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Soil Moisture‐Cloud‐Precipitation Feedback in the Lower
Atmosphere From Functional Decomposition of Satellite
Observations
Yifu Gao1 , Clément Guilloteau1 , Efi Foufoula‐Georgiou1 , Chonggang Xu2 ,
Xiaoming Sun2 , and Jasper A. Vrugt1

1Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA, 2Earth and
Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well
understood and represented in the current generation of weather and climate models. Here, we use functional
decomposition of satellite‐derived SM and cloud vertical profiles (CVP) to quantify the relationship between
SM and the vertical distribution of cloud water in the central US. High‐dimensional model representation is used
to disentangle the contributions of SM and other land‐surface and atmospheric variables to the CVP. Results
show that the sign and strength of the SM‐cloud‐precipitation feedback varies with cloud height and time lag and
displays a large spatial variability. Positive anomalies in antecedent 7‐hr SM and land‐surface temperature
enhance cloud reflectivity up to 4 dBZ in the lower atmosphere about 1–3 km above the surface. Our approach
presents new insights into the SM‐cloud‐precipitation feedback and aids in the diagnosis of land‐atmosphere
interactions simulated by weather and climate models.

Plain Language Summary This paper focuses on the observational analysis of how soil moisture
(SM) influences the vertical cloud‐water distribution throughout the day. By analyzing data from Soil Moisture
Active Passive (SMAP) and Dual‐frequency Precipitation Radar (DPR), we gain insights into how antecedent
SM affects cloud‐water reflectivity at different heights in the lower atmosphere. Our data‐driven approach
produces spatial maps of SM's contribution to cloud reflectivity and rainfall in the central US as a function of
cloud height and SM time lag. Our method will help diagnose weather and climate model biases.

1. Introduction
Feedbacks between soil moisture (SM) and precipitation regulate regional hydroclimatic variability. These
feedbacks are determined by a large number of variables and processes, including (variations in) land surface
temperature (Koster et al., 2006), energy partitioning (Fast et al., 2019; Golaz et al., 2001; Sakaguchi et al., 2022),
and planetary boundary layer (PBL) development (Ek & Holtslag, 2004; Han et al., 2019). In this paper, we focus
our attention on diurnal SM‐cloud‐precipitation feedbacks, abbreviated SMCPF, which exert control on the
vertical cloud‐water distribution and, consequently, influence weather conditions (Koster et al., 2004) and
regional hydroclimatology (Ford et al., 2023; Krakauer et al., 2010; Yin et al., 2014). Much research has been
devoted to estimating the sign, causality, and physical linkage of the SMCPF. That research may be divided into
simulation‐based analysis (Findell & Eltahir, 2003a; Gentine et al., 2013; Hohenegger et al., 2009; Schär
et al., 1999; Schlemmer et al., 2012; Tawfik et al., 2015; G. Wang et al., 2007), observation‐based studies
(Ferguson & Wood, 2011; Ford, Rapp, Quiring, & Blake, 2015; Guillod et al., 2015; Santanello et al., 2009;
Taylor & Ellis, 2006; Taylor et al., 2010, 2011) and a combination thereof (Baker, Castilho de Souza et al., 2021;
Baker, Garcia‐Carreras et al., 2021; Miralles et al., 2014; Santanello et al., 2013; Seneviratne et al., 2006;
Spennemann et al., 2018). While numerical models of land‐atmosphere interactions have advanced considerably
in recent decades, the sign and strength of simulated SMCPFs are subject to large uncertainties, due to, for
instance, the choice of boundary conditions (Hohenegger et al., 2009) and sub‐grid parameterizations (Dear-
dorff, 1980; Thompson et al., 2004, 2008). In observational studies, it is typically difficult to filter out the effects
of synoptic variability. In the absence of high‐quality spatiotemporal measurements of SM and cloud vertical
profiles, past studies have primarily focused on how SM affects convection initiation, the PBL height, and
precipitation probability (Findell et al., 2011; Ford et al., 2023; Frye & Mote, 2010; Graf et al., 2021; Su &
Dickinson, 2017; Taylor, 2015; Yuan et al., 2020) without considering diurnal relationships between antecedent
SM and the cloud water distribution. Advances in our understanding of SM‐cloud‐precipitation relationships will
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improve diagnosis of weather and climate model biases and enhance the accuracy of their future projections
(Williams, 2019).

Remote‐sensing data products of SM and cloud vertical profiles from polar‐orbiting Earth‐observing satellites
have advanced considerably in the past decades and have the potential to substantially advance our understanding
of SM‐cloud‐precipitation relationships. Specifically, the 3‐hourly/9 km Soil Moisture Active Passive (SMAP/
L4) and 1.5‐hourly/5 km Global Precipitation Measurement Dual‐Frequency Precipitation Radar (GPM/DPR/
L2A) provide high‐resolution estimates of the topsoil moisture content and the vertical distribution of hydro-
meteors within and above the PBL, respectively, at a global coverage. Many studies have confirmed the accuracy
and reliability of SMAP/L4 (Koster et al., 2018; Reichle et al., 2017; Tavakol et al., 2019; L. Zhang et al., 2017; X.
Zhang et al., 2017) and GPM/DPR/L2A (Lasser et al., 2019; Liao & Meneghini, 2022; Pejcic et al., 2020) data
products.

