UC Davis
IDAV Publications

Title
A new method for the repair of CAD data with discontinuities

Permalink
https://escholarship.org/uc/item/69a601fj

Authors

Uva, Antony E.
Monno, G.
Hamann, Bernd

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6gq601fj
https://escholarship.org
http://www.cdlib.org/

A New Method for the Repair of CAD Data with Discontinuities

Antonio E. Uva'?, Giuseppe Monno', Bernd Hamann®

g Dipartimento di Progettazione ¢ Produzione Industriale
Politecnico di Bari
Bari, fraly
uva@dppigr.poliba_it, gmonno@poliba.it

' Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science
University of California, Davis
fuva, hamann] @cs. ucdavis, edu
Davis, CA, USA

Keyworks: CAD, solid modeling, error correction, approximation, discontinuity, boundary
representation.

Abstract

It is imperative for CAD, solid modeling, grid generation, and data exchange applications that a
complicated, surface-based geometry definition does not contain discontinuities in the form of
overlapping surfaces, gaps between surfaces or surface intersections. Most currently used
approaches require a significant amount of user interaction to correct faulty CAD data. We
describe 4 new approach for approximating large-scale CAD data sets by a relatively small
number of patches that no longer contain discontinuities - except those that are part of the
design. Our approach first determines connectivity information for the given patches and removes
discontinuities smaller than a certain user-specified tolerance. Next, feature lines are determined in
the model by identifying patch boundary curves where large changes in the surface normal occur
Original patches with in regions bounded by feature lines are then grouped together, and a
"blending-edge” posi-processing step ensures C* continuity of the entire model. Finally, bigger
approximating patches replace each group of patches. The output of our algorithm is a much
smaller set of patches with C* continuity.

L INTRODUCTION

Typically, a complicated real-world geometry is defined in terms of thousands of patches, usually
piecewise polynomial (or even rational) B-spline patches, Complicated models ofien contain
errors due to inconsistent model modifications or various designers working on the same model
without necessarily enforcing consisiency checks and enforcement. Inconsistencies | errors are
characterized by surface patches that do not connect properly or those that intersect each other.

sy

Computer-generated CAD models are becoming increasingly complex due to the increase in
computing power and storage capacity.

This only aggravates the problem of surface inconsistencics. A solution to this problem is
given by highly automated algorithms, requiring minimal user mput, "correcting” CAD data with
inconsistencics / discontinuities. The undesired "gaps," "overlaps,” and “intersections” in a CAD
model usually prohibit further processing of the CAD data. Such further processing might be the
sutomatic definition of a grid for fuid flow simulation for aircraft configurations or even an
automated manufacturing process. For grid generation, flow analysis and manufacturing to be
done automatically and efficiently it is crucial that the supplied CAD data are “error-free.” The
problem at hand most commonly arises in the aircrafl and automobile industries. A robust, semi-
automatic method is of great importance for CAD and post-processing processes, including
computer aided manufacturing (CAM). Most methods described in the literature and used in
practice require a significant amount of user interaction.

Typically, the user will have to interactively “repair” CAD data by utilizing certain CAD
operations and locally replacing data by some suitable approximation that corrects the
nconsistencies in the model. This is time-consuming and still leaves room for introducing
additional error. Our method assumes that we are given a set of CAD patches without explicitly
described connectivity. The data might or might not contain discontinuities, The output of our
method is a set of patches that approximate the original ones within a certain tolerance and that
define a new model that is free of discontinuities and is consistent. Considering a realistic,
complicated model, consisting of thousands of patches, we believe that a certain degree of user-
interaction will always be needed. There is the issue of “tolerance,” and it might be hard, if not
impossible, for a method to automatically define the right tolerance value 10 be used 1o sdentify
discontinuities and characterize them properly as "desired” or “undesired,”

A completely automated approach for solving this problem might contradict a designer’s
original intention. Therefore, one must keep in mind that certain “problems” will still require a
user o interactively correct a faulty pant of geometry.

Figure 1a. Input data. Figure Lb. Final maodel,

Figure 1 illustrates the basic concept of our algorithm - the input of our algorithm (54
disconnected patches, Figure la), and the output (six approximating patches with no
discontinuities, Figure 1.b).

