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Abstract. The families F0, . . . ,Fs of k-element subsets of [n] := {1, 2, . . . , n} are called
cross-union if there is no choice of F0 ∈ F0, . . . , Fs ∈ Fs such that F0 ∪ . . . ∪ Fs = [n].
A natural generalization of the celebrated Erdős–Ko–Rado theorem, due to Frankl and
Tokushige, states that for n ⩽ (s + 1)k the geometric mean of |Fi| is at most

(
n−1
k

)
.

Frankl conjectured that the same should hold for the arithmetic mean under some mild con-
ditions. We prove Frankl’s conjecture in a strong form by showing that the unique (up
to isomorphism) maximizer for the arithmetic mean of cross-union families is the natural
one F0 = . . . = Fs =

([n−1]
k

)
.

Keywords. Extremal set theory, generalizations of Erdős–Ko–Rado, cross-union families,
cross-intersecting families
Mathematics Subject Classifications. 05D05

1. Introduction

The most natural operations on sets are intersections and unions. These two seemingly sim-
ple operations surprisingly give rise to exciting theories on collections of sets. The most famous
such instances in extremal set theory are the theory on intersecting families and the theory of hy-
pergraph matchings. The Erdős–Ko–Rado theorem [EKR61] is arguably the most foundational
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result in the former regime, while the Erdős matching conjecture [Erd65] is the most central
theme in the latter. In this paper, we consider a problem of Frankl which has deep connections
to both of these intricate theories.

Let us start by recalling the cornerstone Erdős–Ko–Rado theorem. We say a family F of sets
is intersecting if A ∩B ̸= ∅ for any A,B ∈ F .

Theorem 1.1 ([EKR61]). Let n and k be two positive integers with n ⩾ 2k. If F ⊂
(
[n]
k

)
is

an intersecting family, then |F| ⩽
(
n−1
k−1

)
. This bound is sharp as equality holds if

F = {A ∈
(
[n]
k

)
: 1 ∈ A}.

This concept of intersecting family further generalizes to (s + 1)-cross-intersecting fami-
lies, which is a collection F0, . . . ,Fs of families of sets where

⋂
0⩽i⩽sAi ̸= ∅ for any choice

ofAi ∈ Fi for all 0 ⩽ i ⩽ s. There have been numerous interesting generalizations of the Erdős–
Ko–Rado theorem to cross-intersecting families. The maximum value of

∏
0⩽i⩽s |Fi| was con-

sidered in e.g. [Bey05, Pyb86, MT89a, MT89b, FT11, FLST14, Bor15, Bor16, Bor17] and the
maximum value of

∑
0⩽i⩽s |Fi| was considered in [HM67, Hil77, Bor14, BF22, WZ13, WZ11].

In the case of (s + 1)-cross intersecting families, if n < (s + 1)k/s, then trivially
F0 = · · · = Fs =

(
[n]
k

)
provides the maximum possible collection. For n ⩾ (s+1)k/s, the most

natural example for the maximum product is the collection with s+1 copies of {A∈
(
[n]
k

)
:1 ∈ A},

and this indeed is extremal as shown in [FT11]. The sum version is more delicate, as certain
relations of s, k and n might yield a different maximum as in the case of [HM67, BF22]. For
a simple example, when s = 1 and n > 2k ⩾ 4, a very asymmetric collection F0 = {[k]}
and F1 = {A ∈

(
[n]
k

)
: A ∩ [k] ̸= ∅} provides a maximum sum when the families are required

to be non-empty. To better illustrate the relations among s, k and n, it is much more convenient
to consider the complements of the sets rather than the sets itself.

By considering complements of the sets in an (s + 1)-cross-intersecting family, we obtain
the following notion.

Definition 1.2. A collection F0, . . . ,Fs of families of nonempty sets in
(
[n]
k

)
is (s + 1)-cross-

union (or simply cross-union) if
⋃

0⩽i⩽sAi ̸= [n] for any choice of Ai ∈ Fi for all 0 ⩽ i ⩽ s.

Here, we only consider the case where the families are nonempty. With this definition, we
are interested in values of (n, k, s) which ensure that F0 = · · · = Fs =

(
[n−1]

k

)
is a cross-union

collection maximizing the sum
∑

0⩽i⩽s |Fi|. Indeed, Frankl proposed the following conjecture
in [Fra21a].

Conjecture 1.3 (Frankl, [Fra21a]). Let k ⩾ 2 and 1 ⩽ ℓ ⩽ k. There exists s0 = s0(ℓ) ⩾ 2 such
that for each s ⩾ s0, if n = sk + ℓ and F0,F1, . . . ,Fs are non-empty cross-union subfamilies
of

(
[n]
k

)
, then

|F0|+ |F1|+ . . .+ |Fs|
s+ 1

⩽

(
n− 1

k

)
.

