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Abstract 

The similarity between objects is judged in a wide variety of 
contexts from visual search to categorization to face 
recognition. There is a correspondingly rich history of 
similarity research and many known behavioral trends and 
models of similarity. Nevertheless, most similarity behaviors 
have been identified and tested only in a comparatively 
narrow set of unique contexts. This leaves open the question 
of the extent to which similarity judgments rely on common 
processes or resources and the specific nature of those 
processes if so. We tested three diverse yet well-established 
measures of object similarity using identical, 
psychometrically controlled stimuli and identical analyses 
across tasks. We found several consistent behavioral effects 
across tasks that provide clues as to the nature of task-general 
similarity processes and serve as diagnostic targets for 
computational models of similarity. 

Keywords: similarity; psychology; concepts and categories; 
decision making; vision 

Overview 

Similarity judgments between objects occur across diverse 

contexts and tasks. Judging the similarity between perceived 

objects is necessary for following a map, identifying growth 

of a tumor between scans, noticing a defective product on an 

assembly line, or inventing new categories for novel objects. 

 The ubiquity of similarity judgments raises the question 

of whether they may derive from general, task-independent 

cognitive processes. If so, the specific nature of those 

processes and which similarity judgment behaviors they 

map to will be critical in better understanding the many 

tasks involving similarity judgments. One way to determine 

the nature of any core similarity processes is to test for task 

general behaviors. If tasks are diverse from one another, yet 

a set of behaviors is found to be common across them, this 

would suggest not only the existence of core processes, but 

that the behaviors in question derive from those core 

processes and offer clues about their nature. 

 Formal models in particular are well suited to 

investigating the nature of similarity judgment processes. 

Several formal models of similarity or that involve 

similarity exist (SIAM—Goldstone, 1994a; SUSTAIN—

Love, Medin, & Gureckis, 2004; COVIS—Ashby, Paul, & 

Maddox, 2011; ALCOVE—Kruschke, 1992; the SME—

Gentner & Markman, 1997), and although there are 

overlaps, few specific behaviors are captured by a wide 

variety of models. If any general processes of similarity 

judgments exist, however, then task-general behaviors likely 

associated with those general processes would serve as 

invaluable general target data for developing computational 

theories of those core processes. 

 Where do we begin, however, to search for evidence of 

general processes of similarity judgments? Many distinctive 

behaviors have been found in different similarity judgment 

contexts. Certainly, similarity judgments correlate with 

measurable differences in features between objects like 

color hue or size. This is qualitatively evident at face value, 

and feature comparisons have also been incorporated into 

formal, quantitative models since at least the early 20th 

century (Richardson, 1938). Details of these metrics have 

taken longer to establish, however. For example, there is 

evidence for both the use of Euclidean (Hout, Goldinger, & 

Ferguson, 2013) and of taxicab/city-block (Shepard, 1964) 

algorithms for determining the quantitative difference 

between two objects' feature values. Circular, wrap-around 

dimensions like angle or color hue present additional 

considerations. Analogous to city-block and Euclidean 

metrics, but within a single circular dimension, differences 

between objects could potentially follow a linear-type 

metric (Fig. 1) or a “chord length” metric (Shepard, 1962). 

 

 

Figure 1: Left: differences along a circular dimensions can 

be measured or perceived in two ways: as if the dimension 

were linear around the circle, or as if along chords through 

the circle, yielding different ratios between pairs. Right: a 

two-dimensional feature space where one dimension is 

circular may be perceived as a curved (A) or flat (B) 

manifold when a subset of items are sampled, with red 

(chord) and blue (linear type) lines showing metric options. 

 

 Further complicating the study of similarity judgments, 

Tversky (1977) classically demonstrated that similarity 

judgments do not always follow pure metric assumptions at 

all. For example, China may be judged less similar to North 
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Korea then North Korea is to China. This “asymmetry” 

effect cannot be explained by static feature value 

differences, since the difference between two real numbers 

does not metrically change with order of presentation. 

