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A genomic catalogue of soil microbiomes
boosts mining of biodiversity and genetic
resources

Bin Ma 1,2,3,7, Caiyu Lu1,2,3,7, YilingWang 1,2,3,7, Jingwen Yu3, Kankan Zhao 1,2,
Ran Xue3, Hao Ren3, Xiaofei Lv4, Ronghui Pan3, Jiabao Zhang 5,
Yongguan Zhu 6 & Jianming Xu 1,2

Soil harbors a vast expanse of unidentifiedmicrobes, termed asmicrobial dark
matter, presenting an untapped reservoir ofmicrobial biodiversity andgenetic
resources, but has yet to be fully explored. In this study, we conduct a large-
scale excavation of soil microbial dark matter by reconstructing 40,039
metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil
metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs)
as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity
across the tree of life. We also illustrate the pivotal role of uSGBs in aug-
menting soil microbiome’s functional landscape and intra-species genome
diversity, providing large proportions of the 43,169 biosynthetic gene clusters
and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs con-
tributed 84.6% of previously unexplored viral-host associations from the
SMAG catalogue. The SMAG catalogue provides an useful genomic resource
for further studies investigating soil microbial biodiversity and genetic
resources.

The soil microbiome is not only valuable as the primary regulator of
soil ecosystem services but also as a source of genetic resources for
human healthcare and biotechnological applications1. The majority of
antibiotics currently used in human medicine were discovered from
soil-living bacteria or fungi between the 1940s and 1970s2, but the
golden age declined after the 1970s owing to the difficulty of culti-
vating unidentified bacterial species3. However, cultivation-
independent approaches, e.g., rRNA gene-based survey, have con-
firmed that up to 99% of soil microorganisms have not been cultivated
under laboratory conditions to date4. Those countless undiscovered
microbes in the soil, referred to as soil microbial dark matter5, com-
prise enormous untapped diversity and genetic resources6. For

instance, Ling et al. recently discovered teixobactin, a new antibiotic
without detectable resistance, by growing uncultured bacteria from
the soil with iChip7.

Genome-resolved metagenomics can yield metagenome-
assembled genomes (MAGs) from contigs assembled with shotgun-
sequenced short reads8, providing previously unexplored genomes of
Bacteria9, Archaea10, and viruses11 for understanding the functional
characteristics of uncultivated microbes. MAGs have substantially
expanded thegenomic catalogue formanifoldenvironments including
relatively limited soil environments12, the human gut13, animals14, the
global ocean15, and other environments16,17. In additionally, MAGs have
increased the diversity and topological structure of the tree of life,
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providing insights into uncultivated microbial taxa and virus-host
associations, as well as promoting the discovery of genetic resources,
such as biosynthetic gene clusters (BGCs)18, CRISPR19, and antiphage
defense systems20.

A single gram of surface soil can contain billions of bacterial and
archaeal cells and trillions of viruses21, indicating that soil microbial
diversity is substantially higher than in other environments due to its
high complexity and spatial heterogeneity4. However, fewprior studies
focused on reconstructing MAGs from soils, due to the challenges
associated with complicated soil metagenomes, which are enriched
genomes for uncultivated and undescribed microorganisms1. Most
existing studies on the soil microbiome suffer from the limitations and
biases of reference databases and cannot characterize microbes with
high taxonomic resolution22. Several studies have recovered genomes
from soil metagenomes at a small scale and multi-systems for
exploring their functions and genetic resources15,23, but the myriad of
soil metagenomes available in public databases has not been mined at
present at a global scale.

In this work, to construct an informational public resource data-
base andexplore soilmicrobial darkmatter frommetagenomes,wefirst
reconstructed MAGs from global-scale genome-resolved metage-
nomics to expand the genomic catalogue of soil microbiomes and shed
light onmicrobial darkmatter in soils. We then clustered theMAGs into
21,077 SGBs and identified 16,530 uSGBs by aligning SGBs with
~500,000 reference genomes from theRefseqdatabase andMAGs from
other studies. Intraspecific pangenome and single nucleotide variants
(SNVs) profiles reveal the functional contribution of uSGBs in the soil
microbiomes. Moreover, we explored BGCs and CRISPR-Cas genetic
resources, confirming the considerable potential of soilmicrobiomes in
mining genetic resources. Furthermore, we uncovered previously
unexplored viral-host associations concealed in the MAGs. The SMAG
catalogue constitutes abundant information, providing important
opportunities for future broad studies focused on unraveling the eco-
logical roles of soil microbiomes and identifying genetic resources.

Results
40,039 MAGs reconstructed from large-scale genome-resolved
metagenomics
To reconstruct previously unexploredbacterial and archaeal genomes,
we performed a large-scale single-sample metagenomic assembly on

3304 soil metagenomes across the globe (Fig. 1a), including 363
metagenomes from the in-house dataset and 2941 from publicly
available metagenomes. The soil samples were mainly collected from
grassland, cultivated land, and forest (Fig. 1b). The number of recon-
structed MAGs per metagenome was positively correlated with meta-
genome read depth (Supplementary Fig. 1a) and follows a power-law
distribution (Supplementary Fig. 1b). The number of reconstructed
MAGs substantially increased when the number of clean reads >108

(Supplementary Fig. 1a), suggesting that sequencing depth greater
than this threshold would result in worthwhile gains in MAG recon-
struction. We reconstructed a total of 40,039 genomes that meet or
exceed the medium-quality level of the minimum information about a
metagenome-assembled genome (MIMAG) standard24 (completeness
≥50% and contamination <10%), which we refer to as the SMAG cata-
logue (Supplementary Data 2). About 3641 (9.1%) of these MAGs were
identified as high-quality genomes with completeness >90%, con-
tamination <5%, and presence of the 23S, 16S, and 5S rRNA gene and at
least 18 tRNAs according to recent guidelines (Fig. 1a, Supplementary
Fig. 1c–e). Moreover, 5184 (13%) of MAGs had completeness ≥90% and
contamination <5%, but the absence of all rRNA genes or less than 18
tRNAs24, largely meaning that near full-complement rRNA genes
sequences are challenging for assembling from metagenomes25,
especially for near-complete MAGs26. To evaluate the quality of the
MAGs in the SMAG catalogue, we inferred the level of strain hetero-
geneity within each MAG. The median strain heterogeneity (propor-
tion of polymorphicpositions) of thehigh-quality SMAGcataloguewas
7.14% (Supplementary Fig. 1f). And the SMAG catalogue is distinct in its
exclusive focus on soil microbiomes on a global scale, which specifi-
cally allowed us to undertake an in-depth analysis of this particular
niche, expanding the knowledge base on soil microbial diversity.
Besides, the geographic distribution of the soil metagenomes in our
study significantly substantially extended compared with the MAGs
resource from environments (Fig. 1d), surpassing both MAGs derived
from the Tara Ocean project27,28 and environmentally derived MAGs
from Genomes of Earth’s Microbiomes (GEM) catalogue29, but lagging
behind human-associatedMAGs13,30, highlighting the challenges posed
by the complex and heterogeneous soil environment4 and also illus-
trating the necessity of constructing high-quality soil metagenomic
genome reference datasets for more accurate predictions about the
ecological functions of soil microbiomes.

