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The SNARE Machinery Is Involved in Apical
Plasma Membrane Trafficking in MDCK Cells

Seng Hui Low,* Steven J. Chapin,* Christian Wimmer,® Sidney W. Whiteheart,! Laszl6 G. Kémiives,*

Keith E. Mostov,* and Thomas Weimbs*

*Department of Anatomy, Department of Biochemistry and Biophysics, Cardiovascular Research Institute,*Department of
Dermatology and Veteran Administration Medical Center, University of California, San Francisco, California 94143-0452;
$Department of Cellular Biochemistry and Biophysics, Memorial Sloan-Kettering Cancer Center, New York 10021;
IDepartment of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536

Abstract. We have investigated the controversial in-
volvement of components of the SNARE (soluble N-ethyl
maleimide—sensitive factor [NSF] attachment protein
[SNAP] receptor) machinery in membrane traffic to
the apical plasma membrane of polarized epithelial
(MDCK) cells. Overexpression of syntaxin 3, but not of
syntaxins 2 or 4, caused an inhibition of TGN to apical
transport and apical recycling, and leads to an accumu-
lation of small vesicles underneath the apical plasma
membrane. All other tested transport steps were unaf-
fected by syntaxin 3 overexpression. Botulinum neuro-
toxin E, which cleaves SNAP-23, and antibodies against
a-SNAP inhibit both TGN to apical and basolateral

transport in a reconstituted in vitro system. In contrast,
we find no evidence for an involvement of N-ethyl ma-
leimide-sensitive factor in TGN to apical transport,
whereas basolateral transport is NSF-dependent. We
conclude that syntaxin 3, SNAP-23, and a-SNAP are
involved in apical membrane fusion. These results dem-
onstrate that vesicle fusion with the apical plasma
membrane does not use a mechanism that is entirely
unrelated to other cellular membrane fusion events, but
uses isoforms of components of the SNARE machin-
ery, which suggests that they play a role in providing
specificity to polarized membrane traffic.

factor [NSF] attachment protein [SNAP] receptor)

hypothesis provides a universal model of how
nearly all intracellular membrane fusion events work (12,
21, 40, 41, 43). The essentials of the original version of the
model are that v-SNARE proteins located on vesicles bind
to t-SNARE proteins located on target membranes. In a
mechanism that is not well understood, this binding leads
ultimately to the fusion of the membranes of vesicle and
target. Several soluble proteins, such as the ATPase NSF
and o-SNAP interact with the v- and t-SNAREs and are
thought to be general factors involved at some point(s) in

THE SNARE! (soluble N-ethyl maleimide-sensitive
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the overall membrane traffic process. The SNARE hy-
pothesis proposes not only that the SNARE machinery ac-
complishes the membrane fusion event but that it also
plays a major role in the specificity of membrane fusion.
To this goal, the correct pairing of individual members of
the large family of v-SNARESs with corresponding mem-
bers of the large family of t-SNAREs would be required
before fusion can occur. Indeed, different isoforms of v-
and t-SNARE:s have been shown to be involved in differ-
ent membrane traffic pathways (12, 21, 41, 43). This is re-
flected by the different subcellular localizations of distinct
SNARE isoforms.

Recently, analysis of membrane traffic in polarized epi-
thelial cells has provided evidence of another membrane
fusion mechanism, which has been suggested to be wholly
unrelated to the SNARE hypothesis (23). Polarized epi-
thelial cells have two plasma membrane domains, apical
and basolateral. Newly made membrane proteins can
reach these surfaces by two pathways. (a) Proteins can be
sent from the TGN directly to either the apical or basolat-
eral surface. (b) Proteins can first be sent to one surface
(usually the basolateral) and from there are endocytosed
and transcytosed to the apical surface (31). Ikonen et al.
(23) investigated the involvement of several components
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of the SNARE machinery in direct delivery from the TGN
to the apical and basolateral surface. These authors recon-
stituted delivery from the TGN to either surface in polar-
ized MDCK cells that had been permeabilized with the
pore-forming toxin streptolysin-O (SLO). It was shown
that TGN to basolateral surface transport behaved as pre-
dicted by the SNARE hypothesis: transport was inhibited
by antibodies to NSF, stimulated by recombinant a-SNAP,
inhibited by neurotoxins that proteolytically cleave the
v-SNARE synaptobrevin/VAMP-2, and inhibited by Rab-
GDI, which sequesters and inhibits Rab proteins that
probably act upstream of SNAREs. Remarkably, all of
these treatments were without effect on TGN to apical
transport (23). The transport vesicles involved in this step
are very enriched, however, in annexin 13b, and antibodies
to annexin 13b inhibit reconstituted TGN to apical trans-
port (19). These data led to the suggestion that TGN to
apical transport uses a completely novel mechanism,
whose only known positive attribute is the involvement of
annexin 13b (42). One conclusion from this model is that
specificity in basolateral versus apical membrane transport
is conferred by the complete incompatibility of the fusion
machineries rather than by a combinatorial pairing of
SNARES and/or their associated proteins (52).

TGN to apical transport thus stands as the most credible
exception to the universality of the SNARE hypothesis
(and its variants). The proposed existence of an alternative
mechanism has attracted a great deal of ongoing attention,
as it has profound consequences for our understanding of
membrane traffic. For instance, the genome of Saccharo-
myces cerevisiae encodes eight recognizable classical mem-
bers of the syntaxin family of t-SNARE subunits (22, 49)
each of which may identify a unique compartment. This
may be the most meaningful way in which to define a
membrane compartment. The existence of a non-SNARE
fusion mechanism would, of course, allow the existence of
other compartments, not necessarily defined by a t-SNARE.
Furthermore, TGN to apical transport has been proposed
to use glycolipid- and cholesterol-rich membrane micro-
domains, “rafts” (42). The involvement of a non-SNARE,
annexin 13b mechanism in this transport has been, in fact,
one of the principal arguments in support of the hypothe-
sis that such TGN to apical rafts are fundamentally differ-
ent from the “conventional” mode of vesicular transport
(42, 48).

