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Summary

� The genomic architecture of functionally important traits is key to understanding the main-

tenance of reproductive barriers and trait differences when divergent populations or species

hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture

in natural hybrids of two ecologically divergent Populus species.
� We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus

tremula for genome-wide markers from reduced representation sequencing, phenotyped the

plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and

growth traits, and used a Bayesian polygenic model for mapping.
� We detected three classes of genomic architectures: traits with finite, detectable associa-

tions of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits

with indications for polygenic heritability only; and traits with no detectable heritability. For

the first class, we identified genome regions with plausible candidate genes for phenyl-

propanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl

transferases.
� GWAS in natural, recombinant hybrids represent a promising step towards resolving the

genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-map-

ping and subsequent functional characterization of genes and networks causing differences in

hybrid performance and fitness.

Introduction

Understanding the genetic architecture of phenotypic trait differ-
ences between divergent populations and species has long been a
fundamental goal in evolutionary genetics. At the within-species
level, interest has primarily been on understanding local adapta-
tion in wild species and the selective forces operating during
domestication of agriculturally important species (Atwell et al.,
2010; Huang et al., 2011; Jones et al., 2012; Li et al., 2012; Evans
et al., 2014). At the between-species level, evolutionary geneticists
have sought to understand the origin and maintenance of adap-
tive trait differences and reproductive barriers between species,
and thus the mechanisms maintaining species integrity (Coyne &
Orr, 2004; Feder et al., 2012; Lindtke et al., 2013; Turner &
Harr, 2014).

The genetic architecture of traits is frequently inferred from
family-based association studies or experimental crosses (e.g.
Tanksley, 1993; Kong et al., 2013; Liller et al., 2017), but both
methods are limited to organisms that exhibit short generation
times, are readily crossed in the glasshouse or laboratory, and pro-
duce abundant offspring to yield sufficient power for mapping
(e.g. Bradshaw et al., 1998; Rieseberg et al., 2003; Zhu et al.,
2003). One way to extend genetic mapping to longer-lived
organisms is to use recombinants from natural hybrid zones (Bar-
ton & Hewitt, 1985; Rieseberg & Buerkle, 2002; Buerkle &
Lexer, 2008). This approach, known as admixture mapping, was
originally introduced by human geneticists (Chakraborty &
Weiss, 1988) and its power, potential and limitations have been
discussed elsewhere (e.g. Briscoe et al., 1994; Buerkle & Lexer,
2008; Lindtke et al., 2013). Briefly, the approach potentially
facilitates mapping by making use of natural hybrid crosses in sit-
uations where carrying out experimental crosses would be*Joint senior authors.
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difficult (e.g. in long-lived species), with the power to detect asso-
ciations depending largely on the lengths of haplotype blocks and
thus the admixture history of populations. Despite its frequent
use in human medical genetics, admixture mapping has only
rarely been applied to plant and animal species (sunflowers
(Rieseberg et al., 1999), sticklebacks (Malek et al., 2012), poplars
(Lindtke et al., 2013; Suarez-Gonzalez et al., 2018), canids
(vonHoldt et al., 2016) and warblers (Brelsford et al., 2017)).

What makes admixture mapping attractive is the opportunity
to analyze the genomic architecture of trait differences that vary
between divergent populations or species. Also, compared with
mapping in controlled crosses, much more of the phenotypic and
genetic variation of wild species may be captured (Lexer et al.,
2004; Buerkle & Lexer, 2008). A challenging aspect, however, is
the complexity of linkage disequilibrium (LD) along the genome,
which may be affected by genomic incompatibilities and cou-
pling effects expected in hybrid zones of highly divergent popula-
tions (Barton & Hewitt, 1985; Bierne et al., 2011; Lindtke et al.,
2013; Gompert et al., 2017).

Hybrid zones formed by Populus species represent textbook
examples of natural interspecific crosses (Stettler et al., 1996;
Arnold & Kunte, 2017). Populus is a model genus for studies of
tree form, function and evolution of forest foundation species,
including their involvement in eco-evolutionary dynamics (Tuskan
et al., 2006; Whitham et al., 2006). This study is focused on the
ecologically divergent Populus alba (white poplar), widespread in
southern Eurasia and northern Africa, and Populus tremula (Euro-
pean aspen), found mainly in northern Eurasia. Even after > 2.8
Myr of divergence (Christe et al., 2017), the reproductive barriers
between these species are incomplete, and thus they hybridize in
regions where their ranges overlap (Christe et al., 2016; Macaya-
Sanz et al., 2016; Zeng et al., 2016). Despite strong postzygotic
barriers, a broad range of recombinant hybrid seeds are formed in
these hybrid zones (Lindtke et al., 2014; Christe et al., 2016).
Here, we use a recombinant mapping population composed of
plants grown from seeds collected from open pollinated trees in a
natural hybrid zone and cultivated in two common gardens. Using
these, we study a range of functionally and ecologically relevant
traits exhibiting phenotypic differentiation among the parental
species and their hybrids, including phytochemical traits (the
abundances of phenylpropanoid secondary metabolites in leaves),
leaf morphology and growth-related characters.

