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Within the forebrain the olfactory sensory system is unique from other sensory systems
both in the projections of the olfactory tract and the ongoing neurogenic potential,
characteristics conserved across vertebrates. Olfaction plays a crucial role in behaviors
such as mate choice, food selection, homing, escape from predators, among others.
The olfactory forebrain is intimately associated with the limbic system, the region of the
brain involved in learning, memory, and emotions through interactions with the endocrine
system and the autonomic nervous system. Previously thought to lack a limbic system,
we now know that teleost fishes process emotions, have exceptional memories, and
readily learn, behaviors that are often associated with olfactory cues. The association
of neuromodulatory hormones, and more recently, the immune system, with odor cues
underlies behaviors essential for maintenance and adaptation within natural ecological
niches. Increasingly anthropogenic perturbations affecting ecosystems are impacting
teleost fishes worldwide. Here we examine the role of the olfactory tract as the neural
basis for the integration of environmental cues and resulting behaviors necessary for the
regulation of biotic interactions that allow for future adaptation as the climate spins out
of control.

Keywords: gonadotropin releasing hormone (GnRH), immune system, neutrophils, climate change, limbic system,
teleost fishes

‘‘I should think we might fairly gauge the future of biological science, centuries ahead, by estimating the
time it will take to reach a complete, comprehensive understanding of odor. It may not seem a profound
enough problem to dominate all the life sciences, but it contains, piece by piece all the mysteries.’’

—Lewis Thomas (1985).

INTRODUCTION

As highlighted by Thomas (1985) the understanding of odor is a puzzle that encompasses,
‘‘piece by piece all the mysteries of life’’. In comparison to other sensory systems, odor cues
are processed differently in the brain, bypassing the thalamus and projecting directly to cortical
regions of the brain involved in learning, memory motivation, and emotion (Carpenter, 1985).
Olfaction, unlike vision or hearing, is a sensory system that relies on signals that persist in the
environment and are transmitted by complex plumes in both air and water (Pannunzi and
Nowotny, 2019). Odor signals provide essential information for biotic interactions within an
ecological niche (Draper and Weissburg, 2019). In the last decade, it has become irrefutable that
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human-induced climate change is wreaking havoc on ecosystems
around the world (Masson-Delmotte et al., 2021), including
aquatic ecosystems. In considering the impacts of climate change
there are two philosophies: the ‘‘egocentric’’ view where we
prioritize the devastating effects of climate change on humanity
(for example food production) and the more ‘‘ecocentric’’ view
where we prioritize how human activities are destroying the
web that connects all life. Here we will introduce the olfactory
system of teleost fishes, emphasizing that they have homologous
circuitry that corresponds to the limbic system in mammals.
Next, we will highlight two aspects of the olfactory system:
the neuroendocrine cells of the terminal nerve that contain a
peptide unique to non-mammalian animals including teleost
fishes, and the immune system as a basis of olfactory recognition,
highlighting their roles in mediating biotic interactions within
an ecological niche. Finally, we explore data suggesting that the
olfactory circuitry essential for the interactions of fishes with
their environments can adapt to the increasing climate-based
interference of odor cues with hopes that we will not lose these
fascinating animals with whom we share the web of life.

THE FOREBRAIN

The forebrain of vertebrate animals is composed of the cerebrum,
thalamus, hypothalamus, pituitary gland, limbic system, and
importantly for this review, olfactory bulbs. In humans the
forebrain, also referred to as the prosencephalon (Greek for
the forward brain), is the largest region of the brain and can
be subdivided into the telencephalon (olfactory bulbs, cerebral
cortex, hippocampus, basal ganglia, and some portions of
the limbic system) and the diencephalon (thalamus, pituitary
gland, optic chiasm, mammillary bodies, and hypothalamus).
One of the dominant functions of the forebrain is to process
olfactory information (Mori and Sakano, 2021). Important when
considering the processing of olfactory information in the
forebrain is the limbic system, which in mammals includes
primarily the amygdala and hypothalamus (Sokolowski and
Corbin, 2012) although the limbic system is more generally
described as where subcortical structuresmeet the cerebral cortex
(Morgane et al., 2005). Originally called the rhinencephalon
(meaning ‘‘smell brain’’) because it receives considerable input
from olfactory sources and was thought to be primarily involved
with the sense of smell, we now know that the forebrain limbic
system integrates sensory information to generate behavioral
responses to stimuli within social, emotional, or motivational
contexts (Morgane et al., 2005; Mori and Sakano, 2021).
These include innate behavioral and emotional responses
needed for survival: examples being mating, aggression, and
defense (Gerlach and Wullimann, 2021; Mucignat-Caretta,
2021). Thus the forebrain is an essential link between odor
cues in the environment and the olfactory circuits that generate
behaviors necessary to adapt to a given ecological niche
over time.