60

1.1. Related Work

The classical literature in geometric modeling and grid generation does not provide "help” for
solving the faulty-CAD-data problem, which one encounters in practical problems rather ofien.
Most grid genetation systems provide simple CAD functionality that is used 1o correct faulty
CAD data prior to the application of automated grid generation algorithms -- that require a
continuous surface description. The method we present in this paper is based on mathematical
methods well understood in geometric modeling; we have combined existing methods with the
eventual goal of accelerating and automating -- when possible - the time-consuming task of
correcting large CAD data sets. We use fundamental concepts of geometric modeling and
computer aided geometric design (CAGD) for the algorithm we present. These fundamental
concepts are described in detail in [1], [2]. [3], [4], [5). [6], [7]. One interesting approach for
correcting fault CAD data is highlighted in [8]; this approach is based on these steps:

(i) constructing "rough” local approximants to a given CAD data set;

(i} projecting these initial approximants onto the original patches; and

(ili) using the projections lying exactly on the geometry as interpolation
conditions for the definition of a much "closer™ approximation.

A user can interactively specify the boundary curves of the "rough,” initial surface
approximants that are then awtomatically refined to the “closer” approximations, Finally, one
obtains a continuous geometry representation consisting of a much smaller number of patches.

1.2. Our Approach

We present a topology-based algorithm having two primary goals in mind:

» Eliminate discontinuitics between neighbor patches if the discontinuities are
smaller than some tolerance; and

e reduce the everall number of CAD patches describing a complex geometry by
approximating multiple original patches by a single approximant one

This is the overall structure of our algorithm:

Input: List of {bi-cubic B-spline) patches -- specified by control nets and knot vectors
Output: List of (fewer) approximating patches; patches meet in C*-continuos fashion, except
in places where an onginal discontinuity exceeds a certain tolerunce

The individual steps of the algorithm are:

* Determine the connectivity among the given patches.

s Verify the connectivity along all the edges of each patch and visualize the
errors (=discontinuities) in the model.

s Determine feature lines in the model according to the normal varation along
patch boundaries.

Al

s Merge patches into 4 set of group-of-patches; stop the merging process when
a feature line is reached.

s Merge the control information (boundary discontinuities are removed for those
original edges deviating kess than a cemain tolerance) to define & new
approximating patch,

* Repeat the process with different user-defined parameters, if necessary,

These steps arc discussed in detail in the following sections. Section 2 presents an overview
on the topological approach, a basic concept we use in our algorithm. Section 3 discusses the
algorithm to determine the connectivity among patches. Section 4 describes how to average the
original patch boundary curves to guarantee C* continuity in the whole model. Section 5 describes
the recognition of the feature lines to be preserved in the model and the merging phase used 1o
reduce the number of patches, Section 6 describes the output model, the blending of patches, and
computing the approximating surfaces, Sections 7 and B present results and ideas for future work,

L TOPOLOGICAL APPROACH

Topology is the mathematical study of properties of objects, which are preserved through
deformations. A circle is topologically equivalent 1o an ellipse, and a sphere is equivalent 1o an
ellipsoid. Topology began with the study of curves, surfaces, and other objects in the plane and 3-
space. One of the central ideas in topology is that spatial objects like circles and spheres can be
treated as objects in their own right, and knowledge of objects is independent of how they are
“represented” or "embedded” in space. The “objects” of topology are often formally defined as
topological spaces.

. a K . F
A CFE SR SR
[A (N l
¢ S R A
o P L W g
E T I N I T
F o ey 4808
Figure 2. Topalogical atlas of a truncated Figure 3. Connectivity matrix for faces of a
pyramid. cube,

6.2

Topological spaces are crucial to represent 3D models in CAD. A topological representation
allows us to ignore geometry and physical location of vertices, edges, and surfaces for certain
types of CAD data processing. Each model can be described as a list of geometric surfaces
(patches in our case) plus the topological connectivity among them (the connectivity among
patches is based on shared edges). Any model can be represented in topological space as an
"atlas” (Figure 2). To work in this space we need 1o represent the "atlas” in an accessible format,
¢.g.. & matrix. The connectivity matrix is a binary matrix; zero-valued elements indicate no
connectivity, and one-valued elements indicate connectivity between two elements (Figure 3).

3. DETERMINING PATCH CONNECTIVITY

Typically, a CAD definition of a complex geometry consists of individual patches without
topological information describing the connectivity among patches. Furthermore, most CAD
systems do not necessarily enforce continuity conditions when a designer is operating on a pair of
patches that should be continuous along a common boundary curve. We therefore have to worry
about determining the connectivity information for a given set of patches. We assume that:

(i) All patches are supposed 10 be sharing entire boundary curves with
neighboring putches (except on the boundary of a non-closed geometry).