Two subsequent findings, however, raised doubts that
vesicle fusion with the apical plasma membrane is funda-
mentally different from other membrane fusion events.
First, Apodaca et al. (5) studied the basolateral to apical
transcytosis of IgA in MDCK cells and found that the final
fusion event involves NSF and can be inhibited by botuli-
num neurotoxin E (BoNT-E), which normally inactivates
the neuronal t-SNARE SNAP-25. Although the target of
the toxin was unknown at the time of that study, the inter-
pretation of the result was that at least a subset of traffick-
ing pathways to the apical plasma membrane (i.e., transcy-
tosis) must involve the SNARE machinery. Second, we
and others have found that certain t-SNARE isoforms are
localized to the apical PM of epithelial cells (for review
see reference 48). At least at the plasma membrane, the
t-SNARE consists of two subunits, which are members of
the syntaxin and SNAP-25 families, respectively. Three
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syntaxin isoforms could be identified at the plasma mem-
brane of MDCK cells: syntaxin 2 is found at both the baso-
lateral and apical surface, whereas syntaxins 3 and 4 are
localized to the apical or basolateral membranes, respec-
tively, with no overlap (26). This result suggested (a) that
the apical plasma membrane does use components of the
SNARE machinery and (b) that syntaxins 3 and 4 may
serve specific pathways to either membrane. We and oth-
ers could also show that SNAP-23, the only known non-
neuronal isoform of SNAP-25, is localized to both plasma
membrane domains in MDCK cells (27) and that it is a
substrate of the BoNT-E (25, 27), which makes it likely
that this t-SNARE is involved at least in the fusion of trans-
cytotic vesicles with the apical membrane.

To solve the question of the involvement of the SNARE
machinery in TGN to apical plasma membrane fusion we
have investigated the involvement of specific components
of this machinery by functional studies. While we indeed
can find no evidence for a role of NSF, we present data
confirming that this pathway uses syntaxin 3, a-SNAP, and
SNAP-23. We conclude that TGN to apical transport uses
several of the elements of the SNARE machinery and
therefore does not represent an entirely novel type of
membrane fusion.

Materials and Methods

Materials, Reagents, and Recombinant Proteins

Most materials were from previously described sources (26, 27). SLO was
obtained from Dr. S. Bhakdi (University of Mainz, Mainz, Germany). The
generation and characterization of the mAbs 2F10 and 3E2 against a-SNAP
will be described elsewhere. The antibodies were purified from ascites
fluid by ammonium sulfate precipitation, protein G affinity chromatogra-
phy, concentration on dry PEG 34000 and extensive dialysis against 115
mM KOAc, 20 mM Hepes-KOH, pH 7.4, 2.5 mM MgOAc,, 5 mM glu-
tathione. Antibodies against the ectoplasmic domain of rabbit pIgR gen-
erated in guinea pig (9) and sheep (3) have been described before. Re-
combinant wild-type and mutant (D1E-Q) NSF—both containing a myc
and His, tag—were prepared and purified as described (51). Recombinant
a-SNAP was prepared as described in (50). cDNAs for the bacterial ex-
pression of His-tagged BoNT light chains were a gift of Drs. T. Binz and
H. Niemann (Medizinische Hochschule Hannover, Hannover, Germany).
The toxins were expressed in Escherichia coli and purified as described
(7). All other chemicals and reagents were from Sigma Chemical Co. (St.
Louis, MO) or Boehringer Mannheim Corp. (Indianapolis, IN).

Cell Culture and Transfection of MDCK Cells

MDCK strain II cells were grown as previously described (27). For all
quantitative assays cells were plated on Transwell polycarbonate filters
(12-mm diam, 0.4-pm pore size; Corning-Costar Corp., Corning, NY) at
high density and maintained for 3—4 d with regular media changes. The
generation of MDCK clones stably expressing WT-pIgR (29), 664A-pIgR
(14), SL-pIgR (15), or glycosylphosphatidylinositol (GPI)-pIgR (30) have
been described previously. In the GPI-pIgR, the entire cytoplasmic do-
main of pIgR has been deleted. During biosynthesis, the remaining hydro-
phobic COOH-terminal domain is exchanged for a GPI anchor.

MDCK clones that overexpress different syntaxin isoforms were gener-
ated exactly as described before (26). Briefly, MDCK cells, expressing the
WT-pIgR or different pIgR mutants, were individually transfected with
pCB7 constructs containing syntaxin 2, 3, or 4 followed by selection in hy-
gromycin. Clones were screened for syntaxin expression by Western blot
and immunofluorescence microscopy. For all clones, care was taken to
check that the localization of the expressed syntaxin isoforms did not dif-
fer from the localization previously reported (26). The polarity of all
clones was verified as described (26) and only those clones that passed
these tests were investigated further.
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Measurement of Biosynthetic Transport to the Apical or
Basolateral Plasma Membrane in Intact Cells

Confluent MDCK cell monolayers on polycarbonate filters were washed
twice with PBS* and starved in MEM™ cysteine for 15 min at 37°C. Pro-
teins were then pulse labeled by placing the Transwell on a 25-pl drop of
MEM ™ cysteine containing 44 pCi of [*S]cysteine (sp act: 1,000 Ci/mmol)
for 10 min at 37°C. Cells were washed with MEM-BSA (MEM with
Hanks’ salts, 0.35 g/liter NaHCOs;, 20 mM Hepes-Na, pH 7.4, 6 mg/ml
BSA) and the chase was continued with MEM-BSA in the apical chamber
and MEM-BSA containing guinea pig anti-pIgR antibody in the basal
chamber for 45 min (WT-pIgR) or 40 min (SL- and GPI-pIgR). Afterwards,
the cells were immediately cooled on ice for 1 h to allow for efficient anti-
body binding. Media were collected and the remaining unbound antibody
was removed by three 10-min washes with MEM-BSA on ice. The filters
were cut out and the cells solubilized by incubation at 37°C with shaking
for 15 min in Mixed Micelle Buffer (MMB) (9) containing a large excess
of MMB-lysate of unlabeled pIgR-expressing MDCK cells to prevent any
remaining unbound antibody from binding to radiolabeled pIgR. The
cleared cell lysates were immunoprecipitated first with protein A—Sepharose
to recover the basolaterally transported pIgR molecules bound to guinea
pig antibody and then subsequently with sheep anti-pIgR antibody cou-
pled to protein G-Sepharose to determine the intracellular amount of pIgR.
Cleaved, soluble pIgR-ectodomain in the apical media was immunopre-
cipitated using sheep anti-pIgR antibody coupled to protein G-Sepharose.
The radiolabeled pIgR in each fraction was determined by SDS-PAGE
and phosphorimaging. The pIgR molecules transported to the apical sur-
face would be cleaved by an apical endogenous protease of MDCK cells
and released into the apical media. The biosynthetic transport of pIgR to
the apical surface was calculated by dividing the proportion detected in
the apical media by the total amount of radiolabeled pIgR recovered from
all fractions. Basolaterally transported pIgR, on reaching the basolateral
surface, is bound by the antibody present in the basal media. The percent-
age of transport to the basolateral surface was thus determined by divid-
ing the amount of pIgR recovered by protein A immunoprecipitation
from the cell lysate by the total radiolabeled pIgR recovered from all frac-
tions. The amount of pIgR that had not reached any surface yet was calcu-
lated by dividing the amount that was recovered in the second immuno-
precipitation of the cell lysates after the antibody-bound pIgR was
removed by protein A-Sepharose by the total radiolabeled pIgR.

