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ABSTRACT

The heterogeneous  stock (HS)  is  an outbred rat  population  derived from

eight  inbred  rat  strains.  HS  rats  are  ideally  suited  for  genome  wide

association studies; however, only a few genotyping microarrays have ever

been designed for  rats  and none of  them are currently  in production.  To

address the need for an efficient and cost effective method of genotyping HS

rats, we have adapted genotype-by-sequencing (GBS)  to obtain genotype

information at large numbers of single nucleotide polymorphisms (SNPs). In

this paper, we have outlined the laboratory and computational steps we took

to optimize double digest genotype-by-sequencing (ddGBS) for use in rats.

We  also  evaluate  multiple  existing  computational  tools  and  explain  the

workflow we have used to call and impute over 3.7 million SNPs. We also

compared  various  rat  genetic  maps,  which  are  necessary  for  imputation,

including a recently developed map specific to the HS. Using our approach,

we obtained concordance rates of 99% with data obtained using data from a

genotyping array. The principles and computational pipeline that we describe

could easily be adapted for use in other species for which reliable reference

genome sets are available.

INTRODUCTION

Advances in next-generation sequencing technology over the past decade

have enabled the discovery of high-density, genome-wide single nucleotide

polymorphisms  (SNPs)  in  model  systems.  Comprehensive  assays  of  the
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standing  genetic  variation  in  these  organisms  has  allowed  for  the

identification of quantitative trait loci (QTL) and the application of numerous

population  genetic  and  phylogenetic  methods.  However,  due  to  the  high

degree  of  linkage  disequilibrium  (LD)  in  QTL  mapping  populations,

sequencing whole genomes is not necessary. Many populations are the result

of  numerous  generations  of  interbreeding  inbred  strains,  allowing  for

recombination  to  produce  an  admixed  population  with  known  founder

haplotypes. Due to the relatively slow rate of accumulation of recombination

events, these populations contain large chunks of the genome derived from

the same founder haplotype. Nearby SNPs are therefore often in strong LD

with  physically  adjacent  loci,  effectively  ‘tagging’  nearby  variation  and

thereby reducing the number of sites that need to be directly genotyped.

Several reduced-representation sequencing approaches that take advantage

of  LD  structure  have  been  previously  described  (Miller  et  al. 2007;  van

Orsouw et al. 2007; Van Tassell  et al. 2008; Baird et al. 2008; Huang et al.

2009; Andolfatto  et al. 2011; Elshire  et al. 2011; Davey et al. 2011; Poland

and Rife 2012; Peterson et al. 2012; Sun et al. 2013; Scheben et al. 2017).

Using these methods, thousands of SNPs can be identified in large numbers

of samples for a fraction of the price of whole-genome sequencing (Chen et

al. 2013; He  et al. 2014). The advantages of these methods are especially

attractive when applied to less commonly utilized species or strains for which

genotyping microarrays are not available. 
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Of the existing reduced-representation protocols,  the genotyping-by-

sequencing (GBS) approach developed by Elshire et al. (Elshire et al. 2011)

has  been  frequently  modified  to  accommodate  other  species:  soybean

(Sonah  et  al. 2013),  rice  (Furuta  et  al. 2017),  oat  (Fu  and  Yang  2017),

chicken (Pértille et al. 2016; Wang et al. 2017), mouse (Parker et al. 2016),

fox (Johnson et al. 2015), and cattle (De Donato et al. 2013), among others.

The greatly varying genomic composition among organisms necessitates a

diverse  and  customized  set  of  approaches  for  obtaining  high-quality

genotypes.  As  such,  both  the  GBS  protocol  and  computational  pipeline

require modifications when applied to a new species. Recent work from our

group showed that GBS can be effectively applied to outbred mice (Parker et

al. 2016; Zhou et al. 2018; Gonzales et al. 2018) and rats (Fitzpatrick et al.

2013).  However,  those  publications  used  protocols  that  had  not  been

optimized, leaving significant room for improvement in genotype quality and

marker density. Additionally,  although several tools  and workflows for the

analysis of GBS data have been described, including Stacks  (Catchen et al.

2013),  IGST-GBS  (Sonah  et  al. 2013),  TASSEL-GBS  (Glaubitz  et  al. 2014),

Fast-GBS (Torkamaneh et al. 2017), and GB-eaSy (Wickland et al. 2017), the

majority were developed and optimized for use in plant species. Given the

lack  of  well-developed  genomic  resources  in  these  species,  they  do  not

leverage the wealth of genomic data available for model organisms such as

rats.  Here  we  describe  the  customized  computational  and  laboratory

protocols for applying GBS to HS rats.  
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The HS is an outbred rat population created in 1984 using eight inbred

strains  and  has  been  maintained  since  then  with  the  goal  of  minimizing

inbreeding and maximizing the genetic diversity of the colony (Johannesson

et  al. 2008;  Woods  and  Mott  2017).  After  more  than  80  generations  of

accumulated recombination events, their genome has become a fine-scale

mosaic of the inbred founders’  haplotypes. The breeding scheme and the

number of accumulated generations has made the HS colony attractive for

genetic  studies.  Additionally,  extensive  deep  sequencing  data  exists  for

many inbred rat strains, including the eight progenitor strains (Rat Genome

Sequencing  and  Mapping  Consortium  et  al. 2013;  Hermsen  et  al. 2015;

Ramdas  et  al. 2019), allowing  for  accurate  imputation  to  millions  of

additional SNPs following direct genotyping of only a subset.  

Detailed  here  are  the  steps  we  have  taken  to  optimize  a  rat  GBS

protocol and computational pipeline. Drawing on existing protocols  (Elshire

et al. 2011; Poland et al. 2012; Peterson et al. 2012; Parker et al. 2016) as

templates, we redesigned our  previous GBS approach  (Parker  et al. 2016;

Gonzales  et al. 2018) and have developed a novel, reference-based, high-

throughput  workflow  to  accurately  and  cost-effectively  call  and  impute

variants from low-coverage double digest GBS (ddGBS) data in HS rats. This

publication is intended as a resource for others who might wish to perform

GBS in rats and should provide a roadmap for adapting GBS for use in new

species.  We  demonstrate  that  with  a  suitable  reference  panel,  applying
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reduced representation approaches and imputation in  model systems can

provide high-confidence genotypes on millions of genome-wide markers.

MATERIALS AND METHODS

Tissue samples and DNA extraction

Samples for this study originated from three sources: an in house advanced

intercross line (AIL) derived from LG/J and SM/J mice (Gonzales et al. 2018),

Sprague  Dawley  (SD)  rats  from  Charles  River  Laboratories  and  Harlan

Sprague Dawley, Inc. (Gileta et al. 2018), and an HS rat colony (Woods and

Mott 2017; Chitre  et al. 2018). Early stages of ddGBS optimization utilized

AIL genomic DNA extracted from spleen by a standard salting-out protocol.

