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Towards a more temporally explicit framework for community ecology

Louie H. Yang

Department of Entomology and Nematology, University of California, Davis, CA 

95616, USA

lhyang@ucdavis.edu, 1-530-754-3261

Abstract

Although ecologists have long understood the fundamentally dynamic nature of 

communities, ecology has until recently seemed to emphasize other aspects of 

ecological complexity, such as diversity and spatial structure, ahead of temporal 

variation. Climate change has made studies into the temporal dimensions of 

community ecology more immediate and urgent, and has exposed the limits of our 

general understanding about how species interactions change over time. Here, I 

suggest four specific ways to continue building towards a more temporally explicit 

understanding of community ecology: 1) by increasing the representation of 

temporal change in interaction networks, 2) by developing both specific and general

insights into event-driven dynamics, 3) by developing and testing sequential 

hypotheses to describe proposed explanations that unfold over time, and 4) by 

characterizing seasonal windows of opportunity. A great deal about the temporal 

dynamics of communities remains uncertain, but temporally explicit studies have 

the potential to improve our fundamental understanding of how communities 

function.
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Introduction

In 1872, the English-American photographer Eadweard Muybridge was hired by 

Leland Stanford, a former governor of California, railroad tycoon and horse 

enthusiast, to do a photographic study of animal locomotion. At the time, the 

precise way a horse moved while galloping was unknown, and the subject of 

vigorous debate. Because the legs of a galloping horse move too quickly for 

accurate observation with the unaided eye, previous hypotheses for the gait and 

posture of a galloping horse were largely based on conjecture and imagination. In 

order to observe how a horse gallops, Muybridge needed to develop new 

photographic methods and tools. Prior to the completion of his photographic 

studies, artists generally depicted galloping horses in a “flying gallop” posture (Fig. 

1A), with their front legs extending in front of them, and their hind legs 

simultaneously extended behind them. Muybridge’s photographs showed horses 

with a fundamentally different posture when galloping (Fig. 1B). With the first 

publications of these images (“A horse’s motion scientifically determined,” 1878; 

Muybridge, 1887), our understanding of animal movement was profoundly changed.

As Scientific American (1878) wrote at the time, “Before these pictures were taken 

no artist would have dared to draw a horse as horse really is when in motion… yet 

after a little study the conventional idea gives way to truth, and every posture 

becomes instinct… Mr. Muybridge’s ingenious and successful efforts to catch and fix

the fleeting attitudes of moving animals thus not only make a notable addition to 

our stock of positive knowledge, but must also effect a radical change in the art of 

depicting horses in motion.“
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As with galloping horses, our understanding of community ecology has historically 

been influenced by static depictions of inherently dynamic processes. These static 

representations of how species interact have become a principal part of our ability 

to conceptualize complex natural systems, and have succeeded in conveying many 

important insights about the structure of communities. However, like a painting of a

horse in motion, our static depictions of communities both reveal and shape our 

assumptions about how communities work. While static representations of 

communities have structured community ecology in many ways, ecologists have 

always understood that the natural systems underlying these static representations 

are highly dynamic. In his foundational book Animal Ecology, Charles Elton (1927) 

established several concepts that have become central to ecology, including food 

web diagrams, the biomass pyramid and the Eltonian niche concept. However, this 

book also includes a chapter devoted to “time-communities”, noting that “animal 

communities are organized into a series of smaller animal communities, each of 

which is in action at a different time.” Elton’s book makes it clear that the study of 

temporal patterns in species interactions was central to community ecology from 

the beginning, and this more temporally explicit perspective developed 

concurrently with the first depictions of static food webs. These are not 

contradictory or inconsistent perspectives; rather, they represent ways to examine 

different aspects of ecological complexity in a more manageable way; emphasizing 

the structure and spatial organization of species interactions on the one hand, and 

emphasizing the dynamics and temporal organization of species interactions on the 

other. Since the early days of ecology, these two perspectives have developed 

along parallel but uneven paths; until recently, the study of important structural and
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spatial issues in community ecology has seemed to outpace the development of a 

more temporally explicit perspective.  

The reality of ongoing climate change has made the study of temporal change in 

community ecology more immediate and urgent, and has contributed to a 

resurgence of interest in developing a better understanding of the temporal 

dimension of species interactions on more fundamental level (Forrest & Miller-

Rushing, 2010; Parmesan & Yohe, 2003; Post, 2019; Visser, Caro, Oers, Schaper, & 

Helm, 2010; Wolkovich, Cook, McLauchlan, & Davies, 2014b; Yang & Rudolf, 2010). 

Climate change is causing widespread phenological shifts in the timing of life 

histories (Hua et al., 2016; Parmesan, 2006), and phenological mis-matches have 

the potential to disrupt species interactions in a community (Both, Van Asch, 

Bijlsma, Van Den Burg, & Visser, 2009; Kharouba et al., 2018). Although there is a 

general pattern of advancing phenologies in diverse taxa around the globe 

consistent with expectations on a warming planet (Parmesan & Yohe, 2003), the 

variability of phenological responses to climate change is large, complex and often 

counterintuitive (Chmura et al., 2019; Cleland, Chiariello, Loarie, Mooney, & Field, 

2006; Edwards & Yang, 2018; Forrest, 2016; Høye, Post, Schmidt, Trøjelsgaard, & 

Forchhammer, 2013; Lane, Kruuk, Charmantier, Murie, & Dobson, 2012; Sherry et 

al., 2007). While the study of phenology has traditionally focused on the timing of 

life history events for single species, these changes in the timing of species 

interactions are forcing us to grapple with the complexity of temporal dynamics in 

community ecology more broadly; the reality of global climate change requires us 

to consider phenology in a community context. Understanding phenology and the 

timing of species interactions has never been more important, and the limits of our 

current understanding are increasingly evident. 
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In response to this emerging reality, the study of phenology has advanced rapidly in

four specific ways. First, the study of phenology has progressed from the historical 

study of single, annual life history events (such as the day of peak flowering, or the 

first arrival of migratory birds) to examining phenological changes over multiple 

stages in a seasonal trajectory or ontogeny (e.g., Inouye, Ehrlén, & Underwood, 

2019; Yang & Rudolf, 2010). Second, the study of phenology is moving from pattern

to process; increasingly, studies are able to build upon previously documented 

patterns of phenological change to ask questions about the causes or consequences

of those changes (e.g., Chmura et al., 2019; Forrest & Miller-Rushing, 2010; Inouye 

et al., 2019; Pau et al., 2011; Visser et al., 2010). Third, ecologists are increasingly 

investigating a wider range of phenological responses, including phenological 

changes in the fall (e.g., Gallinat, Primack, & Wagner, 2015), phenological delays