In this paper, we use functional decomposition of a large database of collocated SMAP/L4 surface SM and GPM/
DPR/L2A cloud vertical profiles (CVPs) to investigate the functional relationship between antecedent SM and the
vertical distribution of cloud water and reflectivity in the lower troposphere. Our method, called high‐dimensional
model representation or HDMR (Gao et al., 2023; Li & Rabitz, 2010, 2012) expresses all variable interactions in a
hierarchical order and uses the superposition principle to disentangle individual and cooperative contributions of
SM and other land‐surface variables to the CVP. We are particularly interested in the so‐called first‐order
component functions as they quantify each land‐surface variable's direct contribution to the CVP. As byprod-
uct, HDMR yields maps for our study area of the SM contribution to cloud reflectivity and rainfall, as a function
of cloud height and SM time lag. Note that the CVP state decomposition is necessarily incomplete as (a) CVPs are
highly variable due to turbulent local dynamics (Heinze et al., 2017) and (b) we consider only a handful of
governing variables. The resulting component functions are not intended for CVP prediction, hence we do not
report summary statistics of the quality of fit of the HDMR decomposition in the remainder of this paper. The
coefficient of determination is low (R2 = 0.14 for HDMR and R2 = 0.05 for linear regression). Rather, we aim to
unravel the contribution of each macroscopic land‐surface and atmospheric variable to the CVP, which can be
robust and statistically significant when analyzing sufficient observational samples. This can help diagnose
weather and climate model biases.

This paper is organized as follows. Section 2 discusses the SMAP/L4 SM and GPM/DPR/L2A satellite products
and study region. Section 3 describes the data preprocessing steps and briefly reviews the HDMR method.
Section 4 presents the results of our analysis and documents the relationship between SM and the CVP as a
function of cloud height, time lag, and location in our study region. Section 5 summarizes our main findings and
presents suggestions for future work.

2. Data and Experimental Region
We use the publicly available 3‐hourly/9 km SMAP/L4 (March 2015‐present) and 1.5‐hourly/5 km GPM/DPR/
L2A (March 2014‐present) data products and select samples from our study region in the warm seasons (April to
October) from 2016 to 2019, focusing on convective precipitation in the afternoon hours until midnight (14:00‐
24:00 CDT). The altitude extends from 1 to 5 km with Findell and Eltahir (2003a) identifying the 1–3 km zone as
a critical region for convective triggering. We briefly discuss the SMAP/L4 and GPM/DPR/L2A products and our
study region. A more detailed description of the satellite data products is found in Text S1 in Supporting
Information S1.

The SMAP mission Level 4 SM (L4_SM) product gives 3‐hourly estimates of surface (0–5 cm) SM (see
Figure 1a), root‐zone SM, and other land‐surface variables at 9‐km spatial resolution and global coverage
(Reichle et al., 2015). As our preliminary data analysis showed that cloud reflectivity was more responsive to
topsoil SM than to root‐zone SM, we chose topsoil SM as the key input variable in our CVP functional
decomposition. The reasons for this are a stronger diurnal variation and larger root density at the surface (Oerter
et al., 2021). As auxiliary land variables, we consider land‐surface temperature (LST) and leaf area index (LAI).
In addition, hourly estimates of low‐level atmospheric temperature (AT) and total precipitable water (TPW) from
0.25 ° × 0.25° ERA‐5 reanalysis are adopted as precursors to mesoscale convective events (Findell & Elta-
hir, 2003a; Holloway & Neelin, 2010; Sherwood, 1999). We use the mean AT for the critical region, 1–3 km
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above the soil surface. Section 3.2 discusses in more detail our selection of auxiliary land‐surface and atmospheric
variables.

The GPM/DPR/L2A product (GPM_2ADPR) provides a swath of precipitation profiles (see Figure 1b) every
1.5 hr at a horizontal resolution of 5 km and vertical increment of 125 m. The major data fields ’zFactorFinal
(dBZ)’ and ’typePrecip’ provide vertical profiles of Ka‐band cloud reflectivity (see Figure 1c) and an 8‐digit
precipitation type ID. We only select samples classified as convective precipitation and use 250‐m vertically
averaged cloud reflectivities to minimize the impact of measurement errors. This averaging demonstrated to be
rather inconsequential in our analysis.

Our study region is displayed in Figure 1a (95°W− 105°W, 32°N− 40°N) and is a hot spot for SM‐precipitation
coupling (Findell & Eltahir, 2003b; Ford et al., 2023; Koster et al., 2004) with large spatial variability in
climatological sign and strength of the SMCPF (Findell et al., 2011; Ford et al., 2023; Frye & Mote, 2010; Su &
Dickinson, 2017; Yuan et al., 2020). This central US region offers an excellent demonstration of our methodology
and allows us to benchmark the inferred patterns of the SMCPF sign and magnitude against literature findings.