(1) Triangular patches are degenerate four-sided patches, where one edge is
collapsed to a corner.

(i) No more than four (topologically four-sided) patches may share a common
vertex.

The evaluation of the connectivity is based on a user-defined parameter-threshold (u,) for
maximum distance between vertices. For each patch and for each vertex V of the patch a search
for the-at most 3 closest vertices is conducted and these must be in the sphere centered at 'V with
radius w,. The same check is applied to the vertices belonging to the edges connected to the 3
closest vertices; if they are within the same tolerance u,, then an edge connectivity (and a patch
connectivity) is established (Figure 4). This is a high-level description of the connectivity
algorithm:

Algorithm 1: Creating patch conneclivity
fnput: [rrtches, cormer verices

Quiput: CORAECTIVIEY

for each patch P do
for each vertex V¥ of P do

{
» find the 3 closes! vertices V, Vs V!
if cistance(V' , V, J<u,
if the verlex connected (by edga) with V, is close fo the paich P
= add conneclion befween P and [he paich associaled o V,;
|

T-connectivity (Figure 5.a) must be considered. Not only a search for the three closest
vertices s performed, but also a search for the closest edge. If the minimum distance between this

63

edge and V, is less than uy, then the edge s automatically split, and a new connectivity veriex is
created (Figures S.b, S.c). At the end of this phase, we have determined the connectivity among
patches and edges based only on geometric distance among the four corner vertices of each patch.

(c)

Figure 4. Patch connectivity. Figure 5. T-connectivity and creation
of “connectivity vertices."

3.1. Verification of Patch Connectivity

In most cases it is sufficient 1o know about connectivity between two patches, but in some cases a
gap exists in the middle of an edge even if the comer vertices are well connected (Figures 6.a,
6.b). To ensure that edge connectivity is not established in the presence of such “interior gaps,” an
additional test is required 1o verify each edge connectivity,

Figure .0, Edge connectivity established. Figure 6.b. No edge connectivity established,

In order to validate the connectivity among the “candidate edge neighbors,” we discretize
cach edge by a certain number of points and check the connectivity using a distance metric
applied to this discrete boundary curve representation. Intuitively, what we do is this: If two
boundary curves of two patches are meant to be shared by the two patches as a common
boundary curve, closest point pairs, consisting of one point of each of the two curves, will be
having fairly small distances in physical space. If the maximal distance of two boundary curves of
two different patches is smaller than some user-specified tolerance vy, we call the two edges
(patches) neighbors (the maximal distance is the maximum of all distances of closest point pairs.)

4

If the maximal distance exceeds uy, then the edges are marked as disconnected, the error is
visualized in the model, and the user is asked to manuvally comrect the error or globally/locally
change the threshold used to determine connectivity information.

Obviously, certain boundary curves might not be identified as shared boundary curves of
two patches even if they are visually rather close. The fact that our approach might not identify a
pair of curves as a common boundary curve has two explanations:

(i) The used tolerance is too small; or
(i) there is one isolated point on one of the two curves whose closest point on the
other curve is further away than the allowed tolerance.

We believe that it is impossible to completely automate the process determining
connectivity: too many parameters and too many design objectives, unknown to the computer,
exist 1o delermine connectivity in accordance with a designer’s goals. We therefore favor a semi-
automatic approach, where the system performs “most of the work,” and the user manipulates the
resuits of an initial connectivity guess by changing tolerance values or manually establishing
connectivity for certain pairs of patches.

4. AVERAGING THE ORIGINAL PATCH BOUNDARY CURVES

Once the connectivity information is known, il is possible to "fill in” the potentially existing gaps
between pairs of boundary curves that are meant to be geometrically identical. We construct new
curves by performing a “discrete averaging step,” which works as follows:

(i) we discretize each boundary curve by a certain number of points;

(i) for each point on one original boundary curve we determine the closest point
on the “opposing” boundary curve;

(iii) we compute the midpoints of the resulting closest point pairs

(iv) if there are n patches supposed to be sharing a particular corner vertex (end
points of the edges), we average the n individual, distinct corner points of the
involved patches; and

(v) we interpolate the midpoints by an interpolating cubic B-spline.