(e.g., Lane et al., 2012),  phenological responses to extreme events (e.g., Jentsch, 

Kreyling, Boettcher-Treschkow, & Beierkuhnlein, 2009), changes in generation time

(e.g., Forrest, Cross, & CaraDonna, 2019), phenological variation in space (e.g., 

Armstrong, Takimoto, Schindler, Hayes, & Kauffman, 2016), and individual variation 

in phenological responses (e.g., Inouye et al., 2019). Finally, the study of phenology 

is continuing to work towards putting single-species phenology into a multi-species 

community context (e.g., Both et al., 2009; Nakazawa & Doi, 2012; Yang & Rudolf, 

2010). 

Along the way, these trends in the study of phenology are also building a more 

temporally explicit perspective in community ecology. Fundamentally, a more 

temporally explicit approach to ecology often requires examining smaller slices of 

time; this is a recapitulation of Elton’s “time-communities” concept in a modern 

guise, and an ecological echo of Muybridge’s photographic method. While 
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examining smaller slices of time is a quantitative change in the way we already do 

community ecology, approaches that increase the temporal resolution of available 

data could qualitatively improve our understanding of how communities work. In 

many systems, these temporally explicit approaches will likely require the 

application of new methods and technology, and there will certainly be many 

questions in community ecology for which a temporally explicit approach will 

remain unnecessary or impossible. Even as he was describing the richness of 

temporal variation in communities, Elton wrote that temporal variation “enormously

increase(s) the difficulty of studying (them)”, and even comparatively regular 

changes in communities “make the study of this side of ecology excessively 

complicated.” However, at its best, this approach allows us to see how nature works

more clearly than we could otherwise.  

Towards a more temporally explicit community ecology

Here I suggest four ways to build towards a more temporally explicit understanding 

of species interactions in community ecology: 1) by increasing the representation of

temporal change in interaction networks, 2) by developing both specific and general

insights into event-driven dynamics, 3) by developing and testing sequential 

hypotheses to describe proposed explanations that unfold over time, and 4) by 

characterizing seasonal windows of opportunity. These include both conceptual 

frameworks and methodological tools that emphasize how species interactions 

change over time. 

Temporally explicit interaction networks show changes in community structure
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In recent decades, the analysis of community structure in food webs has 

emphasized taxonomically well-resolved summary datasets, generally compiled 

over years of careful study in a given location (Dunne, 2006). These datasets have 

undeniably shaped our current understanding of ecological communities (e.g., 

Gibert & DeLong, 2017; Williams & Martinez, 2000), and address many of the data 

quality problems that arose from the analysis of less well-resolved datasets 

previously (e.g., Hall & Raffaelli, 1997; Martinez, 1991; Paine, 1988; Polis, 1991). 

However, the degree to which such static summary networks accurately represent 

species interactions in nature remains unclear (Jordan & Osvath, 2009; Tavares-

Cromar & Williams, 1996). Because these networks are generally static, they are 

unable to represent changes in community structure over time (Fig. 2; Akin & 

Winemiller, 2006; Berlow et al., 2004; Tavares-Cromar & Williams, 1996; Warren, 

1989). Moreover, because they are cumulative, they may reflect summary 

community structures that have never existed at any point in time (Fig. 2; Closs & 

Lake, 1994; Jordan & Osvath, 2009; Schoenly & Cohen, 1991). These concerns are 

not new (e.g., McMeans, McCann, Humphries, Rooney, & Fisk, 2015; Schoenly & 

Cohen, 1991), and past studies have addressed them by examining time-specific 

trophic networks in a range of systems (Akin & Winemiller, 2006; Baird & Ulanowicz,

1989; Ceneviva-Bastos, Casatti, & Uieda, 2012; Closs & Lake, 1994; Hart, Stone, & 

Berman, 2000; Kitching, 1987; Layer, Hildrew, Monteith, & Woodward, 2010; 

Schoenly & Cohen, 1991; Tavares-Cromar & Williams, 1996; Thompson & 

Townsend, 1999; Warren, 1989). Many of these studies documented substantial 

temporal variation in specific food webs, with sometimes profound changes in 

community composition and structure over time (Baird & Ulanowicz, 1989; Closs & 

Lake, 1994; Hart et al., 2000; Kitching, 1987; Schoenly & Cohen, 1991; Tavares-
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Cromar & Williams, 1996; Thompson & Townsend, 1999; Warren, 1989; but see also

Akin & Winemiller, 2006; Ceneviva-Bastos et al., 2012). When compared directly, 

the structural properties of temporally aggregated networks are often substantially 

different from any of their time-specific constituents (Jordan & Osvath, 2009; 

Schoenly & Cohen, 1991; Tavares-Cromar & Williams, 1996; Thompson & 

Townsend, 1999; Warren, 1989). This suggests that our understanding of food web 

structure is likely to be strongly dependent on the scale of temporal aggregation in 

the underlying data in ways that parallel the unintended effects of species or 

trophic species aggregation (Hall & Raffaelli, 1997; Martinez, 1991). If summary 

descriptions create artifacts that substantially alter our understanding of food webs,

these quantitative differences between time-specific networks and cumulative 

summary networks would be expected to increase as more data are gathered; in 

the absence of a more explicit temporal dimension, the continued accumulation of 

data could have the unintended effect of further obscuring how communities are 

structured in time. 

