on the authority of a woman/ID:1131

Example 2

⇣
I

 

⌧K
.

 
·´ Y“m

◊
A

 

J

⌘

K

Input Muh. ammad told us on the authority of a girl

Output Muh. ammad/ID:6864 told us on the authority of a girl/ID:1131

Example 1

…g
.

P
 

·´ Y“m
◊

A

 

J

⌘

K

Input Muh. ammad told us on the authority of a man

Output Muh. ammad/ID:7016 told us on the authority of a man/ID:1131

Example 1

YÀ
 

·´ Y“m
◊

A

 

J

⌘

K

Input Muh. ammad told us on the authority of a boy

Output Muh. ammad/ID: 6864 told us on the authority of a boy/ID:1131
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Chapter 5

Learning from Sequences in Natural

Language: Incorporating Morphology

in Traditional Word Embeddings

5.1 Summary
In this work [5], we propose a new Arabic word embedding technique that produces smaller

models than traditional methods by utilizing the complex morphology of Arabic. Our ap-

proach relies on segmenting words into subwords during training time and then composing

word-level representations from subwords during test time. We train our embeddings on

Arabic Wikipedia and show that they perform well in the Arabic word analogies dataset and

other Arabic natural language processing tasks while being around 60% smaller. Moreover,

we showcase our embeddings’ ability to produce accurate representations of some out-of-

vocabulary words that were not encountered before.

This chapter is based on work that was published at The Fifth Arabic Natural Language Processing
Workshop (WANLP 2020) in The 28th International Conference on Computational Linguistics (COLING
2020).
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5.2 Introduction
Words embeddings today are one of the main building blocks of most natural language

processing tasks. From building text classifiers to creating named entity recognizers, having

a robust word representation is an essential step. Many word embedding techniques have

been proposed [59, 65, 17] that try to capture better word representation. Although most

of the approaches are language agnostic, they are mainly designed to be used with English

(and languages similar to it). Nonetheless, it was shown that these techniques work well in

other languages [39, 79].

One of the main problems with word embedding models is their size spanning hundreds

of megabytes and up to gigabytes. This is a bigger problem for the Arab world due to the

limited broadband internet access availability and the widespread use of phones and tablets

which are less capable than personal computers [45]. The advent of deep natural language

processing in many fields calls for production-ready models that are smaller but still perform

well.

In this work, we propose a new Arabic embedding technique that is smaller than those

produced by the standard techniques by utilizing the morphologically complex nature of

Arabic. Figure 5.1 contains a summary of our techniques and shows what happens in the

training and inferences stages.

The rest of the chapter is organized as follows: Section 5.3 defines the process of gathering

and cleaning our data; Section 5.4 highlights the embedding approach we are proposing;

Section 5.5 details the experiments and the results; Section 5.6 discusses related work; and

Section 5.7 concludes by summarizing the work.

5.3 Data
In this section, we describe the process of gathering and preparing our data. We use Ara-

bic Wikipedia as a corpus. We downloaded the Wikipedia dump from January 2018 and

then cleaned it by using WikiExtractor1 which is a utility that generates plain text given a

1https://github.com/attardi/wikiextractor
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InferenceTraining

Word embedding

Tokenize the training data into 
subwords

Subword embeddings

Train model to learn embeddings of 
subwords

Subword embeddings

Generate a word embedding from 
the learnt subword embeddings 

using a proposed algorithm.

Figure 5.1: The training and inference stages of our proposed technique.

Wikipedia dump which is usually in XML [21]. After that, we use a custom set of regexes to

filter out all non-Arabic words, such as English words and numbers, and remove all diacritics

resulting in over 86 million tokens.

