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Abstract

Effective Theories in Few-Body Physics

by

Cory Drew Schillaci

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Wick C. Haxton, Chair

Effective theories are a controlled approach to making approximations in physics. We
describe here work on two applications of effective theory techniques in few-body physics,
specifically to nuclear and atomic systems.

First, we analytically reduce the chiral three-nucleon interaction at N2LO to a density-
dependent effective two-body potential by summing the third particle over the states of a
spin-symmetric Fermi gas. Results are given for the potential in momentum space and in
coordinate space, where the potential is seen to be nonlocal. An expansion of the potential
in the difference of the nonlocal coordinates is made in order to arrive at a fully local effective
two-body potential.

We then explore the two-body spectra of spin-1/2 fermions in isotropic harmonic traps
with external spin-orbit potentials and short range two-body interactions. Using a truncated
basis of total angular momentum eigenstates, which is known to be equivalent to an effective
theory when the atomic gas is harmonically confined, nonperturbative results are presented
for experimentally realistic forms of the spin-orbit coupling: a pure Rashba coupling, Rashba
and Dresselhaus couplings in equal parts, and a Weyl-type coupling. The technique is easily
adapted to bosonic systems and other forms of spin-orbit coupling.
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Chapter 1

Introduction: Effective Theories

The concept of an effective theory is ubiquitous in physics when a problem involves multiple
scales. Fundamentally, the idea is to solve an intractable problem by forming an expansion
in the ratio of these scales, then neglecting all but a finite number of terms. This of course re-
quires that the ratio be small, or that the scales are well separated. The truncated expansion
should simplify the solution while still retaining predictive power at the scales of interest.
We can think of Newtonian mechanics as such an approximation to the theory of special
relativity, expanded in the ratio of relevant velocities to the speed of light. Introductory
electrodynamics courses often start by considering point charges, essentially the first term in
a multipole expansion of the size of the charge distribution compared to the distance from
said distribution.

Although these simplifying approximations have a long history in physics, the work of
Wilson [66] in the 1970s paved the way for a more rigorous modern perspective in quantum
theories. From a contemporary viewpoint, effective field theories are useful either when the
details of physics above some energy scale Λ (or below some length scale) are unknown or
when the observables of interest are insensitive to such physics. For example, it is believed
that the standard model of particle physics is an effective theory. Infinities, which are re-
moved by renormalization, arise because there is some energy scale at which new physics
comes into play and the model is therefore not to be taken seriously at arbitrarily high en-
ergies when unknown physics contributes significantly. Furthermore, not all of the standard
model particles and interactions are relevant for all physical phenomena. We can therefore
formally generate new effective theories systematically from the standard model by integrat-
ing out degrees of freedom such as very massive particles.

Fermi’s original theory of beta decay is an excellent example of how this works in practice.
In Fermi’s time, the W gauge bosons of the electroweak interaction (with masses around 80
GeV) were unknown. At the same time, experiments were probing the nuclear beta decay
only at very low energies on the order of tens of MeV. In ignorance, Fermi proposed a pointlike
four Fermion interaction to describe the reaction which was very successful because the
separation of the experimental energy scale and the electroweak scale was so large. Of course,
we now know the details of the electroweak theory and can perform calculations accurately
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at or above the W boson mass1. On the other hand, such calculations are significantly more
difficult than the original Fermi theory which can be now be recovered in a principled way
by integrating out the vector bosons. When calculating beta decay lifetimes at energies far
below the electroweak scale, it would be wise to prefer the simpler effective theory which is,
in any case, still incredibly accurate.

Weinberg pioneered another approach to generating an effective field theory describing
interactions of hadrons [65] from the bottom up rather than by integrating out degrees
of freedom. In his framework, one should consider all possible terms which respect the
approximate chiral symmetry of quantum chromodynamics (QCD) at low energies. Since
there are an infinite number of such terms, a power counting scheme is necessary to group
interactions into a finite numbers of terms at each order in a low-momentum expansion2. The
expansion contains a number of parameters, called low energy constants (LECs), multiplying
the various terms. These are constrained by the chiral symmetry, and their values are
determined by fitting calculated observables to their experimental values. When performing
calculations, one should also take the energy cutoff ΛQCD seriously as an ultraviolet cutoff
(we have no reason to extend our model beyond this scale) [25].

Weinberg’s approach, referred to as chiral perturbation theory (ChPT), has enjoyed sig-
nificant popularity in the nuclear physics community. Derivation of a non-relativistic poten-
tial describing the interactions of nucleons is a primary goal of the field, and the separation
of scales which makes effective theories useful had long been observed in attempts at gener-
ating such a potential phenomenologically (see Figure 1.1). The accuracy of chiral potentials
combined with their rigorous basis on underlying symmetries helped them to largely sup-
plant the phenomenological potentials previously in use. For a thorough introduction to the
subject, see [50].

One generic feature of effective theories is the generation of interactions between three or
more particles, even when the underlying potential is purely two-body [33]. For a long time it
has been seen that the two-body terms in the nuclear potential are relatively more important
than three-body interactions, which are in turn stronger than the four-body terms and so on.
One great advantage of the ChPT is that it puts this observation on solid theoretical ground.
The power counting shows that the three-nucleon force (3NF) first appears3 at O(Q/ΛQCD)3,
known as next-to-next-to-leading order (N2LO). Likewise the 4NF appears first at N3LO,
establishing a hierarchy of the N-body forces in nuclear physics. The first several orders of
the ChPT diagrams are shown in Table 1.1.

Although they are not the leading terms in the expansion, the 3NF is known to be crucial
to explaining observed binding energies of light nuclei [9, 51, 54, 39] and nuclear matter
[42, 37]. Inclusion of few-body forces beyond the 2NF is, however, quite computationally

1Note that evaluating beta decay observables from a theory exactly consistent with QCD excitations is
an unsolved problem.

2The relevant expansion parameter is Q/ΛQCD where Q represents some small momentum scale and the
chiral symmetry breaking scale ΛQCD ≈ 1GeV.

3Actually, the naive power counting suggests that three-body diagrams appear at NLO, but these are
known to be shifted to higher orders by approximate cancellation with two-nucleon diagrams[41].
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Figure 1.1: The phenomenological Argonne v18 n-n potential in the 1S0 channel [67]. Note
the hard core of the potential, which is strongly repulsive starting around the nucleon charge
radius RE, and the soft long-range attraction beyond the pion’s Compton wavelength λπ.
Between these scales, the potential is dominated by the exchange of multiple pions and heavy
mesons such as the ρ.

demanding. As an approximation, Chapter 2 describes a procedure for generating two-body
density-dependent potentials which approximate the three-body interactions of the chiral
potential at N2LO. Unfortunately, this procedure generates non-locality in the coordinate
space potentials which again increases the complexity of the computational problem. In
Chapter 3 we describe initial efforts towards a possible solution of this problem by performing
an expansion of the density-dependent potentials in purely local operators.

Effective theories are also useful in completely non-relativistic formulations of quantum
physics, although this is often less appreciated than for their applications in field theories.
The primary features of an effective theory which we want to preserve from the rigorous
field-theoretic perspective are [43]:

• Include the correct low energy (long-range) physics explicitly.

• Identify a cutoff energy for the theory. This should lie between the low energy physics,
which are known, and the unknown or intractable high energy physics.

• Incorporate the unknown high energy (short-range) physics by adding additional,
model-independent terms and fitting the cutoff-dependent coefficients to physical ob-
servables.

From one viewpoint, a hard momentum cutoff is equivalent to reducing the basis states
in momentum space used in calculations. We can thus equivalently think of restricting our
calculations to a finite subspace in the full Hilbert space. This point of view is often taken for
practical reasons in numerical calculations. The only other basis in which center of mass and
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relative coordinates cleanly separate for the N-body problem is that of harmonic oscillator
(HO) eigenstates, and naturally we can also consider imposing the energy cutoff by including
only HO shells with energy less than Λ.

A detailed description of harmonic-oscillator-based effective theory (HOBET) is given in
[35]. A particular issue with using a finite basis of Harmonic oscillator states to regularize
is that the states do not accurately represent very low momentum states (it is an expansion
around k ∼ 1/b). Additional corrections are therefore needed to properly treat the long-
range part of the potential exactly, and these introduce an energy dependence to the effective
Hamiltonian in the finite basis.

In Chapter 4, we consider a special case of the harmonic-oscillator-based effective the-
ory. For cold atom systems, the confining potential is often approximately harmonic. The
machinery of the HOBET greatly simplifies in a harmonic confining potential, as there is no
need to perform the long-range corrections. We therefore use the effective theory to non-
perturbatively explore the two-body spectra of spin-1/2 fermions in isotropic harmonic traps
with external spin-orbit potentials. Interatomic potentials are very short-ranged compared
to the wavelengths of the atomic gasses at these very low temperatores, and are absorbed
into short range two-body interactions fit to the two-body scattering length. Results are pre-
sented for experimentally realistic forms of the spin-orbit coupling: a pure Rashba coupling,
Rashba and Dresselhaus couplings in equal parts, and a Weyl-type coupling. The technique
is easily adapted to bosonic systems and other forms of spin-orbit coupling.
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Chapter 2

An Analytic Reduction of the Chiral
Three-Nucleon Potential to a
Density-Dependent Two-Nucleon
Form

As mentioned in previous chapter, the inclusion of three-nucleon forces is essential to mod-
elling a variety of nuclear phenomena. However, in modern numerical approaches such as
the ab initio no core shell model, including 3N forces exactly in calculations requires the use
of basis spaces which are orders of magnitude larger than the two-nucleon (2N) case. The
increased demands on memory and computing hours rapidly become prohibitive even for
light nuclei [9].

Here, we analytically reduce the chiral three-body interaction to an average two-body
interaction which depends on the local nucleon density. Early efforts to develop a two-body
effective interaction for the 3N part of the chiral potential focussed on cases with specific
isospin constraints. Explicit expressions for the effective potential in momentum space have
been derived for pure neutron matter [37] and for isospin symmetric nuclei [38]. These
results have been applied succesfully in calculations of nuclear pairing energies using nuclear
energy density functionals [44]. The momentum space potential for arbitrary isospins was
recently derived using MATHEMATICA for asymmetric isospins, although no explicit expressions
were given [22]. This idea has also been successfuly applied in the reduction of two-body
interactions to single particle potentials [53, 2]. An alternate approach to deriving density-
dependent effective potential using correlated basis functions was also proposed in [48].

Here we derive and state expressions for the effective potential valid for arbitrary isospin
composition and without neglecting any contributions. The averaging procedure to derive
the effective potential is described in Section 2.1. Expressions for the effective potential
are given in both momentum and coordinate space (Sections 2.2 and 2.3, respectively). All
coordinate space potentials are written fully in terms of spherical tensors in order to facilitate
their use.
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2.1 Averaging Over a Fermi Gas Core

We can imagine a nucleus such as 18F or 42Ca in which there are two particles outside an
inert core. These particles interact via the 3N force with all of the core nucleons as well.
If we model the core as a spin-symmetric Fermi gas, then summation over the interactions
with the core nucleons gives a dependence on the Fermi momentum, which is analytically
related to the density of the core.

The Fermi gas states are momentum eigenstates of the form

|α〉 = |~kα;msα ,mtα〉 , (2.1)

where ms and mt are the spin and isospin projections, respectively. Because nucleons obey
Fermi statistics, the nuclear Hamiltonian must commute with the antisymmetrization oper-
ator A123. Alternately, we can instead obtain the same matrix elements by evaluating the
potential between normalized antisymmetric states, i.e.

|α1 α2 α3〉assym =
1√
6

(|α1 α2 α3〉 − |α1 α3 α2〉 − |α2 α1 α3〉

+ |α2 α3 α1〉 − |α3 α2 α1〉+ |α3 α1 α2〉)

(2.2)

|α1 α2〉assym =
1√
2

(|α1 α2〉 − |α2 α1〉) . (2.3)

Throughout this chapter we will, for brevity, generally write the potential in a form which is
not fully antisymmetrized1 but which is equivalent to the correct potential when evaluated
between antisymmetric states.

We can then sum over interactions with one core nucleon to generate an effective two-
body potential V12,eff such that

〈α1 α2|assym V12,eff |β1 β2〉assym =
∑
γ

〈α1 α2 γ|assym V123 |β1 β2γ〉assym (2.4)

where the the Fermi gas is assumed to be spin symmetric but not necessarily isospin sym-
metric, so that the sum can be expanded as∑

γ

=
∑

msγ=±1/2

∫
d3kγ
(2π)3

[
δmtγ ,+1/2np(kγ) + δmtγ ,−1/2

nn(kγ)
]

(2.5)

with np(k) and nn(k) the density of states for the protons and neutrons in the Fermi gas.
Details of the summation over the various quantum numbers are given in Appendix A. We
will derive specific results for the T = 0 Fermi-Dirac distribution, np(k) = θ(kpF − k) and

1In practice, we choose i = 1, j = 2, k = 3 in equations (2.8)-(2.10). This also requires multiplication by
a symmetry prefactor of 3 to reproduce the correct matrix elements in the antisymmetric basis.
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Figure 2.1: Diagrams for the 3N interactions at N2LO. The diagrams from left to right
represent the three-body contact, the two-body contact with pion exchange, and the two-
pion exchange terms.

nn(k) = θ(knF −k), however any density of states may be substituted at the cost of increasing
the complexity when performing the spectator momentum sums.