Despite the broad understanding that many real-world interaction networks change 

substantially over time, and evidence that the structure of summary networks often 

differs significantly from that of time-specific networks, relatively few temporally 

explicit network datasets exist. This may reflect the fundamental challenge of 

gathering temporally explicit and taxonomically well-resolved species interaction 

data. While reconciling the widely recognized importance and ubiquity of 

ontogenetic diet switching in nature and the observation that relatively few studies 

that have attempted to incorporate them into food web studies, Tavares-Cromar 

and Williams (1996) noted, “…likely, the task of including different life stages has 

proved intimidating.” Characterizing summary species interactions networks is 
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already notoriously difficult (Polis, 1991; Polis & Strong, 1996), and many past 

efforts to develop time-specific food webs illustrate the uncommon combination of 

sustained data gathering effort and the extraordinary breadth of taxonomic 

familiarity that has traditionally been required to characterize interactions networks 

over time. On top of this, it may be more difficult to generalize the insights afforded 

by time-specific networks. By their nature, time-specific assessments of community 

interactions are difficult to replicate, instead relying on the inherent value of their 

larger temporal resolution and scope (Oksanen, 2001). However, past studies show 

that temporally explicit network analyses are both possible and can offer unique 

insights, despite the magnified challenge of characterizing species interactions at 

multiple intervals of time. For their effort, these studies are often characterized by 

an uncommonly detailed understanding of the dynamics and drivers behind specific 

food webs, including informed insights about how environmental cycles and the 

biology of key species affect community dynamics (e.g., Baird & Ulanowicz, 1989; 

Closs & Lake, 1994; Warren, 1989). Similar insights have emerged from non-trophic 

interaction networks, including plant-pollinator networks (e.g., Burkle, Marlin, & 

Knight, 2013; CaraDonna et al., 2017; Olesen, Bascompte, Elberling, & Jordano, 

2008), that been described with a more temporally explicit perspective. Studies 

such as these inform our understanding of how species interactions change over 

time. 

A broader temporally explicit approach to interaction networks could yield new 

general insights in community ecology. Attempts at generalization are limited in 

part by the relatively small number of time-specific interaction networks currently 

available, and the inherent difficulties of meaningfully comparing the dynamics of 

species with different relevant timescales (Post, 2019; Rahel, 1990; Takimoto, 
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Iwata, & Murakami, 2009) and studies that use different sampling and analytical 

methods (Closs & Lake, 1994; Jordan & Osvath, 2009; Schoenly & Cohen, 1991). 

These are some of the same challenges that caused Lawton (1999) to conclude that

“…community ecology is a mess, with so much contingency that useful 

generalisations are hard to find.”  New methods could help. For example, continuing

advances in the application of stable isotope analysis, molecular genetics and 

remote sensing to community ecology may allow us to characterize time-specific 

species interactions more rapidly and accurately in the future (Boecklen, Yarnes, 

Cook, & James, 2011; Carreon‐Martinez & Heath, 2010; Corse et al., 2010; Hardy, 

Krull, Hartley, & Oliver, 2010; McMeans et al., 2015; Nielsen, Clare, Hayden, Brett, &

Kratina, 2018; Pompanon et al., 2012; Steenweg et al., 2017; Zellweger, De Frenne, 

Lenoir, Rocchini, & Coomes, 2019). It seems possible that these new approaches 

could increase the quality and availability of datasets in ways that substantially 

improve our ability to generalize how communities change over time. For example, 

the dynamic nature of species interactions may have implications for the stability 

and persistence of communities. A growing number of models suggest that 

consumer responses to spatially structured food webs can contribute to community 

stability (McCann, Rasmussen, & Umbanhowar, 2005; Wolkovich et al., 2014a), and 

that temporal structure may play a similar stabilizing role (Kondoh, 2003; McMeans 

et al., 2015; Takimoto, 2003). The data required to create more temporally resolved

interaction networks could also potentially allow for more detailed analyses of 

stage-structured phenological interaction paths (Yang & Rudolf, 2010) or the 

geometric analysis of entire community trajectories in time (De Cáceres et al., 

2019). Moreover, by representing the dynamic nature of communities more 

explicitly, time-specific representations help us to consider the effects of 

11

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244



phenological shifts and mismatches in a broader context, where both their direct 

and indirect effects are more readily considered (e.g., Boggs & Inouye, 2012; Both 

et al., 2009; Ogilvie et al., 2017). Thus, grappling with the dynamic nature of 

species interaction networks may help to resolve persistent questions in ecology. 

However, it may also be that the value of a temporally explicit approach to 

interaction networks is less about the statistical analysis of common network 

properties than it is about the ways we represent and conceptualize how 

communities work. The ubiquity of static cumulative representations of 

communities has shaped the way we think about species interactions, and more 

dynamic representations of these networks have the potential to recast our 

understanding of how communities change over time. Although an implicit 

understanding of the dynamic nature of communities has been part of ecology from 

the beginning of the field, explicitly depicting the dynamic nature of communities is 

important. Ecologists view the natural world through a conceptual lens of 

accumulated scientific knowledge and theory that we have built for ourselves. In 

many ways, this lens allows us to see and understand the natural world with 

increasing clarity as our field progresses. However, this lens can also distort the 

complexity of nature as we make the simplifying assumptions that are sometimes 

necessary to develop meaningful generality. As the conceptual lens of ecology is 

refocusing on the dynamic nature of communities, continued efforts to document 

and represent how species interactions change over time lay a foundation for 

developing a more temporally explicit view of community ecology. 

Event-driven dynamics examine our climatic future
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Climate change includes trends in mean climatic conditions as well as changes in 

the timing or magnitude of extreme climatic events (Easterling et al., 2000; Jentsch,

Kreyling, & Beierkuhnlein, 2007; Ummenhofer & Meehl, 2017; Wolkovich et al., 

2014b). These two aspects of climate change are closely connected; some changes 

in climatic means are likely to be affected by changes in the frequency or intensity 

of extreme events, and some changes in the magnitude of extreme events are 

likely to be driven by the non-stationarity of climatic conditions over time (Bailey & 

van de Pol, 2016; Easterling et al., 2000; Jentsch et al., 2007; Wolkovich et al., 

2014b). For example, increases in the frequency or intensity of heatwaves can 

contribute to trends in mean annual temperature, while global warming trends may 

increase the intensity of tropical storm disturbance events (Elsner, Kossin, & Jagger,

2008; Kossin, 2018). These challenges of characterizing the extreme values of 

climatic distributions and the diversity of ways by which climate interacts with 

biological systems makes it difficult to objectively define extreme climatic events

(Bailey & van de Pol, 2016; Wolkovich et al., 2014b). However, it is clear that 

extreme climatic events are becoming a larger part of our climatic future (Beniston 

et al., 2007; Easterling et al., 2000; Goswami, Venugopal, Sengupta, 

Madhusoodanan, & Xavier, 2006; Groisman et al., 2005; IPCC, 2014), and that those

events can have strong effects on ecological communities (e.g., Jentsch et al., 2009;

Parmesan, Root, & Willig, 2000; Sergio, Blas, & Hiraldo, 2018). 