Teleost Brains
Approximately 50 percent of vertebrates species on the planet
are fishes and of this group almost 95% are teleost fish (Pough

et al., 2005), a group of animals that have adapted to extreme
ecological niches, ranging from the deep oceans in the absence
of light and under great pressures to ‘‘walking on land’’ as in
the case of mudskippers who live both in and out of water. In
general, teleosts have small brains relative to body size although
once again they show great diversity across species; whereas most
vertebrate species have similar brain-to-body mass ratios, fishes
are unusual in the extreme variation of the brain to body mass
ratios; the deep-sea bony eared assfish (Acanthonus armatus) has
the smallest ratio known in vertebrates (Fine et al., 1987) and the
elephantnose fish (Gnathonemus petersii), a freshwater species
found in Africa, has one of the largest brain-to-body weight ratios
(Nilsson, 1996), even slightly higher than that of humans. Thus
this great diversity in brain size and ecological niches suggests
that structural (neural) and concomitant behavioral plasticity in
teleost fishes have allowed this group of animals to rapidly adapt
to past environmental pressures influencing biotic interactions
within an ecosystem.

Like all sensory systems, the size of neural tissue within
the central nervous system (CNS) dedicated to a given sensory
modality reflects the importance of that modality to the behavior
of the animal. Thus animals that rely heavily on olfactory cues,
for example, have a distinctly different proportion of ‘‘brain
space’’ dedicated to that modality: humans with approximately
50% of the genes coding for olfactory receptors existing as
pseudogenes have much smaller olfactory bulbs relative to a
mouse with approximately 1,000 expressed olfactory receptors
(Niimura and Nei, 2005). In fishes this is evident in the size
of the peripherally located olfactory epithelia where in general
having more lamellae is correlated with an increased number
of genes coding for olfactory receptors (Policarpo et al., 2021).
Furthermore, the olfactory organs of fishes are structurally
diverse with differences in the distribution of sensory neuronal
subtypes within the epithelia (see for review Kasumyan, 2004).
In general, the dedication of ‘‘neural space’’ to the detection and
processing of odorants reflects the great importance this sensory
system has for fishes in general.

Originating from cells organized along the anterior posterior
axis of the developing embryo, the telencephalon of jawed
vertebrates have similar identifiable regions (Figure 1) where
differences among vertebrate classes can be attributed to
morphogenic movements as well as altered rates of proliferation.
In teleosts, the brain arises through morphogenetic movements,
distinct from tetrapods, where the telencephalon arises through
eversion of the dorsal aspect of the neural tube (Nieuwenhuys,
2009). This results in a single ventricle flanked by neural tissue
where the main pallial target of the olfactory bulb in teleosts, the
dorsal pallium (Dp: homologous to lateral pallium in tetrapods)
lies in a ventrolateral position (Puelles López et al., 2008; Bruce
and Braford, 2009).

In contrast to the original proposal that (teleost) fish lack the
prerequisite neural architecture for phenomenal consciousness
including pain, and thus cannot feel pain (Key, 2015), studies
have refuted this statement at the molecular (Sneddon, 2019),
behavioral (Sneddon et al., 2003; Braithwaite and Boulcott,
2007) and circuital/anatomical level (Maximino et al., 2013).
Furthermore, recent results showed that the cleaner wrasse
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FIGURE 1 | The connections from the peripheral olfactory epithelia to the olfactory bulbs are highly conserved in vertebrates. In both in teleost fish (A, zebrafish:
modified from—Calvo-Ochoa and Byrd-Jacobs, 2019) and humans (B) the OSNs relay information to the olfactory bulbs (blue) continuing to the dorsal pallium in
fishes (A), and the olfactory cortex/lateral pallium (B) in mammals, thus bypassing the thalamus (orange). Both species have projections from the olfactory bulbs
(blue) to the amygdala (red, B) and its proposed equivalent in teleosts, the dorsomedial pallium (red, A).

(Labroides dimidiatus) can pass a mirror-mark test, where the
animal is able to use amirror to recognize amark on its own body
(Kohda et al., 2019). Although controversial (de Waal, 2019),
these results suggest that the conscious awareness of oneself
as distinct from the world outside may be a characteristic of
many different animals, including fish. This is an important
issue when considering the olfactory tracts in the forebrain
because in terrestrial vertebrates the limbic system is responsible
for the emotional behaviors triggered by olfactory cues. Thus
the potential ‘‘limbic equivalent’’, the dorsomedial pallium and
hypothalamus as well as other brain nuclei, in teleosts receives
input from olfactory sources in addition to input derived from
many other areas. Accepting that fishes have neural pathways
similar to the limbic system in mammals, and perhaps some
grade of ‘‘consciousness’’ (Kohda et al., 2019; Birch et al., 2020),

allows for the contemplation of a more complex level of neural
processing in response to odor cues.