Here, the assumption that n ⩽ (s + 1)k is necessary as otherwise the union of (s + 1) sets
of size k is never equal to [n]. On the other hand, the assumption n > sk is also very natural.
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Indeed, note that F0, . . . ,Fs+1 being cross-union implies that F0, . . . ,Fs is also cross-union.
Hence, assuming that Fs+1 is the smallest among the families F0, . . . ,Fs+1, we obtain

|F0|+ |F1|+ . . .+ |Fs+1|
s+ 2

⩽
|F0|+ |F2|+ . . .+ |Fs|

s+ 1
.

Therefore, proving the above conjecture for s = ⌊n
k
⌋ yields the results for all larger values of s

and hence the condition sk < n ⩽ (s+ 1)k in Conjecture 1.3 is sensible.
We further remark that the condition s ⩾ s0(ℓ) in Conjecture 1.3 is also necessary. Indeed,

for small values of s, the conclusion of Conjecture 1.3 does not always hold. For example,
Hilton and Milner [HM67] proved that for s = 1, the maximum of 1

s+1

∑
0⩽i⩽s |Fi| is not

(
n−1
k

)
.

Moreover, the following example shows that the value s0 must depend on ℓ.

Example 1.4. For s ⩾ 2, ℓ ⩾ 1, c ⩾ 1, k = ℓ + c and n = sk + ℓ, the families F0 = {[k]},
F1 = {A ∈

(
[n]
k

)
: |A ∩ [k]| ⩾ c+ 1} and F2 = · · · = Fs =

(
[n]
k

)
are cross-union.

In fact, this example shows that for fixed c the condition s0 = Ω
(

ℓ
ln ℓ

)
is necessary. We know

that
(

k
⩽c

)
⩽ (c + 1)kc and

(
n−1
k

)
= n−k

n

(
n
k

)
. If k ⩾ 3 and s < k

(c+2) ln k
− 1,

then (n−k
k )
(nk)

⩽
(
n−k
n

)k
⩽

(
1− 1

s+1

)k
=

(
s

s+1

)k
< e−k/(s+1) ⩽ 1

kc+2 ⩽ 1
(c+2)nkc

. Hence, in
this case, Example 1.4 satisfies∑

0⩽i⩽s

|Fi| ⩾ 1 + s

(
n

k

)
−

(
k

⩽ c

)(
n− k

k

)
⩾ s

(
n

k

)
− (c+ 1)kc

(
s

s+ 1

)k (
n

k

)
>

(
s− c

n

)(
n

k

)
= (s+ 1)

n− k

n

(
n

k

)
= (s+ 1)

(
n− 1

k

)
.

Towards Conjecture 1.3, Frankl [Fra21b] proved sporadic cases. The main result in this paper
is the following theorem, verifying a strong form of Conjecture 1.3 and yielding the uniqueness
of the extremal families.

Theorem 1.5. Let n = sk+ ℓ with 1 ⩽ ℓ ⩽ k and s ⩾ 4ℓ. Suppose that F0,F1, . . . ,Fs ⊂
(
[n]
k

)
are non-empty and cross-union. Then

|F0|+ |F1|+ . . .+ |Fs|
s+ 1

⩽

(
n− 1

k

)
.

Furthermore, equality is attained only if F0 = . . . = Fs =
(
[n]\{i}

k

)
for some i ∈ [n].

In view of Example 1.4, the linear bound s ⩾ 4ℓ above is best possible up to a logarithmic
factor.

We remark that Conjecture 1.3 has a clear connection with the Erdős matching conjecture.
A collection of s sets in [n] is a matching of size s if they are pairwise disjoint.

Conjecture 1.6 (The Erdős matching conjecture [Erd65]). If n ⩾ k(s + 1) and F ⊂
(
[n]
k

)
has

no matching of size s+ 1, then

|F| ⩽ max

{(
n

k

)
−
(
n− s

k

)
,

(
k(s+ 1)− 1

k

)}
.
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The Erdős matching conjecture has been known to be true for n sufficiently large in terms of s
and k since the publication of Erdős’s paper [Erd65]. Frankl [Fra17] showed that the conjecture
is also true if n = k(s+ 1) + ℓ for the range 0 ⩽ ℓ ⩽ ε(k)(s+ 1), where ε(k) > 0 is a constant
only depending on k. There have been many interesting works [BDE76, HLS12, Fra13, FK22]
that improved the range of n for which the conjecture is known to hold.

In the case where n = k(s + 1) and F0 = · · · = Fs = F , the collection {F0, . . . ,Fs} is
cross-union if and only if F has no matching of size s+1. From this, one can naturally consider
several ‘cross’ versions of the Erdős matching conjecture. We will discuss some variants of the
‘cross’ version of the Erdős matching conjecture in Section 4.