Later optimization steps were performed using genomic DNA from SD rats

extracted from tail tissue using the PureLink Genomic DNA Mini Kit (Thermo

Fisher Scientific, Waltham, MA). HS rat DNA was extracted from spleen tissue

using  the  Agencourt  DNAdvance  Kit  (Beckman  Coulter  Life  Sciences,

Indianapolis,  IN).  All  genomic  DNA  quality  and  purity  was  assessed  by

NanoDrop 8000 (Thermo Fisher Scientific, Waltham, MA). Interestingly, we

observed  that  rat  genomic  DNA derived from either  spleen or  tail  tissue

appears to degrade faster than mouse genomic DNA following extraction by

either of the above protocols; therefore, we recommend storing rat genomic

DNA at -20° and using it within weeks of extraction whenever possible.

In silico digest of rat genome
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We used in silico digests to aid in the selection of restriction enzymes, with

the goal of maximizing the proportion of the genome captured at sufficient

depth  to make confident  genotype calls  (Kent  et  al. 2002).  We used the

restrict function in EMBOSS (version 6.6.0)  (Rice et al. 2000) in conjunction

with the REBASE database published by New England BioLabs (NEB; version

808)  (Roberts and Macelis 1999) to perform  in silico digest of the current

release of the Norway brown rat reference genome, designated rn6. For the

primary restriction enzyme, we chose PstI, which had been successfully used

in numerous project (Fitzpatrick et al. 2013; Parker et al. 2016; Gonzales et

al. 2018). We performed the digest with PstI alone and then with PstI paired

with each of 7 secondary enzymes: AluI, BfaI, DpnI, HaeIII, MluCI, MspI, and

NlaIII. We only considered fragments with one PstI cut site and one cut site

from  the  secondary  enzyme  because  the  adapter  and  primer  sets  are

designed to only allow these fragments to be amplified. 

Restriction enzyme selection

Initial  criteria  for  selecting  a  secondary  restriction  enzyme  were  a  4bp

recognition sequence, no ambiguity in the recognition sequence (i.e. N’s),

compatibility with the NEB CutSmart Buffer, and an incubation temperature

of 37oC. The list of enzymes meeting these criteria at the time included AluI,

BfaI, DpnI, HaeIII, MluCI, MspI, and NlaIII. Using the in silico digest data, we

looked to maximize the portion of the genome contained within a fragment

size range of 125-275bp (250-400bp with annealed adapters and primers)

(Figure 2; Table 1). We excluded enzymes that produced blunt ends, both
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because  it  would  be  more  difficult  to  anneal  adapters  to  blunt  ended

fragments and because our adapters would then also anneal to blunt ends

produced  by  DNA  shearing.  We  also  excluded  methylation-sensitive

enzymes, as we did not want to limit the breadth of our sequencing efforts,

accepting the possibility of read pileup in repetitive regions. Based on these

criteria, as well as maximizing the percent of the genome captured, NlaIII,

BfaI, and MluCI were selected for further testing. The final choice of enzyme

(NlaIII) was determined empirically and is detailed in the Results.

ddGBS library preparation and sequencing

The full ddGBS protocol is available in File S1. In brief, approximately 1µg of

DNA was used per sample. Sample DNA, PstI barcoded adapters, and NlaIII Y-

adapter were combined in a 96-well plate and allowed to evaporate at 37oC

overnight. The PstI adapter barcode is “in-line” such that each sequencing

read from a given sample contains both the PstI overhang sequence (4bps)

and a unique adapter sequence (4-8bps) prior to the beginning of the insert

sequence.  Sample  DNA  and  adapters  were  re-eluted  on  day  two  with  a

PstI/NlaIII  digestion mix and incubated at 37oC for  two hours  to allow for

complete  digestion.  Ligation  reagents  were then added and incubated at

16oC for one hour to anneal the adapters to the DNA fragments, followed by

a 30-minute incubation at 80oC to inactivate the restriction enzymes. Sample

libraries were purified using a plate from a MinElute 96 UF PCR Purification
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Kit (QIAGEN Inc., Hilden, Germany), vacuum manifold, and ddH2O. Once re-

eluted,  libraries  were  quantified  in  duplicate  with  Quant-IT  PicoGreen

(Thermo Fisher Scientific, Waltham, MA) and pooled to the desired level of

multiplexing (i.e. 12, 24, or 48 samples per library). Each pooled library was

then concentrated by splitting  the pooled volume across 2-3 wells  of  the

MinElute vacuum plate and resuspending the library at desired volume for

use in the Pippin Prep. The concentrated pool was quantified to ensure the

gel cassette was not overloaded with DNA (>5µg). The pool was then loaded

into the Pippin Prep for size selection (300-450bps) using a 2% agarose gel

cassette on a Pippin Prep (Sage Science, Beverly, MA). Size-selected libraries

were  then  PCR  amplified  for  12  cycles  to  add  the  Illumina  sequencing

primers and increase the quantity of DNA, concentrated again, and checked

for quality on an Agilent 2100 Bioanalyzer with a DNA 1000 Series II chip

(Agilent Technologies,  Santa Clara, CA).,  Bioanalyzer results were used to

assure sufficient DNA concentration and to identify excessive primer dimer

peaks. 

As a pilot, an initial 96 HS samples were sequenced, 12 samples per

library, at Beckman Coulter Genomics (now GENEWIZ) on an Illumina HiSeq

2500  with  v4  chemistry  and  125bp  single-end  reads.  Subsequently,  we

began using a set of 48 unique barcoded adapters (File S2) to multiplex 48

HS samples per ddGBS library. Each library thereafter was run on a single

flow cell lane on an Illumina HiSeq 4000 with 100bp single-end reads at the

IGM Genomics Center (University of California San Diego, La Jolla, CA). We
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also obtained ddGBS data on the HiSeq 4000 for a select set of 96 samples

that had been previously genotyped on a custom Affymetrix Axiom MiRat

625k microarray (Part#: 550572), providing us with a “gold standard” array-

based dataset with which to compare to our ddGBS data.

Figure 1. ddGBS sequencing data analysis workflow. Each step of the 
workflow is described in the text. 

Evaluation of ddGBS pipeline performance

We present the steps required to call and impute genotypes from raw ddGBS

sequencing  data  in  Figure  1.  During  optimization  of  the  pipeline,

performance  was  assessed  by  two  primary  metrics:  (1)  the  number  of

variants called and (2) genotype concordance rates for calls made in 96 HS

11

209

210

211

212

213
214

215

217

218

219

220

221



rats that had both ddGBS genotypes and array genotypes from a custom

Affymetrix Axiom MiRat 625k microarray. There were two checkpoints in the

GBS pipeline where genotype quality (measured by concordance rate) was

assessed.  The first  was after “internal” imputation with Beagle  (Browning

and Browning 2009, 2016), whereby we leverage information from samples

that had sufficient read depth to make a confident genotype call at a given

locus in order to impute the genotype of other samples that had lower read

depths at that locus. The second checkpoint was after “external” imputation,

meaning imputation to our reference panel with IMPUTE2 to obtain genotype

calls at loci we did not directly capture by our GBS method.  (Howie  et al.