Recent results from genome-wide association studies (GWAS)
in trees, humans and other species suggest that the architecture of
adaptive traits is often polygenic, that is, they are not determined
by a few genes of large effect, but rather by many loci with small
effect (Pritchard et al., 2010; Rockman, 2012; Evans et al., 2014;
Hall et al., 2016; Pasaniuc & Price, 2017). Our results highlight
the importance of both finite, detectable (‘sparse’) genetic loci
and highly polygenic heritability of quantitative traits. Knowing
these contributions is important for any in-depth molecular
genetic or genomic study aimed at dissecting complex, function-
ally important traits. For those traits for which ‘finite’ architec-
tures were detected, we identified candidate genes located within
associated genomic regions and we discuss potential molecular
mechanisms underlying trait variation.

Materials and Methods

Plant materials

We analyzed seedlings of P. alba L., P. tremula L., and their
hybrids, also known as P.9 canescens (Aiton) Sm. All seeds were
collected from open-pollinated mother trees in the Parco Lom-
bardo della Valle del Ticino in the north of Italy (Lexer et al.,
2010; Lindtke et al., 2014). Seeds were sampled in 2010, 2011
and 2014 and germinated broadly following Lindtke et al.
(2014). At c. 2 months after germination, we moved seedlings to
larger pots and arranged them in a common garden using a block
design with randomized positions within blocks. We grew c. 500
seedlings from 39 families in two locations: at the Botanical Gar-
den of the University of Fribourg, Switzerland, and at the
University of Salerno, Italy. Detailed information about the
number of individuals per family and common garden can be
found in Supporting Information Table S1.

Genetic data

We conducted a restriction site-associated DNA sequencing
(RAD-seq) experiment as follows. First, we extracted DNA from
silica-dried leaf material of 472 individuals using the Qiagen
DNeasy Plant Mini Kit (Valencia, CA, USA) and standardized
concentrations to 20 ng ll�1. Second, we submitted all samples
to Floragenex (Eugene, OR, USA), where five libraries with 95
individuals each were prepared according to their standard com-
mercial procedure, very similar to the original RAD-seq protocol
(Baird et al., 2008). Specifically, genomic DNA was digested with
the restriction enzyme PstI, chosen according to previous RAD-
seq studies of these species and their hybrids (St€olting et al.,
2013; Christe et al., 2016), and the libraries were sequenced sin-
gle-ended on one lane of an Illumina HiSeq2500 instrument
each (SRA accession number PRJNA528699). Third, we pro-
cessed RAD-seq data using state-of-the-art tools, including map-
ping to the P. trichocarpa reference genome with BOWTIE2 2.2.4
(Langmead & Salzberg, 2012) and variant calling with GATK

3.4.46 (DePristo et al., 2011) following best practice (Methods
S1 – scripts for these analyses and those described below are avail-
able at https://bitbucket.org/LuisaB/gwas_analyses_populus/
src/master/). Fourth, we applied strict filters so as to retain only
reliable sites: we removed all sites with more than segregating
alleles or with an average depth above the 95% quantile to
exclude potentially paralogous loci. To avoid single nucleotide
variants (SNVs) originating from misalignments, we further
removed indels and variant sites within 5 bp of all indels that we
could identify confidently using GATK on the full data.

Inference of genome-wide ancestry

We estimated genome-wide ancestry (q) using entropy (Gompert
et al., 2014) directly from genotype likelihoods after removing
SNVs with either minor allele frequency < 0.05 or > 50% miss-
ing data, and after correcting genotype likelihoods for biases asso-
ciated with RAD-seq (Methods S2). We further calculated FST
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between parental species using Hudson’s estimator (Hudson
et al., 1992) on the parental allele frequencies inferred with
entropy.

Inference of local ancestry

Despite substantial genetic differentiation between the parental
species, they share alleles and genotypes at many loci, so that LD
in our study population decays rapidly with physical distance.
Thus, we used local ancestry for trait mapping, which provided
greater LD along chromosomes (see below). LD is required for
mapping because causal allelic variants are unlikely to be directly
observed in reduced representation studies. We estimated local
ancestry using RASPBERRY (Wegmann et al., 2011), which imple-
ments a hidden Markov model to explain haplotypes of hybrid
individuals as a mosaic of reference haplotypes provided for each
species.

We obtained reference haplotypes by phasing previously char-
acterized pure P. alba and P. tremula individuals (51 each) from
the Italian, Austrian and Hungarian hybrid zones (Christe et al.,
2016) using FASTPHASE (Scheet & Stephens, 2006), building
input files with FCGENE (Roshyara & Scholz, 2014). For use in
RASPBERRY, individuals in the reference panels were not allowed
to have missing data. The genotype calling step in our common
garden individuals was therefore restricted to the 45 193 SNVs
covered in all parental individuals (Christe et al., 2016). We fur-
ther masked all genotype calls based on < 5 reads.

To infer local ancestries with RASPBERRY we used the muta-
tion rates previously estimated for P. alba and P. tremula (Christe
et al., 2016). As a prior on the switching probabilities we further
used 5 cMMb–1 as the default recombination rate, as estimated
for P. trichocarpa (Tuskan et al., 2006), and sample-specific
genome-wide ancestry q estimated using ADMIXTURE (Alexander
et al., 2009) on all 472 individuals jointly. The remaining param-
eter settings, initial optimization runs, and incorporation of
RAD-seq genotyping error rates are described in detail in Meth-
ods S2.

For mapping, we then used the expected ancestry genotype cal-
culated from the posterior probabilities obtained with
RASPBERRY. We verified the presence of LD by calculating the
pairwise squared correlation between point estimates of local
ancestries and visualized the results using the package LDHEATMAP

(Shin et al., 2006) in R (R Core Team, 2016).