The study of event-driven dynamics has accelerated as ecologists increasingly 

recognize the potentially important impacts of extreme climatic events on 

ecosystems. In 2007, Jentsch et al. advocated for new generation of climate-change

experiments focused specifically on the study of climatic events, not trends. Since 

then, the number of studies focused on climatic events has continued to increase, 
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with recent studies focused on heat waves (e.g., McKechnie & Wolf, 2010; Siegle, 

Taylor, & O’Connor, 2018), cold snaps (e.g, Bojorquez, Alvarez-Yepiz, Burquez, & 

Martinez-Yrizar, 2019; Leriorato & Nakamura, 2019), drought (e.g, Jentsch et al., 

2009; Sankaran, 2019), flooding (e.g., Rivas, Spinola, Arrieta, & Faife-Cabrera, 2018;

Ujvari, Brown, Shine, & Madsen, 2016; Woodward, Bonada, Feeley, & Giller, 2015), 

and wildfire events (e.g., Cooper et al., 2015; Hale et al., 2016), among many 

others. However, while this emphasis has emerged recently in the context of 

climate change, these questions have deep roots in the study of event-driven 

dynamics more generally. Many ecosystems were strongly influenced by extreme 

climatic events, such as El Niño precipitation events, prior to strong human-induced 

rapid environmental changes (Gibbs & Grant, 1987; Grant & Grant, 1987; Grant, 

Grant, Keller, & Petren, 2000; Holmgren, Scheffer, Ezcurra, Gutierrez, & Mohren, 

2001; Holmgren et al., 2006; Polis, Hurd, Jackson, & Piñero, 1997). Moreover, the 

contrast between climatic events and climatic trends has parallels with the 

historical distinction between pulsed versus pressed perturbation experiments in 

ecology (Bender, Case, & Gilpin, 1984), as well as the study of transient dynamics 

following a broader range of experimental or natural perturbations (e.g., Hastings, 

2004; Jensen, 1982; Jones, Ostfeld, Richard, Schauber, & Wolff, 1998; Piovia‐Scott, 

Yang, Wright, Spiller, & Schoener, 2019; Yang et al., 2010). More than three 

decades ago, Roughgarden (1989) asked, “How are ecosystem structure and 

function influenced by the rare but important events that may occur every century 

or so?” This is a general ecological question with a long history, and though it has 

re-emerged and become more urgent in the context of climate change, previous 

studies may offer some relevant insights.   
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The detailed study of event-driven dynamics emerges readily from a broader 

temporally explicit perspective in community ecology. However, because extreme 

events are often unreplicated and unanticipated by their nature, identifying and 

evaluating general hypotheses is a central challenge (Bailey & van de Pol, 2016). As

a result, the study of extreme events has initially and perhaps necessarily included 

the accumulation of opportunistic, unique and descriptive studies. Although many of

these studies are focused on short-term community responses to singular 

perturbations (Bailey & van de Pol, 2016), they nonetheless contribute to our 

broader understanding of event-driven dynamics in nature. The variability of these 

events, and of community responses to them, create rich opportunities to identify 

general patterns through synthesis, meta-analysis and coordinated research 

networks if we are able to characterize the fundamental, shared dynamic features 

of seemingly disparate events in ways that allow for meaningful comparisons (e.g., 

Easterling et al., 2000; Holmgren et al., 2001; Yang et al., 2010). Short time-scale 

descriptive studies of extreme events have also been followed by longer-timescale 

studies (e.g., Grant & B.R. Grant, 1996; Meserve, Kelt, Milstead, & Gutierrez, 2003; 

Stuble, Zefferman, Wolf, Vaughn, & Young, 2017b), manipulative experiments (e.g., 

Jentsch et al., 2009; Piovia‐Scott et al., 2019; Yang & Karban, 2019), and theoretical 

models (e.g., Collins et al., 2014; Davis, Grime, & Thompson, 2000; Holt, 2008). For 

a wide range of episodic perturbations, explicitly examining how communities 

respond over longer timescales allows us to track their direct and indirect effects 

across a species interaction network (e.g., Jones et al., 1998; Piovia-Scott, Yang, & 

Wright, 2017; Yang et al., 2010), and to consider the timing of perturbation events 

in relation to seasonality and species life histories (Jentsch et al., 2007). 

Experimental manipulations of extreme events create opportunities to simulate and 
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anticipate uncommon events, control the frequency and magnitude of events, and 

infer the causes of community responses. However, such experimental 

manipulations can be difficult to apply at relevant scales, and experimentally 

pressed warming manipulations have been shown to underestimate the magnitude 

of phenological responses relative to observational studies (Wolkovich et al., 2012). 

Although a greater emphasis on the temporal dimension often seems to come at 

some expense (e.g., of spatial or taxonomic resolution, or of conceptual generality), 

the study of extreme climatic events provides a uniquely productive and relevant 

context in which to explicitly examine the temporal dynamics of community 

responses to perturbation. These studies, using a range of approaches, have the 

potential to meaningfully advance our understanding of climate change specifically, 

and inform our understanding of ecological stability and resilience more generally. 

By their nature, events occur during a particular slice of time. Two temporally 

explicit questions arise as a result: 1) To what extent does the specific timing of an 

event matter? and 2) Under what conditions do events have persistent effects on 

communities? Questions about the specific timing of events are relevant to both 

transient and persistent effects, while questions about the persistence of effects 

provide a converse perspective on questions about ecological resilience. The degree

to which differences in the seasonal or successional timing of events effects their 

community responses remains unclear. Underlying temporal patterns in organismal 

life history patterns, species interactions, or abiotic variability all provide the 

context for strong perturbation events, with consequences in both natural and 

experimental contexts (Jentsch et al., 2007). For example, the effects of both 

hurricanes and seaweed subsidies on lizard populations depend on their seasonal 

timing (Schoener, Spiller, & Losos, 2004; Wright et al., 2013). On a shorter 
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timescale, the effects of hurricanes on coastal and island communities tends to be 

larger when the storm surge event coincides with high tide (Schoener, Spiller, & 

Losos, 2001; Thomas et al., 2019). In general, extreme events during seasonal 

windows of opportunity (e.g., Yang & Cenzer, 2020) may be more likely to have 

strong effects on growth or reproduction, as windows of opportunity may also 

represent important weak-link stages that are potentially vulnerable to 

perturbation. On an inter-annual scale, many ecological experiments show strong 

year-to-year variability in results (Stuble, Fick, & Young, 2017a; Stuble et al., 2017b;

Vaughn & Young, 2010); this environmental variability can both be caused by event-

driven dynamics (e.g., Stuble et al., 2017b), and affect the outcomes of event-

driven dynamics (Jentsch et al., 2007). By comparison, the potential for persistent 

effects resulting from episodic events has been more clearly documented. 