The result of this averaging procedure is a set of boundary-blended cubic B-sphnes without
any "gaps,” where boundary curves are meant 1o be shared and to be geometrically the same. The
problem of evaluating the B-spline curve approximant (of order four) can be outlined
algorithmically as follows:

Input: List of data points X; (derived directly from the blended midpoints)
Output: (Cubic) B-spline curve S, determined by knot vector and control vertices d, satisfying
the approsimation conditions S{d;) = x;

We utilize the elegant solution given by Farin[1], but one could use severs! oher amethods 25
described n [9], [10], and [11].

od,

Figure 7. Cubic B-spline — iterative approximation of seven poinis

Figure 7 shows an approximation of seven points using a cubic B-spline with four control points
and quadruple end knots. The quality of the common boundary curves obtained by averaging
point pairs 5 largely determined by the parametrization of the individual patches along their
boundarwes and the point distribution on the boundary curves resulting from the discretization
step. We deal with thes issue by distributing points along boundary curves uniformiy with respect
to arc length

Figure B.u, Edge connectivity. Figure B.b. Creation of new edpes by averaping.

Figure & illustrates the construction of shared boundary curves by averaging the original,
disconnected edges -- based on the connectivity shown in the left image.

66

5. REDUCTION OF THE NUMBER OF PATCHES

One of our goals is to approximate groups consisting of large numbers of given patches, by single,
much larger patches, To achieve this goal our algorithm uses "region growing” steps that produce
a new patch replacing two old ones. This algorithm is defined by a set of rules guiding the
“growing” of the patches. The rules are defined for the topological representation of the model,
Each "growing” region is defined as a subspace of the topological space bounded by certain
constrains, A constraint in our case is a feature line in the model that we want to preserve, We
idennify feature lines inherent to the given geometry of the model. In other words, it is our goal to
“replace” a large number of given patches by a larger paich with the constraint that no feature
lines "lie inside” the larger patch — a large, approximating patch must stop at a feature line.

5.1. Identifying Features in the Model

Automated feature recognition has a wide range of applications in mechanical engineering, Many
feature recognition methods are greatly limited in scope. Our assumption is that the feature in a
model are "sharp” edges between two patches. The definition of “sharp” is related to the
maximum: variation i normal vector (or tangent plane) along shared boundary edges.
Furthermore, we assume that certain boundary curves (or parts of boundary curves) of certain
patches constitute feature lines. We check, for each connected pair of edges, the maximum angle
hetween the normals for a fixed number of sample points (Figure 9),

We are primarily interested in feature lines that coincide with parts of patch boundary
curves - nevertheless, there might be large normal vector variations even in the interior of a
pach. We compute the (unit) normal vectors along a patch boundary curve by computing the
tangent vector of the boundary curve, by computing the cross-derivative vector along the
boundary curve, and computing the cross product of these two vectors for esch point on the
polygonal representation of each boundary curve,

Figure 9. Feature recognition by analyzing normal variation.

Again, identifying feature lines 15 a numerically highly “sensitive” matter. We use the
following criterion 1o make a first guess: I the angle between two (normal) vectors of a pair of
closest points along a shared boundary curve of two patches is larger than some tolerance, then
this indicates the existence of a feature line (or “feature edge”). The automutic identification of
feature lines is even more sensitive than the identification of patch connectivity, and it is thus
imperative to allow a user to manually add or delete parts of feature lines.

5.2. Creating a set of Group-of-Paiches

[t is one of our major goals to reduce the number of original patches and replace "groups” of
original patches by large approximating patches. A necessary pre-processing step to be performed
prior to the actual approximation is the identification of subsets of the original patches to be
replaced by larger patch approximants. We call this pre-processing step “creating group-of-
patches,” and it 15 based on the following idea: Construct a group-of-patches by merging original
patches until the construction of a group-of-patches hits a feature line in the model; feature lines
are to become parts of the boundaries of a group-of-parches.

We now explain the construction of a group-of-parches in more detail. We assume, as
mentioned before, that the given set of patches is (at least locally) bi-directional in topological
spacg. This means that it must be possible 1o associate a topological i- and j-direction to each
original patch, ie., it is possible to view (at least locally) the patches as paich rows and patch
columns. The bi-directionality in topological space implies that

(1) each patch has at most one neighbor patch along a boundary curve (no T-
connectivity allowed); and
{u) at most four patches may have a corner veriex in commeon.

These assumptions allow us to define the four "growing directions” called for similarity: north,
south, east, and west,

The "growing" process starts with merging patch as in a random direction. Before merging
two patches (or two group-of-parches) a verify is necessary to determine if the two edges are
compatible, i.e., if they have the same "topological length® (= defined by the same numiber of
control points). We define the aspect ratio p of group-of-patches as:

p= lengih(north _ edge) + length{south _ edge)

lengthieast _ edge) + length{west _edge)

(1)

The next "growing direction” is determined by the objective to optimize p (optinal is p = 1).