Since Tversky, a variety of other non-metric patterns have 

been observed in similarity judgments (in addition to metric 

patterns). A given magnitude of difference between two 

objects may become exaggerated in similarity judgments as 

the objects may become more similar along other 

dimensions or more “alignable” (Gentner & Markman, 

1997). For example, differences between an atom and the 

solar system are easier to point out than differences between 

an atom and a toaster. A given difference between two 

objects can also be magnified in judgments if a person 

knows of many other objects near one or both in features (a 

high “neighborhood density,” Krumhansl, 1978), such as 

differences between minor breeds of dogs. Similarities or 

differences between objects can also be perceived 

differently if attending to a certain feature dimension over 

others, like color over shape (Nosofsky, 1991). 

A variety of tasks have been used to find and test 

similarity judgment behaviors. Pairwise tasks are 

particularly common, where pairs of two items from a larger 

set are judged at a time. Often, a ratings scale is used, or a 

two-alternative “same/different” choice. Alternatively, 

grouping, piling, and other arrangement methods allow 

participants to see a larger number of objects at once, then 

sort them into patterns to indicate similarity.  

Establishing Task-General Similarity Processes 

 In order to test for the existence of task-general similarity 

processes among this wide array of tasks and behaviors, 

three steps must be taken. First, a set of candidate behaviors 

must be chosen that hold the potential to be consistently 

observed across tasks. We ruled out any behaviors already 

known to differ between tasks or ones that cannot be 

demonstrated in certain tasks. For example, Tversky's 

asymmetry effect, although seminal in the field, is difficult 

to observe in a multi-object arrangement task (Goldstone, 

1994b), due to the geometric constraints of a workspace. We 

investigated the influence of basic feature value differences 

on similarity judgments, degree of feature dimensional bias, 

participants' sensitivity to circular dimensions, and the 

influence of neighborhood densities in feature space. 

 The second step in investigating possible core processes is 

to test all candidate behavioral effects redundantly across a 

diverse variety of available judgment tasks. Common 

behaviors despite diverse tasks suggests that those behaviors 

may hold clues to core processes shared across context. We 

chose three similarity tasks that are all widely used but 

differ from one another along key characteristics to cover a 

meaningful range of cognitive environments. Our first task 

used pairwise ratings, a task where participants judge object 

pairs by clicking on a 1-9 similarity scale. This task allowed 

for quick trials but was not time pressured. 

 The second task used binary “same/different” judgments. 

Compared to the ratings task, the same/different task was 

faster and less deliberative. It also included a time pressure 

element and had right and wrong answers. 

 The third task was the Spatial Arrangement Method 

(SpAM, Goldstone, 1994b; Hout, et al., 2013). SpAM 

involves arranging many objects at once into a pattern such 

that distances correspond to dissimilarities between any two 

objects. The task was the least time-pressured, allowed the 

highest response precision, and afforded the greatest ability 

to form intentional patterns of judgments, since the full 

context of all items was visible throughout the task. 

 The final step in testing for the existence of task-general 

similarity processes is to isolate the variable of task by 

utilizing a consistent environment of stimuli and analyses. 

 After describing the general task environment, we will 

describe the methodologies and findings of each task in 

detail, as well as the theoretical and modeling implications 

of task-general similarity. 

Common Stimuli 

In order to rule out stimulus-based confounds and to align 

tasks to allow for identical analysis, we used a single set of 

stimuli across tasks. The stimuli were shapes with two 

metric feature dimensions—color and shape. Fig. 2 depicts 

the full set. Both feature dimensions were psychometrically 

controlled in previous experiments and developed explicitly 

such that mathematical steps equal perceptual steps in these 

dimensions for average participants. The color dimension 

varied in hue according to the CIE l*a*b color space 

designed for a perceptually equal gradient, and the shape 

dimension consisted of circles modified by sine waves in a 

way that has been previously established to be perceived by 

participants as an equally spaced single, circular feature 

dimension of shape (Drucker & Aguirre, 2009).  