Numerous examples suggest that ecologically persistent effects could potentially 

arise from both long timescale transient dynamics (Hastings, 2004) and changes in 

equilibrium states (Beisner, Haydon, & Cuddington, 2003; Scheffer, Carpenter, 

Foley, Folke, & Walker, 2001; Scheffer & Carpenter, 2003). While it can be difficult 

to distinguish between these two mechanisms (Schroder, Persson, & De Roos, 

2005), the persistence of effects on ecologically meaningful timescales can often be

observed directly. These include persistent changes in habitat (e.g., Brokaw & 

Grear, 1991; del Arroyo & Silver, 2018; Lloren, Fahrig, Bennett, Contreras, & 

McCune, 2019); organismal traits (e.g., Hunter & Forkner, 1999; Little, Fisher, 

Schoener, & Pruitt, 2019; Siegle et al., 2018; Spiller & Agrawal, 2003); the 

abundance or distribution of organisms (e.g., Spiller & Schoener, 2007; Wernberg et

al., 2013); community composition via invasion or extinction (e.g., Davis et al., 

2000; McKechnie & Wolf, 2010; Nowicki et al., 2019); and the frequency or intensity 
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of the perturbation regime itself (e.g., Crain, Tremblay, & Ferguson, 2019; Parmesan

et al., 2000). These are certainly not exclusive mechanisms, and many event-driven

dynamics reflect the combined effects of multiple dynamic processes. When 

multiple dynamic processes take place on different timescales (e.g., Takimoto et al.,

2009), the study of event-driven dynamics may benefit from the development of 

temporally explicit sequential hypotheses. 

Sequential hypotheses allow for different processes on different timescales

Sequential hypotheses are proposed explanations that include multiple processes 

that unfold over time. For example, sequential hypotheses allow for explanations 

that explicitly describe how indirect effects are expected to ramify across networks, 

or that describe how a community’s response to perturbation can include multiple 

processes that operate on different timescales. A sequential hypothesis avoids 

necessarily treating processes on different timescales as strictly alternative 

hypotheses, but instead recognizes that these multiple processes could all be part 

of a single response dynamic. In the absence of sequential hypotheses, how we 

interpret the results of an experiment could depend on its timing. For example, if 

the relative importance of top-down and bottom-up processes changes over time, a 

short-term experiment could yield different results and implicate different key 

processes than an experiment conducted over a longer timescale. Thus, evaluating 

a sequential hypothesis requires evaluating the component parts of each phase, as 

well as any predictions that emerge from the coordination between them. 

Sequential hypotheses have been implicit, or have emerged explicitly over time, in 

many study systems (e.g., Ostfeld & Keesing, 2000; Yang, Bastow, Spence, & 

Wright, 2008; Yang et al., 2010). Two specific examples illustrate some of the ways 
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sequential hypotheses can arise from the indirect effects of strong perturbations 

and the overlay of multiple processes on multiple timescales. Community responses

to periodical cicadas (Magicicada spp.) in North American forests provide one 

example (Fig. 3A). These insects spend 13- or 17-years feeding on the roots of host 

plants before synchronously emerging as adults at high densities across large 

geographic areas (Williams & Simon, 1995; Yang & Karban, 2009, 2019). The vast 

majority of these cicadas will avoid predation, and fall to the ground as a pulse of 

dead carcasses after reproducing (Whiles, Callaham, Meyer, Brock, & Charlton, 

2001; Williams, Smith, & Stephen, 1993; Yang, 2004). This accumulated cicada 

biomass fertilizes plant growth and reproduction (Yang, 2004, 2008; Yang & Karban,

2019), but also increases damage by mammalian and insect herbivores which 

preferentially feed on rapidly growing, fertilized plant tissues (Yang, 2008; Yang & 

Karban, 2019). Thus, the effects of periodical cicadas on their host plants are 

initially dominated by a long-term, negative direct interaction (chronic belowground 

herbivory by cicadas), followed by a positive, bottom-up, indirect interaction 

mediated by detritivores and decomposers belowground (fertilization by the detrital

resource pulse), and a subsequent, negative, top-down indirect interaction 

mediated by other consumers in the community (increased consumption by 

aboveground herbivores). While community ecologists commonly ask questions 

about the relative importance of top-down and bottom-up processes (Hunter & 

Price, 1992; Power, 1992), this example illustrates how the relative importance of 

top-down and bottom-up processes can change over time. Whereas a simple 

alternative hypothesis-testing framework could ask “What are the relative strengths

of bottom-up and top-down effects on plants from periodical cicadas?”, a sequential

hypothesis-testing framework considers “How do the relative strengths of these 
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bottom-up and top-down effects change over time?”. Such temporal variability in 

multi-trophic indirect effects may be common (Piovia-Scott et al., 2017). Developing

explicitly sequential hypotheses allows us to frame our explanations about how this 

temporal variation is structured in time, and to propose and test general 

expectations about changes in the nature of species interactions.  

The effects of pulsed resource subsidies on small island communities provides 

another example illustrating how sequential hypotheses allow us to consider 

multiple processes operating on different timescales (Fig. 3B, Kenny et al., 2017; 

Piovia-Scott et al., 2013; Piovia‐Scott et al., 2019; Spiller et al., 2010; Wright et al., 

2013).  In this system, rafts of seaweed occasionally wash up on small rocky islands.