2. Preliminaries

For a set family F , the shadow of F at level s is defined by

σs(F) = {G : |G| = s,∃F ∈ F with G ⊂ F}.

The following theorem by Frankl [Fra87, Theorem 11.1] will be useful. A family F is r-wise
union if

⋃
1⩽i⩽r Ai ̸= [n] for every choice of sets A1, . . . , Ar ∈ F .

Theorem 2.1 ([Fra76, Fra87]). Let n, k and r be positive integers with r ⩾ 2 and n ⩽ rk.
IfF ⊂

(
[n]
k

)
is an r-wise union family, then |F| ⩽

(
n−1
k

)
.Moreover, except for r = 2 and n = 2k,

equality is attained only if F =
(
[n]\{i}

k

)
for some i ∈ [n].

2.1. Combinatorial lemmas

In this section, we collect several combinatorial results that are needed for the proof of Theo-
rem 1.5. A basic result of Frankl [Fra87] (see Lemma 2.2 below) allows us to restrict ourself to
shifted families. We say that a family F ⊂

(
[n]
k

)
is shifted if for any F = {x1, . . . , xk} ∈ F and

any G = {y1, . . . , yk} ⊂ [n] such that yi ⩽ xi for every 1 ⩽ i ⩽ k, we have G ∈ F . It is easy
to see that if F ⊂

(
[n]
k

)
is non-empty and shifted, then [k] ∈ F .

Lemma 2.2 ([Fra87]). Suppose that the families F0, . . . ,Fs ⊂
(
[n]
k

)
are cross-union. Then there

exist shifted and cross-union families F ′
0, . . . ,F ′

s ⊂
(
[n]
k

)
such that |Fi| = |F ′

i | for 0 ⩽ i ⩽ s.

The second lemma is a probabilistic version of Katona’s circle method.

Lemma 2.3. Let k0, k1, . . . , ks, n be positive integers with k0 + k1 + . . . + ks ⩾ n. Suppose
that G0 ⊂

(
[n]
k0

)
,G1 ⊂

(
[n]
k1

)
, . . . ,Gs ⊂

(
[n]
ks

)
are cross-union. Then

s∑
i=0

|Gi|(
n
ki

) ⩽ s.

If s ⩾ 2, k0 = . . . = ks = k, n = (s + 1)k, and ∅ ̸= G0 ⊂ G1 ⊂ . . . ⊂ Gs, then the equality
holds only if G0 = G1 = . . . = Gs.
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Remark 2.4. The first part of Lemma 2.3 is a result of Frankl [Fra21a, Lemma 2.4].

Proof of Lemma 2.3. Fix s + 1 sets A0, . . . , As satisfying |A0| = k0, . . . , |As| = ks and
A0 ∪ . . . ∪ As = [n]. Let (Ω,P) be the probability space where Ω is the set of permutations
of [n] and P is the uniform measure on Ω. Let Xi : Ω → {0, 1} be the random variable de-
fined by letting Xi(α) = 1 if α(Ai) ∈ Gi and Xi(α) = 0 otherwise. Let X =

∑s
i=0Xi.

Choose a permutation α ∈ Ω of [n] uniformly at random. Since P(α(Ai) ∈ Gi) = |Gi|/
(
n
ki

)
, we

have E[X] =
∑s

i=0 E[Xi] =
∑s

i=0|Gi|/
(
n
ki

)
, by linearity of expectation. On the other hand, the

cross-union property implies X ⩽ s, resulting in E[X] ⩽ s. Therefore,
∑s

i=0|Gi|/
(
n
ki

)
⩽ s.

Now we deal with the equality part of the theorem. To ease the notation, let Fi =
(
[n]
k

)
\Gi

for 0 ⩽ i ⩽ s. Since G0 ⊂ G1 ⊂ . . . ⊂ Gs, we have Fs ⊂ Fs−1 ⊂ . . . ⊂ F0.

Claim 2.5. Let [n] = B0∪ . . .∪Bs be a partition of [n] into s+1 sets of size k each. Then there
is exactly one i ∈ {0, 1, . . . , s} for which Bi ∈ Fi.

Proof of claim. Since k0 = k1 = . . . = ks = k, in the first part of the proof of Lemma 2.3 we
have [n] = A0 ∪ . . . ∪As, n = (s+ 1)k and |A0| = . . . = |As| = k, hence [n] = A0 ∪ . . . ∪As

is a partition of [n] into s+ 1 sets of size k. Let α be a permutation of [n] with α(Ai) = Bi for
every 0 ⩽ i ⩽ s. We can infer from the first part of the proof of Lemma 2.3 that there is exactly
one i ∈ {0, 1, . . . , s} for which α(Ai) ∈ Fi. As α(Ai) = Bi, this completes our proof. ■

Claim 2.6. F1 = . . . = Fs.