Dimensions where mathematical steps equal perceptual 

steps means that the effect of any metric component of 

similarity can be quantitatively predicted, such as the 

influence of distances between objects along individual 

feature dimensions. 

The full set of stimuli formed a 25 object grid across the 

two feature dimensions, as seen in Fig. 2. This is a 

commonly used pattern of stimuli for studies of object 

similarity due to its symmetry, uniformity, and 

predictability (Hout, Goldinger, & Ferguson, 2013; 

Kriegeskorte & Mur, 2012). However, one consistently 

observed factor in object similarity judgments is 

neighborhood density. Difference judgments of objects with 

many other objects near them in feature space are magnified 

compared to objects in sparse areas (Krumhansl, 1978; 

Love, Medin, & Gureckis, 2003).  

To allow us to better test neighborhood density effects 

across tasks, we manipulated the subset of objects that 

participants worked with across two conditions. Half of all 

participants judged the similarities of objects in a basic grid 

pattern in feature space (a smaller 4x4 grid within the full 

5x5 set). The other half of participants judged objects from 

a less symmetric, two-wide “L” shaped pattern consisting of 

the same number of objects as the grid pattern but with 
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overall less neighborhood density. Fig. 2 shows both 

patterns with colored overlays on the full stimulus set.  

Stimuli were sampled from 180 degrees of each of their 

full circular dimensions, to make distances unambiguously 

unidirectional between pairs of objects. Both dimensions are 

still circular, however, and could be perceived as such. 

 

 

Figure 2: The full 5x5 set of stimuli, varying by sine 

wave-based shape and by l * a * b color space hue. The blue 

box indicates stimuli included in the grid subset, and the red 

box indicates stimuli in the “L” subset. 

Common Analyses 

Since our goal was to determine task-general similarity 

processes, we performed the same set of analyses on the 

data from each task. 

Multidimensional Scaling 

Multidimensional scaling (MDS) is an algorithm that takes 

as input a matrix of pairwise differences between all the 

pairs of items in a set.1 It outputs positions for each item so 

that the distance between pairs of items are as proportional 

as possible to the input differences.  Most notably, MDS 

provides visualization of the “shape” of a set of similarity 

judgments, such as the overall degree of metric uniformity 

and the compression, expansion, or warping of feature 

dimensions. 

We performed MDS analyses of both group averages 

within experimental conditions and of individuals' data. 

Group analysis allowed us to visualize the strongest, most 

influential trends of judgments across tasks and between 

stimulus conditions (grid versus “L” subsets of items), while 

individual analysis indicated the range and variety of task 

“strategies.” In particular, we were interested in how 

metrically organized group judgments were and whether 

participants showed dimensional modulation. 

                                                           
1 Unlike our stimulus dimensions, the response scales in our 

tasks were not carefully psychometrically equalized. Therefore, 

non-metric, rank order MDS was appropriate for all tasks. The best 

fit from 50 random starts was used for MDS analyses. 

Circular Dimension Sensitivity 

We hypothesized that participants’ similarity judgments 

might be consistently sensitive to the fact that our stimuli 

were sampled from circular dimensions. 

If participants fail to notice a dimension's circularity, then 

they should judge each perceptually equal step linearly. If 

participants recognize curvature in the dimension, however, 

then they may judge pairs of objects according to chord 

distances “through the circle of the dimension.” The right 

side of Figure 1 shows this distinction as applied to a grid of 

stimuli with one circular dimension. To test this, we 

analyzed raw similarity judgments by object pair, 

calculating root mean square errors to both linear and chord-

based predictions to find the closer fit for each task. 

Neighborhood Density Sensitivity 

Previous studies (e.g., Krumhansl, 1978) suggest that in 

some cases, denser neighborhoods of objects in feature 

space can bias similarity judgments toward more “different” 

responses in that neighborhood than for the same number of 

feature steps of difference in a sparser neighborhood. We 

measured neighborhood density of each object pair as a 

count of both objects’ immediately adjacent neighbors in 

feature space (up to 8 neighbors each in our stimulus set 

shown in Fig. 2). 