Fig. 1 | Recovery of genomes from globally distributed soil metagenomes. a A
total of 40,039 MAGs were recovered from 3304 soil metagenomes. b Geographic
distribution of metagenomes within each habitat. c Distribution of quality metrics

across the MAGs. d Comparison of the current dataset with the published MAG
catalogue across different environments; UHGG (Unified Human Gastrointestinal
Genome).
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MAG analyses retrieve 16,530 previously uncharacterized bac-
terial and archaeal clades
To explore taxonomic components in the SMAG catalogue, we clus-
tered the 40,039 MAGs into 21,077 SGBs (Supplementary Data 2)
based on 95% whole-genome average nucleotide identity (ANI). We
annotated the taxonomy with Genome Taxonomy Database (GTDB),
which is commonly used13 and considered a gold standard for defining
prokaryotic species31 (Fig. 2a). These SGBs were assigned to 88 bac-
terial phyla and 11 archaeal phyla. The number of MAGs in the SGBs
follows a power-law distribution (Supplementary Fig. 2a), suggesting
that most of the SGBs comprised a few MAGs.

To identify previously unexplored soil bacterial and archaeal
clades in the SMAG catalogue, we compared theMAGs from the SMAG
against nearly 500,000 reference genomes, including 282,219 gen-
omes from the Refseq database (November of 2021), 207,953 MAGs
from previous studies, and 123,580 MAGs and 1710 single-cell ampli-
fied genomes (SAGs) fromGenBank (November of 2021).We identified
16,530 uSGBs (78.4% of SGBs) and 4567 known SGBs, (22.6% of SGBs)
(Fig. 2a) based on the thresholdof 95%ANI and 30% alignment fraction
(AF). Consistent with the knowledge of soil microbial darkmatter32, we
also found that most MAGs in the SMAG catalogue are uSGBs. The
genome size of SGBs and the reference genome size showed a positive
linear relationship (Supplementary Fig. 2b). Moreover, we found that
most of the SGBs (70.8%) and uSGBs (71.4%) were singleton MAGs
(Fig. 2a). The proportion of singleton MAGs in uSGBs (71.2%) was
substantially higher than in known SGBs (kSGBs) (50.0%) (Fig. 2a),
indicating the critical contribution of the SMAG catalogue in recover-
ing rare species of soil microbiomes. The vast majority of SGBs were
unannotated at the species level by theGTDB (18,988, 90.1%), andwere
barely aligned to reference genomes (14,060, 88.6% of uSGBs with
<90% ANI or <10% AF compared to reference genomes).

To examine whether the previously unidentified uSGBs in the
SMAG catalogue improve mappability for soil metagenomes, we
mapped 494metagenomes randomly selected from themetagenomes
dataset for reconstructing the SMAG catalogue to all 40,039 MAGs.
The total mapping rates (the ratio of mapped reads to the total reads)
ranged from 2.6 to 89% (medium mapping rate = 12.5%) (Fig. 2b).
Consistent with the previous study33, the contribution of uSGBs for
reads mapping was fivefold of kSGBs, which illustrated that the uSGBs
were important genomic resources to understand soil microbial dark
matter. Moreover, the mapping capacity of the SMAG catalogue was
further validated by aligning 70 other soil metagenomes unused for
reconstructing the SMAG catalogue (Fig. 2b). The genome size of all
recoveredMAGs ranged from0.53 to 12.3Mb (Supplementary Fig. 2c).
Most phyla’s genome sizes were consistent between kSGBs and uSGBs,
except for Armatimonadota, Bdellovibrionota, and unclassified bac-
terial phylum UBA10199. MAG sizes of uSGBs were larger than MAG
sizes of kSGBs for these phyla. (Supplementary Fig. 2c). MAGs sizes of
kSGBs were consistent with the genome size of isolated reference
genomes of the same genera (Supplementary Fig. 2b), which validates
metagenomic-driven strategies to mine the uSGBs from the complex
soil environment. The phyla with the smallest genome sizes are
Patescibacteria (median = 0.78Mb) and Thermoproteota (median =
1.60Mb), especially for Patescibacteria with large function size by
simplifying genome size34, while Myxococcota (median = 5.10Mb),
Cyanobacteria (median = 5.07Mb), and Planctomycetota (median =
4.79Mb) have the largest genome sizes. The smallest-sized high-
quality MAGs (~0.53Mb) were assigned to a previously unidentified
species of the genus Buchnera, which is experiencing a reductive
process towards a minimum genome needed for symbiotic life with
aphids35.

Next, we built the phylogenetic tree of 21,077 SGBs (Fig. 2d),
showing that the bacterial and archaeal diversity across the tree of life
was expanded by uSGB genomes from the SMAG catalogue. The pro-
portions of uSGBs in the eight most dominant bacterial phyla (>75%)

were greater than those in most of the rare phyla except Planctomy-
cetota, Armatimonadota, and Eremiobacterota (>80%) (Fig. 2e),
demonstrating the challenges in assembling rare biosphere36.
Although the MAGs were assembled from corresponding soil samples
as dominant taxa, theywere rare inmost of the other soil samples. And
theseMAGs may provide tremendous reference genomic resources in
deciphering potential functions of rare biosphere in soil micro-
biomes (Fig. 2f).