Proof of claim. Since Fs ⊂ Fs−1 ⊂ . . . ⊂ F0, it suffices to show that B1 ∈ Fs whenever
B1 ∈ F1. Fix B1 ∈ F1, and consider a partition [n] = B0 ∪B1 ∪ . . .∪Bs of [n] into size-k sets.

Given j ∈ {0, 2, 3, . . . , s}, let π be a permutation of {0, 1, . . . , s} with π(0) = j and
π(1) = 1. Applying Claim 2.5 to the partition [n] = Bπ(0) ∪ Bπ(1) ∪ . . . ∪ Bπ(s) and not-
ing that Bπ(1) = B1 ∈ F1, we find Bj = Bπ(0) /∈ F0. Hence B0, B2, . . . , Bs do not belong
to F0 = F0 ∪ F1 ∪ . . . ∪ Fs.

Consider a permutation τ of {0, 1, . . . , s} with τ(s) = 1. By Claim 2.5, there exists
i ∈ {0, 1, . . . , s} such that Bτ(i) ∈ Fi. Since B0, B2, . . . , Bs /∈ F0 ∪ F1 ∪ . . . ∪ Fs, we must
have τ(i) = 1. It follows that i = s, and so B1 ∈ Fs, as required. ■

Claim 2.7. Let [n] = B0 ∪ . . . ∪ Bs be a partition of [n] into s + 1 sets of size k each. If
Bj ∈ F0\F1 for some j, then B0, . . . , Bs ∈ F0\F1.

Proof of claim. Without loss of generality we can assume B0 ∈ F0\F1. To prove the claim it
suffices to show B1 ∈ F0\F1. Applying Claim 2.5 to the partition [n] = B0∪B1∪ . . .∪Bs and
noting that B0 ∈ F0, we get Bi /∈ Fi = F1 for every i ⩾ 1. Again, we apply Claim 2.5 to the
partition [n] = B1 ∪B0 ∪B2 ∪ . . . ∪Bs and find B1 ∈ F0. Therefore, we obtain B1 ∈ F1\F0,
as desired. ■

Claim 2.8. F0 = F1.
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Proof of claim. Suppose to the contrary that F0\F1 ̸= ∅. Note that F1 ̸= ∅, for otherwise we
would have G1 = . . . = Gs =

(
[n]
k

)
and G0 = ∅. Let B0 ∈ F0\F1 and C ∈ F1.

Consider a partition [n] = B0 ∪B1 ∪ . . .∪Bs of [n] into size-k sets. Because B0 ∈ F0\F1,
we can deduce from Claim 2.7 that B0, B1, . . . , Bs ∈ F0\F1. Since we have |(B0 ∪ B1)\C| ⩾
|B0 ∪B1| − |C| = k, one can find a size-k subset B′

0 ⊂ (B0∪B1)\C. Let B′
1 = (B0∪B1)\B′

0.
Notice that |B′

0| = |B′
1| = k and B′

0 ∪ B′
1 = B0 ∪ B1. Thus, [n] = B′

0 ∪ B′
1 ∪ B2 ∪ . . . ∪ Bs

is a partition of [n] into sets of size k. As Bs ∈ F0\F1, an application of Claim 2.7 gives
B′

0, B
′
1, B2, . . . , Bs ∈ F0\F1. But now B′

0 ∈ F0 and C ∈ F1 are disjoint and one can extend
to a partition [n] = C ∪ B′

0 ∪ B′
2 ∪ . . . B′

s, which contradicts Claim 2.5. This is sketched in
Figure 2.1 for s = 2. ■

The equality part follows from Claim 2.6 and Claim 2.8.

C

B0 ∪B1 ∪B2 B2

B′
0 ∪B′

1 ∪ A2 B′
0 B′

0

C ∪B′
0 ∪B′

2

Figure 2.1: Different partitions of [n] for s = 2 and the set C.

We will require the following slightly weaker version of the Kruskal–Katona theorem, due to
Lovász [Lov79]. Here

(
x
k

)
= x·(x−1)·...·(x−k+1)

k!
is defined for every real number x and integer k.

Theorem 2.9. Let k ⩾ ℓ > 0 be two integers and x ⩾ k a real number. If F ⊂
(
[n]
k

)
and |F| =

(
x
k

)
, then |σℓ(F)| ⩾

(
x
ℓ

)
.

2.2. Technical lemmas

The following two technical lemmas will be used.

Lemma 2.10. Let n = ks+ ℓ with 1 ⩽ ℓ ⩽ k and s ⩾ 4ℓ. The following holds.

(i) If k ⩾ 2ℓ, then (s+ 1)
(
n−1
k

)
− s

(
n
k

)
+
(
ks
k

)
⩾ ℓ

k

(
n
k

)
.