OLFACTORY SYSTEM

Structures
The basic organization of the olfactory sensory system is highly
conserved across vertebrates (Ache and Young, 2005), where
odors are detected by the primary olfactory sensory neurons
(OSNs) located in the neural epithelia of the olfactory organ.
The axons of the OSNs form the olfactory nerve that will cross
the cribriform plate and make their first synapses in the highly
organized olfactory bulb, the first site of information processing.
The olfactory tract, extending centrally from the OBs is unique
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among sensory systems because the sensory information does
not pass through the thalamus en route to the piriform cortex
where the olfactory sensory information is further processed.
Additionally, the olfactory tract also projects to the amygdala and
hypothalamus, part of the limbic system, as well as a number of
other targets in the forebrain. Thus the first ‘‘relay’’ within the
olfactory tract is composed of the peripheral olfactory epithelium
(OE), the olfactory nerve (ON) that conducts the information,
and a central target, the olfactory bulb (OB;Whitlock, 2006, 2015;
Friedrich et al., 2010; Kermen et al., 2013).

Development
Like other sensory systems the olfactory placodes that give rise
to the olfactory epithelia, are proposed to be induced from the
ectoderm placodes (Schlosser, 2010; Aguillon et al., 2018). This
model does not work as well for the olfactory sensory system.
Unlike taste or hearing where the sensory receptors (taste buds,
ear hair cells) have their first synapse in the periphery, the
primary OSNs that detect odors are also the same neurons that
extend axons into the central OBs, where the initial synapse is
made. Thus the placode model separates the development of
the olfactory sensory neurons from that of the adjacent neural
tube from which their central targets arise. Previously we have
shown in zebrafish that olfactory placodes arise from a large
field of neurectodermal cells continuous with the telencephalic
precursors in the neural plate and that cell movements, not cell
division, underlie olfactory placode morphogenesis (Whitlock
and Westerfield, 2000; Whitlock, 2008). These studies lead to a
model whereby a continuous neurectoderm generates both the
OBs and olfactory placodes, thus coordinating peripheral OSNs
and their central targets during developmental and evolutionary
time (Torres-Paz and Whitlock, 2014; Torres-Paz et al., 2021).
This suggests that when faced with external selective pressures,
adaptive responses would act on the OSNs and their central
synaptic targets as a single developmental and functional unit.

GnRH CELLS: NEUROMODULATORY
NETWORK ORIGINATING IN THE
OLFACTORY FOREBRAIN

The terminal nerve (TN), or nervus terminalis is one of the most
enigmatic neural pathways in the vertebrate forebrain. It was
the last discovered of the cranial nerves and is referred to as
Cranial Nerve 0 or XIII. This vertebrate-conserved multifaceted
nerve, in some species, appears to influence sensory processing,
sexual behavior, and autonomic and vasomotor control (Wirsig-
Wiechmann et al., 2002). The TN has fibers that originate from
cell bodies associated with the anterior olfactory tract but has a
highly species-specific projection pattern within the forebrain.
There is ample discussion as to the defining characteristics of
the TN, and the presence of gonadotropin-releasing hormone
(GnRH)-immunoreactive neurons appears to be one defining
feature. Teleost fishes have a population of neurons expressing
the fish-specific GnRH3 isoform in the TN, and this population is
thought to play a neuromodulatory role in multiple physiological
systems, including olfaction, vision, and reproduction.

Origin of TN
The TN has diverse embryonic origins that may shed light on
its function(s) in the adult animal. Analysis of the development
of the GnRH cells associated with the olfactory sensory system
supports a neural crest origin based on lineage tracing in
zebrafish (Whitlock et al., 2003) and mice (Forni and Wray,
2012) yet a subsequent study in zebrafish (Aguillon et al., 2018)
concluded a homogenous origin from progenitors based on
Islet-1/2 expression in all developing GnRH neuroendocrine
cells. Subsequent studies showed that there are in fact two
populations of GnRH cells: Islet-1/2+ and Islet-1/2−, thus
consistent with two separate origins of GnRH neuroendocrine
cells (Shan et al., 2020). The TN-GnRH3 neurons are the
first populations of GnRH neurons to develop in the early
embryo (Gopinath et al., 2004) where studies using fluorescent
reporter lines and electrophysiology recording, have shown that
these early differentiating TN-GnRH3 neurons acquire an adult-
pattern of spontaneous action potential firing as early as three
days post-fertilization (Ramakrishnan et al., 2010). Thus the
TN-GnRH3 cells are early differentiating neuromodulatory cells
associated with the developing olfactory tract.

