
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Data Science Optimization with Polynomials

Permalink
https://escholarship.org/uc/item/6h07x2r2

Author
Zhong, Suhan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h07x2r2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Data Science Optimization with Polynomials

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Suhan Zhong

Committee in charge:

Professor Jiawang Nie, Chair
Professor Thomas R. Bewley
Professor Ioana Dumitriu
Professor Philip E. Gill
Professor Behrouz Touri

2022

Copyright

Suhan Zhong, 2022

All rights reserved.

The dissertation of Suhan Zhong is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Stochastic optimization . 1
1.2 Distributionally robust optimization 3
1.3 Bilevel optimization . 5
1.4 Generalized Nash equilibrium problems 6
1.5 Loss function optimization . 8

Chapter 2 Preliminaries . 10
2.1 Basic algebraic geometry . 11
2.2 Polynomial optimization . 12
2.3 Localizing and moment matrices 13
2.4 Truncated moment problems . 15
2.5 Constraint qualifications . 16

Chapter 3 Stochastic Polynomial Optimization . 18
3.1 Stochastic polynomial optimization problems 18
3.2 Perturbation sample average approximation 19
3.3 Numerical experiments . 22

Chapter 4 Distributionally Robust Optimization 27
4.1 DRO of moments and polynomials 27
4.2 Moment optimization reformulation 28
4.3 A Moment-SOS relaxation method 31
4.4 Numerical experiments . 38

Chapter 5 Bilevel Polynomial Optimziation . 45
5.1 Bilevel optimization problems . 45
5.2 An algorithm for bilevel polynomial optimization 46
5.3 LMEs and polynomial extensions 51
5.4 Numerical experiments . 56

iv

Chapter 6 Rational Generalized Nash Equilibrium Problems 63
6.1 Generalized Nash equilibrium problems 63
6.2 An algorithm for rGNEPs . 65
6.3 Feasible extensions of KKT points 70
6.4 Rational optimization problems 72
6.5 Numerical experiments . 77

Chapter 7 Loss Functions for Finite Sets . 81
7.1 Loss functions for finite sets . 81
7.2 A class of loss functions . 82
7.3 Simplicial loss functions . 85
7.4 Finite sets with noises . 91
7.5 Applications . 96

Bibliography . 99

v

LIST OF FIGURES

Figure 7.1: The visualization of Example 7.14. The left column is for Ni = 50, and
the right column is for Ni = 100. The first row is for ε = 0.05, the second
row is for ε = 0.1, and the third row is for ε = 0.5. 98

vi

LIST OF TABLES

Table 3.1: Performance of PSAA for Example 3.4 24
Table 3.2: Performance of PSAA for Example 3.5. 25
Table 3.3: The values of ε∗ for Example 3.6. 26
Table 3.4: Performance of PSAA for Example 3.6. 26

Table 5.1: Computational results for some SBOPs. 58
Table 5.2: Computational results for Example 5.10 59
Table 5.3: Computational results for Example 5.11 59
Table 5.4: Computational results for Example 5.12 61
Table 5.5: Computational results for Example 5.13 62

Table 7.1: The numerical results of Example 7.14 97
Table 7.2: The accuracy rates for Example 7.15. 97

vii

ACKNOWLEDGEMENTS

To begin with, I would like to express my greatest and most sincere thanks to my thesis

supervisor, Professor Jiawang Nie. Jiawang is an enthusiastic mathematician, an inclusive

teacher, a reliable advisor and an interesting friend. I’m always impressed by his insightful

taste in math and good sense of humor. My Ph.D. experience would not be so enjoyable and

fulfilled without his comprehensive supervision and constant support. He gave me numerous

of invaluable suggestions, which have deeply shaped my life. He is very important to me and

I’m so proud of being his student.

There are many thanks to other members of my doctoral committee: Professor

Thomas R. Bewley, Professor Ioana Dumitriu, Professor Philip E. Gill and Professor Behrouz

Touri. They are all experts in different fields. It is my honor to have them in my doctoral

committee.

In addition, I want to thank my coauthors: Dr. Xindong Tang, Prof. Li Wang, Prof.

Liu Yang, Prof. Jane J. Ye and Prof. Guangming Zhou. Their welath of knowledge and rich

experiences gave me lots of inspirations during the cooperation.

I feel grateful that the Department of Mathematics at UCSD gave me an offer five

years ago. It is in this magic place that I met so many great people. Dr. Xindong Tang and

Dr. Zi Yang. They also studied under Prof. Nie but a year before me, are my most helpful

and reliable seniors. Dr. Jiaqi Liu, my closest fellow. We share so many critical moments

from the qualifying exams to the final defense. Prof. Tianyi Zheng, my cycling alliance. Our

weekend adventure map ranges from San Diego downtown to Encinitas. My dear friends

Zian Wang and Mengying Lan. We have so many joyful dinners and games. And so many

other cohorts and colleagues...

I would give most credits to my parents and my family for their endless love and

support. No matter where I am, their hearts are always with me, despite the physical

distance. It is their love that gives me the brave and confidence to overcome any kind of

challenges. In particular, I would like to give special credits to my host family Jane Grupe

and Dave Grupe. We knew each other from Solana Beach Host Family Program. Their

kindness and love cross two countries and two cultures.

Chapter 3, in full, is a reprint of the material as it appears in Optimization Methods

and Software 2020. The dissertation author coauthored this paper with Nie, Jiawang and

Yang, Liu.

viii

Chapter 4, in full, has been submitted for publication. The dissertation author coau-

thored this paper with Nie, Jiawang; Yang, Liu and Zhou, Guangming.

Chapter 5, in full, is a reprint of the material as it appears in SIAM Journal on

Optimization 2021. The dissertation author coauthored this paper with Nie, Jiawang; Wang,

Li and Ye, Jane. J.

Chapter 6, in full, has been submitted for publication. The dissertation author coau-

thored this paper with Nie, Jiawang and Tang, Xindong.

Chapter 7, in full, has been submitted for publication. The dissertation author coau-

thored this paper with Nie, Jiawang.

ix

VITA

2017 B. S. in Mathematics, Xi’an Jiaotong University

2022 Ph. D. in Mathematics, University of California San Diego

PUBLICATIONS

J. Nie, L. Yang and S. Zhong, “Stochastic Polynomial Optimization”, Optimization Methods
and Software, 35.2 (2020): 329-347.

J. Nie, L. Wang, J. Ye and S. Zhong, “A Lagrange Multiplier Expression Method for Bilevel
Polynomial Optimization”, SIAM Journal on Optimization, 31.3 (2021): 2368–2395.

J. Nie, L. Yang, S. Zhong and G. Zhou, “Distributionally Robust Optimization with Moment
Ambiguity Sets”, Preprint, 2021. arXiv:2103.12315

J. Nie, X. Tang and S. Zhong, “Rational Generalized Nash Equilibrium Problems”, Preprint,
2021. arXiv:2110.12120

J. Nie and S. Zhong, “Loss Functions for Finite Sets”, Preprint, 2021. arXiv:2112.05927

x

ABSTRACT OF THE DISSERTATION

Data Science Optimization with Polynomials

by

Suhan Zhong

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Jiawang Nie, Chair

Optimization is essential in data science literature. The data science optimization

studies all optimization problems that have applications in data science. The polynomial

function is broadly used in data science optimization. In data science optimization, we are

mostly interested in stochastic optimization, equilibrium games and loss function optimiza-

tion.

The stochastic optimization studies optimization problems that are constructed with

random variables. A classic kind of stochastic optimization is to find the optimizer of a func-

tion that is given by the expectation of some random variables. For stochastic optimization

with polynomials, we propose an efficient perturbation sample average approximation model.

It can be solved globally by Moment-SOS relaxations, and gives a robust approximation of

the original problem.

The distributionally robust optimization (DRO) is another kind of stochastic opti-

mization. It assumes the uncertainty is described by an ambiguity set, and aims to optimize

the objective function under the worst-case of the ambiguity. For DRO defined with poly-

nomials and under moment ambiguity, we transform it into a linear conic optimization with

xi

moment and psd polynomial cones, and give a semidefinite algorithm to solve it globally.

The bilevel optimization is a kind of challenging optimization problems whose feasible

set is constrained by the optimizer set of another optimization problem. For bilevel opti-

mization defined with polynomials, we propose a semidefinite algorithm to solve it globally.

Under some general assumptions, the algorithm can either get the global minimizer(s), or

detect the nonexistence of them.

The generalized Nash equilibrium problem (GNEP) is formed by a group of mutually

parametrized optimization problems. It aims to find a equilibrium such that each objective

function cannot be solely further optimized. For GNEPs with rational polynomial functions,

we propose a new approach for solving them with a hierarchy of rational optimization prob-

lems. Under some general assumptions, we show that the proposed hierarchy can compute

a GNE, if it exists, or detect its nonexistence.

Loss functions are essential in data science optimization. We study loss functions for

finite sets and propose a kind of efficient sum-of-square (SOS) polynomial loss functions for

general finite sets. We show how to compute the SOS loss functions of the lowest degree.

In addition, we give a special kind of SOS loss functions such that all their local minimizers

are also global minimizers.

xii

Chapter 1

Introduction

Data science is an interdisciplinary area that covers many research topics. The op-

timization is an important field in data science. This is because many problems in data

science are given in form of optimization. For other kind of data science problems, the opti-

mization methods are also often applied. In summary, the optimization theories constitute

mathematical foundation of data science. On the other hand, the data science applications

enrich research topics in optimization. Therefore, it is interesting to explore the overlapping

area of data science and optimization, which we denote as data science optimization.

We are mostly interested in three major kinds of data science optimization prob-

lems: stochastic optimization, equilibrium optimization and loss function optimization. The

stochastic optimization includes the classic model and a new model of distributionally robust

optimization. For equilibrium optimization, the bilevel optimization and generalized Nash

equilibrium problems are two important problems. In loss function optimization, we study

how to construct an efficient kind of loss functions for general finite sets.

1.1 Stochastic optimization

The stochastic optimization is an important class of data science optimization prob-

lems. It is usually formulated with random variables and the so-called decision variables.

Let x = (x1, . . . , xn) be the decision variable and ξ = (ξ1, . . . , ξp) be a random vector. A

classical stochastic optimization problem is

min
x∈K

f(x) := E[F (x, ξ)], (1.1)

1

where K ⊆ Rn (R is the real field and Rn is the n-dimensional Euclidean space), F is a

function in (x, ξ), and E[F (x, ξ)] is the expectation of F with respect to ξ. The coefficients of

the objective function f are typically not known explicitly, because the true distribution of ξ

is usually not known exactly. Frequently used methods for solving stochastic optimization are

often based on sample average approximation (SAA). We refer to [13,37,54,67,71,102,108]

for related work on stochastic optimization. The SAA methods use sample averages to

approximate the expectation function f(x), transforming the stochastic optimization into

deterministic optimization. Many classical SAA methods assume the objective functions are

convex and are based on evaluations of gradients or subgradients. They can also be applied

to nonconvex problems, however, the global optimality may not be guaranteed. There exists

relatively less work on nonconvex stochastic optimization [4, 39, 40]. Generally, nonconvex

stochastic optimization problems are computationally challenging, because the deterministic

case is already difficult.

We are interested in the stochastic optimization defined with polynomials. The (1.1)

is called a stochastic polynomial optimization problem if F is a polynomial in (x, ξ) and K

is a semialgebraic set. In this case, the objective function f is also a polynomial. For given

samples ξ(1), . . . , ξ(N) of ξ, the SAA of (1.1), i.e.,

min
x∈K

1

N

N∑
k=1

F (x, ξ(k)) (1.2)

is a deterministic polynomial optimization problem, which can be solved globally by Moment-

SOS relaxations [59]. SAA methods have good statistical properties: the optimal value and

solution set of (1.2) converge to that of (1.1) in probability one as N →∞ [102]. However,

some concerns of SAA methods need to be addressed. First, the solution set of (1.2) may

(or may not) be far away from the optimizer set of (1.1), depending on the sampling quality.

Second, the SAA (1.2) is only an approximation of (1.1). We do not need to solve it exactly.

But we expect to get an approximation of the solution set for the original problem. These

concerns require us to construct a more robust approximation of (1.1), which can be solved

more efficiently.

The stochastic optimization has broad applications in data science applications. Peo-

ple often use it to study real world data that has an unknown distribution. We refer to

books [58, 102] for an overview of stochastic optimization. It is worth to note that the

stochastic polynomial optimization plays an important role in financial literature for model-

2

ing portfolio investing problems. In the following, we introduce a classical portfolio selection

model, which is in form of stochastic polynomial optimization.

Example 1.1. [72] For a portfolio that consists of n assets, suppose its return is described

by the random vector ξ = (ξ1, . . . , ξn). Let x = (x1, . . . , xn) be the investing proportion such

that each xi ≥ 0 and x1 + · · ·+xn = 1. The classical mean-variance (M-V) portfolio selection

model is {
max E[ξ]Tx− E[(ξTx− E[ξ]Tx)2]

s .t . x ≥ 0, x1 + · · ·+ xn = 1,

where τ > 0 is a risk preference parameter. It is clear that the above M-V model is a

stochastic polynomial optimization problem.

1.2 Distributionally robust optimization

The distributionally robust optimization (DRO) aims to optimize the objective func-

tion under a worst-case random realization, with some given constraints. A typical DRO

problem is  min
x∈X

f(x)

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,
(1.3)

where x := (x1, . . . , xn) is the decision variable constrained in a set X ⊆ Rn and ξ :=

(ξ1, . . . , ξp) ∈ Rp is the random variable obeying the distribution of a measure µ ∈ M. The

notation Eµ[h(x, ξ)] stands for the expectation of the random function h(x, ξ) with respect

to the distribution of ξ. The setM is called the ambiguity set, which is used to describe the

uncertainty of the measure µ.

The ambiguity setM is often moment-based or discrepancy-based. For the moment-

based ambiguity, the set M is usually specified by the first, second moments [25, 44, 110].

Recently, people are also interested in ambiguity set of higher order moment [15, 64], espe-

cially in relevant applications with machine learning. For discrepancy-based ambiguity sets,

popular examples are the φ-divergence ambiguity sets [6,73] and the Wasserstein ambiguity

sets [97]. There are also some other types of ambiguity sets. For instance, [53] assumesM is

given by distributions with SOS polynomial density functions of known degrees. In practice,

the ambiguity set M is usually constructed following the sampling or historic data. For

instance, people may know the support of the measure, discrepancy from a reference distri-

bution, or its descriptive statistics from observations. The ambiguity set usually contains

3

a collection of measures satisfying such properties. For the special case that M only con-

tains the true distribution of the random variable, the distributionally robust optimization

is reduced to be the classic stochastic optimization.

We are interested in the moment-based ambiguity sets. For instance, consider

M :=
{
µ ∈ B(S) : Eµ([ξ]d) ∈ Y

}
.

In the above,M is the set of all Borel measures whose supports and moments, up to a given

degree d, are respectively contained in given sets S ⊆ Rp and Y ⊆ R(p+d
d). The [ξ]d is the

monomial vector

[ξ]d :=
[
1 ξ1 · · · ξp (ξ1)2 ξ1ξ2 · · · (ξp)

d
]T
.

The DRO (1.3) equipped with the above ambiguity set is called the distributionally robust

optimization of moment (DROM). When all the defining functions are polynomials, the

DROM is an important class of distributionally robust optimization. Here is a concrete

DROM problem defined with polynomials.

Example 1.2. For a univariate random variable ξ ∈ R1, consider the DROM
min
x∈R4

−x1 − 2x2 − x3 + 2x4

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,

x ≥ 0, 1− eTx ≥ 0,

where (supp(µ) denotes the support of µ)

h(x, ξ) = (x4 − x1 − 2)ξ5 + (x4 − 1)ξ4 + (2x1 + x2 + x4 + 1)ξ3

+(2x1 − x2 + x4 − 1)ξ2 + (2− x2 − x3)ξ,

M =
{
supp(µ) ⊆ [0, 3] : 1 ≤ Eµ[1] ≤ Eµ[ξ] ≤ Eµ[ξ2] ≤ · · · ≤ Eµ[ξ5] ≤ 2

}
.

The optimal value and solution of this optimization problem are given in Example 4.27.

For recent work about distributionally robust optimizatione, we refer to [53, 98, 112,

118,119,121]. The DRO has various applications, i.e., [25,33,120] in portfolio management,

[73,113] in network design, [9,110] in inventory problems and [32,43,75] in machine learning.

4

1.3 Bilevel optimization

The bilevel optimization is in form of
min

x∈Rn,y∈Rp
F (x, y)

s .t . h(x, y) ≥ 0,

y ∈ S(x),

where S(x) is the set of optimizer(s) of the lower level problem min
z∈Rp

f(x, z)

s .t . z ∈ Z(x) := {z : g(x, z) ≥ 0}.

In the above, F (x, y) is the upper level objective function and h(x, y), as a tuple of functions,

are the upper level constraints. Similarly, the f(x, z) is called the lower level objective

function and g(x, z), as a tuple of functions, are the lower level constraints.

Bilevel optimization is a challenging problem. The classical (or the first order) ap-

proach is to relax the optimality constraint y ∈ S(x) by the first order optimality condition

for the lower level problem. But solving the resulting single-level problem may not even re-

cover a stationary point of the original bilevel optimization problem if the lower level problem

is nonconvex; see [74]. Moreover, even for the case that the lower level optimization is convex,

the resulting single-level problem may not be equivalent to the original bilevel optimization

problem if local optimality is considered and the lower level multiplier set is not a singleton

(see [27]). Another approach to use the value function or semi-infinite programming (SIP)

reformulation. For each y ∈ Z(x), it is easy to see the following equivalence (without any

assumptions about the lower level optimization, e.g., convexity)

y ∈ S(x)⇐⇒ f(x, y)− v(x) ≤ 0⇐⇒ f(x, z)− f(x, y) ≥ 0 ∀z ∈ Z(x), (1.4)

where v(x) := infz∈Z(x) f(x, z) is the so-called value function for the lower level problem.

We call any reformulation using the first equivalence in (1.4) the value function reformula-

tion, while those using the second equivalence in (1.4) the semi-infinite programming (SIP)

reformulation. Using the value function reformulation results in an intrinsically nonsmooth

optimization problem which never satisfies the usual constraint qualification [116]. Despite

these difficulties, recent progresses have been made on constraint qualifications and optimal-

ity conditions for bilevel optimization problems, where the lower level optimization is not

assumed to be convex; see the work [28,114] and the references therein.

5

Bilevel optimization is an important class of equilibrium optimization. It has broad

applications, e.g., the moral hazard model of the principal-agent problem in economics [74],

electricity markets and networks [10], facility location and production problem [11], meta

learning and hyper-parameter selection in machine learning [36, 57, 68]. More applications

can be found in the monographs [3,26,30,103] and the surveys on bilevel optimization [19,28]

and the references therein. Here we briefly introduce the application of bilevel optimization

in hyperparameter tuning.

Example 1.3. [115] Suppose {(aj, bj) : j ∈ Ω}, aj ∈ Rn, bj ∈ R is a data set with the finite

label set Ω. Divide Ω into the nonempty training label set T ⊆ Ω and the validation label set

V = Ω \ T 6= ∅. The least absolute shrinkage and selection operator (lasso) problem is

min
z∈Rn

∑
j∈T

(aTj z − bj)2 + x‖z‖1, (1.5)

where ‖ · ‖1 is the 1-norm and the penalty parameter x ∈ R1 can be regarded as the hyperpa-

rameter. The desirable hyperparameter is usually chosen as the minimizer of the validation

error function
1

|V |
∑
j∈V

(aTj y(x)− bj)2,

where y(x) is optimal solution of (1.5) with respect to x. Therefore, the hyperparameter

problem for the lasso problem can be formulated as the following bilevel optimization
min

x∈R1,y∈Rn

1
|V |
∑
j∈V

(aTj y − bj)2

s .t . x ≥ 0,

y ∈ argmin
z∈Rn

∑
j∈T

(aTj z − bj)2 + x‖z‖1,

where the symbol argmin denote the set of minimizers.

1.4 Generalized Nash equilibrium problems

The generalized Nash equilibrium problem (GNEP) is to determine a tuple of strate-

gies u = (u1, . . . , uN) such that each ui minimizes the optimization problem

Fi(u−i) :

 min
xi∈Rni

fi(xi, u−i)

s .t . xi ∈ Xi(u−i),

6

for given u−i := (u1, . . . , ui−1, ui+1, . . . , uN). In the above, Xi(u−i) ⊆ Rni is the feasible set

of xi that is parameterized by the given strategies u−i, which may be empty. The tuple u

that satisfies all the above conditions is called a generalized Nash equilibrium (GNE). We

use the following example to better explain the concept of GNEs.

Example 1.4. Consider the 2-player GNEP, where x1 = (x1,1, x1,2) and x2 = (x2,1, x2,2).

The first player’s optimization problem is

F1(x2) :


min
x1∈R2

(x1,1 − x1,2)x2,1x2,2 − xT1 x1

s .t . 1− x1,1 − x1,2 ≥ 0,

x1,1 ≥ 0, x1,2 ≥ 0.

the second player’s optimization problem is

F2(x1) :


min
x2∈R2

3(x2,1 − x1,1)2 + 2(x2,2 − x1,2)2

s .t . 2− x2,1 − x2,2 ≥ 0,

x2,1 ≥ 0, x2,2 ≥ 0.

The above GNEP has a GNE x∗ = (x∗1, x
∗
2) with

x∗1 = x∗2 = (0.5, 0).

When x2 = x∗2, the first player’s optimization is reduced to be

F1(x∗2) :


min
x1∈R2

−xT1 x1

s .t . 1− x1,1 − x1,2 ≥ 0,

x1,1 ≥ 0, x1,2 ≥ 0.

It has the global minimizer x1 = x∗1. Similarly, it is easy to verify that x2 = x∗2 is the global

minimizer of F2(x∗1). Therefore, x∗ is a GNE for this GNEP.

A special case of GNEPs is the Nash Equilibrium Problems (NEPs), which has each

feasible set Xi(x−i) be independent of x−i. When NEPs are defined by polynomials, a method

is given in [87] to solve them. For GNEPs given by convex polynomials, it is studied how to

solve them in the recent work [88]. The Karush-Kuhn-Tucker (KKT) conditions are useful

for solving GNEPs and NEPs. We refer to [31,34,35,49] for related work.

The GNEPs were originally introduced to model economic problems. They are now

widely used in various fields, such as transportation, telecommunications, and machine learn-

ing. We refer to [2, 14,20,52,69,96] for recent applications of GNEPs.

7

1.5 Loss function optimization

Loss functions are important in data science optimization. Let n, k be positive inte-

gers. Suppose S is a set of k distinct points in the n-dimensional real Euclidean space Rn. A

function f in x := (x1, . . . , xn) is said to be a loss function for S if the global minimizers of f

are precisely the points in S. For convenience, we often select f such that f is nonnegative

in Rn and the minimum value is zero. Mathematically, this is equivalent to that

f(x) = 0 if and only if x ∈ S.

Example 1.5. Suppose S = {y1, . . . , uk} is given explicitly. Then

f(x) = ‖x− u1‖2 · · · ‖x− uk‖2

is a straightforward choice of the loss function for S.

In practice, the set S may be given explicitly or be approximated by a large number

of sampling points. For the latter case, we need to recover representing points of S and then

compute the loss function.

Example 1.6. Suppose the set S = {0} is approximated by a large sampling set T ⊆ [−ε, ε],
where ε > 0 is a small error bound. Then we would expect to recover a representing set

S∗ = {η}, −ε ≤ η ≤ ε of S, and then construct a loss function f(x) = (x− η)2 for S∗.

A frequently used loss function is the class of sum-of-squares polynomials. That is,

the loss function f is in the form

f = p2
1 + · · ·+ p2

m,

where each pi is a polynomial in x. Then f is a loss function for S if and only if each pi ≡ 0

on S. For convenience of computation, we prefer that f and each pi have degrees as low as

possible. More preferable is that every local minimizer of f is a global minimizer.

Loss functions are important in data science problems. There are broad applications

of loss functions [17,42,55,84,100,111]. Selection of loss functions needs to consider different

application purposes and data structures. There are various types of loss functions for

different applications. We refer to the survey [109] for a comprehensive introduction for all

kinds of loss functions in machine learning. Recently, much attention has been paid to the

selection and design of loss functions [5, 16, 107]. Most researchers focus on improving the

8

qualitative performance for a specific purpose and a fixed kind of loss functions. We notice

few people study the common properties of loss functions, or have interests in constructing a

family of loss functions that share the same properties. However, these less popular problems

are fundamental for the studies of loss functions. They are also interesting mathematical

problems alone that worth more attention.

9

Chapter 2

Preliminaries

Notation. The symbol N (resp., R,C) denotes the set of nonnegative integers

(resp., real numbers, complex numbers). The set Nn (resp., Rn, Cn) is the collection of n-

dimensional vector with elements in N (resp., R, C). The Rn
+ denotes the nonnegative orthant

of Rn. For t ∈ R, dte denotes the smallest integer that is greater or equal to t. For an integer

n > 0, [n] := {1, · · · , n}. For S1, S2 ⊆ Rn, we denote S1 + S2 := {u + v : u ∈ S1, v ∈ S2}.
For a vector v = (v1, . . . , vn), ‖v‖ denotes the standard Euclidean norm. The symbol diag[v]

denotes the n-by-n diagonal matrix with the i-th diagonal entry vi for all i ∈ [n]. We use 1

or e to denote an all-one vector, and ei to denote the unit vector with all zero entries except

the ith entry equaling one. Denote by In the n-by-n identity matrix. The superscript T

(resp., H) denotes the operation of matrix transpose (resp., Hermitian). A square matrix A

is said to be positive semidefinite or psd (resp., positive definite or pd) if xTAx ≥ 0 (resp.,

xTAx > 0) for each nonzero vector x. For two square matrices X, Y of the same dimension,

their commutator is

[X, Y] := XY − Y X.

That is, X commutes with Y if and only if [X, Y] = 0. For a function f that is continuously

differentiable in x = (x1, . . . , xn), the ∇f denotes its gradient in x, ∇2f denotes its Hessian,

and the ∂xif denotes the partial gradient of f in xi.

Let F = R or C. Denote by F[x] := F[x1, . . . , xn] the ring of polynomials in x :=

(x1, . . . , xn) with coefficients in F. For every d ∈ N, F[x]d denotes the subspace of F[x] which

contains all polynomials of degree at most d. For a polynomial f ∈ F[x], we use deg(f) to

denote its degree. For a tuple of polynomial g = (g1, . . . , gm), gi ∈ F[x], we use deg(g) to

10

denote the highest degree of gi, i.e.,

deg(g) = max{deg(g1), . . . , deg(gm)}.

For every α = (α1, . . . , αn) ∈ Nn, denote the monomial

xα := xα1
1 · · ·xαn

n .

Its total degree is |α| := α1 + · · ·+αn. For a positive integer k, [x]k denotes the vector of all

monomials of the highest degree k ordered in the graded lexicographic ordering, i.e.,

[x]k :=
[
1 x1 · · · xn (x1)2 x1x2 · · · (xn)k

]T
.

2.1 Basic algebraic geometry

A subset I ⊆ F[x] is an ideal of F[x] if p · q ∈ I for all p ∈ I, q ∈ F[x], and p1 + p2 ∈ I
for all p1, p2 ∈ I. For an ideal I, its radical is the set

√
I := {f ∈ F[x] : fk ∈ I for some k ∈ N}.

The set
√
I is also an ideal and I ⊆

√
I. The ideal I is said to be radical if I =

√
I. Each

ideal I determines the variety in Fn as

VF(I) := {x ∈ Fn : p(x) = 0 (p ∈ I)}.

For a polynomial tuple p := (p1, . . . , pm), we similarly denote that

VF(p) := {x ∈ Fn : p(x) = 0}.

In particular, V (p) denotes the real variety of p with the real field omitted. The tuple p

generates the ideal

Ideal[p] := p1 · F[x] + · · ·+ pm · F[x].

Clearly, VF(Ideal(p)) = VF(p). For a degree k ≥ deg(p), the kth order truncation of Ideal[p]

is

Ideal[p]k = p1 · F[x]k−deg(p1) + · · ·+ pm · F[x]k−deg(pm).

For a set S ⊆ Cn, its vanishing ideal is

I(S) := {q ∈ C[x] : q(u) = 0 (u ∈ S)}.