We construct the largest possible union of patches, according to the previous set of rules,
until a feature line is reached as a edge (or a part of edge). Then, we try 0 grow in another
direction sacrificing the aspect ratio p. We terminate the growing process when a feature line is
part of each of the four group-of-patches boundary edges. On a high level, our algorithm looks
like this:

Algorithm 2: Patch growing
nput: fist of patches
Oudput; st of group-of-patches

68

while growing is possible do
{

= select a growing direction (according to the oplimal pl;
= check the “topological length” of the edges lo be menged;
= check the presence of a feature line;

= merge the two group-of-pafcheas;
}

The creation of a set of group-of-parches keads to the definition of areas having feature lines
as parts of their boundaries but no feature lines in their interior. The notation “grewp-of-
paiches{i j]” means that i rows of patches are grouped in the north/south direction and j columns
of patches are grouped in the east/west direction. The total number of patches grouped in group-
of-parches{i,j] is i times j. We will approximate the set of original paiches defining each one of
these groups by larger approximating paiches. The number of group-of-paiches created by this
procedure does depend on the particular initial patches being selected to start the grouping
process and the order in which grouping is performed in the four directions. Al this point, we
have no conclusive answers regarding an optimal strategy leading to a minimal number of group-
of-patches. This will be an issue for future research.

6. MERGING THE CONTROL INFORMATION OF GROUP-OF-PATCHES

In order 10 represent a set of B-spline patches as a larger, "conglomerate” patch, we have 1o
merge the underlying, individual control information for each paich, Le., we have to merge the
knot vectors and the control points of the individual pieces. It is only essential to describe the
process of merging the control information of two B-spline curves to be merged into a single B-
spline curve:

(i) We merge the two knot vectors by performing a “union” operation for the two.
knot vectors (using a gquadruple knot at the break point of the two curves to
preserve continuity): and

(i) we merge the control points by performing a “union” operation for the di's
{using a double control point where the two curves meet).

W———— ik = H—— (LR I t it H

Figure 1. B-spline "union” operation for conirol poinis and knod veclors.

fald

Figure 10 shows the B-spline merging process, The final model is composed of bi-cubic B-spline
patches (C'-continuous inside each patch). The continuity is only €' where feature lines are
present (boundaries of the B-sphine patches). Each group-of-paiches s eventually characterized
by a matrix Mg e, of control points, obtained by the method described in section 5.2, where

(1) all the ongmal control net sub-matrces are ordered according to the
topological row/column order;

1) the rows (columns) related to the boundary of each original patch are blended;
and

(i} the first and the last row (column) of the matrix are directly obtained from the
blended boundary B-spline curves.

For example, the matrix Mp. e for a 2x2 group-of-patches consisting each of a single bi-cubic
patch, defined by (2], can schematically be illustrated as shown in Figurel 1.

Bn, =Bw, B, Bn, Bn, Bn, Bn, Bn,=8e |
Bw, d, di, (03, +d3,)2 d), dy, - Ba,
Bw, 1 di, [, +dl)2 di diy: Be,
Bw, (), +],)2 (@, +d) 2 (0, + 5,) 4, Ja (], 4,)2 (03, +d2)2 B,
Bw, d 4, (0, +dy,)2 d, &, By
Bw, d, &, @+l)2 di, & b

| Bw, = Bs, Bs, Bs, Bs, Bs, Bs, Bs, =Be, |

R b
i = 3% I

LY 0 L

S

Elmding Teems Boundey

Figure 11. "Blending patch™ mutrix for four B-spline surfaces, each
consisting of one bi-cubic patch anly.

The coordinate vectors of points Be B, B, B, refer to the control points associated with the
blended B-spline curves bounding the B-spline paiches in the north, south, west, and east
topological directions.

Once we have completed the control net for each B-spline surface, we can aher the
smoothness of surfaces by modifying the knot vectors or control points. The upper-left image in

70

Figure 12 represents the original B-spline patches with their control nets. The other three images
in Figure 12 show approximating B-spline surfaces with the same control nets but with different
" knot vectors. C" continuity along the boundary of each B-spline paich is guaraniced since the
external control points are the same for each pair of contiguous B-spline paiches.