Transcytosis and Recycling Assays

Basolateral to apical transcytosis was carried out exactly as described pre-
viously (13). The apical recycling of IgA was determined as follows. Tight
cell monolayers on 12-mm Transwells were rinsed twice with MEM-BSA.
Radioiodinated IgA (1-2 X 107 cpm/pg) in 100 pl of MEM-BSA was
added to the apical chamber and incubated for 10 min 37°C for internal-
ization. The apical surface was washed four times in a total time period of
3 min with MEM-BSA. Fresh MEM-BSA at 37°C was added to both
chambers and the media were replaced at various time points over a 120-
min period. At the end of the time course, the radioactivity in all the me-
dia fractions and the cells was measured.

Permeabilization of MDCK Cells and Reconstitution
of Transport

This procedure was carried out as described previously (23, 36), with slight
modifications. Transport from the TGN to the basolateral plasma mem-
brane was monitored using 664A-pIgR and to the apical plasma mem-
brane using SL- or GPI-pIgR as reporter molecules. Briefly, MDCK cells
expressing either of the pIgR mutants were grown on polycarbonate fil-
ters and pulsed labeled with [*S]cysteine as described above, and then in-
cubated at 17°C for 2 h to accumulate radiolabeled proteins in the TGN
(28). The cells were washed twice with ice-cold KOAc buffer (20 mM
Hepes-KOH, pH 7.4, 115 mM potassium acetate, 2.5 mM magnesium ace-
tate, 0.9 mM CaCl,) and once with KTM buffer (20 mM Hepes-KOH, pH
7.4, 115 mM potassium acetate, 3.5 mM magnesium acetate, 5 mM glu-
tathione, 2 mM EGTA, 2 mM K,CaEGTA). SLO was bound to the baso-
lateral surfaces by placing the Transwells on a 20-wl drop of KOAc buffer
containing 0.3 pg of SLO and 2 mM DTT on ice for 10 min. Excess un-
bound SLO was removed by washing the filters three times with ice-cold
KTM. Cell permeabilization and cytosol washout was achieved by incuba-
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tion at 17°C for 45 min in KTM. Transport was reconstituted by adding to
the basal permeabilized side 500 pl of KTM containing an ATP-regener-
ating system (1 mM ATP, 8 mM creatine phosphate, 50 pg/ml creatine ki-
nase) in the presence or absence of HeLa cell cytosol (final concentration
~4 mg/ml protein) and KTM alone in the apical chamber. Transport of
plgR to the apical or basal surface was determined by antibody capture
achieved by including guinea pig antibody against the ectoplasmic domain
of pIgR in the apical or basal media, respectively, and then incubating at
37°C for 60 min. Antibody binding was completed by incubation for 60
min on ice, and pIgR in the media and cells was recovered as described
above by immunoprecipitation, resolved by SDS-PAGE, and then quanti-
fied by phosphorimaging. The cytosol-, ATP-, and temperature-depen-
dence of reconstituted transport was very similar to the values published
by Simons and colleagues (23, 36).

NEM Treatment of Permeabilized Cells and Addition
of NSF

After [*S]cysteine labeling, SLO binding, and cell permeabilization with
cytosol washout at 17°C, the cells were washed twice with ice-cold KTM
without glutathione. 0.05 or 0.15 mM NEM (for basolateral or apical
transport, respectively) diluted in 0.5 ml KTM without glutathione was
added to both the apical and basal chambers and incubated on ice for 15
min. The cells were then incubated with KTM containing 5 mM DTT for 3
min, and with regular KTM including glutathione for 5 min on ice before
resuming the protocol as above. Where appropriate, 200 pg/ml of puri-
fied, recombinant myc-tagged Hiss-NSF was added to the final transport
buffer.

Treatment of Permeabilized Cells with NSF Mutant,
BoNTs, and Anti-a-SNAP Antibody

Pulse-labeling, TGN-accumulation, SLO-binding, and permeabilization
were carried out as described above. For experiments involving treatment
with recombinant mutant NSF, HeLa cytosol, the ATP-regenerating sys-
tem with or without 200 pg/ml recombinant mutant NSF in KTM were
added to the basal chamber and left for 15 min at 17°C before warming up
to 37°C and resuming as described above.

For experiments involving treatment with BoNTs, the standard proto-
col was used except that 10 or 100 pg/ml of purified recombinant Hiss-
tagged light chains of BONT-E or—as a control—an inactive mutant of
BoNT-C1, in which the glutamate residue at position 229 in the active site
was exchanged for an alanine residue (54), were added to the basal cham-
bers during the permeabilization and transport steps. As a further control,
BoNT-E was inactivated by boiling for 10 min before addition to the per-
meabilized cells.

For experiments involving o-SNAP antibodies, 110 pg/ml of mAbs
2F10 or 3E2 were added to the basal chambers during permeabilization
and transport steps. The concentration of cytosol in the transport reaction
was reduced by half as compared with all other experiments to reduce the
added amount of exogenous a-SNAP present in the cytosol. As a control,
a fourfold molar excess of recombinant a-SNAP was added to the anti-
bodies 10 min before they were added to the permeabilized cells.

Electron Microscopy

The fixation and imidazole-based staining procedure of Thiery et al. (44)
was used with slight modifications. MDCK cells cultured for 4 d in Tran-
swell polycarbonate filters were rinsed with PBS™ and immediately fixed
in 2.7% glutaraldehyde, 0.8% paraformaldehyde in 0.1 M cacodylate
buffer, pH 7.2 for 2 h, and then stored in buffer alone at 4°C overnight.
The cells were postfixed in 2.0% OsOy, 0.05 M imidazole in 0.1 M bar-
bital-acetate buffer, pH 7.2, at 37°C for 60 min. After washing three times
for 5 min in distilled water, the cells were stained in a double lead and cop-
per citrate solution at 37°C for 30 min, washed three times 5 min in dis-
tilled water, and then dehydrated through a series of graded ethanol (50,
70, 80, 95, and 100%). The cells were incubated in 100% ethanol/Spurr’s
resin (1:1) for 30 min at room temperature and then switched to 100%
resin for 60 min. Polymerization was carried out overnight at 60°C. 75-85-
nm sections were cut and mounted on nickel grids. No poststaining of the
cells was necessary. Images were taken on a Zeiss 10 CA Electron Micro-
scope at 60 kV.
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Results

Overexpression of Syntaxin 3 Inhibits Biosynthetic
Transport to the Apical but Not Basolateral Surface of
MDCK Cells

We have reported previously the differential plasma mem-
brane localization of the syntaxin isoforms 2, 3, and 4 in
MDCK cells (26). To study whether any of these t-SNAREs
are involved in any of the established membrane traffic
pathways, we investigated the possible influence that the
overexpression of these syntaxin isoforms may have on
different pathways. The specific inhibition of transport
pathways by overexpression of syntaxins has been re-
ported previously in other systems (17, 18, 32, 53).