11

If S = VC(p) for some polynomial tuple p in x, then Ideal(p) ⊆ I(S) but the equality may

not hold. For every I ⊆ C[x], we have I(VC(I)) =
√
I. This is Hilbert’s Nullstellensatz [22].

For a given ideal I ⊆ C[x], it determines an equivalence relation ∼ on C[x] such that

p ∼ q if p − q ∈ I, or equivalently, p ≡ q mod I. Then every p ∈ C[x] corresponds to an

equivalence class with the module of I, i.e.,

[p] = {q ∈ C[x] : q ≡ p mod I}.

The set of all equivalent classes is the quotient ring

C[x]/I := {[p] : p ∈ C[x]}.

2.2 Polynomial optimization

A polynomial σ ∈ R[x] is said to be a sum-of-squares (SOS) polynomial if

σ = σ2
1 + · · ·+ σ2

k,

for some σ1, . . . , σk ∈ R[x]. We denote by Σ[x] the set of all SOS polynomials in x, and denote

Σ[x]d := Σ[x] ∩ R[x]d for each degree d. In particular, f is said to be SOS-convex [45] if its

Hessian matrix ∇2f(x) is SOS, i.e., ∇2f = A(x)TA(x) for a matrix polynomial A(x). For a

set S ⊆ Rn, the symbol P(S) denotes the set of all polynomials that are nonnegative on S.

For a degree d, we denote Pd(S) = P(S)∩R[x]d. For a tuple of polynomials q = (q1, . . . , qt)

in x, we define the quadratic module of q by

Qmod[q] := Σ[x] + q1 · Σ[x] + · · ·+ qt · Σ[x].

For k ≥ ddeg(q)/2e, the k-th order truncation of Qmod[q] is

Qmod[q]2k := Σ[x]2k + q1 · Σ[x]2k−deg(q1) + · · ·+ qt · Σ[x]2k−deg(qt).

Each polynomial in Qmod[q] is nonnegative over the basic semi-algebraic set

W (q) := {x ∈ Rn : q(x) ≥ 0}.

Given real polynomial tuples p and q, if f ∈ Ideal[p] + Qmod[q], then it is easy to

see that f(x) ≥ 0 for all x ∈ V (p) ∩W (q). To ensure f ∈ Ideal[p] + Qmod[q], we typically

need more than f(x) ≥ 0 for all x ∈ V (p) ∩W (q). The sum Ideal[p] + Qmod[q] is said to

12

be archimedean if there exists b ∈ Ideal[p] + Qmod[q] such that W (b) = {x ∈ Rn : b(x) ≥ 0}
is a compact set. It is shown that f ∈ Ideal[p] + Qmod[q] if f > 0 on V (p) ∩W (q) and

Ideal[p] + Qmod[q] is archimedean [99]. This conclusion is often referenced as Putinar’s

Positivstellensatz. When f is only nonnegative (but not strictly positive) on V (p) ∩W (q),

we still have f ∈ Ideal[p] + Qmod[q] under some generic conditions. This result is shown

in [80].

Consider a polynomial optimization problem fmin : = min
x∈Rn

f(x)

s .t . p(x) = 0, q(x) ≥ 0,
(2.1)

where f ∈ R[x] and p, q are tuples of polynomials in x. The feasible set of problem (2.1) is

V (p) ∩W (q). It is obvious that a scalar γ ≤ fmin if and only if f − γ ≥ 0 on V (p) ∩W (q),

which can be ensured by the membership f − γ ∈ Ideal[p] + Qmod[q]. The kth order SOS

relaxation of (2.1) is {
fk : = max γ

s .t . f − γ ∈ Ideal[p]2k + Qmod[q]2k.
(2.2)

Its dual problem is the kth moment relaxation of(2.1). The asymptotic convergence fk →
fmin as k →∞ was shown in [59]. Under the archimedeanness and some classical optimality

conditions, it holds that fk = fmin for all k big enough, as shown in [80].

2.3 Localizing and moment matrices

For a given dimension n and degree d, denote by RNn
d the space of real vectors that

are indexed by α ∈ Nn
d , i.e.,

RNn
d := {y = (yα)α∈Nn

d
: yα ∈ R}.

Each vector in RNn
d is called a truncated multi-sequence (tms) of degree d. A tms y ∈ RNn

d

gives the linear functional Ly acting on R[x]d as

Ly

(∑
α∈Nn

d

fαx
α
)

:=
∑
α∈Nn

d

fαyα.

The Ly is called a Riesz functional. For f ∈ R[x]d and y ∈ RNn
d , we denote

〈f, y〉 := Ly(f).

13

For a polynomial p ∈ R[x]2d, the dth localizing matrix of p associated to a tms

y ∈ RNn
2d , is the symmetric matrix L

(d)
p [y] such that

vec(a)T
(
L(d)
p [y]

)
vec(b) = Ly(pab)

for all polynomials a, b ∈ R[x]t, with t = d − ddeg(p)/2e. In the above, the vec(a) denotes

the coefficient vector of the polynomial a. For instance, when n = 3 and p = x1x2 − x3
3, for

y ∈ RN3
6 , we have

L(3)
p [y] =


y110 − y003 y210 − y103 y120 − y013 y111 − y004

y210 − y103 y310 − y203 y220 − y113 y211 − y104

y120 − y013 y220 − y113 y130 − y023 y121 − y014

y111 − y004 y211 − y104 y121 − y014 y112 − y005

 .

For the special case of constant one polynomial p = 1, L
(d)
1 [y] is reduced to the so-called

moment matrix

Md[y] := L
(d)
1 [y]. (2.3)

The columns and rows of L
(d)
p [y], as well as Md[y], are labelled by α ∈ Nn with 2|α|+deg(p) ≤

2d. For instance, for n = 3 and y ∈ RN3
4 , we have

M2[y] =



y000 y100 y010 y001 y200 y110 y101 y020 y011 y002

y100 y200 y110 y101 y300 y210 y201 y120 y111 y102

y010 y110 y020 y011 y210 y120 y111 y030 y021 y012

y001 y101 y011 y002 y201 y111 y102 y021 y012 y003

y200 y300 y210 y201 y400 y310 y301 y220 y211 y202

y110 y210 y120 y111 y310 y220 y211 y130 y121 y112

y101 y201 y111 y102 y301 y211 y202 y121 y112 y103

y020 y120 y030 y021 y220 y130 y121 y040 y031 y022

y011 y111 y021 y012 y211 y121 y112 y031 y022 y013

y002 y102 y012 y003 y202 y112 y103 y022 y013 y004



.

We can use the moment matrix and localizing matrices to describe dual cones of quadratic

modules. For a polynomial tuple q = (q1, . . . , qt) and a degree k ≥ ddeg(q)/2e, define the

tms cone

S [q]2k :=
{
y ∈ RNn

2k : Mk[y] � 0, L(k)
q1

[y] � 0, . . . , L(k)
qt [y] � 0

}
.

It can be verified that (see [82]) S [q]2k is the dual cone of Qmod[g]2k, i.e.,(
Qmod[g]2k

)∗
= S [q]2k.

14

2.4 Truncated moment problems

Let x = (x1, . . . , xp). A tms y = (yα) ∈ RNn
d is said to admit a representing measure

µ supported in a set S ⊆ Rn if yα =
∫
xαdµ for all α ∈ Nn

d . Such a measure µ is called

an S-representing measure for y1. In particular, if y = 0 is the zero tms, then it admits

the identically zero measure. We refer to [24, 46, 81] for recent work on truncated moment

problems.

Denote by meas(y, S) the set of S-measures admitted by y. It gives the moment cone

Rd(S) := {z ∈ RNn
d | meas(y, S) 6= ∅}.

The Rd(S) can also be written as the conic hull

Rd(S) = cone({[x]d : x ∈ S}).

Recall that Pd(S) denotes the cone of polynomials in R[x]d that are nonnegative on S. It

is a closed and convex cone. For all f ∈ Pd(S) and y ∈ Rd(S), it holds that for every

µ ∈ meas(y, S),

〈f, y〉 =
∑
α∈Nn

d

fαyα =

∫
f(x)dµ ≥ 0.

This implies that Rd(S)∗ = Pd(S). When S is compact, we also have Pd(S)∗ = Rd(S). If

S is not compact, then

Pd(S)∗ = Rd(S).

We refer to [65, Section 5.2] and [82] for this fact.

Suppose S is the semi-algebraic set determined by a polynomial tuple g = (g1, . . . , gm)

in x. For an integer k ≥ deg(g)/2, a tms y ∈ RNn
2k admits an S-representing measure µ if

y ∈ S [g]2k and

rankMk−d0 [y] = rankMk[y],

where d0 = ddeg(g)/2e. Moreover, the measure µ is unique and is r-atomic, i.e., |supp(µ)| =
r, where r = rankMk[y]. The above rank condition is called flat extension or flat truncation

[23, 79]. When it holds, the tms y is said to be a flat tms. When y is flat, one can obtain

the unique representing measure µ for y by computing Schur decompositions and eigenvalues

(see [47]).

To obtain a representing measure for a tms y ∈ RNn
d that is not flat, a semidefinite

relaxation method is proposed in [81]. Suppose S is compact and the quadratic module

15

Qmod[g] is archimedean. Fix a generic polynomial R ∈ Σ[x]2k, with 2k > deg(g). Then we

solve the moment optimization min
ω
〈R,ω〉

s .t . ω|d = y, ω ∈ S [g]2k.
(2.4)

In the above ω|d denotes the dth degree truncation of ω, i.e.,

ω|d := (ωα)|α|≤d.

As k increases, by solving (2.4), one can either get a flat extension of y, or a certificate that

y does not have any representing measure. We refer to [81] for more details about solving

truncated moment problems.

2.5 Constraint qualifications

Consider the optimization problem
min
x∈Rn

b(x)

s .t . ci(x) = 0 (i ∈ E),

cj(x) ≥ 0 (j ∈ I),

where b and each ci, cj are continuously differentiable, and E , I are finite index sets. For a

feasible point u, denote the active index set of inequalities at u,

I(u) := {j ∈ I : cj(u) = 0}.

The Karush-Kuhn-Tucker (KKT) condition is said to hold at u if there exist Lagrange

multipliers λj such that∑
j∈E∪I

λj∇cj(u) = ∇b(u), λj ≥ 0, λjcj(u) = 0 (j ∈ I(u)).

A feasible point x̄ is called a KKT point or critical point if it satisfies the KKT condition. A

local minimizer must be a KKT point if all functions are linear. For nonlinear optimization,

certain constraint qualifications are required for KKT points. The linearly independent

constraint qualification (LICQ) is said to hold at u if the gradient set {∇cj(u)}j∈E∪I(u) is

16

linearly independent. The Mangasarian-Fromovitz constraint qualification (MFCQ) is said

to hold at u if there exists a vector v ∈ Rn satisfying

∇ci(u)Tv = 0 (i ∈ E), ∇ci(u)Tv > 0 (i ∈ I(u)).

The MFCQ is equivalent to the following statement∑
j∈E∪I(u)

λj∇cj(u) = 0, λj ≥ 0 (j ∈ I(u)) =⇒ λ = 0.

When the functions ci(x)(i ∈ E) are linear and cj(x)(j ∈ I(u)) are concave, the Slater’s

condition is said to hold if there exists x̄ such that

ci(x̄) = 0(i ∈ E), ci(x̄) > 0(i ∈ I).

The Slater’s condition is equivalent to the MFCQ under the convexity assumption. If the

MFCQ holds at a local minimizer x̄, then x̄ is a KKT point and the set of Lagrange multipliers

is compact. If LICQ holds at x̄, then the set of Lagrange multipliers is a singleton. We refer

to [8] for constraint qualifications in nonlinear programming.

17

Chapter 3

Stochastic Polynomial Optimization

3.1 Stochastic polynomial optimization problems

Let x = (x1, . . . , xn) be the decision variable and ξ = (ξ1, . . . , ξp) be a random vector.

A typical stochastic optimization problem is

min
x∈K

f(x) := E[F (x, ξ)] (3.1)

where K ⊆ Rn, F is a function in (x, ξ), and the symbol E denotes the expectation of

a function in the random vector ξ. The stochastic polynomial optimization, which is the

stochastic optimization defined with polynomials.

Assume F is a polynomial in x with measurable coefficients in ξ, i.e.,

F (x, ξ) :=
∑
α∈RNn

cα(ξ)xα,

and K is a semialgebraic set given by

K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (3.2)

Let g = (g1, . . . , gm). We study the stochastic polynomial optimization{
min f(x) := E

[
F (x, ξ)

]
s .t . g(x) ≥ 0.

(3.3)

The F (x, ξ) is a measurable function in ξ for each x ∈ K, so f(x) := E[F (x, ξ)] is a

polynomial in x. The coefficients of f are typically not known explicitly. In practice, they

are usually approximated by sample averages of ξ.

18

3.2 Perturbation sample average approximation

Let ξ(1), . . . , ξ(N) be given samples for the random vector ξ. The sample average

function of f is

fN(x) :=
1

N

N∑
k=1

F (x, ξ(k)).

If F (x, ξ) is a polynomial in x, then the fN is also a polynomial in x. If each sample ξ(k)

obeys the same distribution of ξ, then E[fN(x)] = f(x). Furthermore, when all ξ(k) are

independently identically distributed, the Law of Large Numbers [50] implies that

fN(x)→ f(x) as N →∞,

with probability one and under some regularity conditions.

We propose a perturbation sample average approximation (PSAA) model of (3.3){
min fN(x) + ε‖[x]2d‖
s .t . g(x) ≥ 0,

(3.4)

where ε > 0 is a small parameter, d = max{ddeg(fN)/2e, ddeg(g)/2e} and

[x]2d =
[
1 x1 · · · xn x2

1 x1x2 · · · x2d
n

]T
.

In particular, when ε = 0, the (3.4) is reduced to be the sample average approximation

(SAA) of (3.3), {
min fN(x)

s .t . g(x) ≥ 0.
(3.5)

The (3.4)-(3.5) can be solved globally by Lasserre type moment relaxations [59]. If we replace

the monomial vector [x]2d by a tms y ∈ RNn
2d , the (3.4) is relaxed to the following convex

optimization 
min 〈fN , y〉+ ε‖y‖
s .t . Md[y] � 0, L

(d)
gi [y] � 0 (i ∈ [m]),

y0 = 1, y ∈ RNn
2d .

(3.6)

The (3.6) is equivalent to a linear conic optimization problem with a Cartesian product of

semidefinite cones and a second order cone. The relaxation (3.6) is said to be tight if its

optimal value is the same as that of (3.4). The equality constraint y0 = 1 means that the

first entry of y is equal to one. The set of all y satisfying linear matrix inequalities in (3.6)

19

is just the cone S (g)2d. The cone S (g)2d and the truncated quadratic module Qmod[g]2d

are dual to each other. Therefore, the Lagrange function for (3.6) is

L(y, q, γ) = 〈fN , y〉+ ε‖y‖ − 〈q, y〉 − γ(y0 − 1)

= 〈fN − q − γ, y〉+ ε‖y‖+ γ,

for dual variables q ∈ Qmod[g]2d and γ ∈ R. The function L(y, q, γ) has a finite minimum

value for y ∈ RNn
2d if and only if

‖vec(fN − q − γ)‖ ≤ ε,

for which case the minimum value is γ. (The vec(p) denotes the coefficient vector of p.)

Therefore, the dual optimization problem of (3.6) is
max γ

s .t . fN − p− γ ∈ Qmod[g]2d,

‖vec(p)‖ ≤ ε, p ∈ R[x]2d.

(3.7)

Because the sample average fN(x) is only an approximation for f(x), it is possible that there

is no scalar γ such that fN − γ ∈ Qmod[g]2d. The perturbation term ε‖y‖ in (3.6) motivates

us to find the maximum γ such that fN − p− γ ∈ Qmod[g]2d, for some polynomial p whose

coefficient vector has a small norm. This leads to the following algorithm.

Algorithm 3.1. Generate samples ξ(1), . . . , ξ(N), according to the distribution of ξ. Choose

a small perturbation parameter ε > 0.

Step 1 Compute the sample average fN = N−1
∑N

k=1 F (x, ξ(k)).

Step 2 Solve the semidefinite relaxation problem (3.6). If (3.7) is infeasible, increase the value

of ε (e.g., let ε := 2ε), until (3.6) has a minimizer, which we denote as y∗.

Step 3 Let u be the projection of y∗ as follows,

u = π(y∗) := (y∗e1 , . . . , y
∗
en).

Output u as a candidate minimizer for the sample average optimization with perturba-

tion (3.4), and stop.

For ε > 0, the minimizer of the relaxation (3.6) is always unique (if it exists), because

its objective is strictly convex.

20

Theorem 3.2 ([93]). Assume that u∗ is a minimizer of (3.4) and y∗ is a minimizer of (3.6).

Then, for ε > 0, the relaxation (3.6) is tight if and only if rankMd[y
∗] = 1. In particular,

for the case rankMd[y
∗] = 1, the point u = π(y∗) is a minimizer of (3.4).

Proof. Let ϑ1, ϑ2 be optimal values of (3.4) and (3.6) respectively. It is clear ϑ1 ≥ ϑ2.

Suppose rankMd[y
∗] = 1, then for u = π(y∗) one can show that Md[y

∗] = [u]d([u]d)
T .

Hence, y∗ = [u]2d, 〈fN , y∗〉 = fN(u), and each gi(u) ≥ 0 (see [47, 79]). So, u is a feasible

point of (3.4) and

ϑ1 ≤ fN(u) + ε‖[u]2d‖ = 〈fN , y∗〉+ ε‖y∗‖ = ϑ2.

Therefore, ϑ1 = ϑ2, u is a minimizer of (3.4), and the relaxation (3.6) is tight.

Suppose relaxation (3.6) is tight. Then ϑ1 = ϑ2 and ỹ := [u∗]2d is a minimizer of

(3.6). This is because fN(u∗) = 〈fN , ỹ〉 and ‖[u∗]2d‖ = ‖ỹ‖. For ε > 0, the objective of (3.6)

is strictly convex, so its minimizer must be unique. Hence, ỹ = y∗ and

Md[y
∗] = Md[ỹ] = [u∗]d([u

∗]d)
T .

Therefore, rankMd[y
∗] = rankMd[ỹ] = 1.

When the sample average fN(x) is unbounded from below on the feasible set K, the

moment relaxation (3.6) might still be unbounded from below if ε > 0 is small. However, if

ε > 0 is big, then (3.6) must be feasible and has a minimizer. Indeed, we have the following

theorem.

Theorem 3.3 ([93]). Suppose the feasible set K has nonempty interior. If ε > 0 is big,

both (3.6) and (3.7) have optimizers and their optimal values are the same.

Proof. When K has nonempty interior, the quadratic module Qmod[g]2d is a closed cone

(see [65, Theorem 3.49]) and the cone S (g)2d has nonempty interior. For instance, let ν be

the Gaussian measure, then the tms

ŷ :=
1

ν(K)

∫
K

[x]2ddν(x)

is an interior point of the cone S (g)2d. In other words, Md[ŷ] � 0 and all L
(d)
gi [ŷ] � 0.

This is because
∫
K
p2dν > 0 and

∫
K
gip

2dν > 0 for all nonzero polynomials p. Moreover,

ŷ0 = 1. The convex relaxation (3.6) is strictly feasible (i.e., there is a feasible y such that

21

each matrix in (3.6) is positive definite). When ε > 0 is big, the SOS relaxation (3.7) is also

strictly feasible. For instance, for the choice

ε > ‖fN − [x]Td [x]d‖, p̂ = fN − [x]Td [x]d, γ̂ = 0,

we have that

fN − p̂− γ̂ = [x]Td [x]d ∈ int
(

Σ[x]2d

)
⊆ int

(
Qmod[g]2d

)
.

In the above, the symbol “int” denotes the interior of a set. Therefore, for big ε > 0, both

(3.6) and (3.7) have strictly feasible points. By the strong duality theorem (see [7, 12]),

they have the same optimal value and they both achieve the optimal value, i.e., they have

optimizers.

The value of ε influences the performance of the PSAA model. In applications, we

often choose a small ε > 0, because we expect that (3.4) is a good approximation for (3.5).

However, when ε > 0 is too small, (3.6) might be unbounded from below and has no mini-

mizers. For efficiency, we often anticipate the smallest value of ε such that (3.6) is bounded

from below and has a minimizer. When K has nonempty interior, the relaxation (3.6) is

strictly feasible, i.e., there exists ŷ such that all the matrices Md[ŷ] and L
(d)
gi [ŷ] are positive

definite. Therefore, the strong duality holds between (3.6) and (3.7). To ensure that (3.6) is

solvable (i.e., it has a minimizer), we need the dual optimization problem (3.7) to be feasible.

Consider the optimization problem
ε∗ := min ‖vec(p)‖

s .t . fN − p− γ ∈ Qmod[g]2d,

γ ∈ R, p ∈ R[x]2d.

(3.8)

The above is a convex optimization problem with semidefinite constraints. In computational

practice, we often choose ε > 0 in a heuristic way, e.g., ε = 10−2. If such ε is not enough, we

can increase its value until (3.6) performs well.

3.3 Numerical experiments

This section gives numerical experiments of applying Algorithm 3.1 to solve stochastic

polynomial optimization. The computation is implemented in MATLAB R2018a, in a Laptop

with CPU 8th Generation Intel® Core� i5-8250U and RAM 16 GB. The moment relaxation

22

(3.6) is solved by the software GloptiPoly 3 [48], which calls the semidefinite program solver

SeDuMi [105]. We solve the PSAA model (3.4) by the relaxation (3.6). The (3.6) is said to be

solvable if it has a minimizer y∗. We denote u = π(y∗), if y∗ exists. Otherwise, (3.6) is said

to be not solvable, and we use “n.a.” to indicate data not available. The algorithm running

time is reported with the unit second. For convenience, the computational accuracy 10t is

denoted as“e+ t”. For the optimization (3.3), we denote its optimal value and minimizer by

fmin and v∗, respectively. When ξ is approximated by samplings, we use ξ̄ = (ξ̄1, . . . , ξ̄p) to

denote its sample average. For a point a ∈ Rp, δa denotes the Dirac function supported at

a.

Example 3.4. Consider the stochastic polynomial optimization

min
x∈R4

f(x) = E[F (x) +H(x, ξ)]

s .t . x1x3 + 1 ≥ x2
2 + x2

4,

x2x3 − x1x4 + 2 ≥ 0,

x3
1 + x3

2 + x3
3 + x3

4 ≤ 8,

x1, x2, x3, x4 ≥ 0,

(3.9)

where (N (µ, P) denotes the normal distribution with the mean µ and the covariance P)

G(x) = x2
1x

2
2 + x2

2x
2
3 + (1− x2x3)2 + (3− x1x4)2 + x1x2x3x4,

H(x, ξ) = ξ1x1x
2
2x3 + ξ2x

2
2x

2
4,

ξ ∼ N

([
−0.41

−2.50

]
,

[
1 0

0 1

])
.

If f(x) is evaluated exactly,we can get the optimal value and the minimizer of (3.9),

fmin = 1.0655, v∗ = (1.5829, 0.6427, 0.9316, 1.4358).

In practice, the sample average usually does not equal the exact expectation. We explore

the performance of Algorithm 3.1 for the following sample averages (Note that E[ξ] =

(−0.41,−2.50)).

(a). ξ̄ = (−0.42,−2.51), (b). ξ̄ = (−0.42, 2.50), (c). ξ̄ = (−0.41,−2.51).

The numerical results are reported in Table 3.1. The PSAA model (3.4) performs better

than the classical SAA model (3.5) (i.e. ε = 0). For each case, (3.4) gives more reliable

optimizers; for (a) and (b), solving the relaxation (3.6) costs less computational time.

23

Table 3.1: Performance of PSAA for Example 3.4

(a)

ε 0 10−4 10−3 10−2

solvable? yes yes yes yes
time 0.37 0.29 0.15 0.26

|〈fN , y∗〉 − fN(u)| 1.81e+05 1.29e-08 5.28e-09 9.53e-09
|〈fN , y∗〉 − fmin| 1.81e+05 1.48e-02 1.48e-02 1.47e-02

(b)

ε 0 10−4 10−3 10−2

solvable? yes yes yes yes
time 0.23 0.12 0.14 0.12

|〈fN , y∗〉 − fN(u)| 1.87e+05 1.29e-08 5.61e-09 9.64e-09
|〈fN , y∗〉 − fmin| 1.87e+05 6.13e-03 6.12e-03 6.12e-03

(c)

ε 0 10−4 10−3 10−2

solvable? yes yes yes yes
time 0.12 0.13 0.10 0.09

|〈fN , y∗〉 − fN(u)| 5.58e-02 1.29e-08 5.61e-09 9.70e-09
|〈fN , y∗〉 − fmin| 1.40e-02 8.56e-03 8.56e-03 8.55e-03

Example 3.5. Consider the stochastic polynomial optimization min
x∈R3

f(x) := E[G(x) +H(x, ξ)]

s .t . 1− eTx ≥ 0, x ≥ 0,
(3.10)

where e = (1, . . . , 1)T , (Ber(p), Geo(p) respectively denote the Bernoullian and geometric

distributions with success probability p)

G(x) = x4
1 + x1x2x3 + x3(1− x2

1 − x2
2),

H(x, ξ) = 2ξ1x
4
2 − 4ξ1x

2
1x

2
2 − ξ2x1x2,

ξ1 ∼ Ber(0.5), ξ2 ∼ Geo(0.5).

The feasible set K of (3.10) is a simplex, which is closed and compact. The associated

quadratic module satisfies the archimedean condition. It implies that the sample average

fN(x) is bounded from below on K and it has a minimizer, for all samples ξ(i). For this

example, E(ξ1) = 0.5 and E(ξ2) = 2, so

f(x) = (x2
1 − x2

2)2 + x3(1− x2
1 − x2

2)− x1x2(2− x3).

The optimal value and minimizer of (3.3) are

fmin = −0.5, v∗ = (0.5, 0.5, 0).

24

We consider two cases of sample averages

(a). ξ̄ = (0.501, 2), ε∗ ≈ 0.001155;

(b). ξ̄ = (0.5, 2.001), ε∗ ≈ 7.5875 · 10−9.

In the above, ε∗ is the minimum value of (3.8). We apply Algorithm 3.1 to solve (3.10).

Table 3.2: Performance of PSAA for Example 3.5.

(a)

ε 0 0.0012 0.004 0.008
solvable? no yes yes yes

time 0.12 0.10 0.07 0.09
|〈fN , y∗〉 − fN(u)| n.a. 5.31e-03 3.36e-04 1.09e-04
|〈fN , y∗〉 − fmin| n.a. 5.44e-03 4.61e-04 2.34e-04

(b)

ε 0 10−4 10−3 10−2

solvable? yes yes yes yes
time 0.08 0.08 0.07 0.06

|〈fN , y∗〉 − fN(u)| 5.03e-09 1.84e-09 1.61e-09 1.86e-09
|〈fN , y∗〉 − fmin| 2.50e-04 2.50e-04 2.50e-04 2.50e-04

The numerical results are reported in Table 3.2. The PSAA model (3.4) performs very well

for both cases. Compared with the classical SAA model (3.5) (i.e., ε = 0), it has quite clear

advantages for case (a). It successfully returned a good minimizer, while (3.5) is unbounded

from below and does not retrun a minimizer.

Example 3.6. Consider the unconstrained stochastic optimization

min
x∈R4

E[G(x) +H(x, ξ)] (3.11)

where (P(λ) denotes the Posisson distribution with parameter λ > 0)

ξ ∼ P(2), G(x) = (x3 − x4)4 + (x1 + x2)4 + x2
1 + x2

2 + x2
3 + x2

4,

H(x, ξ) = ξ − (ξ2 − 2ξ)(x1 − x4)− 2(ξ − 1)(x3 − x4)2(x1 + x2)2.

Evaluating the expectation, we get E(ξ) = 2,E(ξ2) = 6 and

f(x) =
(
(x3 − x4)2 − (x1 + x2)2

)2
+ (x1 − 1)2 + (1 + x4)2 + x2

2 + x2
3.

The optimal value and minimizer of (3.3) are

fmin = 0, v∗ = (1, 0, 0, −1).

25

For convenience, denote the sample averages

s1 := ξ̄ =
1

N

N∑
k=1

ξ(k), s2 :=
1

N

N∑
k=1

(ξ(k))2.

We make samples of different sizes and compute ε∗ in (3.8) for each case.

Table 3.3: The values of ε∗ for Example 3.6.