3. Method
3.1. Data Preprocessing

We extract the GPM/DPR/L2A swaths that overpass our study region and single out samples classified as
convective precipitation in the ’typePrecip’ data field. This type classification is crucial to an accurate charac-
terization of the antecedent atmosphere using ERA‐5 reanalysis AT and TPW data. To avoid water from inter-
ception evaporation, we discard samples which, in the 18 hr leading up to the DPR's scan, received more than
0.5 mm of precipitation according to the Multi‐Radar Multi‐Sensor (MRMS) Gauge‐corrected Quantitative
Precipitation Estimates (J. Zhang et al., 2016). This should also reduce the impact of large‐scale synoptic systems
(Findell et al., 2011). Next, we project SMAP/L4 and ERA‐5 data onto GPM/DPR/L2A coordinates using linear

Figure 1. 7 August 2016: (a) SMAP/L4 surface SM (3‐hourly, 9 km, 19:30 CDT) over CONUS and GPM/DPR/L2A
measured (b) surface precipitation (1.5‐hourly, 5 km, 21:51:10‐23:23:44 CDT) and (c) cloud reflectivity profiles (98.0°W ‐
99.2°W, 36.7°N) for our study region (black rectangle) in the central United States. The location of the cloud profile is marked
using a white dashed line in panel (b). Panel (d) in the bottom right corner displays the sample size n (2016–2019) for each DPR
measurement height after data preprocessing has concluded.
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interpolation. Time lags Δt = tdpr − tsmap or Δt = tdpr − tera5 of 7 and 10 hr are chosen, where tdpr is the DPR
scan time, tsmap denotes the midpoint of the 3‐hr averaging interval, and tera5 is the ERA‐5 time of hourly snapshots
of the atmospheric conditions. In doing so, we allow for a 2‐hr grace period so as to maximize the sample size n at
each DPR measurement height. For example, SM data with a time lag 6.01≤Δt≤ 7.99 are pooled together in the
7‐hr time lag. The two SM time lags find support by our treatment of the synoptic effect (Δt< 18 hr), and are in
agreement with data‐driven studies on the diurnal SMCPF (Findell et al., 2011; Welty & Zeng, 2018). Figure 1d
displays the number of DPR‐measured cloud reflectivities n in the months of April–October (2016–2019) as a
function of cloud height. The sample size is not constant with height due to for instance, cloud absence, radar
detection limitations and path attenuation (Iguchi et al., 2010). Nevertheless, the pooled reflectivities from April–
October guarantee a sufficiently large sample size at each cloud height. Next, we decompose this final collection
of SMAP/L4 ‐ GPM/DPR/L2A samples using HDMR and expand the DPR‐measured cloud reflectivities at each
cloud height as a sum of first‐ and higher‐order structural and correlative contributions of SM and the auxiliary
variables.

3.2. High‐Dimensional Model Representation

SMCPFs are notoriously difficult to observe outside of model environments (Ford et al., 2023), hence innovative
analytical approaches are required to study them (Berg et al., 2013; Findell et al., 2011; Guillod et al., 2014; Knist
et al., 2017; Koster et al., 2004; Seneviratne et al., 2006). HDMR is particularly appealing in this context. Unlike
methods such as multivariate linear regression and correlation analysis (Ford et al., 2023; G. Wang et al., 2024;
Welty & Zeng, 2018), HDMR accounts explicitly for correlation among the input variables (which is common)
and expresses all variable interactions in a hierarchical order. This allows us to disentangle direct and cooperative
contributions of individual and groups of dependent input variables to the CVP.

Suppose we group all land‐surface and atmospheric variables that govern cloud reflectivity y = f (x) at a given
altitude in a d × 1 vector x = (x1,… ,xd)⊤. HDMR builds on the multivariable function expansion of
Soboľ. (1993) and decomposes the output, y = f (x), of a scalar‐valued square‐integrable function, f ∈ L2 (Kd) ,
on the d‐dimensional unit cube, Kd = {x|0≤ xi ≤ 1; i = 1,… ,d} , into summands of component functions,
fi (xi) , fij (xi,xj), … , f12… d (x1, x2, … , xd) , to yield (Li & Rabitz, 2012)

y = f0 +∑
n1

i=1
fi (xi) + ∑

n2

1≤ i< j≤ d
fij (xi,xj) + ∑

n3

1≤ i< j< k≤ d
fijk (xi,xj,xk) +⋯ + f12… d (x1, x2,… ,xd) + ϵ, (1)

where f0 denotes the mean output and ϵ ∼ N (0,σ2ϵ) is a normally distributed residual with zero‐mean and
constant variance, σ2ϵ . The n1 = d first‐order functions, fi (xi) , characterize the individual effects of the input
variables on cloud reflectivity, y. The n2 = d(d − 1)/2 second‐, fij (xi,xj) , n3 = d(d − 1)(d − 2)/6 third‐,
fijk (xi,xj,xk) , up to dth‐order component functions, f12… d (x1, x2,… ,xd) , characterize the cooperative contribu-
tions of two, three, up to all land‐surface variables combined to y. In physical systems, third‐ and higher‐order
effects are usually negligible (Falchi et al., 2018; Gao et al., 2023; Kucherenko et al., 2011; Rabitz &
Aliş, 1999; Shereena & Rao, 2019; H. Wang et al., 2017) and, therefore, we consider only the n12 = n1 + n2
first‐ and second‐order component functions in our CVP function expansion

y = f0 +∑
n12

u=1
fu + ϵ, (2)

where subscript u stands for component function index rather than its order as in Equation 1. Thus, f0 signifies the
mean reflectivity in units of dBZ, and f1,… , fd, and, fd+1,… , fd+ d(d− 1)/2, are the first‐ and second‐order component
functions, respectively, which quantify the individual and bivariate contributions of the land‐surface and atmo-
spheric variables to cloud reflectivity, y.