5.4 Approach
One example of Arabic’s morphological complexity is in the number of verb forms it possesses

which is much higher than in English as we can see in Table 5.1. In fact, Arabic has

over a thousand possible verb forms: 13 person/number/gender forms times 9 tense/mood

combinations times 17 form/voice combinations. Figure 5.3 shows an example of an Arabic

word with its translation in English and its segmented parts. As we see, morphology makes

words much more complex to represent.
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ا#اء

هو

مادة

شفافة

ا#اء هو مادة شفافة عديمة اللون والرائحة … 
almāʾ huwa mādat shfāfat allūn walrāʾiḥat 

…

almāʾ

huwa

māddat

shafāfat

ال

ماء

هو

ماد

ة

شفاف

ال ماء هو ماد ة شفاف ة عديم ة ال لون و ال رائح ة … 
al māʾ huwa mādd at shafāf at al lūn w al rāʾiḥ at 

…

al

māʾ

huwa

mādd

at

shafāf

After processing:Before processing:

Figure 5.2: The e↵ect of word segmentation on the resulting vectors. In the top we have
representations of words and in the bottom, we have representations of subwords.

Figure 5.3: Decomposition of an Arabic word and all the parts it contains.
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Verb Forms

go go, went, going, gone, goes

I
.

Î

 

X I
.

Î

 

X (he went) , I
.

Î

 

YK
⌦
(he goes) , I

.
Î

 

YJ
⌦

É (he will go),

AJ
.
Î

 

X (they [masculine dual] went), AJ
.
Î

 

YK
⌦
(they [masculine dual] go),

AJ
.
Î

 

YJ
⌦

É (they [masculine dual] will go), @ÒJ
.
Î

 

X (they [plural] went),

@ÒJ
.
Î

 

YK
⌦
(they [plural] go), @ÒJ

.
Î

 

YJ
⌦

É (they [plural] will go),

A

 

JJ
.
Î

 

X (we went) , I
.

Î

 

Y

 

K (we go) , I
.

Î

 

Y

 

JÉ (we will go),

⇣
IJ

.
Î

 

X (she went) , I
.

Î

 

Y

⇣

K (she goes) , I
.

Î

 

Y

⇣

JÉ (she will go),

A

⇣

JJ
.
Î

 

X (they [feminine dual] went), AJ
.
Î

 

Y

⇣

K (they [feminine dual] go),

AJ
.
Î

 

Y

⇣

JÉ (they [feminine dual] will go) , · · ·

Table 5.1: Verb forms in English and Arabic.

We believe that one of the reasons of the degraded representations in morphologically rich

languages is because of how they are modeled as shown in Figure 5.4. While traditionally,

this aspect of Arabic, and other morphologically rich languages, has been challenging to

the natural language processing and computational linguistics communities [34, 3], we asked

whether we may benefit from this characteristic.

Having a rich morphology can allow us to reduce a size of our vocabulary, which is the

main bottleneck in word embedding models. It allows us to decompose words at a more

granular level, which results in smaller models.

Word embedding models are trained on a large corpus of text. The main di↵erence in

our approach is that we preprocess the text before feeding it into the embedding algorithm

by splitting every word into subwords, which are its prefix(es), stem, and su�x(es) using

Farasa, an Arabic segmenter [1]. The e↵ect of using the Farasa segmenter can be seen in

Figure 5.2, where each row of squares represents a vector. Then we train the resulting

corpus using Word2Vec, though we note that our approach is embedding agnostic and may

be used with any embedding model. Notice that our vocabulary, and the resulting vectors,

will be completely di↵erent now as shown in Figure 5.2. It may seem at first glance that our
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ا8اء      هو      مادة       شفافة         عديمة        اللون          والرائحة  …

ا8اء      هو      مادة       شفافة         عديمة        اللون          والرائحة  …

{…

a)

b)

c)

}و    الـ   رائحـ   ـةالـ    ماء

 almāʾwalrāʾiḥat

 almāʾwalat rāʾiḥ

Water is a   transparent substance that is colorless and odorless …

Figure 5.4: a) How English is usually modeled. b) How Arabic is usually modelled (similar
to English) in existing embedding techniques. c) What we be believe to be a more accurate
modelling of Arabic.

vocabulary is increasing, but in fact it decreases as we keep adding more words as shown in

Figure 5.5, which depicts the sizes of the vocabularies in the first million words in Arabic

Wikipedia.

