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Abstract
Retinal membrane guanylyl cyclases (RetGCs) in vertebrate rod and cone photoreceptors are activated by a family of neuronal 
Ca2+ sensor proteins called guanylyl cyclase activating proteins (GCAP1-7). GCAP5 from zebrafish photoreceptors binds to 
RetGC and confers Ca2+/Fe2+-dependent regulation of RetGC enzymatic activity that promotes the recovery phase of visual 
phototransduction. We report NMR chemical shift assignments of GCAP5 with a R22A mutation (called GCAP5R22A) that 
abolishes protein dimerization and activates RetGC with 3-fold higher activity than that of wild type GCAP5 (BMRB No. 
51,783).
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Biological context

Guanylyl cyclase activating proteins (GCAP1-7) are 
Ca2+-binding proteins in the retina that belong to a sub-
branch of the calmodulin superfamily (Burgoyne 2007, 
Lim, Dizhoor et  al., 2014). GCAP proteins contain an 
N-terminal myristoyl group and four EF-hand motifs that 
bind to Ca2+ at EF2, EF3 and EF4 (Ames 2021). The first 
EF-hand contains residues that disable Ca2+ binding and 
the Ca2+-free EF1 interacts with the N-terminal myristoyl 
group (Cudia, Roseman et al., 2021, Stephen, Bereta et al., 
2007). The Ca2+-bound GCAPs bind to RetGC and inhibit 
its cyclase activity, whereas Ca2+-free GCAPs activate 
RetGC enzymatic activity during the recovery phase of vis-
ual phototransduction (Koch and Stryer 1988, Palczewski, 
Subbaraya et al., 1994, Peshenko and Dizhoor 2007). Light 
activation of retinal photoreceptor cells causes a decrease in 
the cytosolic Ca2+ concentration that serves as a coordinat-
ing signal for visual recovery (Arshavsky and Burns 2014). 
The light-induced drop in cytosolic Ca2+ concentration is 
sensed by GCAPs that promote Ca2+-sensitive activation of 

RetGC to replenish cGMP levels in order to restore the dark 
state (Koch and Helten 2008; Koch and Stryer 1988). Muta-
tions in GCAP1 that weaken Ca2+ binding or otherwise alter 
Ca2+-sensitive activation of RetGC are genetically linked 
to retinal diseases (Jiang and Baehr 2010, Payne, Downes 
et al., 1998).

GCAP5 in zebrafish photoreceptors binds to both Ca2+ 
and Fe2+ (Lim et al. 2017). The Ca2+-free forms of GCAP1 
(Peshenko and Dizhoor 2006) and GCAP5 (Lim et al. 2017) 
both activate RetGC activity in light-adapted photoreceptors, 
whereas the Ca2+-bound GCAP1 (Peshenko and Dizhoor 
2007) and Fe2+-bound GCAP5 (Lim et al. 2017) both inhibit 
RetGC in dark-adapted photoreceptors. The NMR struc-
ture of GCAP5 (Cudia et al. 2021) revealed that GCAP5 
forms a dimer in solution with key amino acid residues at 
the dimer interface (H18, Y21, R22, M25, F72, V76 and 
W93) that are important for cyclase activation. The GCAP5 
mutations H18E, M25E and V76E each abolish GCAP5 
dimerization and prevent activation of RetGC (Cudia et al. 
2021). These results suggested that GCAP5 dimerization 
might be essential for RetGC activation (Ames 2021, 2022). 
However, this hypothesis was refuted by the discovery that 
the R22A mutation of GCAP5 not only abolishes GCAP5 
dimerization but also causes a 300% increase in RetGC acti-
vation compared to that of wild type (Cudia et al. 2021). 
We hypothesize that the R22A mutation might somehow 
alter the structure of GCAP5 to abolish its dimerization and 

 *	 James B. Ames 
	 jbames@ucdavis.edu

1	 Department of Chemistry, University of California, Davis, 
CA 95616, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-023-10129-3&domain=pdf


116	 D. Cudia et al.

1 3

increase its potency for activating RetGC. We report here 
NMR resonance assignments for the Ca2+-free activator and 
monomeric form of Ca2+-free GCAP5 with the R22A muta-
tion (called GCAP5R22A) to understand how this mutation 
abolishes protein dimerization and causes a 300% increase 
of RetGC activity compared to that of wild type GCAP5.