In the adult animal, in contrast to the hypophysiotropic
GnRH1 neurons in the preoptic area that show episodic
spontaneous electrical activities, the TN-GnRH3 neurons show
regular intrinsic pacemaker activities (Oka and Matsushima,
1993; Oka, 2010; Zhao et al., 2013). In adult fish (dwarf gourami)
GnRH fibers originating from the TN cells are distributed widely
throughout the brain, and to date, there is little evidence to
support an olfactory-pituitary connection, thus suggesting that
the TN-GnRH system most likely acts as a neuromodulator,
capable of affecting widespread regions of the brain (Oka and
Matsushima, 1993). The extensive projections of the TN-GnRH
neurons in the forebrain, coupled with their endogenous
rhythmic activities, suggest theymay act in the global modulation
of circuits to accommodate changes in the animal’s hormonal or
environmental conditions (Umatani and Oka, 2019).

TN-GnRH3 Neurons and Olfactory-Driven
Behaviors
Pacific salmon show an amazing ability to migrate long
distances returning from the ocean to their natal rivers to
spawn. This behavior is based in part on the formation
of an olfactory memory (olfactory imprinting) during early
development (Scholz et al., 1976). At specific stages of salmon
migration, GnRH peptides show dynamic patterns of expression
in the brain (Ueda, 2012) where GnRH3 (originally called salmon
GnRH) has been reported in the olfactory nerve of masu salmon
(Oncorhynchus masou, Kudo et al., 1994) as well as the chum
salmon (Oncorhynchus keta) when the animals were in the
coastal waters, the region where olfactory decisions become
important, but not in fish on the spawning ground (Kudo et al.,
1996). Subsequent studies using fluoroimmunoassays (Yamada
et al., 2002), have shown increased levels of GnRH3 correlating
with the migration behavior; OBs in the salt to freshwater
transition areas and the telencephalon within the river system,
both regions where olfactory discrimination of natal river
odors is essential (Ueda, 2011). These studies suggest that the
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TN-GnRH3 network as well as other regions of the forebrain
participate in neuromodulation in the olfactory system and thus
play important roles in salmon homing migration (Ueda and
Yamauchi, 1995; Ueda, 2011, 2012).

Interestingly, there is evidence that olfactory cues can directly
modulate the activity of the retina via the olfacto-retinal-
centrifugal (ORC) pathway where the TN in the OBs extends
to and terminates in the neural retina, a pathway that contains
GnRH3 and FMRFamide peptides (Münz et al., 1982; Stell et al.,
1984; Behrens andWagner, 2004). Using the white perch (Roccus
americana), it has been shown that within the retina GnRH
stimulates the release of dopamine from the interplexiform cells
while FMRFamide suppresses some effects of GnRH (Umino
and Dowling, 1991). The ORC pathway, when probed at the
behavioral level, interacts with olfactory cues: if first exposed
to a food or a conspecific alarm odor, adult zebrafish are
able to respond to a moving visual stimulus at lower light
levels (Stephenson et al., 2012). This behavioral response, in
zebrafish, has been proposed to be regulated by TN-GnRH3 axon
projections that target the retina of the eye (Maaswinkel and Li,
2003). Thus the current model suggests that stimulation of OSNs
through the ORC pathway alters the cellular activity of the TN
(potentially by GnRH3 neurons) thus modulating retinal neural
function by increasing visual sensitivity.