As a reporter molecule, we chose the polymeric immu-
noglobulin receptor (pIgR) whose trafficking in MDCK
cells is well known (31). Newly synthesized wild-type
(WT) plgR travels directly from the TGN to the basolat-
eral plasma membrane, where it can bind its ligand poly-
meric IgA. The receptor is then endocytosed and transcy-
tosed across the cell to the apical surface. Here, an
endogenous protease cleaves the extracellular domain of
plgR, releasing it into the apical medium. The WT-pIgR
can be used to study the biosynthetic transport of the re-
ceptor to the basolateral plasma membrane, as well as ba-
solateral to apical transcytosis, and basolateral and apical
recycling of the ligand IgA. A mutant form of the pIgR, in
which the basolateral targeting signal in the cytoplasmic
domain has been deleted (Signal-less or SL-pIgR) is trans-
ported from the TGN directly to the apical plasma mem-
brane (15). In another apically targeted mutant, the pIgR-
ectodomain is inserted into the membrane by a GPI anchor
(Low, S.H., K. Mostov, and T. Weimbs, manuscript in
preparation).

Both SL- and GPI-pIgR can be used to measure the bio-
synthetic transport to the apical plasma membrane domain.
Since SL-pIgR has a single membrane-spanning domain
while GPI-pIgR is integrated in the membrane by a GPI
anchor, both proteins may reach the apical plasma mem-
brane by different routes. It has been proposed that pro-
teins, like GPI-anchored proteins, that interact with deter-
gent-insoluble glycosphingolipid and cholesterol-enriched
rafts, would be segregated from proteins that do not parti-
tion into these rafts. We have indeed found that GPI-pIgR
is partially insoluble in Triton X-100—containing buffers
whereas SL-pIgR is entirely soluble (Low, S.H., K.E. Mos-
tov, and T. Weimbs, manuscript in preparation).

The assay system we used to measure the biosynthetic
transport of pIgR to the basolateral or apical plasma mem-
brane is a pulse-chase protocol in which the basolaterally
delivered receptor is detected by surface immunoprecipi-
tation and the apically delivered receptor by release of the
ectodomain into the apical medium after cleavage by the
endogenous protease (see Materials and Methods).

The syntaxin isoforms 2, 3, and 4 were overexpressed by
stable transfection in MDCK cells that also express either
the WT-, SL-, or GPI-pIgR. The same expression vector
with a cytomegalovirus (CMV)-promoter was used for all
syntaxin isoforms and several individual clones were iso-
lated that expressed similar amounts of the same syntaxin
isoform in each of the parental cell lines. The extent of
syntaxin overexpression over WT levels is ~10-fold (26).
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As shown in Fig. 1 A, transport of pIgR to the basolateral
surface was not affected by overexpression of any of the
syntaxin isoforms. In contrast, the apical transport of SL-
as well as GPI-pIgR was consistently inhibited by the
overexpression of syntaxin 3 but not syntaxins 2 or 4 (Fig.
1, B and C). The overexpression of syntaxin 3 did not
cause mistargeting of SL- or GPI-pIgR to the basolateral
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Transport
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104
0
Cc Syn2 Syn3 Syn4
% of Total
B COW IR0 Ty Y
40
Apical 2 ’ j
.Tfanspon 0 4 / f ; HH
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1 2 2 2 2 10 7 6 4 2 2 4=n
[ c Syn2 Syn3 Syn4

C Apical 30
Transport
(% of Total}

Cc Syn2 Syn3 Syn4

Figure 1. Effect of syntaxin overexpression on TGN to surface
transport of WT-, SL-, or GPI-pIgR in MDCK Cells. (4) MDCK
cells expressing WT-pIgR were untransfected (C) or stably trans-
fected with syntaxin 2 (Syn2), 3 (Syn3), or 4 (Syn4). As described
in Materials and Methods, newly synthesized pIgR transported to
the basal surface was measured in a pulse-chase protocol and ex-
pressed as a percentage of the total labeled pIgR. The values
were determined using two different clones in triplicate filters
each and the means and standard deviation are plotted. (B)
MDCK cells expressing SL-pIgR were transfected with either
syntaxin 2, 3, or 4. Untransfected parental cells (C) or cells trans-
fected with the syntaxin 4 plasmid but not expressing the protein
(C”) served as controls. Transport of newly synthesized SL-pIgR
was determined in a pulse-chase experiment and the amount
transported to the apical surface (black bars) or remaining in the
cell at the end of the chase (hatched bars) is expressed as a per-
centage of the total labeled SL-pIgR. Except for the control pa-
rental cell line, multiple clones of each cell line were examined
and the values shown are the means and standard deviation of
several filters (n). Dotted lines indicate the average values of the
control experiments. (C) MDCK cells expressing GPI-pIgR were
untransfected (C) or transfected with syntaxin 2, 3, or 4. Delivery
to the surface was measured as described above. The inhibition of
apical transport of SL- and GPI-pIgR by syntaxin 3 overexpres-
sion is statistically significant (Student’s -test, P < 10710).
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domain but rather an intracellular accumulation that
would be consistent with a kinetic perturbation of vesicle
fusion. That a similar inhibition in apical transport after
syntaxin 3 overexpression was observed with two different
reporter molecules in several independent clones argues
against an artifact of clonal variation. The finding that the
apical but not the basolateral pathway was inhibited by
syntaxin 3 overexpression indicates that the inhibition
takes place at a post-TGN step because the transport path-
ways of membrane proteins are believed to be identical
until they leave the TGN (20).

Opverexpression of Syntaxin 3 Inhibits Apical
Recycling but Not Basolateral to Apical Transcytosis
of Endocytosed IgA

In addition to TGN to apical delivery, the two other
known pathways to the apical surface are transcytosis
from the basolateral surface, and recycling from the apical
surface back to the apical surface. We used the same clones
of MDCK cells, expressing WT-pIgR and the syntaxin iso-
forms 2, 3, and 4 as above, to measure these pathways
quantitatively. Fig. 2 A shows that basolateral to apical
transcytosis of IgA by pIgR is not affected by overexpres-
sion of syntaxins 2, 3, or 4. Recycling of IgA back to the
basolateral surface was also not affected (not shown).