We follow Gao et al. (2023) and write the first‐ and second‐order component functions of Equation 2 as a sum of
linear multiples of orthonormalized polynomial functions of degrees 1 to p = 3 (Li & Rabitz, 2012). This
formulation with extended bases and expansion coefficients (linear multiples) helps satisfy a so‐called relaxed
vanishing condition (Hooker, 2007)
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∫

1

0
wu (xu) fu (xu) dxi = 0 for all u⊆ {1,… ,d} and i ∈ u, (3)

where u is a subset of superset U = {1,… ,d}, xu denotes the dimensions u of the input vector and wu (xu) is the
probability density function (pdf) of xu. The vanishing condition (3) dictates that a second‐order component
function, fij (xi,xj) must be orthogonal to its lower order component functions, fi (xi) and fj (xj) , and guarantees an
exact delineation of the structural and correlative contributions of single and groups of input variables to y (Gao
et al., 2023; Li & Rabitz, 2012). D‐MORPH regression (Li & Rabitz, 2010) enforces the vanishing condition (Li
& Rabitz, 2010) in its search for the optimum expansion coefficients. This method is described in Text S2 in
Supporting Information S1.

The statistical significance of a particular component function is readily determined by comparing the perfor-
mance of the function expansion with and without this component function. Let SSR1 be the sum of the squared
residuals of the function y = y0 + ∑

d − 1
i=1 fi (xi) with l1 = (d − 1)p expansion coefficients and SSR is the same

quantity for the function y = y0 + ∑
d
i=1 fi (xi) expanded with fd (xd) and l = l1 + p coefficients. To reject the

null hypothesis, “H0 : fd (xd) is insignificant”, the F‐statistic

F =
(SSR1 − SSR)/(l − l1)

SSR1/(n − l1)
, (4)

must exceed Fcrit = F− 1F (1 − α|l1 − l,n − l1) where F− 1F (pα|ν1,ν2) is the quantile function of the Fisher‐
Snedecor distribution with ν1 and ν2 degrees of freedom at pα = 1 − α and significance level α ∈ (0,1). The

Figure 2. Vertical profiles of the mean F‐statistic of the first‐order component functions of panel (a) SM: f1 (x1) , (b) LST:
f2 (x2) , (c) LAI: f3 (x3) , (d) AT: f4 (x4) , and (e) TPW: f5 (x5) computed from 1,000 bootstrap trials. Solid blue and red lines
differentiate between temporal lags (Δt = 7 and 10 hr) and black dashed lines represent the critical value Fcrit at confidence
level pα = 0.95. Values above Fcrit indicate the statistical significance of the relationship between the land‐surface/atmospheric
variables and the cloud reflectivity. The light blue and light red regions portray the 95% bootstrap confidence intervals.
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magnitude of the F‐statistic conveys the importance of fd (xd) in explaining the CVP and is, thus, a measure of the
feedback strength. Here, we are mainly interested in f1 (x1),… , fd (xd) , as these first‐order component functions
quantify the direct contribution of x1,… ,xd to the CVP (shown in next section). Most of the second‐order
component functions, except for f23 (x2,x3) and f34 (x3,x4) , contribute substantially less to the CVP, with F‐
statistics (see Figure S4 in Supporting Information S1) that are almost an order of magnitude smaller than their
first‐order counterparts (see Figure 2). Despite this apparent insignificance, the second‐order component func-
tions still exert control on f1 (x1),… , fd (xd) through their shared use of basis functions. The extended bases
guarantee hierarchical orthogonality.

We are left with the selection of auxiliary land‐surface and atmospheric variables (x2,… ,xd) which complement
SM, x1, in explaining DPR‐measured cloud reflectivities, y. We settled on LST, LAI, AT, and TPW and, hence,
x = (SM,LST,LAI,AT,TPW)⊤ is a 5 × 1 vector. LST and LAI modulate evapotranspiration under SM‐limited
or energy‐limited regimes (Seneviratne et al., 2010) and AT and TPW contain synoptic information for the
SMCPF about atmospheric preconditioning (Ford, Quiring, et al., 2015; Tuttle & Salvucci, 2017). Figure S1 in
Supporting Information S1 presents a correlogram of the five input variables. The decision which input variables
to use in regression analysis is always somewhat arbitrary. Our five input variables measure different and
complementary properties of the land‐surface and overlying air column. One advantage of using ERA‐5 rean-
alysis data of AT and TPW in the HDMR decomposition is that we account explicitly for the dependence of the
CVP on the coarse‐scale atmospheric conditions (Tuttle & Salvucci, 2017). The F‐statistic in Equation 4 will then
determine the additional direct contribution of local land surface conditions to the CVP beyond what can be
explained by synoptic conditions. Hence, the use of AT and TPW should enhance our confidence in the inferred
causal relationships between local SM and the CVP. We do not consider the latent heat flux (LHF) in our HDMR
decomposition. The LHF is a result of model simulation and controlled by several of our HDMR inputs. Any
assumed constitutive relationship between SM, LST and LAI and the LHF will trouble inference of the individual
and cooperative effects of these land surface variables on the CVP. Indeed, LHF inclusion substantially reduces
the magnitude of the direct contribution of SM and LST to the CVP (not shown).

