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Instability of Catenary-Type Flexible Risers Conveying Fluid

in Subsea Environments

Hyung-Taek Kima, Oliver M. O’Reillya,∗

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720,

USA

Abstract

As water depths for oil and gas exploration and extraction increase, structures such as
flexible risers, mooring lines, and umbilical cables are increasingly being used for subsea
environments. Compared to conventional fixed-type structures and vertical risers, the
dynamics of flexible risers is significantly more complex. In particular, the flexible struc-
tures may be prone to dynamic instabilities. The goal of the present paper is to provide
a comprehensive study of the dynamics, stability, and vibration of flexible risers. We use
Kirchhoff’s theory of an extensible, flexible rod that resists torsion to develop a set of
nonlinear equations for the dynamics of risers. The resulting model incorporates drag
and the effects of the fluid being transported internally. Using a nonlinear stability cri-
terion, our analyses show the nonlinear stability of a simple catenary-type riser modeled
either as an inextensible or extensible string. For the more advanced rod models, we use
a linear stability analysis to show how the internal fluid being conveyed can destabilize
certain static configurations.

Keywords: flexible riser, Kirchhoff’s rod theory, stability, top tension,

1. Introduction

As water depths for oil and gas exploration and extraction increase, structures such
as flexible risers, mooring lines, and umbilical cables are increasingly being used for
subsea environments. Compared to conventional fixed-type structures and vertical risers,
the dynamics of flexible risers is significantly more complex. In particular, the flexible
structures may be prone to dynamic instabilities. Furthermore, the massive weight of
these flexible structures is often an issue in the design stage for both the suspended
structures in the water as well as the surface structures that are used to deploy them.
For economic and environmental reasons, studies of the dynamics of these massive flexible
structures are worthy endeavors. The purpose of the present paper is to present the most
comprehensive treatment of the dynamics of these structures to date.
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Accepted for publication in Ocean Engineering December 5, 2018
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Fig. 1. Steel catenary riser (SCR) and a hybrid riser (HR) system used in marine environments for
oil and gas development process. The SCR can be used either in a standalone manner to connect the
surface vessel to the seabed or as a lower or upper part of a HR system.

Flexible risers, one of the most popular types of flexible structure and widely used
for oil and gas exploration and transfer processes of hydrocarbons, particularly in deep
or ultra-deep water conditions, fall into two categories: catenary-type risers that are
used to provide a direct connection from the seabed to a surface vessel and lazy-type
or steep wave-type risers equipped with a buoyancy module in the middle (Bai and Bai
(2005)). Catenary-type risers that have been used in a various ways shown in Fig. 1
can be divided into two groups: those that couple directly with both the seabed and the
surface vessel and those that serve as the lower part of a hybrid riser (HR) system or a
buoyancy supported riser (BSR) that is decoupled from the motion of the surface vessel.
Recently, even the upper part of the hybrid riser for which the flexible jumper is mainly
used has been replaced with a catenary-type riser structure known as a steel catenary
jumper (SCJ), as the conventional flexible jumper reaches the limit under more severe
environmental conditions (cf. Rombado et al. (2012)).

Inspired by the pioneering works of Garrett (1982) and Nordgren (1974) a significant
amount of work has been performed on the static and dynamic analyses of flexible struc-
tures in ocean environments (cf. the reviews by Ertas and Kozik (1987) and Patel and
Seyed (1995)). We mention in particular the extensive studies on the simple catenary-
type riser considering large deflection due to large gravity and other hydrodynamic forces
by Chucheepsakul et al. (2003) and Chatjigeorgiou (2008). These works have recently
been extended to include static and dynamic analyses for various types of risers equipped
with a buoyancy module. In particular, parametric studies to investigate the effect of
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design parameters such as external current and internal fluid speed on the equilibrium
configurations of risers have been performed for a steep wave-type riser by Santillan et al.
(2010), and a lazy wave-type riser by Wang et al. (2014) and Ruan et al. (2014).

Most of the works we have discussed above, i.e., static and dynamic analysis of flexible
risers, are based on numerical methods including the finite element method (e.g., Garrett
(1982), Nordgren (1974), Chucheepsakul et al. (2003), Chatjigeorgiou (2008), and Wang
et al. (2014)) or a finite difference method (e.g., Santillan et al. (2010)) and are all
well within the current capabilities of commercial riser design tools such as Orcaflex
or Flexcom. Stability analysis, however, is not directly performed by these commercial
packages. Furthermore, as highlighted in this paper, it is important to examine the
stability of the riser when the internal fluid is being transported by the riser to and from
the seabed to the surface vessel.
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Fig. 2. A pair of static riser configurations that have the same magnitude of tension at the hang-off
point H. Our results show that for a variety of models, the shorter riser, which is labeled i, is stable
while the longer riser, which is labeled ii, only becomes unstable in a flutter-type instability provided
the effects of fluid transport in the riser are included in the model.

Given the enormous weight of the long structure in the ocean environment and the
fluid-structure interaction between the riser, surrounding water, and the fluid that the
riser is transporting, much of the analysis of the dynamics (vibrations) of these structures
must be performed numerically (see, for example, Santillan et al. (2010), Chatjigeorgiou
(2010), and Neto and Martins (2013)). However, some benchmark problems that sim-
plify the effects of the fluid are often studied. For instance, Chucheepsakul and Wang
(1997) examined the static configuration of a neutrally buoyant cable suspended between
two points where the current is modeled as a constant load. They found that for the
same magnitude of the tension force at one of the ends (a so-called “top tension”), two
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configurations (of different lengths) are possible. Additionally, the authors found a criti-
cal top tension below which no equilibrium configurations of the cable were possible (cf.
Fig. 2 for two representative configurations). In later works (Chucheepsakul and Mon-
prapussorn (2001), Athisakul et al. (2014)), bending and extensibility were incorporated
into their models and a stability criterion was established. The researchers argued that
for a pair of static configurations with the same top tension, the one with the shorter
(longer) length is stable (unstable). Their stability criterion is based on Euler’s method
of adjacent equilibria.1

In this paper, we complement Chucheepsakul et al.’s works by establishing a nonlinear
stability criterion for the simplest models of risers. We supplement this criterion with a
linear stability analysis based on a modal analysis that we then apply to more realistic
models of risers. Using a variational principle, we find that the static configurations
of the riser predicted by the simplest models are nonlinearly stable. However, when a
more realistic rod model incorporating the effects of the internal fluid flow in the riser is
analyzed and a linear stability analysis is performed, then we find that some of the static
configurations can be destabilized. As summarized in Fig. 2, of the two configurations
with the same top tension, both are stable if the effects of fluid transport are ignored.
However, when this effect is included, then the configuration with the longer deformed
length will destabilize while the one with the shorter deformed length will remain stable.