We then correlated the neighborhood densities of each 

pair with the degree to which dissimilarity judgments 

differed from metric predictions. A positive correlation, 

therefore, would indicate inflated dissimilarities between 

objects in denser local neighborhoods in feature space. 

Experiment 1 – Pairwise Ratings Task 

The pairwise ratings task is the most common and 

straightforward of our three similarity judgment tasks. Most 

of the behaviors we tested originated from data using this 

task. The task is open-ended, unconstrained, without time 

pressure, and focused on pairs of objects at a time. 

Methods 

Twenty adult participants performed the pairwise ratings 

task. One participant was dropped due to MDS being unable 

to converge on a solution for his ratings. 

Participants provided informed consent and were then 

seated in front of a computer terminal in an unadorned 

room. All instructions were on-screen. Participants were 

first exposed to the full set of 25 stimuli for context, one per 

second, and told to watch passively. Afterward, a ratings 

scale appeared and remained at the bottom of the screen 

throughout the rest of the experiment. The scale was labeled 

from 1-9, with 1 being labeled as least similar and 9 labeled 

most similar.  Each trial consisted of a 500ms initial fixation 

cross, which was then replaced by two horizontally 

separated objects.2  Participants were instructed to click the 

                                                           
2 Separation was eight degrees of visual angle and stimuli 

subtended approximately five degrees of visual angle. 
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number on the ratings scale corresponding to how similar 

they thought each pair of objects was. 

Each participant was grouped into one of the two stimulus 

conditions—the 4x4 grid subset of stimuli or the 2-wide “L” 

shaped subset of stimuli. Each participant received two 

trials each of every pair of objects within the subset of their 

condition, for a total of 272 trials per participant, randomly 

ordered per participant in one block. 

After the experiment, all similarity ratings were inverted 

(10 – rating) to yield dissimilarity ratings, and the set of 

common analyses described above was applied to the 

dissimilarity data from all participants. 

Results 

Before analyzing MDS results, we needed to determine 

the appropriate number of dimensions to use for fitting data 

in the MDS algorithm. We accomplished this by fitting 

multiple solutions at different numbers of dimensions and 

using “scree plots” shown in Fig. 3. Two-dimensional 

solutions were determined most valid across all conditions 

and experiments. An “elbow” is visible across conditions in 

the scree plots at two dimensions, indicating the point at 

which more dimensions begin to yield diminishing returns 

in fits that no longer justify the greater complexity of a 

higher dimensional model. Additionally, two dimensions is 

the simplest fit for all conditions that outperforms 

comparison results using random input data (black dots, 

Spence & Ogilvie, 1973). 

 
Figure 3: Scree plots of data from all conditions. All 

conditions outperform random data at two dimensions, and 

“elbows” are visible across conditions at two dimensions. 

 

Group MDS solutions for the pairwise ratings task are 

shown in Fig. 4. Intersection points between lines represent 

object positions as placed by MDS. To aid visualization, 

green lines connect objects one step apart in color, and red 

lines connect objects one step apart in shape.  

Both conditions show clear metric feature comparison 

influence: aside from a few items with swapped positions in 

the upper right, the grid conditions shows participants 

judging similarity roughly by a grid, and the “L” condition 

shows two unambiguous “arms” of objects, as expected for 

the “L” shaped subset of stimuli.  

The “L” condition also shows non-linear warping of the 

predicted shape. The overall solution is “bent,” meaning 

participants rated objects in the arms of the “L” differently 

than the feature values alone suggest. Both arms of the “L” 

also show exaggerated differences across shape (green lines 

are longer than red lines), suggesting dimensional 

modulation. 

Figure 4: Group MDS solutions for Experiment 1. 