Density dependence arises from the momentum integral in (2.5). The standard relation-
ship for a homogeneous Fermi gas with two internal spin degrees of freedom is

ρ =
1

V

∑
ms=±1/2

∫
d3~k

(2π)3
n(k) =

1

V

∑
ms=±1/2

∫ k<kF d3~k

(2π)3
=

k3
F

3π2
. (2.6)

As the Fermi gas is not assumed to be isospin symmetric, the densities for proton and neutron
components are not necessarily equal and will be denoted by ρp, ρn. These are naturally
related to the respective Fermi momenta. We define dimensionless isoscalar and isovector
combinations of the densities,

ρI=0,1 =
ρp ± ρn
m3
π

, (2.7)

which appear throughout our results.

2.2 The Effective Potential in Momentum Space

There are three three-body terms in the chiral potential at NNLO [26].

VE =
1

2

cE
F 4
πΛχ

∑
i 6=j

~τi · ~τj (2.8)

VD = − gA
8F 2

π

cD
ΛχF 2

π

∑
i 6=j

~σi · ~qj ~σj · ~qj
q2
j +m2

π

~τi · ~τj (2.9)

VC =
1

2

(
gA

2Fπ

)2 ∑
i 6=j 6=k

~σi · ~qi
q2
i +m2

π

~σj · ~qj
q2
j +m2

π

Fαβ
ijk τ

α
i τ

β
j (2.10)
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V12,eff = + + +

+ + + + . . .

Figure 2.2: Diagrammatic representation of V12,eff. The double slashes indicate summation
over the Fermi sea. Diagrams on the first line correspond to local potentials, while those on
the second line are nonlocal in configuration space.

where

Fαβ
ijk = δαβ

[
−4c1m

2
π

F 2
π

+
2c3

F 2
π

~qi · ~qj
]

+
∑
γ

c4

F 2
π

εαβγτ γk ~σk · (~qi × ~qj) (2.11)

and ~qi = ~k′i−~ki is the difference in the final and initial state momenta for particle i ∈ {1, 2, 3}
and the greek indices refer to Cartesian vector components. The pion decay constant Fπ =
92.4 MeV2 and the dimensionless axial-vector coupling constant gA = 1.276. The chiral
symmetry breaking scale Λχ is a cutoff parameter, and the LECs will depend on the value
chosen. It is usually taken to be around the order of the ρ mass, mρ ≈ 700 MeV.

These represent a three-body contact potential, a one-pion exchange plus contact inter-
action (1PE), and a two-pion exchange (2PE) interaction as shown in Figure 2.1. Note that
the 2PE term can be split into parts proportional to c1, c3 and c4 as VC = V1 + V2 + V4.
Analytically summing over the Fermi gas particles to find an effective potential corresponds
to the summations shown in Figure 2.2. Note that cD and cE are unitless, while c1, c3 and
c4 have units of inverse energy.

For a standard two-body interaction, the matrix elements may depend only on the quan-
tities

~k =
~k1 − ~k2

2
, ~k′ =

~k′1 − ~k′2
2

(2.12)

in order for the Hamiltonian to be Galilean invariant. However, the original three-body
interaction may also depend on the total momentum of the two particles,

~P = ~k1 + ~k2, ~P ′ = ~k′1 + ~k′2, (2.13)

2Some references include additional factors of
√

2 in the definition of Fπ
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through the relative Jacobi momenta

~π1 =
1√
2

(
~k1 − ~k2

)
, ~π2 =

1√
6

(
~k1 + ~k2 − 2~k3

)
. (2.14)

We will make the simplification that the net momentum of the two valence particles
is zero, and therefore so is the net momentum of the Fermi gas particles. Although this
makes sense in the context of a nucleus with an inert core, when performing many-body
calculations it cannot be true that all pairs of particles have zero total momentum the
true many-body center-of-mass frame. If we instead transform to a two-body center of
mass frame, the Fermi gas will generally become asymmetric and the density of states will
will become ~P -dependent. Simplifying the integrals to have spherically symmetric limits
introduces errors for spectator states lying near the surface of the Fermi sea in momentum
space. Explicit calculations comparing the effective two-body potential with and without
the total-momentum dependence are discussed in [22].

The effective interactions for (2.8) and (2.9) are given in momentum space by

V E
12,eff = −3cEm

3
π

2F 4
πΛχ

(
ρI=0 − ρI=1

τ 3
1 + τ 3

2

2

)
, (2.15)

V D
12,eff = −cDgAm

3
π

8F 4
πΛχ

[
ρI=0~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

− ρI=1
τ 3

1 + τ 3
2

2

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

+
(

3− ~τ1 · ~τ2~σ1 · k̂ ~σ2 · k̂
) [

Γ0,I=0(k)− 2Γ1,I=0(k)
]

+

(
3− ~τ1 · ~τ2

~σ1 · ~σ2

3

)
Γ2,I=0(k)

− τ 3
1 + τ 3

2

2

(
1 + ~τ1 · ~τ2~σ1 · k̂ ~σ2 · k̂

) [
Γ0,I=1(k)− 2Γ1,I=1(k)

]
− τ 3

1 + τ 3
2

2

(
1 + ~τ1 · ~τ2

~σ1 · ~σ2

3

)
Γ2,I=1(k) + ~k ↔ ~k′

]
.

(2.16)

Here, ~q = ~k′ − ~k is the momentum transfer during the interaction. Conservation of energy
requires that |~k| = |~k′|. Note that neither of these terms contribute for systems of pure
neutrons or protons due to the antisymmetrization, consistent with the behavior of the
original 3N interactions which also vanish. The functions Γα,I=0,1(k) = Γα,p(k)±Γα,n(k) are
momentum dependent analogues of the densities (2.7) which arise from integrating over the
spectator momentum, e.g.

Γα,p(k) =
k2−α

m3
π

∫
d3~kγ
(2π)3

np(kγ)

{
1, kγ cos θ, k2

γ

}
α

(~k − ~kγ)2 +m2
π

(2.17)

and the corresponding expression for the mt = −1/2 component of the Fermi gas. Explicit
expressions for these sums with the Fermi-Dirac density of states are given in appendix A.3.
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The two-pion exchange potential has three components as described above. Summing
the spectator quantum numbers for the term proportional to c1 gives a contribution to the
effective two-body potential of

V 1
12,eff = −c1m

5
π

2

(
gA
F 2
π

)2
{
− ρI=0~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
(q2 +m2

π)2

+ ~τ1 · ~τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

[ 1

k2
Γ0,I=0 (k)− 1

k
Γ1,I=0 (k)

]
+ 3
[
G0,I=0(~k,~k′) +G1,I=0(~k,~k′))

]
+
τ 3

1 + τ 3
2

2

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

[ 1

k2
Γ0,I=1 (k)− 1

k
Γ1,I=1 (k)

]
− i [~τ1 × ~τ2]3

~σ1 · ~q ~σ2 · (~k + ~k′)

q2 +m2
π

[ 1

k2
Γ0,I=1 (k)− 1

k
Γ1,I=1 (k)

]
− τ 3

1

[
G0,I=1(~k,~k′) +G1,I=1(~k,~k′))

]}
.

(2.18)

The scalar functions Gα(~k,~k′) result from momentum summation when both pion propaga-
tors depend on kγ. The functions appearing in V1 are defined as

G0,p(~k,~k
′) =

1

m3
π

∫
d3~kγ
(2π)3

np(kγ)
(~k − ~kγ) · (~k′ − ~kγ)

[(~k − ~kγ)2 +m2
π][(~k′ − ~kγ)2 +m2

π]
, (2.19)

G1,p(k, k
′) =

1

m3
π

∫
d3~kγ
(2π)3

np(kγ)
i~σ1 ·

[
(~k′ − ~k)× (~k − ~kγ)

]
[(~k − ~kγ)2 +m2

π][(~k′ − ~kγ)2 +m2
π]
. (2.20)
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Next is the fully summed V3 contribution,

V 3
12,eff =

c3m
3
π

4

(
gA
F 2
π

)2
{
ρI=0~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
(q2 +m2

π)2
q2

− ~τ1 · ~τ2
~σ1 · ~q
q2 +m2

π

~σ2 · ~k′~q · ~k′ + ~σ2 · ~k~q · ~k
k2

[
Γ0,I=0 (k)− 2Γ1,I=0 (k)

]
− ~τ1 · ~τ2

2

3

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

Γ2,I=0 (k)

− τ 3
1

~σ1 · ~q
q2 +m2

π

~σ2 · ~k′~q · ~k′ + ~σ2 · ~k~q · ~k
k2

[
Γ0,I=1 (k)− 2Γ1,I=1 (k)

]
− τ 3

1

2

3

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

Γ2,I=1 (k)

+ i [~τ1 × ~τ2]3
~σ1 · ~q
q2 +m2

π

~σ2 · ~k′~q · ~k′ − ~σ2 · ~k~q · ~k
k2

[
Γ0,I=1 (k)− 2Γ1,I=1 (k)

]
− 3
[
G2,I=0(~k,~k′) +G3,I=0(~k,~k′))

]
+ τ 3

1

[
G2,I=1(~k,~k′) +G3,I=1(~k,~k′))

]}
,

(2.21)

where

G3,N(~k,~k′) =
1

m3
π

∫
d3~kγ
(2π)3

nN,P (kγ)

[
(~k − ~kγ) · (~k′ − ~kγ)

]2

[(~k − ~kγ)2 +m2
π][(~k′ − ~kγ)2 +m2

π]
, (2.22)

G4,N(~k,~k′) =
1

m3
π

∫
d3~kγ
(2π)3

nN,P (kγ)
i~σ1 ·

[
(~k′ − ~k)× (~k − ~kγ)

]
(~k − ~kγ) · (~k′ − ~kγ)

[(~k − ~kγ)2 +m2
π][(~k′ − ~kγ)2 +m2

π]
. (2.23)
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Finally the 3N V4 interaction sums to,

V 4
12,eff = −c4m

3
π

4

(
gA
F 2
π

)2
{
~τ1 · ~τ2

~σ1 · ~q
q2 +m2

π

~σ2 · ~k′~q · ~k′ + ~σ2 · ~k~q · ~k
k2

[
Γ0,I=0 (k)− 2Γ1,I=0 (k)

]
− 2~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

[
Γ0,I=0 (k)− 2Γ1,I=0 (k) +

2

3
Γ2,I=0 (k)

]
+ ~τ1 · ~τ2

[
G4,I=0(k1, k

′
1)−G5,I=0(k1, k

′
1)
]

− τ 3
1

~σ1 · ~q
q2 +m2

π

~σ2 · ~k′~q · ~k′ + ~σ2 · ~k~q · ~k
k2

[
Γ0,I=1 (k)− 2Γ1,I=1 (k)

]
+ 2 τ 3

1

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

[
Γ0,I=1 (k)− 2Γ1,I=1 (k) +

2

3
Γ2,I=! (k)

]
− τ 3

1

[
G4,I=1(~k1, ~k

′
1)−G5,I=1(~k1, ~k

′
1)
]}

,

(2.24)

where the final G function is

G5,N(~k,~k′) =
1

m3
π

∫
d3~kγ
(2π)3

nN,P (kγ)
~σ1 ·

[
(~k′ − ~k)× (~k − ~kγ)

]
~σ1 ·

[
(~k′ − ~k)× (~k − ~kγ)

]
[(~k − ~kγ)2 +m2

π][(~k′ − ~kγ)2 +m2
π]

.

(2.25)

2.3 The Effective Potential in Coordinate Space

By evaluating the Fourier transforms of the momentum space effective potential, we obtain
the potential in coordinate space. Each term in the full potential contains couplings of vary-
ing numbers of vector operators operating on spatial and spin quantum numbers. Through-
out, we give the potentials by first coupling any coordinate operators with one another (e.g.
forming the spherical harmonics Yl(r̂12) and Yl(r̂12

′ )), then coupling these operators together
before finally coupling with the spin operators.