The instability responsible for destabilizing the longer configuration can be classified
as an out-of-plane flutter-type instability and is similar to the instabilities in vertical
risers transporting fluid that are discussed by Päıdoussis (2014) and Monprapussorn
et al. (2006), among others.2 For the vertical riser, a critical speed of fluid flow is
present, however for the catenary-type risers we consider, the flutter instability manifests
for certain static configurations when the speed of the internal fluid flow is non-zero. In
addition, the instability involves two pairs of complex conjugate eigenvalues crossing the
imaginary axis and can be considered as a double Hopf bifurcation.

An outline of the paper is as follows. To present a comprehensive treatment of the
dynamics of the stability of flexible catenary-type risers, we model the riser as a flexible,
extensible elastic rod which is capable of twisting. We model the rod using Kirchhoff’s
theory of an elastic rod and incorporate fluid-structure interactions using drag and added-
mass effects, among others. The resulting two-point boundary value problem for static
configurations of the riser is solved using numerical methods for a wide variety of cases.
In particular, we validate our code by comparing the results to numerous published
works on both vertical and catenary risers. We also use a nonlinear stability criterion
to elucidate the stability of neutrally buoyant cables under constant forces regardless
of their top tensions and then apply it to more realistic riser models. The equations
governing the vibrations of the riser and their associated mode shapes are also discussed.
Parametric studies are then carried out to quantitatively examine the effect of external
current and internal fluid on the dynamics of the riser and to show how instabilities can
be present.

1For details on, and additional references to, this stability criterion, the reader is referred to Atanack-
ovic (1997).

2For additional background on instabilities induced by fluids that a pipe is conveying, we refer the
reader to the recent review Doaré (2019) as well as the seminal work Päıdoussis (2014).
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2. Modeling a flexible riser

Flexible risers are modeled using a variety of string and rod theories in the literature.
These one-dimensional continua are subject to a variety of forces ranging from gravity
and buoyancy forces to drag and added mass effects. The simplest model in this hierarchy
of models is an inextensible string, the next is an extensible string, followed by a planar
rod theory known as the elastica. The highest member of this hierarchy to date is a
rod theory that accommodates bending, torsion, and, in some papers, extension. This is
known as Kirchhoff’s rod theory and relevant background on this rod theory can be found
in a variety of textbooks including Antman (2005), Love (1927), and O’Reilly (2017).
The governing equations for a riser that are provided by Kirchhoff’s rod theory reduce
to those for an elastica and a string once certain effects are ignored. We shall exploit
this fact later in this paper.

2.1. Kinematics and assumptions

The centerline of the riser is described by a smooth curve which is known as a material
curve. In its reference state the arc-length parameter of the curve is defined using a
coordinate ξ. The position point on the material curve in the deformed state is defined
by the position vector R. The position vector R can be described using a Cartesian
coordinate system:

R (ξ, t) = X (ξ, t)E1 + Y (ξ, t)E2 + Z (ξ, t)E3. (2.1)

The arc-length of the material curve in its present configuration is defined by the coor-
dinate S. The partial derivatives of R with respect to ξ and S are related by the stretch
µ:

∂S

∂ξ
= µ. (2.2)

That is,

R′ (ξ, t) =
∂R

∂ξ
= µ

∂R

∂S
, (2.3)

where the prime ′ denotes the partial derivative with respect to ξ. The vector ∂R
∂S is the

unit tangent vector to the material curve in its present configuration.
At each point of the material curve a set of unit vectors are defined: dα = dα(ξ, t)

where α = 1, 2. For the rod theory of interest, this pair of vectors along with the
unit tangent vector form a right-handed orthonormal triad:

{

d1,d2,d3 = ∂R
∂S

}

. We also
assume that the centerline of the rod in the reference configuration is straight and aligned
with E3. We can thus define an associated set of vectors {D1 = E1,D2 = E2,D3 = E3}
at each material point of the material curve in the reference configuration and a rotation
tensor P which transforms Di to di: di = PDi.

Because P is a rotation, the spatial and time derivatives of the director basis have
the representations

∂di
∂ξ

= Pν× di,
∂di
∂t

= ω× di, i = 1, 2, 3. (2.4)
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Here, the strain vector Pν =
∑3

i=1 νidi captures the bending strains ν1 and ν2 and
torsional strain ν3 while ω is the angular velocity vector:

ν (ξ, t) = ν1 (ξ, t)D1 + ν2 (ξ, t)D2 + ν3 (ξ, t)D3,

ω (ξ, t) = ω1 (ξ, t)d1 + ω2 (ξ, t)d2 + ω3 (ξ, t)d3. (2.5)

The vectors ν and ω satisfy a well-known compatibility condition ∂ν
∂t = PT ∂ω∂ξ .

In the sequel we parameterize P using a 3-2-3 set of Euler angles.3 The following
identities can be established in a straightforward manner:





ν1
ν2
ν3



 = A





α′
1

α′
2

α′
3



 ,





ω1

ω2

ω3



 = A





α̇1

α̇2

α̇3



 , (2.6)

where the dot denotes the derivative of a function of ξ and t with respect to t keeping ξ
fixed, and

A =





− sin (α2) cos (α3) sin (α3) 0
sin (α2) sin (α3) cos (α3) 0

cos (α2) 0 1



 ,

A
−1 =





−cosec (α2) cos (α3) cosec (α2) sin (α3) 0
sin (α3) cos (α3) 0

cot (α2) cos (α3) −cot (α2) sin (α3) 1



 . (2.7)

E1

E2

E3

d1

d2

d3

N1 (ξ, t)

M1 (ξ, t)

N2 (ξ, t)

M2 (ξ, t)

current, VF

g

Fig. 3. Free-body diagram of an infinitesimal element of a rod that is used to model a flexible riser.
The present configuration of the rod is described with the help of a local director basis di defined at
each cross section. The vectors N and M represent the contact force and contact moment, respectively.

3This is the set of Euler angles used in Love (1927). For further details on this choice, see (O’Reilly,
2017, Section 5.3.1).
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2.2. Constitutive relations

We assume that the reference configuration of the riser can be modeled as a straight
rod with a uniform circular cross section. The mass density per unit length, cross sec-
tional area, and areal moments of inertia of the rod in its reference state are denoted by
ρ0A, A, I1, and I2, respectively. Assuming that the riser is composed of a linearly elastic
material, the following classic strain energy function ψ can be prescribed:

2ρ0Aψ = EA (µ− 1)
2
+ EI1ν

2
1 + EI2ν

2
2 +Dν23 , (2.8)

where EA is the axial stiffness, D is the torsional stiffness, and EI1 and EI2 are bending
stiffnesses. We shall assume that the bending stiffnesses are identical, i.e., the rod is
isotropic: (EI1 = EI2 = EI). It is convenient to express the contact force vector N and
contact moment vector M in terms of the director basis as follows:

N (ξ, t) = N1 (ξ, t)d1 +N2 (ξ, t)d2 +N3 (ξ, t)d3,

M (ξ, t) = M1 (ξ, t)d1 +M2 (ξ, t)d2 +M3 (ξ, t)d3. (2.9)

The constitutive equations relating the components ofN andM to the strain components
are

N = N1d1 +N2d2 + EA (µ− 1)d3,

M = EIν1d1 + EIν2d2 +Dν3d3. (2.10)

For a derivation of these relations using the strain energy function (2.8), the reader is
referred to (O’Reilly, 2017, Section 5.9). We note that N1 and N2 are constraint or
reaction forces that ensure that the rod is unshearable. Solving for these forces is part
of the boundary-value problem for the rod.