Phenotypic data

We used 46 phenotypes, classified into phytochemical, morpho-
logical and growth traits (Tables 1, S2). For phytochemical traits,
we focused on secondary metabolites in leaves from three differ-
ent branches of the phenylpropanoid pathway: chlorogenic acids,
salicinoids and flavonoids (see Methods S3 for more rationale on
trait choice). These secondary metabolites were previously quan-
tified for a subset of 133 samples using ultra-high-pressure LC
quadrupole-time-of-flight MS (Caseys et al., 2012, 2015) and we
completed these measurements here for all 266 samples germi-
nated in 2011.

For morphological traits, we measured the leaf area (LFAREA)
and leaf shape (LFSHAP), known to be strongly divergent
between P. alba and P. tremula (Lexer et al., 2009). To account
for within-individual variability, we followed Lindtke
et al.(2013) and measured four leaves per plant using a ruler with
a precision of 1 mm, averaged the lengths and widths for each
seedling, and calculated LFAREA from these. LFSHAP was cal-
culated by dividing the average leaf length by the average leaf
width (Lindtke et al., 2013).

For growth traits we included measures of height and diameter
of the seedlings at 1 and 2 yr after planting (HEIGHT1,
HEIGHT2, DIAM1 and DIAM2). Height was quantified with a
tape measure from the soil to the top of the main stem with a pre-
cision of 1 cm, whereas diameter was assessed with calipers with a
precision of 1 mm at 10 cm above the soil. HEIGHT1 and
DIAM1 were available for seedlings planted in 2010, seedlings
planted in 2011 in Fribourg (not in Salerno) and seedlings
planted in 2014. HEIGHT2 and DIAM2 were available only for
seedlings planted in 2011, in both Fribourg and Salerno.

To examine how phenotypic variation relates to q, we quanti-
fied the proportion of phenotypic variance explained by this vari-
able using linear regressions for each trait We then bootstrapped
the data 1000 times to obtain confidence intervals.

Admixture mapping

To carry out GWAS by admixture mapping, we used the
Bayesian sparse linear mixed model (BSLMM; Zhou & Stephens,
2012) in GEMMA v.0.94.1 (Zhou et al., 2013), because it imple-
ments a polygenic approach, in which the effects of multiple loci
on the phenotype are evaluated simultaneously. This provides a
more complete view of genomic architecture than simpler linear
models and avoids large numbers of significance tests. GEMMA

provides estimates for a set of parameters describing the amount
of phenotypic variance explained either by loci with clearly
detectable effects along the chromosomes (‘sparse effects’) or by
the infinitesimal effects of all markers (‘random effects’ estimated
from the kinship matrix). This set of parameters includes the pro-
portion of phenotypic variance explained by the sparse effects
and random effects (PVE), the proportion of PVE explained by
the sparse effects only (PGE) and the putative number of sparse
effect loci involved in determining the phenotype (n_gamma).
The product of PVE and PGE gives the proportion of total phe-
notypic variance explained by sparse effects, which is commonly
referred to as narrow-sense heritability h2.

GEMMA also estimates the probability of each locus having a
detectable sparse effect on the phenotype (the posterior inclusion
probability, PIP). Neighboring SNVs in a genomic region are
expected to have some redundancy and exchangeability as predic-
tors of phenotype, and therefore to have lower individual PIPs
than if a SNV tagged variation in the phenotype. To appropri-
ately aggregate information from neighboring SNVs regarding
the cumulative evidence for sparse effects in an interval, we
summed PIPs in nonoverlapping windows of 0.5 Mb, as we
found windows of 1 or 2 Mb resulted in similar patterns but
made the identification of candidate genes harder (Fig. S1). We
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selected windows with a PIP ≥ 0.4 for further analysis of candi-
date genes, which is a higher threshold compared with other stud-
ies (Gompert et al., 2013; Comeault et al., 2014; Chaves et al.,
2016).

To account for nonindependence among samples, and to
attribute phenotypic variation to overall genetic composition of
individuals (the highly polygenic component of heritability),
GEMMA estimates a kinship matrix from the genetic data and
includes it as covariate in the mixed model. As we used local
ancestries as genetic input, this kinship matrix is effectively a

genomic similarity matrix and captures differences in ancestry
across individuals and families (Fig. S2). Before running GEMMA,
we further regressed out q, the planting year and the common
garden location from the phenotypes using a linear model to
account for their potentially confounding effects.

For each trait, we ran 10 independent Markov chains of 12
million iterations and discarded the first two million as burn-in.
To evaluate the robustness of our conclusions, we also ran
GEMMA including the covariates in the input file (-notsnp option),
rather than regressing them out. For the 12 phytochemical

Table 1 List of phenotypic traits analyzed in this study.

Category Trait Abbreviation n1 Covariates2 Binary3

Phytochemical, chlorogenic acid 3-Caffeoyl quinic acid C1 266 q, cg no
3-Coumaroyl quinic acid C2 266 q, cg No
5-Caffeoyl quinic acid C3 266 q, cg No
3-Feruloyl quinic acid C4 266 q, cg No
1-Caffeoyl quinic acid C5 266 q, cg No
5-Coumaroyl quinic acid C6 266 q, cg No
Coumaroyl quinic acid isomer C6b 133 q No
(1,5) Dicaffeoyl quinic acid C7 266 q, cg No