We also used the WT-pIgR to assay recycling of apically
internalized material back to the apical surface. Although
the pIgR is rapidly cleaved at the apical surface, there is al-
ways a pool of pIgR that has not yet been cleaved. We
have previously shown that IgA bound to this apical pIgR
is internalized and largely recycled to the apical surface
(10). Fig. 2 B shows that overexpression of syntaxin 3, but
not syntaxins 2 or 4, specifically slows apical recycling of
this IgA. The rates of IgA uptake from the apical or baso-
lateral surfaces were identical in all clones (data not
shown).

Taken together, Figs. 1 and 2 show that overexpression
of syntaxin 3 specifically reduces TGN to apical transport
and apical recycling. This is not due to blockage of all po-
larized traffic (e.g., by titration of a common transport fac-
tor) as TGN to basolateral delivery and transcytosis to the
apical surface are not affected. The apical recycling assay
clearly shows that the effect is largely kinetic.

Despite the isolation of individual clones we never ob-
tained completely uniform expression of the transfected
syntaxins in MDCK cells, even after repeated subcloning.
Based on immunofluorescence analysis, only ~50-75% of
the cells in each clone expressed the transfected syntaxins
at the time of our experiments, though it is possible that
some of the remaining cells expressed lesser amounts of
transfected syntaxin 3 that were not clearly visible above
background. It is therefore, likely that the true inhibitory
effect on TGN to apical delivery and apical recycling in in-
dividual cells of high syntaxin 3 expression was much
greater than could be observed biochemically in the entire
population. The same clones of MDCK cells expressing
WT-pIgR and the syntaxin isoforms were used for the
TGN to basal surface, transcytosis, and recycling assays.
Since an inhibitory effect of syntaxin 3 overexpression was
observed in apical recycling, this very same level of syn-
taxin 3 overexpression had no effect on the other two
pathways.

Opverexpression of Syntaxin 3 Causes Accumulation of
Vesicles Near the Apical Plasma Membrane

The results described above strongly suggest that syntaxin
3, which is localized at the apical plasma membrane (26),
plays a role in the two transport pathways that are affected
by its over-expression. To investigate whether the ob-
served inhibition of apical transport pathways caused mor-
phological changes, we examined the cells, grown under
the same conditions as for the transport assays, by thin-
section electron microscopy. The appearance of the cells
was identical and the relative volumes of cytoplasm, nu-
clei, mitochondria and Golgi apparatus did not differ be-
tween syntaxin 3 overexpressing and control cells (Table
I). However, an increase in the number of small vesicles
with a typical diameter of 100 nm (range: 50-200 nm) oc-
curring within less than half a vesicle diameter of the api-
cal plasma membrane was observed in cells overexpress-
ing syntaxin 3. Results of a typical experiment are shown
in Table I, in which approximately twice as many of such
vesicles were observed per unit length in the syntaxin 3—over-
expressing cells. This experiment was repeated several
times using a variety of fixation protocols. In all cases, we
obtained the same result of approximately twice as many
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vesicles per unit surface length in syntaxin 3 cells. A repre-
sentative field of such vesicles is shown in Fig. 3 A, with a
corresponding field from a control cell in Fig. 3 B. These
vesicles are always close to the apical surface and occa-
sionally even touch it but are not continuous with it. The
shape of these electron-lucent vesicles is mostly spherical;
tubules were almost never observed. This result is consis-
tent with the hypothesis that these vesicles may be inter-
mediates in the transport pathways that are inhibited by
syntaxin 3 overexpression and that syntaxin 3 overexpres-
sion causes a block in vesicle fusion, not vesicle production
or transport to the region of the apical surface.

NSF Involvement Can Be Demonstrated in TGN to
Basolateral but Not Apical Transport

Ikonen et al. (23) reported previously that inhibitory anti-
bodies to NSF did not inhibit the transport of the influenza
virus hemagglutinin from the TGN to the apical plasma
membrane in a permeabilized MDCK cell system. To test
whether this NSF independence would be observed also if
the pIgR variants were used as reporters, we used a very
similar in vitro-reconstituted transport system. To moni-
tor TGN to apical transport we used the SL- and GPI-
pIgR and for the basolateral transport we used 664A-pIgR
in which a phosphorylation site (serine 664) in the basolat-
eral targeting signal of the receptor is substituted with an
alanine residue. This mutant receptor is transported to the
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Figure 3. Small vesicles accumulate close to the apical plasma
membrane in MDCK cells over-expressing syntaxin 3. MDCK
cells stably transfected for syntaxin 3 (A) or the parental cells (B)
were grown in parallel as tight monolayers on polycarbonate fil-
ters. Cells were processed for transmission electron microscopy.
Parts of the apical plasma membrane with microvilli are shown.
Small vesicles typically 100 nm in diameter can be seen close to
the plasma membrane. The numbers of these vesicles are in-
creased significantly in cells overexpressing syntaxin 3 (see Table
I). Bar, 500 nm.
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Table I. Analysis of the Ultrastructure of MDCK Cells
Overexpressing Syntaxin 3

Golgi Apical
Cytoplasm*  Nuclei*  Mitochondria® apparatus®  Vesicles/um
Control-
MDCK 64.3(0.5) 35.7(0.5) 7.8(0.1) 2.8(0.1) 0.15(0.05)
Syn3-
MDCK 65.2(0.9) 34.8(0.9) 7.9(0.2) 29(0.2) 0.30(0.04)

MDCK cells overexpressing syntaxin 3 or control cells were analyzed by transmission
electron microscopy. For the analysis of possible gross morphological changes, 25 mi-
croscopic fields at low magnification (5,000X) were chosen and the relative volumes
of the cytoplasm versus nucleus and of the mitochondria and Golgi-apparatus were de-
termined by point counting stereology as described by Weibel et al. (47). For the quan-
titation of apical vesicles, 54 (control: 28) microscopic fields at high magnification
(16,000X) along the apical plasma membranes of the cell layer were collected ran-
domly. Vesicles of a typical diameter of 100 nm (range 50-200 nm) that were 30 nm
or closer to the apical plasma membrane were counted (syn3: 88; control: 22). The
base of the apical plasma membrane (excluding the microvilli) was measured (syn3:
291.5 pwm; control: 149.1 wm). The final values are the means (standard error) of vesi-
cles per micrometer of base of the apical plasma membrane. The increase in the num-
ber of apical vesicles in syntaxin 3 overexpressing cells was statistically significant (P <
0.01 by Student’s ¢ test).

*Percent of total cell volume (SEM).

#Percent of volume of cytoplasm (SEM).