GnRH3 Neurons and the Olfactory Epithelia
Paradoxically, in spite of numerous labs searching for
GnRH-positive nerve terminals in the olfactory epithelia
there is to date no conclusive evidence for this type of direct
neural connection. In teleosts fishes GnRH3-positive TN fibers
have been localized to the lamina propria lining the olfactory
epithelium in dwarf gourami (Trichogaster lalius, Wirsig-
Wiechmann and Oka, 2002) and underneath the olfactory
epithelium in goldfish (Carassius auratus, Kawai et al., 2009).
Likewise in mammals, while no labeled GnRH-positive fibers
have been observed within the olfactory and vomeronasal
epithelia, conspicuous GnRH positive terminals were reported
on blood vessels of the olfactorymucosa leading to the suggestion
of a new neurohaemal area (Zheng et al., 1988). In spite of these
intriguing observations, few studies have examined the potential
for a neural-vascular or peripheral ‘‘olfactory neurohaemal
organ’’ within the olfactory sensory system. In zebrafish we
have recently described the blood/lymphatic vasculature in the
developing olfactory organ (Palominos and Whitlock, 2021;
Palominos et al., 2021) that runs adjacent to the region we
previously described as containing cell bodies of the TN-GnRH3
neurons (Whitlock et al., 2003; Gopinath et al., 2004; Whitlock,
2004). In zebrafish, the GnRH3 receptor is present in the adult
OE as assayed by immunocytochemistry (Whitlock et al., 2006)
and the isolation of GnRH3-receptor mRNA from olfactory
organ tissues (Corchuelo et al., 2017). The presence of both
the GnRH3 peptide and its receptor in the olfactory organ
suggests potential modulation via an internal feedback loop or
perhaps via exogenous interaction with GnRH peptides released
from conspecifics as has been observed for other hormones
(Stacey et al., 2003). The recent concept of a neurovascular unit
(NVU) describes the relationship between neurons and blood

vessels where the NVU incorporates cellular and extracellular
components involved in regulating brain function (Schaeffer and
Iadecola, 2021). Future studies are needed to determine whether
the TN-GnRH3 system in the adult zebrafish (Figure 2A), and
other fishes, forms a NVU with the blood vasculature in the
peripheral olfactory organs or as suggested years ago (Zheng
et al., 1988), as a novel neurohaemal organ, which would allow
for internal and external interactions of neural circuits. Thus
the GnRH3 neuromodulatory neurons of the TN and their
fibers have a close association with the olfactory tract and blood
vasculature making them well situated to modulate olfactory-
mediated behaviors in response to alterations in the external
environment.

OLFACTORY-IMMUNE LINK UNDERLYING
BEHAVIORS

Studies in mice and fish have shown that olfactory-mediated
behaviors are mediated by major histocompatibility complex
(MHC) peptides where they act as olfactory cues underlying
mate choice decisions (Boehm and Zufall, 2006). Furthermore,
documented interactions between the MHC, olfactory receptors,
and T cell antigen receptors may underlie the selection of
potential mates based on genetic suitability and health as well
as promote the evasion of pathogens and predators (Tizard
and Skow, 2021). Previously we have shown that zebrafish
can make and maintain memories of odors experienced as
juveniles and that this ‘‘olfactory imprinting’’ is associated with
transcriptional changes within the olfactory organs (Harden
et al., 2006; Whitlock, 2006; Calfun et al., 2016). The subsequent
analysis of olfactory organ cell types led to the discovery of local
neutrophils and macrophages/microglia in the olfactory organs
of developing and adult zebrafish (Palominos and Whitlock,
2021; Palominos et al., 2021; Figure 2B). These observations
build on previous data showing the intimate association between
the olfactory sensory and immune systems with macrophages
and/or microglia in cultures of olfactory mucosa (Pixley, 1996),
the major histocompatibility complex class I (MHCI) in the
olfactory placode of the mouse (Chacon and Boulanger, 2013),
and recombination activating gene (RAG) gene expression in the
intact OE of zebrafish (Jessen et al., 2001). Thus the process of
forming an olfactory memory, such as that happens in olfactory
imprinting, is tightly correlated with activating aspects of the
immune system within the olfactory organs.

Olfactory imprinting involves environmental cues as observed
in salmon migration to the natal stream (Scholz et al., 1976), the
navigation behavior of coral reef fish to their home reef (Dixson
et al., 2014), or the modification of alarm response (Wisenden,
2000), and is a plastic process that involves a variety of chemical
signals. Yet imprinting is also important in discerning the
relatedness among conspecifics and involves specific genetically
determined kin signals communicated through MHC peptides
(Gerlach et al., 2019). Previously, the role of the immune system
has been shown to be important in kin recognition, suggesting
a genetic predisposition to kin odor, as genes of the immune
system (MHC) are the basis for urine-born peptides carrying
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FIGURE 2 | Neuroendocrine and immune factors that potentially modify olfactory function. (A,B) Diagram of the brain of adult zebrafish depicting olfactory organs
and telencephalon. (A) Gonadotropin releasing hormone 3 (GnRH3) containing neurons (orange) of the terminal nerve are found intimately associated with the
blood/lymphatic vasculature of the olfactory organ. (B) Neutrophils (pink) are associated with the extensive blood/lymphatic vasculature system (green/red) wrapping
the olfactory organs as well as OSNs within the olfactory epithelia (purple) in zebrafish (Palominos et al., 2021).

information about ‘‘self’’ and ‘‘other’’ (Gerlach et al., 2008; Hinz
et al., 2013).