Phytochemical, salicinoid Salicin C8 266 q, cg No
Salicortin C9 266 q, cg No
Salicortin isomer 1 C9i 266 q, cg No
Salicortin isomer 2 C9ii 133 q No
Salicortin isomer 3 C9iii 266 q, cg No
Acetyl-salicortin C10 266 q, cg No
Acetyl-salicortin isomer 1 C10i 266 q, cg No
Acetyl-salicortin isomer 2 C10ii 266 q, cg No
HCH-salicortin C12 266 q, cg No
Tremuloidin C13 266 q, cg No
Tremulacin C14 266 q, cg No
Tremulacin isomer C14i 266 q, cg No
HCH-tremulacin C15 266 q, cg No
Acetyl-tremulacin C16 266 q, cg Yes

Phytochemical, flavonoid Catechin C17 266 q, cg No
Quercetin-rutinoside-pentose C18 266 q, cg No
Quercetin-glucuronide-pentose C19 266 q, cg Yes
Quercetin-hexose-pentose C20 266 q, cg No
Kaempferol-rutinoside-pentose C21 266 q, cg Yes
Isorhamnetin-rutinoside-pentose C22 266 q, cg Yes
Quercetin-3-O-rutinoside C23 266 q, cg Yes
Quercetin-3-O-glucuronide C24 266 q, cg No
Quercetin-3-O-glucoside C25 266 q, cg No
Kaempferol-3-O-rutinoside C26 266 q, cg Yes
Isorhamnetin-3-O-rutinoside C27 266 q, cg Yes
Quercetin-3-O-arabinopyranoside C28 266 q, cg Yes
Kaempferol-glycuronide C29 266 q, cg Yes
Quercetin-rhamnoside C30 266 q, cg No
Isorhamnetin-glycoside C31 266 q, cg No
Isorhamnetin-glycuronide C32 266 q, cg Yes
Isorhamnetin-acetyl-hexose C33 266 q, cg Yes
Isorhamnetin-rhamnoside C34 266 q, cg Yes

Morphological Leaf area LFAREA 445 q, cg, y –
Leaf shape LFSHAP 445 q, cg, y –

Growth Height, first year HEIGHT1 321 q, y –
Height, second year HEIGHT2 258 q, cg –
Diameter, first year DIAM1 323 q, y –
Diameter, second year DIAM2 258 q, cg –

1Number of individuals with trait data.
2Covariates included: q, genome-wide ancestry; cg, common garden location; y, planting year; PIP, for posterior inclusion probability.
3Whether the presence or absence of the chemical compound was also mapped as a binary trait in GEMMA.
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compounds with zero abundance in > 10% of individuals, we
further coded trait values as presence (1) and absence (0) and
used binomial logistic regression to obtain residuals used as phe-
notypic information. Additional information on GEMMA models
and parameter settings can be found in Methods S4.

Analysis of traits with accessible, sparse genomic
architecture

We selected a core set of traits with evidence for sparse, finite
architectures for further analysis. These traits had an estimated
h2 ≥ 0.01 and n_gamma > 0 with at least 95% posterior probabil-
ity. For these traits we then selected windows with PIP ≥ 0.4 (also
for models of binary traits) and retrieved genes annotated in them
in the P. trichocarpa reference genome (Ptrichocarpa_210_v3.0;
Tuskan et al., 2006) and in Arabidopsis thaliana (The Arabidopsis
Information Resource; Berardini et al., 2015) to identify ortholo-
gous genes. We then examined the list of genes for candidates
putatively involved in the control and modulation of the pheno-
types analyzed in this study.

Results

Genome-wide ancestry

After filtering, we kept 127 322 SNVs to infer genome-wide ances-
try (q) across individuals. We found considerable variation in the
genomic composition of the seedlings, spanning the full range
between the parental species (0 and 1; Fig. 1a). The average FST
between the species was 0.3922, which is very similar to previous
estimates based on a range of different molecular data (Lexer et al.,
2007; St€olting et al., 2013; Christe et al., 2016). Despite this ele-
vated differentiation, most alleles were shared between species,
with only 11.6% showing allele frequency difference > 0.95.

Local ancestry inference

We estimated local ancestry using RASPBERRY (Wegmann et al.,
2011) based on 32 413 SNVs passing filters and under a model
with five generations since admixture, ancestral recombination
rates of 500, and a miscopying rate of 0.06, which had the high-
est likelihood. Local ancestry analysis revealed a genomic mosaic
of homospecific ancestry segments derived from P. alba and
P. tremula and segments with heterospecific ancestry (Fig. 1b). As
expected from genome-wide ancestries, we observed more alba-
like than tremula-like hybrids in our sample set (Fig. S3). Chro-
mosomes in individuals frequently switched between homospeci-
fic segments of the two parental species without passing through
a transitory region of heterospecific ancestry (Fig. S3), consistent
with the well-known challenge of correctly recovering all
heterozygous genotypes in RAD-seq experiments (Davey et al.,
2013; Bresadola et al., 2019).

Admixture LD

Successful mapping in any association study depends on the
extent of LD between sites (Remington et al., 2001; Stracke et al.,
2007). LD in our data displayed spatial decay patterns along
chromosomes suitable for phenotype mapping: adjacent loci
showed strong LD of ancestry state, which decayed gradually
with physical distance (Figs 2, S4, S5).