The simplest of the three-body interactions at N2LO is the contact term. Evaluation of
the diagram and summation over the core particles gives the two-body effective potential,

V12,eff(~r12) =
cE

2F 4
πΛχ

m6
π

4π
3w0,0,0(mπr12)

[
−ρI=0 + ρI=1

τ 3
1 + τ 3

2

2

]
(2.26)

which is spin-independent.
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The three-body one pion exchange term generates a richer effective interaction. The
momentum dependence generates both a purely local interaction

V D
12,eff(~r12) =

cDgA
8F 4

πΛχ

m6
π

4π

[
ρI=0

(
~τ1 · ~τ2 W

LR
1PE(~r12) + 3 w0,0,0(mπr)

)
− ρI=1

τ 3
1 + τ 3

2

2

(
W LR

1PE(~r12) + (1− 2~σ1 · ~σ2/3) w0,0,0(mπr)

)]
(2.27)

and a nonlocal potential arising from the exchange terms

V D
12,eff(~r12, ~r12

′ ) =
−cDgA
8F 4

πΛχ

m9
π

32π2

[
w0,0,0(mπr12)

{
ρ̂I=0 (r12)

(
~τ1 · ~τ2W

LR
1PE(~r12

′ ) + 3 w0,1,0(mπr12
′ )
)

+ρ̂I=1(r′12)
τ 3

1 + τ 3
2

2

(
W LR

1PE(~r12
′ )− w0,1,0(mπr12

′ )
)}

+ ~r12 ↔ ~r12
′

]
. (2.28)

In order to highlight the physical meaning of this expression, we have written part of this
result using a dimensionless scalar function proportional to the long range terms in the
two-body one pion exchange potential, defined as

W LR
1PE(~r) =

e−mπr

mπr

[
(~σ1 · r̂ ~σ2 · r̂ − ~σ1 · ~σ2)

(
1 +

3

mπr
+

3

(mπr)2

)
+
~σ1 · ~σ2

3

]
=

[√
8π

15
Y2(r̂) · [~σ1 ⊗ ~σ2]2w2,1,2(mπr) +

~σ1 · ~σ2

3
w0,1,0(mπr)

] (2.29)

The density dependence is now also mixed with spatial dependence, which we define in
analogy with (2.7) as

ρ̂I=0,1(r) =
1

m3
π

[(
3ρP
π

)2/3
j1([3π2ρP ]1/3r)

r
±
(

3ρN
π

)2/3
j1([3π2ρN ]1/3r)

r

]
. (2.30)

More details on this nonlocal density dependence are given in Appendix A.4.
For all pieces of the N2LO 3N interaction besides the purely short range contact VE,

nonlocal effective interactions like (2.28) are generated from summation over three-body
terms where the spectator particle interacts non-diagonally. These are the diagrams in the
second row of Figure 2.2. Nonlocal potentials are relatively common in nuclear physics
and occur normally in the chiral 2NF and 3NF due to dependences on the sum k + k′ in
various contact and higher-order terms, although these nonlocalities may be removed by
careful formulation [28]. Nonlocality arises here due to the fermionic spin statistics of the
full three-body wavefunction, and effect sometimes called Pauli nonlocality.
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From the 2PE diagrams, a large number of unique terms are generated for the effective
two-body interaction. The V1 piece again produces both a local part

V 1
12,eff(~r12) = −c1m

6
π

8π

(
gA
F 2
π

)2

ρI=0~τ1 · ~τ2

×

(√
8π

15
Y2(r̂) · [~σ1 ⊗ ~σ2]2w2,2,2(mπr)−

~σ1 · ~σ2

3
w2,2,0(mπr)

)
(2.31)

and a nonlocal part

V 1
12,eff(~r12, ~r12

′ ) = −c1m
9
π

48π

(
gA
F 2
π

)2{
[
~τ1 · ~τ2 ρ̂I=0 (|~r12 − ~r12

′ |) + τ 3
1 ρ̂I=1 (|~r12 − ~r12

′ |)
]
w1,1,1(mπr12)w1,1,1(mπ|~r12 − ~r12

′ |)

×
(

[~σ1 ⊗ ~σ2]2 · [Y1(r̂12)⊗ Y1

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
]2) +

~σ1 · ~σ2

3
Y1(r̂12) · Y1

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
+ ~r12 ↔ ~r12

′
)

+ τ 3
1 ρ̂I=1 (|~r12 − ~r12

′ |) w1,1,1(mπr12)w1,1,1(mπ|~r12 − ~r12
′ |)

×
(

1

2
(~σ1 × ~σ2) · (Y1(r̂12)× Y1

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
) + ~r12 ↔ ~r12

′
)

− i [~τ1 × ~τ2]3 ρ̂I=1 (|~r12 − ~r12
′ |) w1,1,1(mπr12)w1,1,1(mπ|~r12 − ~r12

′ |)

×
(

1

2
(~σ1 × ~σ2) · (Y1(r̂12)× Y1

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
)− ~r12 ↔ ~r12

′
)

+
[
3ρ̂I=0 (|~r12 − ~r12

′ |)− τ 3
1 ρ̂I=1 (|~r12 − ~r12

′ |)
]
w1,1,1(mπr12)w1,1,1(mπr12

′ )

×
(
i~σ1 · (Y1(r̂12)× Y1(r̂12

′ )) + Y1(r̂12) · Y1(r̂12
′ )

)}
. (2.32)

For V3 the spin and isospin structure of the 3N interaction is identical to that of V1 so
the result is similar. Again we find one term which is purely local,

V 3
12,eff(~r12) =

c3

4

m6
π

4π

(
gA
F 2
π

)2

ρI=0 ~τ1 · ~τ2

×

(
−
√

8π

15
Y2(r̂) · [~σ1 ⊗ ~σ2]2 w4,2,2(mπr) +

~σ1 · ~σ2

3
w4,2,0(mπr)

)
(2.33)
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as well as a nonlocal part,

V 3
12,eff(~r12, ~r12

′ ) =
c3

4

m9
π

32π2

(
gA
F 2
π

)2{[
~τ1 · ~τ2 ρ̂I=0 (|~r12 − ~r12

′ |) +
τ 3

1 + τ 3
2

2
ρ̂I=1 (|~r12 − ~r12

′ |)
]

×

(√
7

12

8π

15
[~σ1 ⊗ ~σ2]2 · [Y2(r̂12)⊗ Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
]2w2,1,2(mπr12)w2,1,2(mπ|~r12 − ~r12

′ |)

+
1

3

8π

15
~σ1 · ~σ2 Y2(r̂12) · Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
w2,1,2(mπr12)w2,1,2(mπ|~r12 − ~r12

′ |)

− 1

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2(r̂12)w2,1,2(mπr12)w2,1,0(mπ|~r12 − ~r12

′ |)

− 1

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
w2,1,0(mπr12)w2,1,2(mπ|~r12 − ~r12

′ |)

+
1

9
~σ1 · ~σ2w2,1,0(mπr12)w2,1,0(mπ|~r12 − ~r12

′ |) + ~r12 ↔ ~r12
′
)

+ τ 3
1 ρ̂I=1 (|~r12 − ~r12

′ |)

×
√

5

2

(
[~σ1 ⊗ ~σ2]1 · [Y2(r̂12)⊗ Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
]1w2,1,2(mπr12)w2,1,2(mπ|~r12 − ~r12

′ |) + ~r12 ↔ ~r12
′
)

− i [~τ1 × ~τ2]3 ρ̂I=1 (|~r12 − ~r12
′ |)

×
√

5

2

(
[~σ1 ⊗ ~σ2]1 · [Y2(r̂12)⊗ Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
]1w2,1,2(mπr12)w2,1,2(mπ|~r12 − ~r12

′ |)− ~r12 ↔ ~r12
′
)

+
[
3ρ̂I=0 (|~r12 − ~r12

′ |)− τ 3
1 ρ̂I=1 (|~r12 − ~r12

′ |)
](

√
5

2

8π

15
~σ1 · [Y2(r̂12)⊗ Y2(r̂12

′ )]1w2,1,2(mπr12)w2,1,2(mπr12
′ )

− 8π

15
Y2(r̂12) · Y2(r̂12

′ )w2,1,2(mπr12)w2,1,2(mπr12
′ )

− 1

3
w2,1,0(mπr12)w2,1,0(mπr12

′ )

)}
(2.34)

The V4 term generates only a nonlocal term because the terms diagonal in the spectator
particle all sum to zero. The nonlocal terms are

V 4
12,eff(~r12, ~r12

′ ) =
c4

4

g2
A

F 2
π

m9
π

16π2

{ (
ρ̂I=0 (|~r12 − ~r12

′ |)~τ1 · ~τ2 − ρ̂I=1 (|~r12 − ~r12
′ |) τ

3
1 + τ 3

2

2

)
×

(
−4

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2(r̂12

′ )w2,1,2(mπr12
′ )w2,1,0(mπ|~r12 − ~r12

′ |)
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+
2

9
~σ1 · ~σ2 w2,1,0(mπr12

′ )w2,1,0(mπ|~r12 − ~r12
′ |)

+

√
7

12

8π

15
[~σ1 ⊗ ~σ2]2 ·

[
Y2(r̂12

′ )⊗ Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)]
2

w2,1,2(mπr12
′ )w2,1,2(mπ|~r12 − ~r12

′ |)

− 1

3

8π

15
~σ1 · ~σ2 Y2(r̂12

′ ) · Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
w2,1,2(mπr12

′ )w2,1,2(mπ|~r12 − ~r12
′ |)

− 1

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
w2,1,0(mπr12

′ )w2,1,2(mπ|~r12 − ~r12
′ |)

+ ~r12 ↔ ~r12
′
)

+

(
ρ̂I=0 (|~r12 − ~r12

′ |)~τ1 · ~τ2 − ρ̂I=1 (|~r12 − ~r12
′ |) τ

3
1 + τ 3

2

2

)
×

(
−
√

21

3

8π

15
[~σ1 ⊗ ~σ2]2 · [Y2(r̂12)⊗ Y2(r̂12

′ )]2w2,1,2(mπr12)w2,1,2(mπr12
′ )

− 1

3

8π

15
~σ1 · ~σ2 Y2(r̂12) · Y2(r̂12

′ )w2,1,2(mπr12)w2,1,2(mπr12
′ )

+
2

9
~σ1 · ~σ2 w2,1,0(mπr12)w2,1,0(mπr12

′ )

+
1

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2(r̂12)w2,1,2(mπr12)w2,1,0(mπr12

′ )

+
1

3

√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2(r̂12

′ )w2,1,0(mπr12)w2,1,2(mπr12
′ )

)
−
(
ρ̂I=0 (|~r12 − ~r12

′ |)~τ1 · ~τ2 − ρ̂I=1 (|~r12 − ~r12
′ |) τ 3

1

)
×
√

5

2

8π

15
~σ1 · [Y2(r̂12)⊗ Y2(r̂12

′ )]1w2,1,2(mπr12)w2,1,2(mπr12
′ )

}
. (2.35)
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Chapter 3

Local Expansion of Nonlocal
Interactions

I investigate the validity of expanding a nonlocal scalar potential V (~r ′, ~r) around a small
nonlocality, i.e. when the potential is nearly diagonal in |~r − ~r ′|.

3.1 Expanding the Nonlocal Potential

A two-body nonlocal potential takes the form V (~r ′, ~r) and the coordinate dependent part
may be evaluated as

〈n′l′m′|V |nlm〉 =

∫
d3r d3r′ R∗n′,l′(r

′)Y ∗l′,m′(r̂
′)V (~r ′, ~r)Rn,l(r)Yl,m(r̂). (3.1)

Throughout, we will assume that the potential is a scalar operator. Because nonlocal poten-
tials require greater computational resources, it would be desirable to find a suitable local
approximation. Intuitively, we can imagine that the potential V (r, r′) is nearly local. We
take this to mean that it the contribution to the matrix element is small when ~r − ~r ′ is
large. We thus make a coordinate change with unit Jacobian to (3.1). A suitable choice of
coordinates is the linear combination

~r1 =
~r + ~r ′

2
, ~r2 = ~r − ~r ′ (3.2)

for which our nonlocality condition reduces to the requirement that the potential falls off
rapidly in r2. In the interest of generating clear, compact expressions we will also use the
convenient definitions

F (~r ′) = R∗n′,l′(r
′)Y ∗l′,m′(r̂

′) (3.3)

G(~r) = Rn,l(r)Yl,m(r̂) (3.4)
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In these coordinates, the matrix elements become

〈n′l′m′|V |nlm〉 =

∫
d3r1 d

3r2 F

(
~r1 −

~r2

2

)
V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
G

(
~r1 +

~r2

2

)
. (3.5)

We then make a Taylor expansion of the wave functions F and G in the coordinate ~r2
1. The

three dimensional Taylor expansion can be written in Cartesian form as

F

(
~r1 −

~r2

2

)
= F (~r1)− 1

2
~r2 · ~∇1F (~r1) +

1

2

(
1

2
~r2 · ~∇1

)(
1

2
~r2 · ~∇1

)
F (~r1) + . . . (3.6)

G

(
~r1 +

~r2

2

)
= G(~r1) +

1

2
~r2 · ~∇1G(~r1) +

1

2

(
1

2
~r2 · ~∇1

)(
1

2
~r2 · ~∇1

)
G(~r1) + . . . (3.7)

Note that the asymmetric choice of coordinates made in (3.2) has the desirable effect of
allowing one to expand the wave functions around ~r1 without any additional constants.
Compare this expansion also with that of [8], where only the function G(~r) is expanded
around ~r = ~r ′. Plugging this expansion in up to second order

〈n′l′m′|V |nlm〉 =

∫
d3r1 F (~r1)

[∫
d3r2

{
V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
− 1

2

(
~∇1 · ~r2 V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
− V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
~r2 · ~∇1

)
− 1

4
~∇1 · ~r2 V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
~r2 · ~∇1

+
1

8

(
~∇1 · ~r2

)2

V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
+

1

8
V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)(
~r2 · ~∇1

)2

+ . . .

}]
G(~r1)

(3.8)

Alternately, we can also express the expansion (3.6) in terms of spherical tensor operators,

F

(
~r1 −

~r2

2

)
= F (~r1)− 1

2

√
4π

3

∑
m

(−1)mr2Y1,m(r̂2)~∇1,−mF (~r1)

+
1

8

4π

3

∑
m,m′

(−1)m+m′r2
2Y1,m(r̂2)Y1,m′(r̂2)~∇1,−m~∇1,−m′F (~r1) + . . .