4. Results
4.1. Cloud Height and Temporal Lag of SMCPF

Figure 2 displays the F‐statistics of the (a) SM, (b) LST, (c) LAI, (d) AT, and (e) TPW component functions as a
function of cloud height (1–5 km) and time lag (Δt = 7 and 10 hr). The control that land‐surface and atmospheric
variables exert on the CVP varies with cloud height. In the case of SM in panel (a) this equates to a height‐
dependent SMCPF with a bottom‐heavy relationship between SM and CVP, at about 1–3 km above the sur-
face. Above this level, the impact of SM on the CVP decreases rapidly with altitude. As we will show in Sec-
tion 4.2, the first‐order SM component function f1 (x1) displays a positive feedback due to a wet soil. A higher SM
implies a larger evaporative fraction, promoting moderate PBL growth (see Figure S2 in Supporting Informa-
tion S1) and moisture accumulation (Yin et al., 2015). The CVP at higher altitudes is less dependent on surface
SM and controlled more by the upper atmosphere at levels of 3 km and above (Findell & Eltahir, 2003a).
Furthermore, a capping inversion layer can inhibit the upward motion of warm, moist air from the surface to the
free atmosphere (Findell & Eltahir, 2003b). Indeed, the HDMR‐inferred relationship between SM and CVP as
articulated by the F‐statistic is corroborated by simulation analyses (Findell & Eltahir, 2003a; Koukoula
et al., 2019). The strong agreement in the results of the two time lags is a result of SM autocorrelation. The Δt = 7
hour time lag displays the largest influence on the CVP at all measurement heights.

While the impact of SM on the CVP is most pronounced near the surface, LST affects the CVP over a much larger
range of altitudes (see Figure 2b). Its F‐statistic displays a bimodal relationship with height, peaking close to the
surface for Δt = 7 h and at much higher altitudes of about 3.5–4.0 km for Δt = 10 h. As will be further discussed
in the next section, f2 (x2) exhibits a positive correlation with LST, suggesting that positive LST anomalies (dry
soils) play an important role in shaping the CVP. The finding that the lower level CVP (1.0–2.5 km) is controlled
by LST is in qualitative agreement with the pathway of negative SMCPFs. Positive LST anomalies enhance the
sensible heat flux and convective triggering potential (CTP), thereby promoting rapid PBL growth. Figure S2 in
Supporting Information S1 testifies to this conjecture and displays PBL heights from ERA‐5 reanalysis data. The
response of the PBL height to wet and dry surfaces is in agreement with results from simulation‐based and
observational studies (Findell & Eltahir, 2003a; Ford et al., 2023; Xu et al., 2021), which suggest two mechanisms
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for convective initiation: significant moistening of the PBL (over wet soil) and rapid growth of the PBL (over dry
soil). Note that the LST contribution to the CVP decreases at 3.0 km height to increase again between 3.5 and
4.0 km. The reason why LST is influential at higher altitudes may be twofold. On the one hand, LST anomalies
favor a strong CTP, increasing the capability of air parcels to overcome convective inhibition and reach the level
of free convection (Taylor et al., 2012). If f2 (x2) measures the contribution of near‐surface air to cloud reflectivity
for a specific height and time lag, then its F‐statistic (in Figure 2b) somehow approximates the dynamics of
convective updrafts such that the largest F‐statistic value shifts from Δt = 7 hours to Δt = 10 hours with height
changing from 1.0 to 5.0 km. Local LST may also influence higher‐altitude CVP by elevating the altitude of the
melting layer, which is characterized by a sharp increase in radar reflectivity and resides between 3.0 and 5.0 km
above the surface during the pre‐monsoon and monsoon seasons in the central United States (Song et al., 2021).

The F‐statistic of the LAI component, f3 (x3) , has a negligible impact on the CVP in the lower atmosphere, due to
the governing effects of SM, LST, and AT (see Figure 2d) on initiating convection and the subsequent formation
of clouds and precipitation. LAI has a somehow stronger impact on the higher‐level CVP. The f3 (x3) component
function in Figure S3a in Supporting Information S1 suggests that dense vegetation tends to suppress cloud
formation in the upper atmosphere at 3–5 km height. A possible explanation is the role of LAI in modulating
surface energy partitioning (Lauwaet et al., 2009), with denser vegetation potentially reducing surface heating and
constraining the development of deep convection. Text S3 in Supporting Information S1 presents an analysis of
these atmospheric controls on the CVP and physical underpinning comparable to that of the land‐surface
variables.