If the rod is inextensible (µ = 1), then the strain energy function (2.8) simplifies to

2ρ0Aψ = EI1ν
2
1 + EI2ν

2
2 + Dν23 . (2.11)

The constitutive relations for N and M in this case are

N = N1d1 +N2d2 +N3d3,

M = EIν1d1 + EIν2d2 +Dν3d3. (2.12)

Observe that all of the components of N in this case are constraint forces which ensure
that the deformation of rod has no shear and the centerline remains inextensible.

2.3. Equations of motion

A free-body diagram of the rod modeling the riser is shown in Fig. 3. We apply a
balance of linear momentum and a balance of angular momentum to the rod to obtain
the following pair of partial differential equations:

N′ = ρ0AR̈− F,

M′ = N×R′ + ρ0I
(

d1 × d̈1 + d2 × d̈2

)

. (2.13)
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Table 1. The values of the parameters used for the three models in our numerical analyses.

Parameter Symbol Unit Model 1a Model 2b Model 3c

density of sea water ρf kg/m3 1025 1024 1025
density of internal fluid ρi kg/m3 - 998 998
density of riser ρo kg/m3 4039.8 2442.4 7850
outer diameter Do m 0.023 0.2154 0.26
inner diameter Di m − − 0.20
area of outer pipe Ao m2 4.16 × 10−4 3.64× 10−2 2.17 × 10−2

area of inner pipe* Ai m2
− − 3.14 × 10−2

horizontal offset XH m 300 350 450
vertical offset YH = H m 500 350 900
bending stiffness EI Nm2 8.26 × 103 6.57× 103 3.02 × 107

axial stiffness EA N 2.50 × 108 − 4.49 × 109

added mass coeff. Ca - 1.0 1.0 1.0
normal drag coeff. Cn - 1.0 1.0 0.7
tangential drag coeff. Ct - 0.05 − 0.03
prespecified top tension TH kN 25 − 0− 3
uniform current velocity VF m/s 1.0278 0− 2 0− 3
internal fluid speed Vi m/s 0− 100
gravitational constant g m/s2 9.81 9.81 9.81

a Chucheepsakul and Srinil (2002).
b Santillan et al. (2010).
c Athisakul et al. (2014).
* inner pipe through which the internal flow is being transported.

The resultant external force acting on the riser per unit length is denoted by F. This
force is decomposed into the forces due to gravity Fg, buoyancy Fb, internal fluid Fi,
drag from external current Fd and an added mass effect Fa;

F = Fg + Fb + Fi + Fd + Fa, (2.14)

where

Fg = −ρ0Ag E2,

Fb = ρfAog E2,

Fi = −ρiAiai,

Fd = 0.5 ρfDo (Cn ||vrn ||vrn + πCt ||vrt ||vrt) ,

Fa = −ρfAoCaR̈. (2.15)

The prescriptions for the drag and added mass forces are obtained from the generalized
Morison equation (Morison et al. (1950)). The constants appearing in Eqn. (2.3) are
defined in Table 1. The velocity vector vf of the external current, the relative velocity

vector vr of the external current, and the velocity vector v = Ṙ of a material point on
the centerline of the rod are used to compute the following tangential vrt and normal
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vrn velocity vectors:

vr = vf − v,

vrt = (vr · d3)d3, vrn = vrn1
+ vrn2

,

vrn1
= ((vr − vrt) · d1)d1, vrn2

= ((vr − vrt) · d2)d2. (2.16)

The vector ai is the acceleration vector of the fluid being transported by the riser. To
establish this expression, we assume that the fluid is being transported axially through
the riser so that the material coordinate of the fluid ξf is changing at a constant rate:

Vi =
∂ξf
∂t (Chatjigeorgiou (2010) and (Päıdoussis, 2014, Section 4)). Taking the time

derivative of the position vector ri = ri (ξf , t) of a fluid particle moving through the riser
and invoking the chain rule we find that

ai =
∂2R

∂t2
+ 2Vi

∂2R

∂t∂ξ
+ V 2

i

∂2R

∂ξ2

= R̈+ 2Vi
∂

∂t
(µd3) + V 2

i

∂

∂ξ
(µd3)

= R̈+ 2Vi (µ̇d3 + µ (ω2d1 − ω1d2)) + V 2
i (µ′d3 + µ (ν2d1 − ν1d2)) , (2.17)

where the dot and prime are partial derivatives with respect to time t and arc-length ξ,
respectively.

Employing the dimensionless scalings discussed in Appendix A, a set of nonlinear
governing equations can be constructed from (2.13):

n′
1 = {(1 + Ca + β) r̈+ (w − b)E2} · d1 + 2

√

βviµΩ2 + v2i µν̄2 − fn1 + n2ν̄3 − n3ν̄2,

n′

2 = {(1 + Ca + β) r̈+ (w − b)E2} · d2 − 2
√

βviµΩ1 + v2i µν̄1 − fn2 + n3ν̄1 − n1ν̄3,

n′

3 = {(1 + Ca + β) r̈+ (w − b)E2} · d3 + 2
√

βviµ̇+ v2i µ
′ − ft + n1ν̄2 − n2ν̄1,

ν̄′1 = (1− γ) ν̄2ν̄3 + µn2 + η
(

Ω̇1 +Ω2Ω3

)

,

ν̄′2 = (γ − 1) ν̄3ν̄1 − µn1 + η
(

Ω̇2 − Ω3Ω1

)

,

ν̄′3 =
2

γ
ηΩ̇3,





α′
1

α′
2

α′
3



 = A
−1





ν̄1
ν̄2
ν̄3



 ,





Ω1

Ω2

Ω3



 = A





α̇1

α̇2

α̇3



 ,





Ω̇1

Ω̇2

Ω̇3



 = A





α̈1

α̈2

α̈3



+ Ȧ





α̇1

α̇2

α̇3



 ,

x′ = µ (d3 ·E1) ,

y′ = µ (d3 ·E2) ,

z′ = µ (d3 ·E3) , (2.18)

where, for an extensible rod,
µ = 1 + ηn3. (2.19)
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In (2.18) and (2.19), all of the variables and derivatives are dimensionless. Henceforth,
the ′ denotes partial derivative with respect to a dimensionless arc-length s = ξ/H and

the dot denotes partial derivative with respect to a dimensionless time τ = t
H2

√

EI
ρ0A

.