(3.9)

1For now, we do not expand the potential itself. Such an expansion can be helpful in evaluating the
angular integrals for some of the density-dependent two-body terms of the previous chapter. This will be
discussed in Section 3.3.
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Inserting this expansion of the wave functions, the matrix elements (3.1) are given by,

〈n′l′m′|V |nlm〉 =

∫
d3r1 F (~r1)

[∫
d3r2

{
V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
− 1

2

√
4π

3

∑
m

(−1)m ~∇1,−mr2Y1,m(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
+

1

2

√
4π

3

∑
m

(−1)mr2Y1,m(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
~∇1,−m

− 1

4

4π

3

∑
m,m′

(−1)m+m′ ~∇1,−mr
2
2Y1,m(r̂2)Y1,m′(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
~∇1,−m′

+
1

8

4π

3

∑
m,m′

(−1)m+m′ ~∇1,−m ~∇1,−m′r
2
2Y1,m(r̂2)Y1,m′(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
+

1

8

4π

3

∑
m,m′

(−1)m+m′r2
2Y1,m(r̂2)Y1,m′(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
~∇1,−m~∇1,−m′

+ . . .

}]
G(~r1)

(3.10)

Eliminating the dependence on either ~r1 or ~r2 makes an effective local approximation to
the original matrix elements. In the following sections, we discuss approaches to evaluate
the ~r2 integral for a toy potential (Section 3.2) and three different types of terms from the
two-body effective potential (Section 3.3).

3.2 Exploration Using Model Potentials

In order to explore the convergence of the local Taylor approximation, we evaluate the matrix
elements of simple potentials in a harmonic oscillator basis and compare them with the full
nonlocal matrix elements. We expect the convergence to be best for potentials which are
nearly diagonal in |~r−~r ′|. To test this hypothesis, we will consider two simple toy potentials.
In particular, we want the function g(|~r − ~r ′|) to have a tunable parameter controlling the
nonlocality, with a local potential in some limit. As an example, consider the Gaussian
potential

V (~r, ~r ′) =

(
2

πλ2
1

)3/2

e−(~r+~r ′)2/2λ21

(
1

2πλ2
2

)3/2

e−(~r−~r ′)2/2λ22 . (3.11)

We can see that in the limit λ2 → 0 the potential becomes local, i.e.

lim
λ2→0

V (~r, ~r ′) =

(
2

πλ2
1

)3/2

e−(~r+~r ′)2/2λ21δ(3)(~r − ~r ′). (3.12)
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Another simple potential of this form is

V (~r, ~r ′) =
e−|~r+~r

′|/λ1

πλ3
1

e−|~r−~r
′|/λ2

8πλ3
2

. (3.13)

A potential which can be factored as

V (~r ′, ~r) = f(|~r + ~r ′|)g(|~r − ~r ′|) (3.14)

for some scalar functions f and g is particularly easy to evaluate in the form (3.10). Any
operator of this form is guaranteed to be Hermitian, as the magnitudes |~r + ~r ′| and |~r − ~r ′|
are necessarily invariant under exchanging ~r ↔ ~r ′. There are three different combinations of
spherical harmonics and the nonlocal potential to consider when evaluating the ~r2 integral
to second order. First is the average of the potential over ~r2 which I will denote as V 1(~r1):

V 0(~r1) =

∫
d3r2 V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
= 4πf(2r1)

∫
dr2 r

2
2g(r2)

(3.15)

The first order contributions vanish for a potential of this form due to the angular integration
over a single spherical harmonic,

V 1(~r1) =

∫
d3r2 r2Y1,m(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
= 0. (3.16)

The second order terms all have the same r2 dependence, but depend on m and m′. I will
denote these as V 2

m,m′(~r1). They are given by,

V 2
m,m′(~r1) =

∫
d3r2 r

2
2Y1,m(r̂2)Y1,m′(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
= (−1)m

′
∫
d3r2 r

2
2Y1,m(r̂2)Y ∗1,−m′(r̂2)V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
= (−1)mδm,−m′

∫
dr2 r

4
2V

(
~r1 −

~r2

2
, ~r1 +

~r2

2

)
.

(3.17)

For further simplicity, we can rewrite V 2
m,m′(~r1) = δm,−m′V

2(~r1).
With these definitions, we can rewrite (3.10) more compactly as,

〈n′l′m′|V |nlm〉 =

∫
d3r F (~r)

(
V1(~r) − 1

4

4π

3

∑
m

(−1)m ~∇mV2(~r)~∇−m

+
1

8

4π

3
~∇ · ~∇V2(~r) +

1

8

4π

3
V2(~r)~∇ · ~∇+ . . .

)
G(~r1).

(3.18)
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Note that the integrals in equations (3.15) to (3.17) are equivalent to calculating moments
of the potential with respect to ~r2. These matrix elements may be evaluated in a harmonic
oscillator basis using the formulas presented in Appendix C.

Evaluating the full nonlocal matrix elements requires a six-dimensional integration (in-
cluding oscillatory behavior when the matrix elements are taken between states with l
nonzero). Monte Carlo (MC) integration strategies are considered state of the art for high-
dimensional integration. I have evaluated the matrix elements using the Cuba library [32].
The importance sampling strategies in the four MC integration techniques lead to conver-
gence more reliably and with fewer samples than Mathematica’s native implementations for
the integrals at hand. In the following figures I used the Vegas algorithm.

Figure 3.1: Matrix elements of 〈n′ = 0, l′ = 0, m′l = 0|V/~ω |n = 0, l = 0, ml = 0〉 for r =
b = λ1 as a function of λ2/b. The blue line shows the exact numerically evaluated matrix
elements, while the orange line shows the second order Taylor approximation. As expected,
the second order local approximation is very good when the non-locality measure λ2/b is
small.

Matrix elements of the potential (3.11) compare qualitatively as expected. First, we
see that the exact values and the Taylor approximation converge for λ2 → 0 in Figure 3.1
but that the error increases as the range parameter λ2/b becomes non-perturbatively large.
Figure 3.2 demonstrates that the convergence is essentially independent of λ1.

3.3 Second Order Local Expansion of the Two-Body

Effective Chiral Potential

In this section we consider the problem of finding the second order expansion of the density-
dependent two-body effective potential. The easiest term in the density-dependent two-body
effective potential to expand is V D

12,eff, due to the delta functions w0,0,0(~r12). We apply the
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Figure 3.2: Matrix elements of 〈n′ = 0, l′ = 0, m′l = 0|V/~ω |n = 0, l = 0, ml = 0〉 for r/b =
1, λ2/b = 0.05 as a function of λ1/b. The blue line shows the exact numerically evaluated
matrix elements, while the orange line shows the second order Taylor approximation. This
plot demonstrates that the strength of the local term does not effect the convergence.

spherical tensor form of the expansion (3.10) and integrate over ~r2 using the delta function
to obtain

V 1PE,Nonlocal
12,eff =

−cDgA
8F 4

πΛχ

m6
π

4π

{
(3.19)[(

~∇
2
r2

12 +
8π

15

[
~∇⊗ ~∇

]
2
· ~Y2(Ω12)r2

12

)
ρ̂I=0 (2r12)

(
~τ1 · ~τ2W

LR
1PE(2~r12) + 3w0,1,0(r12)

)
(3.20)

+ ~∇ · ~r12 ρ̂I=0 (2r12)
(
~τ1 · ~τ2W

LR
1PE(2~r12) + 3w0,1,0(r12)

)
~r12 · ~∇ (3.21)

+ ρ̂I=0 (2r12)
(
~τ1 · ~τ2W

LR
1PE(2~r12) + 3w0,1,0(r12)

)(
r2

12
~∇2 +

8π

15
r2

12
~Y2(Ω12) ·

[
~∇⊗ ~∇

]
2

)]
(3.22)

+

[(
~∇
2
r2

12 +
8π

15

[
~∇⊗ ~∇

]
2
· ~Y2(Ω12)r2

12

)
ρ̂I=1 (2r12)

(
~τ1 · ~τ2W

LR
1PE(2~r12)− w0,1,0(r12)

)
(3.23)

+ ~∇ · ~r12 ρ̂I=1 (2r12)
(
~τ1 · ~τ2W

LR
1PE(2~r12)− w0,1,0(r12)

)
~r12 · ~∇ (3.24)

+ ρ̂I=1 (2r12)
(
~τ1 · ~τ2W

LR
1PE(2~r12)− w0,1,0(r12)

)(
r2

12
~∇2 +

8π

15
r2

12
~Y2(Ω12) ·

[
~∇⊗ ~∇

]
2

)]}
.

(3.25)

To make the notation consistent with standard two-body potentials, the coordinate ~r1 has
been renamed to ~r12 after performing the integration. It should be interpreted as the usual
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relative Jacobi coordinate of the two particle system and the potential is now fully local.
Unfortunately, the remaining terms are more difficult to integrate. We show here how the

scalar functions in the expressions from Section 2.3 remain dependent on the magnitudes
of linear combinations of coordinates and therefore complicate the angular integrals. A
majority of the remaining nonlocal terms seen in Section 2.3 are of the form

V (~r12, ~r12
′ ) = f(r12)g(|~r12 − ~r12

′ |)
[
Yl(r̂)⊗ Yl′

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)]
LM

± ~r12 ↔ ~r12
′ . (3.26)

After substituting the new variables (3.1), we have

V (~r1, ~r2) = f(|~r1 + ~r2/2|)g(r2)

[
Yl

(
~r1 + ~r2/2

|~r1 + ~r2/2|

)
⊗ Yl′ (r̂2)

]
LM

± ~r2 → −~r2 (3.27)

We can rewrite the second spherical harmonic using a formula from [60],

Yl′m′

(
~r12 − ~r12

′

|~r12 − ~r12
′ |

)
=

l′∑
l=0

(−1)l
′+l

√
4π(2l + 1)(2l′ − 2l + 1)

2l′ + 1

× r12
′ l′−lrl12|~r12 − ~r12

′ |−l′ [Yl(r̂12)⊗ Yl′−l(r̂12
′ ))]l′m′ (3.28)

With this substitution, (3.33) becomes

V (~r1, ~r2) = f(|~r1 + ~r2/2|)g(r2)

l∑
l′′=0

√
4π(2l′′ + 1)(2l − 2l′′ + 1)

2l + 1
rl
′′

1

(r2

2

)l−l′′
|~r1 + ~r2/2|−l[[

Yl′′(r̂1)⊗ Yl−l′′(r̂2)
]
l
⊗ Yl′ (r̂2)

]
LM
± ~r2 → −~r2 (3.29)

Next, we can use the Wigner 6-j symbol to recouple the three spherical harmonics,

V (~r1, ~r2) = f(|~r1 + ~r2/2|)g(r2)
l∑

l′′=0

√
4π(2l′′ + 1)(2l − 2l′′ + 1) rl

′′

1

(r2

2

)l−l′′
|~r1 + ~r2/2|−l

∑
l′′′

(−1)l+l
′+L
√

(2l′′′ + 1)

{
l′′ l − l′′ l
l′ L l′′′

}[[
Yl′(r̂2)⊗ Yl−l′′(r̂2)

]
l′′′
⊗ Yl′′ (r̂1)

]
LM

± ~r2 → −~r2 (3.30)

where the sum over l′′′ includes all values for which the 6-j symbol is nonzero. Finally we
combine the coupled r2 spherical harmonics2 and use the parity of the spherical harmonics

2
√

4π(2l + 1)[Yl1(r̂)⊗ Yl2(r̂)]lm =
√

(2l1 + 1)(2l2 + 1) 〈l1 0, l2 0|l1 l2 l 0〉Ylm(r̂)
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to simplify the expression

V (~r1, ~r2) = (−1)l+l
′+L
√

2l′ + 1 g(r2)
l∑

l′′=0

√
(2l′′ + 1)(2l − 2l′′ + 1)

rl
′′

1

(r2

2

)l−l′′ (f(|~r1 + ~r2/2|)
|~r1 + ~r2/2|l

± (−1)l+l
′−l′′ f(|~r1 − ~r2/2|)

|~r1 − ~r2/2|l

)
∑
l′′′

〈l′ 0, l − l′′ 0|l′ l − l′′ l′′′ 0〉
{
l′′ l − l′′ l
l′ L l′′′

}[
Yl′′ (r̂1)⊗ Yl′′′(r̂2)

]
LM

. (3.31)

The remaining nonlocal terms in the effective potential take the general form

V (~r12, ~r12
′ ) = f(r12)f(r12

′ ) [Yl(r̂12)⊗ Yl′ (r̂12
′ )]LM . (3.32)

This makes both terms functions of ~r1 ± ~r2/2:

V (~r1, ~r2) = f(|~r1 + ~r2/2|)f(|~r1 − ~r2/2|)
[
Yl

(
~r1 + ~r2/2

|~r1 + ~r2/2|

)
⊗ Yl

(
~r1 − ~r2/2

|~r1 + ~r2/2|

)]
LM

. (3.33)

Following the same procedure as for the previous form, we arrive at a final answer involving
the 9-j symbol

V (~r1, ~r2) =
f(|~r1 + ~r2/2|)
|~r1 + ~r2/2|

f(|~r1 − ~r2/2|)
|~r1 − ~r2/2|

(−1)l
l∑

l1,l′1=0

(−1)l
′
1(2l1 + 1)(2l′1 + 1)(2l − 2l1 + 1)(2l − 2l′1 + 1)r

l+l′1
1

(r2

2

)l1+l′1

∑
l2,l′2

〈l1 0, l′1 0|l1 l′1 l2 0〉 〈(l − l1) 0, (l − l′1) 0|(l − l1) (l − l′1) l′2 0〉

×


l1 l − l1 l
l′1 l − l′1 l
l2 l′2 L

[Yl′′ (r̂1)⊗ Yl′′′(r̂2)
]
LM

(3.34)

In order to obtain local expressions, we need to integrate over the coordinate ~r2 in equa-
tions (3.31) and (3.34). Although the functions f are scalar, they depend on the angle
between ~r1 and ~r2. To make the angular dependence on the individual coordinates fully
explicit in terms of spherical harmonics, we need to also expand the scalar functions in the
same way as the initial and final state wavefunctions using (3.6). To a given order, one can
straightforwardly perform the angular r̂2 integration. This work, and the validation that the
local expansion faithfully approximates the matrix elements of the full nonlocal potential, is
still ongoing.
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Chapter 4

Energy Spectra of Two Interacting
Fermions with Spin-Orbit Coupling in
a Harmonic Trap

Cold atomic gases with parity-violating spin-orbit coupling (SOC) have recently been an
area of intense interest because of the potential to simulate interesting physical systems
with precisely tunable interactions [27]. In condensed-matter and atomic physics, spin-orbit
couplings1 are essential for many exotic systems such as topological insulators [20, 29], the
quantum spin Hall effect [10], and spintronics [71]. The experimental setup which induces
spin-orbit coupling is intimately related to simulation of synthetic gauge fields [19, 34, 47,
11]. Because these couplings are parity violating, they potentially play similar roles within
nuclear systems that undergo parity-violating transitions due to the nuclear weak force.
Atomic gases provide an excellent testing ground both to explore universal behavior of these
real life systems and to create new types of spin-orbit coupling which are not yet known to
exist (or have no solid-state analog) in other materials but are interesting in their own right.
Further, these experiments can be performed in an environment with few or no defects and
impurities.