2009,  2012).  A third,  additional  metric  we checked was the  transition  to

transversion ratio (TSTV), which is expected to be ~2 for intergenic regions.

The steps as outlined in the following sections reflect the final version of the

pipeline. Variant calling and imputation steps utilized all available samples

run on the HiSeq 4000 (3,000+ rats), though genotype concordance rates

could only be calculated for the set of 96 HS samples for which we had array

genotype calls.

Demultiplexing

The  PstI  adapter  barcodes  were  used  to  demultiplex  FASTQ  files  into

individual sample files. Three demultiplexing software packages were tested:

FASTX  Barcode  Splitter  v0.0.13  [RRID:  SCR_005534] (Hannon  Lab  2010),

GBSX v1.3 (Herten et al. 2015), and an in-house Python script (Parker et al.

2016). Reads that could not be matched with any barcode (maximum of 1
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mismatch allowed),  or that lacked the appropriate enzyme cut site,  were

discarded.  Samples  with  less  than  two million  reads  after  demultiplexing

were  discarded  as  these  appeared  to  be  outliers  (Figure  S4)  and  were

observed to have high rates  of  missingness in  their  genotype calls.  Data

concerning demultiplexing are shown in Table S1 and are from a single HS

rat sequenced in a 12-sample library on one lane after demultiplexing and

adapter/quality trimming. 

Barcode, adapter, and quality trimming

Read  quality  was  assessed  using  FastQC  v0.11.6  (Andrews  2017).  We

compared the efficacy of two rapid, lightweight software options for trimming

barcodes,  adapters,  and low-quality  bases from the NGS reads:  Cutadapt

v1.9.1  (Martin 2011) and the FASTX Clipper/Trimmer/Quality Trimmer tools

v0.0.13  (Hannon Lab 2010) (Table S2). A base quality threshold of 20 was

used and reads shorter than 25bp were discarded.

Read alignment and indel realignment

Rattus norvegicus genome assembly rn6 was used as the reference genome

for read alignment with the Burrows-Wheeler Aligner v0.7.5a (BWA) [RRID:

SCR_010910] (Li and Durbin 2009) using the mem algorithm. We then used

GATK  IndelRealginer  v3.5  [RRID:  SCR001876]  (McKenna  et  al. 2010) to

improve alignment quality by locally realigning reads around a reference set

of known indels in 42 whole-genome sequenced inbred rat strains, including

the eight HS progenitor strains (Hermsen et al. 2015).  
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Variant calling

Variants  were called,  and genotype likelihoods  were computed at  variant

sites  using  ANGSD  v0.911,  under  the  SAMtools  model  for  genotype

likelihoods  (ANGSD-SAMtools)  (Korneliussen  et  al. 2014;  Durvasula  et  al.

2016). Further,  using  ANGSD-SAMtools,  we  inferred  the  major  and  minor

alleles (-domajorminor 1) from the genotype likelihoods, retaining only high

confidence  polymorphic  sites  (-snp_pval  1e-6),  and  estimated  the  allele

frequencies  based  on  the  inferred  alleles  (-domaf 1).  We discarded  sites

missing read data in more than 4% of samples (–minInd). Additionally, we

tested  multiple  thresholds  for  minimum  base  (-minQ)  and  mapping  (-

minMapQ) qualities.

Internal imputation 

Beagle v4.1 (Browning and Browning 2009, 2016) was used to improve the

genotyping  within  the  samples  without  the  use  of  an  external  reference

panel.  Missing  and  low  quality  genotypes  were  imputed  by  borrowing

information  from  other  individuals  in  the  dataset  with  high  quality

information at these same variant sites.  Before settling on the combination

of ANGSD-SAMtools and Beagle for genotype calling and internal imputation,

we also experimented with GATK’s HaplotypeCaller  (McKenna  et al. 2010)

with various parameter settings, but with unsatisfactory results (Figure 3).

Quality Control for genotypes before imputation using an external

reference panel
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To verify the quality of the “internally” imputed genotypes prior to imputing

SNPs from the 42 inbred strain reference panel  (Hermsen  et al. 2015), we

checked  concordance  rates  for  the  96  HS animals  with  array  genotypes,

examined the TSTV ratio, and assessed whether the sex as recorded in the

pedigree  records  agreed  with  the  sex  empirically  determined  by  the

proportion of reads on the X-chromosome out of the total number of reads

(Figure S1). We also identified Mendelian errors using the --mendel option in

plink and known pedigree information for 1,136 trios from 214 families within

the HS sample. Using the fraction of the trios that were informative for a

given  SNP  and  the  formula  1-(1-2p(1-p))3,  where  p  represents  the  minor

allele frequency of the allele, we formed curves for the distributions of the

expected number of Mendelian errors for both SNPs and samples and chose

the  inflection  points  as  thresholds  for  the  number  of  Mendelian  errors

allowed.

Data preparation for phasing with external reference panel

First,  in our  study sample of  96 samples, we only  retained variants

previously identified in the 8 HS founder strains because we expected the

polymorphisms in our samples to be limited to the variation present in the

founders  (Hermsen  et al. 2015; Ramdas  et al. 2019). Further,  to improve

imputation  efficiency,  we  employed  a  pre-phasing  step  with  IMPUTE2

(prephase_g) (Howie et al. 2012) prior to imputation. Pre-phasing only needs

to be performed once, allowing us to reuse the estimated haplotypes from
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our  dataset  for  imputation  with  multiple  different  reference  panels. A

flowchart outlining the pre-phasing protocol is presented in Figure S2. 

Genetic maps

Genetic maps are required for phasing and imputation with IMPUTE2. When

we began this project, no strain-specific recombination map was available for

HS rats. Thus, we considered a sparse genetic map for SHRSPxBN (Steen et

al. 1999). We also tested two types of linearly interpolated genetic maps,

with recombination rates set at either 1cM/Mb or the chromosome specific

averages  for  rats,  as  reported  by  Jensen-Seaman  et  al.  (Jensen-Seaman

2004). Lastly, late in the course of this project, we experimented with an HS-

specific genetic map developed by Littrell et al. (Littrell et al. 2018). 

Imputation to reference panel

We used a combination of existing sequencing and array genotyping data

from the HS rat founder and other inbred laboratory rat strains (Hermsen et

al. 2015) as reference panel for imputation. Genotype data underwent QC

and  were  phased  by  Beagle  into  single  chromosome  haplotype  files.

Haplotype files were then created using the workflow detailed in Figure S2.

Imputation  by  IMPUTE2  was  performed  in  5Mb  windows  using  the

aforementioned reference panels and genetic maps.

Data availability
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The ddGBS protocol and adapter sequences used to generate the data 

presented in this paper are available at 

https://doi.org/10.6084/m9.figshare.12284432.v1. All supplementary figures 

are available at https://doi.org/10.6084/m9.figshare.12280814.v1. 

Supplementary tables can be found at 

https://doi.org/10.6084/m9.figshare.12284444.v1. Genotype data will be 

available at https://dx.doi.org/10.6084/m9.figshare.8243222. The code 

necessary to run the steps of the computational pipeline outlined in this 

publication is available at https://dx.doi.org/10.6084/m9.figshare.8243156. 