Phenotypic differentiation

Traits in our GWAS showed variable degrees of differentiation
between P. alba and P. tremula. Two example traits are shown in
Fig. 3: C12, which showed strong divergence between P. alba
and P. tremula and intermediate values in hybrids, and C34,
which exhibited similar abundance in all genotypic classes (for
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Fig. 1 Genomic composition of genome-wide association study (GWAS) panel. (a) Genome-wide ancestry q for each common garden seedling, as
estimated by entropy. Orange and blue rectangles highlight Populus tremula individuals (q < 0.05) and Populus alba individuals (q > 0.95), respectively,
and the gray rectangle indicates hybrids. Ninety-five per cent confidence intervals are too small to be depicted. (b) Local ancestries along the chromosomes
of 28 exemplary individuals (each row is an individual), representing the range of variation of q. Confidence in ancestry estimates is shown by shades from
white (unknown ancestry) to blue (P. alba ancestry), orange (P. tremula ancestry) or gray (heterospecific ancestry). See Supporting Information Fig. S3 for
the results of all individuals.
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box plots summarizing patterns of variation for all traits, see Figs
S6, S7). For some traits, we detected transgressive phenotypes in
hybrids (e.g. C34; Fig. 3b,d). The proportion of phenotypic vari-
ance explained by genome-wide ancestry (q) followed a heteroge-
neous pattern (Fig. 4a), broadly mirroring patterns of intra- and
interspecific variability for the studied traits (Fig. S7).

Admixture mapping

Parameter estimates obtained with the BSLMM implemented in
GEMMA revealed a continuum of genomic architectures (Figs 4b,
S8; Table S3). For further analysis, we grouped them into three
main classes (Table 2):
1 The first class included traits with strong evidence for heritabil-
ity and with both the genomic background and loci with measur-
able effect contributing to the phenotypic variation. This class of
loci with strong evidence for a genetic role in explaining pheno-
types included 16 phytochemical traits with h2 ≥ 0.01 with at
least 95% probability (Table 2; Figs 4b, 5a). These were the phy-
tochemical traits showing the highest values of median h2 and
highest probability of n_gamma > 0 (Fig. 4b,c). An additional

trait (C19) was considered part of this class, although it did not
strictly satisfy the threshold on h2 (see later).
2 The second class corresponds to traits for which only the
genomic background appears to play a role in explaining the phe-
notype, while the actual contribution of individual loci with mea-
surable effect on the phenotype is less clear. This group
encompasses six phytochemical traits, the growth traits DIAM1
and HEIGHT1 and the morphological trait LFSHAP (Table 2;
Figs 4b, 5b), which do not meet the heritability threshold outlined
earlier, but for which PVE was ≥ 0.05 with > 97% probability.
3 The third class included traits for which both the genomic back-
ground and the variation explained by loci with measurable effect
were not significantly different from zero, thus causing h2 to
approach zero. The most evident cases for this scenario were phyto-
chemical traits C4 (Fig. 5c), C9, C9i and C34, for which h2 < 0.01
with > 60% probability and h2 < 0.05 with > 90% probability. The
probability of n_gamma = 0 was the highest for these traits. In total,
nine phytochemical traits and the growth traits DIAM2 and
HEIGHT2 were identified to be in this class (Tables 2, S2).

For the remaining traits (eight phytochemical traits and
LFAREA; Table 2), the posterior distributions of h2 did not allow

(a) (b)

Fig. 2 Admixture linkage disequilibrium (LD)
on chromosome 9 calculated as pairwise
squared correlation between point estimates
of local ancestries (R2) in an admixed
seedling population of Populus alba and
Populus tremula. (a) Black lines indicate the
positions of analyzed loci along the
chromosome, and darker blue shades
represent stronger LD. (b) LD decay as a
function of physical distance along the
chromosome. N sites indicate the number of
loci analyzed on this chromosome. Results
for the remaining chromosomes were very
similar (Supporting Information Figs S4, S5).
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Fig. 3 (a, b) Degrees of differentiation between Populus alba, Populus tremula and their hybrids for two phytochemical traits (C12 and C34, respectively).
T, P. tremula (q < 0.05); H, hybrid seedlings with 0.05 ≤ q ≤ 0.95; A, P. alba (q > 0.95). Boxes represent the first and third quartiles, whiskers extend to the
lowest and highest data points within 1.59 interquartile range (IQR) from the first and third quartiles, respectively. (c, d) Relationship between genome-
wide ancestry (q, x axis) and the two phytochemical traits. P. tremula-like individuals are on the left, where q < 0.05, and P. alba-like individuals are on the
right, where q > 0.95. Hybrid seedlings exhibit intermediate values of q. Linear regression lines are shown as visual guides only and are not intended to
suggest that a linear regression function represents the best fit to the data.
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us to obtain clear insights concerning their genomic architecture.
It was therefore not possible to assign them to a specific class.

Analysis of focal traits with finite genomic architecture

We identified the genomic regions with sparse effects for the 16
traits in the first class of genomic architectures. All of these were
phytochemical traits, that is, secondary metabolite compounds:
one chlorogenic acid (C6, 5-coumaroyl quinic acid), three salici-
noids (C10i, acetyl-salicortin isomer 1; C12, HCH-salicortin; C15,
HCH-tremulacin) and 12 flavonoids (C18, quercetin-rutinoside-
pentose; C20, quercetin-hexose-pentose; C21, kaempferol-rutinoside-
pentose; C22, isorhamnetin-rutinoside-pentose; C23, quercetin-3-

O-rutinoside; C24, quercetin-3-O-glucuronide; C25, quercetin-3-
O-glucoside; C27, isorhamnetin-3-O-rutinoside; C29, kaempferol-
glycuronide; C31, isorhamnetin-glycoside; C32, isorhamnetin-
glycuronide; C33, isorhamnetin-acetyl-hexose). As mentioned ear-
lier, we investigated an additional trait as part of this set (C19,
quercetin-glucuronide-pentose), as it exhibited a genomic window
with PIP ≥ 0.4 and only barely missed our threshold on h2 with a
posterior probability > 93%.