Spin-orbit coupling was first realized in a Bose condensate of 87Rb [46] and extended
shortly after to Fermi gases of 40K [64] and 6Li [17]. These spin-orbit interactions are ‘syn-
thetic’ in the sense that a subset of the hyperfine states stand in as virtual spin states. A
particularly interesting consequence of this is the possibility of studying systems with syn-
thetic spin-1/2 spin-orbit interactions but bosonic statistics [7, 46]. From another point of
view, the couplings are equivalent to applying external electromagnetic forces via synthetic
gauge couplings on the physically uncharged particles in the gas [45, 3]. It has also been
conjectured that these systems could be used to physically simulate lattice gauge theories
[12, 52]. Spin-orbit couplings in solid-state systems arise in two-dimensional (2D) systems

1In these fields, spin-orbit coupling conventionally refers to operators which couple spin with momentum,
as opposed to the more restrictive use in nuclear and atomic physics where there term specifically refers to
a parity-conserving ~̀ · ~s interaction.
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(Rashba and Dresselhaus types, described in Sec. 4.1), but recently an experimental setup
has been proposed that can simulate the Weyl-type SOC which is fundamentally three di-
mensional [6].

Spin-orbit couplings are also of interest from the perspective of few-body physics where
they arise in a variety of fields, e.g., the weak nuclear interactions governing proton-proton
scattering [36, 61]. Because the spin-orbit coupling is long range, it can significantly modify
both the threshold scattering behavior and the spectrum of two-body systems [70]. For low-
energy scattering, Duan et al. [23] showed analytically that parity-violating SOC leads to
the the spontaneous emergence of handedness in outgoing states, a finding later confirmed
in [63]. Even in the presence of a repulsive two-body interaction, an arbitrarily weak SOC
has been shown to bind dimers [62]. For three-particle systems, a new type of universality
is conjectured to occur for bound trimers with negative scattering length [56].

Few-atom systems undergoing SOC within trapping potentials have also been explored.
For example, the spectrum of particles within a trap with an external SOC of the Weyl type
(but no relative interaction) has been theoretically determined [4]. The Rashba SOC with
two-particle systems interacting via short-ranged interactions was investigated perturbatively
in [69], where it was shown that the leading order corrections due to the SOC and short-
range interaction are independent when the scattering length is equal for all channels. In one
dimension, the spectrum for this type of system has been calculated when the SOC consists
of equal parts Rashba and Dresselhaus interactions [31]. Information learned from trapped
systems augments that from scattering experiments while also being relevant to interesting
phenomena in trapped many-body systems with SOC such as solitons [1, 68] or novel phase
diagrams [57].

In all these calculations, the emergent spectrum is rich and complex, offering new insights
into few-body behavior. Our objective is to provide some additional insight into two-body
physics of Fermi gases with spin-orbit interactions in the presence of both three-dimensional
trapping potentials and short-ranged two-body interactions, which are necessarily present in
dilute cold-atom experiments. Our approach is to numerically diagonalize the Hamiltonian
within a suitably truncated basis, and is thus nonperturbative in nature. Eigenstates of
the interacting Hamiltonian without SOC are used for the basis. Section 4.1 introduces
the specific forms of spin-orbit coupling and two-body interactions which we consider. The
general method is detailed in Sec. 4.2 for the simplest SOC. In the remaining Secs. 4.3-4.4
we study the spectra of additional spin-orbit couplings in order of increasing computational
complexity.

4.1 Hamiltonian for Spin-orbit Couplings with

Contact Interactions

In this chapter we simply refer to our systems by their ‘spin’ degrees of freedom and use the
standard notation for spin quantum numbers. We consider three different types of spin-orbit
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coupling. The form of spin-orbit coupling realized in experiments is a linear combination of
the Rashba [15] and linear Dresselhaus [21] types,

VR ≡ αR(σxky − σykx), (4.1)

VD ≡ αD(σxky + σykx), (4.2)

which were originally recognized in two-dimensional solid-state systems. In a 2D system,
these form a complete basis for spin-orbit couplings linear in momentum. Note that some
references use the alternate definitions VR ∝ (σxkx + σyky) and VD ∝ (σxkx − σyky) which
are equivalent up to a pseudospin rotation. For solids, these parity-violating interactions are
allowed only in the absence of inversion symmetries. Rashba-type SOC typically arises in
the presence of applied electric fields or in 2D subspaces such as the surfaces of materials
where the boundary breaks the symmetry. Dresselhaus couplings were first studied in the
context of bulk inversion asymmetry, when the internal structure leads to gradients in the
microscopic electric field.

To date, experiments have produced only SOC potentials in which the Rashba and Dres-
selhaus terms appear with equal strength (also known as the “persistent spin-helix symmetry
point” [13]),

VR=D ≡ αR=Dσxky. (4.3)

After a pseudospin rotation, this potential can be seen as a unidirectional coupling of the
pseudospin and momentum along a single axis. A proposal for tuning the ratio αR/αD has
been given in [16]. An experimental setup which gives the simple three-dimensional Weyl
coupling,

VW ≡ αW~k · ~σ, (4.4)

has also been proposed in [6] and [5].
In the following sections we calculate the spectra of two particles with a short-range

two-body interaction, an isotropic harmonic trapping potential and spin-orbit coupling. The
single particle Hamiltonian is

H1 =
~2k2

2m
+

1

2
mω2r2 + VSO. (4.5)

For the spin-orbit term VSO, we consider equal Rashba and Dresselhaus (4.3), pure Rashba (4.1),
and Weyl (4.4) spin-orbit couplings because these are generally considered to be experimen-
tally feasible.

We assume that the range of interaction between particles is small compared to the size of
the oscillator well. The relative interaction between the particles can then be approximated
as a regulated s-wave contact interaction, which in momentum space (as a function of relative
momentum) is given by

4π~2

m
a(Λ) . (4.6)

Here the argument Λ refers to some cutoff scale and a(Λ) is some function of the cutoff and
physical scattering length aphys. The exact form of this function depends on the type of
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regulator used and is not relevant for this work; the only constraint is that a(Λ) reproduce
the physical scattering length given by the scattering T matrix at threshold, T (E = 0) =
4π~2aphys/m [59]. In the limit Λ → ∞ the spectrum of two particles in an oscillator well
(without external spin-orbit interaction) was solved by Busch et al. [14] using the method
of pseudopotentials. In Ref. [49] the solution for general Λ was given using a Gaussian
regulator, which in the limit Λ → ∞ recovered the Busch et al. solution. For our work
below we use the eigenstates and eigenvalues of this two-particle system given in Ref. [14].

4.2 Weyl Coupling

We tackle the Weyl form first because of its mathematical and numerical simplicity. In the
absence of the two-body interaction, this problem was treated in Ref. [4]. Our approach
is to determine the matrix elements of the SOC in an appropriate basis. The eigenvalue is
then solved numerically at the desired precision by choosing an appropriately large truncated
basis of harmonic oscillator (HO) eigenstates.

As usual, the two-body problem is best approached in the dimensionless Jacobi coordi-
nates

R =
r1 + r2√

2b
, r =

r1 − r2√
2b

(4.7)

and the corresponding conjugate momenta q,Q representing the relative and total momenta.
For an isotropic harmonic oscillator, distances can be expressed in terms of the ground-state
length scale b =

√
~/mω and energies will be similarly measured in units of E0 = ~ω. We

also define the spin operators

~σ ≡ ~σ1 − ~σ2, ~Σ ≡ ~σ1 + ~σ2. (4.8)

With these definitions, the two-body Hamiltonian can be nondimensionalized and sepa-
rated into relative and center-of-mass (c.m.) parts,

1

~ω
H =

(
h0,rel +

α̃W√
2
~q · ~σ +

√
2πã(Λ)δ(3)(r)

)
+

(
h0,c.m. +

α̃W√
2
~Q · ~Σ

)
, (4.9)

where h0,rel = r2/2 and h0,c.m. = R2/2. Notably, the spin-orbit coupling appears in both
terms. The tilde over the coupling constants indicates that they are dimensionless, related
to the original coupling constants by e.g., α̃W = αW/(~ωb). Similarly the scattering length
is made dimensionless by dividing out the oscillator length, ã = a/b. Throughout the
remainder of this chapter we will refer to dimensionless eigenvalues of H/~ω as the energies
of the system.

Eigenstates of two particles with a short-range interaction in a harmonic oscillator trap-
ping potential form a convenient basis for these calculations. These basis functions were
first derived in [14] for the isotropic case considered here, and the more general case of an
anisotropic trap has been explored in [40]. The dependence of the energy spectrum on the
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Figure 4.1: Spectrum of the two-body contact interaction Hamiltonian as a function of
ã. The horizontal lines indicate the dimensionless energy eigenvalues in the unitary limit
|ã| → ∞.

scattering length a is shown in Fig. 4.1 for reference. Qualitatively, the effect of the short-
range interaction is to shift the harmonic oscillator energies by ±~ω as the scattering length
goes to ±∞. For positive scattering length, there is also an additional negative-energy dimer
state.

We choose the particular coupling scheme of angular momentum eigenstates,

|n(ls)j;NL; (jL)J〉 , (4.10)

which simplify the matrix elements for the relative-coordinate operators. Here n and l refer
to the principal and orbital angular-momentum quantum numbers of the two-particle system
in the relative coordinates. N and L refer to the analogous numbers in the center-of-mass
frame. The total spin of the two spin-1/2 particles is denoted by s = s1 + s2 and may be
either 0 or 1. First s and l to make angular momentum j, which is then recoupled with
the c.m. angular momentum L to make the state’s total angular momentum J . Because all
terms in the Hamiltonian (4.9) are scalars, the interaction is independent of Jz and so we
omit this quantum number for clarity. Due to Pauli exclusion, l+ s must be even to enforce
antisymmetry under exchange of the particles.

For l 6= 0 the states (4.10) are identical to the well known harmonic oscillator, with n
and l (N and L) indicating the relative (center-of-mass) HO quantum numbers. We use
the convention that n,N = 0, 1, 2, . . . , and therefore E = 2n + l + 2N + L + 3. The short
range interaction (4.5) modifies the l = 0 states and their spectrum. The principal relative
quantum number n for these states is obtained by solving the transcendental equation

√
2

Γ(−n)

Γ(−n− 1/2)
=

1

ã
(4.11)
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and is no longer integer valued. For the relative-coordinate part of the l = 0 wave function,

φ(r) =
1

2π3/2
A(n)Γ(−n)U(−n, 3/2, r2)e−r

2/2, (4.12)

A(n) =

(
Γ(−n)[ψ0(−n)− ψ0(−n− 1/2)]

8π2Γ(−n− 1/2)

)−1/2

, (4.13)

where U(a, b, x) is Kummer’s confluent hypergeometric function and ψ0(x) = Γ′(x)/Γ(x)
is the digamma function. A derivation of the normalization factor A(n) is given in the
Appendix.

Standard angular momentum algebra can be used to determine the matrix elements of
the two spin-orbit coupling terms; we follow the conventions of [24]. For Weyl SOC of two
spin-1/2 fermions, the matrix elements of the coupling in the relative momentum are

〈n′(l′s′)j′;N ′L′; (j′L′)J ′| ~q · ~σ |n(ls)j;NL; (jL)J〉

=δN,N ′δL,L′δj,j′δJ,J ′(−1)l+s
′+j 3√

2

{
j s′ l′

1 l s

}
(s′ − s) 〈n′l′||q||nl〉 .