Based on values of relative evolutionary divergence (RED)37 in the
GTDB (release 202) annotation (Supplementary Fig. 2d), we further
identified previously unidentified lineages at higher taxonomic ranks.
In total, we determined 6392 unannotated genus-level genome bins
(uGGBs), 1166 unannotated family-level genome bins (uFGBs), 258
unannotated order-level genome bins (uOGBs), and 31 unannotated
class-level genome bins (uCGBs) by GTDB-tk. Two bacterial SGBs were
potentially unannotated phylum-level genome bins (uPGBs) with
completeness and contamination at (90.65%, 2.44%), and
(90.96%, 1.10%), respectively, which indeed illustrated the under-
estimated diversity of the soil microbial dark matter and highlighted
the pressing need for continued exploration of the soil microbiome.
This is based on the concatenated protein phylogeny as the basis for a
bacterial taxonomy37, which improved the classification of uncultured
microorganisms of the SMAG. However, the rarefaction curves reveal
obvious unsaturation at species rank in the SMAG catalogue (Supple-
mentary Fig. 2), indicating that additional previously uncharacterized
lineages are yet to be discovered at species ranks.

Functional landscape and intraspecies genomic diversity
To better understand the functional landscape of soil microbiota, we
predicted full-length putative protein sequences from the 5184 high-
quality MAGs (>90% completeness, <5% contamination) of the SMAG
catalogue. We then performed an in-depth functional annotation of
those gene clusters with eggNOG database38 (v5.0). We identified 41
KEGG pathways, most of which were enriched in uSGBs (Supplemen-
tary Fig. 3a), including the pathways related to polyketide synthesis
and disease association pathways. Based on the KEGG enrichment
analysis, many phyla were only annotated by functional enrichment
from uSGBs in the SMAG catalogue, especially for Asgardarchaeota,
Krumholzibacteriota, and Tectomicrobia (Fig. 3a). Besides, for the
COG functional categories, we also found the Function unknown was
over-represented in the SMAG catalogue, and uSGBs in particular
(Supplementary Fig. 3b), providing evidence that uSGBs substantially
expanded the functional landscape.

Core genes are shared by all strains that are involved in basic
biological processes, such as gene expression, energy production, and
amino acid metabolism. Accessory genes are the specific genes for
certain genomes. To explore the intraspecific genomic diversity of the
SMAG, we generated 107 pangenomes for 2200 SGBs with >10 high-
quality MAGs by clustering protein sequences from all conspecific
genomes at 90% amino acid identity, whichwas used to define a “core”
genome13. Open pangenomes have larger sizes with the increase of
individuals39. To assess the openness of pangenomes of the SMAG, we
identified that the longest pangenome size is 20,926,893 bp with 14
conspecific genomes. The average pangenome length reached
6,699,815 bp and almost 40% of the pangenome size is larger than the
average. (Supplementary Fig. 3c, Supplementary Data 3). The pro-
portion of core genes decreased with the number of conspecific gen-
omes and genome sizes (Supplementary Fig. 3d, e), which is consistent
with previous studies on a limited number of strains and species due to
the addition of duplicated genes40.

The proportion of core genes varied across different phyla
(Fig. 3b). Species from Verrucomicrobiota and Nitrospirota showed
the highest and the lowest proportion of core genes, respectively
(Fig. 3b), which is mainly due to their species ubiquity41. Given that
Verrucomicrobia is generally among the most abundant taxa in soil
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but with high proportion of core genes suggests its closed pan-
genome and implies its critical role in fundamental functions in soils.
Conversely, Nitrospirota was observed frequently in wastewater
habitats42, and had the lowest proportion of core genes, suggesting

its large pangenome openness which enables high environmental
adaptability43.

To investigate the functional divergence between core and
accessory genes, we compared the proportion of genes assigned with

Fig. 2 | The SMAG substantially expands the diversity of soil microbes. a 16,530
genomes (41%) from SMAG (40,039 MAGs) were assigned to the uSGBs. b uSGBs
improve mappability for soil metagenomes. c The rarefaction curve is obviously
unsaturated at specie rank in the SMAG dataset. d A phylogenetic tree was built for

21,077 SGBs based on the concatenated 400 conserved universal PhyloPhlAn
markers genes. e The comparison of the number of genomes across phyla between
kSGBs and uSGBs. f The biosphere distribution of SGBs across metagenomic
samples.

Article https://doi.org/10.1038/s41467-023-43000-z

Nature Communications |         (2023) 14:7318 4



eggNOG in core and accessory genes. The core genes were better
annotated than accessory genes based on all five databases (Wilcox
test, P < 0.001), and the proportions of core genes of uSGBs annotated
with eggNOG (Wilcox test, P = 0.054), KEGG (Wilcox test, P = 0.0005),
and GO (Wilcox test, P =0.041) were significantly lower than those of
kSGBs (Fig. 3c). Thereafter, we investigated the functional enrichment
by the core and accessory genes based on the eggNOG functional
annotations. Significance was calculated with a two-tailed Wilcoxon
rank-sum test and further adjusted formultiple comparisons using the
Benjamini–Hochberg correction. A positive effect size (Cohen’s d)
indicates that the core gene is dominantly represented. The core genes
were significantly assigned (p adjust < 0.001) to genetic information
processing and key metabolic functions like Carotenoid biosynthesis
and Phosphotransferase system (PTS). While great number of acces-
sory genes are overrepresented in various secondarymetabolites, such
as Biosynthesis of enediyne antibiotics, Aurachin biosynthesis and
Novobiocin biosynthesis with large effsize (d estimate >2), indicating
the important role of accessory genes in defense activities (Fig. 3d). A
similar tendency was found in the COG analysis. Core genes were
dominantly represented in the basic cellular processes like Amino acid
transport and metabolism. In contrast, more accessory genes are
related to environmental adaptation and inter-strain differences. The
accessory genes show dominantly represented in secondary metabo-
lites biosynthesis, Transport and catabolism, Defense mechanisms.
Moreover, a much greater proportion of function unknown COGs are

poorly characterized without a known function (Fig. 3e). These results
provide a functional landscape difference between core and accessory
genes identified from the SMAG catalogue by pangenome analysis.