Supplementary Files are available at 

https://dx.doi.org/10.6084/m9.figshare.8243129. Remaining files necessary 

for imputation (genetic maps, reference data, etc.) can be found with the 

following links: https://dx.doi.org/10.6084/m9.figshare.11919615, 

https://dx.doi.org/10.6084/m9.figshare.11919573, https://dx.doi.org/10.6084/

m9.figshare.11919597.

RESULTS

ddGBS optimization

Previous  projects  utilizing  GBS  in  mice  and  rats  (Fitzpatrick  et  al. 2013;

Parker et al. 2016; Gonzales et al. 2018) often encountered an issue where

certain regions of the genome experienced high pileups of reads per sample

(>100x),  while  other  regions  were  covered  by  just  1-2  reads.  This  read

distribution  imbalance  can  be  caused  in  part  by  PCR  amplification  bias,
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where a subset of fragments are preferentially amplified until they dominate

the final library (Kanagawa 2003; Aird et al. 2011). These previous protocols

utilized 18 cycles of amplification. We tested reducing this to 8, 10, 12, or 14

cycles and found that below 12 cycles, there was insufficient PCR product to

accurately quantify and pool for sequencing. The reduction in the number of

PCR cycles was expected to reduce PCR bias, though this was not explicitly

tested.

Another concern regarding previous sequencing results was an excess

of long fragments (>700bps as determined by in silico digest). We observed

that longer sequencing fragments often do not provide sufficient reads to

make confident genotype calls  (< 5 reads per sample),  putatively due to

inefficient  bridge  amplification  and  clustering  on  Illumina  flow  cells.

Sequencing  these  long  fragments  is  therefore  wasteful.  We  tested  three

methods of combating this issue, including increasing the digestion time or

enzyme concentration, performing size selection on the libraries, and using a

two-enzyme restriction digest. 

We considered the possibility that the restriction enzyme digests might

not be running to completion. To address this possibility, we increased the

duration  of  the  digestion  from  2  hours  to  3  or  4  hours.  We  also  tried

increasing the number of units of PstI enzyme added, to ensure complete

digest.  Neither  of  these modifications  impacted the final  fragment length

distribution of the library, indicating that the digest was reaching completion

after 2 hours using the original concentration of PstI (File S3 – wells 1-6).
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Our previous GBS protocol  did not have an explicit  library fragment

size  selection  step.  The  final  library  was  purified  using  a  MinElute  PCR

Purification Kit (QIAGEN Inc., Hilden, Germany), which isolates PCR products

70bp-4kb  in  length,  leaving  a  wide  range  of  fragment  sizes  in  the  final

library,  under  the  assumption  that  only  shorter  fragments  would  bridge

amplify  on  the  flow  cell.  This  method  was  imprecise  and  had  low

reproducibility,  negatively impacting our ability  obtain reads at consistent

sites across libraries. Rather than attempt size selection by gel extraction,

we  chose  to  utilize  a  Pippin  Prep,  which  automates  the  elution  of  DNA

libraries  of  desired  fragment  size  ranges.  By  using  this  automated  size

selection, we reduced the proportion of the genome targeted for sequencing,

Additionally, since restriction enzymes make predominantly consistent cuts

across samples (barring the presence of  polymorphisms in RE recognition

sites),  it  is  ensured that highly  similar  sets of  genomic fragments will  be

sequenced across sample libraries. Since the clustering process involves a

bridge amplification step that preferentially amplifies library fragments with

shorter insert sizes (Illumina, Inc. 2014), we kept the size selection window

narrow (250-400bps) to avoid introducing a bias in which fragments were

sequenced. A comparison of the fragment size distributions for the protocols

before and after introduction of the Pippin Prep is shown in File S4. 

To increase the proportion of the genome captured within the fragment

size window, we pursued a double digest of the genome using a secondary

enzyme with a more frequently occurring recognition sequence. When used
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alone, in silico digest of the rn6 reference genome by PstI (Figure 2; Table 1)

showed that only ~0.5% of the genome would have fallen within a 150bp

fragment size window selected on the Pippin Prep. Previously, we performed

GBS in CFW mice using the single-enzyme approach and observed that large

regions of the genome that were not covered by sequencing reads (Parker et

al. 2016). Therefore, we sought to increase the fraction of the genome that

was accessible to GBS, so that there would be sufficient SNPs to tag the

majority of the variation in the rat genome. Additionally, we were concerned

about  potential  biases  in  coverage,  heterozygosity,  and  the  minor  allele

frequency  (MAF)  spectrum  that  may  be  introduced  by  a  less  complete

capture of  the genome. Flanagan and Jones have performed an empirical

study comparing single- to double- digest RAD-seq and found that double-

digest  RAD-seq  had  lower  rates  of  allelic  dropout,  decreased variance in

between-sample per SNP coverage, less allele frequency inflation due to PCR

bias, and reduced batch effects (Flanagan and Jones 2018). 

The  number  of  fragments  with  one  of  each  of  the  cut  sites  was

summed for all observed lengths and the results summarized in Figure 2 and

Table 1. BfaI, MluCI, and NlaIII were chosen for further testing due to their

compatibility with PstI digestion reagents and temperatures, sticky ends, and

the proportion of the genome falling in the size selection window in the in

silico analysis. We ruled out BfaI because it only had a 2bp overhang after

cleavage,  which  we  empirically  showed  leads  to  a  high  concentration  of

adapter dimer in the sequencing libraries (S5 File). NlaIII  was chosen over
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MluCI because it contained the greatest portion of the genome in the desired

size selection window. 

Table 1. Restriction enzyme options for double digest. 

Restrictio
n

Enzyme(s
)

Recogniti
on

sequence

Length of
Overhang

(bp)

% Genome in 
250-400bp

Region+

% Genome in 
300-450bp

Region+

PstI CTGCA^G 4 0.48% 0.56%
PstI + AluI AG^CT 0 3.06% 2.88%
PstI + BfaI C^TAG 2 3.10% 3.25%

PstI +
DpnI*

GA^TC 0 2.69% 3.00%

PstI +
HaeIII

GG^CC 0 2.71% 2.79%

PstI +
MluCI

^AATT 4 3.32% 3.21%

PstI +
MspI

C^CGG 2 1.16% 1.24%

PstI +
NlaIII

CATG^ 4 3.45% 3.31%

The  percent  genome  in  region  columns  indicate  the  percentage  of  the
genome  that  falls  within  the  provided  fragment  size  ranges  and  can
therefore be captured by GBS.

 

* Restriction enzyme is methylation sensitive. 
+ Calculated using rn6 genome length of 2,870,182,909bps.

Figure  2.  In  silico digest  fragment  distributions  for  PstI  and
potential secondary restriction enzymes.
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Each  panel  represents  an  independent  digest  of  rn6  with  the  listed
enzyme(s). Regions highlighted in blue are fragments that would be selected
by the Pippin Prep (125-275bp) after annealing adapters and primers. These
regions are quantified in Table 1 by multiplying the length of the fragments
by the number of fragments to estimate the portion of the genome captured.

