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Abstract (58 words):  

Yu et al. suggested calculating precisely size ranges of the three parts in Fig. 3A, adjusting the 

free-energy levels in Fig. 3B, and considering the shape effect in the first-principles calculation. 30 

The first and second suggestions raise strong concerns for misinterpretations and 

overinterpretations of our experiments. The original calculation is sufficient to support our claim 

about crystalline-to-disordered transformations.  
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Main Text (1,000 words):  

We appreciate the interest in our work by Yu et al. (1), who claimed the following three 

assessments. First, the analysis of the fitting curve in Fig. 3A of our original report (2) should be 

improved to precisely calculate size ranges. Second, in the small cluster case in Fig. 3B, the 

disordered state must have a lower free-energy level than the crystalline state has. Third, the 5 

shape effect of nanoclusters needs to be considered in the first-principles calculation. We 

respectfully disagree with all the three assessments, but we believe that the second assessment 

regarding structural states of small nanoclusters could be developed into a future in-depth study. 

 

Their first assessment is to precisely calculate size ranges of the three parts in original Figs. 3A 10 

and 3B. However, emphasizing the size ranges (named “magic numbers” by Yu et al.) as they 

suggested may lead to misunderstanding our claim, which is that thermodynamic characteristics 

of growing nanoclusters change “gradually” depending on their sizes. The three parts in our 

report are divided by ~1.0 nm2 and ~3.0 nm2, not based on physical principles, but to represent a 

size-dependent evolution of structural behaviors occurring within the continuous growth of 15 

nanoclusters. The fitting function in Fig. 3A is entirely empirical and meant as a guide to the eye. 

Precisely analyzing the function has no physical meaning, and the result from this analysis 

(discrete size ranges) obscures the concept of gradual changes. We also disagree with their 

method, averaging data points of Fig. 3A and then performing curve fitting (their Fig. C1B), 

because this method gives inconsistent weightings to the data points. While each point in Fig. 3A 20 

is measured from a uniform length of time periods, the data points in their Fig. C1B are obtained 

by averaging variable numbers (n varies from 1 to ~10) of the original points. Curve fitting with 

inequivalently obtained data is problematic, as explained by Simpson’s paradox (“The average of 

averages is not the average.”) in statistics (3-5). The increased Adj. R2 values in their Table C1, 

obviously obtained by reducing the scatteredness of data points by averaging, don’t imply true 25 

statistical improvement. In particular, presenting their Fig. C1B instead of Fig. 3A should be 

avoided because readers need to check deviations, not just general trends, of measured data.  

 

Their second assessment suggests that we revise the free-energy diagrams (original Fig. 3B) in a 

way that the disordered state is more stable than the crystalline state in small nanoclusters (their 30 

Fig. C1F). Although this claim has been presented in many previous studies (6-10), a general 

consensus about this fundamental issue has not been reached yet. A traditional and presumably 

dominant idea is that small nanoclusters have ordered (crystalline or icosahedral) atomic 

structures (11-15). Yu et al. claimed that our data in Fig. 3A can provide an answer to this 

controversial problem as follows: Because temporal fractions of the crystalline state (TFCSs), 35 

indicating the probability of observing the crystalline state (Pc), are less than 0.5 in the small 

nanocluster case of Fig. 3A, the disordered state has a lower free-energy level than the crystalline 

state.  

 

We claim that the second assessment is an overinterpretation of our results, mainly because of 40 

the invalid assumption that TFCSs in Fig. 3A of our report indicate absolute values of Pc. The 

observed system is not a sole nanocluster (Fig. 1A) but rather a nanocluster surrounded by 

mobile adatoms (Fig. 1B). Interactions between the nanocluster and adatoms induce crystalline-

to-disordered transformations (2), significantly reducing TFCSs. The observation that pre-



Submitted Manuscript: Confidential 

Template revised February 2021 

3 

 

synthesized nanoclusters without surrounding adatoms spend a much larger fraction of their time 

in the crystalline state supports this statement. In addition, the possibility of missing short-lived 

crystalline states in the observations (shorter than the temporal resolution, 10 ms) makes TFCSs 

underestimated. Therefore, it is impossible to claim that our experimental result verifies that the 

absolute value of Pc is less than 0.5 in small nanoclusters. Fortunately, a relative comparison of 5 

Pc is possible because the two fore-mentioned sources of the underestimation similarly affect the 

measurements. An exact description of this relative comparison in thermodynamics is the set of 

free-energy diagrams in original Fig. 3B. The diagrams further presenting a lower free-energy 

level of the disordered state than that of the crystalline state in small nanoclusters (their Fig. 

C1F) are an overinterpretation of our data. An alternative set of free-energy diagrams without the 10 

overinterpretation (Fig. 2) has been considered during the revision of the original report, but we 

discarded it because interactions between a nanocluster and surrounding atoms are unclearly 

presented. Despite its similarity to their Fig. C1F, the physical meaning of Fig. 2 (free-energy 

diagrams about a system composed of a nanocluster and surrounding atoms) is distinct from 

what Yu et al. wanted to claim. We do agree that our result “eventually (with extrapolation)” 15 

suggests that the disordered state is more stable in small nanoclusters, but it doesn’t mean that 

we experimentally verify this statement at the current stage. 

 

Their third assessment is to consider the shape effect of nanoclusters in the first-principles 

calculation for making our model more realistic. They suspected the shape effect is a main cause 20 

of the data scatteredness in original Fig. 3A, but a more straightforward reason for this is the 

stochastic nature of nucleation and early-stage growth. They also claimed that all the crystals 

during collapse and recrystallization along with {111} have polyhedral shapes in our TEM 

movies, but this claim has no detailed explanation and is incorrect. Most importantly, the original 

calculation successfully supports the claim that adatom binding can provide sufficient energy to 25 

small nanoclusters to induce the crystalline-to-disordered transformation. Adopting non-

hemispherical shapes in the calculation reduces energy levels required for the transformation, 

thus further strengthening our claim. Therefore, we believe that the more complex calculation is 

not required at this moment. 

 30 

In conclusion, what Yu et al. suggested can be summarized as finding additional information and 

meanings from our experimental results. We respectfully disagree with them, because the 

suggestions raise strong concerns for misinterpretations and overinterpretations of our 

experiments. 

  35 
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Fig. 1. Schematic models of nanoclusters. (A) A sole nanocluster on a graphene surface. (B) A 

nanocluster surrounded by mobile adatoms on a graphene surface. The system observed in the 

original report is not (A) but rather (B). 

 15 

 

 

Fig. 2. Schematic energy diagrams about a system composed of a nanocluster and 

surrounding atoms during the nucleation process. The free-energy diagrams show size-

dependent thermodynamic characteristics of nanoclusters during the nucleation process. This 20 

alternative candidate of Fig. 3B has been considered during the revision of the original report, 
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but we discarded it because interactions between a nanocluster and surrounding atoms are 

unclearly presented. 

 