To profile the intra-species variation of the SMAG catalogue, we
investigated intraspecies single-nucleotide variants (SNVs)within SGBs
with ≥3 MAGs. We detected 582,519,530 SNVs from 2448 SGBs with at
least three conspecific MAGs (Fig. 3e, Supplementary Data 3). Of these
SNVs, 326,163,258 (56%) filtered (exclude synonymous mutations)
SNVs (were detected and 174,868,789 (53.6%) were found exclusively
in uSGBs, and 151,294,469 (46.4%) were exclusively detected in kSGBs
(Fig. 3e), indicating a large number of previously undiscovered SNVs in
the SMAG catalogue.We also assigned the detected SNVs to the kSGBs
and uSGBs across different phyla. Notably, we observed a divergence
in the density of SNVs between kSGBs and uSGBs across most domi-
nant phyla (Fig. 3g, Supplementary Fig. 3f). In addition, a majority of
the phyla exhibited relatively low pN/pS ratios (pN/pS < 1) (Fig. 3h and
Supplementary Data 3). This suggests that the evolution of soil
microbial organismsmight bemore influenced by long-term purifying
selection and drift, rather than by rapid adaptations to specific
environments44. While species from Patescibacteria possess the smal-
lest genome sizes, displayed the lowest SNV density coupled with the
highest pN/pS ratios, possibly owing to their reduced redundant and
non-essential functions that enable them to maintain community
stability34. These findings suggest that the SMAG catalogue encom-
passes a significant amount of intraspecific SNVs. The observed

−

Fig. 3 | Functional landscape and intraspecies genomic variation analyses
within the soil microbiome. a Functional category enrichment differential dis-
tribution between the kSGBs and uSGBs of the 5184 high-quality MAGs. uSGBs
substantially expanded functional landscape of most of phyla in SMAG catalogue.
b The abundance of core genes for kSGBs and uSGBs across phyla. c Proportion
of core and accessory genes (n = 2,200 species) classified with various annotation
schemes. A two-tailed Wilcoxon rank-sum test was performed to compare the
classification between the core and accessory genes (*P <0.05), eggNOG

(*P =0.054), KEGG (***P =0.0005), GO (*P =0.041). d Comparison of the KEGG
pathways between the core and accessory genes. e Comparison of the COG
categories between the core and accessory genes. f Total number of SNVs
detected as a function of the number of species, and uSGBs detected more SNVs
than kSGBs. g The density of SNVs for kSGBs and uSGBs across dominant phyla
(n = 2448 species). h The pN/pS ratios for kSGBs and uSGBs across dominant phyla
(n = 2448 species). Data of (g) and (h) are presented as mean values +/− Standard
Deviation (SD).
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variations in SNV density and pN/pS ratios across different phyla
underscore the diverse niche widths of these species and their varying
capacities to acquire and allocate soil resources45.

Broad secondary metabolite biosynthetic potential
Microbial genomes encode biosynthetic gene clusters (BGCs) that
produce natural secondary metabolites, offering vast potential for
discovering ecologically and biotechnologically relevant enzymes and
biochemical compounds. In addition to exploring BGCs from culti-
vated microorganisms46, many studies have employed metagenomic
data mining to survey BGCs for drug discovery47 and microbiome
ecology studies9. Given the tremendous microbial diversity in soil
ecosystems, the SMAG catalogue offers an important resource for
mining BGCs for natural product development and drug synthesis.We
identified 70,081 putative BGCs, of which 69,990 were annotated with
one or more BGC types. The BGCs identified from the 21,077 repre-
sentative MAGs of the SMAG catalogue are 36 times the number of the
manually curated Minimum Information about a Biosynthetic Gene
(MIBiG) dataset46. After filtering contigs ≥ 5 kb, 43,169 BGCs were
categorized into eight groups (Supplementary Data 4), most of which
were identified from uSGBs (Fig. 4a). The number of non-ribosomal
peptide synthetase (NRPS), the necessary multienzyme machinery for
assembling numerous peptides for antibacterial (such as penicillin)48,
was the highest with a total of 10,277 (23.8%) BGCs encoded by 49
phyla. We also identified 9632 (22.3%) BGCs synthesizing ribosomally
synthesized and post-translationally modified peptide (RiPPs) from 69
phyla, 7671 (17.8%) terpene gene clusters from 45 phyla, 1790 (4.1%)
polyketide synthase (PKSI) clusters from 28 phyla, and 1664 (3.9%)
PKS–NRPS hybrid gene clusters from 23 phyla (Fig. 4c).

We then assessed the biosynthetic potential of the dominant
phyla (Fig. 4b). Consistent with the GEM catalogue29 and glacier
catalogue9, Proteobacteria process the greatest biosynthetic potential,
with 1439 NRPS, 2153 RiPPs, 2052 terpene, and 3216 other BGCs
encoded by 6774 Proteobacterial MAGs, followed by Actinobacteriota
with 5376 MAGs encoding 9575 BGCs. Furthermore, we identified a
total of 9119 BGCs encoded by 4781 Acidobacteriota MAGs, with one
MAG from unannotated genus of family UBA5704 encoding 111 NRPS
or PKSmoduleswith clear colinearmodule chains (Fig. 4d). In addition,
we identified high biosynthetic potential for Gemmatimonadota (2633
regions across 1300 MAGs), indicating we may underestimate the
biosynthetic potential of these linkages. Although most identified
BGCs were fragmented (Supplementary Fig. 4a), we identified 742
regions with a length >50 kb and 4772 regions >30kb. Five NRPS
clusters with a length >100 kb (Supplementary Fig. 4b–f) were all
identified from uSGBs. The largest BGC in the SMAG catalogue
(270,820bp) was identified from genus UBA5704 of Acidobacteriota
(Fig. 4e), while the largest BGC (275,339 bp) from GEM was identified
from the same genus but with the core biosynthetic sequence identity
range of 0–52.48% (Supplementary Data 4). We found that both of the
two BGCs were mainly involved in amino acid metabolism, but
SMAG_BGC exhibited an additional involvement in carbohydrate
metabolism and environmental information processing based on the
KO assignment results (Fig. 4f). Taken together, these results suggest
that the SMAG catalogue can serve as a valuable resource for the dis-
covery of new drugs and therapeutics.