In our previous GBS protocol, all fragments were cut on both ends by

PstI.  By  using  a  substantially  lower  concentration  of  the  barcoded  PstI
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adapter than the common PstI adapter, we ensured the barcoded adapter

would  be  the  limiting  reagent  and  the  majority  of  fragments  with  an

annealed barcoded adapter would have a common adapter on the other end.

This is crucial, as having one of each of the adapters is required for proper

amplification of the fragments on the flow cell. However, when using both

PstI and NlaIII,  the library is predominantly composed of fragments cut on

both sides by NlaIII (File S6), which will amplify during PCR with a common

adapter,  but  not  on  the  flow  cell.  Therefore,  we  employed  a  Y-adapter

(Poland  et al. 2012) to control the direction of the first round of PCR and

prevent  two-sided  NlaIII  fragments  from dominating  the  final  sequencing

library (File S2). 

We  tested  numerous  quantities  of  PstI  and  NlaIII  adapters  in  an

attempt minimize the amount used and avoid adapter dimers in the final

libraries.  For  the  barcoded  PstI  adapters,  we  tested  120pmol,  60pmol,

20pmol, 4.0pmol, 2.67pmol, 1.60pmol, 0.53pmol, and 0.20pmol; for the NlaIII

Y-adapter, 30pmol, 10pmol, 5.0pmol, 4.0pmol, and 1.0pmol (Files S7 & S8).

We found that 0.20pmol of PstI adapter and 4pmol of NlaIII Y-adapter yielded

sufficient library and minimized the presence of adapter dimers. 

We sequenced a trial flow cell with 8 pooled ddGBS libraries of 12 SD

rat samples each (96 total) on a HiSeq 2500 (Illumina, San Diego, CA) with

125bp reads and v3 chemistry, obtaining an average of 15.3 million reads

per  sample.  Given  the  NlaIII  in  silico digest  results  suggested  we  were

capturing ~3.4% of the genome and that we were using 125bp reads, this
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corresponded  to  approximately  20x  coverage  of  captured  sites.  We

subsequently increased the number of samples to 48 per library for the HS

rats because we hypothesized 5x would be sufficient coverage per sample

when utilizing imputation to a reference panel. We also discovered that a

portion  of  the  reads  contained  sequence  fragments  of  the  NlaIII  adapter

sequence,  indicating  there  were  fragments  with  insert  sizes  smaller  than

125bps in the final  library.  To avoid this,  we increased the fragment size

range to 300-450bps (Table 1), which corresponds to a 175-325bp insert size

once the adapters and primers are accounted for. We noted however that

the  library  size  distribution  obtained  from the  Pippin  Prep  was  uniformly

shifted towards higher fragment lengths (Figure S3). This is a result of the

high  concentrations  of  our  libraries  after  pooling  and  loading  the  gel

cartridge near the upper limit of the recommend number of micrograms of

DNA, which can cause slower migration of the DNA across the gel matrix.

The final ddGBS protocol can be found in File S1 and the necessary

primer  and adapter  sequences in  File  S2.  This  protocol  was used for  the

sequencing of all HS rats included in subsequent computational optimization

steps.  

Demultiplexing

The number of base pairs of sequencing data retained after demultiplexing

was  fairly  consistent  across  demultiplexing  software  (Table  S1).  We

ultimately  decided  to  use  FASTX  Barcode  Splitter  because  it  yielded  the
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greatest number of reads after quality/adapter trimming and had faster run

times.  An average of  330 million  100bp reads were obtained per library,

resulting in ~7 million reads per sample. Figure S4 shows the distribution of

reads counts for all samples after demultiplexing.

Adapter and quality trimming

Read quality  was  substantially  improved  after  trimming  the  barcode  and

adapter sequences and low-quality base pairs at the ends of reads (Figure

S5). Overall read counts were only marginally reduced by quality trimming

(Table S1).  We observed that the number of  called variant sites  and the

genotyping rate were both greater when using reads initially processed by

cutadapt  (Martin 2011) than reads processed by the FASTX_Toolkit  (Table

S2).  Importantly,  a large portion of the additional  identified variants were

known variant  sites from the 42 inbred strains reference set (Figure S6),

indicating the elevated call rate was at least in part due to capturing more

true variant sites. We viewed this as sufficient support for proceeding with

cutadapt for adapter removal and quality trimming. 

Mapping quality

The number of called variants and genotype call rates were identical at read

mapping  quality  (mapQ)  thresholds  of  either  20  or  30  (Table  S3)  within

ANGSD. As the ANGSD mapQ threshold was raised to 45, there was a small

reduction in the number of called variants, and then much greater losses at

thresholds of 60 or 90.  Fortunately, discordance rates between ddGBS and
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array genotypes were stable at both low and high mapQ thresholds, despite

the putatively higher quality of the alignments (Figure S7). This permitted us

to select a lower mapQ threshold (mapQ = 20), maximizing the number of

variants called without sacrificing genotyping accuracy.

Variant calling

Figure  3  shows  that  across  all  levels  of  genotype  discordance  rates

(comparing ddGBS with the array genotyping data), the combination of the

ANGSD-SAMtools with BEAGLE produced more SNPs at various discordance

thresholds than GATK’s HaplotypeCaller (McKenna et al. 2010; DePristo et al.

2011). This observation held when variants were limited only to biallelic sites

and SNPs with an MAF > 0.05 (Figure S8).  We speculate that the poorer

performance of HaplotypeCaller may be due in part to the sparsity and non-

uniform distribution of GBS genotype data across the genome and the high

level of genotype call missingness across samples prior to imputation.

Figure  3.  Genotype  discordance  rates  between  array  data  and
variants called by GATK/Beagle or ANGSD-SAMtools/Beagle.
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The  figure  compares  the  number  of  variants  called  by  combination  of
ANGSD-SAMtools and Beagle or GATK HaplotypeCaller and Beagle at various
thresholds of genotype discordance with array data. Calls were made using
the  96  HS  rats  with  array  data.  The  x-axis  represents  the  genotype
discordance rate thresholds and the y-axis is the number of variants that
surpass that threshold for each genotype calling method. 

ANGSD  supports  four  different  models  for  estimating  genotype

likelihoods: SAMtools, GATK, SOAPsnp and SYK. We compared the methods

to determine which produced the most SNPs with the lowest error rates. The

SOAPsnp  model  demonstrated  an  advantage  in  genotype  accuracy  and

number of variants called post-imputation with Beagle (Figure S9). However,

SOAPsnp requires considerably more time (1.7x for 96 samples) and memory

and scales poorly with sample size. With greater than 2,000 samples, we

were  unable  to  allocate  sufficient  memory  for  the  SOAPsnp  model  to
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successfully run, even after dividing the chromosomes into several, smaller

chunks.  The  marginal  benefits  of  SOAPsnp  in  accuracy  and  number  of

variants  were  far  outweighed  by  its  limitations  when  applied  to  a  large

sample set.  The GATK model showed a greater number of variants for more

lenient genotype discordance rate threshold. This is in contrast with what

was observed in Figures 3 and Figure S8 because ANGSD utilizes the direct

genotype likelihood method from the first implementation of GATK’s Unified

Genotyper,  whereas  we  had  previously  tested  GATK’s  HaplotypeCaller.