Eleven traits with finite effects were associated with a single
genomic window with PIP ≥ 0.4 per trait, whereas traits C18,
C22, C23, C31, C32 exhibited two or three windows above this
threshold. C33 had no genomic window with PIP ≥ 0.4, despite
satisfying the requirements regarding h2 and n_gamma. As the
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Fig. 4 Results on genomic architecture for all traits analyzed in an admixed seedling population of Populus alba and Populus tremula, grouped based on
functional similarities among traits (phytochemistry including chlorogenic acids, salicinoids, and flavonoids; morphology; growth) and ordered according to
the decreasing median of narrow-sense heritability h2. (a) Proportion of phenotypic variance explained by genome-wide ancestry q. Bars indicate 95%
confidence intervals. (b) Violin plots showing the posterior distributions of h2 (narrow-sense heritability) of traits assigned to the first class of genomic
architecture (blue), the second class (green), the third class (pink), and of traits which could not be assigned to any class (gray). C19 is shown in light blue,
as it only barely missed our threshold on h2 to be included in the first class and showed a sharp posterior inclusion probabilities peak (see the Results section
and Table 2). (c) Heat map of the values of n_gamma, the putative number of sparse effect loci. Darker shades indicate a higher number of occurrences for
the corresponding value of n_gamma in the posterior distribution.
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phytochemical compounds underlying traits C19, C29 and C32
were not produced by > 10% of individuals, we also conducted
mapping on the presence or absence of these compounds (binary
analysis; Notes S1). This analysis also revealed identifiable sparse
effects, but only for C29 did the signal reside in the same
genomic window as in the quantitative analysis. For traits C19
and C32, in contrast, the identified windows did not overlap,
suggesting that different variants are responsible for downregulat-
ing or inhibiting the pathway leading to these compounds.

Windows of special interest were located on chromosomes 1,
3, 6, 11, 12, 13, 15 and 18 (Fig. 6; Notes S2; Table S4). Several
windows showed PIP peaks for more than one trait: this was the
case for two windows on each of the chromosomes 11, 12 and
15. Particularly interesting is the window between 3 and 3.5Mb
on chromosome 12, which appears to be involved in explaining
six different phytochemical traits, all belonging to the flavonoid
branch of the phenylpropanoid pathway. The results obtained
with alternative modeling options in GEMMA (Methods S3) cor-
roborated those obtained with our primary approach (Notes S1).

Candidate genes in windows with high PIP

Within the windows of interest (PIP ≥ 0.4), we identified several
candidate genes potentially responsible for the significant associa-
tions between specific genomic regions and phenotypic traits.
Most conspicuously, these windows contained genes encoding
MYB-type transcription factors known to function in combination
in plants (P. trichocarpa gene models Potri.001G005100,
Potri.013G149100, and Potri.013G149200; H€oll et al., 2013;
Liu et al., 2014); several UDP-glycosyl transferases, that is, proteins
able to transfer sugar moieties with important roles in phenyl-
propanoid compound biosynthesis (e.g. Potri.011G060300 and
Potri.011G061000; Aksamit-Stachurska et al., 2008; Babst et al.,
2014; Caseys et al., 2015); a glycosyl hydrolase involved in the
biosynthetic flow by reducing the complexity of sugars of com-
pounds (Potri.015G010100); COMT1, a methyl transferase that
transforms quercetins into isorhamnetins (Potri.015G003100);
and CHS, a chalcone synthase (Potri.012G138800). More infor-
mation on candidate genes found in genomic windows with high
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Fig. 5 Posterior distributions of the proportion of phenotypic variance explained by the sparse effects and random effects (PVE, red), the proportion of PVE
explained by the sparse effects only (PGE, green) and narrow-sense heritability (h2, yellow) obtained from a genome-wide association study (GWAS) on an
admixed seedling population of Populus alba and Populus tremula. Posterior distributions are shown for an exemplary trait of each class: (a) quercetin-3-
O-glucuronide (C24) for the first class; (b) leaf shape (LFSHAP) for the second class; and (c) 3-feruloyl quinic acid (C4) for the third class.

Table 2 Traits assigned to each class of genomic architecture, as suggested by hyperparameter posterior distributions from GEMMA.

Trait class Inclusion criteria Traits1

First h2 ≥ 0.01 with > 95% probability C6, C10i, C12, C15, C18, C20, C21, C22, C23, C24, C25, C27, C29, C31, C32, C33, C192

Second h2 ≥ 0.01 with < 95% probability, but
PVE ≥ 0.05 with > 97% probability

C1, C2, C13, C14, C26, C30, HEIGHT1, DIAM1, LFSHAP

Third h2 < 0.01 with ≥ 30% probability C4, C8, C9, C9i, C9ii, C10, C17, C28, C34, HEIGHT2, DIAM2
Not assigned — C3, C5, C6b, C7, C9iii, C10ii, C14i, C16, LFAREA