CRISPR and Cas protein genetic resources
Microbes rely on diverse defense mechanisms that allow them to
withstand viral predation and exposure to foreign DNA.Many Bacteria
and Archaea possess clustered regularly interspaced short palin-
dromic repeats (CRISPR) togetherwithCRISPR-associated genes (Cas),
calledCRISPR–Cas systems, to prevent viral infection49. Spacers are the
regions of the leader end of the CRISPR array with a length of 24–48
nucleotides50 to be transcribed and processed into CRISPR RNAs
(crRNAs) for the microbes’ “immune” system51. The SMAG catalogue

affords a significant opportunity to explore the diversity of Cas pro-
teins resources for transforming and synthesis efficient gene edit-
ing tools.

To profile the diversity of genetic resources associated with
CRISPR-Cas systems in the SMAG catalogue, we characterized spacers
and Cas genes by predicting open reading frames (ORFs) and aligning
to Cas proteins in National Center for Biotechnology Information
(NCBI). In total, we identified 1142 spacers from 662 MAGs (Supple-
mentary Fig. 5a, Supplementary Data 5), on average 0.40 ± 0.35
(mean± SD) spacer sequences per Mb of genomic length. Given the
number of spacers in eachMAGs displayed on a scale-free distribution
(Fig. 5a), the majority (454) of MAGs possessed only one spacer
sequence and a few MAGs possessed more than 10 spacer sequences,
indicating their potential ability to defend against viral infection. The
number of spacers did not increase with genome size (Fig. 5b). MAGs
with a genome size of ~5.5Mb, either from kSGBs or uSGBs, possessed
the highest number of spacers, but there was no difference in the
source between kSGBs or uSGBs (Supplementary Fig. 5b). Spacer loads
differed significantly across phyla (Fig. 5c), with the highest density of
spacer loads for Cyanobacteria and Proteobacteria, on account of the
largest number of genomes, and with the lowest density of spacer
loads for Firmicute_E and Myxococcota. The largest numbers of
spacers in MAGs were found in a cyanobacterial MAG reconstructed
from grassland that possessed 20 spacer sequences. This could be
explained by the fact that Cyanobacteria is the only bacteria with a rich
number of transposable elements and transposase genes involved in
the complex differentiation process52.

We further quantified 8545 Cas-associated genes from 563 MAGs,
with an average of 281.2 ± 219.6 Cas-associated genes per MAG. (Sup-
plementary Fig. 5c, Supplementary Data 5). Cas1 and Cas 2, are highly
conserved, generally as a universal marker for CRISPR-Cas systems53,
which was the most widely-known protein identified from the SMAG
catalogue. Approximately 200 Cas 2 were identified for small putative
nucleases (80–120 aa) and considered a secondmarker forCRISPR-Cas
systems54. Notably, we identified 42 Cas 9, which were potentially
engineered for powerful genome editing tools55. 245 MAGs (43.5%)
possessed less than 10Cas-associatedgenes (Fig. 5d) andonly 1611 Cas-
associated genes (18.8%) were identified with certain Cas-associated
genes (Fig. 5g, Supplementary Fig. 5d). The collection of Cas protein
family profiles is a resource for the identification of CRISPR–Cas
systems3, which also illustrates the necessity and importanceofmining
the soil microbiome.

MAG with the largest number of spacers (20) also possessed a
large number of Cas-associated genes (238) (Supplementary Fig. 5a, c).
Consistent with spacers, MAGs with a genome size of ~5.5Mb, either
from kSGBs or uSGBs, had the highest numbers of Cas-associated
genes (Fig. 5e). The density of Cas-associated genes in genomes varied
with various phyla (Fig. 5f), with the highest density in Patescibacteria
and Firmicute_C, and the lowest density of in Myxococcota and
Desulfobacterota_F. uSGBs expanded the profiles of Cas protein
resources in many phyla, such as Verrucomicrobiota, Armatimona-
dota, Gemmatimonadota, Fusobacteriota and Desulfobacterota_B
(Fig. 5h), indicating that uSGBs offered an important information
about Cas proteins from the soil microbiome. This also demonstrates
the utility ofmetagenomicmining for gene editing tools development.

Connecting MAGs to virus-host associations
Previously uncharacterizedMAGshelp to improvepredictions of virus-
host association prediction, which are crucial for understanding the
roles and impacts of viruses in natural ecosystems. In this study, 21,510
virus-host associations were identified by predicting prophages.
(Supplementary Data 6). Those prophages can be clustered into 257
clusters at the family level. The predicted virus-host associations were
mainly contributed by Actinobacteria (8116), followed by Proteo-
bacteria (3468), Acidobacteria (3162), and Thermoproteota (2310)
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(Fig. 6a). The proportion of the uSGBs contributed to virus–host
associations was 84.6% (Fig. 6b), suggesting that uSGBs from the
SMAG catalogue considerably expand our understanding of virus-host
associations.

To explore the host phylogenetic ranges of viruses, we analyzed
the host taxa of 76 generalist viruses with >25 predicted hosts (The
term “generalist” viruses refer to the potential host range of a virus).
Many studies indicate that viruses can alter the host metabolic
process and participate in element cycling in the soil through a
variety of auxiliary metabolic genes56. Most of those generalist

viruses are mainly predicted from uSGBs, indicating uSGBs from the
SMAG catalogue reveal a great deal of previously unexplored
virus–host associations involved in the geochemical cycles of the
global soil elements. However, the proportion of kSGBs hosts was
>88% for acidobacteriotal virus GSV_39462, proteobacterial virus
GSV_66726, and patescibacterial virus GSV_270. Almost all of those
generalist viruses predicted potential hosts from the same phyla
except GSV_42450 (Fig. 6c), which was predicted from MAGs that
ranged from nine phyla, mainly from Acidobacteria (33 SGBs),
Gemmatimonadota (seven SGBs), and Actinobacteriota (six SGBs).