Methods and experiments

Preparation of GCAP5

Samples of recombinant myristoylated GCAP5R22A (residues 
2-198) uniformly labeled with 15 N and 13 C were prepared 
as described previously for wild type GCAP5 (Cudia and 
Ames 2019; Cudia et al. 2021).

NMR spectroscopy

NMR samples of Ca2+-free and myristoylated GCAP5R22A 
were prepared as described previously for wild type GCAP5 
(Cudia et al. 2021). The NMR samples consisted of 0.3 mM 
protein dissolved in 5 mM TRIS-d11 (pH 7.4), 2 mM DTT-
d10, 1 mM EDTA, 1 mM EGTA, 0.04% w/v NaN3, and 92% 
H2O/7% D2O. All NMR experiments were performed at 
32 °C on a Bruker Avance 600 MHz spectrometer equipped 
with a triple resonance cryogenic (TCI probe) as described 
previously (Cudia and Ames 2019). The following 3D NMR 
experiments (HNCA, HNCACB, HNCOCACB, HNCO, 
HBHACONH, and HBHANH) were analyzed to obtain 
backbone assignments (Ikura, Kay et al., 1990). Side chain 
resonances were assigned by analyzing HBCBCGCDHD, 
HBCBCGCDHDCEHE, and HCCH-TOCSY (Ikura, Spera 
et al., 1991). The software NMRPipe (Delaglio, Grzesiek 
et al., 1995) was used to process all NMR data, and Sparky 
NMRFAM (Lee, Tonelli et al., 2015) was used to obtain 
resonance assignments.

Extent of assignments and data deposition

Representative NMR assignments are illustrated by two-
dimensional NMR spectra of Ca2+-free GCAP5R22A 
(15 N-1 H HSQC, Fig. 1A-B and 13 C-1 H HSQC, Fig. 1C). 
The resonance assignments were determined by analyz-
ing 3D triple resonance NMR spectra of 13 C/15 N-labeled 
GCAP5R22A. The highly resolved NMR peaks with uniform 
intensities indicate a stable and folded structure. Amide res-
onances assigned to Q19, L33 and I70 exhibited noteworthy 
downfield shifts, perhaps because these residues are flanked 
by nearby aromatic rings (W20, F35 and F72 respectively) 
(Fig. 1A). The amide resonances assigned to G68 and G147 
have downfield chemical shifts that are caused by a strong 

hydrogen bond between the backbone NH of G68 (EF2)/
G147 (EF4) with side chain carboxyl groups of D63 (EF2)/
D142 (EF4), respectively. These strong hydrogen bonds are 
stabilized by an open conformation for both EF2 and EF4. 
It is unusual for Ca2+-free EF-hands to occupy an open con-
formation that is typically only formed by Ca2+-bound EF-
hands (Ikura 1996, Yap, Ames et al., 1999). However, the 
NMR structure of wild type Ca2+-free GCAP5 revealed that 
the Ca2+-free structures of EF2, EF3 and EF4 each adopt a 
pre-formed open conformation (Cudia et al. 2021), which 
might explain why the GCAP proteins exhibit such high 
affinity Ca2+ binding in the nanomolar range (Lim, Peshenko 
et al., 2009). Spectral assignments were obtained for more 
than 94% of the main chain 13 C resonances (13Cα, 13Cβ, 
and 13CO), 97% of non-proline backbone amide resonances 
(1HN, 15 N), and 87% of side chain resonances (Fig. 1C). 
The unassigned residues (A22, N46, E74, Y75, and I136) 
had weak HSQC peaks caused by exchange broadening that 
prevented their assignment. Complete chemical shift assign-
ments (1H, 15N, 13C) of Ca2+-free GCAP5R22A have been 
deposited in the BioMagResBank (http://​www.​bmrb.​wisc.​
edu) under accession number 51,783.