The second‐order component functions have only a small contribution to the CVP with exceptions of the LST‐
LAI component, f23 (x2,x3) , and the LAI‐AT component, f34 (x3,x4) . The joint contributions of LST‐LAI and
LAI‐AT to the CVP at 1–3 km height may be linked to processes such as plant transpiration and boundary layer
moistening. This is further illustrated in Figure S4 in Supporting Information S1 and discussed in Text S4 in
Supporting Information S1. The comparison between HDMR and traditional data‐driven methods (see Figures
S5–S6 and Text S5 in Supporting Information S1) reveals that all three approaches offer valuable insights into the
diurnal SMCPF. However, HDMR is able to discern time lags in this feedback and captures the evolving physical
dynamics of thermal updrafts.

4.2. The SMCPF Across Space

In this section, we focus on the spatial pattern of the SMCPF within the study region. We reiterate that we conduct
functional decomposition of the cloud reflectivity using all the samples of April–October (2016–2019) for a
specific time lag and cloud height, to guarantee an adequate number of samples and storm events. Our goal here is
to present a 4‐year averaged spatial distribution of the derived component functions and identify locations of
positive and negative SMCPF rather than focusing on interannual and/or cross‐season variations.

Figures 3a and 3b present the spatial distribution of the antecedent 7‐hr SMAP/L4 soil wetness at the top layer (0–
5 cm), collocated at the coordinates of the GPM/DPR/L2A samples of April–October (2016–2019), alongside the
corresponding first‐order component function, f1 (x1) (dBZ), evaluated at 2.0 km. The GPM/DPR/L2A samples
are spatio‐temporally scattered, directly corresponding to the satellite's path and observation times. This results in
voided areas on the map. Our examination of SM's feedback strength, conditioned on an altitude of 2.0 km and a
7‐hr time lag, is of particular interest upon our prior analysis of the F‐statistic in Figure 2a. Panels (b–c) reveal the
positive feedback from SM represented by f1 (x1) . With a degree of saturation exceeding 0.4, wet soil could
increase cloud reflectivity by up to 4 dBZ. The fact that the absolute value of f1 (x1) decreases with height in Panel
(c) again lends support to our inferred height‐dependent SMCPF in Section 4.1, underscoring the stronger
coupling between SM and CVP in the low‐level atmosphere. As a byproduct, we demonstrate in Text S6 and
Figure S7 in Supporting Information S1 the application of the Marshall and Palmer (1948) formula to transform
f1 (x1) (dBZ) into estimates of rainfall rate.

Significant positive feedback of SM is evident in regions such as northern Texas, central Oklahoma, northwestern
and southeastern Kansas, and northeastern New Mexico. All these areas, with the exception of northeastern New
Mexico, are located inside or close to the ’transitional regions' as delineated by the dashed gray lines as cate-
gorized by Findell and Eltahir (2003b). The middle transitional region, spanning from the semi‐arid southwestern
to the humid southeastern parts of the central United States, is influenced by both the dry and wet soil advantage
regimes (Findell & Eltahir, 2003b). Hence, this dual influence explicates the observable positive feedback in the
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central and eastern sections of the transitional region and negative feedback in the southwestern part (detailed
below). These local wet soil anomalies can be attributed to early warm‐season mesoscale convective systems
(MCSs) (Hu et al., 2021).

Since SM can indirectly exert feedback on cloud and precipitation through heating or cooling the surface
(Duerinck et al., 2016), we further delve into examining spatially the samples of antecedent 7‐hr LST (K) and their
contribution to cloud, f2 (x2) (dBZ), and rainfall, ΔR (mm/hour), in Figures 3d–3f and Figure S7 in Supporting
Information S1, respectively. f2 (x2) exhibits a non‐linear dependence on LST where LST anomalies exert the
most significant influence. From Figures 3d and 3e, it is suggested that LST above 305 K accounts for an increase
of up to 4.0 dBZ in the cloud reflectivity and 2.0 mm/hr in rainfall rate (see Figure S7 in Supporting Informa-
tion S1) at both 2.0 and 3.5 km. On the contrary, the samples with a cooler surface (LST<290 K) seem to foster a
more stable atmospheric state, thereby reducing cloud reflectivity, especially in the lower troposphere
(h ≈ 2.0 km).

Geographically, the most significant effects of these anomalies are evident and clustered in the southwest of the
study region (101°W− 105°W and 32°N− 36°N). Within this area, we find a significant negative correlation
(R = − 0.41, p< 0.0001, shown in Figure S8a in Supporting Information S1) between surface SM and the LST
component function, f2 (x2) . Moreover, we illustrate in Figure S8b in Supporting Information S1 that LST