Fig. 4 | Biosynthetic gene clusters recovered from the SMAG catalogue. a BGCs
of the SMAGbetween kSGBs anduSGBs. All theBGCswere separated into eight BiG-
SCAPE classes. Non-ribosomal peptide synthetase (NRPS), Ribosomally synthesized
and post-translationally modified peptide (RiPPs), polyketide synthase (PKS I),
Terpene, PKS–NRPS hybrid, PKS other, Saccharides, Others. b The relative fre-
quency of BGC types across dominant phyla BGC genes are predominantly iden-
tified in Proteobacteria, Actinobacteriota, Acidobacteriota and Bacteroidota. They

are highly variable across phyla. c Number and BGC types identified from the
SMAG.d Encoding themost remarkable number of BGC clusters including 111 NRPS
or PKS modules and with clear colinear module chains. e The single largest BGC
region found in a soil-derived bacterium from the Acidobacteria phylum and
UBA5704 family. f Distribution and KO assignment of the two largest BGCs from
SMAG and GEM.
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Discussion
Here we established the SMAG catalogue by reconstructing 40,039
bacterial and archaeal genomes, representing 21,077 species-level
genome bins, from large-scale metagenomic assembly. As a result of
our work, the majority (16,530 uSGBs) of reconstructed genomes are
currently unidentified from species to class level, and uSGBs made a
great contribution to increasing the mapping rate of soil
metagenomes.

We found the uSGBs immensely expanded the functional land-
scape of soil microbiota. The pangenome (107) and SNV (582,519,530)
analyses show a large number of unknown core genes that need fur-
ther investigation. Based on the proportion of core genes, we identi-
fied the divergence of pangenome openness across different phyla,
suggesting their divergent roles in ecological functions in soils43. These
results indicated that pangenome evolution analysis within defined
phylogenetic groups should consider the environmental effect41.
A large number of SNVs were detected from uSGBs in the SMAG
catalogue, revealing a lot of previously unknown intraspecies
variations. And the divergent pN/pS ratios indicated the soil micro-
biome experienced a strong purifying selection, which may highlight
the environmental adaptability of species within the community,
emphasizing a balance where deleterious genetic variations are
minimized45.

The SMAG catalogue showed a rich discovery potential for BGC
diversity, which is a vital resource for the synthesis of natural
products57. We found most BGCs identified were from genomes of
uSGBs and the biosynthetic potential of microorganisms is divergent
across various BGC types, indicating the great potential for mining
previously unexplored BGCs from the uncultivated and unknown
microorganisms from soils. However, most BGCs identified from the
SMAG catalogue were fragmented, indicating that short-read sequen-
cing restrained the recovery of full-length BGC sequences from
uncultivated bacteria15, and tools based on Hidden Markov Model
(HMM)-based algorithms limited the accuracy and generalizability of
BGC identification58. Long-read sequencing anddeep learning adopted
for metagenomic assembly may enable more complete genomes59,
high-resolution analysis of resistance determinants and mobile
elements60. Thus, future research can combine the long-read sequen-
cing to construct more complete BGCs15 and machine learning can be
introduced into the identification of the BGCs region61 and the mining
of microbial dark matter60.

The SMAG catalogue also encompassed great potential in the
development of anti-viral defense systems. We detected 8545 natural
CRISPR-Cas genes, revealing the considerable potential of the SMAG
catalogue for mining gene editing tools. We identified that uSGBs
offered plenty of previously unexplored resources of Cas proteins

Fig. 5 | The profile of spacers and Cas-associated proteins in the genomes of
SMAG catalogue. a Most MAGs possessed only one spacer sequence. b, e The
number of spacer sequences and Cas-associated genes did not increase with gen-
omesizes, either for kSGBs or uSGBs. c, fSpacer sequences (n = 662MAGs) andCas-
associated gene (n = 563MAGs) loads differed significantly across phyla, data of (c)

and (f) are presented as mean values +/− SD. d The count of Cas-associated genes
processed among MAGs. g The top 10 number of different Cas proteins pro-
cessed from the SMAG catalogue. Most (6934) of predicted Cas genes were
uncertain. h The profile of Cas-associated genes processed for kSGBs and uSGBs
across phyla. uSGBs expanded the profiles of Cas-associated genes.
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resource. Different phyla showed varied potential for developing
“immune” systems based on the spacers and Cas gene numbers, which
can guide researchers to mine targeted “immune” systems53. Further-
more, the identification of spacers helps to understand the process of
insertion of spacer sequences into the host CRISPR locus to generate
immunological memory62. Overall, the analysis makes the first large-
scale and comprehensive portrayal of the Cas proteins resource in the
soil microbiome, which is a momentous resource for exploring the
molecular “immune” system of microbes.

The uSGBs contributed the most virus-host associations in the
SMAG catalogue. Most virus-host associations were predicted by
prophages, a prevalent infection pathway of viruses in soil
microbiota21. We found divergent host phylogenetic ranges of viruses
across different phyla. Interestingly, the finding of a generalist virus
offers new insights into experimental work of phage cultivation63.
Together, these results demonstrate previously unexplored putative
virus–host connections, expanding our understanding of soil micro-
bial dark matter.

In summary, we have established this soil MAGs catalogue, which
sheds light on soilmicrobial darkmatter andprovides valuable insights
into the diversity and function of soil microbiomes. Besides, given the
large uncultured and unknown diversity remaining in soil micro-
biomes, highlighting major informational databases for provocative
new biological insights and having a high-quality genome catalogue
substantially enhances the resolution and accuracy of metagenome-

based studies for the broad relative readership. Also, the MAGs in the
SMAG catalogue are resources for building genome-scale metabolic
models (GEMs), which would be a crucial resource for designing and
engineering microbiomes. All in all, knowledge gained from this work
is valuable as a genetic resource for future studies based on genome-
centric mining, and to prioritize targets for further experimental
validation.

Methods
Sampling, sequencing, and collection of soil metagenomes
Wedownloaded2941 soilmetagenomes from theNCBI SequenceRead
Archive (SRA)64 publicly available with file sizes exceeding 2GB from
different countries which cover 9 soil ecosystems and about 363 in-
house data were sampled, see details in Supplementary Data 1.