(a) (b) (c) (d)
N 500 1000 5000 10000
s1 2.11 1.96 2.01 2.02
s2 6.43 5.71 6.13 6.07
ε∗ 0.807543 3.3618e-10 0.073413 0.146826

We focus on cases (c) and (d). By applying Algortihm 3.1, the numerical results are

Table 3.4: Performance of PSAA for Example 3.6.

(c) (d)
ε 0 ε∗ 0.1 0 ε∗ 0.2

solvable? no yes yes no yes yes
time 0.23 0.20 0.11 0.10 0.16 0.07

|〈fN , y∗〉 − fN(u)| n.a. 5.30e+01 2.02e-01 n.a. 6.47e+01 2.28e-01
|〈fN , y〉 − fmin| n.a. 5.39e+01 3.90e-01 n.a. 6.49e+01 2.96e-01
‖u− v∗‖ n.a. 3.09e-02 1.28e-01 n.a. 5.86e-02 2.73e-01

u n.a.


1.0216
0.0035
0.0035
−1.0216




0.9102
0.0071
0.0071
−0.9102

 n.a.


0.9591
0.0059
0.0059
−0.9591




0.8070
0.0085
0.0085
−0.8070



reported in Table 3.4. The perturbation term in the PSAA model (3.4) makes a big difference

for computing reliable minimizers. The PSAA model returned minimizers that are close to

the optimizer of (3.3), while the classical SAA model (i.e., ε = 0) is unbounded from below

lland fails to return a minimizer.

Acknowledgments. This Chapter, in full, is a reprint of the material as it appears

in Optimization Methods and Software 2020. The dissertation author coauthored this paper

with Nie, Jiawang and Yang, Liu.

26

Chapter 4

Distributionally Robust Optimization

4.1 DRO of moments and polynomials

The distributionally robust optimization (DRO) is min
x∈X

f(x)

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,
(4.1)

where x := (x1, . . . , xn) is the decision variable constrained in a set X ⊆ Rn and ξ :=

(ξ1, . . . , ξp) ∈ Rp is the random variable obeying the distribution of a measure µ ∈ M. The

notation Eµ[h(x, ξ)] stands for the expectation of the random function h(x, ξ) with respect

to the distribution of ξ. The setM is called the ambiguity set, which is used to describe the

uncertainty of the measure µ.

We are interested in the moment-based ambiguity sets. In this case, M contains

Borel measures that are constrained by moment bounds. For S ⊆ Rp, let B(S) denote the

set of Borel measures supported in S. Let Y be a nonempty subset of RNp
d . We assume the

ambiguity set is given as

M :=
{
µ ∈ B(S) : Eµ([ξ]d) ∈ Y

}
, (4.2)

where [ξ]d is the monomial vector

[ξ]d :=
[
1 ξ1 · · · ξp (ξ1)2 ξ1ξ2 · · · (ξp)

d
]T
.

The optimization (4.1) equipped with the above ambiguity set is called the distributionally

robust optimization of moment (DROM). Moreover, if all the defining functions are polyno-

mials, we say (4.1) is the DROM with polynomials.

27

We focus on DROM with polynomials. For the DRO (4.1), assume f ∈ R[x] and

h(x, ξ) is a polynomial in ξ whose coefficients are linear in x, i.e.,

h(x, ξ) = (Ax+ b)T [ξ]d, A ∈ R(p+d
d)×n, b ∈ R(p+d

d). (4.3)

Suppose M is given as in (4.2), where S is a semialgebraic set

S = {ξ ∈ Rp : g1(ξ) ≥ 0, . . . , gm1(ξ) ≥ 0}. (4.4)

The g := (g1, . . . , gm1) is a given tuple of polynomials in ξ. The Y is the constraining set for

moments of µ up to a degree d. The set Y is not necessarily closed or convex. The closure

of its conic hull is denoted as cone(Y). In computation, it is often a Cartesian product of

linear, second-order or semidefinite cones. For instance, if ξ is a univariate random variable,

d = 4, Y is the hypercube [0, 1]5 and S = [a1, a2], then cone(Y) is the nonnegative orthant.

The constraining set X for x is assumed to be the set

X := {x ∈ Rn | c1(x) ≥ 0, . . . , cm2(x) ≥ 0}, (4.5)

for a tuple c = (c1, . . . , cm2) of polynomials in x.

In addition, we remark that the distributionally robust min-max optimization

min
x∈X

max
µ∈M

Eµ[F (x, ξ)] (4.6)

is a special case of the distributionally robust optimization in the form (4.1). Assume each

µ ∈ M is a probability measure (i.e., Eµ[1] = 1), then the min-max optimization (4.6) is

equivalent to 
min

(x,x0)∈X×R
x0

s .t . inf
µ∈M

Eµ[x0 − F (x, ξ)] ≥ 0.
(4.7)

This is a distributionally robust optimization problem in the form (4.1).

4.2 Moment optimization reformulation

In this section, we transform the DROM into a polynomial optimization with moment

conic conditions. Let Rd(S) denote the moment cone of all degree-d tms’ that admit S-

measures. Then for every measure in M, its truncated moment sequence of degree d must

28

be contained in the intersection Rd(S) ∩ cone(Y). In other words, we have the equivalence

relations

inf
µ∈M

Eµ[h(x, ξ)] ≥ 0 ⇐⇒ 〈Ax+ b,Eµ[ξ]d〉 ≥ 0, ∀µ ∈M,

⇐⇒ (Ax+ b)Ty ≥ 0, ∀ y ∈ Rd(S) ∩ cone(Y).

The intersection of Rd(S) and cone(Y) gives a cone

K = Rd(S) ∩ cone(Y). (4.8)

Let K∗ denote the dual cone of K. The problem (4.1) can be equivalently reformulated as min
x∈X

f(x)

s .t . Ax+ b ∈ K∗.
(4.9)

Then we characterize the moment cone K and its dual cone K∗. Observe that

Rd(S)∗ = Pd(S), Pd(S)∗ = Rd(S),(
Pd(S) + Y ∗

)∗
= Rd(S) ∩ cone(Y).

In the above, Y ∗ is the dual cone of Y and Pd(S) is the set of polynomials with the highest

degree d that are nonnegative on S. When both Rd(S) and cone(Y) are closed, we have

Rd(S) ∩ cone(Y) = Rd(S) ∩ cone(Y). (4.10)

Suppose (4.10) holds and the sum Pd(S) + Y ∗ is a closed cone, then we have

K∗ = Pd(S) + Y ∗. (4.11)

The (4.11) holds for most applications. We refer to [7, Proposition B.2.7] for a sufficient

condition. Assume (4.11) is true, then (4.1) is equivalent to
min
x∈Rn

f(x)

s .t . c1(x) ≥ 0, . . . , cm2(x) ≥ 0,

h(x, ξ) ∈Pd(S) + Y ∗,

(4.12)

where c = (c1, . . . , cm1) determines X as in (4.5). The membership constraint in (4.12) means

that h(x, ξ), as a polynomial in ξ, is the sum of a polynomial in Pd(S) and a polynomial in

Y ∗. When f, c1, . . . , cm2 are all linear functions, (4.12) is a linear conic optimization problem.

When f and every ci are polynomials, we can apply Moment-SOS relaxations to solve it.

29

Denote the degree

d1 := max{deg(f)/2, ddeg(c)/2e}, (4.13)

and the projection map π : RNn
2d1 → Rn such that

π(w) := (we1 , . . . , wen), w ∈ RNn
2d1 . (4.14)

The optimization (4.12) can be relaxed to

min
(x,w)

〈f, w〉

s .t . Md1 [w] � 0, L
(d1)
ci [w] � 0 (i ∈ [m2]),

h(x, ξ) ∈Pd(S) + Y ∗,

w0 = 1, x = π(w), w ∈ RNn
2d1 .

(4.15)

The dual optimization of (4.15) is
max
(γ,y)

γ − 〈b, y〉

s .t . f(x)− yTAx− γ ∈ Qmod[c]2d1 ,

γ ∈ R, y ∈ K.

(4.16)

The relaxation (4.15) is said to be tight if it has the same optimal value as (4.12) does.

Under the SOS-convexity assumption, the relaxation (4.15) is equivalent to (4.12). This is

the following result.

Theorem 4.1 ([94]). For the DROM (4.1), assume the polynomials f,−c1, . . . ,−cm2 are

SOS-convex. Then, the optimization problems (4.15) and (4.12) are equivalent in the follow-

ing sense: they have the same optimal value, and w∗ is a minimizer of (4.15) if and only if

x∗ := π(w∗) is a minimizer of (4.12).

Proof. Let w be a feasible point for (4.15) and x = π(w), then Ax + b ∈ K∗. Since

f,−c1, . . . ,−cm2 are SOS-convex, by the Jensen’s inequality (see [60]), we have the following

inequalities

f(x) = f(π(w)) ≤ 〈f, w〉,

ci(x) = ci(π(w)) ≥ 〈ci, w〉, i = 1, . . . ,m2.

The (1, 1)-entry of L
(d1)
ci [w] is 〈ci, w〉, so L

(d1)
ci [w] � 0 implies that 〈ci, w〉 ≥ 0. This means

that x = π(w) ∈ X for every w that is feasible for (4.15). Let f0, f1 denote the optimal values

30

of (4.12), (4.15) respectively. The f0 ≥ f1 since (4.15) is a relaxation of (4.12). For every

ε > 0, there exists a feasible w such that 〈f, w〉 ≤ f1 +ε, which implies that f(π(w)) ≤ f1 +ε.

Hence f0 ≤ f1 + ε for every ε > 0. Therefore, f0 = f1, i.e., (4.15) and (4.12) have the same

optimal value.

If w∗ is a minimizer of (4.15), we also have x∗ = π(w∗) ∈ X and

f(x∗) = f(π(w∗)) ≤ 〈f, w∗〉.

Since (4.15) is a relaxation of (4.12), they must have the same optimal value, and x∗ is a

minimizer of (4.12). Conversely, if x∗ is a minimizer of (4.12), then w∗ := [x∗]2d1 is feasible

for (4.15) and f(x∗) = 〈f, w∗〉 . So w∗ must also be a minimizer of (4.15), since (4.15) and

(4.12) have the same optimal value.

4.3 A Moment-SOS relaxation method

The S is a semialgebraic set given as in (4.4). For every integer k ≥ d/2, it holds the

nesting containment

Qmod[g]2k ∩ R[ξ]d ⊆ Qmod[g]2k+2 ∩ R[ξ]d ⊆ · · · ⊆Pd(S).

We thus consider the following restriction of (4.15):

min
(x,w)

〈f, w〉

s .t . Md1 [w] � 0, L
(d1)
ci [w] � 0 (i ∈ [m2]),

h(x, ξ) ∈ Qmod[g]2k + Y ∗,

w0 = 1, x = π(w), w ∈ RNn
2d1 ,

(4.17)

where d1 is given as in (4.13). The dual optimization of (4.17) is
max
(γ,y,z)

γ − 〈b, y〉

s .t . f(x)− yTAx− γ ∈ Qmod[c]2d1 ,

γ ∈ R, z ∈ S [g]2k, y ∈ cone(Y), y = z|d.

(4.18)

We would like to remark that Qmod[g] is a quadratic module in the polynomial ring R[ξ],

and Qmod[c] is a quadratic module in the polynomial R[x]. The notation z|d denotes the

degree-d truncation of z. The optimization (4.18) is a relaxation of (4.16), since it has a

31

bigger feasible set. There exist both quadratic module and moment constraints in (4.18).

The primal-dual pair (4.17)-(4.18) can be solved as semidefinite programs. The following is

a basic property about the above optimization.

Theorem 4.2 ([94]). Assume (4.10) holds. Suppose (γ∗, y∗, z∗) is an optimizer of (4.18)

for the relaxation order k. Then (γ∗, y∗) is a maximizer of (4.16) if and only if it holds that

y∗ ∈ Rd(S).

Proof. If (γ∗, y∗) is a maximizer of (4.16), then it is clear that y∗ ∈ Rd(S). Conversely, if

y∗ ∈ Rd(S), then (γ∗, y∗) is feasible for (4.16), since (4.10) holds. Since (4.18) is a relaxation

of (4.16), we know (γ∗, y∗) must also be a maximizer of (4.16).

If Rd(S) is a closed cone, then we only need to check y∗ ∈ Rd(S) in the above.

Interestingly, when S is compact, the moment cone Rd(S) is closed [61,65,82]. As introduced

in the Section 2.4, the membership y∗ ∈ Rd(S) can be checked by solving a truncated

moment problem. This can be done by solving the optimization (2.4) for a generically

selected objective. Once (γ∗, y∗) is confirmed to be a maximizer of (4.16), we show how to

get a minimizer for (4.1). This is shown as follows.

Theorem 4.3 ([94]). Assume (4.10) holds. For a relaxation order k, suppose (x∗, w∗) is a

minimizer of (4.17) and (γ∗, y∗, z∗) is a maximizer of (4.18) such that y∗ ∈ Rd(S). Assume

there is no duality gap between (4.17) and (4.18). If x∗ ∈ X and f(x∗) = 〈f, w∗〉, then x∗ is

a minimizer of (4.12). If in addition (4.11) holds, then x∗ is also a minimizer of (4.1).

Proof. Let f1, f2 be optimal values of the optimization problems (4.15) and (4.16) respec-

tively. Then, by the weak duality, it holds that

f1 ≥ f2.

The membership y∗ ∈ Rd(S) implies that (γ∗, y∗) is a maximizer of (4.16), so f2 = γ∗−bTy∗.
Assume there is no duality gap between the primal-dual pair (4.17)-(4.18). Then

〈f, w∗〉 = γ∗ − bTy∗ = f2.

The constraint h(x∗, ξ) ∈ Qmod[g]2k + Y ∗ implies that h(x∗, ξ) ∈ Pd(S) + Y ∗. Suppose

x∗ ∈ X is a feasible point of (4.12) and f(x∗) = 〈f, w∗〉. The optimal value of (4.12) is

greater than or equal to that of (4.15), hence

f1 ≥ f2 = 〈f, w∗〉 = f(x∗) ≥ f1.

32

So f(x∗) = f1. This implies that x∗ is a minimizer of (4.12). Moreover, if in addition K∗

can be expressed as in (4.11), the optimization (4.1) is equivalent to (4.12). So x∗ is also a

minimizer of (4.1).

In the above theorem, the assumptions that x∗ ∈ X and f(x∗) = 〈f, w∗〉 must hold if

f,−c1, . . . ,−cm2 are SOS-convex polynomials. We have the following theorem.

Theorem 4.4. Assume (4.10) holds. For a relaxation order k, suppose (x∗, w∗) is a mini-

mizer of (4.17) and (γ∗, y∗, z∗) is a maximizer of (4.18) such that y∗ ∈ Rd(S). Assume there

is no duality gap between (4.17) and (4.18). If f,−c1, . . . ,−cm2 are SOS-convex polynomi-

als, then x∗ := π(w∗) is a minimizer of (4.12). If in addition (4.11) holds, then x∗ is also a

minimizer of (4.1).

Proof. Since f and −c1, . . . ,−cm2 are SOS-convex polynomials, by the Jensen’s inequality

(see [60]), it holds that

f(x∗) = f(π(w∗)) ≤ 〈f, w∗〉,

ci(x
∗) = ci(π(w∗)) ≥ 〈ci, w∗〉, i = 1, . . . ,m2.

Similarly, the constraint L
(d1)
ci [w∗] � 0 implies that 〈ci, w∗〉 ≥ 0. So x∗ ∈ X is a feasible point

of (4.12). As in the proof of Theorem 4.3, we can similarly show that

f1 ≥ f2 = 〈f, w∗〉 ≥ f(x∗) ≥ f1,

so f(x∗) = 〈f, w∗〉. The conclusions follow from Theorem 4.3.

Then we give an algorithm for solving DROM with polynomials.

Algorithm 4.5. For the given DROM (4.1), do the following:

Step 0 Get a computational representation for cone(Y) and the dual cone Y ∗. Initialize

d0 := ddeg(g)/2e, t0 := dd/2e, k := dd/2e, l := t0 + 1.

Choose a generic polynomial R ∈ Σ[ξ]2t0+2.

Step 1 Solve (4.17) for a minimizer (x∗, w∗) and solve (4.18) for a maximizer (γ∗, y∗, z∗).

33

Step 2 Solve the moment optimization min
ω
〈R,ω〉

s .t . ω|d = y∗, ω ∈ S [g]2`, ω ∈ RNp
2` .

(4.19)

If (4.19) is infeasible, then y∗ admits no S-measure, update k := k + 1 and go back to

Step 1. Otherwise, solve (4.19) for a minimizer ω∗ and go to Step 3.

Step 3 Check whether or not there exists an integer s ∈ [max(d0, t0), `] such that

rankMs−d0 [ω
∗] = rankMs[ω

∗].

If such s does not exist, update ` := ` + 1 and go to Step 2. If such s exists, then

y∗ =
∫

[ξ]ddµ for the measure

µ = θ1δu1 + · · ·+ θrδur ,

where r = rankMs[ω
∗], and δui denotes the Dirac measure supported at ui.

Remark. In Step 3, a measure µ∗ ∈ M that achieves the worst case expectation constraint

can be recovered as a multiple of µ, up to scaling.

The convergent properties of Algorithm 4.5 can be proved using techniques and con-

clusions from [81, 82]. First, we consider the relatively simple but still interesting case that

ξ is a univariate random variable (i.e., p = 1) and the support set S = [a1, a2] is an interval.

Theorem 4.6 ([94]). Suppose the random variable ξ is univariate and the set S = [a1, a2],

for scalars a1 < a2, is an interval with the constraint g(ξ) := (ξ − a1)(a2 − ξ) ≥ 0. If

(γ∗, y∗, z∗) is a maximizer of (4.18) for k = dd/2e, then we must have z∗ ∈ R2k(S) and

hence y∗ ∈ Rd(S).

Proof. In the relaxation (4.18), the tms z has the even degree 2k. We label the entries of z

as z = (z0, z1, . . . , z2k). The condition z ∈ S [g]2k implies that

Mk[z] � 0, L(k)
g [z] � 0. (4.20)

Since g = (ξ − a1)(a2 − ξ), one can verify that L
(k)
g [z] � 0 is equivalent to

(a1 + a2)


z1 z2 · · · zk

z2 z3 · · · zk+1

...
...

. . .
...

zk zk+1 · · · z2k−1

 � a1a2


z0 z1 · · · zk−1

z1 z2 · · · zk
...

...
. . .

...

zk−1 zk · · · z2k−2

+

34


z2 z3 · · · zk

z3 z4 · · · zk+1

...
...

. . .
...

zk zk+1 · · · z2k

 .
As shown in [23, 56], the (4.20) are sufficient and necessary conditions for z ∈ R2k(S). So,

if (γ∗, y∗, z∗) is a maximizer of (4.18), then Mk[z
∗] � 0 and L

(k)
g [z∗] � 0. Hence, we have

z∗ ∈ R2k(S) and hence y∗ = z∗|d ∈ Rd(S).

Second, we prove the asymptotic convergence of Algorithm 4.5 when the random

variable ξ is multi-variate. It requires that the quadratic module Qmod[g] is archimedean

and (4.15) has interior points.

Theorem 4.7 ([94]). Assume that Qmod[g] is archimedean and there exists a point x̂ ∈ X
such that h(x̂, ξ) = a1(ξ) + a2(ξ) with a1 > 0 on S and a2 ∈ Y ∗. Suppose (γ(k), y(k), z(k))

is an optimal triple of (4.18) with the relaxation order k. Then, the sequence {y(k)}∞k=1 is

bounded and every accumulation point of {y(k)}∞k=1 belongs to the cone Rd(S). Therefore,

every accumulation point of {(γ(k), y(k))}∞k=1 is a maximizer of (4.16).

Proof. For every (γ, y, z) that is feasible for (4.18) and for ŵ := [x̂]2d1 , it holds that

〈f, ŵ〉 −
(
γ − 〈b, y〉

)
= 〈f − yTAx− γ, ŵ〉+ (Ax̂+ b)Ty ≥ (Ax̂+ b)Ty. (4.21)

There exists ε > 0 such that a1(ξ) − ε ∈ Qmod[g]2k0 , for some k0 ∈ N, since Qmod[g] is

archimedean. Noting a2 ∈ Y ∗, one can see that

(Ax̂+ b)Ty = 〈h(x̂, ξ), y〉 = 〈a1(ξ), y〉+ 〈a2(ξ), y〉 ≥ 〈a1(ξ), y〉.

For all k ≥ k0, it holds that

〈a1(ξ), y〉 = 〈a1(ξ)− ε, y〉+ ε〈1, y〉 ≥ ε〈1, y〉 = εy0.

(Note 〈1, y〉 = y0.) Let f2 be the optimal value of (4.16), then

γ(k) − 〈b, y(k)〉 ≥ f2,

because (γ(k), y(k), z(k)) is an optimizer of (4.18), and (4.18) is a relaxation of the maximiza-

tion (4.16). So (4.21) implies that

(Ax̂+ b)Ty(k) ≤ 〈f, ŵ〉 − f2.

35

Hence, we can get that

(y(k))0 ≤
1

ε
(〈f, ŵ〉 − f2).

The sequence
{

(y(k))0

}∞
k=1

is bounded.

Since Qmod[g] is archimedean, there exists N > 0 such that N − ‖ξ‖2 ∈ Qmod[g]2k1

for some k1 ≥ k0. For all k ≥ k1, the membership z(k) ∈ S [g]2k implies that

N · (z(k))0 −
(
(z(k))2e1 + · · ·+ (z(k))2ep

)
≥ 0.

Note that y(k) = z(k)|d, hence (y(k))0 = (z(k))0. Since z(k) ∈ S [g]2k and the sequence{
(z(k))0

}∞
k=1

is bounded, one can further show that the set

{z(k)|d : z ∈ S [g]2k}∞k=1

is bounded. We refer to [82, Theorem 4.3] for more details about the proof. Therefore, the

sequence {y(k)}∞k=1 is bounded. Since Qmod[g] is archimedean, we also have

Rd(S) =
∞⋂
k=1

Sk, where Sk := {z|d : z ∈ S [g]2k}.

This is shown in Proposition 3.3 of [82]. So, if ŷ is an accumulation point of {y(k)}∞k=1, then we

must have ŷ ∈ Rd(S). Similarly, if (γ̂, ŷ, ẑ) is an accumulation point of {(γ(k), y(k), z(k))}∞k=1,

then ŷ ∈ Rd(S). As in the proof of Theorem 4.2, one can similarly show that (γ̂, ŷ) is a

maximizer of (4.16).

Last, we prove that Algorithm 4.5 will terminate within finitely many steps under

certain assumptions.

Theorem 4.8 ([94]). Assume Qmod[g] is archimedean and there is no duality gap between

(4.15) and (4.16). Suppose (x∗, w∗) is a minimizer of (4.15) and (γ∗, y∗) is a maximizer of

(4.16) satisfying:

(i) There exists k1 ∈ N such that h(x∗, ξ) = h1(ξ) + h2(ξ), with h1 ∈ Qmod[g]2k1 and

h2 ∈ Y ∗.

(ii) The polynomial optimization problem in ξ min
ξ∈Rp

h1(ξ)

s .t . g1(ξ) ≥ 0, . . . , gm1(ξ) ≥ 0
(4.22)

has finitely many critical points u such that h1(u) = 0.

36

Then, when k is large enough, for every optimizer (γ(k), y(k), z(k)) of (4.18), we must have

y(k) ∈ Rd(S).

Proof. Since there is no duality gap between (4.15) and (4.16),

0 = 〈f, w∗〉 −
(
γ∗ − 〈b, y∗〉

)
= 〈f − (y∗)TAx− γ∗, w∗〉+ (Ax∗ + b)Ty∗.

Due to the feasibility constraints, we further have

〈f(x)− (y∗)TAx− γ∗, w∗〉 = 0, (Ax∗ + b)Ty∗ = 0.

Therefore, it holds that

(Ax∗ + b)Ty∗ = 〈h(x∗, ξ), y∗〉 = 〈h1(ξ), y∗〉+ 〈h2(ξ), y∗〉 = 0.

The conic membership y∗ ∈ K implies that

〈h1(ξ), y∗〉 = 〈h2(ξ), y∗〉 = 0.

We consider the polynomial optimization problem (4.22) in the variable ξ. For each order

k ≥ k1, the kth order Moment-SOS relaxation pair for solving (4.22) is{
min 〈h1(ξ), z〉
s .t . z ∈ S [g]2k, z0 = 1,

(4.23)

{
νk := max γ

s .t . h1(ξ)− γ ∈ Qmod[g]2k.
(4.24)

The archimedeanness of Qmod[g] implies that S is compact, so

Rd(S) = Rd(S).

The membership y∗ ∈ K implies that y∗ ∈ Rd(S). Since

〈h1(ξ), y∗〉 = 0,

the polynomial h1(ξ) vanishes on the support of each S-representing measure for y∗, so

the optimal value of (4.22) is zero. By the given assumption, the sequence {νk} has finite

convergence to the optimal value 0 and the relaxation (4.24) achieves its optimal value for

all k ≥ k1. The optimization (4.22) has only finitely many critical points that are global

optimizers. So, Assumption 2.1 of [81] for the optimization (4.22) is satisfied. Moreover, the

37

given assumption also implies that (x∗, w∗) is an optimizer of (4.17) and (γ∗, y∗, z∗) is an

optimizer of (4.18) for all k ≥ k1. Suppose (x(k), w(k)) is an arbitrary optimizer of (4.17) and

(γ(k), y(k), z(k)) is an arbitrary optimizer of (4.18), for the relaxation order k.

When (z(k))0 = 0, we have vec(1)TMk[z
(k)]vec(1) = 0. Since Mk[z

(k)] � 0,

Mk[z
(k)]vec(1) = 0.

Consequently, we further have Mk[z
(k)]vec(ξα) = 0 for all |α| ≤ k − 1 (see Lemma 5.7

of [65]). Then, for each power α = β + η with |β|, |η| ≤ k − 1, one can get (z(k))α =

vec(ξβ)TMk[z
(k)]vec(ξη) = 0. This means that z(k)|2k−2 is the zero vector and hence y(k) ∈

Rd(S).

For the case (z(k))0 > 0, let ẑ := z(k)/(z(k))0. The given assumption implies that

(x∗, w∗) is also a minimizer of (4.17) and (γ∗, y∗, z∗) is optimal for (4.18), for all k ≥ k1. So

there is no duality gap between (4.17) and (4.18). Since (γ(k), y(k), z(k)) is optimal for (4.18),

so 〈h1(ξ), z(k)〉 = 0 and hence ẑ is a minimizer of (4.23) for all k ≥ k1. By Theorem 2.2 of [81],

the minimizer z(k) must have a flat truncation z(k)|2t for some t, when k is sufficiently big.

This means that the truncation z(k)|2t, as well as y(k), has a representing measure supported

in S. Therefore, we have y(k) ∈ Rd(S).

4.4 Numerical experiments

In this section, we give numerical experiments for Algorithm 4.5 to solve distribu-

tionally robust optimization problems. The computation is implemented in MATLAB R2018a,

in a Laptop with CPU 8th Generation Intel® Core� i5-8250U and RAM 16 GB. The soft-

ware GloptiPoly3 [48], Yalmip [70] and SeDuMi [105] are used for the implementation. For

neatness of presentation, we only display four decimal digits.

To apply implement Algorithm 4.5, we need a computational representation for the

cone cone(Y). In the following, we give some frequently appearing cases.

• If Y = {y : Ty+u ≥ 0} is a nonempty polyhedron, given by some matrix T and vector

u, then

cone(Y) = {y : Ty + su ≥ 0, s ∈ R+}. (4.25)

It is also a polyhedron and is closed.

38

• Consider that Y = {y : A(y) + B � 0} is given by a linear matrix inequality, for a

homogeneous linear symmetric matrix valued function A and a symmetric matrix B.

If Y is nonempty and bounded, then

cone(Y) = {y : A(y) + sB � 0, s ∈ R+} . (4.26)

When Y is unbounded, the cone(Y) may not be closed and its closure cone(Y) may

be tricky. We refer to the work [78] for such cases. When Y is given by second order

conic conditions, we can do similar things for obtaining cone(Y).