(ii) If k < 2ℓ, then (s+ 1)
(
n−1
k

)
− s

(
n
k

)
+
(
ks
k

)
⩾

(
(1−1/k)n+1

k

)
.

Proof. (i) For x ⩾ ks, we have(
x− 1

k

)
=

x− k

x

(
x

k

)
⩾

(
1− 1

s

)(
x

k

)
.
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By iterating this and noting that n − ks = ℓ, we obtain
(
ks
k

)
⩾

(
1− 1

s

)ℓ (n
k

)
⩾

(
1− ℓ

s

) (
n
k

)
,

where the second inequality is true by Bernoulli’s inequality. Since n ⩾ ks, we
obtain

(
n−1
k

)
⩾

(
1− 1

s

) (
n
k

)
. Therefore,

(s+ 1)

(
n− 1

k

)
− s

(
n

k

)
+

(
ks

k

)
⩾

(
1− ℓ+ 1

s

)(
n

k

)
⩾

ℓ

k

(
n

k

)
assuming k ⩾ 2ℓ and s ⩾ 4ℓ.

(ii) Since 2ℓ ⩾ k + 1 and s ⩾ 4ℓ, we have n ⩾ ks ⩾ 2k2 + 2k. Thus(
n−1
k−1

)(
n−2k
k−1

) ⩽

(
n− k + 1

n− 3k + 2

)k−1

⩽

(
1 +

1

k

)k−1

⩽ k.

It follows that

(s+ 1)

(
n− 1

k

)
− s

(
n

k

)
+

(
ks

k

)
⩾

(
ks

k

)
−
(
n− 1

k − 1

)
⩾

(
n− k

k

)
− k

(
n− 2k

k − 1

)
⩾

(
n− 2k

k

)
⩾

(
(1− 1/k)n+ 1

k

)
,

where in the first line we used (s+ 1)
(
n−1
k

)
=

(
s− k−ℓ

n

) (
n
k

)
= s

(
n
k

)
−

(
n−1
k−1

)
+ ℓ

n

(
n
k

)
, the third

inequality holds since
(
n−k
k

)
−

(
n−2k

k

)
=

∑n−k−1
m=n−2k

(
m
k−1

)
⩾ k

(
n−2k
k−1

)
, and in the last inequality

we used n ⩾ 2k2 + 2k.

Lemma 2.11. Let k, ℓ and n be integers with 1 ⩽ ℓ ⩽ k < n. Let x0 ∈ [k, n − 1] be a real
number for which (

x0

ℓ

)(
n
ℓ

) ⩽
k

ℓ

(
x0

k

)(
n
k

) . (2.1)

Then (
x0

ℓ

)(
n
ℓ

) ⩾

(
x0

k

)(
n
k

) +
k − ℓ

n
.

Furthermore, the equality occurs if and only if either ℓ = k, or ℓ < k and x0 = n− 1.

Proof. We write A(x) =
(xk)
(nk)

and B(x) =
(xℓ)
(nℓ)

. Consider the function f(x) = B(x) − A(x),

where x0 ⩽ x ⩽ n− 1. We wish to show f(x0) ⩾ f(n− 1) = k−ℓ
n

.
Notice first that

f ′(x) = B(x)

(
1

x
+

1

x− 1
+ . . .+

1

x− ℓ+ 1

)
− A(x)

(
1

x
+

1

x− 1
+ . . .+

1

x− k + 1

)
.

(2.2)
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By (2.1), we have A(x0)
B(x0)

⩾ ℓ
k
. Hence

A(x)

B(x)
=

k−1∏
i=ℓ

x− i

n− i
⩾

k−1∏
i=ℓ

x0 − i

n− i
=

A(x0)

B(x0)
⩾

ℓ

k
. (2.3)

As 1
x
⩽ 1

x−1
⩽ . . . ⩽ 1

x−ℓ+1
⩽ . . . ⩽ 1

x−k+1
, we see that

1

x
+

1

x− 1
+ . . .+

1

x− k + 1
⩾

k

ℓ

(
1

x
+

1

x− 1
+ . . .+

1

x− ℓ+ 1

)
. (2.4)

From (2.2), (2.3) and (2.4), we conclude f ′(x) ⩽ 0 for every x ∈ [x0, n − 1]. Thus
f(x0) ⩾ f(n− 1) = k−ℓ

n
, as desired.

Now assume ℓ < k and x0 < n − 1. Since the central inequality in (2.3) is strict for ℓ < k
and x0 < x < n− 1, we have f ′(x) < 0 and thus f(x0) > f(n− 1) = k−ℓ

n
, i.e., the inequality

is strict.