We collected ecosystem classifications manually, and for projects
with insufficient information, we defined the ecosystem type by lati-
tude and longitude using GlobeLand30 and Google Maps In-house
samples from this study were sampled by our team across China (348)
and Europe (15) in 2018–2020 using a standard sampling protocol65.
Five-point sampling method (non-probability sampling) was per-
formed in house samples. All soil samples were kept cool using dry ice
until visible roots and stones were removed. And then all clean soils
were stored at −80 °Cuntil DNAextraction. In all cases, DNAextraction
of 400mg of soil in each sample was performed using MP FastDNA
SPIN Kits 385 for soil (MP Biomedicals, Solon, OH, USA) according to

Fig. 6 | The SMAG resolves virus-host connectivity. a The virus-host association
counts across phyla. b The virus-host associations for kSGBs and uSGBs predicted
by prophages. c The host phylogenetic ranges of viruses. GSV_66726, GSV_527, and

GSV_39462 were the previously unidentified virus from in-house data Global Soil
Virome (GSV).
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the manufacturer’s instructions and DNA was purified and con-
centrated using Qubit fluorometric quantitation (Thermo Fisher Sci-
entific, 388 Waltham, MA, USA). Purified DNA was stored at −20 °C for
sequencing. Metagenomic sequencing from each soil sample was
conducted by Illumina HiSeq 4000 or Illumina novaseq pe150 (Illu-
mina, San Diego, CA, USA), generating 150 bp paired end reads.
Sequence data have been deposited in the public NCBI under Bio-
Project accession numbers PRJNA983538.

Metagenome quality control, assembly
All the downloaded SRAfileswere split into paired-end raw reads using
fastq-dump (v2.9.6) from sratoolkit (v2.9.6) with option ‘—split-3’, and
then all raw reads were separately quality-controlled using
Trimmomatic66 (v2.39) to trimadaptors and primers, and to filter short
(<50bp) and low-quality reads (<20 bases), followed by assembly with
MEGAHIT67 (v1.2.9) with a minimum contig length of 500 bp and with
the options ‘--k-step 10 --k-min 27’ to each sample separately.

Metagenome binning and refinement
Soil MAGs were recovered for individual metagenomic assemblies
using metaWRAP68 on the basis of tetranucleotide frequencies (TNF)
and coverage information, contigs shorter than 1000bp were dis-
carded. The resulting MAGs were refined using the module ‘bin_re-
finement’ from metaWRAP68 (v1.2.1) to combine and improve the
results generated by the three binners. During refinement, the com-
pleteness and contamination of all MAGs were estimated using
CheckM69 (v1.0.11) via the lineage-specificworkflowwith the options ‘-c
50 -x 10’ to filter MAGs to be at least 50% complete, with <10% con-
tamination. Ribosomal RNAs (rRNAs) were identified with nhmmer
function (part of HMMER 3) from Barrnap (v.0.9) with the options
‘-reject 0.01 –e-value 1e-3’ and ‘-kingdom bac/arc’ for bacteria and
archaea, respectively. Transfer RNAs (tRNAs) were annotated with
tRNAscan-SE70 (v.2.0.9) with options ‘-A’ for archaeal species and ‘-B’
for bacterial lineages. Based on these results, we classified theMAGs as
the high quality based on the MIMAG standard24 (>90% completeness,
≤5% contamination, ≥18/20 tRNA genes, and the presence of 5S, 16S,
and 23S rRNA genes), with the remaining classified asmedium quality.

Dereplication and species-level genomebins clustering of SMAG
The 40,349MAGs from the SMAG dataset were further quality-filtered
with the function ‘--checkM_method (lineage_wf)’ to avoid low-quality
genomes, and then the 40,039 filtered MAGs were dereplicated and
clustered into 21,077 SGBs based on 95% ANI with the following
options: ‘-pa 0.9 -sa 0.95 -nc 0.10 -cm larger’ using dRep71 (v2.2.4). To
reduce the computational burden of clustering all genomes, we used
the multi-round clustering method just by set the parameter ‘--multi-
round_primary_clustering’ from dRep which is helpful when clustering
5000+ genomes and will be done with single linkage clustering aiming
to reduce the final computational load which was previously used to
cluster >200,000 human gut MAGs13.

Phylogenetic and taxonomic annotation of SMAG
A total of representative 21,077 SGBs were classified with GTDB-TK72

(v.1.6.0) using ‘classify_wf’ function and default parameters according
to the Genome Taxonomy Database (GTDB) (release 202)37. In short,
the GTDB-Tk classifies each genome based on ANI to a curated col-
lection of reference genomes, placement in the bacterial or archaeal
reference genome tree, and relative evolutionary distance (RED). The
phylogenetic analyses of 21,077 SGBs were performed with
PhyloPhlAn73 (v3.0.60). The phylogeny in Fig. 2 was built using the 400
universal PhyloPhlAn markers with the following options: ‘--diversity
high --accurate --min_num_markers 100’. For the internal steps the
following tools with their set of parameters were used: Diamond74

(v0.9.14.115) with parameters: ‘blastp --quiet --threads 1 --outfmt 6
--more-sensitive –id 50 --max-hsps 35 -k 0’; mafft75 (v7.310) with the

‘--anysymbol’ option; trimal76 (v1.4rev15) with the ‘-gappyout’ option;
FastTree77 (v2.1.10) with ‘-mlacc 2 -slownni -spr 4 -fastest -mlnni 4
-no2nd -gtr -nt’ options; RAxML78 (v8.1.12) with parameters: ‘-m
PROTCATLG -p 1989 <phylogenetic tree computed by FastTree >.’ and
the best tree refined by RAxML is visualized ggtree79 (v3.2.1).

To estimate the relative abundance of each MAG from separate
soil samples, clean reads of each sample were aligned to the SMAG
catalogue after de-replicating all MAGs at 95% identity with dRep71

(v2.2.4) to avoid arbitrary mapping between representatives of highly
similar genomes using BWA80 (v0.7.17). The outputs were converted to
BAM format by Samtools81 (v1.10). Then the BAM was filtered with
coverM v0.2.0 (https://github.com/wwood/CoverM) with the options
“--min-read-percent-identity 0.95 --min-read-aligned-percent 0.90”,
the coverage of each contig was calculated with coverM using ‘trim-
med_mean’ mode, so calculating the coverage as the mean of the
number of reads aligned to each position, with the 10% smallest frac-
tion of positions and 90% maximum fraction for trimmed_mean cal-
culations. The coverage of each MAG was calculated as the average of
contig coverages,weighting each contig by its length in basepairs. The
relative abundance of each lineage in each sample was calculated as its
coverage divided by the total coverage of all genomes in the derepli-
cated set. And samples with relative abundance of mag <0.01% were
considered as rare biosphere, otherwise they were considered as
abundant biosphere36.