We can express the solution X (s, τ) to the equations (2.18) and (2.19) for a rod in the
following compact form:

X =

{

[n1, n2, µ, ν̄1, ν̄2, ν̄3, α1, α2, α3, x, y, z]
T

extensible rod

[n1, n2, n3, ν̄1, ν̄2, ν̄3, α1, α2, α3, x, y, z]
T

inextensible rod
(2.20)

Here, ni, ν̄i, αi, µ, x, y and z are solution variables representing respectively internal
force, strain, Euler angles, stretch, and the Cartesian coordinates of every point along
the length of the riser at each instant in time. The dimensionless variables β, w, b, ft,
fn1

, fn2
, µ, and η in (2.18) are defined in Appendix A.

2.4. Static equilibrium configurations

Equilibrium configurations of the riser correspond to static solutions Xs = Xs (s) to
the equations of motion. Of particular interest to us in this paper are solutions with
pinned boundary conditions at the ends O and H of the riser. The point H is known as
the hang-off point. These boundary conditions are applied as follows:

AtO :x = 0, y = 0, z = 0, ν̄1 = 0, ν̄2 = 0, ν̄3 = 0,

AtH :x = xH , y = yH , z = zH , ν̄1 = 0, ν̄2 = 0, ν̄3 = 0. (2.21)

The solutions Xs = Xs (s) satisfy the nonlinear equations

X
′

s = F (Xs) , (2.22)

where F (Xs) is a nonlinear vector-valued function that can be computed readily from
(2.18). In the interests of brevity, we do not write the lengthy expression for the com-
ponents of F (Xs) here. In order to compute the static equilibrium configurations for the
static case, the boundary-value problem is solved directly using the MATLAB built-in
function ‘bvp4c’ which is a finite difference code that implements the 3-stage Lobatto
IIIa formula (Shampine et al. (2003)). The finite difference scheme is supplemented by
a continuation method (Wasserstrom (1973)) that helps us examine how the static con-
figuration evolves as the system parameters are varied. As discussed in Appendix B, we
validated our method to compute the static configurations by comparing our results with
published works.

2.5. Vibrations and linear stability analysis

To examine the stability of a static configuration, we consider small amplitude per-
turbations ǫXd = ǫXd (s, τ) to this configuration. Using a standard procedure (see, for
example, Neukirch et al. (2012)), we substitute

X = Xs + ǫXd +O(ǫ2), (2.23)

into the set of equations (2.18), assume second or higher order terms in ǫ are negligible,
and obtain the following set of linear equations to O (ǫ):

X
′
d = D1Xd + D2Ẍd, (2.24)
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where the square matrices D1 and D2 are functions of s. We now seek harmonic solutions
to (2.24):

Xd (s, τ) = X̄d (s) exp (λτ) , (2.25)

where λ is a dimensionless complex variable. Substituting (2.25) into (2.24), a system of
linear equations for the amplitude X̄d and complex variables λ are obtained:

X
′

d = D (s, λ) X̄d. (2.26)

With the help of the boundary conditions, we can compute the eigenvalues and cor-
responding eigenmodes of the static configuration of the riser from (2.26), where the
eigenvalues are expressed as

λn = Re (λn) + iIm (λn) = δn + iωn. (2.27)

Using classic results from linear stability (see, for example, Atanackovic (1997)), we
can also determine the stability of the static configuration of the riser by verifying that
the real part of every single λs is negative. If the real part of a single λ is positive, then
the static configuration is deemed to be (linearly) unstable. As discussed in Appendix B,
we validated our computational method for computing the linear vibrations of the riser
by comparing our results with a variety of published works.

3. Stability of a catenary-type riser modeled as a heavy cable using a string
theory

The Kirchhoff rod theory-based model for the riser reduces to that for a string if the
bending and torsional stiffnesses and inertias are ignored. If the riser is modeled as a
string, then the governing equations for planar motions are

∂N

∂S
= −F+ ρ0A

∂2R

∂t2
. (3.1)

The contact force in the string is parallel to the tangent vector to the string: N = Net.
Depending on whether or not the string is inextensible we have

N =

{

N (ξ, t) etwhen the string is inextensible: i.e.,µ = 1,

ρ0A
∂ψ
∂µetwhen the string is elastic

(3.2)

Here, N is a tension force that must be determined as part of the solution to the
boundary-value problem and ρ0Aψ = Ψ(µ, ξ) is the strain energy function of the string
per unit length of ξ. For linearly elastic strings,

Ψ (µ, ξ) =
EA

2
(µ− 1)

2
, (3.3)

and so N = EA (µ− 1) et.
For planar solutions, two of the Euler angles, α2 and α3, are zero and the Z coordinate

vanishes. In addition,

R = XE1 + Y E2, et =
∂X

∂S
E1 +

∂Y

∂S
E2 = cos (α1)E1 + sin (α1)E2. (3.4)
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The boundary conditions for a riser modeled using a string which has a length ℓ0 in its
reference configuration and is fixed at O and H are

R (0, t) = RO = 0, R (ℓ0, t) = RH = XHE1 + YHE2. (3.5)

The so-called top tension TTop in the string is the tension N at H:

TTop = N (ℓ0, t) · et (ℓ0, t) , Tx = N (ℓ0, t) · E1, Ty = N (ℓ0, t) · E2, (3.6)

where we have also defined the horizontal and vertical components of N.

3.1. Nonlinear stability criteria

In several simple models for risers, F is assumed to be a constant force. The vertical
component of the F consists of a gravitational force and a buoyancy force, and the
horizontal component is assumed to model the effects of a current on the riser. For
this case, the motion of the string that is modeling the riser conserves energy E and a
very simple nonlinear criterion for the stability of a static configuration of the string can
be established. The principal component of the criterion is to check that the string is
everywhere in tension.