Example 4.9. Consider the DROM problem
min
x∈R4

f(x) = −x1 − 2x2 − x3 + 2x4

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,

x ≥ 0, 1− eTx ≥ 0,

(4.27)

where (the random variable ξ is univariate, i.e, p = 1)

h(x, ξ) = (x4 − x1 − 2)ξ5 + (x4 − 1)ξ4 + (2x1 + x2 + x4 + 1)ξ3

+(2x1 − x2 + x4 − 1)ξ2 + (2− x2 − x3)ξ,

S = [0, 3], g = 3ξ − ξ2,

Y =


y =


y0

y1

...

y5

 ∈ R6

∣∣∣∣∣∣∣∣∣∣∣
1 ≤ y0 ≤ y1 ≤ y2 ≤
y3 ≤ y4 ≤ y5 ≤ 2


.

The cone(Y) is given as in (4.25). The objective f and constraints c1, c2 are all linear. We

start with k = 3, and the Algorithm 4.5 terminates in the initial loop. The optimal value F ∗

and the optimizer x∗ for (4.12) are respectively

F ∗ ≈ −0.0326, x∗ ≈ (0.6775, 0.0000, 0.0000, 0.3225).

The optimizer for (4.18) is

y∗ ≈ (0.9355, 0.9355, 0.9517, 1.0163, 1.2260, 1.8710).

39

The measure µ for achieving y∗ =
∫

[ξ]5dµ is supported at the points

u1 ≈ 0.9913, u2 ≈ 3.0000.

By a proper scaling, we get the measure µ∗ = 0.9957δu1 + 0.0043δu2 that achieves the worst

case expectation constraint.

Example 4.10. Consider the DROM problem

min
x∈R3

f(x) = (x1 − x3 + x1x3)2 + (2x2 + 2x1x2 − x2
3)2

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,

c1(x) = 1− x2
1 − x2

2 − x2
3 ≥ 0,

c2(x) = 3x3 − x2
1 − 2x4

2 ≥ 0,

(4.28)

where (the random variable ξ is bivariate, i.e, p = 2)

h(x, ξ) = (1− x3)ξ2
1ξ

2
2 + (x1 − x2 + x3 − 1)ξ1ξ

2
2+

(x1 + x2 + x3 + 1)ξ2
2 + (x1 − x3)ξ2

1 − ξ2,

S = {ξ ∈ R2 : 1− ξT ξ ≥ 0}, g := 1− ξT ξ,

Y =


y ∈ RN2

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y00 = 1, 0.1 ≤ yα ≤ 1 (0 < |α| ≤ 4)
y20 y11 y30 y12

y11 y02 y21 y03

y30 y21 y40 y22

y12 y03 y22 y04

 � 2I4


.

The cone(Y) is given as in (4.26). One can verify that f and all −ci are SOS-convex. We

start with k = 2, and Algorithm 4.5 terminates in the initial loop. The optimal value F ∗ and

optimizer x∗ of (4.12) are respectively

F ∗ ≈ 0.0160, x∗ ≈ (0.4060, 0.0800, 0.4706).

The optimizer for (4.18) is

y∗ ≈ (0.3180, 0.2750, 0.1411, 0.2436, 0.1137, 0.0744, 0.2199, 0.0950,

0.0552, 0.0460, 0.2011, 0.0819, 0.0426, 0.0318, 0.0318).

40

The measure µ for achieving y∗ =
∫

[ξ]4dµ is supported at the points

u1 ≈ (0.6325, 0.7745), u2 ≈ (0.9434, 0.3317).

By a proper scaling, we get the measure µ∗ = 0.2527δu1 + 0.7473δu2 that achieves the worst

case expectation constraint.

Example 4.11. Consider the DROM problem

min
x∈R3

f(x) = x4
1 − x1x2x3 + x3

3 + 3x1x3 + x2
2

s .t . inf
µ∈M

Eµ[h(x, ξ)] ≥ 0,

c1(x) = x1x2 − 0.25 ≥ 0,

c2(x) = 6− x2
1 − 4x1x2 − x2

2 − x2
3 ≥ 0

(4.29)

where (the random variable ξ is bivariate, i.e, p = 2)

h(x, ξ) = (2− x1 + x2)ξ4
2 + (x1 + x3 + 1)ξ1ξ

2
2 + (2− x1 + 2x2)ξ3

2

+(x1 + 2x2 + x3 + 2)ξ2
1 + (3x2 − x1)ξ2

2 ,

S = {ξ ∈ R2|1 ≤ ξT ξ ≤ 4}, g = (ξT ξ − 1, 4− ξT ξ),

Y =

y ∈ RN2
4

∣∣∣∣∣∣y00 = 1,
∑
|α|≥1

y2
α = 36

 .

The set Y is not convex. Its convex hull is ‖y‖ ≤
√

37 with y00 = 1. Hence,

cone(Y) =
{
y ∈ RN2

4

∣∣∣ ‖y‖2 ≤
√

37y00

}
.

The functions f and −c1,−c2 are not convex. We start with k = 2. The optimizers for

(4.17) and (4.18) are respectively

w∗ ≈ (1.0000, 0.6790, 0.3682,−2.0984, 0.4611, 0.2500,−1.4249, 0.1356,−0.7726,

4.4034, 0.3131, 0.1698,−0.9675, 0.0920,−0.5246, 2.9900, 0.0499,−0.2845,

1.6212,−9.2402, 0.2126, 0.1153,−0.6569, 0.0625,−0.3562, 2.0302, 0.0339,

−0.1932, 1.1008,−6.2742, 0.0184,−0.1047, 0.5969,−3.4021, 19.3898),

y∗ ≈ (1.2272, 0.2992,−1.1902, 0.0730,−0.2902, 1.1543, 0.0178,−0.0708, 0.2814,

−1.1194, 0.0043,−0.0173, 0.0686,−0.2729, 1.0857).

41

The optimal value is F ∗ ≈ −12.6420 for both of them. The measure for achieving y∗ =∫
[ξ]4dµ is µ = 1.2272δu, with u ≈ (0.2438,−0.9698) ∈ S. So µ∗ = δu. For the point

x∗ = π(w∗) ≈ (0.6790, 0.3682,−2.0984),

one can verify that x∗ is feasible for (4.29), since

c1(x∗) ≈ −1.6654 · 10−9, c2(x∗) ≈ 5.6235 · 10−8, F ∗ − f(x∗) ≈ −7.7271 · 10−8.

By Theorem 4.3, we know x∗ is the optimizer for (4.29).

Example 4.12 (Portfolio selection [25,53]). Consider that there exist n risky assets that can

be chosen by the investor in the financial market. The uncertain loss ri of each asset can

be described by the random risk variable ξ which admits a probability measure supported in

S = [0, 1]p. Assume the moments of µ ∈M are constrained in the set

Y =
{
y ∈ RN3

3 | y000 = 1, 0.1 ≤ yα ≤ 1, |α| ≥ 1
}
.

The cone cone(Y) can be given as in (4.25). Minimizing the portfolio loss over the ambiguity

set M is equivalent to solving the following min-max optimization problem

min
x∈∆3

max
µ∈M

Eµ [x1r1(ξ) + x2r2(ξ) + x3r3(ξ)] , (4.30)

for the simplex ∆n :=
{
x ∈ R3

∣∣eTx = 1, x ≥ 0
}

. The functions ri(ξ) are
r1(ξ) = −1 + ξ1 + ξ1ξ2 − ξ1ξ3 − 2ξ3

1 ,

r2(ξ) = −1− ξ1ξ2 + ξ2
2 − ξ2ξ3 + ξ3

2 ,

r3(ξ) = −1 + ξ2ξ3 − ξ2
3 − ξ3

3 .

(4.31)

Then (4.30) can be equivalently reformulated as
min

(x0,x)∈R×R3
x0

s .t . inf
µ∈M

Eµ
[
x0 −

(
x1r1(ξ) + x2r2(ξ) + x3r3(ξ)

)]
≥ 0,

x ≥ 0, eTx = 1.

(4.32)

Applying Algorithm 4.5 to solve (4.32), we get the optimal value F ∗ and the optimizer (x∗0, x
∗)

in the initial loop k = 2:

F ∗ ≈ −1.0136, (x∗0, x
∗) ≈ (−1.0136, 0.1492, 0.3501, 0.5007).

42

The optimizer for (4.18) is

y∗ ≈ (1.0000, 0.6077, 0.4440, 0.3725, 0.3864, 0.3347, 0.2530, 0.4440, 0.2666, 0.1803,

0.2560, 0.2523, 0.1771, 0.3347, 0.2010, 0.1306, 0.4440, 0.2666, 0.1601, 0.1000).

The measure for achieving y∗ =
∫

[ξ]4dµ is

µ = 0.5560δu1 + 0.4440δu2 ,

with the following two points in S:

u1 ≈ (0.4911,−0.0000, 0.1905), u2 ≈ (0.7538, 1.0000, 0.6005).

Since µ belongs to M, it is also the measure that achieves the worst case expectation con-

straint. Therefore, the optimizer for (4.30) is x∗ and the optimal value is −0.9792.

Example 4.13 (Newsvendor problem [110]). Consider that there is a newsvendor trade

product with an uncertain daily demand. Assume the demand quantity D(ξ) is affected by a

random variable ξ ∈ R2 such that

D(ξ) = 2− ξ1 + ξ2 − ξ2
1 + 2ξ2

2 + ξ4
1 .

In each day, the newsvendor orders x units of the product at the wholesale price P1, sells the

product with quantity min{x,D(ξ)} at the retail price P2 and clears the unsold stock at the

salvage price P0. Assume that P0 < P1 < P2, then the newsvendor’s daily loss is given as

l(x, ξ) := (P1 − P2)x+ (P2 − P0) ·max{x−D(ξ), 0}.

Clearly, the newsboy will earn the most if he can buy the greatest order quantity that is

guaranteed to be sold out. Suppose ξ admits a probability measure supported in S and has

its true distribution contained in the ambiguity set M. Then the best order decision for the

newsvendor product can be obtained from the following DROM problem
min
x∈R

(P1 − P2)x

s .t . inf
µ∈M

Eµ[D(ξ)− x] ≥ 0,

x ≥ 0.

(4.33)

Suppose P0 = 0.25, P1 = 0.5, P2 = 1, and

S = [0, 5]2, Y =

{
y ∈ RN2

4

∣∣∣∣∣ y00 = 1, 1 ≤ y01 ≤ y02 ≤ 4

2i ≤ yi0 ≤ 4i, i = 1, 2, 3, 4

}
.

43

The cone cone(Y) can be given as in (4.25). Applying Algorithm 4.5 to solve (4.33), we get

the optimal value F and the optimizer x∗ respectively

F ∗ ≈ −7.5000, x∗ ≈ 15.0000.

The optimizer of (4.18) is

y∗ ≈ (0.5000, 1.0000, 0.5000, 2.0000, 1.0000, 0.5000, 4.0000, 2.0000,

1.0000, 0.5000, 8.0000, 4.0000, 2.0000, 1.0000, 0.5000).

The measure for achieving y∗ =
∫

[ξ]4dµ is µ = 0.5δu with u = (2.0000, 1.0000) ∈ S. So

µ∗ = δu achieves the worst case expectation constraint.

Acknowledgments. This Chapter, in full, has been submitted for publication.

The dissertation author coauthored this paper with Nie, Jiawang; Yang, Liu and Zhou,

Guangming.

44

Chapter 5

Bilevel Polynomial Optimziation

5.1 Bilevel optimization problems

The bilevel optimization problem is

min
x∈Rn,y∈Rp

F (x, y)

s .t . hi(x, y) = 0 (i ∈ E1),

hj(x, y) ≥ 0 (j ∈ I1),

y ∈ S(x),

(5.1)

where S(x) is the set of optimizer(s) of the lower level problem

(Px)


min
z∈Rp

f(x, z)

s .t . gi(x, z) = 0 (i ∈ E2),

gj(x, z) ≥ 0 (j ∈ I2).

In the above, F (x, y) is the upper level objective function and hi(x, y), hj(x, y) are the upper

level constraints. Similarly, f(x, z) is the lower level objective function and gi(x, z), gj(x, z)

are the lower level constraints. The E1, I1, E2, I2 are finite index sets (some or all of them

are possibly empty). For convenience, we denote by F the feasible set of (5.1) and denote

the lower feasible set

Z(x) :=

{
z ∈ Rp

∣∣∣∣∣ gi(x, z) = 0 (i ∈ E2),

gj(x, z) ≥ 0 (j ∈ I2)

}
. (5.2)

The (5.1) is called a simple bilevel optimization problem (SBOP) if Z(x) ≡ Z is independent

of x. When Z(x) depends on x, the (5.1) is called a general bilevel optimization problem

45

(GBOP). The (5.1) is called a bilevel polynomial optimization problem if all the defining

functions are polynomials. We study the bilevel polynomial optimization.

Assume (5.1) is a bilevel polynomial optimization problem. Denote the broad feasible

set

U :=

{
(x, y) ∈ Rn × Rp

∣∣∣∣∣ hi(x, y) = 0 (i ∈ E1), gi(x, y) = 0 (i ∈ E2),

hj(x, y) ≥ 0 (j ∈ I1), gj(x, y) ≥ 0 (j ∈ I2)

}
. (5.3)

For convenience, we assume S(x) is nonempty for all feasible x.

5.2 An algorithm for bilevel polynomial optimization

In this section, we propose a framework for solving the bilevel polynomial optimization

(5.1). It is based on solving a sequence of polynomial optimization relaxations, with the usage

of KKT conditions and Lagrange multiplier expressions.

For each y ∈ S(x), we assume the KKT conditions hold ∇zf(x, y)−
∑

j∈E2∪I2
λj∇zgj(x, y) = 0,

λj ≥ 0, λjgj(x, y) = 0 (j ∈ I2),
(5.4)

where the λj’s are Lagrange multipliers. This can be guaranteed if f and all gj are linear,

or by imposing the LICQ/MFCQ (see Section 2.5). For convenience, assume [m2] := E2 ∪I2

and the lower constraining polynomial tuple is

g := (g1(x, z), . . . , gm2(x, z)).

Then the KKT condition (5.4) implies that

∇zg1(x, y) ∇zg2(x, y) · · · ∇zgm2(x, y)

g1(x, y) 0 · · · 0

0 g2(x, y) · · · 0
...

...
. . .

...

0 0 · · · gm2(x, y)


︸ ︷︷ ︸

G(x,y)


λ1

λ2

...

λm2


︸ ︷︷ ︸

λ

=


∇zf(x, y)

0
...

0


︸ ︷︷ ︸

f̂(x,y)

. (5.5)

Suppose there is a polynomial matrix W (x, y) such that

W (x, y)G(x, y) = diag[d(x, y)],

46

d(x, y) := (d1(x, y), . . . , dm2(x, y)).

Then we can get rational expressions of Lagrange multipliers from

diag[d(x, y)]λ = W (x, y)G(x, y)λ = W (x, y)f̂(x, y). (5.6)

The above equation is the same as

dj(x, y)λj =
(
W (x, y)f̂(x, y)

)
j
, (5.7)

where the subscript j denotes the jth entry. The polynomial φj(x, y) in (5.8) is then(
W (x, y)f̂(x, y)

)
j
. Then we make the following assumption.

Assumption 5.1. Suppose the KKT condition (5.5) holds for every minimizer of (5.1),

there exist polynomials d1(x, y), . . . , dm2(x, y)≥ 0 on U and there are non-identically zero

polynomials φ1(x, y), . . . , φm2(x, y) such that

λjdj(x, y) = φj(x, y), j = 1, . . . ,m2 (5.8)

for all KKT points (x, y) as in (5.5).

Such rational functions φj(x, y)/dj(x, y) is called the Lagrange multiplier expression

(LME). The concept of LME is proposed in [85]. Under Assumption 5.1, let D(x, y) be

the least common multiple of d1(x, y), . . . , dm2(x, y) and Dj(x, y) be the quotient polynomial

D(x, y)/dj(x, y). Then the set of KKT points of (5.1) is contained in

K :=

(x, y)

∣∣∣∣∣∣∣
D(x, y)∇zf(x, y) =

m2∑
j=1

Dj(x, y)φj(x, y)∇zgj(x, y),

φj(x, y) ≥ 0, φj(x, y)gj(x, y) = 0 (j ∈ I2)

 . (5.9)

Indeed, the equivalence holds when d(x, y) is positive on U . If dj(x̂, ŷ) = 0 for some j and

(x̂, ŷ) ∈ U then D(x̂, ŷ) = 0 and hence the equations in (5.9) are automatically satisfied. The

set K may contain extra points other than the solutions of the bilevel optimization (5.1). To

preclude these points in computation, we make another assumption.

Assumption 5.2. For every pair (x̂, ŷ) ∈ U ∩ K and for every ẑ ∈ S(x̂), there exists a

polynomial tuple q(x, y) := (q1(x, y), . . . , qp(x, y)) such that

q(x̂, ŷ) = ẑ, q(x, y) ∈ Z(x) ∀ (x, y) ∈ U . (5.10)

47

We call the above function q(x, y) a polynomial extension of the point ẑ at (x̂, ŷ).

They have explicit expressions for some common lower constraints.

Then we propose an algorithm to solve the bilevel polynomial optimization (5.1),

under Assumptions 5.1-5.2.

Algorithm 5.3. For the bilevel polynomial optimization (5.1), do the following:

Step 0 Find rational expressions for Lagrange multipliers as in (5.8), for Assumption 5.1. Let

U0 := U ∩ K, where K is the set in (5.9). Let k := 0.

Step 1 Apply the Moment-SOS hierarchy to solve the polynomial optimization

(Pk)

 F ∗k := min
x∈Rn,y∈Rp

F (x, y)

s .t . (x, y) ∈ Uk.
(5.11)

If (Pk) is infeasible, then either (5.1) has no optimizers, or none of its optimizers

satisfy the KKT condition for the lower level optimization. If it is feasible and has a

minimizer, solve it for a minimizer (x(k), y(k)).

Step 2 Apply the Moment-SOS hierarchy to solve the lower level optimization

(Qk)

 υ∗k := min
z∈Rp

f(x(k), z)− f(x(k), y(k))

s .t . z ∈ Z(x(k)), (x(k), z) ∈ K.
(5.12)

for an optimizer z(k). If the optimal value υ∗k = 0, then (x(k), y(k)) is an optimizer for

(5.1) and stop. Otherwise, go to the next step.

Step 3 Construct q(k)(x, y), a polynomial extension of the vector z(k), such that

q(k)(x(k), y(k)) = z(k), q(k)(x, y) ∈ Z(x) ∀(x, y) ∈ U .

Update the set Uk+1 as

Uk+1 := {(x, y) ∈ Uk|f(x, q(k)(x, y))− f(x, y) ≥ 0}.

Let k := k + 1 and go to Step 1.

In Algorithm 5.3, the polynomial optimization problems (Pk), (Qk) can be solved

globally by Moment-SOS relaxations.

We study the convergence of Algorithm 5.3. First, we show that if the problem (Px) is

convex for each x, then Algorithm 5.3 will find a global optimizer of the bilevel optimization

(5.1) in the initial loop.

48

Proposition 5.4 ([92]). Suppose Assumptions 5.1-5.2 hold and all dj(x, y) > 0 on U . For

every given x, assume that f(x, z) is convex in z, gi(x, z) is linear in z for i ∈ E2, and

gj(x, z) is concave in z for j ∈ I2. Assume that the Slater’s condition holds for Z(x) for

all feasible x. Then, the bilevel optimization (5.1) is equivalent to (P0) and Algorithm 5.3

terminates at the loop k = 0.

Proof. Under the given assumptions, y ∈ S(x) if and only if y is a KKT point for problem

(Px), which is then equivalent to (x, y) ∈ K, since all dj(x, y) > 0 on U . Then, the feasible

set of (5.1) is equivalent to U∩K. This implies that (5.1) is equivalent to (P0) and Algorithm

5.3 terminates at the initial loop k = 0.

Second, if Algorithm 5.3 terminates at some loop k, we can show that it produces a

global optimizer for the bilevel optimization (5.1).

Proposition 5.5 ([92]). Suppose Assumptions 5.1-5.2 hold. If Algorithm 5.3 terminates at

the loop k, then the point (x(k), y(k)) is a global optimizer of (5.1).

Proof. By Assumption 5.1, the KKT condition (5.4) holds at each (x, y) ∈ F and hence

F ⊆ U0 := U ∩K. By the construction of q(k)(x, y) as required for Assumptions 5.2, we have

shown F ⊆ Uk for each k. Then F ∗k ≤ F ∗ for all k, where F ∗ denotes the optimal value

of (5.1). According to the stopping rule, if Algorithm 5.3 terminates at the kth loop, then

y(k) ∈ S(x(k)). This means (x(k), y(k)) ∈ F . Consequently F ∗k = F (x(k), y(k)) ≥ F ∗. Hence

(x(k), y(k)) is a global optimizer of (5.1).

Last, we study the asymptotic convergence of Algorithm 5.3. To prove the conver-

gence, we need to assume that the value function

v(x) := inf
z∈Z(x)

f(x, z) (5.13)

is continuous at an accumulation point x∗. This is the case under the so-called restricted inf-

compactness (RIC) condition (see e.g., [41, Definition 3.13]) and either Z(x) is independent

of x or the MFCQ holds at some z̄ ∈ Z(x∗); see [38, Lemma 3.2] for the upper semicontinuity

and [18, page 246] for the lower semicontinuity.

Theorem 5.6 ([92]). For Algorithm 5.3, we assume the following:

(a) All optimization problems (Pk) and (Qk) have global minimizers.

49

(b) The Algorithm 5.3 does not terminate at any loop, so it produces the infinite sequence

{(x(k), y(k), z(k))}∞k=0.

(c) Suppose (x∗, y∗, z∗) is an accumulation point of {(x(k), y(k), z(k))}∞k=0 and the value func-

tion v(x) is continuous at x∗.

(d) The polynomial functions q(k)(x, y) converge to q(k)(x∗, y∗) uniformly for k ∈ N as

(x, y)→ (x∗, y∗).

Then, (x∗, y∗) is a global minimizer for the bilevel optimization (5.1).

Proof. Since (x∗, y∗) is an accumulation point of the sequence {(x(k), y(k))}∞k=0, there is a

subsequence {k`} such that k` →∞ and

(xk` , yk` , zk`) → (x∗, y∗, z∗).

Since each z(k`) ∈ Z(x(k`)), we can see that z∗ ∈ Z(x∗). The feasible set of (Pk`) contains

that of (5.1), so

F (x∗, y∗) = lim
`→∞

F (x(k`), y(k`)) ≤ F ∗,

where F ∗ is the optimal value of the bilevel optimization (5.1). (The polynomial F (x, y) is a

continuous function.) To prove F (x∗, y∗) ≥ F ∗, we show that (x∗, y∗) is feasible for problem

(5.1). Define the functions

H(x, y, z) := f(x, z)− f(x, y), φ(x, y) := inf
z∈Z(x)

H(x, y, z). (5.14)

Observe that φ(x, y) = v(x) − f(x, y) ≤ 0 for all (x, y) ∈ U and φ(x∗, y∗) = 0 if and only if

(x∗, y∗) is feasible for (5.1). Since v(x) is continuous at x∗, we have φ(x∗, y∗) ≤ 0. Next, we

show that φ(x∗, y∗) ≥ 0. For an arbitrary k′ ∈ N, and for all k` ≥ k′, the point (x(k`), y(k`))

is feasible for (Pk′), so

H(x(k`), y(k`), z) ≥ 0 ∀z ∈ V(k′)
k`

where V(k′)
k`

is the set defined as

V(k′)
k`

:=
{
q(0)(x(k`), y(k`)), q(1)(x(k`), y(k`)), . . . , q(k′−1)(x(k`), y(k`))

}
.

As `→∞, we can get

H(x∗, y∗, z) ≥ 0 ∀z ∈ V(k′)
∗ , (5.15)

50

where the set V(k′)
∗ is

V(k′)
∗ :=

{
q(0)(x∗, y∗), q(1)(x∗, y∗), . . . , q(k′−1)(x∗, y∗)

}
.

The inequality (5.15) holds for all k′, so

H(x∗, y∗, z) ≥ 0 ∀z ∈ T := {q(k)(x∗, y∗)}k∈N. (5.16)

It follows that

H(x∗, y∗, q(k`)(x∗, y∗)) ≥ 0.

In Algorithm 5.3, each point z(k`) ∈ Z(x(k`)) satisfies

φ(x(k`), y(k`)) = H(x(k`), y(k`), z(k`)).

Therefore, we have

φ(x∗, y∗) = φ(x(k`), y(k`)) + φ(x∗, y∗)− φ(x(k`), y(k`))

≥
(
H(x(k`), y(k`), z(k`))−H(x∗, y∗, q(k`)(x∗, y∗))

)
+(

φ(x∗, y∗)− φ(x(k`), y(k`))
)
.

(5.17)

Since z(k`) = q(k`)(x(k`), y(k`)), by the condition (d), we know that

lim
`→∞

z(k`) = lim
`→∞

q(k`)(x(k`), y(k`)) = lim
`→∞

q(k`)(x∗, y∗),

H(x(k`), y(k`), z(k`))−H(x∗, y∗, q(k`)(x∗, y∗))→ 0 as `→∞,

by the continuity of the polynomial function H(x, y, z) at (x∗, y∗, z∗). By the assumption,

v(x) is continuous at x∗, so φ(x, y) = v(x) − f(x, y) is also continuous at (x∗, y∗). Letting

`→∞ in (5.17), we get φ(x∗, y∗) ≥ 0. Thus, (x∗, y∗) is feasible for (5.1) and so F (x∗, y∗) ≥
F ∗. In the earlier, we already proved F (x∗, y∗) ≤ F ∗, so (x∗, y∗) is a global optimizer of

(5.1), i.e., (x∗, y∗) is a global minimizer of the bilevel optimization (5.1).

5.3 LMEs and polynomial extensions

The LMEs and polynomial extensions are important in Algorithm 5.3. In this section,

we discuss about LMEs and polynomial extensions.

The LMEs are firstly introduced in [85]. The conclusions from [85] implies that,

when (5.1) is a SBOP, there exists a polynomial matrix W (y) satisfying W (y)G(y) = Im2 for

51

generic g. For GBOPs, there typically does not existW (x, y) such thatW (x, y)G(x, y) = Im2 .

This is because the matrix G(x, y) in (5.5) is typically not full column rank for all complex

x ∈ Cn, y ∈ Cp. However, we can always find a matrix polynomial W (x, y) such that

W (x, y)G(x, y) = diag[d(x, y)], (5.18)

for a denominator polynomial vector

d(x, y) :=
(
d1(x, y), . . . , dm2(x, y)

)
which is nonnegative on U . Such W (x, y), d(x, y) are not unique. In computation, we

prefer that W (x, y), d(x, y) have low degrees and d(x, y) > 0 on U (or d(x, y) has as few as

possible zeros on U). We would like to remark that there always exist such W (x, y), d(x, y)

satisfying (5.18). Note that H(x, y) := G(x, y)TG(x, y) is a psd matrix polynomial. If the

determinant detH(x, y) is not identically zero (this is the general case), then the adjoint

matrix adj
(
H(x, y)

)
satisfies

adj
(
H(x, y)

)
H(x, y) = detH(x, y)Im2 .

Then the equation (5.18) is satisfied for

W (x, y) := adj
(
H(x, y)

)
G(x, y)T , d(x, y) = detH(x, y)1m2 .

The above choice for W (x, y), d(x, y) may not be very practical in computation, because

they typically have high degrees. In applications, there often exist more suitable choices for

W (x, y), d(x, y) with much lower degrees.

Example 5.7. Consider the lower level optimization problem min
y∈R2

x1y1 + x2y2

s .t . (2y1 − y2, x1 − y1, y2, x2 − y2) ≥ 0.

The matrix G(x, y) and f̂(x, y) in (5.5) are:

G(x, y) =



2 −1 0 0

−1 0 1 −1

2y1 − y2 0 0 0

0 x1 − y1 0 0

0 0 y2 0

0 0 0 x2 − y2


, f̂(x, y) =



x1

x2

0

0

0

0


.

52

The equation (5.18) holds for the denominator vector

d(x, y) =
(
2x1 − y2, 2x1 − y2, x2(2x1 − y2), x2(2x1 − y2)

)
and the matrix W (x, y) which is given as follows

x1 − y1 0 1 1 0 0

y2 − 2y1 0 2 2 0 0

(x2 − y2)(x1 − y1) (x2 − y2)(2x1 − y2) x2 − y2 x2 − y2 2x1 − y2 2x1 − y2

y2(y1 − x1) y2(y2 − 2x1) −y2 −y2 2x1 − y2 2x1 − y2

 .