3. Proof of Frankl’s conjecture

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let F0,F1, . . . ,Fs ⊂
(
[n]
k

)
be non-empty cross-union families maximiz-

ing the sum
∑s

i=0 |Fi|. Considering F0 = F1 = . . . = Fs =
(
[n]\{1}

k

)
, we may assume that∑s

i=0 |Fi| ⩾ (s+ 1)
(
n−1
k

)
.

We first show that we must have equality
∑s

i=0 |Fi| = (s + 1)
(
n−1
k

)
. To this end, it suffices

to consider families that are nested via the following claim.

Claim 3.1 ([Fra21a]). There exist nested families∅ ̸= G0 ⊂ G1 ⊂ . . . ⊂ Gs ⊂
(
[n]
k

)
such that the

collection {G0, . . . ,Gs} is cross-union and
∑s

i=0 |Gi|=
∑s

i=0 |Fi|. Furthermore, if |F0|, . . . , |Fs|
are not all equal, then G0, . . . ,Gs are not all the same.

Proof of claim. From Lemma 2.2, we can assume further thatF0,F1, . . . ,Fs are non-empty and
shifted. In particular, [k] ∈ Fi for every 0 ⩽ i ⩽ s. For a fixed pair 0 ⩽ u < v ⩽ s, replacing
Fu and Fv by Fu ∩ Fv and Fu ∪ Fv will preserve the nonemptiness, the cross-union property,
and the sum

∑s
i=0|Fi|. Iterating this operation for all pairs 0 ⩽ u < v ⩽ s (in lexicographical

order) will generate s + 1 nested families with the desired properties. The ‘furthermore’ part
follows from the fact that if Fu ̸= Fv, then |Fu ∩ Fv| < |Fu ∪ Fv|. ■

Let G0,G1 . . . ,Gs be the nested families given by Claim 3.1. Then,
s∑

i=0

|Gi| =
s∑

i=0

|Fi| ⩾ (s+ 1)

(
n− 1

k

)
,

or equivalently,
s∑

i=0

|Gi|(
n
k

) ⩾
(s+ 1)

(
n−1
k

)(
n
k

) = s− k − ℓ

n
. (3.1)
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Since G0 ⊂ Gi for 1 ⩽ i ⩽ s, G0 is (s + 1)-wise union. By Theorem 2.1, |G0| ⩽
(
n−1
k

)
. So

we can write |G0| =
(
x0

k

)
for some x0 ∈ [k, n− 1].

Since the families G0,G1, . . . ,Gs are non-empty and cross-union, so are the families σℓ(G0),
G1, . . . ,Gs. Thus Lemma 2.3 applies. We conclude

|σℓ(G0)|(
n
ℓ

) +
s∑

i=1

|Gi|(
n
k

) ⩽ s. (3.2)

Furthermore, as |G0| =
(
x0

k

)
with x0 ⩾ k, Theorem 2.9 implies

|σℓ(G0)| ⩾
(
x0

ℓ

)
. (3.3)

We claim that (
x0

ℓ

)(
n
ℓ

) ⩾

(
x0

k

)(
n
k

) +
k − ℓ

n
=

|G0|(
n
k

) +
k − ℓ

n
, (3.4)

and furthermore equality occurs if and only if either ℓ = k, or ℓ < k and x0 = n − 1. It then
follows immediately from (3.2), (3.3) and (3.4) that equality holds in (3.1). For this, it remains
to prove (3.4), which amounts to showing that x0 satisfies the conditions of Lemma 2.11.

As an intermediate step, we bound the size of G0 from below. The following claim was
proved in [Fra21a]. For completeness, we also provide a proof here.

Claim 3.2 ([Fra21a]). |G0| ⩾ (s+ 1)
(
n−1
k

)
− s

(
n
k

)
+
(
ks
k

)
.

Proof of claim. AsG0 is non-empty, it contains someG0 ∈
(
[n]
k

)
. Fix an arbitrary subsetX ⊂ [n]

satisfying |X| = ks and G0 ∪ X = [n]. For 1 ⩽ i ⩽ s, define Hi = Gi ∩
(
X
k

)
. Notice that

the families H1, . . . ,Hs are cross-union relative to X . Indeed, if H1 ∈ H1, . . . , Hs ∈ Hs

satisfy H1 ∪ . . . ∪ Hs = X , then adding G0 ∈ G0 gives a contradiction to the cross-union
property of G0, . . . ,Gs.

Applying Lemma 2.3 to the s families H1, . . . ,Hs ⊂
(
X
k

)
yields

∑s
i=1|Hi| ⩽ (s − 1)

(
ks
k

)
.

So
s∑

i=1

|Gi| ⩽
s∑

i=1

(
|Hi|+

(
n

k

)
−
(
ks

k

))
⩽ s

(
n

k

)
−
(
ks

k

)
.