The stability criterion we employ assumes that the ends of the cable are fixed and
the loading is conservative. The total energy of nearby configurations are compared to
the energy of the static configuration under consideration. If the energy of the static
configuration is smaller than the energy of any possible adjacent configurations, then
the static configuration is defined to be stable. The energy in question has the following
representations depending on whether the string is elastic or inextensible:

E =







∫ ℓ0
0

(

ρ0A
2

∂R
∂t · ∂R∂t − F ·R

)

dξ +
∫ ℓ0
0

Λ
2

(

∂R
∂ξ · ∂R∂ξ − 1

)

dξ for an inextensible string
∫ ℓ0
0

(

ρ0A
2

∂R
∂t · ∂R∂t + ρ0Aψ − F ·R

)

dξ for an elastic string

(3.7)
The function Λ is a Lagrange multiplier. The first variation of these functionals vanish
for solutions to the equations of motion (3.1) provided Λ is identified as the tension in
the string: Λ = N = N (ξ, t). Positive-definiteness of E and therefore nonlinear stability
of the static equilibrium configuration can be concluded if the following simple criterion
is satisfied for an inextensible string

N > 0 ∀ξ ∈ [0, ℓ0] , (SC-1)

and, for an extensible string,

N = ρ0A
∂ψ

∂µ
> 0 and ρ0A

∂2ψ

∂µ2
−
ρ0A

µ

∂ψ

∂µ
> 0 ∀ξ ∈ [0, ℓ0] . (SC-2)

The proofs of these two nonlinear stability criteria can be found in O’Reilly (1996) and,
in the interests of brevity, we refer the reader to this work for details. We remark that
the criteria SC-1 and SC-2 are far easier to verify than a linear stability criterion based
on computing the eigenmodes and eigenvalues from a linear vibration analysis of a riser’s
configuration.
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Fig. 4. Configurations of an inextensible riser subject to a constant horizontal force F = qE1: (a) static
equilibrium configurations with a critical top tension (blue line), one with a specified top tension and a
shorter overall length ℓ0 (red line), and one with the same specified top tension but with a longer overall
length ℓ0 (yellow line), (b) variation of the dimensionless tension n along the entire length of cable for
the three static configurations show that the configurations are all in tension throughout their entire
length, and (c) decomposition of the magnitude of the dimensionless top tension T̄ into its horizontal T̄x

and vertical T̄y components for a range of values of the overall length ℓ0 shows that the behavior of T̄x

and T̄y are not indicative of the magnitude T̄ . The dimensionless tensions are defined in Eqn. (3.10).

3.2. Application to a neutrally buoyant riser

We now consider the static configurations of a neutrally buoyant riser that were
originally examined by Chucheepsakul and Wang (1997). For such a riser, the buoyancy
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force balances gravity and the resultant force acting on the riser is in the horizontal
direction:

F = qE1. (3.8)

Representative solutions to this problem for an inextensible string (each with a different
value of ℓ0) are shown in Fig. 4(a):

YH = H = 40.0m,
XH

H
=

3

2
, q = 10.0 kN/m, (3.9)

where H is the depth of the water at O. The tension in the string is non-dimensionalized
using the parameter qH and the arc length parameter ξ of the string is non-dimensionalized
using the parameter H :

n (ξ) =
1

qH
N (ξ) , T̄ =

1

qH
TTop, T̄x =

1

qH
N (ℓ0) ·E1, T̄y =

1

qH
N (ℓ0) · E2.

(3.10)
We have taken the liberty of defining the dimensionless horizontal and vertical compo-
nents of the top tension.

As first astutely observed by Chucheepsakul and Wang (1997), if we parameterize the
solutions to the boundary value problem using the top tension TTop, then two possible
solutions (each with a different ℓ0 and a different value of α1 (ℓ0, t)) are possible provided
TTop is greater than a critical value. These authors described this value as the critical
top tension: TCr. If TTop is lower than this value then no static configuration is possible.
Their results are reproduced in Fig. 4(a). These authors state that, for a given value of
TTop, the configuration with the shorter length ℓ0 is stable and the configuration with
the longer length is unstable. The stability criterion they employ was further elaborated
upon in a later work (see Chucheepsakul and Monprapussorn (2001)). It is important
to note that their criterion is different both to the nonlinear stability criterion and the
linear vibration analysis used in the present paper.

To examine if a static equilibrium is stable, we apply criterion SC-1 to the configu-
rations shown in Fig. 4(a). The criterion simply involves checking if the tension N in
the string is always positive. As shown in Fig. 4(b), N is always positive for each of
the three configurations. We therefore conclude that all three configurations are in fact
nonlinearly stable. Furthermore, we have examined all the configurations of the riser
shown in the inset image in Fig. 4(a) and found that N(ξ) > 0 throughout the length of
the cable. In conclusion, the static equilibria of the riser are all nonlinearly stable.

It is also interesting in this example to compare the horizontal and vertical compo-
nents of the top tension for each of the configurations shown in the inset image in Fig.
4(a). As shown in Fig. 4(c) there is no correlation between the variation of TTop and the
variation of its vertical Ty and horizontal Tx components.

We next consider the case of an extensible cable which has a strain-energy function

Ψ = ρ0Aψ =
EA

2
(µ− 1)

2
. (3.11)

For this strain-energy function

ρ0A
∂2ψ

∂µ2
−
ρ0A

µ

∂ψ

∂µ
=
EA

µ
> 0. (3.12)

14



The solutions for this model of the riser are qualitatively similar to those shown in Fig.
4 for the inextensible string model. In the interests of brevity, they are not reproduced
here. Additionally, because the elastic string is also never slack, we can apply criterion
SC-2 to the static configurations of the elastic string and conclude that they too are
nonlinearly stable.

The string model for the catenary-type riser is arguably too simplistic. Not only
does it ignore the effects of the fluid it also ignores bending and torsional modes of
deformation. It is clearly of interest to see if these additional effects can destabilize the
static configuration.

4. Dynamics of a riser modeled as a heavy cable using a rod theory

We now turn to modeling the catenary-type riser attached to a point O on the seabed
and a hang-off point H on the sea surface using Kirchoff’s rod theory. To help place our
work in the context of other works by Chucheepsakul and Monprapussorn (2001) and
Athisakul et al. (2014) we use the set of parameters are identical to those for Model 1 in
Table 1. The rod resists bending and torsion and is extensible.

As anticipated, we find that the static configurations of the riser are qualitatively
similar to those we found using a string model. Some of these configurations are shown
in Figure 5(a). As found by Chucheepsakul and Monprapussorn (2001), if we classify
the solutions using the top tension TTop as a function of the undeformed arc length of
the riser, then the curve shown in Figure 5(b) is found. The values of N (ℓ0) for the
configurations labelled (1)–(7) in Figure 5(a) are presented in Table 2.
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Fig. 5. (a) Static equilibrium configurations corresponding to distinct values of the top tension TTop.
(b) Variation of the top tension at the hang-off point H as a function of the overall length ℓ0 of the
undeformed rod. The riser is modeled as an extensible rod with the parameter values for Model 1 (cf.
Table 1). The magnitudes and directions of the top tensions corresponding to the labels (1)–(7) are
presented in Table 2.

Table 2. The magnitude TTop and direction α1 (ℓ0, t) of the tension force N at the hang-off point H for
the seven configurations for Model 1.

Number Tension Force N (ℓ0) at H
of Magnitude TTop Direction α1 (ℓ0, t)

Configuration [104N] [rad]

(1) 1.25 1.1989
(2) 1.10 1.2242
(3) 0.90 1.2840

(4)* 0.75 1.4096
(5) 0.90 1.4942
(6) 1.10 1.5190
(7) 1.25 1.5289

* indicates the configuration which has the critical top ten-
sion.