Note that d(x, y) ≥ 0 for all feasible (x, y).

We also give a heuristic method to computeW (x, y), d(x, y). Select a point (x̂, ŷ) ∈ U .

For a priori low degree `, we consider the following convex optimization in W (x, y), d(x, y):

max γ1 + · · ·+ γm2

s .t . W (x, y)G(x, y) = diag[d(x, y)],

d(x̂, ŷ) = 1m2 , γ1 ≥ 0, . . . , γm2 ≥ 0,

W (x, y) ∈
(
R[x, y]2`−deg(G)

)m2×(p+m2)

,

dj(x, y)− γj ∈ Ideal[Φ]2` + Qmod[Ψ]2` (j ∈ [m2]).

(5.19)

In the above, the polynomial tuples Φ,Ψ are

Φ := {hi}i∈E1 ∪ {gi}i∈E2 , Ψ := {hj}j∈I1 ∪ {gj}j∈I2 . (5.20)

We can construct a polynomial extension, required in Assumption 5.2, for many

bilevel optimization problems. If (Px) has linear equality constraints, we can get rid of

them by eliminating variables. If (Px) has nonlinear equality constraints, generally there

is no polynomial q(x, y) satisfying Assumption 5.2, unless the corresponding algebraic set

is rational. So, we consider cases that (Px) has no equality constraints, i.e., the label set

E2 = ∅. Moreover, we assume the polynomials gj(x, z) are linear in z, for each j ∈ I2. Recall

the polynomial tuples Φ,Ψ given as in (5.20). For a priori degree ` and for a given triple

(x̂, ŷ, ẑ), we consider the following polynomial system about q:
q(x̂, ŷ) = ẑ,

gj(x, q) ∈ Ideal[Φ]2` + Qmod[Ψ]2` (j ∈ I2),

q = (q1, . . . , qp) ∈
(
R[x, y]

)p
.

(5.21)

53

The second constraint in (5.21) implies that

gj
(
x, q(x, y)

)
≥ 0, ∀(x, y) ∈ U , j ∈ I2.

Hence q obtained as above must satisfy Assumption 5.2. The above program can be solved

by the software Yalmip [70].

Example 5.8. Consider Example 5.7 with

x̂ = (1, 0), ŷ = (1, 0), ẑ = (0, 0),

h(x, y) = (3x1 − x2, x2, x2 − x1 + 1),

g(x, y) = (2y1 − y2, x1 − y1, y2, x2 − y2).

For ` = 2, a satisfactory q := (q1, q2) for (5.21) is

q1(x, y) = x2/3, q2(x, y) = 2x2/3,

because g(x, q) = 1
3
(0, h1(x, y), 2h2(x, y), h2(x, y)) and

h1(x, y), h2(x, y) ∈ Ideal[Φ]2` + Qmod[Ψ]2`.

For computational convenience, we prefer explicit expressions for q(x, y). In the

following, we give explicit expressions for various cases of bilevel optimization problems.

Simple bilevel optimization. If the lower feasible set is independent of x, i.e.,

Z(x) ≡ Z, then we can just simply choose

q(x, y) := z

in Assumption 5.2, for all z ∈ Z and all (x, y) ∈ U . It is a constant polynomial function.

Therefore, Assumption 5.2 is always satisfied for all SBOPs.

Box constraints. Suppose the feasible set Z(x) of (Px) is given as

l(x) ≤ Az ≤ u(x),

where A := [a1, . . . , am2]
T ∈ Rm2×p is a full row rank matrix and m2 ≤ p. Let am2+1, . . . , ap

be vectors such that the matrix

B := [a1, . . . , am2 , am2+1, . . . , ap]
T ∈ Rp×p

54

is invertible. Then the linear coordinate transformation z = B−1w makes the constraints

become the box constraints lj(x) ≤ wj ≤ u(x)j, j ∈ [m2]. Hence we can choose q = B−1q′,

where q′ := (q′1, . . . , q
′
p) as

q′j(x, y) :=

{
µjlj(x) + (1− µj)uj(x), j = 1, . . . ,m2,

(By)j, j = m2 + 1, . . . , p.

where each scalar

µj := (uj(x̂)− (Bẑ)j)/(uj(x̂)− lj(x̂)) ∈ [0, 1].

For the special case that uj(x̂) − lj(x̂) = 0, we just set µj = 0. One can simply verify that

q(x, y) ∈ Z(x) for all (x, y) ∈ U .

Simplex constraints. Suppose that the feasible set Z(x) of (Px) is given as

aT z ≤ u(x), zj ≥ lj(x) (j = 1, . . . , p),

where a := (a1, . . . , ap) ∈ Rp
+, u(x) and all lj(x) are polynomials in x. We can choose

q := (q1, . . . , qp) as

qj(x, y) := cj ·
(
u(x)− aT l(x)

)
+ lj(x),

where each cj := (ẑj − lj(x̂))/(u(x̂) − aT l(x̂)) ≥ 0. In particular, we set all cj = 0 if

u(x̂)− aT l(x̂) = 0. Note that

qj(x̂, ŷ) = lj(x̂) + cj · (u(x̂)− aT l(x̂)) = ẑj.

For all (x, y) ∈ U , it is clear that q(x, y) ≥ l(x). In addition, we have

aT q(x, y) = aT l(x)(1−
p∑
j=1

ajcj) + (

p∑
j=1

ajcj)u(x) ≤ u(x)

since aT l(x) ≤ u(x) and a1c1 + · · · apcp ≤ 1. Therefore, q(x, y) ∈ Z(x) for all (x, y) ∈ U .

Annular constraints. Suppose the lower level feasible set is

Z(x) =
{
y ∈ Rp

∣∣∣ r(x) ≤ ‖y − a(x)‖d ≤ R(x)
}
,

where ‖z‖d := d
√∑p

i=1 |zi|d and a(x) := [a1(x), . . . , ap(x)] is a polynomial vector, and

r(x), R(x) are polynomials such that 0 ≤ r(x) ≤ R(x) on U . We can choose

q(x, y) := a(x) + q′(x)s,

55

where q′(x) := µ1r(x) + µ2R(x), µ1, µ2 are scalars such that

‖ẑ − a(x̂)‖d = µ1r(x̂) + µ2R(x̂), µ1, µ2 ≥ 0, µ1 + µ2 = 1,

and s := (s1, . . . , sp) is the vector such that

si :=
ẑi − ai(x̂)

‖ẑ − a(x̂)‖d
, i = 1, . . . , p.

(For the special case that ẑ = a(x̂), we just set all si = p−1/d.) Then,

ẑ − q(x̂, ŷ) = (ẑ − a(x̂))− (q(x̂, ŷ)− a(x̂))

= (ẑ − a(x̂))− q′(x̂)s = 0.

since q′(x̂) = ‖ẑ − a(x̂)‖d. Moreover,

‖q(x, y)− a(x)‖d = ‖q′(x)s‖d = |q′(x)| · ‖s‖d = |q′(x)|.

Because 0 ≤ r(x) ≤ R(x) on U , we must have

r(x) ≤ ‖q(x, y)− a(x)‖d ≤ R(x).

This means that q(x, y) satisfies Assumption 5.2.

5.4 Numerical experiments

In this section, we report numerical results of applying Algorithm 5.3 to solve bilevel

polynomial optimization problems. The computation is implemented in MATLAB R2018a, in

a Laptop with CPU 8th Generation Intel® Core� i5-8250U and RAM 16 GB. The software

GloptiPoly 3 [48] and SeDuMi [105] are used to solve the polynomial optimization problems

in Algorithm 5.3. In this section, we use the following notation.

• The LMEs in Assumption 5.1 are denoted by λ(x, y), which are computed by symbolic

Gaussian elimination on the equation (5.18).

• The notation (P) denotes the bilevel optimization (5.1). Its optimal value and opti-

mizers are denoted by F ∗ and (x∗, y∗) respectively.

• The (Pk) denotes the relaxed polynomial optimization in the kth loop of Algorithm 5.3.

Its optimal value and minimizers are denoted as F ∗k and (x(k), y(k)) respectively.

56

• The (Qk) denotes the lower level optimization problem (5.12) in the kth loop of Algo-

rithm 5.3. Its optimal value and minimizers are denoted as υk and z(k) respectively.

• We always have υk ≤ 0. Note that y(k) is a minimizer of (5.12) if and only if υk = 0.

Due to numerical round-off errors, we cannot have υk = 0 exactly. We view y(k) as a

minimizer of (5.12) if υk ≥ −ε, for a tiny scalar ε (e.g., 10−6).

Example 5.9. First, we apply Algorithm 5.3 to solve SBOPs. The displayed problems are

respectively from [66, Example 5.2], [1, Example 3], [29, Example 3.8], [91, Example 5.2]

and [104, Example 2]. All but the first problem are solved successfully in the initial loop

k = 0. The computational results are shown in Table 5.1.

Example 5.10. [77, Example 2] Consider the general bilevel optimization min
x∈R2,y∈R3

y2
1 + y2

3 − y1y3 − 4y2 − 7x1 + 4x2

s .t . (x1, x2, 1− x1 − x2) ≥ 0, y ∈ S(x),

where S(x) is the optimizer set of min
z∈R3

z2
1 + 0.5z2

2 + 0.5z2
3 + z1z2 + (1− 3x1)z1 + (1 + x2)z2

s .t . (−2z1 − z2 + z3 − x1 + 2x2 − 2, z1, z2, z3) ≥ 0.

The LME can be computed from D(x, y)λ(x, y) = W1(x, y)∇zf(x, y), where

W1(x, y) =


y1 y2 y3

2 + x1 + 2y1 − 2x2 2y2 2y3

y1 2 + x1 + y2 − 2x2 y3

−y1 −y2 2 + x1 − 2x2 − y3

 ,

and D = diag{d1, . . . , d4} for the denominators (i = 1, 2, 3, 4)

di(x, y) = 2 + x1 − 2x2 = 3h1(x, y) + 2h3(x, y) ≥ 0, ∀(x, y) ∈ U .

By Algorithm 5.3, we get the optimizer for this bilevel optimization in the initial loop k = 0.

The computational results are shown in Table 5.2.

Example 5.11. [91, Example 5.8] Consider the general bilevel optimization
min
x,y∈R4

(eTx)(eTy)

s .t . (1− xTx, x4 − y2
3, x1 − y2y4) ≥ 0,

y ∈ S(x),

57

Table 5.1: Computational results for some SBOPs.

min
x,y∈R1

x+ y

s .t . (x+ 1, 1− x) ≥ 0,
y ∈ argmin

z∈R1

1
2
xz2 − 1

3
z3

s .t . (z + 1, 1− z) ≥ 0.

F ∗ = −1.2380 · 10−8,
v∗ = −3.9587 · 10−8,
x∗ = −1.0000,
y∗ = 1.0000,
time = 0.89.

min
x,y∈R2

x2
1 − 2x1 + x2

2 − 2x2 + y2
1 + y2

2

s .t . (x1, x2, y1, y2, 2− x1) ≥ 0,
y ∈ argmin

z∈R2

z2
1 − 2x1z1 + z2

2 − 2x2z2

s .t . 0.25− (z1 − 1)2 ≥ 0,
0.25− (z2 − 1)2 ≥ 0.

F ∗ = −1.0000,
v∗ = −1.3113 · 10−9,
x∗ = (0.5000, 0.5000),
y∗ = (0.5000, 0.5000),
time = 0.34.

min
x,y∈R2

2x1 + x2 − 2y1 + y2

s .t . (1 + x1, 1− x1, 1 + x2,−0.75− x2) ≥ 0,
y ∈ argmin

z∈R2

xT z

s .t . (2z1 − z2, 2− z1) ≥ 0,
(z2, 2− z2) ≥ 0.

F ∗ = −5.0000,
v∗ = −1.4163 · 10−8,
x∗ = (−1.0000,−1.0000),
y∗ = (2.0000, 2.0000),
time = 0.27.

min
x∈R2,y∈R3

x1y1 + x2y2 + x1x2y1y2y3

s .t . (1− x2
1, 1− x2

2, x
2
1 − y1y2) ≥ 0,

y ∈ argmin
z∈R3

x1z
2
1 + x2

2z2z3 − z1z
2
3

s .t . (zT z − 1, 2− zT z) ≥ 0.

F ∗ = −1.7095,
v∗ = −1.3995 · 10−9,
x∗ = (−1.0000,−1.0000),
y∗ = (1.1097, 0.3143,−0.8184),
time = 6.43.

min
x,y∈R2

(x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2

s .t . (x1 + 2x2 − 30, 25− x1 − x2, 15− x2) ≥ 0,
y ∈ argmin

z∈R2

(x1 − z1)2 + (x2 − z2)2

s .t . (10− z1, 10− z2, z1, z2) ≥ 0.

F ∗ = 225.0000,
v∗ = −1.6835 · 10−9,
x∗ = (20.0000, 5.0000),
y∗ = (10.0000, 5.0000),
time = 0.27.

where S(x) is the set of optimizer(s) of
min
z∈R4

x1z1 + x2z2 + 0.1z3 + 0.5z4 − z3z4

s .t . x2
1 + x2

3 + x2 + x4 − z2
1 − 2z2

2 − 3z2
3 − 4z2

4 ≥ 0,

z2z3 − z1z4 ≥ 0.

The LME can be computed from D(x, y)λ(x, y) = W1(x, y)∇zf(x, y), where

W1(x, y) = y4 ·

(
−y1y4 −y2y4 −y3y4 −y2

4

2y2
1 − 2(x2

1 + x2
3 + x2 + x4) 2y1y2 2y1y3 2y1y4

)
,

58

Table 5.2: Computational results for Example 5.10

(P0) F ∗0 = 0.6389,
x(0) = (0.6111, 0.3889), y(0) = (0.0000, 0.0000, 1.8332),

(Q0) υ0 = −6.7295 · 10−9 → stop.
Time 1.09 seconds,
Output F ∗ = F ∗0 , x

∗ = x(0), y∗ = y(0).

and D = diag{d1, d2} for the denominators

d1(x, y) = d2(x, y) = 2y2
4(x2

1 + x2
3 + x2 + x4)

≥ 2y2
4(y2

1 + 2y2
2 + 3y2

3 + 4y2
4) ≥ 0, ∀(x, y) ∈ U .

By Algorithm 5.3, we get the optimizer for this bilevel optimization in the initial loop k = 0.

The computational results are shown in Table 5.3.

Table 5.3: Computational results for Example 5.11

(P0) F ∗0 = −3.5050,
x(0) = (0.5442, 0.4682, 0.4904, 0.4942),
y(0) = (−0.7791,−0.5034,−0.2871,−0.1855),

(Q0) υ0 = −1.6143 · 10−9 → stop.
Time 49.08 seconds,
Output F ∗ = F ∗0 , x

∗ = x(0), y∗ = y(0).

Example 5.12. Consider the general bilevel optimization

min
x,y∈R4

y1x
2
1 + y2x

2
2 − y3x3 − y4x4

s .t . (x1 − 1, x2 − 1, 4− x1 − x2) ≥ 0,

(x3 − 1, 2− x4, x
2
3 − 2x4, 8− xTx) ≥ 0,

y ∈ S(x),

where S(x) is the set of optimizer(s) of
min
z∈R4

−z1z2 + z3 + z4

s .t . (z1, z2, z3 − x4, z4 − x3) ≥ 0,

(4x1x2 − x1z1 − x2z2, 3− z3 − z4) ≥ 0.

59

The LME can be computed from D(x, y)λ(x, y) = W1(x, y)∇zf(x, y), where

W1(x, y) =



x1(4x2 + y2)− x1y1 − x2y2 −x1y2 0 0

−x1y1 4x1x2 − x2y2 0 0

0 0 3− x3 − y3 x3 − y4

0 0 x4 − y3 3− x4 − y4

−y1 −y2 0 0

0 0 x4 − y3 x3 − y4


,

and D = diag{d} for the denominator vector d(x, y) as follows

d(x, y) = (4x1x2 + x1y2 − x2y2, 4x1x2 + x1y2 − x2y2,

3− x3 − x4, 3− x3 − x4, 4x1x2 + x1y2 − x2y2, 3− x3 − x4).

It is clear that d(x, y) ≥ 0 for all feasible (x, y). The polynomial function q := (q1, q2, q3, q4)

in Assumption 5.2 can be given as

q =
(
µ1x2, µ2x1, x4 + µ3(3 + x3 + x4), x3 + µ4(3 + x3 + x4)

)
, (5.22)

where

µ =
(ẑ1

x̂2

,
ẑ2

x̂1

,
ẑ3 − x̂4

3 + x̂3 + x̂4

,
ẑ4 − x̂3

3 + x̂3 + x̂4

)
,

for given (x̂, ŷ) ∈ U . Since x1, x2, x3 ≥ 1 and x4 ≥ −2
√

2, the above µ1, µ2, µ3, µ4 are well

defined. Applying Algorithm 5.3, we get the optimizer for this bilevel optimization in the loop

k = 1. The computational results are shown in Table 5.4.

Example 5.13. Consider the general bilevel optimization problem

min
x,y∈R4

x2
1y

2
4 − x2y

2
3 + x3y1 − x4y2

s .t . (4− x2
1 − x2

2, −x1 − x2
2, y1 − x1, 1Tx) ≥ 0,

(x3 + x4 − 3, 1 + x3 − x4, 3− x3, x4) ≥ 0,

y ∈ S(x),

where S(x) is the optimizer(s) set of
min
z∈R4

(x1 − z1)2 + (x2 − z2)2 + z3 − z4

s .t . 4x2
3 − x2

1 − x2
2 + 2x1z1 + 2x2z2 − zT z ≥ 0

(z3, x3 − z3, z4, x4 − z4) ≥ 0

.

60

Table 5.4: Computational results for Example 5.12

(P0) F ∗0 = −4.4575,
x(0) = (1.1548, 1.1546, 1.6458, 1.3542),
y(0) = (0.0000, 0.0000, 1.3542, 1.6458),

(Q0) υ0 = −5.3362→ next loop;
z(0) = (2.3093, 2.3096, 1.3542, 1.6458),
q(0) = (2x2, 2x1, x4, x3) as in (5.22).

(P1) F ∗1 = −0.4574,
x(1) = (1.0000, 1.0000, 1.6458, 1.3542),
y(1) = (2.0000, 2.0000, 1.3542, 1.6458),

(Q1) υ1 = −1.9402 · 10−9 → stop.
Time 102.21 seconds,
Output F ∗ = F ∗1 , x

∗ = x(1), y∗ = y(1).

The LME can be computed from D(x, y)λ(x, y) = W1(x, y)∇zf(x, y), where

W (x, y) =



−1 0 0 0

−(x3 − y3)y3 0 (x3 − y3)(y1 − x1) 0

y2
3 0 −y3(y1 − x1) 0

−(x4 − y4)y4 0 0 (x4 − y4)(y1 − x1)

y2
4 0 0 −y4(y1 − x1)


,

and D = diag{d} for the denominator vector

d(x, y) = (y1 − x1) ·
(
2, x3 − y3, y3, x4 − y4, y4

)
.

It is clear that d(x, y) ≥ 0 for all feasible (x, y). The lower level feasible set Z(x) is a mixture

of separable and annular constraints:

Z(x) =

{
z ∈ R4

∣∣∣∣∣ (z1 − x1)2 + (z2 − x2)2 + z2
3 + z2

4 ≤ 4x2
3,

0 ≤ z3 ≤ x3, 0 ≤ z4 ≤ x4

}
.

The polynomial function q := (q1, q2, q3, q4) in Assumption 5.2 can be given as

q = (x1 + µ1x3, x2 + µ2x3, µ3x3, µ4x4), (5.23)

where (for a given value (x̂, ŷ, ẑ) of (x(k), y(k), z(k)), q satisfies q(x̂, ŷ) = ẑ)

µ =
(ẑ1 − x̂1

x̂3

,
ẑ2 − x̂2

x̂3

,
ẑ3

x̂3

,
ẑ4

x̂4

)
.

61

Table 5.5: Computational results for Example 5.13

(P0) F ∗0 = −41.7143,
x(0) = (−1.5616, 1.2496, 3.0000, 4.0000),
y(0) = (−1.5616, 6.4458, 3.0000, 0.0008),

(Q0) υ0 = −33.9991,
z(0) = (−1.5615, 1.2496, 0.0000, 4.0000),
q(0) = (x1, x2, 0, x4) as in (5.23).

(P1) F ∗1 = −6.0000,
x(1) = (−2.0000, 0.0001, 3.0000, 0.0001),
y(1) = (−2.0000, 0.0001,−0.0000, 0.0001),

(Q1) υ1 = −2.7612 · 10−9 → stop.
Time 3.42 seconds,
Output F ∗ = F ∗1 , x

∗ = x(1), y∗ = y(1).

Since 1 ≤ x̂3 ≤ 3 and 0 ≤ x̂4 ≤ 1 + x̂3, we have µ4 = 0 for the special case when x̂4 = 0,

then the above q is well-defined. This bilevel optimization was solved by Algorithm 5.3 in the

loop k = 1. The computational results are shown in Table 5.5.

Acknowledgments. This Chapter, in full, is a reprint of the material as it appears

in SIAM Journal on Optimization 2021. The dissertation author coauthored this paper with

Nie, Jiawang; Wang, Li and Ye, Jane J.

62

Chapter 6

Rational Generalized Nash

Equilibrium Problems

6.1 Generalized Nash equilibrium problems

The generalized Nash equilibrium problem is a kind of games to find strategies for

a group of players such that each player’s objective cannot be further optimized, for given

strategies of other players. Suppose there are N players and the ith player’s strategy is the

real vector xi ∈ Rni . We write that

xi := (xi,1, . . . , xi,ni
), x := (x1, . . . , xN).

Let n := n1 + · · · + nN . When the ith player’s strategy xi is focused, we also write that

x = (xi, x−i), where

x−i := (x1, . . . , xi−1, xi+1, . . . , xN).

A strategy tuple u := (u1, . . . , uN) is said to be a generalized Nash equilibrium (GNE) if

each ui is the optimizer for the ith player’s optimization

Fi(u−i) :

 min
xi∈Rni

fi(xi, u−i)

s .t . xi ∈ Xi(u−i).
(6.1)

In the above, the Xi(u−i) is the feasible set and fi(xi, u−i) is the ith player’s objective.

They are parameterized by u−i = (u1, . . . , ui−1, ui+1, . . . , uN). Each player’s optimization is

parameterized by strategies of other players. We denote by S the set of all GNEs and denote

63

by Si(u−i) the set of minimizers for the optimization Fi(u−i). The entire feasible strategy

set is

X := {(x1, . . . , xN) |xi ∈ Xi(x−i) , i = 1, . . . , N} . (6.2)

A strategy tuple x = (x1, . . . , xN) is said to be feasible if each xi ∈ Xi(x−i).

The rational generalized Nash equilibrium problems (rGNEPs) are GNEPs whose all

the objectives and constraining functions are rational functions in x. We assume the ith

player’s feasible set is given as

Xi(x−i) =

xi ∈ Rni

∣∣∣∣∣∣∣∣
gi,j(xi, x−i) = 0 (j ∈ I(i)

0),

gi,j(xi, x−i) ≥ 0 (j ∈ I(i)
1),

gi,j(xi, x−i) > 0 (j ∈ I(i)
2)

 , (6.3)

where I(i)
0 , I(i)

1 , I(i)
2 are respectively the labelling sets (possibly empty) for equality, weak

inequality and strict inequality constraints. For the rational function to be well defined,

we assume all denominators are positive in the feasible set. If this is not the case, we can

add strict inequality constraints for denominators. Rational functions frequently appear in

GNEPs. When functions are polynomials, the GNEPs are studied in the recent work [87–89].

In particular, a special case of GNEPs is the Nash Equilibrium Problems (NEPs): each

feasible set Xi(x−i) is independent of x−i.

One may reformulate rGNEPs equivalently as polynomial GNEPs by introducing new

variables or change the description of the feasible set. However, doing so may loose some use-

ful properties. For instance, the convexity may be lost if we use polynomial reformulations.

The following is such an example.

Example 6.1. Consider the 2-player rational GNEP

min
x1∈R2

2(x1,1)2+(x1,2)2+x1,1x1,2·eT x2
x1,1

min
x2∈R2

2(x2,1)2+(x2,2)2−x2,1x2,2·eT x1
x2,1

s .t . x1,1 − x2,1
x1,2
≥ 0, s .t . 1− eT (x2 − x1) ≥ 0,

x1,1 > 0, x1,2 > 0, x2,1 − 1 ≥ 0, x2,2 − 1 ≥ 0.

(6.4)

In the above, e = [1 1]T . In the domain (x1, x2) > 0, each player’s optimization is convex in

its strategy variable. We can equivalently express this GNEP as polynomial optimization

min
x1∈R3

x3,1[2(x1,1)2+(x1,2)2+x1,1x1,2·êT x2] min
x2∈R3

x2,3[2(x2,1)2+(x2,2)2−x2,1x2,2·êT x1]

s .t . x1,1x1,2 − x2,1 ≥ 0, s .t . 1− êT (x2 − x1) ≥ 0,

x1,1 > 0, x1,2 > 0, x2,1 − 1 ≥ 0, x2,2 − 1 ≥ 0,

x1,1x1,3 = 1, x2,1x2,3 = 1,

64

where ê = [1 1 0]T . However, the above two optimization problems are not convex.

6.2 An algorithm for rGNEPs

In this section, we propose a new approach for solving rational GNEPs. It requires

to solve a hierarchy of rational optimization problems. They are obtained from Lagrange

multiplier expressions and feasible extensions of KKT points that are not GNEs. Under

some general assumptions, we prove that this hierarchy either returns a GNE or detects its

nonexistence.

One can express Lagrange multipliers as rational functions on the KKT set. Recall

the set X as in (6.2). For the ith player’s optimization Fi(x−i), we suppose that there is a

tuple τi = (τi,j)j∈I(i)0 ∪I
(i)
1

of rational functions in x, with denominators positive on X, such

that

λi,j = τi,j(x), j ∈ I(i)
0 ∪ I

(i)
1 , (6.5)

for each critical pair (xi, λi) of Fi(x−i). Note that the Lagrange multipliers are zero for strict

inequality constraints. As discussed in Section 5.3, the rational LMEs exist for general cases.

The existence of the LME (6.5) gives the KKT set

K :=

x ∈ X
∣∣∣∣∣∣∣
∇xifi −

∑
j∈I(i)0 ∪I

(i)
1

τi,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

gi,j(x) ⊥ τi,j(x) ≥ 0 (i ∈ [N], j ∈ I(i)
1)

 . (6.6)

In the above, the symbol ⊥ denotes the perpendicular relation.

Not every point u = (u1, . . . , uN) ∈ K is a GNE. How do we preclude non-GNEs

in K? We consider the case that u is not a GNE. Then there exist i ∈ [N] and a point

vi ∈ Xi(u−i) such that

fi(vi, u−i)− fi(ui, u−i) < 0.

However, if x := (x1, . . . , xN) is a GNE and vi is also feasible for Fi(x−i), i.e., vi ∈ Xi(x−i),

then x must satisfy the inequality

fi(vi, x−i)− fi(xi, x−i) ≥ 0. (6.7)

That is, every GNE x satisfies the constraint (6.7) if vi ∈ Xi(x−i). This is used to solve

NEPs in [87]. Unlike NEPs, the feasible set of Xi(x−i) depends on x−i. As a result, a point

vi ∈ Xi(u−i) may not be feasible for Fi(x−i), i.e., vi 6∈ Xi(x−i), for a GNE x. For such a

case, the inequality (6.7) may not hold for any GNEs. The following is such an example.

65

Example 6.2. Consider the 2-player GNEP

min
x1∈R2

(x1,1 − x1,2)x2,1x2,2 − xT1 x1 min
x2∈R2

3(x2,1 − x1,1)2 + 2(x2,2 − x1,2)2

s .t . 1− eTx ≥ 0, x1 ≥ 0, s .t . 2− eTx ≥ 0, x2 ≥ 0.

It has only two GNEs x∗ = (x∗1, x
∗
2):

x∗1 = x∗2 = (0.5, 0) and x∗1 = x∗2 = (0, 0.5).

Consider the point u = (u1, u2) ∈ K, with u1 = u2 = (0, 0). The u1 is not a minimizer of

F1(u2), so u is not a GNE. The optimizers of F1(u2) are v1 = (1, 0) and (0, 1). One can

check that for either GNE x∗, it holds that

v1 6∈ X1(x∗2), f1(v1, x
∗
2)− f1(x∗1, x

∗
2) = −0.75 < 0.