One question that comes to mind is how do we generate embeddings for words that were

split into subwords because in most cases we want embeddings at the word level and not

at the subword level. We propose the following technique for getting the embeddings of all

types of words, including those with multiple subwords. For words with only one component,

we just return the embeddings learned by the model. For words with multiple components

(subwords), we get the embedding of the longest subword, and the average of the embeddings

of the remaining subwords. We then take a weighted average of the two values which results
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Figure 5.5: The increase in the size of the vocabulary when using words and subwords. The
x-axis shows the number of words processed in the Arabic Wikipedia. The y-axis indicates
the size of the vocabulary.

in our embedding as Equations 5.1 and 5.2 show.

l = argmax
x2S

(|x|) (5.1)

v = ↵ ⇤ (M [l]) + (1� ↵) ⇤ (
X

x2S\{l}

M [x]

n� 1
) (5.2)

where S is the set containing all the subwords contained in the word, M is the learnt model

that contains embeddings for all subwords, and ↵ is a parameter that decides the weights

between the longest subword and the other subwords. Algorithm 1 illustrates the algorithm

used in determining embeddings for all cases.

This method not only allows us to generate embeddings for all words in the original

corpus, but also increases its capacity to deal with out-of-vocabulary (OOV) words that the

model has never seen before as shown in Figure 5.6. For example, in Figure 5.6, we see how

our model can produce a representation of ‘and their iPhone’ which is one word in Arabic.
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Proposed embeddings:

وأيفونهم 
(and their iPhone)

أيفون
هم
و

� * (M[ ]) + (1 � �) * ( M[ ] + M[ ]
2 أيفون(

هم و

iPhone
their
and

iPhone
their and

and their iPhone وأيفونهم

وأيفونهم 
(and their iPhone)

OOV: Can’t be found.

Traditional embeddings:

Figure 5.6: Dealing with out-of-vocabulary words in both the traditional models and our
proposed model.

A traditional model trained on the Arabic Wikipedia will fail to produce a representation

of the word ‘and their iPhone’ because that word never appeared in Wikipedia. In fact,

since there are many forms for each word, no matter how large the training corpus is, it is

almost impossible for it to have seen occurrences of all possible forms of all words in it. Our

model can tackle this problem because it operates on a subword level and has seen all the

three components that make up the word: ‘and’, ‘their’ and ‘iPhone’ as shown in Figure 5.6.

This procedure allows one to expand a model’s vocabulary without retraining or requiring

numerous examples of a given word. Of course, not all out-of-vocabulary words will be found

this way. Nonetheless, it’s an e�cient way to generate representations of new words that is

not possible in classical approaches.
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Algorithm 1 Generating embeddings of words from subwords

function GetEmbedding(word,↵,model)

if word 2 model then

return model[word]

else

S = get components(word)

for s 2 S do

if s /2 model then

return error

l = argmaxs2S(|x|)

S = S � l

return ↵ ⇤ (model[l]) + (1� ↵) ⇤ (sum([model[s] for s 2 S])÷ |S|)

5.5 Experiments and Results

5.5.1 Evaluation Datasets

For intrinsic evaluation we used the Arabic word analogy benchmark created by Elrazzaz et

al. [33]. This dataset consists of nine relations that each consist of over 100 word pairs. We

use the following datasets to evaluate our model extrinsically:

1. APMD: The Arab poem meters dataset [10] which consists of 55,440 poem verses

with each verse classified into one of the fourteen Arabic poetry meters. The data is

split into training and testing sets.

2. HARD: The Hotel Arabic Reviews Dataset [32] consists of 93,700 hotel reviews that

are classified into positive or negative according to their rating. Reviews with a rating

of four or five were assigned positive, and those with a rating of one or two were labeled

negative. Reviews with a rating of three were ignored. We split the data into 80%

and 20% training and testing sets respectively using the script provided by Antoun et

al.[11].
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3. LABR: The Large-scale Arabic Book Reviews dataset [9] consists of 63,000 book

reviews rated between one and five. We use the unbalanced two-class dataset, where

reviews with a rating of one or two are labeled negative, and those with a rating on

four or five are labeled positive. The data is split into training and testing sets.