1C1, 3-caffeoyl quinic acid; C2, 3-coumaroyl quinic acid; C3, 5-caffeoyl quinic acid; C4, 3-feruloyl quinic acid; C5, 1-caffeoyl quinic acid; C6, 5-coumaroyl
quinic acid; C6b, coumaroyl quinic acid isomer; C7, (1,5) dicaffeoyl quinic acid; C8, salicin; C9, salicortin; C9i, salicortin isomer 1; C9ii, salicortin isomer 2;
C9iii, salicortin isomer 3; C10, acetyl-salicortin; C10i, acetyl-salicortin isomer 1; C10ii, acetyl-salicortin isomer 2; C12, HCH-salicortin; C13, tremuloidin;
C14, tremulacin; C14i, tremulacin isomer; C15, HCH-tremulacin; C16, acetyl-tremulacin; C17, catechin; C18, quercetin-rutinoside-pentose; C19,
quercetin-glucuronide-pentose; C20, quercetin-hexose-pentose; C21, kaempferol-rutinoside-pentose; C22, isorhamnetin-rutinoside-pentose; C23,
quercetin-3-O-rutinoside; C24, quercetin-3-O-glucuronide; C25, quercetin-3-O-glucoside; C26, kaempferol-3-O-rutinoside; C27, isorhamnetin-3-O-
rutinoside; C28, quercetin-3-O-arabinopyranoside; C29, kaempferol-glycuronide; C30, quercetin-rhamnoside; C31, isorhamnetin-glycoside; C32,
isorhamnetin-glycuronide; C33, isorhamnetin-acetyl-hexose; C34, isorhamnetin-rhamnoside; LFAREA, leaf area; LFSHAP, leaf shape; HEIGHT1, height,
first year; HEIGHT2, height, second year; DIAM1, diameter, first year; DIAM2, diameter, second year.
2This trait does not strictly satisfy the requirements for the first class, but was included because it showed a strong signal for heritability (h2 ≥ 0.01 with
> 93% probability – Supporting information Table S3) and a sharp posterior inclusion probability peak (see text).
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PIP is provided in Notes S2 and Table S4, and the most plausible
candidate genes are discussed in the following.

Discussion

Early genetic mapping studies have often pointed to potentially
simple, sparse genetic architectures of phenotypic traits in wild
and domesticated species (reviewed by, e.g., Coyne & Orr,
2004), but we now know that adaptive traits are often polygenic
(e.g. Pritchard et al., 2010; Rockman, 2012; Evans et al., 2014;
Pasaniuc & Price, 2017) or possibly even ‘omnigenic’ (Boyle
et al., 2017). Given sufficient power and suitable analytical tools,
a reasonable expectation for trait architectures uncovered by
quantitative trait locus (QTL) mapping or GWAS studies may
thus be no or only very subtle genetic effects, unless multiple
small-effect mutations or pleiotropic effects accumulate in the
same hotspot of phenotypic evolution (Martin & Orgogozo,
2013), the traits are very tightly coupled with (or the direct prod-
ucts of) the underlying biochemical pathways (e.g. Boeckler et al.,
2011), or the focus is on traits segregating between highly diver-
gent populations, for which architectures may differ from classi-
cal within-species expectations (Rieseberg & Buerkle, 2002;
Lexer et al., 2005). In this study, we investigated the genomic
architecture of phenotypic trait differences between two ecologi-
cally divergent forest tree species (P. alba and P. tremula) by
applying GWAS to an admixed population.

Variation available for genetic mapping in admixed
populations

Admixture mapping studies require sufficient genetic and pheno-
typic variation to uncover genetic associations and trait

architectures (Briscoe et al., 1994; reviewed by Buerkle & Lexer,
2008). Our analysis of genomic variation confirmed that these
two poplar species, besides their ecological divergence, are also
strongly divergent genetically at many loci (mean FST = 0.3922),
in line with previous estimates (Lexer et al., 2010; St€olting et al.,
2013; Christe et al., 2017). This resulted in favorable conditions
for estimating local ancestry (Christe et al., 2016) and thus for
mapping. Divergence at the genetic level was reflected by pro-
nounced differentiation at the phenotypic level for a range of
characters (Figs 3, S6, S7), with several traits showing strong dif-
ferences between the parental species, especially in the case of
phytochemical traits. Hybrids showed intermediate or parental-
like values for most traits. Nevertheless, many recombinant
hybrids showed phenotypic values falling outside the range of
variation of the parental species (Figs 3b,d, S6, S7) and are thus
examples of transgressive segregation (Rieseberg et al., 2003; Dit-
trich-Reed & Fitzpatrick, 2013).

Traits with high, medium or low heritability

Our GWAS identified genomic architectures that fall roughly
into three main classes. The first class consisted of traits with evi-
dence for relatively high heritability h2 and for which a finite set
of genomic regions contribute to the phenotype. All these were
phytochemical traits, a finding consistent with the notion that
finite genetic effects are more easily detected for traits tightly cou-
pled with the underlying pathways.

The second class included traits for which phenotypic variation
is explained by genetic effects as detected by PVE captured by
our kinship (= genomic similarity) matrix, but no localized asso-
ciation was detected (PGE c. zero). One likely reason why the
genomic similarity matrix explains phenotypic variation is that
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the trait is heritable but highly polygenic, as was previously
reported for growth-related traits (Wood et al., 2014; Tsai et al.,
2015), and also in the case of Populus species (Du et al., 2016). It
is also possible that sparse effects are underestimated (see later).