The inequality (6.7) does not hold for any GNE.

The above example shows that the constraint (6.7) may not hold for any GNE.

However, if there is a function pi in x such that

vi = pi(u), pi(x) ∈ Xi(x−i) for all x ∈ K, (6.8)

then the following inequality

fi(pi(x), x−i)− fi(xi, x−i) ≥ 0 (6.9)

separates GNEs and non-GNEs. This is because fi(xi, x−i) ≤ fi(pi(x), x−i) for every GNE

x, since pi(x) ∈ Xi(x−i). This motivates us to make the following assumption.

Assumption 6.3. For a given triple (u, i, vi), with u ∈ K, i ∈ [N] and vi ∈ Si(u−i), there

exists a vector of rational functions pi in x := (x1, . . . , xN) such that (6.8) holds.

The function pi satisfying (6.8) is called a feasible extension of vi at the point u. This

kind of functions are useful for solving bilevel polynomial optimization problems [92]. Based

on LMEs and feasible extensions, we propose the following algorithm for solving GNEPs. In

the following sections, we will discuss the existence and computation of such pi.

Algorithm 6.4. For the given GNEP of (6.1), do the following:

Step 0 Find the Lagrange multiplier expressions as in (6.5). Let U := K and k := 0. Choose

a generic positive definite matrix Θ of length n+ 1.

66

Step 1 Solve the following optimization (note [x]1 =
[
1 xT

]T
){

min [x]T1 Θ[x]1

s .t . x ∈ U .
(6.10)

If (6.10) is infeasible, output that either (6.1) has no GNEs or there is no GNE in the

set K. Otherwise, solve it for a minimizer u := (u1, . . . , uN), if it exists.

Step 2 For each i = 1, . . . , N , solve the following optimization{
δi := min fi(xi, u−i)− fi(ui, u−i)

s .t . xi ∈ Xi(u−i)
(6.11)

for a minimizer vi. Denote the label set

N := {i ∈ [N] : δi < 0}. (6.12)

If N = ∅, then u is a GNE and stop; otherwise, go to Step 3.

Step 3 For every above triple (u, i, vi) with i ∈ N , find a rational feasible extension pi satisfying

(6.8). Then update the set U as

U := U ∩ {fi(pi(x), x−i)− fi(xi, x−i) ≥ 0, i ∈ N}. (6.13)

Then, let k := k + 1 and go to Step 1.

We now study the convergence of Algorithm 6.4. First, an interesting case is the

convex rational GNEP. A GNEP is said to be convex if every player’s optimization problem is

convex: for each fixed x−i, the objective fi(xi, x−i) is convex in xi, the inequality constraining

functions in (6.3) are concave in xi and all equality constraining functions are linear in xi.

Interestingly, the concavity of constraining functions can be weakened to the convexity of

feasible sets under certain assumptions. As in [62], for given x−i, the feasible set Xi(x−i) is

said to be nondegenrate if the gradient∇xigi,j(x) 6= 0 for every j ∈ I(i)
0 ∪I

(i)
1 . The set Xi(x−i)

is said to satisfy the Slater’s condition if it contains a point that makes all inequalities strictly

hold.

Theorem 6.5 ([90]). Assume the Lagrange multipliers are expressed as in (6.5). Suppose

that each objective fi is convex in xi, each gi,j is linear in xi for j ∈ I(i)
0 , and each strategy set

Xi(x−i) is convex, nondegenerate and satisfies the Slater’s condition. Then, Algorithm 6.4

terminates at the initial loop k = 0, and it either returns a GNE or detects nonexistence of

GNEs.

67

Proof. Under the given assumptions, a feasible point is a minimizer of the optimization

Fi(x−i) if and only if it is a KKT point. This is shown in [62]. Equivalently, a point is a

GNE if and only if it belongs to the set K. If there is a GNE, Algorithm 6.4 can get one in

Step 2 for the initial loop k = 0, and then it terminates. If there is no GNE, the KKT point

set K is empty, then Algorithm 6.4 terminates in Step 1 for the initial loop.

Second, we prove that Algorithm 6.4 terminates within finitely many loops under a

finiteness assumption on critical points. It is known that a general polynomial optimization

problem has finitely many KKT points (see [86]). Recall that S denotes the set of all GNEs.

When the complement K \ S is a finite set, Algorithm 6.4 must terminate within finitely

many loops.

Theorem 6.6 ([90]). Assume the Lagrange multipliers are expressed as in (6.5). Suppose

Assumption 6.3 holds for every triple (u, i, vi) produced by Algorithm 6.4. If the complement

set K \ S is finite, then Algorithm 6.4 must terminate within finitely many loops, and it

either returns a GNE or detects its nonexistence.

Proof. When K\S = ∅, the algorithm terminates in the initial loop k = 0. When K\S 6= ∅
and some u ∈ K \ S is the minimizer of (6.10), then N 6= ∅. By Assumption 6.3, for each

i ∈ N , there exists vi ∈ Si(u) such that

δi = fi(vi, u−i)− f(ui, u−i) < 0.

The set U is updated with the newly added constraint

fi(pi(x), x−i)− f(xi, x−i) ≥ 0.

The point u does not belong to U for all future loops. The cardinality of the set K \ U

decreases at least by one, after each loop. Note that U ⊆ K. Therefore, if K \ S is a finite

set, then Algorithm 6.4 must terminate within finitely many loops.

Next, suppose Algorithm 6.4 terminates with a minimizer u in Step 2. Then δi ≥ 0

for all i, so every ui is a minimizer of Fi(u−i), i.e., u is a GNE.

The KKT point set is finite for general polynomial optimization problems. For some

special problems, it may be infinite. When the complement set K\S is infinite, Algorithm 6.4

may not be guaranteed to terminate within finitely many loops. However, we can prove its

68

asymptotic convergence under certain assumptions. For each i = 1, . . . , N , we define the ith

player’s value function

νi(x−i) := inf
xi∈Xi(x−i)

fi(xi, x−i). (6.14)

The function νi(x−i) is continuous under certain conditions, e.g., under the restricted inf-

compactness (RIC) condition (see [41, Definition 3.13]). A sequence of functions {φ(k)(x)}
is said to be uniformly continuous at a point x∗ if for each ε > 0, there exists τ > 0 such

that ‖φ(k)(x)− φ(k)(x∗)‖ < ε for all k and for all x with ‖x− x∗‖ < τ . The following is the

asymptotic convergence result.

Theorem 6.7 ([90]). For the GNEP (6.1), suppose Lagrange multipliers can be expressed

as in (6.5) and Assumption 6.3 holds for every triple (u, i, vi) produced by Algorithm 6.4.

In the kth loop, let u(k), v
(k)
i be the minimizers of (6.10), (6.11) respectively and let p

(k)
i be

the feasible extension in Step 3. Suppose u∗ := (u∗1, . . . , u
∗
N) is an accumulation point of the

sequence {u(k)}∞k=1. If for each i = 1, . . . , N ,

i) the strict inequality gi,j(u
∗) > 0 holds for all j ∈ I(i)

2 , and

ii) the value function νi(x−i) is continuous at u∗−i, and

iii) the sequence of feasible extensions {p(k)
i }∞k=1 is uniformly continuous at u∗,

then u∗ is a GNE for (6.1).

Proof. Up to selection of a subsequence, we can generally assume that u(k) → u∗ as k →∞.

The condition i) implies that u∗ ∈ X and u∗i ∈ Xi(u
∗
−i) for every i. We need to show that

each u∗i is a minimizer for the optimization Fi(u
∗
−i). By the definition of νi as in (6.14), this

is equivalent to showing that

νi(u
∗
−i)− fi(u∗) ≥ 0, i = 1, . . . , N. (6.15)

For convenience of notation, let p
(k)
i = xi for each i 6∈ N , in the kth loop. Since u(k) is

feasible for (6.10) in all previous loops, we have that

fi(p
(k′)
i (u(k)), u

(k)
−i)− fi(u(k)) ≥ 0, for all k′ ≤ k.

As k →∞, the above implies that

fi(p
(k′)
i (u∗), u∗−i)− fi(u∗) ≥ 0, for all k′.

69

Then, for every i and for every k ∈ N,

νi(u
∗
−i)− fi(u∗)

=
(
νi(u

∗
−i)− fi(p

(k)
i (u∗), u∗−i)

)
+
(
fi(p

(k)
i (u∗), u∗−i)− fi(u∗)

)
≥ νi(u

∗
−i)− fi(p

(k)
i (u∗), u∗−i).

(6.16)

Note that νi(u
(k)
−i) = fi(p

(k)
i (u(k)), u

(k)
−i) for all k. Under the continuity assumption of νi at

u∗−i, the convergence u(k) → u∗ implies that

νi(u
∗
−i) = lim

k→∞
νi(u

(k)
−i) = lim

k→∞
fi(p

(k)
i (u(k)), u

(k)
−i).

Becasue {p(k)
i }∞k=1 is uniformly continuous at u∗, for every fixed ε > 0, there exits τ > 0 such

that for all k big enough, we have

‖u∗ − u(k)‖ ≤ τ, ‖p(k)
i (u∗)− p(k)

i (u(k))‖ < ε.

Since fi is rational and the denominator is positive on X, we have

fi(p
(k)
i (u∗), u∗−i)− fi(p

(k)
i (u(k)), u

(k)
−i)→ 0 as k →∞.

In view of the inequality (6.16), we can conclude that νi(u
∗
−i)− fi(u∗) ≥ 0. This shows that

u∗ is a GNE.

6.3 Feasible extensions of KKT points

In this section, we discuss the existence and computation of feasible extensions pi

required as in Assumption 6.3. They are important for solving GNEPs. The feasible exten-

sions have explicit expressions for box, simplex and annular constraints. Such expressions

were introduced in Section 5.3. Here we give a sufficient condition for the existence of feasible

extensions in more general cases.

Theorem 6.8 ([90]). Assume K is a finite set. Then, for every triple (u, i, vi) with u ∈ K,

i ∈ [N] and vi ∈ Xi(u−i), there must exist a feasible extension pi satisfying Assumption 6.3.

Moreover, such pi can be chosen as a polynomial vector function.

Proof. Since the set K is finite, by polynomial interpolation, there must exist a real polyno-

mial vector function pi such that

pi(u) = vi, pi(z) = zi for all z := (z1, . . . , zN) ∈ K \ {u}.

70

Note that K ⊆ X. For every x = (x1, . . . , xN) ∈ K\ {u}, we have pi(x) = xi ∈ Xi(x−i). The

polynomial function pi satisfies Assumption 6.3.

When the set K is known, we can get a polynomial feasible extension pi as in Theo-

rem 6.8, by polynomial interpolation. The following is such an example.

Example 6.9. Consider Example 6.2. There are four KKT points:

u
(1)
1 = u

(1)
2 = (0, 0), u

(2)
1 = u

(2)
2 =

(√
17−3
4

, 5−
√

17
4

)
,

u
(3)
1 = u

(3)
2 =

(
1
2
, 0
)
, u

(4)
1 = u

(4)
2 =

(
0, 1

2

)
.

The u(1) = (u
(1)
1 , u

(1)
2) and u(2) = (u

(2)
1 , u

(2)
2) are not GNEs. For u(1), there are two minimizers

for F1(u
(1)
2), which are (1, 0) and (0, 1). The feasible extension p1 of (1, 0) at u(1) is (1−x1,1−

x1,2 − x2,2, x2,2), and the feasible extension p1 of (0, 1) at u(1) is (x1,1, 1− x2,1 − x2,2 − x1,1).

At u(2), the minimizer of F1(u
(2)
2) is

(
0, 1

2

)
, and the feasible extension p1 is

(
x2,1(x2,1 −

√
17− 3

4
)(x2,1 +

3 +
√

17

2(5−
√

17)
),

1

2
− (x2,2 −

1

2
)(x2,2 −

5−
√

17

4
)(x2,2 +

4

5−
√

17
)
)
.

When the set K is not finite, Assumption 6.3 may still hold for some GNEPs. For

instance, consider that there are no equality constraints, i.e., I(i)
0 = ∅. Suppose K is compact

and there exists a continuous map ρ : Rn → Rni such that ρ(u) = vi and gi,j(ρ(x), x−i) > 0 for

all x ∈ K and for all j ∈ I(i)
1 ∪I

(i)
2 . For every ε > 0, one can approximate ρ by a polynomial

pi such that ‖pi − ρ‖ < ε on K. Therefore, for ε sufficiently small, gi,j(pi(x), x−i) > 0 on

x ∈ K. Such polynomial function pi is a feasible extension of vi at u.

We discuss how to compute the rational feasible extension pi satisfying Assump-

tion 6.3. For the set K as in (6.6), let E0 denote the set of its equality constraining polyno-

mials and let E1 denote the set of its (both weak and strict) inequality ones. Consider the

set

K1 :=

{
x ∈ Rn

∣∣∣∣∣ g(x) = 0 (g ∈ E0),

g(x) ≥ 0 (g ∈ E1)

}
.

The set K may not be closed but K1 is, and the closure of K is contained in K1. For a

polynomial p(x), if p(x) ∈ Xi(x−i) for all x ∈ K1, then we also have p(x) ∈ Xi(x−i) for all

K. Therefore, it is sufficient to get pi satisfying Assumption 6.3 with K replaced by K1. In

such cases, we may solve feasible extensions similarly as in (5.21).

71

Example 6.10. Consider the following 2-player GNEP:

min
x1∈R2

(x2,1+x2,2−2x1,1)(x1,1)2+2x1,2
x2,1

min
x2∈R2

x2,1−(x2,2)2

x2,2+x1,1+x1,2

s .t . 2x1,1x2,1 − x1,2x2,2 ≥ 0, s .t . 2x2,1x2,2 − 1 ≥ 0,

x2,1x2,2 − x1,1x2,1 ≥ 0, 1− x2,2 ≥ 0,

2x1,2x2,2 − 1 ≥ 0, 2− x2,1 ≥ 0,

2− x1,2x2,2 ≥ 0; x2,1 ≥ 0.

(6.17)

Consider the triple (u, 1, v1) for u = (u1, u2) with

u1 = (0.5, 0.5), u2 = (0.5, 1), v1 = (1, 0.5).

A feasible p can be chosen in form of pi = q/h, where q is a tuple of polynomials and h

is a given scalar polynomial. Let h = x2,1x2,2, then a feasible q can be (x2,2, x2,1)/2. Let

p1 = 1
2x2,1x2,2

(x2,2, x2,1). Then we have

h · g1,1(p1, x2) = 0.25 + 0.25(2x2,1x2,2 − 1),

h · g1,2(p1, x2) = (x2,1x2,2 − 0.5)2 + 0.25(2x2,1x2,2 − 1),

h · g1,3(p1, x2) = 0, h · g1,4(p1, x2) = 0.75 + 0.75(2x2,1x2,2 − 1).

In the above, each polynomial is nonnegative in the associated K1.

6.4 Rational optimization problems

This section discusses how to solve the rational optimization problems appearing in

Algorithm 6.4. A general rational polynomial optimization problem is{
min A(x) := a1(x)

a2(x)

s .t . x ∈ K,
(6.18)

where a1, a2 ∈ R[x] and K ⊆ Rn is a semialgebraic set. We assume the denominator

a2(x) > 0 on K, otherwise one can minimize A(x) over two subsets K ∩ {a2(x) > 0} and

K ∩ {−a2(x) > 0} separately. Moment-SOS relaxations can be applied to solve (6.18).

The rational optimization problems in Algorithm 6.4 may have strict inequalities. So

we consider the case that K is given as

K =

x ∈ Rn

∣∣∣∣∣∣∣∣
p(x) = 0 (p ∈ Ψ0),

q(x) ≥ 0 (q ∈ Ψ1),

q(x) > 0 (q ∈ Ψ2)

 , (6.19)

72

where Ψ0, Ψ1 and Ψ2 are finite sets of constraining polynomials in x. Since a2(x) > 0

on K, we have A(x) ≥ γ on K if and only if a1(x) − γa2(x) ≥ 0 on K, or equivalently,

a1 − γa2 ∈Pd(K), for the degree

d := max{deg(a1), deg(a2)}.

The rational optimization (6.18) is then equivalent toγ
∗ := max γ

s .t . a1(x)− γa2(x) ∈Pd(K).
(6.20)

Denote the weak inequality set

K1 :=

{
x ∈ Rn

∣∣∣∣∣ p(x) = 0 (p ∈ Ψ0),

q(x) ≥ 0 (q ∈ Ψ1 ∪Ψ2)

}
. (6.21)

Note that K1 is closed and cl(K) ⊆ K1. We consider the moment optimization problemmin 〈a1, w〉

s .t . 〈a2, w〉 = 1, w ∈ Rd(K1).
(6.22)

It is a moment reformulation for the optimization{
a∗ := min A(x)

s .t . x ∈ K1.
(6.23)

Note that (6.23) is a relaxation of (6.18). It is worthy to observe that if a minimizer of (6.23)

lies in the set K, then it is also a minimizer of (6.18).

We apply Moment-SOS relaxations to solve (6.22). Let

d0 := max
{
dd/2e, ddeg(g)/2e (g ∈ Ψ0 ∪Ψ1 ∪Ψ2)

}
. (6.24)

For an integer k ≥ d0, the kth order SOS relaxation for (6.20) isγ
(k) := max γ

s .t . a1 − γa2 ∈ Ideal[Ψ0]2k + Qmod[Ψ1 ∪Ψ2]2k.
(6.25)

The dual optimization of (6.25) is the kth order moment relaxation
a(k) := min 〈a1, y〉

s .t . L
(k)
p [y](k)[y] = 0 (p ∈ Ψ0), L

(k)
q [y] � 0 (q ∈ Ψ1 ∪Ψ2),

〈a2, y〉 = 1, Mk[y] � 0, y ∈ RNn
2k .

(6.26)

73

Since (6.26) is a relaxation of (6.22), if (6.26) is infeasible, then (6.18) is also infeasible.

The following is the Moment-SOS algorithm for solving (6.18). It can be conveniently

implemented with the software GloptPoly3 [48].

Algorithm 6.11. For the rational optimization (6.18), let k := d0.

Step 1 Solve the kth order moment relaxation (6.26). If it is infeasible, then (6.18) has no

feasible points and stop. Otherwise, solve it for the optimal value a(k) and a minimizer

y∗, if they exist. Let t := d0 and go to Step 2.

Step 2 Check whether or not there is an order t ∈ [d0, k] such that

r := rankMt[y
∗] = rankMt−d0 [y

∗]. (6.27)

Step 3 If (6.27) fails, let k := k+1 and go to Step 1; if (6.27) holds, find points z1, . . . , zr ∈ K1

and scalars µ1, . . . , µr > 0 such that

y∗|2t = µ1[z1]2t + · · ·+ µr[zr]2t. (6.28)

Step 4 Output each zi ∈ K with a2(zi) > 0 as a minimizer of (6.18).

Theorem 6.12 ([90]). Assume a2 ≥ 0 on K1. Suppose y∗ is a minimizer of (6.26) and it

satisfies (6.27) for some order t ∈ [d0, k]. Then, each zi in (6.28), such that a2(zi) > 0 and

zi ∈ K, is a minimizer of (6.18).

Proof. Under the rank condition (6.27), the decomposition (6.28) holds for some points

z1, . . . , zr ∈ K1 (see [47, 79]). The constraint 〈a2, y
∗〉 = 1 implies that

1 = 〈a2, y
∗〉 = µ1a2(z1) + · · ·+ µra2(zr).

Since a2 ≥ 0 on K1, we know all a2(zj) ≥ 0. Let J1 := {j : a2(zj) > 0} and J2 := {j :

a2(zj) = 0}, then

〈a1, y
∗〉 =

∑
j∈J1

µja2(zj)A(zj) +
∑
j∈J2

µja1(zj).

Note that
∑

j∈J1 µja2(zj) = 1 and each [zj]2k ∈ R2k(K1). For all nonnegative scalars νj ≥ 0,

j ∈ J1 ∪ J2 such that
∑

j∈J1 νja2(zj) = 1, the tms

z(ν) := ν1[z1]2k + · · ·+ νr[zr]2k

74

is a feasible point for the moment relaxation (6.26). Therefore, the optimality of y∗ implies

that A(zj) = a(k) for all j ∈ J1. Since a(k) ≤ a∗ and each zj ∈ K1, we have A(zj) ≥ a∗. Hence,

A(zj) = a∗ for all j ∈ J1. Note that (6.22) is a relaxation of (6.23). So each zj (j ∈ J1)

is a minimizer of (6.23). Therefore, every zi ∈ K satisfying a2(zi) > 0 is a minimizer of

(6.18).

The rational optimization problem in Step 2 of Algorithm 6.4 is{
min θ(x) := [x]T1 Θ[x]1

s .t . x ∈ U ,
(6.29)

where Θ is a generic positive definite matrix. The feasible set U can be expressed as in the

form (6.19), with polynomial equalities and weak/strict inequalities, for some polynomial

sets Ψ0,Ψ1,Ψ2. That is, (6.29) can be expressed in the form of (6.18), with denominators

being 1. Denote the corresponding set

U1 = {x ∈ Rn| p(x) = 0 (p ∈ Ψ0), q(x) ≥ 0 (q ∈ Ψ1 ∪Ψ2)}. (6.30)

Since Θ is positive definite, the objective θ is coercive and strictly convex. When Θ is also

generic, the function θ has a unique minimizer u∗ on the set U1 if it is nonempty. Suppose

y∗ is a minimizer of the kth order moment relaxation of (6.29). Then, in Algorithm 6.11,

the rank condition (6.27) is reduced to

rankMt[y
∗] = 1

for some order t ∈ [d0, k] and the decomposition (6.28) is equivalent to y∗|2t = µ1[z1]2t for

some z1 ∈ U1. Algorithm 6.11 can be applied to solve (6.29). The following are some special

properties of Moment-SOS relaxations for (6.29).

Theorem 6.13 ([90]). Assume Θ is a generic positive definite matrix.

i) If the set U1 is empty and Ideal[Ψ0]+ Qmod[Ψ1∪Ψ2] is archimedean, then the moment

relaxation for (6.29) must be infeasible when the order k is big enough.

ii) Suppose U1 6= ∅ and Ideal[Ψ0] + Qmod[Ψ1 ∪ Ψ2] is archimedean. Denote u(k) :=

(y
(k)
e1 , . . . , y

(k)
en), where y(k) is the minimizer of the kth order moment relaxation of (6.29).

Then u(k) converges to the unique minimizer of θ on U1.

75

iii) Suppose the real zero set of Ψ0 is finite. If U1 6= ∅, then we must have rankMt[y
∗] = 1

for some t ∈ [d0, k], when k is sufficiently large.

Proof. i) When U1 = ∅, the constant −1 can be viewed as a positive polynomial on U1.

Since Ideal[Ψ0] + Qmod[Ψ1 ∪ Ψ2] is archimedean, we have −1 ∈ Ideal[Ψ0]2k + Qmod[Ψ1 ∪
Ψ2]2k for k big enough, by Putinar’s Positivstellensatz. For such k, the corresponding SOS

relaxation (6.25) is unbounded from above, and hence the corresponding moment relaxation

must be infeasible.

ii) When U1 6= ∅, the objective θ has a unique minimizer u∗ on U1. The convergence

of u(k) is implied by [79, Theorem 3.3] (also see [101]).

iii) When the real zero set of Ψ0 is finite and U1 6= ∅, the conclusion can be implied

by [63, Proposition 4.6] (also see [65]).

Once we get a minimizer u of (6.29), we need to check if it is a GNE or not. For each

i = 1, . . . , N , we need to solve the rational optimization problem{
δi := min fi(xi, u−i)− fi(ui, u−i)

s .t . xi ∈ Xi(u−i),
(6.31)

where fi, Xi(u−i) are given in (6.1). Assume the KKT conditions hold and the Lagrange

multiplies can be expressed as in (6.5). Therefore, (6.31) is equivalent to

min fi(xi, u−i)− fi(ui, u−i)
s .t . ∇xifi(xi, u−i) =

∑
j∈I(i)0 ∪I

(i)
1

τi,j(xi, u−i)∇xigi,j(xi, u−i),

τi,j(xi, u−i)gi,j(xi, u−i) = 0, τi,j(xi, u−i) ≥ 0, (j ∈ I(i)
1),

xi ∈ Xi(u−i).

(6.32)

We can equivalently express the feasible set of (6.32) in the form

Yi(u−i) =

xi ∈ Rni

∣∣∣∣∣∣∣∣
p(xi) = 0 (p ∈ Ψi,0),

q(xi) ≥ 0 (q ∈ Ψi,1),

q(xi) > 0 (q ∈ Ψi,2)

 , (6.33)

for three sets Ψi,0,Ψi,1,Ψi,2 of polynomials in xi. We can apply a similar version of Algo-

rithm 6.11 to solve the rational optimization problem (6.32). Similar conclusions like in

Theorem 6.13 hold for the corresponding Moment-SOS relaxations. A difference is that all

rational functions for (6.31) are only in the variable xi instead of x. It may have several

different minimizers, so the rank in (6.27) may be bigger than one.

76

6.5 Numerical experiments

This section gives numerical experiments for Algorithm 6.4 to solve GNEPs. The ra-

tional optimization problems are solved by Moment-SOS relaxations, which are implemented

with the software GloptiPoly3 [48]. The semidefinite programs for the Moment-SOS relax-

ations are solved by SeDuMi [105]. The computation is implemented in MATLAB R2018a, in

a Laptop with CPU 8th Generation Intel® Core� i5-8250U and RAM 16 GB. For neatness

of the paper, only four decimal digits are displayed for computational results. The accuracy

for a point u to be a GNE is measured by the quantity

δ := min{δ1, . . . , δN},

where δi is the optimal value of (6.11). The point u is a GNE if and only if δ = 0. Due

to numerical issues, u can be viewed as a GNE if δ is nearly zero (e.g., δ ≥ −10−6). For

cleanness of presentation, we do not list the constraining functions gi,j explicitly. Instead,

they are ordered row by row, from top to bottom; in each row, they are ordered from left to

right. If there is an inequality like a(x) ≤ b(x), then the corresponding constraining function

is b(x)− a(x).

Example 6.14. (i) Consider the GNEP in Example 6.1. Algorithm 6.4 terminated at the

initial loop k = 0. The computed GNE is u = (u1, u2) with

u1 = (1.3561, 0.7374), u2 = (1.0000, 1.0468), δ = −3.44 · 10−8.

It took around 8.36 seconds.

(ii) For the GNEP in Example 6.1, if objective functions are changed to

f1(x) =
(x1,2)2 + x1,1x1,2(eTx2)

x1,1

, f2(x) =
(x2,2)2 − x2,1x2,2(eTx1)

x2,1

,

then there is no GNE. This is detected by Algorithm 6.4 at the initial loop k = 0. It took

about 5.47 seconds.

(iii) Consider the GNEP in Example 6.2. By Algorithm 6.4, we got the GNE u = (u1, u2)

at the loop k = 1 with

u1 = (0.0000, 0.5000), u2 = (0.0000, 0.5000), δ = −4.47 · 10−8.

It took around 3.28 seconds.

77

(iv) Consider the GNEP in Example 6.10. Algorithm 6.4 terminated at the loop k = 1. We

got the GNE u = (u1, u2) with

u1 = (1.0000, 0.5000), u2 = (0.5000, 1.0000), δ = −1.82 · 10−8.

It took around 22.73 seconds.

Example 6.15. Consider the 2-player GNEP with the optimization

min
x1∈R3

xT1 (x1 + x2) + x1,1 − x1,2 − x1,3 min
x2∈R3

eTx2 +
∑3

j=1 x1,j(x2,j)
2

s .t . x1,1x1,2x1,3 ≤ 1 + (eTx2)2, s .t . (eTx1)2 − xT2 x2 ≥ 0.

For the first player’s optimization, we have the LME and the feasible extension

λ1 = − xT1∇x1f1

3 + 3(eTx2)2
, p1(x) =

(
v1,1, v1,2,

1 + (eTx2)2

1 + (eTu2)2
· v1,3

)
.

For the second player, we have the LMEs and feasible extensions for the annular constraints.

Algorithm 6.4 terminated at the loop k = 0. We got the GNE u = (u1, u2),

u1 = (0.3090, 0.8090, 0.8090), u2 = (−1.6180,−0.6180,−0.6180),

with the accuracy parameter δ = −2.77 · 10−8. It took around 5.16 seconds.