5.5.2 Intrinsic Evaluation

Word analogies, which consists of sets of pairs that share a common relationship, are often

used to evaluate di↵erent embedding techniques. For example, let’s say that we have the

following pairs: (king, queen), and (male, female). Both of these pairs contain a word that

indicates masculinity and a second word that indicates the feminine version of the first word.

A perfect word embedding representation should be able to capture this relationship, and

the way to mathematically measure it is by calculating the vector king�male+female. After

that, we check to see whether the resulting vector is the closest to the vector queen or not.

We use the Arabic word analogy benchmark created by Elrazzaz et al. [33] to evaluate our

approach. We used Gensim’s [69] word analogy evaluate function to evaluate the models and

set the ‘dummy4unknown’ flag on so that all tuples of pairs that contain a word (or more)

that are not in our vocabulary will get zero accuracy (instead of being skipped), similar to

the procedure adopted by Elrazzaz et al. [33].

We train two models: a vanilla Word2Vec model (base model) and our proposed model

on the Arabic Wikipedia dataset mentioned in Section 5.3. For the base model, we set the

window size to be five. Since our model segments words before learning embeddings, we

compute the average number of subwords per word in our corpus and adjust the window

size by that number. The average number of components per word is around two (1.97); to

account for that we set window size in our model to be ten instead of five. For both, we set

the number of epochs to be equal to ten. We experimented with multiple ↵ values for our

proposed model and found that setting it to 0.3 achieves the best results. Moreover, to avoid

vocabulary size discrepancies, we standardize the vocabulary size before the evaluation by

ensuring that our model has the same vocabulary as the base model. To do that, we create a
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Vector dimensions dim=50 dim=100 dim=200

Skipgram
Base model 5.76% 8.33% 8.88%

Our model (↵=0.3) 5.36% 8.15% 9.40%

CBOW
Base model 6.00% 8.72% 10.05%

Our model (↵=0.3) 6.31% 8.92% 10.10%

Table 5.2: Top-1 accuracy in the word analogies test.

new empty set and go through all vocabulary in the base model and if the word exists in our

model (words with only one subword) then we add its representation to the set; otherwise,

we decompose it and then add its representation according to equation 5.2. The results are

summarized in Table 5.2. Our method performs as well, if not better, than the Word2Vec

while being around 60% smaller in size. The di↵erence in size come from the vocabulary

size which is 155K for our model compared to 383K for the base model. We also notice that

CBOW performs better than Skip-gram which is consistent with previous research findings

[33].

5.5.3 OOV Handling

One important distinction that separates our model from the base model is its ability to ac-

commodate OOV words. To test the quality of these generated OOV vectors, we go through

all the OOV words in our analogy benchmark and generate vectors for the ones we can,

i.e. the ones for which we have entries for all their respective subwords. The total number

of OOV words is 127 and we are able to generate representations for 70 of them covering

55.12% of all the OOV words. We evaluated the performance of our best performing model

(CBOW, dim=200) and found that adding the OOV representations increased the accuracy

from 10.10% to 13.32%. To compare our OOV representations, we trained a fastText [17]

model, a popular embedding approach that can handle OOV, and then calculated the ac-

curacy before adding the OOV entities and after; keep in mind that the vocabulary size in

both, fastText and our model, will be the same. FastText achieves 8.05% before adding the
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Model OOV handling Top-1 accuracy

fastText
without OOV handling 8.05%

with OOV handling 6.44%

Our model
without OOV handling 10.10%

with OOV handling 13.32%

Table 5.3: Top-1 accuracy of our model compared to fastText when generating vectors for
OOV words in the word analogies test.

APMD LABR HARD

Base model 29.95% 86.18% 92.99%

Our model 37.75% 86.21% 93.09%

Table 5.4: Performance (accuracy) of our model compared to the base model on the three
datasets.

OOV entities and 6.44% after adding them as shown in Table 5.3. Not only did fastText

achieve worse gains than our model, it actually performs worse than before which calls to

question the accuracy of fastText’s OOV embeddings for Arabic.