Figure 3. The central United States (95 °W − 105°W, 32°N− 40°N) with (a) antecedent 7‐hr SMAP/L4 soil wetness (‐)
collocated at coordinates of the GPM/DPR/L2A samples of April–October (2016–2019) and (b) first‐order component
function of soil wetness, f1 (x1) (dBZ), evaluated at approximately 2.0 km height. Solid black lines delineate the state borders
while dashed black and gray lines depict the negative feedback and transitional regions proposed by Findell and Eltahir (2003b).
Panel (c) displays f1 (x1) (dBZ) as a function of antecedent 7‐hr SM. Values of f1 (x1) are evaluated at three separate heights:
2.0 km (red), 3.5 km (yellow), and 5.0 km (blue). The light‐colored regions correspond to the 95% bootstrap confidence
intervals. The bottom row of panels presents the same content as panels (a–c) but for panel (d) SMAP/L4 LST and (e, f) its
associated component function, f2 (x2).
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contributes to CVP preferentially over dry soil with saturation between 0.1 and 0.4. These findings underscore the
presence of the intrinsic SM‐LST coupling within SMCPF pathways (Seneviratne et al., 2010), and we can
conveniently interpret f2 (x2) as a proxy for the indirect and negative feedback of SM on CVP. Notably, our
identified negative feedback region (101°W− 105°W, 32°N− 36°N) is consistent with the one proposed by Findell
and Eltahir (2003b) (represented by the black dashed line in Figures 3d and 3e). Several factors can play a role
when it comes to the sources of convective clouds and precipitation over the dry soil. For instance, the monsoonal
moisture incursion into New Mexico can increase local humidity and offset the reduced evapotranspiration from
the local dry soils (Klein & Taylor, 2020; Wallace et al., 1999). Besides, the Great Plains Low‐Level Jet (GPLLJ)
can transport abundant moisture southerly from the Gulf of Mexico into the central United States (Feng
et al., 2016; Ford, Rapp, & Quiring, 2015).

5. Discussion and Conclusion
In this data‐driven study, we used functional decomposition of a large database of satellite‐measured soil moisture
(SMAP/L4) and cloud vertical profiles (GPM/DPR/L2A) to quantify the relationship between topsoil moisture
content (SM), land‐surface temperature (LST), leaf‐area index (LAI), atmospheric temperature (AT), total pre-
cipitable water (TPW) and cloud reflectivity in the central United States. Results show that the sign and strength of
this soil moisture‐cloud‐precipitation feedback (SMCPF) differs substantially between cloud heights and
geographical locations. A significant positive feedback is observed in the lower atmosphere, particularly between
1.0 and 3.0 km and SM time lag of 7 hr. Wet soils (saturation degree of 0.4 and larger) can increase the cloud
reflectivity (rainfall rate) by up to 4.0 dBZ (2.0mm/hr) at a height of about 2.0 km. This is most evident in northern
Texas, central Oklahoma, and northwestern and southeastern Kansas. Negative SMCPF feedbacks, are a result of
LST anomalies and extend from 1.0 to 4.0 km at a time lag of 7–10 hr. These LST anomalies display comparable
increments in cloud reflectivity and rainfall rates to SM, except for northwestern Texas and southeastern and
eastern New Mexico. The patterns of SMCPF identified by our satellite data decomposition method are in
qualitative agreement with the findings of previous studies (Findell & Eltahir, 2003a, 2003b; Ford et al., 2023; Hu
et al., 2021; Koukoula et al., 2019; Qian et al., 2013; Sathyanadh et al., 2017; Su & Dickinson, 2017).

We could have resorted to multivariate linear regression and written the DPR‐measured cloud reflectivities as a
superposition of linear multiples of the input variables. This approach has elements in common with the multi-
variable function expansion of Soboľ. (1993) but by pooling together structural, cooperative and/or interaction
contributions, linear regression may not accurately portray the direct effects of the input variables on the CVP.
This should not discourage anyone from using traditional regression methods in hydroclimatological and hy-
drometeorological research. For example, G. Wang et al. (2024) uses linear regression to single out the influence
of lower‐tropospheric moisture on the local SMCPF.

The ANOVA‐inspired functional decomposition of HDMR accurately disentangles the individual and correlative
contributions of single and groups of correlated input variables to DPR‐measured cloud reflectivities. HDMR is a
powerful addition to the toolbox of regression methods used by hydrometeorologists and hydroclimatologists for
analyzing the complex and intricate relationships between land‐surface and atmospheric variables. HDMR results
can help diagnose biases in the current generation of weather and climate models and help detect and quantify
changes in SMCPFs at regional and global scales as a result of climate change and hydroclimatic extremes.

HDMR functional decomposition, however, requires a relatively large number of samples at each cloud height.
This complicates seasonal, interannual, or localized analysis of the SMCPF. Another limitation of HDMR is that
the number of input variables should not exceed, say, d = 10, otherwise the matrices involved may become too
large‐sized complicating the estimation of the component functions' expansion coefficients with D‐MORPH
regression. Our current set of d = 5 input variables serves as an illustration of the HDMR method but may
ignore other variables that control the magnitude and sign of SMCPFs.

Data Availability Statement
The SMAP/L4 (L4_SM) product is obtained from the National Snow and Ice Data Center at Reichle et al. (2022).
The GPM/DPR/L2A product (GPM_2ADPR) is obtained from the Goddard Earth Sciences Data and Information
Services Center at GPM Science Team (2021). MATLAB processing scripts, along with the final data set of
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collocated SMAP and DPR samples, have been archived on Zenodo (Gao et al., 2024) with Creative Commons
Attribution 4.0 International license.