(4.14)

To preserve anti-symmetry of the two-particle system, the relative momentum term in the
Weyl SOC must couple states with relative angular momentum l to l± 1, leaving l+ s even
but changing the parity.

For basis states with both l, l′ 6= 0, reduced matrix elements of the momentum operator
are calculated between pure harmonic oscillator states,

〈n′l′||q||nl〉 =(−1)l
′
(−1)

l+l′+1
2

√
2(2l + 1)(2l′ + 1)

(l + l′ + 1)
〈n′l′0|(−i∇0)|nl0〉 (4.15)

=i(−1)l
√
l + l′ + 1

2

√
n!n′!Γ(n+ l + 3/2)Γ(n′ + l′ + 3/2)

×
n,n′∑

m,m′=0


(−1)m+m′

[
2mΓ

(
m+m′+1+ l+l′

2

)
−Γ
(
m+m′+1+ l+l′

2

)]
m!m′!(n−m)!(n′−m′)!Γ(m+l+3/2)Γ(m′+l′+3/2)

if l′ = l − 1

(−1)m+m′+1
[
(2m+2l+1)Γ

(
m+m′+1+ l+l′

2

)
−Γ
(
m+m′+1+ l+l′

2

)]
m!m′!(n−m)!(n′−m′)!Γ(m+l+3/2)Γ(m′+l′+3/2)

if l′ = l + 1

0 otherwise

(4.16)

If l = 1 and l′ = 0 or vice versa, reduced matrix elements between one modified wave function
of the form (4.12) and one pure harmonic oscillator state are needed. These are given by

〈nl = 0||q||n′l′ = 1〉 = −iA(n)

√
Γ(n′ + 5/2)

2π3n′!

2n− 2n′ − 1

2(n′ − n)(1 + n′ − n)
(4.17)

and its Hermitian conjugate.
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Figure 4.2: Absolute value of the matrix elements | 〈n′(11)0; 00; (00)0|~σ ·~q |n(00)0; 00; (00)0〉 |
between the ground state and l = 1 excited states. The horizontal axis is the principal
quantum number of the ground state obtained by solving (4.11). From left to right, the
vertical lines on the negative axis indicate the values obtained for ã = 1/4, ã = 1, ã = ±∞,
and ã = −1, respectively.

Our choice of basis makes the relative matrix elements (4.14) simple at the cost of com-
plicating the center-of-mass term. We take the approach of expanding the states (4.10) in
the alternate coupling scheme,

|n(ls)j;NL; (jL)J〉 = (−1)l+s+L+J
√

2j + 1
∑
J

√
2J + 1

{
l s j
L J J

}
|nl;N(Ls)J ; (lJ )J〉 .

(4.18)
Using this notation, the matrix elements can be written

〈n′(l′s′)j′;N ′L′; (j′L′)J ′| ~Q · ~Σ |n(ls)j;NL; (jL)J〉 = δn,n′δl,l′δJ,J ′δs,1δs1,16(−1)L

× 〈N ′L′|| ~Q||NL〉
∑
J

(−1)J (2J + 1)

{
l 1 j′

L′ J J

}{
l 1 j
L J J

}{
J 1 L′

1 L 1

}
.

(4.19)

Again, the reduced matrix element of the center-of-mass momentum changes the parity by
connecting states with ∆L = ±1. Matrix elements are nonzero only for ∆s = 0 because the
antisymmetry of the spatial wave function depends only on l, which does not change. We
also note that the c.m. term does not affect states with singlet spin wave functions (s = 0).

Using these matrix elements, we calculated the spectrum of the two interacting par-
ticles with Weyl spin-orbit coupling. Our calculations are performed by numerically di-
agonalizing in a truncated basis of the harmonic oscillator states (4.10), where a cutoff
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Figure 4.3: A convergence plot giving the change in energy eigenvalue, ∆E, for the lowest
eight energy levels when a shell is added as a function of Emax. The left figure shows
convergence for ã = −1 and α̃W = 0.5. In the right panel we show ã = 1 and α̃W = 0.5,
demonstrating that convergence of the states with large negative n is poor.

2N + L + 2n + l + 3 ≤ Emax is set high enough that the eigenvalues of the matrix have
converged to the desired accuracy.

This approach converges well only when the ground-state energy is not too low. In
particular, for a positive but very small the principal quantum number of the ground state
is increasing from negative infinity as seen in Fig. 4.1. From Fig. 4.2, we can see that as
n becomes more negative, the principal quantum number of the dominant matrix element
is also increasing. Because convergence of any energy level requires a cutoff much larger
than the energy of the most strongly coupled states, a sufficiently high Emax to ensure an
accurate ground-state energy becomes infeasible for small positive a. For excited states, n
is always positive and matrix elements with similar n always dominate. The strength of the
matrix elements follows a similar qualitative behavior for the spin-orbit couplings treated in
the following sections where the same issues recur.

As a result, convergence of the ground state is actually slower than that for nearby excited
states. Furthermore, our approach gives the fastest convergence when a is not small and
positive. We compare the rate of convergence of the ã = −1 and ã = 1 spectra in Fig. 4.3
to demonstrate the dependence of convergence on the matrix truncation. The actual energy
spectrum is shown in Fig. 4.4.

One consequence of parity violation in this system is that the eigenstates are mixtures of
the even- and odd-parity basis states described by Eq. (4.10). In Fig. 4.5 we visualize how
these subspaces are mixed in the ground state as the SOC strength increases. For the non-
interacting system, ã = 0, more than half of the ground state projects onto negative-parity
states even at fairly small values of α̃W . However, we see that the short-range interaction
reduces this effect. With negative ã, the mixing of the negative-parity states is suppressed
as the strength of the two-body interaction increases. When ã is positive the effect is more
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Figure 4.4: Spectrum of states with total angular momentum J = 0 for the dimensionless
Hamiltonian (4.9). The bottom left figure shows the ground-state energy for ã = −1 as a
function of α̃W ; above are the first few excitation energies. The right figure shows the results
in the unitary limit of the two-body interaction, |ã| → ∞. The spectrum is symmetric about
α̃W = 0.

Figure 4.5: For different values of the two-body coupling strength ã, we show the magnitude
of the ground state projected onto even parity basis states as a function of the SOC strength.

This is given by
∣∣P+ |ψGS〉

∣∣2 =
∣∣(1− P−) |ψGS〉

∣∣2, where P+ (P−) is the projection operator
onto the positive- (negative-) parity basis states. The left figure shows negative ã, while the
right shows positive ã. Note that the limits ã→ ±∞ are physically identical.
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striking. Mixing with negative-parity states is most strongly suppressed for small positive
values of ã, while the projection onto these states increases for larger positive values. The
admixture is qualitatively the same when considering other forms of SOC as described in
the following sections.

4.3 The Pure Rashba Coupling

In order to find the matrix elements of the pure Rashba coupling given in (4.1), we first note
that it can be written as a spherical tensor

VR = i
√

2 αR [k ⊗ σ]10 . (4.20)

We therefore have the two-body Hamiltonian

1

~ω
H =

(
h0,rel + iα̃R [~q ⊗ ~σ]10 +

√
2πã(Λ)δ(3)(r)

)
+
(
h0,c.m. + iα̃R[ ~Q⊗ ~Σ]10

)
. (4.21)

Because the spin-orbit coupling is now a k = 1 tensor rather than a scalar operator, the
total angular momentum J is no longer conserved. Additionally, the matrix elements now
depend on the quantum number Jz (which is conserved). For the relative-coordinate part of
the SOC, some algebra gives

〈n′(l′s′)j′;N ′L′; (j′L′)J ′J ′z| [~q ⊗ ~σ]10 |n(ls)j;NL; (jL)JJz〉 =

6i(−1)J+J ′−J ′z+j′+L+1δN,N ′δL,L′δJz ,J ′z
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1)

×
(
J ′ 1 J
−Jz 0 Jz

){
j′ J ′ L
J j 1

}{ l′ l 1
s′ s 1
j′ j 1

}
(s′ − s) 〈n′l′||q||nl〉 .

(4.22)

For the center-of-mass part of the Hamiltonian we again expand the basis states in the
alternate coupling scheme (4.18) to obtain the matrix elements

〈n′(l′s′)j′;N ′L′; (j′L′)J ′J ′z| [ ~Q⊗ ~Σ]10 |n(ls)j;NL; (jL)JJz〉 = δn,n′δl,l′δJz ,J ′zδs,1δs′,1

× 6i
√

2(−1)J+J ′−J ′z+l
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1)

(
J ′ 1 J
−Jz 0 Jz

)
〈N ′L′||Q||NL〉

×
∑
J ,J ′

(−1)J (2J + 1)(2J ′ + 1)

{
l 1 j′

L′ J ′ J ′
}{

l 1 j
L J J

}{
J ′ J ′ l
J J 1

}{ L′ L 1
1 1 1
J ′ J 1

}
.

(4.23)

Our results for the Rashba SOC are shown in Fig. 4.6. Because the Rashba spin-orbit
coupling is a vector operator, states of all possible J must be included in any calculation
and the size of the basis scales much more quickly with Emax. These spectra were computed
with an Emax of 24~ω, for which there are approximately 36 000 basis states. All displayed
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Figure 4.6: Spectrum of states with total angular momentum quantum number Jz = 0 for
the Hamiltonian (4.21). The left figure shows the energies with negative scattering length
ã = −1. The right figure shows the results in the unitary limit |ã| → ∞. The spectrum is
symmetric about α̃R = 0.

Figure 4.7: Comparison of selected spectral lines (dashed black) with the perturbative pre-
dictions from [69] (solid red) when ã =∞.
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Figure 4.8: A comparison of the energy levels with (dashed black) and without (solid red) the
inclusion of excitations in the c.m. coordinate for ã = −1. The approximation of ignoring
c.m. excitations provides very accurate results for the ground state, but not for excited
states.

eigenvalues of the Hamiltonian shift by less than 10−2~ω if an additional shell of states is
included.

This interaction was also studied perturbatively for small αR in [69], including the pos-
sibility of a spin-dependent two-body interaction, under the assumption that center-of-mass
excitations are unimportant. For the specific case of identical fermions with spin-independent
scattering length considered here, they found that the first correction to the energies occurs
at order α2

R and is independent of the scattering length a. We compare their perturbative
predictions, which are derived from the non-degenerate theory, with our numerical results in
Fig. 4.7.

By setting all matrix elements with N,L > 0 in the bra or ket to zero, we also explored
the approximation of ignoring center-of-mass excitations. Fig. 4.8 shows that this is very
accurate for the ground state, but less accurate for excited states. Suppression of the c.m.
coordinate has a similar effect for the SOCs considered in Secs. 4.2 and 4.4. We also note
that in the case of small positive a, the landscape of low-lying excited states is dominated
by center-of-mass excitations. When a→ 0+ in the absence of spin-orbit coupling, there are
an infinite number of states with nonzero c.m. quantum numbers whose energies lie between
the ground state and the first relative-coordinate excitation.
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4.4 Equal-Weight Rashba-Dresselhaus Spin-Orbit

Coupling

Experiments have thus far realized only the effective Hamiltonian with equal strength Rashba
and Dresselhaus couplings in the form (4.3). Energy levels of the two-body system in the
one-dimensional equivalent of this Hamiltonian with the additional magnetic field couplings
present in experimental realizations have been calculated in [31]. Here we treat the problem
in three dimensions.

This is also the most computationally difficult of the three cases. When decomposed into
spherical tensors, the interaction (4.2) becomes

VD = i αD

(
[k ⊗ σ]2,−2 − [k ⊗ σ]2,2

)
, (4.24)

and the two-particle Hamiltonian in the presence of equal strength Rashba and Dresselhaus
SOC is given by (4.21) with αR → αR=D plus the additional spin-orbit terms

∆H =
iα̃R=D√

2

(
[~q ⊗ ~σ]2,−2 − [~q ⊗ ~σ]2,2 + [ ~Q⊗ ~Σ]2,−2 − [ ~Q⊗ ~Σ]2,2

)
. (4.25)

Yet again the number of basis states with nonzero matrix elements has increased; no angular
momentum quantum numbers are conserved. The only remaining selection rule will be that
the interaction does not change the total magnetic quantum number Jz between even and
odd.

Using the same approach as in the previous sections, the matrix elements of the relative
Dresselhaus term are

〈n′(l′s′)j′;N ′L′; (j′L′)J ′J ′z|
iα̃R=D√

2

(
[~q ⊗ ~σ]2,−2 − [~q ⊗ ~σ]2,2

)
|n(ls)j;NL; (jL)JJz〉

= i
√

30(−1)J+J ′−J ′z+j′+LδN,N ′δL,L′
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1) 〈n′l′||q||nl〉

× (s′ − s)
[(

J ′ 2 J
−J ′z −2 Jz

)
−
(
J ′ 2 J
−J ′z 2 Jz

)]{
j′ J ′ L
J j 2

}{ l′ l 1
s′ s 1
j′ j 2

}
,

(4.26)

while the center-of-mass part is
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Figure 4.9: Spectrum of states with even total angular momentum magnetic quantum num-
ber Jz = 0, 2, . . . for the equal-weight Rashba-Dresselhaus SOC (4.3). The left figure shows
the energies with negative scattering length ã = −1. The right figure shows the results in
the unitary limit |ã| → ∞. The spectrum is symmetric about α̃R=D = 0.