5.5.4 Extrinsic Evaluation

We evaluate our approach on the three datasets mentioned above. We feed the embeddings

of the words to a bidirectional Gated Recurrent Units (GRU) [25] network to train it. After

that, we evaluate the network on the test set. Table 5.4 shows the performance of our model

compared to the base model. We can see that our model clearly outperforms the base model

in one dataset (APMD) and performs slightly better on the two other datasets (LABR and

HARD).

5.6 Related Work
While many works studied the intersection of word embeddings and morphology, we do not

know of any previous work that has utilized complex morphology for compression. More-

over, many of the proposed methods to incorporate morphology add complexities to the
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model and are technique dependent instead of incorporating morphology by simply rethink-

ing word sequences. Taylor and Brychćın [81] analyzed morphological relations in Arabic

word embeddings. They noted that some morphological features are captured in embeddings

representations. Shapiro and Duh [76] proposed utilizing subword information in training

embeddings to enrich the representations and showed that it improves the performance on

word similarity tasks. Salama et al. [71] investigated morphological-based embeddings and

lemma-based embeddings. They utilized part-of-speech information to train their embed-

dings, similar to Trask et al. [83], and then build lemma-based embeddings from them by

aggregating on di↵erent senses of each word first and them combining words that share the

same lemma. El-Kishky et al. [31] tackled the problem of extracting roots of words and

proposed an extension to fastText [17] that utilize morphemes.

5.7 Conclusion
We showed in this work that Arabic’s complex morphology can be used to reduce the size of

its embeddings models while still achieving good performance. Breaking words into subwords

not only reduces the vocabulary size and hence the model size but also provides a simple

way to produce good out-of-vocabulary representations. Our proposed approach is technique-

agnostic and can be used with any word embedding technique. One possible future work

that can be built upon ours is the investigation of using segmenting using word roots instead

prefixes and su�xes. That would reduce the model size more but will result in more segments

which will cause more complications in combining all the di↵erent subwords.
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Chapter 6

Learning from Sequences in Natural

Language: Rethinking Tokenization

and Word Segmentation

6.1 Summary
Arabic, like other highly inflected languages, encodes a large amount of information in its

morphology and word structure. In this work [5], we investigate the e↵ect of subword seg-

mentation strategies in BERT that take into account Arabic’s relatively complex morphology.

We modify the tokenization layer of Google’s pretrained multilingual BERT model by incor-

porating information on morphology at fine-tuning time. By doing so, we achieve state of

the art performance on two Arabic NLP datasets without any pretraining.

6.2 Introduction
One feature that is unique to Arabic, and other highly inflected languages, is the expressive-

ness of its words. The fact that Arabic encodes a large amount of information in its word

This chapter is based on work that was published at The Fifth Arabic Natural Language Processing
Workshop (WANLP 2020) in The 28th International Conference on Computational Linguistics (COLING
2020).
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InferenceTraining

Pretrained 
BERT 

Tokenization

Replace the tokenization component

Pretrained 
BERT 

Custom Tokenizer

Pretrained 
BERT 

Custom Tokenizer

No pretraining needed

Figure 6.1: The training and inference stages of our proposed strategies.

structure leads to potential problems in learning embeddings.

In this work, we propose embedding strategies for Arabic that take into consideration its

rich morphology by modifying the tokenization phase of BERT [29]. Figure 6.1 summarizes

our approach and illustrates what happens in the training and inferences stages.

We investigate di↵erent tokenization schemes when using BERT without needing any

pretraining, in contrast to previous approaches such as Antoun et al. [11]. We simply mod-

ify the tokenization part of Google’s pretrained multilingual BERT model [29] resulting in

models that:

1. Achieve state of the art results on two Arabic NLP datasets.

2. Do not require pretraining and can work on top of existing models.

The rest of the chapter is structured as follows: Section 6.3 highlights the embedding
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approaches we are proposing; Section 6.4 details the experiments and the results; Section 6.5

discusses related work; and Section 6.6 concludes by summarizing our findings and pointing

to potential directions for future work.