Together with (3.1) this gives |G0| ⩾ (s+ 1)
(
n−1
k

)
− s

(
n
k

)
+
(
ks
k

)
, as desired. ■

Claim 3.3. x0 meets the conditions of Lemma 2.11. In particular, x0 satisfies (3.4).

Proof of claim. We know that k ⩽ x0 ⩽ n− 1. It remains to show (x0ℓ )
(nℓ)

⩽ k
ℓ

(x0k )
(nk)

. In order to do
this, we distinguish two cases.

Case 1: k ⩾ 2ℓ. It follows from Claim 3.2 and Lemma 2.10 (i) that (x0k )
(nk)

⩾ ℓ
k
. Moreover,

(x0ℓ )
(nℓ)

< 1 for x0 < n. Hence (x0ℓ )
(nℓ)

< k
ℓ

(x0k )
(nk)

.
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Case 2: k < 2ℓ. From Claim 3.2 and Lemma 2.10 (ii), we get x0 ⩾ (1− 1/k)n+ 1. Hence(
x0

k

)(
n
k

) =

(
x0

ℓ

)(
n
ℓ

) ·
k−1∏
i=ℓ

x0 − i

n− i
⩾

(
x0

ℓ

)(
n
ℓ

) (
x0 − k

n− k

)k−ℓ

⩾

(
x0

ℓ

)(
n
ℓ

) (
1− 1

k

)k−ℓ

⩾

(
x0

ℓ

)(
n
ℓ

) (
1− k − ℓ

k

)
=

(
x0

ℓ

)(
n
ℓ

) ℓ

k
,

as required. Here the last inequality follows from Bernoulli’s inequality. ■

Therefore, as explained above, equality holds in (3.1). We now characterize F0, . . . ,Fs

for which equality holds in Theorem 1.5. Equality in (3.1) gives us
∑s

i=0|Fi| =
∑s

i=0|Gi| =
(s+ 1)

(
n−1
k

)
, so we have equalities in (3.2), (3.3) and (3.4). Recall that equality occurs in (3.4)

if and only if either ℓ = k, or ℓ < k and x0 = n− 1.

Claim 3.4. F0 = F1 = . . . = Fs.

Proof of claim. Suppose to the contrary that the families F0, . . . ,Fs are not all the same,
say F0 ̸= F1. If all the sizes are equal, i.e. |F0| = . . . = |Fs| =

(
n−1
k

)
, we replace F0,F1

byF0∩F1,F0∪F1. Since |F0|+|F1| = 2
(
n−1
k

)
>

(
n
k

)
forn > 2k,F0∩F1 is non-empty, and also

the sum of sizes and the cross-union property are preserved. In addition, |F0 ∩F1| < |F0 ∪F1|
for F0 ̸= F1. Therefore, we can assume that |F0|, . . . , |Fs| are not all equal. Lemma 2.2 then
tells us that G0, . . . ,Gs are not all the same.

Since equality occurs in (3.4), there are only two possibilities.

Case 1: ℓ < k and x0 = n− 1. Since G0, . . . ,Gs are not all the same, we have(
x0

k

)
= |G0| <

|G0|+ . . .+ |Gs|
s+ 1

=

(
n− 1

k

)
.

This gives x0 < n− 1, a contradiction.

Case 2: ℓ = k. In this case, we need equality in Lemma 2.3 for k0 = . . . = ks = k
and n = (s+ 1)k. We thus get G0 = . . . = Gs, a contradiction. ■

We learn from Claim 3.4 that F0 = . . . = Fs = F . Since {F0, . . . ,Fs} is cross-union
and

∑s
i=0|Fi| = (s + 1)

(
n−1
k

)
, we see that F is an (s + 1)-wise union family of size

(
n−1
k

)
.

Hence the uniqueness statement follows immediately from Theorem 2.1 (since s+ 1 > 2).

4. Concluding remarks

One remaining question is to determine the smallest value of s0 for which Conjecture 1.3 holds.
As our theorem provides that this best value of s0 is at most 4ℓ while the example at the intro-
duction shows that it must be Ω

(
ℓ

ln ℓ

)
. It would be interesting to determine the correct order of

magnitude for s0(ℓ).
Another interesting question is what happens when s is smaller than s0(ℓ). In such a case,

would Example 1.4 provide an extremal example? In particular, would the answer of the follow-
ing question be true?
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Question 4.1. Let n = ks + ℓ with 0 < ℓ < k, and let F0,F1, . . . ,Fs ⊂
(
[n]
k

)
be non-empty

cross-union families. Does the following inequality hold?

s∑
i=0

|Fi| ⩽ max

{
(s+ 1)