This seaweed biomass represents marine primary productivity transported by ocean

currents and winds; when deposited on islands, this seaweed becomes a pulsed 

subsidy to the terrestrial community (Piovia‐Scott et al., 2019; Spiller et al., 2010; 

Wright et al., 2013).  This pulsed subsidy affects the interactions between terrestrial

plants and their herbivores via multiple processes operating on different timescales 

(Fig. 3B). In experimental studies, lizards (Anolis sagrei) show behavioral responses 

immediately following the additional of pulsed seaweed subsidies, including rapid 

changes in foraging behavior and habitat use (Kenny et al., 2017). These changes in

lizard behavior correspond with rapid shifts in their diet towards marine-derived 

arthropod prey (Spiller et al., 2010). This lizard diet shift creates a window of 

opportunity for terrestrial herbivores, which may benefit from reduced predation as 

lizards focus on a pulse of marine-derived prey (Piovia‐Scott et al., 2019). This 

“lizard diet shift effect” represents an indirect mechanism akin to apparent 

mutualism (Abrams & Matsuda, 1996) by which pulsed seaweed subsidies can 

reduce terrestrial herbivory in the short-term (Piovia‐Scott et al., 2019). However, 
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these pulsed subsidies can also increase the density of lizards on islands, either by 

increasing behavioral aggregation, reproduction or survival (Kenny et al., 2017; 

Wright et al., 2013). As the availability of marine-derived prey declines and lizard 

diets shift back towards terrestrial prey, these increased lizard densities can more 

strongly suppress terrestrial herbivores, reducing herbivory (Piovia‐Scott et al., 

2019). Thus, this “lizard numerical response” mechanism is an indirect pathway by 

which pulsed subsidies of seaweed can increase terrestrial herbivory on 

intermediate timescales, by a process akin to apparent competition (Holt, 1977).  

On longer timescales, subsidies of seaweed biomass can also affect the interaction 

between terrestrial plants and their herbivores via a third pathway, the “fertilization

effect”.  According to this hypothesized pathway, decomposing subsidies of 

seaweed fertilize nutrient-limited terrestrial islands, enriching the belowground 

component of these systems. In turn, this fertilization increases the growth and 

quality of terrestrial plants, increasing rates of herbivory.  This process is a strong 

driver of observed herbivory rates in chronically subsidized locations (Piovia-Scott et

al., 2013), and may also play a role in responses to more strongly pulsed subsides. 

Thus, this hypothesized community response includes three processes that occur on

different timescales. In this example, a simple alternative hypothesis framework 

could ask “What are the relative strengths of these three hypothesized indirect 

pathways resulting from pulsed seaweed subsidies?”, while a sequential hypothesis 

framework considers “How does the relative importance of these three 

hypothesized indirect pathways change over time?”. Developing a sequential 

hypothesis requires a more detailed and specific explanation for the effects of a 

perturbation over multiple timescales, including aspects that would be difficult to 

explain without a temporally explicit, multi-stage hypothesis. 
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As with any hypothesis, sequential hypotheses should be evaluated relative to 

alternatives, potentially including both alternative sequential hypotheses as well as 

alternative simple (i.e., single-stage, nonsequential) hypotheses. Also, as with any 

hypothesis, sequential hypotheses are likely to evolve over time with the addition of

new information or insight. The unique value of a sequential hypothesis is in its 

temporal specificity; by encouraging researchers to propose explanations that 

include multiple linked processes that unfold over time, sequential hypotheses 

extend the temporal scope of studies to explicitly examine and evaluate our 

expectations of how species interactions change. 

Sequential hypotheses are narrative by their nature; they propose an explanation 

that incorporates a series of connected events. Sequential hypotheses seek to 

extend conventional hypotheses to allow for a more explicit consideration of time, 

linking event-driven dynamics and dynamic interaction networks with a stronger 

hypothesis-driven approach.   

Seasonal windows of opportunity put phenological shifts in context

In 1957, G. Evelyn Hutchinson proposed a conceptual model of the ecological niche 

as an “n-dimensional hypervolume… every point of which corresponds to a state of 

the environment which would permit the species S1 to exist indefinitely.”  This 

formalization of the niche concept built upon the niche concepts of Grinnell (1917) 

and Elton (1927), and established an explicit separation between the abstract 

concept of a niche in environmental dimensions versus the mapping of that niche 

onto the physical landscape (i.e., the "biotop", sensu Hutchinson 1957). This duality 

between the conceptual niche and the physical instantiation of the niche, and the 

ways in which those two realms are linked, continues to have relevance and 
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implications for ecology today (e.g, Colwell & Rangel, 2009). Considering how this 

duality changes over time has emerged as one of the ways in which modern 

ecologists are extending the utility of the Hutchinsonian niche concept. In a list of 

the key limitations of this niche model, Hutchinson (1957) noted that, “The model 

refers to a single instant of time.” However, in much the same way that 

Hutchinson’s niche concept can be mapped onto specific locations in heterogeneous

space, the niche concept could also be mapped onto specific slices of time in 

dynamic environments. In this sense, Hutchinson’s duality becomes a triality as the 

combination of factors that define the conceptual niche are mapped onto both 

space and time. This niche concept could be further extended to represent both 

temporal and spatial changes over ecological and evolutionary timescales. On an 

ecological timescale, the physical locations where niches map onto the biotop can 

change over time as a result of temporal variation in the environment. On an 

evolutionary timescale, the fundamental niche itself can change over time, as a 

result of organismal (i.e., evolutionary) change (Colwell & Rangel, 2009). These 

changes are not exclusive, and reflect the dynamic nature of the niche concept. 

Seasonal windows of opportunity are potentially relevant to the Hutchinsonian niche

concept, but approach this conceptual territory from a different direction. Seasonal 

windows of opportunity are intervals of time in which an organism has improved 

prospects for achieving key life history objectives such as growth or reproduction

(Fig. 4, Yang & Cenzer, 2020). Although windows of opportunity have been 

described on daily to inter-decadal timescales, seasonal windows of opportunity 

emphasize the timing of life history processes within a year. These seasonal 

windows of opportunity provide moving temporal targets for phenological cueing 

strategies with potential fitness payoffs (e.g., Farzan & Yang, 2018; Rafferty & Ives, 
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2011; Valdés & Ehrlén, 2017), similar to “phenological niches” (Post, 2019; 

Wolkovich & Cleland, 2011, 2014). Identifying seasonal windows of opportunity for 

specific organisms allows us to examine the potential consequences of phenological

shifts and mismatches, putting the fitness consequences associated with the timing 

of key life history processes into a broader seasonal context (e.g, Fig. 4, see also 

Yang & Rudolf, 2010). The studies required to identify seasonal windows of 

opportunity may also suggest hypotheses about the specific combinations of biotic 

and abiotic conditions that allow for successful development. Subsequent 

experiments to identify the combination of conditions that limit seasonal windows of

opportunity could provide an entryway to better understand the mechanistic bases 

of these windows. 