Evidence for the importance of immune-based olfactory clues
is also found in the mating strategies of stickleback fish where
female sticklebacks evaluate maleMHC-associated olfactory cues
during the process of mate choice, choosing males that optimally
complement the female’s MHC alleles to produce offspring with
a population-specific optimal number (Andreou et al., 2017). The
olfactory cues provided by the MHC complex in sticklebacks
have now been shown to link olfactory assessment of mate
choice with habitat-specific adaptation where habitat-specific
immunogenetic diversity links habitat quality with individual
qualities thus providing a mechanism for ecological speciation
in vertebrates (Gahr et al., 2018). Taken together studies on the
neuro-immune basis of olfactory mediated behaviors such as kin
selection indicate that the olfactory tracts within the forebrain
are activated, including the limbic system of these teleost fishes,
by different subsets of immune-related peptides. The discovery
of extensive immune structures in the olfactory organs suggests
a potential role for circulating peripheral immune cells in the
creation of odor-based memories that are essential for survival.

OLFACTION, CLIMATE CHANGE, AND
FUTURE EVOLUTION

Anthropogenic Changes in Aquatic
Environments
In considering the evolution of the teleost forebrain wemust now
look to the future, a future where it is becoming increasingly
evident that the ‘‘olfactory ecosystem’’ of both marine and

freshwater fishes is undergoing dramatic changes. The primary
pathway for detecting odors is via the olfactory sensory epithelia.
Because the olfactory neuroepithelium is in direct contact with
the surrounding environment, it is potentially vulnerable to
detrimental changes in aquatic ecosystems. Olfaction is an
essential sensory system for fishes as they use odors to find
food, safe habitats, avoid predators, recognize conspecifics as
well as to find suitable spawning grounds. With climate change
affecting aquatic environments, it is becoming apparent that
water pollution and acidification driven by high levels of
atmospheric CO2 may result in decreased behavioral responses to
odorants and reduction in capacity for odor learning inmany fish
species. Thus these changes in the ability to perceive and react
to odorants will have a profound effect on the survival of fishes,
which make up half of the vertebrate biodiversity of the planet.

Olfactory Learning
As part of learning to react to biotic factors in their environment,
fishes show a wide variety of complex olfactory-mediated
learning behaviors. One of the most dramatic examples of
olfactory learning, as mentioned above, is olfactory imprinting
where the salmon learn the scent of their home stream
(freshwater) and replay this olfactory memory during their
homing migrations from the ocean (Scholz et al., 1976; Ueda,
2012). Fishes also show a wide variety of complex olfactory
learning behaviors involving two sensory functions such as the
case of fathead minnows who learn to recognize predators
through the pairing of predator scent with the sight of
experienced minnows reacting with fear, a learning process that
is not species-specific (Chivers and Smith, 1994; Wisenden et al.,
1994; Gazdewich and Chivers, 2002). Interestingly, fish learn to
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pair both predator cues with the presence of alarm pheromone
(von Frisch, 1938, 1941) so that they can respond more strongly
to the release of the alarm pheromone (Levesley and Magurran,
1969; Brown and Smith, 1998).

We now know that CO2-induced acidification of freshwater
systems affects juvenile freshwater phase of development in
salmon (Oncorhynchus gorbuscha, Salmo salar) where they
showed significant alterations in olfactory responses to alarm
cues and amino acids (Moore, 1994; Ou et al., 2015). These
are troubling results given that the anti-predator behaviors are
affected and also potentially olfactory memory because amino
acids in natal rivers are thought to play an important role in
imprinting and homing migration (Shoji et al., 1994, 2000).
Subsequent studies investigating the ocean phase migration
of juvenile coho salmon (Oncorhynchus kisutch) and their
responses to elevated CO2 revealed altered expression of
neuronal signaling genes within the OBs and to a lesser extent the
olfactory organs suggesting that elevated CO2 affects olfactory
processing (Williams et al., 2019). Thus alterations in the external
environmental conditions may interfere with olfactory function
and compromise behaviors essential for the survival of fish and
other aquatic species.