(
n− 1

k

)
, 1 + s

(
n

k

)
−

k−ℓ∑
i=0

(
k

i

)(
n− k

k − i

)}
On the other hand, Conjecture 1.3 motivates the ‘cross’ version of the Erdős matching con-

jecture as follows.
In [FK21], Frankl and Kupavskii defined that families F0, . . . ,Fs satisfy the

property U(s+ 1, q) if |F0 ∪ F1 ∪ . . . ∪ Fs| ⩽ q for every choice of F0 ∈ F0, . . . , Fs ∈ Fs.
The condition of being cross-union is the same as having the property U(s + 1, n− 1) and the
condition on the Erdős matching conjecture is the same as F0 = · · · = Fs+1 = F having the
property U(s+1, k(s+1)− 1). This provides the natural ‘cross’ version of the Erdős matching
conjecture by considering the geometric mean and arithmetic mean of families satisfying the
condition U(s+ 1, k(s+ 1)− 1).

For the maximum value of
∏

0⩽i⩽s |Fi| where F0, . . . ,Fs have the property
U(s + 1, k(s + 1) − 1), one can naturally consider F0 = F1 = {A ∈

(
[n]
k

)
: 1 ∈ A} and

F2 = · · · = Fs =
(
[n]
k

)
. In fact, the following proposition provides that this is an extremal

example provided that n is sufficiently large.

Proposition 4.2. For k, s ⩾ 1, there exists n0(k, s) such that the following holds for
all n ⩾ n0(k, s). If F0,F1, . . . ,Fs ⊂

(
[n]
k

)
are non-empty families having the property

U(s+ 1, k(s+ 1)− 1), then we have
s∏

i=0

|Fi| ⩽
(
n− 1

k − 1

)2(
n

k

)s−1

.

The result for s = 1 is due to Pyber [Pyb86]. For s ⩾ 2, it is sufficient to note that for n
sufficiently large,

((
n
k

)
−

(
n−ks
k

))s+1 is smaller than the expression in the proposition. If Fs is
the largest family and the other s families have k pairwise disjoint sets, then all families have
size at most |Fs| ⩽

(
n
k

)
−

(
n−ks
k

)
as desired. If this is not the case, then the result follows by

induction on s.
On the other hand, it is interesting whether the above bound is actually best possible when n

is close to ks. For all we know,
(
n−1
k−1

)s+1 can be the correct maximum when n is just above ks.
For the maximum value of

∑
0⩽i⩽s |Fi|, the families F0=[k],F1={A∈

(
[n]
k

)
: |A ∩ [k]| ⩾ 1}

and F2 = . . . = Fs =
(
[n]
k

)
are natural candidates for an extremal example. The following

proposition yields that indeed this is an extremal example for sufficiently large n.

Proposition 4.3. For k, s ⩾ 1, there exists n0(k, s) such that the following holds for
all n ⩾ n0(k, s). If F0,F1, . . . ,Fs ⊂

(
[n]
k

)
are non-empty families having the property

U(s+ 1, k(s+ 1)− 1), then we have
s∑

i=0

|Fi| ⩽ 1 + s

(
n

k

)
−
(
n− k

k

)
.
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The result for s = 1 is due to Hilton and Milner [HM67], and a similar induction as before
works as (s+1)

((
n
k

)
−

(
n−ks
k

))
is smaller than the expression in the proposition for n sufficiently

large.
Even when n = ks + ℓ with small ℓ, as long as k > ℓ, the term 1 + s

(
n
k

)
−

(
n−k
k

)
is

bigger than (s + 1)
(
ks−1
k

)
. Hence, the above example shows that, unlike Conjecture 1.3,

F0 = · · · = Fs =
(
[ks−1]

k

)
is not an extremal example when n > k(s+ 1).

While the maximum of the geometric mean and the arithmetic mean of the families satisfying
U(s+ 1, k(s+ 1)− 1) may behave differently from what is conjectured in the Erdős matching
conjecture, it has been conjectured [AH, HLS12] that the minimum size behaves as in the Erdős
matching conjecture.

Conjecture 4.4 ([AH, HLS12]). If n ⩾ k(s + 1) and F0,F1, . . . ,Fs ⊂
(
[n]
k

)
are non-empty

families such that |F0 ∪ F1 ∪ . . . ∪ Fs| ⩽ k(s+ 1)− 1 for every F0 ∈ F0, . . . Fs ∈ Fs, then

min {|F0|, |F1|, . . . , |Fs|} ⩽ max

{(
n

k

)
−

(
n− s

k

)
,

(
k(s+ 1)− 1

k

)}
.

Recently, Kupavskii [Kup23] proved this conjecture for s > 107 and n > 3e(s+ 1)k.
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[EKR61] P. Erdős, Chao Ko, and R. Rado. Intersection theorems for systems of finite sets.
Quart. J. Math. Oxford Ser. (2), 12:313–320, 1961. doi:10.1093/qmath/12.1.

313.
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