Seasonal windows of opportunity and the Hutchinsonian niche concept both aim to 

identify favorable combinations of conditions, and endeavor to map these 

combinations of conditions in the real world. While the Hutchinsonian niche concept 

has traditionally emphasized the spatial dimension, seasonal windows of 

opportunity emphasize the temporal dimension. If we accept that the Hutchinsonian

niche concept could be extended to include a more explicit temporal aspect, 

seasonal windows of opportunity represent a component of the Hutchinsonian niche

mapped onto specific slices of time. However, whereas the Hutchinsonian niche 

concept is defined by the combination of conditions that allow a species to persist 

indefinitely, seasonal windows of opportunity emphasize the transient nature of 

favorable conditions in many systems. Where the Hutchinsonian niche concept 

begins in the abstract realm of n-dimensional hyperspace and imagines mapping 

this concept onto the physical world, seasonal windows of opportunity will more 

commonly begin in the physical world, and seek some conceptual consequence 
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afterward. While it seems plausible that an organism’s ability to consistently 

capitalize on transient seasonal windows of opportunity could contribute to the 

persistence of a species, more concrete links between these two related concepts 

remain uncertain. 

The experimental methods used to identify seasonal windows of opportunity can be 

simultaneously straightforward and complex (Farzan & Yang, 2018; Yang & Cenzer, 

2020; e.g., Yang & Rudolf, 2010). These studies are potentially straightforward in 

the sense (and to the degree) that studies that assess the performance of an 

organism at any given point in time can be conceptually simple to design and 

execute. They are potentially complex in the sense that this experimental motif is 

then repeated at intervals throughout the season, with each repetition of the core 

assessment occurring under changed biotic and abiotic conditions. The dynamic 

pattern describing how an organism’s developmental prospects change over annual

time represents a seasonal performance landscape, with peaks and valleys 

representing periods of improved or constrained performance, respectively. Much 

like Eadweard Muybridge’s photographic studies of animal locomotion, a series of 

repeated ecological observations, each potentially unremarkable on its own, offers 

the potential for emergent insights when structured in time and examined in series.

Studies that identify seasonal windows of opportunity can suggest at least three 

kinds of follow-up studies. First, subsequent studies may ask about the causes of 

observed seasonal windows of opportunity. What are the seasonally variable biotic 

or abiotic factors that constrain and structure developmental potential in time? 

What are the phenological cueing strategies that proximately determine the timing 

of organismal life history events? A second kind of study asks about the dynamics of
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seasonal windows of opportunity. How do seasonal windows of opportunity vary 

across multiple years or across the range of a species? How is climate change 

altering the timing of seasonal windows of opportunity across years? Finally, studies

could ask about the ecological and evolutionary consequences that emerge from 

seasonal windows of opportunity. For a single species, how do seasonal windows of 

opportunity for one life history stage interact with those of other stages (e.g., 

germination and flowering)? In a community context, how do seasonal windows of 

opportunity for one species interact with those of other species (e.g., predators and 

prey)? What are the fitness costs associated with phenological shifts and mis-

matches?

It is clear that phenology is a process that occurs across development (Chmura et 

al., 2019; Inouye et al., 2019; Yang & Rudolf, 2010). The study of seasonal windows 

of opportunity may further motivate the examination of phenology across entire life 

history trajectories, and could offer a framework to examine both the causes and 

consequences of phenological shifts in a community context. 

Conclusions

The timing of species interactions matters in community ecology because ecological

communities are inherently dynamic. As careful observers of nature, ecologists 

have always understood this at an intuitive level. Despite this (or perhaps because 

of this), there is a great deal about the temporal dynamics of communities that 

remains uncertain. As climate change continues, an increasing motivation to better 

understand the temporal dimension of communities has intersected with advances 

in the methods and technology to examine small slices of ecological time. At this 

intersection, there is the potential to improve our fundamental understanding of 
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how communities function. By analogy, it could be that our understanding of 

ecological communities today is akin to the way artists in the late 19th century 

understood the galloping horse. In many cases, they likely understood the general 

movement of horses quite well, intuitively and via direct experience, and were able 

to successfully apply this general knowledge in useful ways. However, when 

attempting to explicitly depict a galloping horse in mid-stride, even experienced 

artists of the time were forced to rely on conventional wisdom to fill in the details. 

Our modern understanding of how a horse gallops didn’t emerge until a strong 

motivation to better understand the movement of the galloping horse intersected 

with the development of new methods and technology to explicitly examine small 

slices of time. Prior to this, paintings of galloping horses represented the best 

available understanding of the time, but poorly represented the dynamic aspect of 

nature. Similarly, ecologists today understand the general dynamic nature of 

communities quite well, both intuitively and via direct experience, and are often 

able to successfully apply this general knowledge in useful ways. However, 

relatively few studies have aimed to understand how species interactions change 

over time in a detailed and temporally explicit way. As we fill in the details that 

occupy smaller slices of time, we are progressing towards a more complete and 

dynamic understanding of how ecological communities actually work.  
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Figure 1. (a) Pre-1872 paintings illustrating the “flying gallop” posture (row-wise 

from the top left): A Grey Horse Galloping in a Field by George Stubbs; Baronet with 

Samuel Chifney up by George Stubbs; A Grey Arab Stallion Galloping with Dogs by 

Alfred de Dreux; Galloping Horse by Alfred de Dreux; Foxhunting, Encouraging 

Hounds by John Frederick Herring, Sr.; The Baron with Bumpy Up at Newmarket by 

John Frederick Herring, Sr,; Yoi Yoi! At Him Hannibal by Henry Thomas Alken, Sr.; On

the Scent Foxhunting by Samuel Henry Alken; Wild Dayrell, Winner of the Epsom 

Derby, 1855 by Samuel Henry Alken; Thomas Mellish on Saucebox by Benjamin 

Marshall; Le Derby de 1821 à Epsom by Theodore Gericault; Mameluke Horse by 

Carle Vernet. (b) The Horse in Motion by Eadweard Muybridge.