 

Individual MDS solutions confirmed that the group 

patterns were not artifacts of averaging. Several individual 

participants showed grid like results in the grid condition, 

and several showed less organized but distinct “L” patterns. 

Additionally, a number of individual results demonstrated 

dimensional modulation more dramatically than group 

results, yielding tightly clustered groups of objects along 

one dimension in MDS solutions. Fig. 5 contrasts a 

dimensionally even solution with a clustered solution. 

Overall, nine participants showed evenly spaced 

dimensional patterns, and eleven showed clustering patterns. 

Figure 5: Individual MDS solutions of two individuals from 

the grid condition of Experiment 1, showing mostly evenly 

weighted dimensions (left) and clustering (right). 

 

Circular dimension analysis showed that participants' 

similarity judgments matched chord-based predictions more 

closely than linear-type predictions (RMSE of 1.24 [chord] 

vs. 1.65 [linear] for the grid condition and 0.87 vs. 1.70 for 

the “L” condition). This suggests that participants likely 

perceived dimensions as more circular than linear. 

Neighborhood density analysis showed moderate 

correlations between (observed – expected) dissimilarity 

ratings and the neighborhood densities of objects in a pair, r 

= 0.30 across conditions. This is consistent with predictions 

that high neighborhood density should magnify differences. 

Experiment 2 – Pairwise Same/Different Task 

Our second task was a binary judgment “same”/“different” 

ratings task. The task was speeded and designed to be 
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overall faster and with less opportunity for deliberative 

thought than the pairwise ratings task. 

Methods 

Twenty-two adult participants performed the pairwise 

same/different task. Two participants were dropped for not 

meeting a predetermined 70% accuracy cutoff (see below). 

The procedure for the same/different task was identical to 

that of the ratings task, up until the point of test trials. 

Participants were still given a 500ms fixation cross followed 

by pairs of objects at a time, but instead of a ratings scale, 

participants were instructed to use keyboard keys “A” and 

“L” to indicate “same” or “different” (counterbalanced) for 

object pairs. Unlike in the ratings task, each trial had a 

correct answer. Participants were instructed that “’Different’ 

pairs are different in EVERY way. ‘Same’ pairs are the 

same in ANY way.” This particular rule was used, because 

it allowed a much more even distribution of “same” and 

“different” trials than if “same” were defined as identical, 

thus avoiding excessive repetition of identical pairs. 

Feedback was given at the end of each trial as a green check 

mark or a red “X” in the center of the screen for 500ms. 

The task was “speeded” by the addition of a loud, 

annoying buzz that sounded whenever participants took 

longer than 1500ms from the onset of stimuli to respond. 

Despite the buzz, all trials continued until an answer was 

recorded, to avoid missing data. 

Participants were again grouped into grid and “L” 

conditions. Each participant saw each pair of objects in their 

condition at least five times. Some randomly chosen “same” 

pairs appeared a sixth time, to equalize the number of 

“same” and “different” trials for each participant. Overall, 

participants in the grid condition completed 728 trials, and 

participants in the “L” condition completed 740 trials. 

Dissimilarity ratings used in analyses were derived from 

the ratio of same:different responses across duplicate trials 

of each pair for a participant. If a given pair of objects was 

shown five times, for example, and a participant answered 

“different” to three of them, then the dissimilarity judgment 

for that object pair was interpreted as 3/5 = 0.6 out of 1.0. 

Results 

MDS group analysis is shown in Fig. 6. The results reflect 

those of Experiment 1, although with greater noise. In the 

grid condition, more green rows (objects sharing color) have 

swapped positions than in Experiment 1, but judgments are 

overall still dimensionally organized, with objects of shared 

feature following consistent orders and patterns across the 

stimulus set and dimensions being relatively perpendicular 

to one another. In the “L” condition, differences along shape 

are again exaggerated relative to differences along color, 

providing evidence of dimensional modulation. 

 

 

 

 

 

Figure 6: Group MDS solutions for Experiment 2. 