The stability criterion used by Chucheepsakul and Wang (1997) for the string model
of the riser has been extended to various types of marine structures from vertical risers
and steel catenary risers to marine risers transporting fluid by Chucheepsakul and Mon-
prapussorn (2001) and Athisakul et al. (2014). Using their stability criterion, out of two
static configurations having the identical values of top tension applied at the hang-off
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point, the one with the shorter arc length (e.g., the configurations (1), (2), and (3) shown
in Fig. 5(a)) are considered to be stable while those with the longer arc length (e.g., the
configurations (5), (6), and (7)) are considered to be unstable. Their use of TTop (ℓ0)
as a stability criterion appears to motivated from works on the stability of columns and
straight rods subject to constant vertical loads. However, in the riser, the force N (ℓ0) at
the hang-off point also has a direction that must be considered in any stability criterion.

Table 3. The lowest four eigenvalues for each of the seven static equilibrium configurations shown in
Fig. 5(a) for Model 1.

No. Complex eigenvalues [rad/s]
of Mode 1 Mode 2 Mode 3 Mode 4

Conf. Re(λ) Im(λ) Re(λ) Im(λ) Re(λ) Im(λ) Re(λ) Im(λ)

(1) -0.0000 0.3507 -0.0000 0.7011 -0.0000 1.0515 -0.0000 1.4021
(2) -0.0000 0.3174 -0.0000 0.6343 -0.0000 0.9513 -0.0000 1.2685
(3) -0.0000 0.2628 -0.0000 0.5246 -0.0000 0.7864 -0.0000 1.0485

(4)* -0.0000 0.1828 -0.0000 0.3611 -0.0000 0.5371 -0.0000 0.7140
(5) -0.0000 0.1324 -0.0000 0.2429 -0.0000 0.3473 -0.0000 0.4639
(6) -0.0000 0.1127 -0.0000 0.1917 -0.0000 0.2770 -0.0000 0.3729
(7) -0.0000 0.1033 -0.0000 0.1682 -0.0000 0.2481 -0.0000 0.3324

* indicates the configuration which has the critical top tension.

4.1. Linear vibration analysis

To explore the stability of a configuration of the riser, we examine the linear vibra-
tions of the riser about a static configuration. Prior to discussing our results, we note
that we validated our numerical methods by comparing our results to those presented
in the literature. Further details on the validation are discussed in Appendix B. For the
static configurations labeled (1) to (7) in Fig. 5, we computed the real and imaginary
parts of the eigenvalues for the first four out-of-plane(lateral) modes. The results are
presented in Table 3. The mode shapes corresponding to the lowest four natural fre-
quencies for configurations (2) and (6) that have identical values of top tension at the
hang-off point are shown in Fig. 6 and 7, respectively. The lowest frequency modes for
these configurations are lateral out-of-plane modes in Z-direction. The most important
conclusion from our computation of eigenvalues is that configurations (1) through (7)
are all linearly stable (i.e., all the eigenvalues are purely imaginary). This result is also
in agreement with our earlier conclusions based on a string model for the catenary-type
riser.
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Fig. 6. Mode shapes of the first four modes for the static configuration (2) shown in Fig. 5(a): (a)
on XY plane; (b) on YZ plane; (c) on ZX plane; and (d) in the three dimensional space. The modes in
question are all lateral or out-of-plane modes.
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Fig. 7. Mode shapes of the first four modes for the static configuration (6) shown in Fig. 5(a): (a)
on XY plane; (b) on YZ plane; (c) on ZX plane; and (d) in the three dimensional space. The modes in
question are all lateral or out-of-plane modes.

4.2. Fluid-induced destabilization

The previous analysis of the catenary-type riser’s static configuration and the con-
comitant linear stability ignored the effects of external fluid moving with a horizontal
speed of VF and a fluid that is being transported inside the riser at a constant speed Vi.
Our next set of analyses take these effects into account. For the purpose of that, we use
the parameter values for Model 3 given in Table. 1.4 The same procedures introduced
previously are conducted and a variety of static equilibrium configurations corresponding

4We note that Model 1 and Model 2 ignore the effects of fluid being transported internally by the
riser.
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to distinct value of arc length ℓ0 are shown in 8(a), and the corresponding top tension
as a function of the total arc length is displayed in Fig. 8(b). In the interest of brevity,
we show the lowest four complex eigenvalues (C.5) and corresponding mode shapes (Fig.
C.14 and C.15) for Model 3 in Appendix C. Similar to the previous results for Model 1,
those results show that all of the static configurations for Model 3 are stable when either
the external and internal fluid is not taken into account.
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Fig. 8. (a) Static equilibrium configurations corresponding to distinct values of the top tension TTop.
(b) Variation of the top tension at the hang-off point H as a function of the overall length ℓ0 of the
undeformed rod. The riser is modeled as an extensible rod with the parameter values for Model 3
(cf. Table 1). The values and magnitudes of the top tensions and the lowest frequencies for the static
configurations labeled (1)–(9) are presented in Table C.5.

4.2.1. The effects of a steady current

To examine the effects of a steady current with the constant value of speed in E1

direction, the current speed VF is varied from 0 m/s to 2 m/s for the configurations
labeled (1)-(9) in Fig. 8. As shown in Fig. 9, it is easy to observe the effect that the
external current has on the static configuration. As expected, we also find that some
of these static configurations with a longer length ℓ0 are significantly effected by the
external fluid flow while those with a shorter length are not. In addition, as shown in the
inset images in Fig. 9, the current also effects the top tension. In particular, the value
of the top tension applied to the longer configurations increases with increasing current
speed, while the top tension in the shorter configurations does not change significantly.
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Fig. 9. Variation of the static equilibrium configurations and corresponding magnitude of top tension
applied at the hang-off point H of a riser subject to the forces due to a steady current VFE1: (a) 0.5,
(b) 1.0, (c) 1.5, and (4) 2.0m/s. Note that these figures show the effects of applying the external current
on the static configurations shown in Fig. 8, where the steady current is assumed to be constant in E1

direction. The parameter values for the rod that is used to model the riser are described by Model 3 in
Table 1.