Chemical shift index (Wishart, Sykes et al., 1992) and 
secondary structure prediction software using TALOS+ 
(Shen, Delaglio et al., 2009) were both used to calculate 
the secondary structure of Ca2+-free GCAP5R22A (Fig. 2A, 
B). GCAP5R22A has the same secondary structure that was 
reported previously for wild type GCAP5 (Cudia and Ames 
2019): The protein has 10 α-helices: H1 (residues 8–14), 
H2 (residues 18–26), H3 (residues 35–41), H4 (residues 
49–62), H5 (residues 74–82), H6 (residues 87–95), H7 
(residues 110–117), H8 (residues 129–135), H9 (residues 
150–160) and H10 (residues 162–172) shown as cylinders 
in Fig. 2B. Helices H2–H9 form four EF-hand motifs as 
seen in previous structures of GCAP1 (Lim, Peshenko et al., 
2016, Stephen et al. 2007) and GCAP5 (Cudia et al. 2021). 
A 3-residue β-strand is observed in the Ca2+-free binding 
loops of EF1 and EF2 (shown as red arrows in Fig. 2A). This 
β-strand is only partially formed in the third and fourth EF-
hands of Ca2+-free GCAP5. The final 14 residues from the 
C-terminus in GCAP5R22A (residues 184–198) are dynami-
cally disordered and unstructured like was seen in previ-
ous structures of wild type GCAP5 (Cudia et al. 2021) and 
GCAP1 (Stephen et al. 2007).

The assigned amide chemical shifts of Ca2+-free 
GCAP5R22A (BMRB 51,783) are compared to those of 
Ca2+-free GCAP5 wild type (BMRB 51,784) to help iden-
tify residues that are structurally affected by the R22A muta-
tion (Fig. 3A). Not surprisingly, the GCAP5 residues in EF1 
(Q19, W20, Y21 and K23) that are closest to R22A exhibit 
the largest chemical shift perturbation (Fig. 3A, B). In addi-
tion, C-terminal residues R176, I177 and V178 also exhibit 
detectably large chemical shift perturbations. In the wild type 
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GCAP5 structure (Cudia et al. 2021), the side-chain methyl 
groups of I177 are in close proximity with the side chain 
indole group of W20, and both side chains make close contact 
with the N-terminal myristoyl group (Fig. 3C). Interestingly, 
the myristoyl group contacts with both W20 and I177 are both 
important for the proposed Ca2+-myristoyl tug mechanism 
that transmits Ca2+-induced conformational changes from 

the EF-hands to the myristoyl group (Peshenko, Olshevskaya 
et al., 2012). We suggest that the R22A mutation may stabilize 
the Ca2+-free GCAP5 activator conformation by disrupting the 
Ca2+-myristoyl tug (Peshenko et al. 2012). The NMR assign-
ments of Ca2+-free GCAP5R22A presented here suggest the 
R22A mutation affects the structure in both EF1 (W20) and 

Fig. 1   A Two-dimensional 15 N-1 H HSQC spectrum of 15 N-labeled 
Ca2+-free GCAP5R22A illustrates backbone amide assignments. 
B Expanded view of the spectrally crowded central region surrounded 

by a box in panel A. C Constant-time 13 C-1 H HSQC spectrum of 
13  C-labeled Ca2+-free GCAP5R22A illustrates side-chain methyl 
assignments indicated by residue labels
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C-terminal region (I177) that may play a role in disrupting 
GCAP5 dimerization and enhancing cyclase activation.
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