$Vesicles 30 nm or closer to the apical plasma membrane (SEM).

basolateral surface as efficiently as the wild-type receptor
but is deficient in subsequent transcytosis to the apical sur-
face (15), which prevents any overlapping signal from
transcytosis.

MDCK cells expressing either of the pIgR forms were
pulse-labeled and membrane proteins were transported to
and accumulated in the TGN by a low temperature chase.
The basolateral plasma membrane was then permeabi-
lized using SLO and the endogenous cytosol was washed
out. After the addition of exogenous HeLa cell cytosol and
ATP as an energy source, transport to the plasma mem-
brane was restored by chasing at 37°C, and radiolabeled
pIgR molecules arriving at the surface were detected by
surface immunoprecipitation as before. Under these con-
ditions TGN to surface transport is energy-, cytosol-, and
temperature-dependent, very similar as described previ-
ously (23, 36). Note that the cytosol-independent signal,
which is due to incomplete permeabilization and cytosol
washout, was not subtracted in Figs. 4-6. Therefore, an in-
hibition to minus-cytosol levels is identical to a 100% inhi-
bition in Ikonen et al. (23).

To examine the involvement of NSF, we took advantage
of a mutant form of NSF that binds ATP but cannot hy-
drolyze the nucleotide. This mutant NSF remains in its ac-
tivated state and forms 20S complexes but does not disas-
semble them, thereby inhibiting NSF-dependent fusion
events (51). As shown in Fig. 4 A, when added together
with the exogenous cytosol to the assay, this mutant NSF
inhibited TGN to basolateral surface transport of 664A-
pIgR strongly (>85% of the cytosol-dependent signal),
whereas it had no effect on the apical transport of SL- or
GPI-pIgR.

We also performed the reverse experiment. After SLO
permeabilization, the endogenous NSF was inactivated by
treatment with N-ethyl maleimide (NEM) and recombi-
nant, wild-type NSF was supplied afterwards together with
the HeLa cytosol to overcome the inhibition. As shown in
Fig. 4 B, TGN to basolateral transport of 664A-pIgR was
completely inhibited by treatment with 0.05 mM NEM,
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Figure 4. NSF is involved in transport from the TGN to the baso-
lateral but not to the apical plasma membrane. (A) TGN to baso-
lateral or apical plasma membrane transport was reconstituted in
SLO-permeabilized MDCK cells expressing either 664A-, SL-, or
GPI-pIgR as reporter molecules. The cytosol dependence of the
transport reaction is shown. Addition of a recombinant, ATPase-
deficient mutant of NSF (inhibits NSF-dependent fusion reac-
tions by competition with endogenous wild-type NSF) together
with the cytosol inhibits transport of 664A-pIgR to the basolat-
eral surface strongly, while it has no effect on the apical transport
of SL- or GPI-pIgR. (B) The reverse experiment was done by
first inhibiting the endogenous NSF in SLO-permeabilized
MDCK cells by treatment with 0.05 or 0.15 mM NEM (for baso-
lateral or apical transport, respectively). NEM treatment inhib-
ited basolateral transport of 664A-pIgR strongly whereas a three-
fold higher NEM concentration inhibited apical transport of SL- or
GPI-pIgR only partially. Addition of recombinant wild-type NSF
could partially restore basolateral transport of 664A-pIgR after
NEM treatment but not apical transport of SL- or GPI-pIgR. The
complete reactions (+ Cytosol) were set to 100%, and the values
represent the mean and range of representative experiments
done with duplicate filters.

and this inhibition could be partially rescued by the subse-
quent addition of NSF. In contrast, TGN to apical trans-
port was much more resistant to treatment with NEM. A
threefold higher concentration of NEM inhibited TGN to
apical transport of SL- and GPI-pIgR only partially and
this inhibition could not be overcome by the addition of
NSF. These results confirm the previous observation that
NSF involvement can be demonstrated only in TGN to ba-
solateral but not TGN to apical transport (23).

a-SNAP Is Involved in TGN to Basolateral and
Apical Transport

To examine the possible involvement of the second solu-
ble constituent of the SNARE machinery, a-SNAP, in po-
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larized transport, we took advantage of two newly devel-
oped mAbs specifically immunoprecipitating o-SNAP
from HeLLa and MDCK cells (Wimmer, C., and J. Roth-
man, manuscript in preparation). Fig. 5 shows that both
antibodies inhibit TGN to basolateral transport of 664A-
pIgR and TGN to apical transport of SL-pIgR in our per-
meabilized cell assay. This inhibition can be prevented by
the addition of an excess of recombinant a-SNAP to the
antibodies before they are added to the permeabilized
cells. We conclude that a-SNAP or a molecule that is im-
munologically and functionally related is involved not only
in TGN to basolateral but also apical transport.

SNAP-23 Is Involved in TGN to Basolateral and
Apical Transport

Finally, we investigated whether SNAP-23, the t-SNARE
that is expressed at the basolateral and apical plasma
membrane domains of MDCK cells (27), would function
in TGN to surface transport. Canine SNAP-23 can be
cleaved by BoNT-E in analogy to the neuronal isoform
SNAP-25 (27). We added recombinant BoNT-E light
chain to our reconstituted transport assay, which resulted
in cleavage of nearly all of the endogenous SNAP-23 by
the end of the assay (data not shown). Fig. 6 shows that
this treatment caused an inhibition of TGN to basolateral
transport of 664A-pIgR, as well as TGN to apical trans-
port of SL-pIgR and GPI-pIgR. The apical transport, es-
pecially of SL-pIgR, was less susceptible to treatment with
BoNT-E, though the inhibition was still statistically signifi-
cant and comparable to the previously reported effect of
BoNT-E on transcytosis to the apical surface (5). The ad-

[=]
S

Surface Transport
{% of complete system)
o @
o o
NN

N
o

20

Cytosol - + + + + + - + + + + +
3E2 - - + - - - - +
2F10 - - - - + + - - - + +
o-SNAP - - -+ -+ - - -4+ -+
664A-plgR SL-plgR
(basal) (apical)

Figure 5. Antibodies against a-SNAP inhibit transport from the
TGN to the basolateral and apical plasma membrane. TGN to
basolateral or apical plasma membrane transport was reconsti-
tuted in SLO-permeabilized MDCK cells expressing either 664A-
or SL-pIgR as reporter molecules. Addition of 110 pg/ml of the
mAbs 3E2 or 2F10 against a-SNAP inhibited both the basolat-
eral and apical transport pathways. This inhibition was com-
pletely abolished when a fourfold molar excess of recombinant
a-SNAP was added to the antibodies 10 min before addition to
the permeabilized cells. Note that in these experiments, the con-
centration of HeLa cytosol, which contains a-SNAP, was reduced
by half, which also reduces the cytosol stimulation of the trans-
port reaction. The complete reactions (+ Cyfosol) were set to 100%
and the values represent the mean and range of representative
experiments done with duplicate filters.
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dition of heat-inactivated BoNT-E light chain or an inac-
tive mutant of BONT-C1 as controls had no effect. This re-
sult suggests that SNAP-23 (or a closely related substrate
for E toxin present in MDCK cells) is involved in TGN to
apical transport.