 

Individual MDS analyses again confirmed that some 

individual results matched those of the group. Ten 

participants showed clustering patterns, and eleven showed 

even dimension ratios. 

Circular analysis showed that participant behavior again 

fit more closely to chord-based predictions than linear-type 

predictions, indicating that judgments were sensitive to the 

circular feature dimensions used (RMSE of 0.2 vs. 0.23 for 

the grid condition and 0.16 vs. 0.23 for the “L” condition). 

After subtracting out the contribution of feature values 

alone, neighborhood density analysis again showed 

moderate correlations between behavioral difference ratings 

and the neighborhood densities of objects in a pair, r = 0.21 

across conditions, suggesting that judgments of differences 

were magnified in high density feature neighborhoods. 

Experiment 3 – Spatial Arrangement Task 

Our third task, SpAM, used distance relationships between 

many arranged objects to indicate similarity judgments. The 

task was slower, more contextual, and more allowing of 

thoughtful patterns of judgments than the previous tasks. 

Methods 

Twenty-three adult participants performed the SpAM task. 

One participant was dropped for not arranging any stimuli. 

Participants used the same apparatus and were shown the 

same 25 item exposure phase as in the previous tasks. They 

were then presented with a single test trial. All 16 items in 

their condition (grid or “L”) were displayed in columns 

along the sides of the screen, and a square workspace took 

up the center space. Participants were instructed to click and 

drag all items into the workspace, such that once all were 

placed, the distance between any pair of items would 

represent the dissimilarity between those items. Participants 

were allowed to move items after initial placement. 

Dissimilarity ratings in the SpAM task were recorded as 

simply the pixel distances between each pair of item 

placements. These were then used to perform the common 

set of analyses. 

Results 

As seen in Fig. 7, group MDS results for the grid condition 

matched those of the pairwise experiments, taking the form 

of a noisy grid pattern with some swapped rows or columns. 

The “L” results showed a unique pattern. Feature 

984



comparison is still apparent as a basis for judgments, but the 

two arms of the “L” were in this case laid out perpendicular 

to one another and with heavily swapped orders of feature 

values. Dimensional modulation is still suggested, but here, 

shape differences are exaggerated in only one arm, while 

color differences were exaggerated in the other. 

 

Figure 7: Group MDS solutions for Experiment 3. 

 

Individual MDS analyses again confirmed the validity of 

group patterns in some participants, and revealed another 

strong split between even dimension patterns (fifteen) and 

clustering patterns (six). 

Participants showed mixed sensitivity to circular 

dimensions, with better fitting RMSEs to linear distances in 

the square condition (520 vs. 624) and better fits to chord-

based distances in the “L” condition (100 vs. 107). 

Participants also again demonstrated a weak to moderate 

sensitivity to neighborhood densities, with neighborhood 

density measures correlating with feature-controlled 

dissimilarity ratings at r = 0.17 across conditions. 

General Discussion 

All three of our tasks showed evidence of a feature 

comparison influencing similarity judgments, roughly 

accurate representation of grid versus “L” stimulus patterns, 

uneven dimensional modulation to the extreme of clustered 

judgments in some participants, sensitivity to circular 

dimensions, and sensitivity to neighborhood density. 

This large number of behaviors consistent across diverse 

tasks presents a strong case for the existence of core 

similarity processes. Furthermore, the identity of these 

particular behaviors may offer important clues as to the 

nature of those processes, particularly when targeted by 

formal, computational models of similarity judgments. Any 

general theory of similarity will likely require a flexible 

memory space that allows for both linear and circular 

feature space metrics (unlike traditional, Cartesian 

frameworks), and should describe processes allowing for 

modulating feature dimensions in linear (e.g., clustering) 

and non-linear (e.g., neighborhood density) ways.  

Our findings also serve as a convenient quantitative 

modeling target due to the quantitative nature of our 

analyses, the psychometrically controlled and evenly 

perceptually spaced stimuli, and our consistent testing 

environment. 
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