Comparing MAGs to >500,000 genomes in public databases
We compared representative genomes from the 21,077 SGBs to a large
number of publicly available reference genomes. Approximately
500,000 reference genomes were obtained from a variety of sources,
includingNCBI RefSeq (n = 282,219), GenBank (123,580MAGs and 1710
SAGs) of November 2021 and multiple system-associated MAGs from
several recent studies (207,593)29,30,82. We first used Mash83 (v2.3) with
the function of ‘dist’ to find themost similar reference genome to each
of the 21,077 SGBs, and then we used the MUMmer84 (v4.0.0) with the
function ‘dnadiff’ and default parameters to estimate ANI between
genome pairs. Based on the analysis results, a species was considered
to have been cultured if it matched an isolate RefSeq genome with at
least 95% ANI over at least 30% of the genome length, and we con-
sidered a species as an unknown genome if it represented only
by SMAG.

Functional analysis of SMAG
And putative protein-coding sequences (CDSs) of SMAG were pre-
dicted using Prodigal85 (v2.6.3) with the ‘-p single’ parameter. The
predicted CDSs were then clustered by MMseqs286 with the
options’--min-seq-id 0.95 -c 0.9 --cluster-mode 2 --cov-mode 1’, and
then the representative CDSs were annotated with eggNOG-
mapper87 (v2.1.6) with database (v5.0)38, and KEGG (Kyoto Encyclo-
pedia of Genes and Genome) and Clusters of Orthologous Groups of
proteins (COGs) functional annotations were derived from the
eggNOG-mapper results.

The secondary-metabolite biosynthetic potential of SMAG
Secondary-metabolite BGCs of SMAG were identified using
antiSMASH58 (v6.1) with default settings and the corresponding data-
base (v5.0)88, Then BGCswere subsequently filtered, retaining only the
ones encoded on scaffolds ≥5 kb to reduce the risk of fragmentation,
as done previously29,89, which resulted in a total of 43,169 BGCs (Sup-
plementary Data 5). And these BGCs were categorized into eight
groups: ‘PKSI’, ‘PKS-NPR_Hybrids’, ‘PKSothers’, ‘NRPS’, ‘RiPPs’, ‘Ter-
pene’, ‘Saccharides’ and ‘Others’, based on the categories suggested by
the BiG-SCAPE90. We selected sequences encoding core biosynthetic
genes from the two BGCs to do sequence identity comparison by
Clustal (v2.1)91, and the KO of the largest BGCs from SMAG and GEM
were assigned using BlastKOALA92v.2.21.
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SNV, Pangenome analysis of SMAG
A total of 2448 species with at least three conspecific genomes
(completeness >= 50%, contamination <= 5%) were used to generate a
catalogue of SNVs (Supplementary Data 3). Wemapped all conspecific
genomes to the representative genome for each species using the
‘nucmer’ program from MUMmer84 (v4.0.0) and filtered alignments
using the ‘delta-filter’ program with options ‘-q -r’ to exclude chance-
and repeat-induced alignments. Thereafter, we identified SNVs using
the ‘show-snps’program. Single-base insertions anddeletionswere not
counted as SNVs. Each SNV locus was included in the catalogue only
when the alternate allele was detected in at least two conspecific
genomes. To filter the synonymous SNVs, we calculated the synon-
ymous ratio with the house script snv-filter.py, and we estimated the
ratio of non-synonymous to synonymous polymorphism rates44 (pN/
pS) to evaluate the genetic diversity. Pan-genome analyses were car-
ried out by selecting 2200 SGBs with >10 high-quality MAGs (com-
pleteness >= 80%, contamination <= 5%) using Roary93 (v3.12.0), with
theoptions of aminimumaminoacid identity at90% (‘-i 90’) and a core
gene defined at 90% presence (‘-cd 90’).

CRISPR and Cas protein
CRISPR arrays were identified on contigs longer than 3 kb in MAGs
using a combination of PLIER-CR94 (v0.4.2). And the MAGs containing
fewer than four CRISPR-associated proteins were removed. Proteins
were predicted with Prodigal (v2.6.3) and de-duplicated to construct a
database. Proteins with lengths between 200 and 1000 aa were
obtained. The NR database was used to remove proteins of known
function and Cas proteins in NCBI were used for further character-
ization of the candidate Cas proteins.

Connecting MAGs to viruses identified from VirSorter2
To maximize the number of prophages identified in MAGs, we used
VirSorter295 (v2.0.alpha) to perform de novo prediction. Only those
classified into prophage by CheckV96 (Version 1.0) were retained. To
exclude possible decayed prophages, that is, integrated virus genomes
which are now inactive and progressively removed from the host
genome, all predictions for which 30% ormore of the genes displaying
the best hit to Pfam (35.0)97 were excluded (thresholds: hmmsearch
score ≥ 50 and E ≤0.001).

Statistics and reproducibility
No data were excluded from the analyses. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Code availability
The workflow used to generate the genome, taxonomic analysis, and
functional annotation, alongside the BGCs, pan-genome, SNV anno-
tations, and virus predictions and scripts used to generate the figures
are described at GitHub repository through https://github.com/
Caiyulu-818/SMAG/releases/tag/v1.0 (ref. 98). All statistical analyses
for generating figures were performed using the R environment
v4.1.299.

Data availability
The raw sequence data of the in-house samples reported in this paper
and the 16,530 uSGBs of the SMAG catalogue have been deposited to
NCBI SRA and GenBank under the bioproject accession number:
PRJNA983538. For the bulk download, all the MAGs, SNV catalogues
and viruses predicted the SMAG has been deposited in Zenodo repo-
sitory through https://doi.org/10.5281/zenodo.7341719 (ref. 100) and
also be available in the freely accessible interface-web of the SMAG

catalogue (https://smag.microbmalab.cn). The source data underlying
Figs. 1–6 and Supplementary Figs. 1-6 are provided as Source Data files
and have been deposited in the Figshare database (https://doi.org/10.
6084/m9.figshare.23298791). The databases used in this study include
GEM catalog (https://genome.jgi.doe.gov/portal/GEMs/GEMs.home.
html), the UHGG (https://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/), and GTDB database Release 202 (https://data.ace.
uq.edu.au/public/gtdb/data/releases/release202/).
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