6.3 Approach
Transformer-based [85] contextual embedding models, such as BERT [29], often require a to-

kenization step that solves problems such as the out-of-vocabulary issue. Byte-pair encoding

(BPE) [74, 36], one of the most popular tokenization methods relies on segmenting each word

into the most frequent subwords. Shapiro and Duh [75] have shown that byte-pair encoding

does not perform well for Arabic compared to other languages. One possible explanation of

this is that byte-pair encoding does not include information derived from a given language’s

morphology. We did some experiments using BERT’s pretrained tokenizer and found in-

stances where the produced segments generated erroneous meanings. For example, the word

mal\ab in most cases is a noun that refers to a stadium or field. BERT tokenizes mal\ab by

segmenting it to mal (milliliter) and \ab (gulp or fill up), instead of the correct segmentation:

ma (a prefix used to create nouns of place) and l\ab (play). BERT’s segmentation seems to

indicate that the word mal\ab is related to liquids and water (milliliter/gulp/fill up). Keep

in mind that both ma and l\ab are in BERT’s subword vocabulary. To test the quality of

the two tokenizations (mal+\ab and ma+l\ab), we manually collected words that relate to

both ‘stadium’ and ‘water’: drink, fish, liter, team, sport, swimming, juice, player, goal,

liquid, cup, club, liquid, and play; and got their BERT representations using both segmen-

tations. After that we compared each word with both representations to see which one it is

closer to. We notice that words related to ‘stadium’ are usually closer to the morphological

representation as shown to Table 6.1.

We propose two methods that aim to incorporate a language’s structure via better seg-

mentations, which we call MorphBERT (Morphology BERT) and CharBERT (Character

BERT). In MorphBERT, a custom tokenizer is used to replace the default tokenizer layer as

seen in Figure 6.2. That custom tokenizer will use a language specific segmenter, Farasa [1]
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Segmentation type Segments Arabic words closer to it

BERT tokenizer mal+\ab: (I
.

´+…”)

drink (H
.

QÂ
⌘
Ö), fish (

⇣

È∫÷fi
Ö), cup (H

.
Òª),

liter (Q
⇣

�À), juice (Q
�
⌦

í´), liquid (…

�

K AÉ), and

swimming (
⇣

Èk AJ
.
É)

Morphological ma+l\ab (I
.

™À+–)

play (I
.

™À), team (
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Table 6.1: BERT tokenization vs morphological segmentation for the word mal\ab. (sta-
dium)

in our case, to segment each word before processing it. We then pass each word, after seg-

mentation, to the original model’s tokenizer to make sure that the produced segments are

in the model’s vocabulary. Keep in mind that MorphBERT di↵ers from AraBERTv1 [11],

an Arabic BERT model that also utilizes Farasa, in that it does not require pretraining. In

addition to that, Antoun et al. [11] preprocess the training corpus by segmenting it using

Farasa before training AraBERTv1 which is not the case with MorphBERT.

In CharBERT, we segment everything to characters as shown in Figure 6.2. The main

idea behind CharBERT is to let the network learn these language structures on its own.

Both of these models do not require training and can be used with any pretrained model as

we see in Figure 6.2. This is important due to the expensive — money-wise, time-wise, and

environment-wise — process of training BERT and other state of the art models. We believe

that developing simpler, more sustainable, and more e�cient NLP models is of an utmost

importance due to the many problems that arise from computationally heavy models, [80]

which can take weeks to train on many TPUs/GPUs. Moreover, most people, especially

in less developed countries, do not have the resources to train these models, which limits

accessibility.
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BERT 
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BERT
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ما ##دة 
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ش ##فاف ##ة 
sh ##fāf ##at

Figure 6.2: The di↵erent segmentation approaches: BERT (default tokenizer), CharBERT,
and
MorphBERT.

6.4 Experiments and Results
In this section we detail our experiments and highlight the results produced by the models

we proposed.