Hot, Acidic, and Dirty
In the last 10 years, an increasing number of studies in
both freshwater and marine ecosystems have alerted the world
to the significant impacts of anthropogenic changes on our
oceans (Garcia-Soto et al., 2021) such as acidification of aquatic
ecosystems accompanied by ocean heating (Figure 3). Most
notable are the effects on the olfactory abilities of fish where
impaired behavioral responses to a variety of social odor cues will
potentially result in abrupt changes in population dynamics and
reduced complexity of community structures as evidenced by the
effects on emblematic coral reef fishes (Munday et al., 2009, 2010;
Heuer et al., 2016). As more studies examine impaired olfactory-
mediated behaviors in freshwater and marine ecosystems, it is
becoming apparent that the underlying mechanisms may be
quite different. In acidified freshwater, molecular changes to
chemical cues along with reduced olfaction sensitivity in the
peripheral epithelia appear to be the primary causes of olfactory-
mediated behavioral deficits (Leduc et al., 2013; Commentary:
Porteus et al., 2021). In contrast, experiments simulating future
ocean acidification suggest that high levels of CO2 can interfere
with brain neurotransmitter function as the primary cause of
olfactory-mediated behavioral deficits in fish (Nilsson et al., 2012;
Leduc et al., 2013; Hamilton et al., 2014).

Worldwide, the increasing salinity of freshwater ecosystems
due to anthropogenic activities is leading to ecosystem
degradation and serious losses of biodiversity (Zhao et al.,
2021). In freshwater systems, the animals are not immune
to the effects of environmental degradation such as changes
in salt concentrations due to drought or mining effluents.
Recently it has been shown that juvenile zebrafish use a
specific subset of OSNs, as opposed to taste receptors, to
detect and avoid increasing salt concentrations (Herrera et al.,
2021). This surprising result that suggests the olfactory epithelia
is important in determining the salt concentration and thus

habitable environments. Studies using juvenile rainbow trout
showed that when pH is lowered (6.5) or when sodium salt
concentrations are raised, the responses to standard olfactory
cues are impaired. Furthermore, the pH and salts can modify
contaminant-induced olfactory toxicity (Lari et al., 2019).

Previously copper present in runoff has been shown to affect
olfactory sensitivity in salmon (Baldwin et al., 2003, 2010) and
trigger an immune response within zebrafish olfactory epithelia
(Palominos and Whitlock, 2021; Palominos et al., 2021). More
recently another form of copper, nanoparticles (CuNPs), used in
commercial applications such as anti-bacterial and anti-fungal
agents in textiles and coatings, has been shown to impair
fish olfactory function in rainbow trout. Analysis of olfactory
organs showed that, unlike copper exposure, genes involved in
olfactory transduction, neurogenesis, and immune response were
all downregulated in the copper nanoparticle damaged olfactory
mucosa (Razmara et al., 2021). This study presents yet another
type of environmental contaminant that can impact olfactory-
based survival of aquatic animals.

Future Evolution
While many fish species are stenohaline, or unable to withstand
wide variation in salinity, teleosts fish have clearly evolved to
tolerate many unusual niches in distinctly different ecosystems.
The existence of euryhaline fishes that can survive in saltwater,
freshwater, and brackish water is living evidence of the evolution
of salt tolerance (Evans and Kültz, 2020) and thus these fishes
may be the most able to retain olfactory driven behaviors as the
rate of climate change accelerates.

Evolution of Olfactory Receptors in Fishes
Unlike terrestrial vertebrates, fishes lack a vomeronasal organ
yet the teleost olfactory epithelia express all classes of tetrapod
odorant receptors: main odorant receptors (ORs), trace amine-
associated receptors (TAARs), vomeronasal receptors type 1
(V1Rs), and type 2 (V2Rs). In comparing the three types of G
protein-coupled odorant receptors, the OR, V1R, and V2R, gene
repertoires of teleost are smaller in size compared to mammalian
species, yet show greater overall OR diversity as evidenced by a
larger number ofmajor clades (Alioto andNgai, 2005; Korsching,
2009). In contrast, the gene repertoire of teleost TAARs is much
greater than the corresponding mammalian genes with some fish
species expressing over 100 functional isoforms (Gainetdinov
et al., 2018). Analysis of odorant receptors in zebrafish, Medaka,
stickleback, fugu, and spotted green pufferfish has revealed gene
losses and gains in TAARs suggesting that genes coding for
these different types of odorant receptors may be under lineage-
specific adaptive evolution (Hashiguchi et al., 2008).

A recent analysis of the evolutionary divergence of ORs and
their association with ecological adaptations in different species
showed thatMariana snailfish, a fish found in theMariana trench
(6,000 m), has many fewer ORs and more OR pseudogenes
compared to Tanaka’s snailfish a shallow-sea relative, with both
species having similar numbers of TAARs (Jiang et al., 2019).
This most likely reflects the rapid evolution of the OR repertoire
in response to the unusual ecological niche of the deep-sea
trenches. The suggestion that in relatively short spans of time
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FIGURE 3 | Ocean heating and increasing CO2 concentration affect fish behaviors. As the oceans heat up (Heat), marine species are moving deeper in the water
column and towards the poles to escape rising temperature (Heat, increases since 1955 over average dotted line;
https://www.ncei.noaa.gov/access/global-ocean-heat-content/#null). Concomitant increases in CO2 in the atmosphere (red), and oceans (gray), are driving the pH
acidic (blue) thus affecting olfactory-mediated behaviors in marine animals. https://oceanacidification.noaa.gov/OurChangingOcean.aspx.