Consider an arbitrary pair of two different static solutions, e.g., (3) and (7) in Fig.
8(a), which have the same magnitude of top tension. The variation of the lowest four
eigenvalues for this pair of configurations as the current speed is varied from 0 to 2
m/s is shown in Fig. 10. It is seen that according to the increase of external current,
both configurations remain linearly stable. Compared to the results for the shorter
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configuration (3) shown in Fig. 10(a), the longer configuration (7) shows a remarkable
change in natural frequencies with increase of current velocity (cf. Fig. 10(b)). Despite
these differences between the two configurations, they are both stable when any value
of current speed is applied without considering internal fluid inside the riser. The same
tendency showing the effect of external current on the global behavior in terms of natural
frequencies can be seen on the other pair of static configurations, e.g., (2) and (8), can be
seen in Fig. C.16 in Appendix C. Similar to the lateral out-of-plane modes, the behavior
of the flexural in-plane modes with increasing external steady current was also examined.
We verified that the in-plane flexural modes decay and thus do not effect the stability of
the static configuration.

4.2.2. The effects of transporting a fluid

Next, we examined the effect of internal fluid on the stability of the riser, for three
static configurations: a short configuration (3) and a longer one (7) that have the identical
magnitude of top tension when Vi = 0, and a configuration (5) whose top tension is the
critical value. A constant internal fluid with speed Vi ranging from 0 to 100 m/s was
applied. Before discussing the effect of internal flow on the natural frequencies, it is
noted that in agreement with earlier results by Santillan et al. (2010), the internal fluid
flow has little effect on the shape of the static configuration of the riser. As can be seen
from Fig. 11, the internal fluid does effect the tension n3 but n3 − µvi

2 is unchanged.
Thus, the dimensionless tension in the string is increased by an amount µvi

2.
The corresponding variation of the eigenvalues for the three configurations labeled

(3), (5), and (7) in Fig. 8(a) are shown in Fig. 12.5 As shown in Fig. 12(a), (c),
and (e), and in contrast to the case where VF alone was varied, the internal flow, Vi,
slightly decreases the natural frequencies for all three configurations of interest. More
significantly, as shown in Fig. 12(b), (d), and (f), the configurations (3) and (5) are
linearly stable whereas configuration (7) destabilizes by a flutter instability (or Hopf
bifurcation) once Vi 6= 0. In particular, the second and third modes become unstable.
Typically, the internal fluid is transported at an average speed of 0 to 30 m/s. In order
to emphasize that the stability characteristics does not change with increasing flow rate,
we increased the speed of internal fluid up to 100 m/s to verify that the configurations
maintained their stability characteristics.

We explored the stability of other few configurations in Fig. 9 and concluded that,
for a given top tension, the configuration with the shorter length will remain stable even
when the effects of internal fluid transport are considered. However, the configuration
with the longer length will immediately lose stability once Vi 6= 0. Given a value of
the top tension, we note that the tendency for the shorter configuration to be stable
while the longer configuration is unstable is also observed for the rod Model 3 in Table
1 (cf. Fig. C.17 in Appendix C). The flutter instability of the configurations in Fig 8(a)
discussed above is similar to the instability found in the classic problem of a vertical riser
conveying fluid (and the closely related problem of a cantilevered pipe conveying fluid).6

In contrast to the catenary-type riser, for the vertical riser (and the related problem
of a cantilevered pipe conveying fluid), Vi must be larger than a non-zero critical value

5The corresponding mode shapes are shown in Figs. C.14 and C.15 in Appendix C.
6We refer the reader to Chatjigeorgiou (2010), Ghayesh et al. (2011), and Päıdoussis (2014) for

discussions of the extensive literature on these problems.
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for the riser to become unstable. The precise value of the critical speed depends on
the parameters such as flexural rigidity and the dimensions of the pipe. However, as
discussed in Kuiper (2008), if the cantilevered pipe is considered to be of infinite length,
then a flutter instability occurs when Vi 6= 0.
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Fig. 10. Variation of the lowest four natural frequencies (i.e., imaginary part of the eigenvalues
Im (λn) = ωn) with increase in the steady current speed: (a) for the configuration (3) shown in Fig.
8(b), and (b) for the configuration (7) which has a longer arc length than (3) and is shown in Fig. 8(b).
Note that the lowest four eigenvalues for both cases are almost purely imaginary (Re (λn) = 0), and
hence both configuration are linearly stable.
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Fig. 12. Behavior of the first four vibration modes as the speed of internal fluid (Vi) is varied for the
equilibrium configurations (3), (5), and (7) shown in Fig. 8(a). Two of these configurations, (3) and (7),
have the same top tension applied at the hang-off point and (5) is the configuration with the critical value
of top tension: (a), (c), and (e): show the variation of natural frequencies for the static configurations
labeled (3), (5), and (7), respectively; and (b), (d), and (f): show the behavior of the lowest four modes
for the static configurations labeled (3), (5), and (7), respectively, on the complex plane as the internal
fluid speed Vi is varied. The arrows indicate the direction of increasing flow rate Vi.
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5. Conclusions

This paper has presented an investigation of the stability of catenary-type risers in
deep waters. The simplest models of these risers assume that they can be modeled as a
perfectly flexible string pinned at both ends and acted upon by a conservative force field.
We find that the static configurations predicted by these models are always nonlinearly
stable. When more sophisticated rod-based models that include the effects of internal
fluid transport in the riser are analyzed, we find that certain static configurations of
the riser can be destabilized in a flutter instability. These results complement earlier
works by Chucheepsakul et al. who classified risers using a concept known as the top
tension TTop. They found, for a given TTop, two configurations were possible with distinct
overall lengths. The configuration with the shorter (longer) length was deemed to be
stable (unstable) using a different stability criterion than the ones we have chosen to use.
Based on the stability criterion and modeling assumptions we have employed, we also find
that the configuration with the shorter length is stable. However, for the configuration
with the longer length to destabilize we have shown that it must convey fluid. The onset
of instability is immediate once the internal fluid flow Vi 6= 0.
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Appendix A. Scaling of the equations

Non-dimensionalization of the equations of motion are performed with length scaled
using H , force using EI/H2, moments using EI/H , and time using H2/

√

ρ0A/ (EI).
For the position vectors and arc-length coordinates, we employ the depth of the water
at O relative to the hang-off point H to non-dimensionalize length variables:

r =
R

H
, x =

X

H
, y =

Y

H
, s =

ξ

H
,

(A.1)

We also choose the following dimensionless parameterizations of time, frequency, and
fluid velocity,

τ =
t

H2

√

EI

ρ0A
, Ω = ωH2

√

ρ0A

EI
, vi = ViH

√

ρiAi
EI

, (A.2)
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and strains

ν̄1 = ν1H, ν̄2 = ν2H, ν̄3 = ν3H. (A.3)

The external forces such as gravity, buoyancy, and drag force are scaled as follows:

w =
ρoAgH

3

EI
, b =

ρfAogH
3

EI
, f =

0.5ρfD ||vr||
2
H3

EI
, (A.4)

and the dimensionless slenderness parameter η, ratio of mass of pipe to internal flow β,
and ratio of torsional to bending stiffness γ are defined as follows:

η =
AL2

I
, β =

ρiAi
ρ0A

, γ =
D

EI
. (A.5)

For the internal forces and moments, we employ the following non-dimensionalizations
with help of (A.3) and γ:

n =
NH2

EI
=
N1H

2

EI
d1 +

N2H
2

EI
d2 +

N3H
2

EI
d3 = n1d1 + n2d2 + n3d3,

m =
MH

EI
=
EIν1H

EI
d1 +

EIν2H

EI
d2 +

Dν3H

EI
d3 = ν̄1d1 + ν̄2d2 + γν̄3d3. (A.6)

For the extensible rod, by inverting the constitutive relation EA(µ−1) = N3, the stretch
µ can be expressed as a combination of dimensionless variables:

µ = 1 + η n3. (A.7)

We use this substitution when solving (2.18) for extensible rods and strings.