〈n′(l′s′)j′;N ′L′; (j′L′)J ′J ′z|
iα̃R=D√

2

([
~Q⊗ ~Σ

]
2,−2
−
[
~Q⊗ ~Σ

]
2,2

)
|n(ls)j;NL; (jL)JJz〉

= 2i
√

15(−1)J+J ′−J ′z+l+1δn,n′δl,l′δs,1δs′,1

×
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j′ + 1)

[(
J ′ 2 J
−J ′z −2 Jz

)
−
(
J ′ 2 J
−J ′z 2 Jz

)]
〈N ′L′||Q||NL〉

×
∑
J ,J ′

(−1)J (2J + 1)(2J ′ + 1)

{
l 1 j′

L′ J ′ J ′
}{

l 1 j
L J J

}{
J ′ J ′ l
J J 2

}{ L′ L 1
1 1 1
J ′ J 2

}
.

(4.27)

The richly structured excitation spectrum of low-lying states is shown in Fig. 4.9 for a
cutoff of Emax = 17. All displayed energies shift by less than .02~ω when the final shell is
added, giving a slightly faster convergence than in the pure Rashba case.

4.5 Conclusions

In this chapter we have nonperturbatively calculated the spectrum of interacting two-particle
systems with realistic spin-orbit couplings when the trapping potential cannot be ignored.
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Matrix elements of a short-range pseudopotential and three types of spin-orbit coupling
were determined analytically in a basis of the total angular momentum eigenstates of the
interacting two-body problem without SOC. With the analytic matrix elements, exact diag-
onalization of the Hamiltonian within a finite basis was possible.

Our energy calculations were performed in a basis truncated in a consistent way by
including all states below an energy cutoff. The resulting spectra show good convergence
except in the case where the two-body interaction generates a small positive scattering
length. In this regime coupling of the ground state to higher relative-coordinate excited
states dominates and convergence in the cutoff parameter Emax was numerically intractable.
We are currently investigating alternative methods to deal with this issue. In the limit of
weak SOC we have compared our results to the perturbative calculations of [69] and found
good agreement. We also observed that although the ground state does not couple strongly
to center-of-mass excitations, their inclusion is crucial for the excited state spectrum. The
relatively weak center-of-mass coupling of the ground state, however, suggests that cold
atoms with SOC can be used as a surrogate system to probe properties of two-body spin-
orbit couplings, e.g., the parity-violating weak interaction in nuclear systems.

We provided plots of a variety of spectra calculated with Weyl, Rashba, and equal weight
Rashba-Dresselhaus couplings. Although in this thesis we show spectra only within certain
subspaces of conserved angular momentum quantum numbers, the approach presented is
fully capable of generating results for all possible states. Larger SO-coupling constants are
also accessible with larger basis sizes. The general method can easily be adapted to calculate
energies for bosonic systems, or to new forms of SOC such as the recently proposed spin-
orbital angular momentum coupling [58].

Using the eigenvectors of the truncated basis Hamiltonian, we also explored the effect
of parity violation on the system. In particular we show how the SOC induces mixing
of the positive- and negative-parity subspaces for the ground state. Without a two-body
interaction, the ground state preferentially projects onto negative parity basis states even
for modest SOC strength. The short-range interaction was seen to suppress this mixing,
especially when the scattering length is positive.

A natural extension of this work is to consider three particles within a trap. Because of
the complex spectrum that is associated with three-body physics at the unitary limit (e.g.,
Efimov states, limit cycles, etc.), the spectrum under the influence of an external SOC is
expected to be quite rich. Couplings between the center-of-mass and relative motion due
to the SOC present a potential challenge to traditional few-body techniques, such as the
Faddeev equations, which work only within the relative coordinates. However, in our two-
body calculations we found that the coupling of the ground state to the c.m. motion is weak.
If this is also true in the three-body case, then to a good approximation we can ignore the
c.m. motion and utilize existing few-body techniques with little or no modification.
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Appendix A

Spectator Sums

In the derivation of a two-body effective potential for the 3N interaction, we encounter sums
over the spin, isospin, and momentum quantum numbers for the Fermi gas of spectator
particles. In this appendix, we show how to perform these sums.

A.1 Spin Sums

Recall that the Fermi gas is assumed to be spin symmetric. The spin operators occur either
in the form σi1σ

j
2 or σi1σ

j
2σ

k
3 . We begin with the two-operator product. Altogether there

are thirty-six antisymmetrized diagrams. Of these, permutation of α1 ↔ α2 and β1 ↔ β2

reduces the number of unique calculations by a factor of four. Using Cartesian indices, we
need to perform five unique sums over Pauli matrix products∑

msγ=±1/2

〈α1, α2, γ|σi1σ
j
2 |β1, β2, γ〉 (A.1)

∑
msγ=±1/2

〈α1, α2, γ|σi1σ
j
2 |β1, γ, β2〉 (A.2)

∑
msγ=±1/2

〈α1, γ, α2|σi1σ
j
2 |γ, β1, β2〉 (A.3)

∑
msγ=±1/2

〈α1, γ, α2|σi1σ
j
2 |β1, γ, β2〉 . (A.4)

All other permutations of initial and final indices may be found by using permutations of
the operator indices,∑

msγ=±1/2

〈γ, α1, α2|σi1σ
j
2 |β1, γ, β2〉 =

∑
msγ=±1/2

〈α1, γ, α2|σj1σi2 |γ, β1, β2〉 , (A.5)
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which generates four of the remaining five summations; and by requiring hermiticity,∑
msγ=±1/2

〈α1, γ, α2,|σi1σ
j
2 |β1, β2, γ〉 =

( ∑
msγ=±1/2

〈β1, β2, γ|σi1σ
j
2 |α1, γ, α2〉

)∗
(A.6)

which generates the final unique term.
The diagonal terms are the simplest. When the spin operator does not act on the Fermi

gas state the summation produces a factor of two,∑
msγ=±1/2

〈α1, α2, γ|σi1σ
j
2 |β1, β2, γ〉 = 〈α1, α2| 2σi1σ

j
2 |β1, β2〉 . (A.7)

Because the Pauli matrices are traceless,
∑

γ 〈γ|σi|γ〉 = 0 which implies that the sum (A.4)
vanishes, ∑

msγ=±1/2

〈α1, γ, α2|σi1σ
j
2 |β1, γ, β2〉 = 0. (A.8)

In evaluating (A.2) we see that, since no spin operator acts on particle three, we generate
a Kronecker delta which selects one term out of the sum,∑

msγ=±1/2

〈α1, α2, γ|σi1σ
j
2 |β1, γ, β2〉 =

∑
msγ=±1/2

δmsγ ,msβ1
〈α1, α2|σi1σ

j
2 |β1, γ〉

= 〈α1, α2|σi1σ
j
2 |β1, β2〉 .

(A.9)

The final term (A.3) will generate a two body interaction with spin operators acting only
on a single particle.∑

msγ=±1/2

〈α1, γ, α2|σi1σ
j
2 |γ, β1, β2〉 =

∑
msγ=±1/2

〈α1|σi |γ〉 〈γ|σj |β1〉 〈α2|β2〉

= 〈α1, α2|σi1σ
j
1 |β1, β2〉

= 〈α1, α2| δij + iεijkσk1 |β1, β2〉

(A.10)

We also evaluate the analogs of these sums for case of three spin operators which arises
in the V4 term. We can reduce our evaluation to two forms, as the spin operator structure is
invariant under permutations of any two particles. First, the traceless property implies that
all terms with diagonal spectator quantum numbers are zero,∑

msγ=±1/2

〈α1, α2, γ|σi1σ
j
2σ

k
3 |β1, β2, γ〉 = 0 (A.11)

in analogy to (A.8). The only remaining unique term is∑
msγ=±1/2

〈α1, α2, γ|σi1σ
j
2σ

k
3 |β1, γ, β2〉 =

∑
msγ=±1/2

〈α1|σi |β1〉 〈α2|σj |γ〉 〈γ|σk |β2〉

= 〈α1, α2|σi1σ
j
2σ

k
2 |β1, β2〉

= 〈α1, α2|σi1(δjk + iεjklσl2) |β1, β2〉

(A.12)
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This arises only for one diagram in the two-pion exchange. Using the results of (A.2) and
standard identities for the permutation symbol ε, we can simplify the resulting expression
further,∑

msγ=±1/2

〈α1, α2, γ|~σ1 · ~q1 ~σ2 · ~q2 ~σ3 · (~q1 × ~q2) |β1, γ, β2〉 =

〈α1, α2| i
[
~σ1 · ~q1 ~σ2 · ~q1 (~k′ − ~kγ)2 − ~σ1 · ~q1 ~σ2 · (~k′ − ~kγ) ~q1 · (~k′ − ~kγ)

]
|β1, β2〉 . (A.13)

Once coupled to the momentum operators, we also find a somewhat different looking expres-
sion for∑

msγ=±1/2

〈γ, α1, α2|~σ1 · ~q1 ~σ2 · ~q2 ~σ3 · (~q1 × ~q2) |β1, γ, β2〉 =

〈α1, α2|
(
~σ2 ·

[
(~kγ − ~k)× (~k′ − ~kγ)

]
(~kγ − ~k) · (~k′ − ~kγ)

− i~σ1 ·
[
(~kγ − ~k)× (~k′ − ~kγ)

]
~σ2 ·

[
(~kγ − ~k)× (~k′ − ~kγ)

] )
|β1, β2〉 . (A.14)

A.2 Isospin Projections

We allow the Fermi gas to be asymmetric in isospin via the inclusion of different momentum-
dependent density of states. In practice, this means that we project different linear com-
binations of the momentum integrals described in Section A.3 according to (2.5). These
projections are dependent on the two-body isospin quantum numbers, and we derive these
dependences here by expanding the spectator state as

|γ〉 = δmτγ ,1/2 |
1
2
〉+ δmτγ ,−1/2 |−1

2
〉 . (A.15)

This implies that we can write the outer product in terms of projection operators as,

|γ〉 〈γ| = δmτγ ,1/2
1 + τ 3

2
+ δmτγ ,−1/2

1− τ 3

2
. (A.16)

Compared to the spin sums, the isospin operators are never coupled to other operators
and in fact take only two forms, ~τ1 · ~τ2 and ~τ3 · [~τ1 × ~τ2]. For the first form, the case where
the spectator momentum is diagonal in the third particle mirrors (A.7):

〈α1, α2, γ|~τ1 · ~τ2 |β1, β2, γ〉 = 〈α1, α2|~τ1 · ~τ2 |β1, β2〉 〈γ|γ〉

= 〈α1, α2|~τ1 · ~τ2 |β1, β2〉
(
δmτγ ,1/2 + δmτγ ,−1/2

) (A.17)
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The other diagonal terms do not contribute due to the spin sums (A.8) and and need not be
calculated. For the remaining terms, we make use of (A.16). First,

〈α1, α2, γ|~τ1 · ~τ2 |β1, γ, β2〉 = 〈α1| τ i |β1〉 〈α2|τ i|γ〉 〈γ|β2〉

= 〈α1| τ i |β1〉 〈α2|τ i
(
δmτγ ,1/2

1 + τ 3

2
+ δmτγ ,−1/2

1− τ 3

2

)
|β2〉

=
1

2
〈α1| τ i |β1〉 〈α2| τ i∆+ + τ iτ 3∆− |β2〉

= 〈α1, α2|
~τ1 · ~τ2∆+ +

(
τ 3

1 − i [~τ1 × ~τ2]3
)
∆−

2
|β1, β2〉

(A.18)

where we define the isovector and isocalar projections ∆± =
(
δmτγ ,1/2 ± δmτγ ,−1/2

)
for conve-

nience. The other remaining projection of ~τ1 · ~τ2 is

〈γ, α1, α2|~τ1 · ~τ2 |β1, γ, β2〉 = 〈α1| τ i |γ〉 〈γ| τ i |β1〉 〈α2|β2〉

= 〈α1| τ i
(

∆+ + τ 3∆−
2

)
τ i |β1〉 〈α2|β2〉

= 〈α1, α2|
3∆+ − τ 3

1 ∆−
2

|β1, β2〉 .