ORs can emerge and become fixed is supported by the reported
low proportion of orthologous receptors found in closely related
species. The evolution of the OR genes most likely reflects
the important chemical features of an animal’s ecological niche
(Niimura and Nei, 2005; Adipietro et al., 2012; Bear et al., 2016).

Olfactory receptor repertoire might be one of the leading
causes for fish sympatric speciation: Coptodon cichlid fishes
found in Lake Ejagham in Africa have diverged at the same
time that a cluster of olfactory genes had introgressed (Poelstra
et al., 2018), suggesting olfaction as a causal trigger for
fish adaptive radiation. Within domesticated fish populations,
environmentally driven ‘‘olfactory’’ genomic plasticity has been
noted. In the Senegalese sole, comparisons of transcript profiles
from tissues of olfactory organs of ‘‘domesticated’’ fish species
and their wild counterparts have uncovered distinct differences
between cultured and wild animals in genes related to olfaction,

reproduction, nutrient sensing, and immune system, revealing
a genomic response to selection (Fatsini et al., 2016). Taken
together studies on OR gene evolution support the possibility
that the genome may accommodate environmental pressures in
the future.

Adaptation and Transgenerational Effects
In contrast to adaptation, which involves the selection of genetic
variation that increases the fitness of the animal, acclimation
relies on plastic responses in physiology, morphology, or
behavior to a new environment such as the changes being
imposed on aquatic environments as a result of climate
change. Acclimation to ocean acidification has been reported in
anemonefish (Amphiprion melanopus) where increased growth
and survival in a high CO2 environment were observed in
juveniles whose parents had been previously exposed to high
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CO2 (Miller et al., 2012; Munday, 2014). Offspring of parents
living in acid waters (Allan et al., 2014) or under hypoxic
conditions (Ho and Burggren, 2012) showed greater tolerance to
the environmental stressors experienced by their parents. Effects
of transgenerational plasticity have been observed in the Atlantic
Cod (Gaddus morhua) where larval survival at elevated CO2
levels was increased if the parents were acclimated to the same
CO2 exposure; yet with the caveat that these effects were seen
only under conditions of high food availability, suggesting that
transgenerational acclimation to excess anthropogenic carbon
dioxide in ocean waters is dependent on the availability of surplus
food (Stiasny et al., 2018).

The mitigation of negative effects of CO2 on growth and
aerobic capacity by transgenerational acclimation in fishes
to date does not appear to restore olfactory responses to
alarm cues and other olfactory driven behaviors in juvenile
spiny damselfish (Acanthochromis polycanthus, Welch et al.,
2014). Furthermore, genomic approaches using reef fishes have
identified transcriptional changes induced by elevated CO2 levels
in within-generation treatments that returned to baseline levels
in fish that were transgenerationally exposed to elevated CO2
levels (Schunter et al., 2018), indicating that the environmental-
induced phenotype interacts with the parental phenotype as
organisms attempt to respond to ocean acidification.

CONCLUSIONS

Without doubt, the olfactory tracts of the forebrain and their
targets in the limbic system play essential roles in monitoring
sensory input, deciding on strategies, and modifying behaviors
accordingly. Studies examining the effects of pH/CO2 on aquatic
ecosystems have shown profound effects on the olfactory sensory
system: changes in acid–base regulation under elevated CO2
affects the functioning of gamma-aminobutyric acid-mediated
(GABAergic) neurotransmission and acidic pH values can
directly affect the protonation, and charge distribution of

odorants and/or their receptors (see for comment: Porteus
et al., 2021). Whether acclimatization and adaptation can
have long-lasting effects on the persistence of a species is
an answer that lies in the future. More studies are needed,
as suggested here, to better understand the potential roles
of both the olfactory-neuromodulatory and olfactory-immune
pathways in the survival of fishes. We imagine both scientists
and non-scientists who are concerned about the rapid loss of
biodiversity driven by anthropogenic forces are interested in
the role of behavioral flexibility and the underlying genomic
plasticity as teleosts and all other species struggle to adapt to a
rapidly changing world.

‘‘I can get a clear picture of any face I feel like remembering, and
I can hear whatever Beethoven quartet I want to recall, but except
for the leaf bonfire I cannot really remember a smell in its absence.’’

—Lewis Thomas (1985).
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