Figure 2. (a) A hypothetical species interaction network. Because taxonomically 

well-resolved datasets often reflect compiled observations of species interactions 

accumulated over many years of detailed study, the resulting network structure 

may not accurately represent the realized structure of species interactions at any 

single point in time. (b) A diagram of phenology in a community context. One way 

to add an explicit temporal dimension to interaction networks would be to examine 

the changing structure of interaction networks during specific slices of time. The 

data requirements for this kind of analysis are high; here we show hypothetical 

patterns of development for six species in a community (shown on the vertical axis) 

over twelve time points (shown on the horizontal axis). Here, we interpret this figure

on an annual scale, with time steps corresponding to months in a year, in order to 

examine seasonal changes in the structure of species interactions. However, this 

approach could also be applied to other timescales; for example, these time points 

could represent intervals in a daily cycle if examining diel changes in community 
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composition or larger timescales (e.g., years or decades) if examining changes in 

the structure of species interactions over an inter-annual timescale. Each species is 

represented by a hue; within each species, developmental stages are represented 

by differences in saturation. The absence of a species at particular time point 

corresponds to periods of relatively low interactivity in the community; on different 

timescales, these periods of low interactivity could be caused by dormancy, 

diapause, seasonal migration or local extinction, for example. (c) A temporally 

explicit network representation of stage-structured species interactions over time

(see also Yang & Rudolf, 2010). The graph in each frame represents the structure of

species interactions in the community at a single time point; the set of graphs 

together represents the temporal dynamics of species interactions in the 

community. Point size corresponds to the developmental stage of each interacting 

species. (d) An alternative diagram of phenology in a community context, with 

phenological shifts from the diagram shown in panel b. These phenological shifts 

are consistent with the range of observed phenological responses to climate 

change. In this alternative diagram, species 1 and 6 show unchanged phenological 

trajectories. Species 2 shows an advancement of one time step, while species 3 

shows a phenological delay of one time step. Species 4 shows a change from one 

generation to two generations per year, while species 5 shows an accelerated, 

temporally compressed developmental phenology.  (e) A temporally explicit 

network representation of stage-structured species interactions over time 

corresponding to the alternative dataset shown in panel d. In this figure, the 

structure and dynamics of species interactions have changed in multiple ways; in 

nature, the effects of these changes would be likely to reciprocally influence the 

evolution and ecology of phenological responses to climate change. 
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Figure 3. Applying sequential, as opposed to strictly alternative, hypotheses to 

examine the timing of species interactions in communities in two systems. The 

diagrams in each panel represent hypothesized interaction networks. From a 

conventional perspective, these could each represent strictly alternative hypotheses

on their own (labeled as H1, H2, and H3). Conversely, from a more temporally explicit

perspective, they could represent time-points in an integrated sequential 

hypothesis (labeled as t1, t2, and t3). (a) The dead bodies of 13- and 17-year 

periodical cicadas fall to the ground each generation, creating a detrital pulse. As 

their collective biomass decomposes, a pulse of nutrients becomes available to 

plants, fertilizing the soil and increasing plant growth (Yang, 2004, 2013; Yang & 

Karban, 2019). However, these fertilized plants were preferentially consumed by 

mammalian and invertebrate herbivores (Yang, 2008; Yang & Karban, 2019). Solid 

arrows indicate the direction of mass or energy flow from resource to consumer, 

dashed arrows indicate the hypothesized relative strength of top-down and bottom-

up effects under each hypothesized scenario. Red arrows indicate the direct 

bottom-up fertilization effects of the detrital pulse on plants; blue arrows indicate 

the consumption of plants by herbivores.  The first diagram (labeled H1 or t1) shows 

chronic belowground root herbivory by periodical cicadas, while the second diagram

(labeled H2 or t2) shows detrital fertilization-driven bottom-up effects, and the third 

diagram (labeled H3 or t3) shows stronger top-down effects mediated by other 

herbivores. (b) Pulsed subsidies of seaweed can have multiple effects on small 

island communities (Kenny et al., 2017; Piovia-Scott et al., 2013; Piovia‐Scott et al., 

2019; Spiller et al., 2010; Wright et al., 2013). In particular, pulsed seaweed 

subsidies could affect plant-herbivore interactions in at least three ways. First, 

under the “lizard diet shift” hypothesis labeled “H1 or t1”, lizards respond the 
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seaweed subsidy with a behavioral diet shift towards increasingly marine-derived 

prey, thus reducing their consumption of terrestrial herbivores, and indirectly 

increasing measures of herbivory. Second, under the “lizard numerical response” 

hypothesis labeled “H2 or t2”, local lizard densities increase due to increased 

survival or reproduction in the presence of a pulsed seaweed subsidy, ultimately 

increasing the consumption of terrestrial herbivores and decreasing measures of 

herbivory. Third, in the “fertilization” hypothesis labeled “H3 or t3”, the 

decomposition of seaweed subsidies fertilizes the soil, increasing plant quality and 

measures of herbivory.  In these diagrams, solid arrows represent the direction of 

mass or energy flow from resource to consumer, while dashed arrows indicate the 

hypothesized indirect effect of the seaweed subsidy on herbivores under each 

scenario. Red arrows indicate resource-consumer interactions related to the indirect

bottom-up effects of the detrital pulse on herbivores, while blue arrows indicate 

resource-consumer interactions associated with the indirect top-down effect of 

lizards on herbivores. 

Figure 4. Seasonal windows of opportunity represent intervals in time when 

organisms experience improved prospects for advancing their life history objectives,

constrained by the combined effects of seasonally variable biotic and abiotic 

conditions acting independently or in combination (Yang & Cenzer, 2020). In the 

sense that they are limited by the combined effects of multiple factors, these 

seasonal windows are a temporally explicit analog of the n-dimensional 

Hutchinsonian niche concept. Here we illustrate the seasonal windows of 

opportunity associated with a simplified, hypothetical organism whose expected 

fitness prospects are determined by the combined effects of seasonally variable (a) 

temperature and (b) precipitation. The seasonal pattern of temperature and 
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precipitation presented here are based on actual monthly means for Davis, 

California, USA. Here, the fitness effects of temperature and precipitation are 

modeled with a Gaussian distribution centered on an arbitrary optimum 

temperature and precipitation value. Favorable abiotic conditions for this 

hypothetical species are shown in green; unfavorable conditions are shown in 

yellow or blue. (c) The resulting seasonal fitness landscape (shown in red) 

represents the combined fitness effects of temperature and precipitation scaled as 

the product of the two fitness dimensions.  The two periods in the year when 

favorable climatic conditions overlap define the seasonal windows of opportunity in 

this example. Although this example shows two seasonally variable abiotic 

dimensions for simplicity, seasonal windows of opportunity are likely to be 

structured by n-dimensions more generally, including both biotic and abiotic factors.
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