Figure 12, Original patches and different degrees of smoothness of approximant; 2x2
group-of-patches configuration and modification of knot vectlors.

7. EXPERIMENTAL RESULTS
We have implemented the described algorithms on a Silicon Graphics Onix” workstation. The
visualization component is based on Openlnventor. We have tested our algonthm on several duta

sets. Two examples are shown in Plates | and 2.

Plate 1 illustrates the overall approximation process. The boundary edges of the onginal
disconnected model (Plate 1.a) are replaced by new edges obtained by edge averaging { Plate 1.b).

74

Plates 1.c and 1.d show the effect of using different threshold values for identifying feature lines
by considering normal vector vanation.

Plate 2 shows a discontinuous daia set representing the geomeiry of a cube (Plate 2.a). The

twelve edges of the cube are correctly identified as feature lines (Plate 2.c) and are preserved as
boundary curves in the final approximation (Plate 2.d).

B. CONCLUSIONS AND FUTURE WORK

We have presented a new technique for the correction and approximation of large CAD data sets.
Our algorithm is currently limited a certain type of patch topology: given data sets must consists
of paiches arranged, topologically, in a row/column-type fashion. In is necessary to handle more
general patch topologies where any number of patches can share a common comer vertex, We
plan 1o do this in the near future. Our method preserves feature lines of a given model by forcing
the algorithm to use feature lines as parts of the boundaries of the approximating patches. Feature
line definition and extraction are numerically rather sensitive operations, and we therefore provide
mechanmisms for a wser to delete or add feature lines from'to the set of feature lines that the
algonthm identifies automatically, We plan to conduct more research regarding a more robust
way for feature line extraction. Our algorithm serves two primary purposes:

(1) elimination of undesired discontinuities; and
() reducing the number of patches needed to represent a complicated geometry.

All discontinuities within a user-specified tolerance are eliminated automatically, and a user can
always force the system (o correct more, larger discontinuities by manual intervention. For certain
applications, given CAD data sets might contain more detail than required, e.g., for a “crude”
fuid flow analysis around a car body. Our algorithm provides a means for reducing the number of
original CAD patches significantly by replacing them with fewer B-spline patches approximating
large regions within a specified olerance.

9. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under conmtract ACI 9624034
(CAREER Award), the Office of Naval Research under contract NOOO14-97-1-0222, the Army
Research Office under contract ARO 36598-MA-RIP, the NASA Ames Rescarch Center under
NRA2-36832 (TLL) program and the Lawrence Livermore National Laboratory under contract
W-7405-ENG-48 (B335358), awarded to the University of California, Davis. We would like to
thank the members of the Visualization Thrust at the Center for mage Processing and Integrated
Computing (CIPIC) at the University of California, Davis.

72

REFERENCES

[1] Farin G. (1997), Curves and Surfaces for Computer Aided Geometric Design - A Practical
Guide, 4" ed., Academic Press, Boston, Massachusetts,

[2] Bartels, R. H., Beatty, J. C. and Barsky, B. A. (1987), An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, Inc., Los
Altos, California.

[3] Boechm, W. and Prautzsch, H. (1994), Geometric Concepts for Geometric Design, A K
Peters, Wellesley, Massachusents.

[4] de Boor, C. (1978). A Practical Guide 1o Splines, Applied Mathematical Sciences, Vol. 27,
Springer-Verlag, New York, New York.

[5} Hamann, B. (1994), Construction of B-spline approximations for use in numerical grid
generation, Applicd Mathematics and Computation 65(1--2), pp. 295--314,

[6] Hoschek, J. and Lasser, D. (1993), Fundamentals of Computer Aided Geometric Design, A
K Peters, Lid., Wellesley, Massachusetts.

[7] Piegl, L. A. and Tiller, W. (1996), The NURBS Book, 2" edition, Springer-Verlag, New
York.. New York.

[8] Farin, G. and Hamann, B. (1997), Current trends in geometric modeling and selected
computational applications, Journal of Computational Physics 138(1), Academic Press, pp.
I=1I35.

[9] Yamaguchi, F. (1998), Curves and surfaces in Computer Aided Geometric Design, Springer-
Verlag, New York, New York.

[10]de Boor, C. (1977), Package for Calculating with B-Splines, S1AM 1. Numer. Anal., p. 441.

[11]Hanson, R.). {1978), Constrained Least Squares Curve Fitting to Discrete Data Using B-
Splimex, Sandia National Laboratories Technical Report, SAND-TE-1291,

73