Interestingly though, as the stringency for discordance rate increased, the

number  of  variants  converged  across  the  SAMtools,  GATK,  and  SOAPsnp

models.  We  proceeded  with  the  SAMtools  model  for  genotype  likelihood

estimation due to its previous support in the GBS literature (Torkamaneh et

al. 2017), accepting a nominal decrease in highly concordant variants (Figure

S9) for a large reduction in run time and memory usage.

Imputation to reference panel

Imputation is used in two complimentary ways in our protocol. As described

earlier, after ddGBS, not all samples will have sufficient sequencing coverage

at captured polymorphic loci to make a confident genotype call. Therefore,

we  first  use  imputation  from  other  well-covered  samples  to  “fill  in  the

blanks” and assign genotypes to SNP loci in the subset of individuals that

lacked confident  calls  at  these sites.  After these missing genotypes have

been imputed in all samples, we then use the genotype information we have

for the SNPs captured by ddGBS along with the reference panel data on the
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original 8 HS founders (Hermsen et al. 2015; Ramdas et al. 2019) to impute

genotype calls at sites that were inaccessible to ddGBS sequencing. Thus,

our  second  application  of  imputation  is  similar  to  the  human  genetics

application in which imputation using 1000 Genomes (1000 Genomes Project

Consortium et al. 2010) increases the number of SNPs beyond those included

on a given microarray platform. IMPUTE2 was selected over Beagle for this

application  because  it  has  been  shown  to  perform  better  with  smaller

reference panels from populations with substantial LD  (Frischknecht  et al.

2014; Friedenberg and Meurs 2016)

Before starting this imputation step, we observed an inflated transition/

transversion ratio (Table S4) in our ANGSD-SAMtools/Beagle SNPs. This issue

was ameliorated when the SNP set was filtered for only “known” variants

that were previously identified in either the 42 inbred strains (Hermsen et al.

2015) or  the  8  deep-sequenced  HS  founders  (Ramdas  et  al. 2019).  For

imputation,  we therefore only provided IMPUTE2 with previously identified

variant  sites  from  our  ANGSD-SAMtools/Beagle  output.  Prior  to  running

IMPUTE2, we also filtered the variants for biallelic sites with a genotype call

in at least two individuals. Using pedigree data for the HS rats, we further

removed samples showing an order of magnitude higher level of Mendelian

error than the sample mean. We further removed SNPs that had an error rate

surpassing a threshold of ~0.005 (Figure S10; inflection point). There were 4

samples and 4,179 SNPs removed from subsequent analyses.   Lastly,  we

removed any samples where the X chromosome read ratio (reads mapped to
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the  X  chromosome  divided  by  total  reads)  was  incompatible  with  their

reported  sex.  We  used  hard  threshold  of  3%  of  total  reads  (empirically

determined),  where individuals  with more than 3% X-mapped reads were

determined to be female and below 3%, male (Figure S1). 

There were three major genomic reference datasets available for the

HS rats. The first reference set was obtained from Baud et al. (Rat Genome

Sequencing and Mapping Consortium  et al. 2013) and contained sequence

data and genotype calls for the 8 founders of the HS. The second came from

Hermsen et al. (Hermsen et al. 2015) which contains sequence and genotype

data on 42 distinct laboratory rats strains and substrains, 8 of which were

the founders of the HS from Baud et al., but analyzed alongside a new set of

strains.  The third  reference set  came from Ramdas et  al.  (Ramdas  et  al.

2019), who independently performed whole-genome sequencing and made

genotype  calls  on  the  8  HS  founder  strains.  It  was  unclear  which  set  of

genotypes would provide the best reference for imputation from our ddGBS

data, so we tested five different possible subsets of available data (Table 2).

From Hermsen et al., we used (1) all 42 inbred strains, (2) only the 34 strains

that were not the HS founders, and (3) only the 8 HS founder strains. Then

from Baud et al. and Ramdas et al., we tested the 8 HS founders only from

each study. The most accurate imputation was observed for the reference

set containing only the 8 deep-sequenced HS founder strains (Ramdas et al.

2019); however, imputation to this set had the lowest genotyping rate of all

panels. In contrast, using the 42 rat inbred strains displayed a balance of
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high  accuracy  and  low  missingness,  leading  us  to  choose  this  as  our

reference set. To better understand the role of the 8 founder strains, which

were part of the 42 strain reference panel, we created a reference panel that

included only the 34 non-HS founder strains. As expected, discordance rates

were  much  higher  when  only  considering  non-founders.  However,  the

genotype  missingness  was  lower  for  the  34  than  the  8  founders  alone,

suggesting a combination of the two was the optimal set. 

Table 2.  Imputation accuracy based on different variant reference
panels for IMPUTE2.

The table includes five different possible  reference panels  for  imputation.
The 42 inbred strains, 34 non-founder inbred strains, and 8 HS founders from
the 42 inbred strains all were derived from Hermsen et al. 2015 (Hermsen et
al. 2015). The UMich 8 HS founders were obtained from Ramdas et al. 2019
(Ramdas et al. 2019). The final set of 8 HS founder was taken from Baud et
al. 2013 (Rat Genome Sequencing and Mapping Consortium et al. 2013).

Chr1 Chr2

42 inbred strains
Discordance rate 0.011 0.010

# Variants 790,659 882,993
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Genotyping Rate 0.85 0.81

All 34 non-
founder inbred

strains

Discordance rate 0.035 0.030

# Variants 812,550 912,749

Genotyping Rate 0.84 0.80

8 HS founders
only from the 42

inbred strains

Discordance rate 0.012 0.011

# Variants 805,424 902,061

Genotyping Rate 0.57 0.53

UMich 8 HS
founders only

Discordance rate 0.0059 0.008

# Variants 865,514 898,621

Genotyping Rate 0.42 0.41

Baud et. al 2013
 8 HS founders

only

Discordance rate 0.0095 0.0096

# Variants 507,909 540,844

Genotyping Rate 0.43 0.40

IMPUTE2 requires a genetic map. As described in the methods section,

we considered four different genetic maps, two that were empirically derived

and two that were linear extrapolations based on the physical map (Figure

S11).  All  genetic  maps  performed  similarly  (Table  S5).   Surprisingly,  the

linear genetic maps performed just as well as the HS-specific map (Littrell et

al. 2018).  Thus,  for  simplicity,  we chose to  use  the  chromosome-specific

values initially published by Jensen-Seaman (Jensen-Seaman 2004). 