6.4.1 Evaluation Datasets

We use the following datasets to evaluate our models extrinsically:

1. APMD: The Arab poem meters dataset [10] which consists of 55,440 poem verses

with each verse classified into one of the fourteen Arabic poetry meters. The data is

split into training and testing sets.

2. HARD: The Hotel Arabic Reviews Dataset [32] consists of 93,700 hotel reviews that

are classified into positive or negative according to their rating. Reviews with a rating

of four or five were assigned positive, and those with a rating of one or two were labeled

negative. Reviews with a rating of three were ignored. We split the data into 80%

and 20% training and testing sets respectively using the script provided by Antoun et
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al. [11].

3. LABR: The Large-scale Arabic Book Reviews dataset [9] consists of 63,000 book

reviews rated between one and five. We use the unbalanced two-class dataset, where

reviews with a rating of one or two are labeled negative, and those with a rating on

four or five are labeled positive. The data is split into training and testing sets.

4. ANERcorp: ANERcorp [15, 11] is an Arabic named-entity recognition dataset that

contains 316 annotated articles. Every token in the dataset is tagged with one of the

following: location, person, organization, miscellaneous, or other.

We fine-tune the three models: the base cased multilingual BERT, MorphBERT, and

CharBERT; and then compare their performances on the three datasets mentioned above.

MorphBERT and CharBERT were both implemented with the Transformers library [88]. We

follow the recommendations from BERT’s paper [29] in setting the fine-tuning hyperparame-

ters. We run them all for four epochs in batches of 32 or 16 depending on the lengths of input

sequences to avoid memory issues on the GPU. We optimize using the Adam algorithm with

a learning rate of 2e�5, �1 = 0.9, and �2 = 0.999. We also compare our models to AraBERT

(AraBERTv0.1 and AraBERTv1) which consists of two monolingual BERT models trained

on Arabic that were proposed by Antoun et al. [11] and use the results reported by them

for LABR and HARD. For APMD, we downloaded their models and fine-tuned them on the

task. For ANERcorp, we used the script provided by Antoun et al. [11] in fine-tuning our

models. Table 6.2 shows the performance of the five models on the downstream tasks.

It is interesting that by just changing the tokenization method we can improve BERT’s

performance in Arabic without retraining. As we can see in Table 6.2, MorphBERT and

CharBERT achieve state of the art performance on LABR and APMD respectively. The

previous state of the art model for LABR is the MCE-CNN model proposed by Dahou et

al. [27] which achieves an accuracy of 87.48%. Our models perform better than AraBERT in

two tasks even though AraBERT was: 1) trained specifically for Arabic, and 2) trained on

a larger Arabic corpus: 24GB of data for AraBERT compared to 4.3GB for the multilingual
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APMD LABR HARD ANERcorp

metric accuracy accuracy accuracy macro-F1

mBERT 70.65% 85.85% 95.96% 78.4%

MorphBERT 71.03% 89.87% 95.86% 79.86%

CharBERT 84.09% 85.89% 95.67% 71.76%

AraBERTv0.1 70.02% 85.90% 96.20% 89.17%

AraBERTv1 60.99% 86.70% 96.20% 88.67%

Table 6.2: Performance of MorphBERT and CharBERT compared to the multilingual BERT
(mBERT), AraBERTv0.1, and AraBERTv1

BERT. Although mBERT was trained on over a hundred languages, simply replacing tok-

enizations allowed us to add language specific information without requiring any training.

While normally byte pair encoding learns representations of subwords without paying atten-

tion to their meaning, we can utilize this procedure of breaking words into chunks that make

more sense as we saw in the mal\ab example before. CharBERT in particular is interesting;

one would expect that it will require more time to fine-tune since it only uses characters.

Nevertheless, it achieves great performance without requiring more epochs than the other

methods. One potential issue with CharBERT is that it results in very long sequences due to

the character segmentation approach it follows which lead to more frequent truncations than

other models. One potential way to mitigate this is by using new models such as Longformer

[14] that allow longer sequences than BERT.