Example 6.16. Consider the 3-player GNEP

F1(x2, x3) :

 min
x1∈R2

‖x1 − 1
2
(x2 + x3)‖2

s .t . x1,1x1,2 = 1 + xT3 x3, x1,1 ≥ 0, x1,2 ≥ 0,

F2(x1, x3) :

 min
x2∈R2

xT2 (x1 + x3) + (x2,1)3 − 3(x2,2)2

s .t . ‖x1,1 · x2‖2 = (x1,2)2,

F3(x1, x2) :

 min
x3∈R2

xT3 (x1 + x2 + x3 − e)

s .t . eTx3 ≤ xT1 x1, x3,1 ≥ 0.1, x3,2 ≥ 0.1.

The LMEs for F1(x2, x3) and F2(x1, x3) are

λ1,1 =
xT1 ∇x1f1
2+2xT3 x3

, λ1,2 = ∂f1
∂x1,1
− x1,2λ1,1,

λ1,3 = ∂f1
∂x1,2
− x1,1λ1,1, λ2 =

−xT2 ∇x2f2
2(x1,2)2

.

We use the LME of simplex constraints for F3(x1, x2). The first two players have the feasible

extension

p1(x) =
(
v1,1,

1 + xT3 x3

v1,1

)
, p2(x) =

u1,1x1,2

u1,2x1,1

· (v2,1, v2,2).

78

For the third player, the feasible extension is given for the simplex constraints. Algorithm 6.4

terminated at the initial loop k = 0. We got the GNE u = (u1, u2, u3) with

u1 = (1.1401, 1.0461), u2 = (−0.1743,−0.9009), u3 = (0.1000, 0.4274)

and δ = −6.19 · 10−8. It took around 10.58 seconds.

It is interesting to note that if the third player’s objective is changed to

xT3 (x1 + x2 − e) + x2
3,1 − x2

3,2

then there is no GNE. This is detected by Algorithm 6.4 at the loop k = 1. It took around

19.16 seconds.

We remark that Algorithm 6.4 can be generalized to compute more (or even all)

GNEs. This can be done with the approach in [87]. Suppose a GNE u is already known.

Select a small scalar ζ > 0 and solve the maximization problem{
ρ := max [x]T1 Θ[x]1

s .t . x ∈ U , [x]T1 Θ[x]1 ≤ [u]T1 Θ[u]1 + ζ.
(6.34)

If ρ > [u]T1 Θ[u]1, then let ζ := ζ/2 and solve (6.34) again. Repeat this until ζ is small enough

to make ρ = [u]T1 Θ[u]1. When u is an isolated KKT point and Θ is generic positive definite,

such ζ always exists. This can be proved similarly to that in [87]. Once such ζ is found,

we add the new inequality [x]T1 Θ[x]1 ≥ [u]T1 Θ[u]1 + ζ to (6.10). Then Algorithm 6.4 can be

applied to get a new GNE, if it exists. It is worthy to note that if the optimization (6.10)

is infeasible with the newly added constraints, then there are no other GNEs. By repeating

this process, we can get all GNEs if there are finitely many ones. We refer to [87] for more

details. The following is an example for getting more GNEs.

Example 6.17. Consider the 2-player GNEP

min
x1∈R2

∑2
j=1(x1,j)2x2,j+x1,1x1,2

(x1,1)2+1
min
x2∈R2

∑2
j=1(x2,j)2x1,j+x2,1x2,2

(x2,1)2+1

s .t . (1− eTx2)2 ≤ ‖x1‖2 ≤ 1, s .t . (1− eTx1)2 ≤ ‖x2‖2 ≤ 1.

We use the LMEs and the feasible extensions of annular constraints for both players. Fol-

lowing the above process, we got two GNEs u = (u1, u2) with

u1 = (0.9250,−0.3799), u2 = (0.9250,−0.3799), δ = −9.06 · 10−8, and

u1 = (−0.2700, 0.9629), u2 = (−0.2700, 0.9629), δ = −2.67 · 10−7.

It took around 29.80 seconds to get both of them. Since each rational LME has a positive

denominator on X, we computed all GNEs for this problem.

79

Acknowledgments. This Chapter, in full, has been submitted for publication. The

dissertation author coauthored this paper with Nie, Jiawang and Tang, Xindong.

80

Chapter 7

Loss Functions for Finite Sets

7.1 Loss functions for finite sets

Let n, k be positive integers. Suppose S is a set of k distinct points in Rn. A function

f in x := (x1, . . . , xn) is said to be a loss function for S if the global minimizers of f are

precisely the points in S. For convenience, we often select f such that f is nonnegative in

Rn and the minimum value is zero. Mathematically, this is equivalent to that f ≥ 0 on Rn

and

f(x) = 0 if and only if x ∈ S. (7.1)

When S = {u1, . . . , uk}, a straightforward choice for the loss function is

f = ‖x− u1‖2 · · · ‖x− uk‖2,

where ‖ · ‖ is the standard Euclidean norm. This loss function is a polynomial of degree

2k in the variable x. It requires to use all points of S. In applications, the cardinality k

may be big. Moreover, the set S often has noises and it may be given by a large number of

samplings around the points in S. For this reason, the above choice of loss function may not

be convenient in computational practice.

A frequently used loss function is the class of sum-of-squares polynomials. That is,

the loss function f is in the form

f = p2
1 + · · ·+ p2

m,

where each pi is a polynomial in x. Then f is a loss function for S if and only if each pi ≡ 0

on S. For convenience of computation, we prefer that f and each pi have degrees as low as

81

possible. More preferable is that every local minimizer of f is a global minimizer (i.e., a zero

of f). That is, we wish that the loss function f has no spurious minimizer. To be precise, a

local minimizer that is not a global minimizer is called a spurious minimizer.

In applications, the set S may not be given explicitly. It is often approximately given

by a sample set

T = {v1, . . . , vN},

where each vi is a sample for a point in S and the sample size N � k. For such a case, we

can choose a family F of loss functions for S, parameterized by some parameters. Since S

is approximated by T , we choose a loss function f ∈ F such that the average value of f on

T is minimum. Mathematically, this is equivalent to solving the optimization

min
f∈F

1

N

N∑
i=1

f(vi). (7.2)

The optimization (7.2) requires that we choose parameters for f such that the average loss

on T is minimum. The set S can be determined by parameters for f in the family F .

7.2 A class of loss functions

In this section, we give a general framework of constructing loss functions for finite

sets. For convenience, we assume the finite sets are real.

Suppose S ⊆ Rn is a finite set of cardinality k, say,

S = {u1, . . . , uk}.

We consider the SOS loss functions

f = p2
1 + · · ·+ p2

m, (7.3)

where each pi is a polynomial in x. Denote the tuple

p = (p1, . . . , pm).

Without loss of generality, one can assume that the minimum value of f is zero, up to shifting

of a constant. Note that f(x) = 0 if and only if p(x) = 0. Therefore, f is a loss function for

S if and only if

S = {x ∈ Rn : p1(x) = · · · = pm(x) = 0}. (7.4)

The above observation gives the following lemma.

82

Lemma 7.1 ([95]). Let S, f be as above. Then f is a loss function for S if and only if S

is the real zero set of p, i.e., S = VR(p).

Then we show how to choose a computationally efficient loss function for S. Let B0

be the set of first k vectors in the nonnegative power set Nn, in the graded lexicographic

ordering, i.e.,

B0 :=
{
0, e1, . . . , en, 2e1, e1 + e2, . . . ,︸ ︷︷ ︸

first k of them

}
. (7.5)

Then, we consider the set

B1 :=
(

(e1 + B0) ∪ · · · ∪ (en + B0)
)
\ B0. (7.6)

For convenience of notation, denote the monomial vectors

[x]B0
:=
(
xα
)
α∈B0

, [x]B1
:=
(
xα
)
α∈B1

.

Since S is a finite set of cardinality k, we wish to select B0 so that the set of equivalent

classes of monomials xα (α ∈ B0) is a basis for the quotient space R[x]/I(S), where I(S) is

the vanishing ideal of S. This requires that xα (α ∈ B1) is a linear combination of monomials

xβ (β ∈ B0), modulo I(S). Equivalently, there exist scalars G(β, α) such that

ϕ[G,α](x) := xα −
∑
β∈B0

G(β, α)xβ ≡ 0 mod I(S) (7.7)

for each α ∈ B1. Let G := (G(β, α)) ∈ RB0×B1 be the matrix of all such scalars G(β, α). The

polynomial ϕ[G,α] has coefficients that are linear in entries of G. For convenience, denote

that

ϕ[G] =
(
ϕ[G,α]

)
α∈B1

,

X0 =
[
[u1]B0 · · · [uk]B0

]
,

X1 =
[
[u1]B1 · · · [uk]B1

]
.

(7.8)

The X0 is a square matrix, which is nonsingular if the points in S are in generic positions.

For ϕ[G] to vanish on S, the equation (7.7) implies that

X1 −GTX0 = 0.

If X0 is nonsingular, then the matrix G is given as

G = X−T0 XT
1 . (7.9)

83

We look for conditions on G such that ϕ[G] has k common zeros in Cn. For each

i = 1, . . . , n, define the multiplication matrix Mxi(G) such that

[Mxi(G)]µ,ν =


1 if xi · xν ∈ B0, µ = ν + ei,

0 if xi · xν ∈ B0, µ 6= ν + ei,

G(µ, ν + ei) if xi · xν ∈ B1.

(7.10)

The rows and columns of Mxi(G) are labelled by monomial powers µ, ν ∈ B0. The following

proposition characterizes when ϕ[G] has k common zeros.

Proposition 7.2. ([83, Proposition 2.4]) Let B0, B1 be as in (7.5)-(7.6). Then, the poly-

nomial tuple ϕ[G] has k common complex zeros (counting multiplicities) if and only if the

multiplication matrices Mx1(G), . . . ,Mxn(G) commute, i.e.,

[Mxi(G),Mxj(G)] = 0 (1 ≤ i < j ≤ n). (7.11)

In particular, ϕ[G] has k distinct complex zeros if and only if Mx1(G), . . . ,Mxn(G) are si-

multaneously diagonalizable.

The polynomial tuple ϕ[G] generates the vanishing ideal I(S) of S and p = ϕ[G] has

minimum degrees for (7.4) to hold.

Theorem 7.3 ([95]). Assume S is a finite set such that X0 is nonsingular. Let G be as in

(7.9). Then, the ideal Ideal(ϕ[G]) equals the vanishing ideal of S, i.e.,

Ideal(ϕ[G]) = {h ∈ R[x] : h ≡ 0 onS}. (7.12)

In particular, if a polynomial h vanishes on S identically, then there are polynomials pα

(α ∈ B1) such that

h =
∑
α∈B1

qαϕ[G,α]), deg(qα) + |α| ≤ deg(h). (7.13)

Proof. Since X0 is nonsingular, the set S has k distinct points. Since G is given as in

(7.9), the polynomial equation ϕ[G](x) = 0 has k distinct solutions. By Proposition 7.2, the

multiplication matrices Mx1(G), . . . ,Mxn(G) are simultaneously diagonalizable. Note that

the ideal Ideal(ϕ[G]) is zero-dimensional, because the quotient space C[x]/Ideal(ϕ[G]) has

the dimension k. The ideal Ideal(ϕ[G]) must be radical. This can be implied by Corollary 2.7

of [106]. So (7.12) holds.

84

Suppose h is a polynomial such that h ≡ 0 on S. Then the above shows that

h ∈ Ideal(ϕ[G]). So there exist polynomials qα (α ∈ B1) such that

h =
∑
α∈B1

qαϕ[G,α].

The multiplication matrices Mx1(G), . . . ,Mxn(G) commute. One can check that the set

of polynomials in the tuple ϕ[G] is a Gröbner basis for Ideal(ϕ[G]), with respect to the

graded lexicographical ordering. This can also be implied by the proof of Lemma 2.8 in [83].

Therefore, we can further select polynomials qα ∈ R[x] with degree bounds as in (7.13).

The condition that X0 is nonsingular holds when the points of S are in generic

positions. The equation (7.13) shows that the polynomial tuple ϕ[G] is a minimum-degree

generating set for the vanishing ideal I(S). The following are some examples.

Example 7.4. Consider the set S in R3 such that

S =
{

2

1

3

 ,

−1

−2

4

}, B0 =
{

0

0

0

 ,


1

0

0

}, B1 =
{

0

1

0

 ,


0

0

1

 ,


2

0

0

 ,


1

1

0

 ,


1

0

1

}.
The matrix G as in (7.9) and ϕ[G] are

G =

[
−1 11

3
2 2 −2

3

1 −1
3

1 0 10
3

]
, ϕ[G] =



x2 − x1 + 1

x1
3

+ x3 − 11
3

x2
1 − x1 − 2

x1x2 − 2

x1x3 − 10x1
3

+ 2
3


.

7.3 Simplicial loss functions

For a vector a := (a1, . . . , an), with each scalar ai 6= 0, consider the standard simplex

vertex set

∆n(a) := {0, a1e1, . . . , anen}. (7.14)

For the special case that a = (1, . . . , 1), we denote

∆n := {0, e1, . . . , en}. (7.15)

85

When the dimension n is clear in the context, we just write ∆ = ∆n for convenience.

We consider the special case that S = ∆n(a). Then the monomial power sets B0, B1 are

respectively

B0 = {0, e1, . . . , en}, B1 = {2e1, e1 + e2, . . . , 2en}.

For the matrix G ∈ RB0×B1 given as in (7.9), we have that

ϕ[G, 2ei] = x2
i − aixi (i ∈ [n]),

ϕ[G, ei + ej] = xixj (i < j).
(7.16)

The resulting loss function for the set ∆n(a) is

f(x) =
n∑
i=1

x2
i (xi − ai)2 +

∑
1≤i<j≤n

x2
ix

2
j . (7.17)

In particular, the above loss function for ∆n is

F (x) :=
n∑
i=1

x2
i (xi − 1)2 +

∑
1≤i<j≤n

x2
ix

2
j . (7.18)

We call f given as in (7.17)-(7.18) the simplicial loss function. A nice property is that the

simplicial loss function as in (7.17) has no spurious minimizers.

Theorem 7.5 ([95]). Fix nonzero scalars a1, . . . , an, the function f in (7.17) has no spurious

minimizers, i.e., every local minimizer of f is also a global minimizer.

Proof. Suppose z = (z1, . . . , zn) is a local minimizer of f . Then z satisfies the optimality

conditions

∇f(z) = 0, ∇2f(z) � 0.

This implies that for i = 1, . . . , n,

∂f

∂xi
(z) = 2zi

(
2z2

i − 3aizi + (zT z − z2
i + a2

i)
)

= 0, (7.19)

∂2f

∂x2
i

(z) = 12z2
i − 12aizi + 2(zT z − z2

i + a2
i) ≥ 0. (7.20)

Denote δi(z) := a2
i − 8(zT z − z2

i). The real solutions for (7.19) are zi = 0 and

zi =
3ai ±

√
δi(z)

4
if δi(z) ≥ 0. (7.21)

86

If each zi = 0, then z = 0 is a global minimizer. Suppose some zi is nonzero, then it satisfies

δi(z) ≥ 0 and 2z2
i − 3aizi + (zT z − z2

i + a2
i) = 0. So (7.20) can be reformulated as

∂2f

∂x2
i

(z) = 8z2
i − 6aizi = 2zi(4zi − 3ai) ≥ 0.

Plug (7.21) into the above inequality. Since
√
δi(z) ≤ |ai| < |3ai| (note ai 6= 0),

zi =


3ai−
√
δi(z)

4
if ai < 0,

3ai+
√
δi(z)

4
if ai > 0.

It is clear that |zi| ≥ |3ai/4|. If zi is the only nonzero entry of z, then
√
δi(z) = |ai| and

z = aiei, which is a global minimizer. Suppose z has another nonzero entry zj. By a similar

argument, we can get δj(z) ≥ 0 and |zj| ≥ |3aj/4|. Note that 2a2
i − 9a2

j ≥ 0 since

a2
i − 8 ·

∣∣∣3aj
4

∣∣∣2 ≥ a2
i − 8z2

j ≥ δi(z) ≥ 0.

Similarly, 2a2
j − 9a2

i ≥ 0, so

2a2
j − 9a2

i ≥ 2a2
j − 9 · 9

2
a2
j = −77

2
a2
j ≥ 0.

The above holds if and only if aj = 0, which contradicts that each ai is nonzero. Therefore,

every local minimizer of f is a global minimizer, i.e., f has no spurious minimizers.

When S is not a simplicial vertex set, we can still use the function F in (7.18) to get

new loss functions, up to a transformation. These new functions have no spurious minimizers.

They are called transformed simplicial loss functions. Consider that S is given as

S = {u1, . . . , uk}. (7.22)

We discuss the transformation for two different cases.

Case I: k ≤ n + 1. Consider the vertex set of a standard simplex set in Rk−1

∆k−1 = {0, e1, . . . , ek−1}.

The loss function as in (7.18) for ∆k−1 is

Fk−1(z) :=
k−1∑
i=1

z2
i (zi − 1)2 +

∑
1≤i<j≤k−1

z2
i z

2
j , (7.23)

87

in the variable z = (z1, . . . , zk−1). Consider the linear map

` : Rk−1 → Rn, `(ei) = ui − uk, i = 1, . . . , k − 1. (7.24)

The representing matrix for the linear map ` is

U =
[
u1 − uk · · · uk−1 − uk

]
. (7.25)

When u1, . . . , uk are in generic positions, the matrix U has full column rank. Let

U † := (UTU)−1UT

be the Pseudo inverse of U . For x = (x1, . . . , xn), consider the loss function

f(x) = Fk−1

(
U †(x− uk)

)
. (7.26)

Recall that Null(U †) denotes the null space of the matrix U †.

Theorem 7.6 ([95]). Suppose k ≤ n + 1 and rank U = k − 1. Then, the function f as in

(7.26) is a loss function for the set

S + Null(U †) := {x+ y : x ∈ S, U †y = 0}.

Moreover, f has no spurious minimizers.

Proof. The function f as in (7.26) is nonnegative everywhere. Note that f(x) = 0 if and

only if U †(x− uk) ∈ ∆k−1. It holds that

∆k−1 = U †(S − uk).

For x ∈ Rn, we have U †(x− uk) ∈ ∆k−1 if and only if x ∈ S + Null(U †). This shows that f

is a loss function for S + Null(U †) in Rn.

The gradient and Hessian of f can be written as

∇xf(x) = (U †)T∇zFk−1(z), ∇2
xf(x) = (U †)T∇2

zFk−1(z)U †.

Note that U † has full row rank. If u is a local minimizer of f , then ∇xf(u) = 0, ∇2
xf(u) � 0.

Let z = U †(u− uk), then the above implies that

∇zFk−1(z) = 0, ∇2
zFk−1(z) � 0.

As in the proof of Theorem 7.5, one can show that z ∈ ∆k−1. This implies that z is a

global minimizer of Fk−1 and hence u is a global minimizer of f . So f has no spurious

minimizers.

88

Here the following is an example of transformed simplicial loss function for the case

k ≤ n+ 1.

Example 7.7. Consider the set S =
{

4

−2

1

 ,

−1

3

−5

} in R3. The matrix U as in (7.25)

and its Pseudo inverse are

U =


5

−5

6

 , U † =
1

86


5

−5

6


T

.

Since k = 2, the simplicial loss function for ∆k−1 is F1 = z2(z−1)2 in the univariate variable

z. Then, the transformed simplicial loss function as in (7.26) is

f(x) =

(
5x1

86
− 5x2

86
+

3x3

43
+

25

43

)2

·
(

5x1

86
− 5x2

86
+

3x3

43
− 18

43

)2

.

Case II: k > n + 1. Let ω : Rn → Rk−1 be the monomial function such that

[x]B0 =

[
1

ω(x)

]
, (7.27)

where B0 is the power set in (7.5). For the set S as in (7.22), denote

Ŝ :=
{
ω(u1), . . . , ω(uk)

}
⊆ Rk−1. (7.28)

Define the linear map L such that

L : Rk−1 → Rk−1, L(ei) = ω(ui)− ω(uk), i = 1, . . . , k − 1.

The representing matrix for the linear map L is

L =
[
ω(u1) · · · ω(uk−1)

]
−
[
ω(uk) · · · ω(uk)

]
. (7.29)

When u1, . . . , un are in generic positions, the matrix L is nonsingular. For such a case, define

the function

f̂(z) := Fk−1

(
L−1(z − ω(uk)

)
, (7.30)

in the z = (z1, . . . , zk−1), where Fk−1 is the simplicial loss function as in (7.23). The above

f̂ is called a transformed simplicial loss function for Ŝ. The following follows from Theorem

7.6.

89

Theorem 7.8 ([95]). Suppose k > n+ 1 and L is nonsingular. Then, the function f̂ as in

(7.30) is a loss function for Ŝ and it has no spurious minimizers.

For x = (x1, . . . , xn), define the function

f(x) = Fk−1

(
L−1(ω(x)− ω(uk)

)
. (7.31)

Corollary 7.9 ([95]). Suppose k > n+ 1 and L in (7.29) is nonsingular, then the function

f in (7.31) is a loss function for S.

Proof. The function f as in (7.31) is nonnegative everywhere. By Theorem 7.8, we know

f(x) = 0 if and only if ω(x) ∈ Ŝ. Since ω is a one-to-one map, the f is a loss function for

S.

The following is an example of transformed simplicial loss functions for the case

k ≥ n+ 1..

Example 7.10. Consider the S =
{[2

3

]
,

[
−1

−2

]
,

[
1

−3

]
,

[
−2

2

]}
in R2. Since k = 4 > n+1,

the set Ŝ in (7.28) is

Ŝ =




2

3

4

 ,

−1

−2

1

 ,


1

−3

1

 ,

−2

2

4


 .

The matrix L as in (7.29) and its inverse are

L =


4 1 3

1 −4 −5

0 −3 −3

 , L−1 =
1

18


3 6 −7

−3 12 −23

3 −12 17

 .
Since k = 4, the simplicial loss function for ∆k−1 is

F3(z) = z2
1(z1 − 1)2 + z2

1z
2
2 + z2

2(z2 − 1)2 + z2
2z

2
3 + z2

3(z3 − 1)2.

in the variable z = (z1, z2, z3). Then, the transformed simplicial loss function as in (7.30) is

f̂(z) = F3(L−1(z − ω(u4)), with

L−1(z − ω(u4)) =
1

18


3z1 + 6z2 − 7z3 + 22

−3z1 + 12z2 − 23z3 + 62

3z1 − 12z2 + 17z3 − 38

 .

90

7.4 Finite sets with noises

In this section, we study loss functions for finite sets that are given with noises.

Suppose S is approximately given by a sampling set T , say,

T = {v1, . . . , vN}. (7.32)

Each point of S is sampled by a certain number of points in T . First, we discuss how to

recover the k points of S from sampling points in T .

A finite set can be represented as the optimizer set of a loss function. For conve-

nience, we consider loss functions whose minimum values are zeros. Let F be a family of

loss functions such that each f ∈ F has k common zeros. The loss function family F is

parameterized by some parameters. For such given F , we look for the best loss function in

F such that its average value on T is the smallest. This leads to the following definition.

Definition 7.11. Let F be a family of loss functions such that each f ∈ F is nonnegative

and it has k common zeros. A set S∗ = {u∗1, . . . , u∗k} is called the best F-approximation set

for T as in (7.32) if S∗ is the zero set of f ∗, where f ∗ is the minimizer of the optimization min µ(f) := 1
N

N∑
i=1

f(vi)

s .t . f ∈ F .
(7.33)

we consider the family of the following loss functions

fG := ‖ϕ[G]‖2, (7.34)

parameterized by G. We look for the matrix G such that the average of the values of fG on

T is minimum and ϕ[G] has k common zeros.

Then we consider the following matrix optimization problem min ϑ(G) := 1
N

N∑
j=1

fG(vj)

s .t . [Mxi(G),Mxj(G)] = 0 (1 ≤ i < j ≤ n).

(7.35)

The value ϕ[G](vi) is linear in the matrix G. The feasible set of (7.35) is given by a set of

quadratic equations. The optimization (7.35) is the specialization of (7.33) such that F is

the family of loss function fG, with ϕ[G] having k common zeros.

91

Suppose G∗ is the minimizer of (7.35). Let S0 denote the common zero set of ϕ[G∗].

We can use S0 to approximate the points in S. In some applications, the set S contains only

real points and people like to get a real set approximation for S.

First, we study the approximation quality of the optimization (7.35). For each α ∈ B1,

the sub-Hessian of the objective ϑ(G) with respect to the αth column G(:, α) is the matrix

H :=
2

N

N∑
j=1

[vj]B0([vj]B0)
H.

In the above, the superscript H denotes the Hermitian transpose.

Theorem 7.12 ([95]). Let T be as in (7.32) and let S = {u1, . . . , uk} be such that the matrix

X0 as in (7.8) is nonsingular. Assume there exists δ > 0 such that H � 2δIk. Suppose the

set T is such that

T ⊆ S +B(0, ε), T ∩B(ui, ε) 6= ∅ (i = 1, . . . , k), (7.36)

for some ε > 0. Then, as ε→ 0, the optimizer G∗ of (7.35) converges to Ĝ := X−T0 XT
1 , and

the common zero set S0 of ϕ[G∗] converges to S.

In particular, when S, T ⊆ Rn, if ε > 0 is sufficiently small, the common zero set S0

contains k distinct real points.

Proof. First, we show the convergence G∗ → Ĝ as ε→ 0. Since the set B̂ := ∪ki=1B(ui, 1) is

compact, the polynomial function ϕ[Ĝ](x) is Lipschitz continuous on B̂. There exists R > 0

such that for all i ∈ [k] and for all x ∈ B(ui, ε),

‖ϕ[Ĝ](x)− ϕ[Ĝ](ui)‖ ≤ R‖x− ui‖ ≤ Rε.

Since T ⊆ S + B(0, ε), each vj ∈ T belongs to some B(uij , ε) for ij ∈ {1, . . . , k}. So the

above inequality implies that (note that each ϕ[Ĝ](uij) = 0)

ϑ(Ĝ) =
1

N

N∑
j=1

‖ϕ[Ĝ](vj)‖2 =
1

N

N∑
j=1

‖ϕ[Ĝ](vj)− ϕ[Ĝ](uij)‖2 ≤ (Rε)2.

Since G∗ is the minimizer of (7.35), we have

0 ≤ ϑ(G∗) ≤ ϑ(Ĝ) ≤ (Rε)2. (7.37)

92

Moreover, it holds that

ϑ(G∗) =
1

N

N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj) + ϕ[Ĝ](vj)‖2,

≥ 1

N

N∑
j=1

(
‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ − ‖ϕ[Ĝ](vj)‖

)2

≥ 1

N2

(N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ −
N∑
j=1

‖ϕ[Ĝ](vj)‖
)2

.

In the above, the first inequality follows from that ‖a + b‖2 ≥ (‖a‖ − ‖b‖)2 and the second

inequality follows from the Cauchy-Schwartz inequality. Then, we have

N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ ≤ N
√
ϑ(G∗) +

N∑
j=1

‖ϕ[Ĝ](vj)‖

By the formula of ϕ[G](x) and using Cauchy-Schwartz inequality again, we get

N∑
j=1

‖(G∗ − Ĝ)T [vj]B0‖ ≤ N
(√

ϑ(G∗) +

√
ϑ(Ĝ)

)
.

Since
∑N

j=1 ‖(G∗ − Ĝ)T [vj]B0‖2 ≤
(∑N

j=1 ‖(G∗ − Ĝ)T [vj]B0‖
)2

, we have

1

N

N∑
j=1

‖(G∗ − Ĝ)T [vj]B0‖2 ≤ N
(√

ϑ(G∗) +

√
ϑ(Ĝ)

)2

.

By the assumption H � 2δIk, the above implies

‖G∗ − Ĝ‖ ≤
√
N

δ

(√
ϑ(G∗) +

√
ϑ(Ĝ)

)
.

Therefore, as ε→ 0, we have G∗ converges to Ĝ.