Discussion

Effects of Syntaxin Overexpression

We found that the overexpression of the apical plasma
membrane SNARE syntaxin 3 caused a specific inhibition
of two pathways to the apical surface: biosynthetic trans-
port from the TGN and the endocytic recycling pathway
from apical endosomes. This raises the question why the
overexpression of a wild-type t-SNARE would cause an
inhibition of a membrane traffic pathway. Similar effects
have been observed previously. The overexpression of the
Golgi SNARE syntaxin 5 specifically inhibited ER to
Golgi transport (17, 18). Similarly, overexpression of syn-
taxin 1A by transient transfection has been shown to in-
hibit the glucose-stimulated—but not the unstimulated—
insulin secretion in pancreatic island cells, whereas the
overexpression of syntaxin 1B (which is not normally ex-
pressed in B cells) had no effect (32). Finally, the overex-
pression of syntaxin in Drosophila caused a specific inhibi-
tion of neurotransmitter release by a block in synaptic
vesicle fusion (53). In these cases no effect on other trans-
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Figure 6. BoNT-E, which cleaves SNAP-23, inhibits transport
from the TGN to the basolateral and apical plasma membranes.
TGN to basolateral or apical plasma membrane transport was re-
constituted in SLO-permeabilized MDCK cells expressing either
664A-, SL-, or GPI-pIgR as reporter molecules. The reactions
were carried out in the absence or presence of 10 (1) or 100 (11)
pg/ml of purified recombinant light chains of BONT-E or an inac-
tive mutant of BoNT-C1. Addition of BONT-E caused inhibition
of both basolateral and apical transport reactions. Inactivation of
BoNT-E before addition by boiling prevented this inhibition.
Similarly, addition of the inactive mutant of BoNT-C1, which
served as a negative control for possible bacterial contaminants
from the purification of the toxins, had no inhibitory effect. The
complete reactions (+ Cytosol) were set to 100% and the values
represent the mean and range of representative experiments
done with duplicate filters. Note that in three independent exper-
iments even the weaker inhibition of apical transport of SL-pIgR
was still statistically significant by Student’s ¢-test (P < 0.002).
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port pathways was observed, which suggests that the over-
expression of a particular SNARE affects only or most
severely the transport step that originally involves this
SNARE. The reason for such an inhibition is not com-
pletely clear, and most likely will not be well understood
until the molecular mechanism by which SNAREs and
other molecules catalyze membrane fusion is more thor-
oughly understood. However, it is clear that membrane fu-
sion requires the sequential assembly and disassembly of
several protein complexes involving SNARESs. One possi-
ble explanation for the observed inhibition is that the sto-
ichiometry of SNARE components is disturbed, leading to
a sequestration of an essential component. It is also possi-
ble that the majority of syntaxin 3 is unable to find a binding
partner (possibly SNAP-23) to form a functional t-SNARE
and that the non-functional t-SNAREs cannot mediate
vesicle fusion although they still may allow vesicle dock-
ing. Whatever the exact molecular explanation may be,
our data indicating that syntaxin 3 overexpression causes
an intracellular accumulation and slows release of apically
transported material are compatible with a kinetic inhibi-
tion of the fusion of transport vesicles with the apical
plasma membrane. Clearly, syntaxin 3 overexpression does
not block membrane traffic non-specifically as TGN to ba-
solateral delivery and transcytosis to the apical surface are
not affected.

The overexpression of syntaxins 2 and 4 did not affect
any of the transport steps to the apical or basolateral
plasma membranes that were measured. The reason may
be that these syntaxin isoforms may not be involved in
these pathways or, perhaps more likely, that the extent of
overexpression that could be achieved with our expression
system was not sufficient to disturb these pathways.

Surprisingly, apical recycling but not basolateral-to-api-
cal transcytosis of internalized IgA was inhibited by syn-
taxin 3 overexpression. It had been previously reported
that IgA molecules internalized from the basolateral or
apical surface partially colocalize in an apical recycling
compartment before they are transported to the apical
plasma membrane (4). Our finding that only apical recy-
cling, and not transcytosis, is slowed by syntaxin 3 overex-
pression suggests that the delivery of these molecules from
the apical recycling compartment to the cell surface may
be by different mechanisms. This is consistent with the
previous observation that these two processes have differ-
ential sensitivities to BFA and cholera toxin (6).

It is tempting to speculate that the small vesicles of
~100-nm diam, which accumulated close to the apical
plasma membrane in MDCK cells overexpressing syntaxin
3 are intermediates in the TGN to apical and/or apical re-
cycling pathways. To our knowledge, the vesicles involved
in fusion with the plasma membrane in these pathways
have not previously been identified in intact mammalian
cells. However, disruption of the yeast plasma membrane
syntaxins Ssolp and Sso2p results in a very similar accu-
mulation of transport vesicles of 100-nm diam (1). Putative
apical transport vesicles of an average diameter of 78 nm
have been purified after in vitro generation in permeabi-
lized MDCK cells (46). It has been proposed recently that
TGN-derived axonal transport vesicles are long tubules
rather than small spheres (33). The small size of the vesi-
cles we have observed makes it difficult to convincingly la-
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bel them with markers of the endocytic or exocytic path-
ways. Therefore, we are presently unable to distinguish
whether the vesicles are in the TGN to apical pathway,
apical recycling pathway, or another pathway(s).

Involvement of Other Components of the
SNARE Machinery

For our investigation of the involvement of NSF, a-SNAP,
and SNAP-23 in biosynthetic plasma membrane transport,
we have used a reconstituted transport assay in SLO-per-
meabilized MDCK cells that is very similar to the system
previously used by Simons and colleagues (23, 36). Using
two complementary approaches we found no evidence for
an involvement of NSF in apical transport whereas baso-
lateral transport was clearly NSF dependent. This result is
in agreement with the antibody inhibition experiments by
Ikonen et al. (23) and strongly suggests that the reported
NSF independence of TGN to apical plasma membrane
transport is not a peculiarity of the trafficking of the influ-
enza virus hemagglutinin in virally infected MDCK cells
but extends to at least two additional marker proteins (a
GPI-anchored protein, GPI-pIgR; and a membrane-span-
ning protein, SL-pIgR), and may therefore be valid for
TGN to apical transport in general. It seems unlikely that
the observed NSF independence of the apical pathway is
an artifact because (a) apical transport was much less sen-
sitive than basolateral transport to treatment with NEM
(Fig. 4) that, as a very small molecule, should be able to
reach and inactivate NSF molecules throughout the cell
with equal efficiency; (b) the NSF dependence of basolat-
eral-to-apical transcytosis could be demonstrated previ-
ously by experiments very similar to ours (5). However,
we can not rigorously exclude the possibility that, for some
technical reason, NSF can be inhibited only at certain loca-
tions within the cell.