Previous research [86, 11, 87, 57] has shown that a language specific BERT model per-

forms better than a multilingual one. This is the first work, according to our knowledge, that

shows that by tweaking a multilingual BERT model one can beat a BERT model trained

on a specific language. Natural language processing entered a new era with the advent of

pretrained models that do not need to be trained from scratch for every task but can simply

be tweaked/fine-tuned instead. Our results show that it may be possible to only have one

multilingual model that can be tweaked instead of learning a pretrained model for every
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language.

6.5 Related Work
Many works have noted how sensitivity to Arabic’s morphological complexity can result in

better performance in standard NLP tasks. However, we do not know of any previous work

that has specifically focused on the e↵ect of di↵erent subword segmentation strategies on

di↵erent Arabic BERT embedding models. Antoun et al. [11] trained an Arabic specific

BERT model. They also trained another Arabic BERT model in which they segment the

text before training the model and showed that it usually improves performance. Shapiro

and Duh [75] showed that BPE performs worse for Arabic compared to other languages.

6.6 Conclusion
We show that tokenization that pays attention to Arabic’s morphology can create better

contextual embedding models. We also show the importance of tokenization in BERT where

we were able to achieve impressive performance without requiring any pretraining. One

possible future work would be to investigate tokenization’s e↵ect in other morphologically

rich languages such as Hebrew and Turkish and see if our results can be generalized to other

highly inflected languages.
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Chapter 7

Conclusion and Future Directions

The goal of this dissertation was to show that learning from sequences can be a power-

ful tool beyond classical word embeddings. Our work has shown that we can learn good

representations from sequences in more complicated environments, whether we are tackling

educational representations, identifying narrators in historical contexts, or rethinking rep-

resentations of morphologically complex languages. Our work opens the doors to research

employing sequence-driven representations and abstractions to a wide array of di↵erent fields

and domains that have their own challenging complex representations.

We will be concluding this dissertation by highlighting some interesting future directions

of the work presented:

7.0.1 Learning from Sequences in Education: Repre-

senting Academic Degrees

The educational embeddings we proposed achieve good results at solving a daunting task

in education today as we show in Chapter 3. There are many possible future works that

can build upon our research. One is to use our representations to build personalized learn-

ing assistants and help in automating academic advising. Another possible future work is

investigating degree representations in multiple universities and checking whether we can

learn a translation/mapping between universities similar to how machine translation is done

between natural languages.
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7.0.2 Learning from Sequences in History: Identifying

Narrators in Classical Arabic Texts

The automatic narrator identifier we built from sequences of narrators is the first of its kind.

Moreover, we illustrated its capabilities by correcting an error in one of the largest historical

Arabic texts corpora as we showed in Chapter 4. One way our work can be extended is

to investigate entity linking via sequences more and observe how they perform on di↵erent

datasets. Another potential work is to train a classical Arabic BERT model instead of using

a generic pretrained model and see how that a↵ects performance. In addition to that, looking

into approaches that incorporate some of the knowledge base biographical details into the

model and see if that improves the performance.

7.0.3 Learning from Sequences in Natural Language:

Incorporating Morphology in Traditional Word

Embeddings

The embeddings we proposed in Chapter 5 excelled in di↵erent aspects (performance, size,

and out-of-vocabulary handling) compared to current embedding techniques. One possible

future work that can be built upon ours is the exploration of segmenting using word roots

instead prefixes and su�xes. That would likely lead to an extra reduction in the model size.

Other possible future work concerns more sophisticated exploration of combining morpho-

logical features and word embeddings

7.0.4 Learning from Sequences in Natural Language:

Rethinking Tokenization and Word Segmenta-

tion

In Chapter 6, we showed how we can get better representations by simply tweaking how

word segmentation is done. This discovery led us to two state-of-the-art models. One

possible future work would be to investigate the e↵ect of tweaking word segmentations in

other morphologically rich languages such as Hebrew and Turkish and see if our results
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can be generalized to other highly inflected languages. Another interesting future work is

to explore word segmentation more and come up with strategies to produce better word

segments without needing to use an external language-specific tool for each language.
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