In the following, we assume that S, T ⊆ Rn. Since X0 is nonsingular, S has k distinct

real points. Recall the multiplication matrices Mxi(G
∗),Mxi(Ĝ) given as in (7.10). Since

G∗ → Ĝ, the common zero set of ϕ[G∗] converges to that of ϕ[Ĝ]. The zero set of ϕ[Ĝ] is

S, which consists of k distinct real points. Hence, ϕ[G∗] also has k distinct common zeros

when ε > 0 is sufficiently small. Then it remains for us to show that all common zeros of

ϕ[G∗] are real. For a vector ξ = (ξ1, . . . , ξn), define the matrices

M1 =
n∑
i=1

ξiMxi(G
∗), M2 =

n∑
i=1

ξiMxi(Ĝ).

93

Their characteristic polynomials are

p1(λ) := det(M1 − λI), p2(λ) := det(M2 − λI).

Fix a generic real value for ξ so that M2 has k distinct real eigenvalues. This is because

ϕ[Ĝ](x) has real distinct solutions and by the Stickelberger’s Theorem (see (7.39) as in

[65,106]). Note that both p1(λ), p2(λ) have degree k and all coefficients are real. The p2(λ)

has k distinct real roots. They are ordered as

λ̂1 < λ̂2 < · · · < λ̂k.

We can choose real scalars b0, . . . , bk such that

b0 < λ̂1 < b1 < · · · < bk−1 < λ̂k < bk.

As ε → 0, the coefficients of p1 converge to those of p2. So, when ε > 0 is small enough,

p1(bj) has the same sign as p2(bj) does. Since each p2(bj−1)p2(bj) < 0, we have

p1(bj−1)p1(bj) < 0, j = 1, . . . , k + 1.

This implies that p1 has k distinct real roots. Equivalently, M1 has k distinct real eigenvalues

for ε > 0 sufficiently small. By Proposition 7.2, all the multiplication matrices Mxi(G
∗) are

simultaneously diagonalizable. Also note that M1 is diagonalizable and there is a unique real

eigenvector (up to scaling) for each real eigenvalue. This shows that Mx1(G
∗), . . . ,Mxn(G∗)

can be simultaneously diagonalized by common real eigenvectors. All Mx1(G
∗), . . . ,Mxn(G∗)

have real entries, so they have only real eigenvalues. Therefore, by Stickelberger’s Theorem,

ϕ[G∗] has k distinct real common zeros if ε > 0 is sufficiently small.

When the set S is approximately given by the sampling set T , we can solve (7.35)

for an optimizer matrix G∗, to get loss functions. Let S0 be the common zero set of the

polynomial tuple ϕ[G∗]. If T is far from S, S0 may have non-real points. If real points are

wanted, we can choose the real part set

Sre := {Re(u) : u ∈ S0}. (7.38)

First, we show how to compute the common zero set S0. By Stickelberger’s Theorem

(see [65,106]), the set S0 can be expressed as

S0 =

{
(λ1, . . . , λn)

∣∣∣∣∣ ∃q ∈ Ck \ {0} such that

Mxi(G
∗)q = λiq, i = 1, . . . , n

}
. (7.39)

94

To get S0 numerically, people often use Schur decompositions. Let

M1 = ξ1Mx1(G
∗) + · · ·+ ξnMxn(G∗), (7.40)

where ξ1, . . . , ξn are generically chosen scalars. Then, compute the Schur decomposition for

M1:

QHM1Q = P, Q =
[
q1 · · · qk

]
. (7.41)

In the above, Q ∈ Ck×k is a unitary matrix and P ∈ Ck×k is upper triangular. Based on the

Schur decomposition (7.41), the common zeros û1, . . . , ûk of ϕ[G∗] can be given as

ûi :=
(
qHiMx1(G

∗)qi, . . . , q
H
iMxn(G∗)qi

)
, i = 1, . . . , k. (7.42)

We refer to [21] for how to use Schur decompositions to compute common zeros of zero-

dimensional polynomial systems. For general cases, the set S0 contains k distinct points. It

holds when S, T ⊆ Rn and the points in T are close to S; see Theorem 7.12.

Based on the above discussions, we get the following algorithm for obtaining loss

functions when S is approximately given by the sampling set T .

Algorithm 7.13. For the given set T as in (7.32) and the cardinality k, do the following:

Step 1 Solve quadratic optimization (7.35) for the optimizer G∗.

Step 2 Compute the common zero set S0 = {û1, . . . , ûk} of ϕ[G∗]. Let S∗ be the set S0 or Sre

be as in (7.38) if the real points are wanted.

Step 3 Get a loss function for the set S∗, by the method in Section 7.2 or Section 7.3.

In Step 1, the optimization (7.35) has a convex quadratic objective, but its constraints

are given by quadratic equations, in the matrix variable G. So (7.35) is a quadratically

constrained quadratic program (QCQP). It can be solved as a polynomial optimization

problem (e.g., by the software GloptiPoly 3 [48]). The classical nonlinear optimization

methods, (e.g., Gauss-Newton, trust region, and Levenberg-Marquardt type methods) can

also be applied to solve (7.35). We refer to [51,76,117] for such references.

In Step 2, the common zero set S0 can be computed as in (7.42), by using the Schur

decomposition (7.41) for the matrix M1 in (7.40), for generically chosen scalars ξ1, . . . , ξn.

In Step 3, there are two options for obtaining loss functions for the set S∗, given in

Sections 7.2 and 7.3 respectively. One is to choose f = ‖ϕ[G]‖2; the other one is to apply

a transformation first and then choose f similarly. After the transformation, there are no

spurious optimizers for the loss function.

95

7.5 Applications

In this section, we present numerical experiments for loss functions. The computation

is implemented in MATLAB R2018a, in a Laptop with CPU 8th Generation Intel® Core� i5-

8250U and RAM 16 GB. The optimization problem (7.35) can be solved by the polynomial

optimization software GloptiPoly 3 (with the SDP solver SeDuMi), or it can be solved by

classical nonlinear optimization solvers (e.g., the MATLAB function fmincon can be used for

convenience). First, we explore the numerical performance of Algorithm 7.13.

Example 7.14. Consider the set

S =
{[1

1

]
,

[
3

2

]
,

[
1.5

2.5

]
,

[
2.5

3

]
,

[
2

1.5

]
,

[
3

1

]}
.

Suppose T is a sampling set of S such that

T ⊆ S + ε[−1, 1]2, |T ∩ {ui + ε[−1, 1]2}| = Ni (i = 1, . . . , 6).

We apply Algorithm 7.13 for cases Ni ∈ {50, 100} and ε ∈ {0.05, 0.1, 0.5}. The samples are

generated with MATLAB function randn. We summarize the computational results in Table 7.1

and Figure 7.1. In Table 7.1, the symbol S∗ denotes the computed approximation set as in

(7.38). We use the distance

‖S − S∗‖ := max
v∈S∗

min
ui∈S
‖v − ui‖

to measure the approximation quality of S∗ to S. We use the loss function f = ‖ϕ[G]‖2

for S∗. The maximum value of f on S is shown in the third column. In Figure 7.1, the

sampling points in T are plotted in dots, the points in S are plotted in the diamond symbol

and the points in S∗ are plotted in the square symbol. The left column from top to bottom

shows cases for Ni = 50 and ε = 0.05, 0.1, 0.5 respectively. The right column shows cases for

Ni = 100 accordingly.

Example 7.15. We use Algorithm 7.13 and the transformed simplicial loss functions in Sec-

tion 7.3 to learn Gaussian mixture models (GMMs). Each GMM has parameters (wi, µi,Σi),

i = 1, . . . , k, where each weight wi > 0, the mean vector µi ∈ Rn and the covariance ma-

trix Σi ∈ Sn++ (the cone of real symmetric positive definite n-by-n matrices), such that

w1 + · · · + wk = 1. We explore the performance of transformed simplicial loss functions for

two cases

I) : n = 4, k ∈ {4, 5}, II) : n = 5, k ∈ {3, 4}.

96

Table 7.1: The numerical results of Example 7.14

Ni ε ‖S − S∗‖ max
u∈S

f(u)

50
0.05 0.0064 1.27 · 10−4

0.1 0.0145 2.98 · 10−4

0.5 0.1821 0.0862

Ni ε ‖S − S∗‖ max
u∈S

f(u)

100
0.05 0.0055 8.06 · 10−5

0.1 0.0067 1.89 · 10−4

0.5 0.1080 0.0359

In particular, we compare the results for diagonal Gaussian mixture models (each Σi is di-

agonal) and non-diagonal Gaussian mixture models (each Σi is non-diagonal). For each

instance, 1000 samples are generated. The weights w1, . . . , wk are also computed from sam-

pling: we first use the MATLAB command randi getting 1000 integers from [k], and then

counting each wi based on the occurrence probability of i ∈ [k]. We generate each covari-

ance matrix as Σi = RTR, for some randomly generated square matrix R. The clustering

accuracy rate counts the percentage of samples belonging to the correct cluster. (For a point

v ∈ T , apply a nonlinear optimization method to minimize f with the starting point v. Once

a minimizer u is returned, we cluster v to the group labeled by the point u ∈ S∗.) We run

10 instances for each case and count the accuracy rate as an average for all instances. The

computational results are reported in Table 7.2. Algorithm 7.13 together with transformed

simplicial loss functions has good performance for both diagonal and non-diagonal Gaussian

mixture models. The clustering accuracy rate is higher for non-diagonal Gaussian mixtures

than that for diagonal ones. In particular, for (n, k) = (4, 5), the clustering accuracy rate

can be as high as 98.92%.

Table 7.2: The accuracy rates for Example 7.15.

n k diagonal non-diagonal

4
4 77.66% 85.34%
5 88.73% 98.92%

5
3 80.93% 84.04%
4 82.40% 89.58%

Acknowledgments. This Chapter, in full, has been submitted for publication. The

dissertation author coauthored this paper with Nie, Jiawang.

97

Figure 7.1: The visualization of Example 7.14. The left column is for Ni = 50, and the right

column is for Ni = 100. The first row is for ε = 0.05, the second row is for ε = 0.1, and the

third row is for ε = 0.5.

98

Bibliography

[1] G. Allende and G. Still, Solving bilevel programs with the KKT-approach, Math. Pro-
gram., 138 (2013), pp. 309-332.

[2] D. Ardagna, M. Ciavotta and M. Passacantando, Generalized Nash equilibria for the
service provisioning problem in multi-cloud systems, IEEE Transactions on Services
Computing 10, 381–395, 2017.

[3] J. Bard, Practical Bilevel Optimization: Algorithms and Applications, Dordrecht:
Kluwer Academic Publishers, 1998.

[4] F. Bastin, C. Cirillo and P. Toint, Convergence theory for nonconvex stochastic pro-
gramming with an application to mixed logit, Math. Program., 108(2–3), pp. 207–234,
2006.

[5] J. T. Barron, A general and adaptive robust loss function, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[6] A. Ben-Tal, D. Den Herto, et al., Robust solutions of optimization problems affected by
uncertain probabilities, Management Science 59, no. 2 (2013): 341-357.

[7] A. Ben-Tal, and A. Nemirovski, Lectures on Modern Convex Optimization (2012),
SIAM, Philadelphia, PA. Google Scholar Google Scholar Digital Library Digital Library
(2011).

[8] D. Bertsekas, Nonlinear Programming, second edition, Athena Scientific, 1995.

[9] D. Bertsimas, M. Sim, and M. Zhang, Adaptive distributionally robust optimization,
Management Science 65.2 (2019): 604-618.

[10] M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel
programming problem, J. Global Optim., 33 (2005), pp. 465-475.

[11] G. Boglárka and K. Kovács, Solving a Huff-like Stackelberg location problem on net-
works, J. Global Optim., 64 (2016), pp. 233-247.

[12] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[13] M. Branda, Sample approximation technique for mixed-integer stochastic programming
problems with several chance constraints, Oper. Res. Lett., 40(3), pp. 207–211, 2012.

99

[14] X. Chen, Y. Shi and X. Wang, Equilibrium oil market share under the COVID-19
pandemic, Preprint, 2020. arXiv:2007.15265

[15] Z. Chen, M. Sim, and H. Xu, Distributionally robust optimization with infinitely con-
strained ambiguity sets, Oper. Res. 67.5 (2019): 1328-1344.

[16] D. Cheng, Y. Gong, S. Zhou, et al., Person re-identification by multi-channel parts-
based CNN with improved triplet loss function, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[17] P. Christoffersen and K. Jacobs, The importance of the loss function in option valuation,
Journal of Financial Economics 72(2) 291–318, 2004.

[18] F. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied
Mathematics, 1990.

[19] B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, Ann. Oper.
Res., 153 (2007), pp. 235-256.

[20] J. Contreras, M. Klusch and J.B. Krawczyk, Numerical solutions to Nash-Cournot equi-
libria in coupled constraint electricity markets, IEEE Transactions on Power Systems
19(1), 195–206, 2004.

[21] R. M. Corless, P. M. Gianni and B. M. Trager, A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots, Proceedings of the In-
ternaltional Symposium on Symbolic and Algebraic Computation, pp. 133–140, Maui,
Hawaii, 1977.

[22] D. Cox, J. Little, and D. OShea. Ideals, Varieties, and Algorithms: An introduction
to Computational Algebraic Geometry and Commutative Algebra, Springer Science &
Business Media, 2013.

[23] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems,
Houston Journal of Mathematics 17 (1991), pp. 603-635.

[24] R. Curto and L. Fialkow, Truncated K-moment problems in several variables. Journal
of Operator Theory, 54(2005), pp. 189-226.

[25] E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty
with application to data-driven problems, Oper. Res. 58.3 (2010): 595-612.

[26] S. Dempe, Bilevel Optimization: Theory, Algorithms and Applications, Vol. 3, TU
Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2018.

[27] S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program
with complementarity constraints?, Math. Program., 131 (2012), pp. 37-48.

[28] S. Dempe and A. Zemkoho, Bilevel optimization: Advances and next challenges,
Springer Optimization and its Applications, vol. 161, 2020.

100

[29] S. Dempe and S. Franke, Solution algorithm for an optimistic linear Stackelberg prob-
lem, Comput. Oper. Res., 41 (2014), pp. 277-281.

[30] S. Dempe, V. Kalashnikov, G. Pérez-Valdés and N. Kalashnykova, Bilevel Programming
Problems, Energy Systems, Springer, Berlin. 2015.

[31] A. Dreves, F. Facchinei, C. Kanzow, and S. Sagratella, On the solution of the KKT
conditions of generalized Nash equilibrium problems, SIAM J. Optim., 21, 1082–1108,
2011.

[32] J. C. Duchi and H. Namkoong, Learning models with uniform performance via distri-
butionally robust optimization, The Annals of Statistics, 49.3 (2021): 1378-1406.

[33] P. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the
Wasserstein metric: Performance guarantees and tractable reformulations, Math. Pro-
gram., 171.1-2 (2018): 115-166.

[34] F. Facchinei, A. Fischer, and V. Piccialli, Generalized Nash equilibrium problems and
Newton methods, Math. Program., 117(1), 163–194, 2009.

[35] F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Ann. Oper. Res.,
175(1), 177–211, 2010.

[36] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi and M. Pontil, Bilevel programming for
hyperparameter optimization, International Conference on Machine Learning, (2018),
pp. 1563-1572.

[37] M. Fu (eds.), Handbook of Simulation Optimization, volume 216, Springer, New York,
2015.

[38] J. Gauvin and F. Dubeau, Differential properties of the marginal function in mathe-
matical programming, Math. Program. Stu., 19 (1982), pp. 101-119.

[39] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex
stochastic programming, SIAM J. Optim., 23(4), pp. 2341–2368, 2013.

[40] S. Ghadimi, G. Lan and H. Zhang, Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization, Math. Program., 155(1-2), pp. 267–305,
2016.

[41] L. Guo, G. Lin, J.J. Ye and J. Zhang, Sensitivity analysis of the value function for
parametric mathematical programs with equilibrium constraints, SIAM J. Optim., 24
(2014), pp. 1206-1237.

[42] B. Guo, J. Nie, and Z. Yang, Learning diagonal Gaussian mixture models and incomplete
tensor decompositions, Vietnam J. Math., 50.2 (2022): 421–446.

[43] M. Gürbüzbalaban, A. Ruszczyński, and L. Zhu, A stochastic subgradient method for
distributionally robust non-convex learning, Preprint, 2020. arXiv:2006.04873.

101

[44] G. Hanasusanto, V. Roitch, et al, A distributionally robust perspective on uncertainty
quantification and chance constrained programming, Math. Program., 151.1 (2015): 35-
62.

[45] J. W. Helton and J. Nie, Semidefinite representation of convex sets, Math. Program.,
122 (1), 21–64, 2010.

[46] J. Helton and J. Nie, A semidefinite approach for truncated K-moment problem, Found.
Comput. Math., 12(6), pp. 851–881, 2012.

[47] D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in
GloptiPoly. Positive polynomials in control, 293–310, Lecture Notes in Control and
Inform. Sci., 312, Springer, Berlin, 2005.

[48] D. Henrion, J. Lasserre, and J. Löfberg, Gloptipoly 3: moments, optimization and
semidefinite programming. Optim. Meth. Softw., 24(4-5), pp. 761–779, 2009.

[49] A. von Heusinger, C. Kanzow, and M. Fukushima, Newton’s method for computing a
normalized equilibrium in the generalized Nash game through fixed point formulation,
Math. Program. 132(1), 99–123, 2012.

[50] K. Judd, The law of large numbers with a continuum of iid random variables, Journal
of Economic theory, 35(1), pp. 19–25, 1985.

[51] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied
Mathematics 16, SIAM, Philadelphia, 1995.

[52] A. Kesselman, S. Leonardi, and V. Bonifaci, Game-theoretic analysis of internet switch-
ing with selfish users, International Workshop on Internet and Network Economics, (pp.
236-245), Springer, Berlin, Heidelberg, 2005.

[53] E. de. Klerk, D. Kuhn, and K. Postek, Distributionally robust optimization with poly-
nomial densities: theory, models and algorithms, Math. Program., (2019): 1-32.

[54] A. J. Kleywegt, A. Shapiro and T. Homem-de-Mello, The sample average approximation
method for stochastic discrete optimization, SIAM J. Optim., 12.2 (2002): 479-502.

[55] Y. H. Ko, K. J. Kim, and C. H. Jun, A new loss function-based method for multire-
sponse optimization, Journal of Quality Technology 37(1), 50–59, 2005.

[56] M. Krein and D. Louvish, The Markov Moment Problem and Extremal Problems, Amer-
ican Mathematical Society, 1977.

[57] G. Kunapuli, K. Bennett, J. Hu and J-S. Pang, Classification model selection via bilevel
programming, Optim. Meth. Softw., 23 (2008), pp. 475-489.

[58] G. Lan, First-oder and Stochastic Optimization Methods for Machine Learning, Switzer-
land: Springer, 2020.

102

[59] J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM
J. Optim., 11, pp. 796–817, 2001.

[60] J. Lasserre, Convexity in semi-algebraic geometry and polynomial optimization, SIAM
J. Optim., 19 (2009): 1995-2014.

[61] J. Lasserre, Moment, Positive Polynomials and Their Applications, Imperial College
Press, 2009.

[62] J. Lasserre, On representations of the feasible set in convex optimization, Optim. Lett.,
4(1), 1-5, 2010.

[63] J. Lasserre, M. Laurent and P. Rostalski, Semidefinite characterization and computation
of zero-dimensional real radical ideals, Foundations of Computational Mathematics 8(5),
607–647, 2008.

[64] J. Lasserre and T. Weisser, Distributionally robust polynomial chance-constraints under
mixture ambiguity sets, Math. Program. 185.1 (2021): 409-453.

[65] M. Laurent, Sums of squares, moment matrices and optimization over polynomials,
Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its
Applications, 149, pp. 157–270, Springer, 2009.

[66] G. Lin, M. Xu and J. Ye, On solving simple bilevel programs with a nonconvex lower
level program, Math. Program., 144 (2014), 277-305.

[67] J. Linderoth, A. Shapiro and S. Wright, The empirical behavior of sampling methods
for stochastic programming, Ann. Oper. Res., 142 (1): 215–241, 2006.

[68] R. Liu, P. Mu, X. Yuan, S. Zeng and J. Zhang, A generic first-order algorithmic Frame-
work for bi-level programming beyond lower-level singleton, International Conference
on Machine Learning, 2020.

[69] M. Liu and O. Tuzel, Coupled generative adversarial networks, Advances in Neural
Information Processing Systems, 29 (2016): 469-477.

[70] J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE in-
ternational conference on robotics and automation (IEEE Cat. No. 04CH37508), IEEE,
2004.

[71] J. Luedtke and S. Ahmed, A sample approximation approach for optimization with
probabilistic constraints, SIAM J. Optim., 19(2), pp. 674–699, 2008.

[72] H. Markowitz, Portfolio selection, Journal of Finance, 7, 77-91, 1952.

[73] M. Mevissen, E. Ragnoli and J. Yu, Data-driven distributionally robust polynomial
optimization, Advances in Neural Information Processing Systems, 26 (2013).

[74] J. Mirrlees, The theory of moral hazard and unobservable behaviour: part I, Rev. Eco.
Stud., 66 (1999), pp. 3-22.

103

[75] M. Mohri, G. Sivek and A. T. Suresh, Agnostic federated learning, International Con-
ference on Machine Learning, PMLR, 2019.

[76] J. J. More, The Levenberg-Marquardt algorithm: implementation and theory, in: G. A.
Watson, ed., Lecture Notes in Mathematics 630: Numerical Analysis, Springer-Verlag,
Berlin, 1978, 105–116.

[77] L. Muu and N. Quy, A global optimization method for solving convex quadratic bilevel
programming problems, J. Global Optim. 26 (2003), pp. 199-219.

[78] T. Netzer, On semidefinite representations of non-closed sets, Linear Algebra and its
Applications 432 (2010), 3072–3078.

[79] J. Nie, Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Pro-
gram., Ser. A, 142 (2013), no. 1-2, pp. 485–510.

[80] J. Nie, Optimality conditions and finite convergence of Lasserre’s hierarchy, Math. Pro-
gram. 146 (2014), pp. 97-121.

[81] J. Nie, The A-Truncated K-Moment Problem, Foundations of Computational Mathe-
matics 14.6 (2014): 1243-1276.

[82] J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math.
Program., 153.1 (2015): 247-274.

[83] J. Nie, Generating polynomials and symmetric tensor decompositions, Foundation of
Computational Mathematics 17, 423–465, 2017.

[84] J. Nie, Low rank symmetric tensor approximations, SIAM Journal on Matrix Analysis
and Applications 38(4), 1517–1540, 2017.

[85] J. Nie, Tight relaxations for polynomial optimization and Lagrange multiplier expres-
sions, Math. Program., 178 (2019), pp. 1-37.

[86] J. Nie and R. Kristian, Algebraic degree of polynomial optimization, SIAM J. Optim.
20, 485–502, 2009.

[87] J. Nie and X. Tang, Nash equilibrium problems of polynomials, Preprint, 2020. arXiv:
2006.09490

[88] J. Nie and X. Tang, Convex generalized Nash equilibrium problems and polynomial
optimization, Math. Program., (2021): 1-34.

[89] J. Nie, X. Tang and L. Xu, The Gauss-Seidel method for generalized Nash equilibrium
problems of polynomials, Computational Optimization and Applications 78, 529–557,
2021.

[90] J. Nie, X. Tang and S. Zhong, Rational generalized Nash equilibrium problems, Preprint,
2021. arXiv:2110.12120

104

[91] J. Nie, L. Wang and J. J. Ye, Bilevel polynomial programs and semidefinite relaxation
methods, SIAM J. Optim., 27 (2017), pp. 1728-1757.

[92] J. Nie, L. Wang, J. J. Ye and S. Zhong, A Lagrange multiplier expression method for
bilevel polynomial optimization, SIAM J. Optim., 31.3 (2021): 2368–2395.

[93] J. Nie, L. Yang and S. Zhong, Stochastic polynomial optimization, Optim. Meth. Softw.,
35.2 (2020): 329–347.

[94] J. Nie, L. Yang, S. Zhong and G. Zhou, Distributionally robust optimization with
moment ambiguity sets, Preprint, 2021. aerXiv:2103.12315

[95] J. Nie and S. Zhong, Loss functions for finite sets, Preprint, 2021. arXiv:2112:05927

[96] J. Pang, G. Scutari, F. Facchinei and C. Wang, Distributed power allocation with rate
constraints in Gaussian parallel interference channels, IEEE Transactions on Informa-
tion Theory 54(8), 3471–3489, 2008.

[97] G. Pflug and D. Wozabal, Ambiguity in portfolio selection, Quantitative Finance 7.4
(2007): 435-442.

[98] K. Postek, A. Ben-Tal, et al, Robust optimization with ambiguous stochastic constraints
under mean and dispersion information, Operations Research 2018 Jun;66(3):814-33.

[99] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math.
J., 42 (1993), pp. 969–984.

[100] F. Schorfheide, Loss function-based evaluation of DSGE models, Journal of Applied
Econometrics 15(6), 645–670, 2000.

[101] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM
J. Optim., 15(3), 805–825, 2005.

[102] A. Shapiro, D. Dentcheva and A. Ruszczynski, Lectures on Stochastic Programming:
Modeling and Theory, Society for Industrial and Applied Mathematics, 2021.

[103] K. Shimizu, Y. Ishizuka and J. Bard, Nondifferentiable and Two-level Mathematical
Programming, Kluwer Academic, 1997.

[104] K. Shimizu and E. Aiyoshi, A new computational method for Stackelberg and min-
max problems by use of a penalty method, IEEE Trans. Automat. Contr., 26 (1981),
pp. 460-466.

[105] J. Sturm, SeDuMi 1.02: a MATLAB toolbox for optimization over symmetric cones,
Optimization Methods and Software, 11&12, pp. 625–653, 1999. http://sedumi.

mcmaster.ca/

[106] B. Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference
Series in Mathematics, 97, AMS, Providence, RI, 2002.

105

[107] C. H. Sudre, W. Li, T. Vercauteren, et al., Generalised dice overlap as a deep learning
loss function for highly unbalanced segmentations, Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, 240–248, Springer,
Cham, 2017.

[108] B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, and A. Shapiro, The sample
average approximation method applied to stochastic routing problems: a computational
study, Computational Optimization and Applications, 24(2-3):289–333, 2003.

[109] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, A comprehensive survey of loss functions in ma-
chine learning, Annals of Data Science, 2020. doi.org/10.1007/s40745-020-00253-5

[110] W. Wiesemann, D. Kuhn and M. Sim, Distributionally robust convex optimization,
Operations Research 62.6 (2014): 1358-1376.

[111] Z. Wu, M. Shamsuzzaman and E. S. Pan, Optimization design of control charts based
on Taguchi’s loss function and random process shifts, International Journal of Produc-
tion Research 42(2), 379–390, 2004.

[112] H. Xu, Y. Liu and H. Sun, Distributionally robust optimization with matrix moment
constraints: Lagrange duality and cutting plane methods, Mathematical Programming
169.2 (2018): 489-529.

[113] Y. Yang and W. Wu, A Distributionally Robust Optimization Model for Real-Time
Power Dispatch in Distribution Networks, IEEE Transactions on Smart Grid 10.4
(2018): 3743-3752.

[114] J. J. Ye, Constraint qualifications and optimality conditions in bilevel optimization,
Bilevel Optimization: Advances and Next Challenges, Ch. 8, Springer Optimization
and its Applications, vol. 161, 2020.

[115] J. J. Ye, X. Yuan, S. Zeng and J Zhang, Difference of convex algorithms for bilevel
programs with applications in hyperparameter selection, Preprint, 2021. arXiv:2102.
09006

[116] J. J. Ye and D. Zhu, Optimality conditions for bilevel programming problems, Optim.,
33 (1995), pp. 9-27.

[117] Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and non-
linear least squares, Numerical Algebra Control and Optimization, 1, 15–34, 2011.

[118] Z. Zhang, S. Ahmed and G. Lan, Efficient algorithms for distributionally robust
stochastic optimization with discrete scenario support, SIAM J. Optim., 31.3 (2021),
1690–1721.

[119] J. Zhang, H. Xu and L. Zhang, Quantitative stability analysis for distributionally
robust optimization with moment constraints, SIAM J. Optim., 26.3 (2016): 1855-1862.

106

[120] S. Zhu and Masao Fukushima, Worst-case conditional value-at-risk with application
to robust portfolio management, Oper. Res., 57.5 (2009): 1155-1168.

[121] S. Zymler, D. Kuhn and B. Rustem, Distributionally robust joint chance constraints
with second-order moment information, Mathematical Programming 137.1-2 (2013):
167-198.

107