Appendix B. Validations of Static and Free-Vibration Analyses

For the purpose of validating both the accuracy of the set of governing equations
(2.18) and the numerical method used to solve the boundary-value problem, we compared
our predicted static configurations with those from Chucheepsakul and Srinil (2002) who
modeled the riser as an extensible rod and Santillan et al. (2010) who used an inextensible
rod for the same purpose (cf. Model 1 and Model 2 in Table 1). As can be seen from
Fig. B.13, our static results are in good agreement for both types of riser. In addition
to the static equilibrium configuration, other physical quantities such as internal force,
moment distribution, and curvatures also compared favorably.

To validate our numerical methods used to compute the mode shapes, frequencies,
and damping of the vibrations of a catenary-type riser that is modeled using a rod theory,
we again compared our results to published results for two set of parameter values. To
compute the free-vibration response of the riser, the system of linear amplitude equations
(2.26) with the pinned boundary conditions specified at both ends of the riser are solved
using the methods discussed in Section 2.4 and 2.5. As shown in Table B.4, the first set
of natural frequencies obtained by solving the linear equations are in excellent agreement
with the results in Chucheepsakul and Srinil (2002), Meng and Chen (2012), and Santillan
et al. (2010).
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We have also validated our numerical methods by reproducing the stability and in-
stability results for a vertical and horizontal riser conveying fluid that is discussed by
Monprapussorn et al. (2006) and Päıdoussis (2014).
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Fig. B.13. The static equilibrium configurations for catenary-type risers suspended from points O and
H obtained using (2.18) and the solutions marked with a x obtained using a finite element method by
Chucheepsakul and Srinil (2002) and a finite difference scheme and a shooting method Santillan et al.
(2010), respectively. (a) The predicted static configuration when an extensible rod with a prescribed top
tension (25kN) at the hang-off point H compared to the results (labeled x) of Chucheepsakul and Srinil
(2002). (b) The predicted static configuration based on an inextensible riser compared to the results
(labeled x) by Santillan et al. (2010).

Table B.4. The comparison of natural frequencies [rad/s] of catenary-type risers with previous works.

Unit Model 1 Model 2

[rad/s] Current method Chucheepsakula Mengb Current method Santillanc

Mode 1 0.5452 0.546 0.5491 0.2796 0.2790
Mode 2 1.0900 1.090 1.0992 0.4774 -
Mode 3 1.6350 - 0.6710 -
Mode 4 2.1800 - 0.8527 -

a Chucheepsakul and Srinil (2002).
b Meng and Chen (2012).
c Santillan et al. (2010).
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Appendix C. Analysis of the Results for a Catenary-type Riser Modeled Us-
ing the Parameter Values for Model 3

The remarkable differences between Model 1 and Model 3 can be traced to modeling
the transport of internal fluid. In particular, the results obtained from Model 3 whose
parameter values shown in Table 1 represent the static and dynamic characteristics of
the riser transporting a fluid. For example, Table C.5, Fig. C.14, and Fig. C.15 show
that all the configurations labeled (1) to (9) shown in Fig. 8a and Table C.5 have
purely imaginary eigenvalues and, thus, all the configurations are stable up to the first
four modes. Providing that external and internal fluid effects are considered for the
configurations labeled (2) and (8) shown in Fig. C.16 and Fig. C.17, we can see the
same tendency concerning the effects of external and internal fluid on the riser behavior
shown in Fig. 10 and Fig. 12 for the configurations labeled (3) and (7).

Table C.5. The lowest four eigenvalues for the static equilibrium configurations for Model 3 shown in
Fig. 8.

No. Top Top
Mode 1 Mode 2 Mode 3 Mode 4

of Tension TTop Angle α1 (ℓ0)
Conf. [kN ] [rad] [rad/s] [rad/s] [rad/s] [rad/s]

(1) 2500 1.2536 0.2582 0.5165 0.7751 1.0341
(2) 2200 1.2783 0.2332 0.4665 0.7001 0.9342
(3) 1900 1.3149 0.2036 0.4072 0.6112 0.8158
(4) 1600 1.3834 0.1617 0.3232 0.4847 0.6472

(5)* 1525 1.4373 0.1350 0.2682 0.4001 0.5335
(6) 1600 1.4794 0.1146 0.2228 0.3258 0.4325
(7) 1900 1.5136 0.0949 0.1728 0.2450 0.3292
(8) 2200 1.5274 0.0848 0.1456 0.2085 0.2820
(9) 2560 1.5357 0.0777 0.1274 0.1864 0.2512

* Indicates the configuration which has the critical top tension.
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Fig. C.14. Mode shapes of the lowest four mode for the static configuration labeled (3) in Fig. 8: (a)
on XY plane; (b) on YZ plane; (c) on ZX plane; and (d) in three-dimensional space
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Fig. C.15. Mode shapes of the first four modes for the static configuration labeled (7) in Fig. 8: (a)
on XY plane; (b) on YZ plane; (c) on ZX plane; and (d) in three-dimensional space
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Fig. C.16. Variation of the first four natural frequencies (i.e., imaginary part of eigenvalues Im (λn) =
ωn) for various values of the steady current speed: (a) for the configuration labeled (2) in Fig. 8, and
(b) for the configuration labeled (8) in Fig. 8. The configuration labeled (8) has a longer arc length
than the configuration labeled (2). Note that the lowest four eigenvalues for both cases are nearly pure
imaginary value (Re (λn) = 0), and consequently both configurations are linearly stable.
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Fig. C.17. Behavior of the first four vibration modes as functions of the speed of internal fluid (Vi)
for the static configurations labeled (2) and (8) in Fig. 8. This pair of equilibrium configurations have
the same top tension applied at the hang-off point. (a) and (c): Variation of the natural frequencies for
(2) and (8), respectively, and (b) and (d): behavior of the lowest four modes on the complex plane for
(2) and (8), respectively, as the internal fluid speed Vi is varied. The arrows indicate the direction of
increasing flow rate Vi. It should be noted that the configuration labeled (8) is linearly unstable when
Vi 6= 0 while the other configuration (2) is linearly stable.
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