To obtain our final set of ~3.7 million variants, a final round of variant

filtering was performed after imputation to the 42 strain reference panel. We

removed SNPs with MAF < 0.005, a post-imputation genotyping rate < 90%,

and SNPs that violated HWE with p<1x10-10. 
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DISCUSSION

The use  of  microarrays  and WGS for  genotyping large samples  in  model

organisms remains cost-prohibitive. There is therefore an urgent and wide-

spread  need  for  high-performance  and  economical  methods  of  obtaining

genome-wide genotype data. While reduced-representation approaches have

been utilized in numerous species of plants and animals, including rodents

(Peterson et al. 2012; Fitzpatrick et al. 2013; Parker et al. 2016; Zhou et al.

2018;  Gonzales  et  al. 2018),  there  has  yet  to  be  a  published  protocol

optimized specifically for rats. Prior to sequencing thousands of HS samples

with GBS for our mapping efforts, we wanted to ensure we were capturing

the greatest possible number of high-quality variants at the lowest possible

cost. The protocol we present here is the culmination of careful testing and

optimization of each step of the GBS protocol for rats. We have now applied

the approach to 4,973 HS rats, as well as 4,608 Sprague Dawley rats (Gileta

et al. 2018).

Our previous GBS protocol (Parker et al. 2016), which was designed for

use with CFW mice, was unsuitable for our current genotyping efforts in HS

rats, due to the much higher levels of genetic diversity in the HS population.

There  are  multiple  reasons  we  chose  to  develop  our  own  computational

pipeline  for  GBS  rather  than  using  existing  workflows.  Foremost,  the

prominent GBS analysis pipelines were developed and optimized for use in

crop species  (Sonah  et al. 2013; Catchen  et al. 2013; Glaubitz  et al. 2014;

Torkamaneh et al. 2017; Wickland et al. 2017), some of which are polyploid
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and  have  differing  levels  of  variation  and  LD  than  outbred  rodent

populations. Additionally, there were elements of each pipeline that did not

meet  our  needs  or  lacked  customizability.  For  instance,  TASSEL-GBS  v2

(Glaubitz  et  al. 2014) trims  all  reads  to  92  base  pairs;  however,  other

projects underway in our lab utilized up to 125bp reads, leading to a ~20%

reduction in data. TASSEL-GBS also ignores read base quality scores, which

are  informative  in  probabilistic  frameworks  for  estimating  uncertainty  in

alignments and variant calls (Li  et al. 2008; DePristo et al. 2011; Nielsen et

al. 2011), and uses a naïve binomial likelihood ratio method for calling SNPs.

Stacks has previously shown poor performance in demultiplexing (Herten et

al. 2015; Torkamaneh et al. 2017) and does not make use of the reference

genome for priors when calling SNPs (Catchen et al. 2013). Fast-GBS relies

on Platypus (Rimmer et al. 2014) for variant calling (WGS500 Consortium et

al. 2014;  Torkamaneh  et al. 2017), which employs a Bayesian method of

constructing  candidate  haplotypes  that  works  poorly  with  low-pass

sequencing data and does not  scale  well  to  large sample  sizes  (Li  et  al.

2018). Lastly, none of these pipelines included an imputation step, which is

crucial for filling in missing genotypes in GBS data and can provide millions

of additional SNPs given an appropriate composite reference panel (Howie et

al. 2011; Huang and Tseng 2014).

Though we have not explicitly tested each alternate GBS pipeline for

the purposes of this publication, this has been recently done by Wickland et

al.  (Wickland  et al. 2017). Their pipeline GB-eaSy, which ours most closely
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resembles,  was  found  to  be  superior  by  a  number  of  metrics  to  Stacks,

TASSEL-GBS, IGST, and Fast-GBS. Similar to GB-eaSy, our pipeline utilizes a

double-digest GBS protocol, aligns reads to the reference genome with bwa

mem, and uses the SAMtools genotype likelihood model for calling SNPs (Li

2011).  The  combination  of  bwa  mem  and  SAMtools  algorithm  was

independently shown to have the best performance for calling SNPs from

Illumina data  (Hwang  et al. 2015),  further supporting our choice of  these

programs  for  read  alignment  and  variant  calling.  Additionally,  using  the

ANGSD  wrapper  provided  us  with  the  ability  to  convert  the  posterior

genotype  probabilities  into  genotype  dosages  for  mapping  studies

(Korneliussen et al. 2014). 

A minor difference between GB-eaSy and our pipeline  is  the use of

cutadapt  (Martin  2011) rather  than  GBSX  (Herten  et  al. 2015) for

demultiplexing, though both performed equally well (Table S1). The primary

improvement  is  our  extension of  the pipeline  with  the implementation  of

effective internal and reference-based imputation steps using the 42 inbred

rat genomes (Hermsen et al. 2015) and 8 deep-sequenced HS founders from

UMich  (Ramdas  et  al. 2019).  There  are  two  stages  of  imputation  in  our

pipeline. The first one is accomplished by Beagle and aims to fill in missing

genotypes  at  called  variants  using  information  from  other  samples.  This

raises the genotype call rate to 100%, but it may also introduce errors due to

insufficient information, emphasizing the need for careful filtering steps. The

second stage of imputation made use of IMPUTE2 and an external reference
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panels of variants called from WGS data on the 8 inbred HS founders, as well

as 34 additional inbred rat strains. We decided to include the 34 additional

strains  because of  the  elevated genotyping  rate  we observed upon their

inclusion in the IMPUTE2 reference panel. We attribute this to the presence

of haplotypes that exist in both the 8 the HS founder strains and a subset of

the 34 additional  strains in this  panel.  The benefits of  using a composite

reference panel have been previously noted (Zhang et al. 2013; Huang and

Tseng 2014); there is increased accuracy and decreased missingness in the

imputed genotype data.

In  summary,  we have adapted a  GBS protocol  and genotyping  and

imputation pipeline to obtain dense genotypes on genome-wide markers in

highly-multiplexed HS rats.  After  quality  filtering on the level  of  SNP and

sample, over 3.7 million SNPs were called with a concordance rate of 99%.

The ddGBS protocol and bioinformatic methods used to produce this data are

publicly  available,  easy  to  handle,  and  cost-effective.  The  presented

workflow  could  be  feasibly  followed  with  marginal  modifications  for

application in other species. The steps taken toward optimizing the wet lab

protocols  are  easily  applied  to  novel  organisms,  as  is  the  computational

pipeline so long as there are reliable reference genome sets available for use

in alignment and imputation. 
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Figure  S1.  Ratio  of  reads  on  X-chromosome  to  total  sequencing
reads. 

The color of the points indicates the pedigree-recorded sex of the samples.
Females are expected to have approximately twice as many reads for the X-
chromosome. Samples that did not cluster with their pedigree-recorded sex
were removed from the study for possible sample mix-up.
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Figure S2. Data preparation workflow for imputation with IMPUTE2.
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Figure  S3.  Programmed  vs.  empirical  Pippin  Prep  fragment  size
range.