(A.19)

For the V4 term with the three coupled isospin operators, we know that the diagonal terms all
vanish from the spin sums. The other terms are easy to evaluate from particle permutations
of one example, which involves some tedious algebra to obtain:

〈α1, α2, γ| εijkτ i1τ
j
2τ

k
3 |β1, γ, β2〉 = 〈α1α2| i

(
~τ1 · ~τ2∆+ − τ 3

1 ∆−
)
|β1β2〉 (A.20)

A.3 Momentum Space

In this section we give explicit expressions for the sum over spectator momentum ~kγ in
the momentum space expressions of Section 2.2 assuming the zero-temperature Fermi-Dirac
density of states. For terms where only a single pion’s momentum transfer depends on ~kγ
we have three distinct integrals of the form

Γα(k) =
k2−α

m3
π

∫ kγ<kF d3~kγ
(2π)3

{
1, ~kγ · k̂, k2

γ

}
α

(~k − ~kγ)2 +m2
π

(A.21)

where
{

1, kγ cos θ, k2
γ

}
α

indicates that the numerator is 1 for α = 0, kγ cos θ when α = 1,
etc. We have suppressed the n, p index on the Fermi momenta in this appendix, but remind
the reader that these integrals appear in linear combinations of the isospin components.
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The results of analytically integrating over the Fermi sphere are

Γ0(k) =
k2

m3
π

∫ kγ<kF d3~kγ
(2π)3

1

(~k − ~kγ)2 +m2
π

=
3

4

ρ

m3
π

[
k̃2 − m̃πk̃

2

(
arctan

1− k̃
m̃π

+ arctan
1 + k̃

m̃π

)

+
1

4

(
1− k̃2 + m̃2

π

)
log

m̃2
π + (k̃ + 1)2

m̃2
π + (k̃ − 1)2

]
,

(A.22)

Γ1(k) =
k

m3
π

∫ kγ<kF d3~kγ
(2π)3

~kγ · k̂
(~k − ~kγ)2 +m2

π

=
3

4

ρ

m3
π

[
(3k̃2 − m̃2

π − 1)− 4k̃2m̃π

(
arctan

1− k̃
m̃π

+ arctan
1 + k̃

m̃π

)

+
(1 + m̃2

π)2 − 3k̃4 + 2k̃2(1 + 3m̃2
π)

4k̃
log

m̃2
π + (k̃ + 1)2

m̃2
π + (k̃ − 1)2

]
,

(A.23)

Γ2(k) =
k

m3
π

∫ kγ<kF d3~kγ
(2π)3

k2
γ

(~k − ~kγ)2 +m2
π

=
1

2

ρ

m3
π

[
(3k̃2 − 9m̃2

π − 1)− 6m̃π(k̃2 − m̃2
π)

(
arctan

1− k̃
m̃π

+ arctan
1 + k̃

m̃π

)

+
3
(
k̃4 + m̃4

π − 6k̃2m̃2
π − 1

)
4k̃

log
m̃2
π + (k̃ + 1)2

m̃2
π + (k̃ − 1)2

 .
(A.24)

All variables appear in the dimensionless combinations m̃π = mπ/k
n,p
F and k̃ = k/kn,pF . For

actual calculations, one can replace kF with the observable densities using (2.6).

A.4 Coordinate Space

Dealing with the Fermi gas momentum is much simpler in coordinate space. After Fourier
transforming the summed diagrams back into a configuration space potential, in all cases
the dependence on the spectator momentum appears through the integral

ρ̂(|~r12 − ~r12
′ |) =

1

m3
π

∫
d3kγ
(2π)3

n(kγ)e
i~kγ ·(~r12−~r12′ ) (A.25)
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Using our standard choice n(kγ) = θ(kγ − kF ) this integral can be performed analytically,

ρ̂(r) =
1

(2π)2

1

m3
π

∫ −1

−1

du

∫ kF

0

k2
γdkγ e

i~kγru

=
1

(2π)2

1

m3
π

∫ kF

0

k2
γdkγ

ei
~kγr − e−i~kγr

ikγr

=
1

(2π)2

1

m3
π

∫ kF

0

k2
γdkγ

2 sin(kγr)

kγr

=
k2
F

2π2

1

m3
π

j1(kγr)

r
.

(A.26)

We can replace the Fermi momentum with the density using (2.6) to obtain

ρ̂(r) =
1

2

(
3ρ

π2m3
π

)2/3
j1([3π2ρ]1/3r)

mπr
. (A.27)

Note that the factor of 1/2 is not included in (2.30) which means that∫
d3kγ
(2π)3

[
n(kγ)± n(kγ)

]
ei
~kγ ·(~r12−~r12′ ) = m3

π

ρ̂I=0,1 (|~r12 − ~r12
′ )|)

2
. (A.28)
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Appendix B

Fourier Integrals

In an attempt at organizing the terms in the coordinate space effective potential, we introduce
the following notation for the dimensionless radial functions wα,β,`(mr):

i` Y`(r̂)wα,β,`(mr) =
4π

m3+α−2β

∫
d3q

(2π)3

qα

(q2 +m2)β
Y`(q̂) e

i~q·~r, (B.1)

which implies that

wα,β,`(z) =
2

π

∫
dk k2 kα

(1 + k2)β
j`(kz) (B.2)

with ~z ≡ m~r and k both dimensionless. In Table B.1 we give the integrated results for
selected values of α, β, `. The first function we recover, for the case of (α, β, `) = (0, 1, 0), is
nothing but a Yukawa potential.

To further demonstrate the use of this integral, we now derive the familiar tensor force
resulting from one pion exchange. This amplitude is related to the integral

Vπ(~r) = − g2
A

4F 2
π

~τ1 · ~τ2

∫
d3q

(2π)3

(~σ1 · ~q)(~σ2 · ~q)
q2 +m2

π

ei~q·~r. (B.3)

We can rewrite the numerator in the integral as

(~σ1 · ~q)(~σ2 · ~q) = q2

(√
8π

15
[~σ1 ⊗ ~σ2]2 · Y2(q̂) + 1

3
~σ1 · ~σ2Y0(q̂)

)
, (B.4)

which then gives

Vπ(~r) = − g2
A

4F 2
π

~τ1 · ~τ2

(
m3
π

4π

){
−
√

8π

15
[~σ1 ⊗ ~σ2]2 · Y2(r̂)w2,1,2(mπr) +

1

3
σ1 · σ2w2,1,0(mπr)

}
,

(B.5)
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α β ` wα,β,`(z)

0 0 0 4πδ(3)(~z)

0 1 0 e−z
z

2 1 0 −e
−z

z + 4πδ(3)(~z)

1 1 1 e−z
z (1 + 1

z
)

2 1 2 e−z
z (1 + 3

z
+ 3

z2
)

0 2 0 e−z
2

2 2 0 e−z
z (− z

2
+ 1)

2 2 2 e−z
z ( z

2
+ 1

2
)

4 2 0 e−z
z ( z

2
− 2) + 4πδ3(~z)

4 2 2 e−z
z (− z

2
+ 1

2
+ 3

z
+ 3

z2
)

Table B.1: Table of selected values for wα,β,`(z) found by integrating equation (B.2).

or, plugging in explicit values for the w’s from Table B.1 and recalling that the tensor
operator S12 is conventionally defined

S12 ≡ 3~σ1 · r̂~σ2 · r̂ − ~σ1 · ~σ2 = 3

√
8π

15
[σ1 ⊗ σ2]2 · Y2(r̂), (B.6)

we have

Vπ(~r) =
g2
A

4F 2
π

(
m3
π

12π

){
e−mπr

mπr

[
S12

(
1 +

3

mπr
+

3

m2
πr

2

)
+ σ1 · σ2

]
− 4πσ1 · σ2δ

3(mπ~r)

}
,

(B.7)
which is the familiar result.

Representations in terms of these functions are not unique. When α = 2β, one may
rewrite the numerator in (B.2) using only powers of q less than α. As a concrete example,
consider the case for w2,1,0(z). Because

q2

q2 +m2
= 1− m2

q2 +m2
(B.8)

we immediately see that w2,1,0(z) = w0,0,0(z) − w0,1,0(z), a result which can be confirmed
by inspection from Table B.1. This rewriting also makes clear the origin of the short-range
delta function terms in the Fourier transforms of the form w2β,β,0(z). Other relationships
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include,

w4,2,0(z) = w0,0,0(z)− 2w2,2,0(z)− w0,2,0(z) (B.9)

w4,2,2(z) = w2,1,2(z)− w2,2,2(z) (B.10)

When α < 2β similar relationships exist, but require introducing terms with higher powers
of q than occur in the original Fourier transform. The transform does not exist when α > 2β.
In general, we have attempted to minimize the number of w functions which appear in the
expressions throughout Chapters 2 and 3 rather than expand them in this way.
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Appendix C

Evaluation of the Approximate Local
Matrix Elements in a
Harmonic-Oscillator Basis

Eigenstates of the isotropic harmonic oscillator are commonly used in e.g. the shell model.
Because of their analytic simplicity, I present here formulas which are helpful when evaluating
the effective local matrix elements in this basis. In bra-ket notation, the two body center-
of-mass basis will be denoted by states of total angular momentum J as

|n(ls)JMJ〉 (C.1)

where n ≥ 0 is the principal quantum number, l is the total angular momentum, and the
total two-body spin is denoted by s = 0, 1.

Matrix elements of the gradient (~∇) and position (~r) in this basis take a ladder-operator
form, with only a small number of nonzero matrix elements. For our purposes I will present
the reduced matrix elements, which can then be re-coupled to form the necessary operators.

〈n′l′||~∇||nl〉 =
−1

b

{√
l + 1

(√
nδn′,n−1 +

√
n+ l + 3/2δn′,n

)
δl′,l+1

+
√
l
(√

n+ 1δn′,n+1 +
√
n+ l + 1/2δn′,n

)
δl′,l+1

} (C.2)

〈n′l′||~r||nl〉 = b
{√

l + 1
(√

n+ l + 3/2δn′,n −
√
nδn′,n−1

)
δl′,l+1

+
√
l
(√

n+ 1δn′,n+1 −
√
n+ l + 1/2δn′,n

)
δl′,l+1

} (C.3)

The generic expression for the reduced matrix element a compound spherical tensor
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XK = [Ak1 ⊗Bk2 ]K where both A and B act on the same quantum number l is given by

〈n′l′||XK ||nl〉 =
√

2K + 1(−1)K+l+l′
∑
n′′,l′′

{
k1 k2 K
l l′ l′′

}
〈n′l′||Ak1 ||n′′l′′〉 〈n′′l′′||Bk2 ||nl〉

(C.4)
(see [24] for conventions and details). For the special case of a dot product1 coupling, this
simplifies to

〈n′l′||Ak ·Bk||nl〉 = δl′,l
(−1)l√
2l + 1

∑
n′′,l′′

(−1)l
′′ 〈n′l′||Ak1||n′′l′′〉 〈n′′l′′||Bk2||nl〉 (C.5)

With equations (C.2) to (C.5) we can derive some formulas necessary to evaluate the
matrix elements of our local approximation. Some relevant matrix elements include

〈n′l′||~r · ~∇||nl〉 =
√

2l + 1δl,l′

{√
(n+ 1)(n+ l + 3/2)δn′,n+1

−3

2
δn,n′ −

√
n(n+ l + 1/2)δn′,n−1

}
(C.6)

〈n′l′||r2||nl〉 = −b2
√

2l + 1δl,l′

{√
(n+ 1)(n+ l + 3/2)δn′,n+1

−(2n+ l + 3/2)δn′,n +
√
n(n+ l + 1/2)δn′,n−1

}
(C.7)

〈n′l′||∇2||nl〉 = − 1

b2

√
2l + 1δl,l′

{√
(n+ 1)(n+ l + 3/2)δn′,n+1

+(2n+ l + 3/2)δn′,n +
√
n(n+ l + 1/2)δn′,n−1

}
(C.8)

Matrix elements combining four operators can change the principal quantum number by up
to two:

〈n′l′||r2∇2||nl〉 = δl,l′
√

2l + 1
{√

(n+ 1)(n+ 2)(n+ l + 3/2)(n+ l + 5/2)δn′,n+2

+ δn′,n+1

√
2(n+ 1)(n+ l + 3/2) + δn′,n [n(n+ l + 1/2) + n(n+ l + 3/2)]

+δn′,n−1

√
2n(n+ l + 1/2) + δn′,n−2

√
n(n− 1)(n+ l − 1/2)(n+ l + 1/2)

}
(C.9)

1Note that the dot product A ·B =
∑
m(−1)mAmB−m differs by a constant factor from the scalar tensor

product [A⊗B]0.
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or

〈n′l′|| [~r ⊗ ~r ]2 · [~∇⊗ ~∇]2||nl〉 =

δl,l′

3

√
2l + 1

{
2
√

(n+ 1)(n+ 2)(n+ l + 3/2)(n+ l + 5/2)δn′,n+2

+ δn′,n+110
√

(n+ 1)(n+ l + 3/2) + δn′,n [l(l − 1)− 4n(n+ l + 3/2) + 15/2]

+δn′,n−110
√
n(n+ l + 1/2) + δn′,n−22

√
n(n− 1)(n+ l − 1/2)(n+ l + 1/2)

}
. (C.10)
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Appendix D

Derivation of the Normalization
Factor for Busch Wave Functions

In the original paper by Busch et al. [14], the normalization factor of the wave functions
is not given. The closed form expression for this normalization does not seem to be widely
known. It was originally presented in [18] without derivation, which we provide here. To
find the norm of the wave function (4.12), one must integrate (using a change of variables
to z = r2)

A−2 =
Γ(−n)2

8π3

∫ ∞
0

1

z

[
U(−n, 3/2, z)e−z/2z3/4

]2
dz. (D.1)

The term in brackets is equal to a Whittaker function [55] and so this can be rewritten,

A−2 =
Γ(−n)2

8π3

∫ ∞
0

1

z

[
Wn+3/4,1/4(z)

]2
dz. (D.2)

This integral can be found in [30]∫ ∞
0

1

z
[Wκ,µ(z)]2 dz =

π

sin(2πµ)

ψ0(1
2

+ µ− κ)− ψ0(1
2

+ µ− κ)

Γ(1
2

+ µ− κ)Γ(1
2
− µ− κ)

. (D.3)

Applying this to (D.1) with κ = n+ 3/4 and µ = 1/4 gives the desired result,

A−2 =
1

8π3

Γ(−n)

Γ(−n− 1/2)
[ψ0(−n)− ψ0(−n− 1/2)] . (D.4)
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