Our inhibition experiments using a-SNAP antibodies
and the BoNT-E demonstrate that a-SNAP and SNAP-23
are involved in both TGN to basolateral as well as apical
transport. Interestingly, apical transport (especially of SL-
pIgR) seemed to be less sensitive to BONT-E treatment
than basolateral transport, although still statistically signif-
icant and comparable to the previously observed inhibi-
tion of transcytosis (5). It is possible that the apical plasma
membrane is less accessible to the toxin or that a fraction
of the transport had already passed the toxin-sensitive
step. The involvement of SNAP-23 in transport to both
plasma membrane domains is compatible with its localiza-
tion at both domains (27). Since SNAP-23 can bind to syn-
taxins 1-4 with equal efficiency in vitro (39), this result
suggests that it may be a general binding partner of the
various syntaxin isoforms that in turn may confer specific-
ity to vesicle fusion as suggested by their differential local-
ization (26).

The only discrepancy between the data of Ikonen et al.
(23) and ours is the involvement of a-SNAP in TGN to
apical transport. This may be explained by technical differ-
ences. Ikonen et al. added recombinant a-SNAP to their
transport system and noticed a stimulation of TGN to ba-
solateral but not to apical transport. It is possible, though,
that the requirement for a-SNAP of the apical pathway is
lower and that the amount of a-SNAP present in the exog-
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enous cytosol added to their system was already sufficient
for maximal transport. On the other hand, our observed
inhibition of apical transport by the addition of either of
two different monoclonal antibodies to a-SNAP is very di-
rect evidence for the involvement of a-SNAP.

In their original report, Ikonen et al. (23) found that the
addition of tetanus toxin and BoNT-F, both of which
cleave an MDCK homologue of the v-SNARE synapto-
brevin/VAMP-2, to SLO-permeabilized MDCK cells in-
hibits basolateral but not apical transport from the TGN
(23). Given the recently published localization of the plasma
membrane syntaxins in MDCK cells (26) and the finding
that synaptobrevin/VAMP-2 binds in vitro to the basolat-
eral syntaxin 4 but not to the apical syntaxins 2 and 3 (11,
35), it seems only natural that apical membrane fusion
should not involve synaptobrevin/VAMP-2 and therefore
is toxin insensitive. We suggest that the apical syntaxins
bind to different, so far uncharacterized and probably
toxin-insensitive, homologues of synaptobrevin/VAMP.
Several new v-SNARE homologues can be found in EST
databases (8, 16) that lack the cleavage sequences for teta-
nus toxin, BONT-F, and other BoNTs.

A Model of the Role of the SNARE Machinery in
Polarized Membrane Traffic

Our findings lead us to propose that all membrane traffic
pathways to the plasma membrane in MDCK—and proba-
bly all other—cells use the SNARE machinery for mem-
brane fusion. Combining the results presented by Ikonen
et al. (23), Apodaca et al. (5), and this paper, the following
model emerges (Fig. 7). TGN to basolateral transport
involves synaptobrevin/VAMP-2, o-SNAP, NSF, and
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Figure 7. Model and summary of the involvement of components
of the SNARE fusion machinery in polarized membrane traffic in
MDCK cells. The results of this and other studies (5, 23, 27) are
summarized schematically. The following pathways to the plasma
membrane are depicted: biosynthetic transport (left), apical recy-
cling (middle), basolateral to apical transcytosis (right) and baso-
lateral recycling (right). Evidence for the involvement of one or
more SNARE components has been found for each transport
step. For details refer to the Discussion. 7J, tight junction; Endo,
endosome.
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SNAP-23. Since synaptobrevin/VAMP-2 binds in vitro
only to syntaxin 4 (11, 35), and since syntaxin 4 is specifi-
cally localized to the basolateral plasma membrane do-
main (26), this pathway probably also involves syntaxin 4.
TGN to apical transport also uses a-SNAP and SNAP-23,
but involves syntaxin 3 instead of syntaxin 4. Neither NSF
nor synaptobrevin/VAMP-2 are involved in this pathway.
The only known feature of the apical recycling pathway is
the involvement of syntaxin 3. In contrast, basolateral to
apical transcytosis does not involve syntaxin 3, but does
use SNAP-23 and NSF. Hence, the SNARE complex that
involves syntaxin 3 excludes NSF, although «-SNAP ap-
pears to be involved. This is in agreement with the previ-
ous finding that only syntaxin 4 but not syntaxins 2 or 3
coimmunoprecipitated with NSF from membrane extracts
from adipose cells, although all three syntaxin isoforms
were present in the starting material (45). We suggest that
in the case of apical plasma membrane fusion a homo-
logue of NSF performs a similar function. NSF belongs to
a large protein family of ATPases and homologues are in-
volved in certain membrane fusion reactions (2, 24, 37).
Interestingly, it has been established in two recent publica-
tions that syntaxins (syntaxin 5 and Ufelp) can function not
only in complexes involving NSF but also involving NSF
homologues (34, 38). In these two cases (homotypic Golgi
and ER fusion, respectively) no involvement of v-SNAREs
or a-SNAP was found. Apparently, the SNARE fusion
machinery has still surprises to offer and the existence of
an NSF-independent apical SNARE machinery does not
seem unlikely. So far, the only known target of a-SNAP is
NSF and it will be a challenge for the future to identify
such a NSF homologue that may act, together with a-SNAP,
in apical membrane fusion.

Based on our data we can neither confirm nor exclude
the possibility that annexin 13b plays a role in apical mem-
brane fusion (19). It is possible that a certain fraction of
apical membrane traffic can use a non-SNARE machin-
ery. More likely, annexin 13b is required for apical trans-
port in addition to the SNARE machinery, perhaps at a
stage before SNARE assembly.

In conclusion, we demonstrated that TGN to apical
plasma membrane transport is not an exception to the uni-
versal role of the SNARE machinery in intracellular mem-
brane fusion events. Different components of the SNARE
machinery are used in different membrane traffic path-
ways, which is likely to provide a means for ensuring the
specificity of membrane fusion.
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