The third class consisted of traits for which we did not
recover any evidence for heritability. Many of these are phyto-
chemical defense traits against herbivores, which may be pre-
dominantly influenced by environmental factors (Abreu et al.,
2011; Boeckler et al., 2011). However, some of these traits did
show considerable phenotypic differences between the species,
and this was true in our common garden setting as well. The
potential lack of a heritable signal could therefore also indicate
a lack of power of our admixture mapping approach. Indeed,
many causal variants were probably missed by our reduced rep-
resentation sequencing experiment, and were also not well
tagged as a result of generally very low LD in Populus (a few
hundred base pairs according to Ingvarsson, 2008; Marroni
et al., 2011; but see Olson et al., 2010; Slavov et al., 2012). To
mitigate this issue, however, we chose to conduct mapping on
local ancestry, which exhibits long-range LD among the early
generation hybrids used here. A more likely cause for the
inferred trait architectures is thus that some of these traits are
highly polygenic, and a failure to detect significant heritability
for such traits might be a result of a lack of power associated
with admixture mapping. Residual error in RAD-seq genotype
calls may have contributed to reduced power in the present
experiment, despite the use of dedicated correction procedures
to mitigate genotyping error as far as possible (see earlier).
Also, it is possible that effect sizes of major QTLs were slightly
overestimated as a result of statistical bias, also known as the
Beavis effect (Beavis, 1998). Nevertheless, our results provide
indications regarding which traits (or types of traits) are more
readily amenable to subsequent genetic analysis and experi-
ments, because they exhibit more easily detectable, finite
effects.

Low heritability of growth-related traits

Heritability estimates were conspicuously low for growth-related
traits, despite controlling for potential covariates. A lack of herita-
ble variation for growth traits was previously observed in poplar
and willow species (Orians et al., 2003; Du et al., 2016). The
PVE estimates we observed are probably mainly as a result of the
phenotypic variance that can be explained by the genomic ances-
try similarity matrix (Zhou et al., 2013), as discussed earlier.

Pleiotropic effects among phytochemical traits

Out of the 14 genomic windows exhibiting high values of PIP,
six showed significant association with more than one phyto-
chemical trait. This suggests that loci controlling different com-
pounds are in linkage in the same window, or that the same loci
are responsible for several traits, that is, that they have
pleiotropic effects. One indication suggesting pleiotropic effects
is that the traits associated with the same window always belong
to the same branch of the phenylpropanoid pathway (five

windows associated with several flavonoids and one window
associated with two salicinoids). These windows could host
enzymes acting upstream in a specific pathway branch, thus
affecting several downstream steps and compounds (Cork &
Purugganan, 2004).

Candidate genes associated with phenylpropanoid
compounds

We identified several noteworthy candidate genes in PIP peaks
for flavonoid traits that code for glycosyl transferases. These
enzymes act in glycosylation (i.e. conjugation to a sugar moi-
ety), one of the most widespread modifications of plant sec-
ondary metabolites (Gachon et al., 2005), effectively
modifying solubility, stability and reactivity of compounds
(Aksamit-Stachurska et al., 2008). Their association with genes
within PIP peaks for flavonoid traits is consistent with their
previously inferred involvement in transgressive expression of
phytochemical traits in an overlapping sample of poplar
hybrids (Caseys et al., 2015). Among other noteworthy candi-
date genes (Notes S2), a chalcone-synthase (CHS) within a
PIP peak for HCH-salicinoids (two highly toxic compounds)
is of particular interest: this gene, currently assigned to the
flavonoid pathway, may instead be active in the largely
unknown salicinoid pathway. We hypothesize that the polyke-
tide synthase activity may act directly on benzoyl-CoA, which
has recently been put forward as a likely precursor to this
entire group of compounds (Notes S2).

The genomic windows with high PIP also yielded a shortlist
of candidate genes for the biosynthesis of the studied phenyl-
propanoid compounds and its regulation (Table S4). The
flavonoid isorhamnetin-glycuronide (C32), for example, was
significantly associated with two windows hosting three tran-
scription factors of the MYB family previously shown to regu-
late the phenylpropanoid pathway (Sablowski et al., 1994; Liu
et al., 2015). The candidate genes MYB14 and MYB15 were
found to interact in plants to stimulate the production of stilbe-
nes, a group of phenylpropanoid compounds produced in
response to biotic and abiotic stresses (H€oll et al., 2013; Duan
et al., 2016). MYB15 also confers improved tolerance to
drought and salt stress (Ding et al., 2009), negatively regulates
the expression of CBFs (genes expressed in response to cold
conditions; Chinnusamy et al., 2007), and regulates defense-in-
duced lignification and basal immunity in A. thaliana (Chezem
et al., 2017). Finally, the transcription factor MYB5, which is
under positive selection in P. tremula (Christe et al., 2017),
interacts physically with MYB14 and activates the promoter of
enzymes related to the biosynthesis of proanthocyanidins (Liu
et al., 2014), a major class of flavonoids responsible for color in
various plant organs.

These findings are remarkable from the perspective of repro-
ductive isolation between divergent species and, in particular, the
breakdown of hybrid fitness in hybrids of P. alba and P. tremula
(Christe et al., 2016): postzygotic reproductive barriers could
originate from the disruption of coadapted gene complexes, when
proper interactions between gene products cannot take place and,
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consequently, hybrids show a nonfunctional phenotype (Ort�ız-
Barrientos et al., 2007; Livingstone et al., 2012; Lindtke &
Buerkle, 2015). These interacting MYB transcription factors
might represent an example of this mechanism at work: their
involvement in plant defense could cause adverse effects in plants
carrying incompatible genotypes, thus affecting plant survival
and performance in early life stages when selection in trees tends
to be strong (Petit & Hampe, 2006).
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