This plot comes from the Bioanalyzer output for a pooled HS library. The x-
axis  shows the  library  fragment  sizes  in  base pairs,  and the  y-axis  is  in
fluorescent units, which represent the quantity of the fragments on the gel
chip.  There  is  approximately  a  50-75bp  shift  in  the  empirical  library
distribution compared to expectation due to the high quantity of fragments
loaded into the Pippin Prep gel cassette. 
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Figure S4. Raw read counts grouped by shipment batch.

Raw read counts are on a per-sample basis after demultiplexing FASTQ files
with FASTX Barcode Splitter. Each batch represents a set of samples from a
given shipment. 
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Figure S5. FASTQC results pre- and post-filtering with Cutadapt.

FASTQC results  are from a single  sample  from the original  set  of  96 HS
samples  prepared in 12-plex and sequenced on the Illumina HiSeq 2500 with
125bp reads.

51

1032

1033
1034

1035
1036
1037
1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049



Figure S6. Overlap of called SNPs with known variants after read
trimming with FASTX or Cutadapt. 
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Figure S7. Mapping quality thresholds.
Genotyping error rate and number of variants by mean depth per sample per
variant site for mapping quality thresholds of 20, 30, and 60. 
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Figure S8. ANGSD-SAMtools vs GATK HaplotypeCaller, filtered calls.

The panel compares the number variants called by combination of ANGSD-
SAMtools and Beagle or GATK HaplotypeCaller and Beagle at various 
thresholds of genotype discordance with array data. Calls were made using 
the 96 HS rats with array data. The x-axis represents the genotype 
discordance rate thresholds and the y-axis is the number of variants that 
surpass that threshold for each genotype calling method. Additional filters 
were applied to the original SNP sets and the plot zooms in on a smaller 
range of acceptable discordance rates compared to Figure 3. Blue lines 
represent the unfiltered SNP set. Yellow lines have been filtered for 
singletons. Red lines have further excluded SNPs with an MAF < 0.05. Each 
line contains the same number of points.
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Figure S9. Number of variants by genotype discordance rates for 4
ANGSD genotype likelihood models.
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Figure S10. Mendelian error rates.

The plot shows the Mendelian error rate for all SNPs. A threshold was set at
the inflection point of the curve (~0.005) and all SNPs above that threshold
were removed from the data set.
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Figure S11. Available rat genetic maps.

Plotted physical and genetic distances are for chromosome 12.
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Table S1. Demultiplexing performance.

All methods began with the same number of reads from the original FASTQ.
Final read and base pair counts are from after the reads have been trimmed
of adapter, barcode, and restriction site sequences, as well  as low-quality
base pairs (< Q20).

In-house Python
Script

GBSX
FASTX

Barcode Splitter
Reads with NlaIII
adapter sequence

545,177 (3.07%) 475,581 (2.67%) 547,697 (3.07%)

Total bps
processed

2,061,523,464 2,116,436,361 2,227,542,500

Total bps written
to file

2,059,714,312 2,114,841,934 2,225,724,833

Proportion of bps
retained

99.91% 99.92% 99.92%

Reads post-
processing

17,771,754 17,786,280 17,820,340
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Table S2. Comparison of variants calls after filtering with FASTX vs
Cutadapt.

Data shown comes from the original set of 96 HS samples prepared in 12-
plex and sequenced on the Illumina HiSeq 2500. At this early step of pipeline
optimization, variants were called utilizing GATK UnifiedGenotyper.

FASTX
Clipper

Cutadapt

Number of variants 6,075,821 6,581,115
Genotyping call rate 0.17 0.19

Mean minor allele
count

3.96 4.25

Mean minor allele
frequency 

0.15 0.15

Number of singletons 433,960 548,975
Number monomorphic

sites
807,453 773,074

Transition/
transversion ratio

2.32 2.40

TITV ratio for
singletons

3.23 3.40

Mean variant read
depth 

109.56 126.35

Mean quality score 601.79 715.56

59

1168

1169
1170

1171
1172
1173

1174

1175

1176

1177

1178

1179

1180



Table S3. Variant metrics resulting from reads filtered at different
mapping quality thresholds.

Data shown comes from the original set of 96 HS samples prepared in 12-
plex  and  sequenced  on  the  Illumina  HiSeq  2500.  Variants  were  called
utilizing the SAMtools model and the -minMapQ filter in ANGSD. Calls were
unfiltered.

MAPQ =
20

MAPQ =
30

MAPQ =
45

MAPQ =
60

MAPQ =
90

Number of
variants

372,860 372,330 363,790 316,949 233,322

Genotyping call
rate

0.64 0.64 0.64 0.61 0.75

Mean minor allele
count

5.96 5.96 6.06 5.86 7.36

Mean minor allele
frequency

0.18 0.18 0.18 0.18 0.19

Number of
singletons

16,781
(4.50%)

16,732
(4.49%)

16,550
(4.55%)

17,352
(5.47%)

11,773
(5.05%)

Number of
monomorphic

sites

122,478
(32.85%)

122,188
(32.82%)

116,738
(32.09%)

100,074
(31.57%)

56,179
(24.08%)

Transition/
transversion

ratio
1.23 1.24 1.26 1.31 1.41

TITV ratio for
singletons

1.27 1.28 1.28 1.31 1.38

Mean variant
read depth

157.78 157.73 159.25 152.48 188.80

Mean quality
score

2,547 2,548 2,556 2,461 2,954
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Table S4. Transition/transversion ratio before and after known sites
filtering.

The  presented  data  comes from ANGSD-SAMtools/Beagle  variant  calls  for
3,601 HS samples, prior to imputation with IMPUTE2. Known SNPs came from
both the 42 inbred genomes from Hermsen et. al 2015 (Hermsen et al. 2015)
and the 8 inbred HS founder strains sequenced by the University of Michigan
(Ramdas et al. 2019).

Unfiltered SNPs
Filtered for known

SNPs
AC 15,157 9,166
AG 888,657 42,275
AT 15,432 7,610
CG 18,043 8,061
CT 893,653 41,938
GT 15,118 9,177
TS 1,782,310 84,213
TV 63,750 34,014

TSTV 27.96 2.48
Total #
SNPs

1,846,060 118,227
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Table S5. Imputation accuracy for chromosome 12 across different
genetic maps.

The number of variants used for the concordance check is dependent on the
overlap of the imputed variants with array data for the 96 HS rats with array
genotypes. The MAF filter only removes monomorphic sites within the 96 HS
rat sample used for the concordance check.

cM/Mb =
1.00

cM/Mb =
1.16

SHRSPxP
N

HS-
specific

Number of
variants before

QC
158,452 158,452 158,452 158,452

Genotyping rate
before QC

0.94 0.92 0.92 0.92

Variant removed
for missingness

> 10%
22,217 28,959 28,356 28,858

Variants
removed for
MAF < 0.005

50,380 61,270 61,592 59,812

Variants
removed for

HWE < 1x10-10
53 56 57 56

Number of
variants after

QC
85,802 68,167 68,447 69,726

Genotyping rate 
after QC

0.93 0.91 0.92 0.91

Number of
variants in

concordance
check

5,912 5,590 5,594 5,646

Discordance rate 0.095 0.011 0.011 0.010
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