References
Baker, J. C. A., Castilho de Souza, D., Kubota, P. Y., Buermann, W., Coelho, C. A. S., Andrews, M. B., et al. (2021a). An assessment of land–
atmosphere interactions over South America using satellites, reanalysis, and two global climate models. Journal of Hydrometeorology, 22(4),
905–922. https://doi.org/10.1175/JHM‐D‐20‐0132.1

Baker, J. C. A., Garcia‐Carreras, L., Buermann, W., De Souza, D. C., Marsham, J. H., Kubota, P. Y., et al. (2021b). Robust Amazon precipitation
projections in climate models that capture realistic land–atmosphere interactions. Environmental Research Letters, 16(7), 074002. https://doi.
org/10.1088/1748‐9326/abfb2e

Berg, A., Findell, K., Lintner, B. R., Gentine, P., & Kerr, C. (2013). Precipitation sensitivity to surface heat fluxes over North America in
reanalysis and model data. Journal of Hydrometeorology, 14(3), 722–743. https://doi.org/10.1175/JHM‐D‐12‐0111.1

Deardorff, J. W. (1980). Stratocumulus‐capped mixed layers derived from a three‐dimensional model. Boundary‐Layer Meteorology, 18(4), 495–
527. https://doi.org/10.1007/BF00119502

Duerinck, H. M., Van der Ent, R. J., Van de Giesen, N. C., Schoups, G., Babovic, V., & Yeh, P. J. F. (2016). Observed soil moisture–precipitation
feedback in Illinois: A systematic analysis over different scales. Journal of Hydrometeorology, 17(6), 1645–1660. https://doi.org/10.1175/
JHM‐D‐15‐0032.1

Ek, M. B., & Holtslag, A. A. M. (2004). Influence of soil moisture on boundary layer cloud development. Journal of Hydrometeorology, 5(1), 86–
99. https://doi.org/10.1175/1525‐7541(2004)005〈0086:IOSMOB〉2.0.CO;2

Falchi, A., Minisci, E., Kubicek, M., Vasile, M., & Lemmens, S. (2018). HDMR‐based sensitivity analysis and uncertainty quantification of
GOCE aerodynamics using DSMC. Stardust Final Conference, 301–323. https://doi.org/10.1007/978‐3‐319‐69956‐1∖\text{\_}18

Fast, J. D., Berg, L. K., Feng, Z., Mei, F., Newsom, R., Sakaguchi, K., & Xiao, H. (2019). The impact of variable land‐atmosphere coupling on
convective cloud populations observed during the 2016 HI‐SCALE field campaign. Journal of Advances in Modeling Earth Systems, 11(8),
2629–2654. https://doi.org/10.1029/2019MS001727

Feng, Z., Leung, L. R., Hagos, S., Houze, R. A., Burleyson, C. D., & Balaguru, K. (2016). More frequent intense and long‐lived storms dominate
the springtime trend in central US rainfall. Nature Communications, 7(1), 13429. https://doi.org/10.1038/ncomms13429

Ferguson, C. R., & Wood, E. F. (2011). Observed land‐atmosphere coupling from satellite remote sensing and reanalysis. Journal of Hydro-
meteorology, 12(6), 1221–1254. https://doi.org/10.1175/2011JHM1380.1

Findell, K. L., & Eltahir, E. A. B. (2003a). Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development.
Journal of Hydrometeorology, 4(3), 552–569. https://doi.org/10.1175/1525‐7541(2003)004〈0552:ACOSML〉2.0.CO;2

Findell, K. L., & Eltahir, E. A. B. (2003b). Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the
continental United States. Journal of Hydrometeorology, 4(3), 570–583. https://doi.org/10.1175/1525‐7541(2003)004〈0570:ACOSML〉2.0.
CO;2

Findell, K. L., Gentine, P., Lintner, B. R., & Kerr, C. (2011). Probability of afternoon precipitation in eastern United States and Mexico enhanced
by high evaporation. Nature Geoscience, 4(7), 434–439. https://doi.org/10.1038/ngeo1174

Ford, T. W., Quiring, S. M., Frauenfeld, O. W., & Rapp, A. D. (2015a). Synoptic conditions related to soil moisture‐atmosphere interactions and
unorganized convection in Oklahoma. Journal of Geophysical Research: Atmospheres, 120(22), 11–519. https://doi.org/10.1002/
2015jd023975

Ford, T. W., Rapp, A. D., & Quiring, S. M. (2015b). Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? Journal
of Hydrometeorology, 16(2), 874–888. https://doi.org/10.1175/JHM‐D‐14‐0005.1

Ford, T. W., Rapp, A. D., Quiring, S. M., & Blake, J. (2015c). Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet
and underlying physical mechanisms. Hydrology and Earth System Sciences, 19(8), 3617–3631. https://doi.org/10.5194/hess‐19‐3617‐2015

Ford, T. W., Steiner, J., Mason, B., & Quiring, S. M. (2023). Observation‐driven characterization of soil moisture‐precipitation interactions in the
Central United States. Journal of Geophysical Research: Atmospheres, 128(12), e2022JD037934. https://doi.org/10.1029/2022JD037934

Frye, J. D., & Mote, T. L. (2010). Convection initiation along soil moisture boundaries in the southern Great Plains. Monthly Weather Review,
138(4), 1140–1151. https://doi.org/10.1175/2009MWR2865.1

Gao, Y., Sahin, A., & Vrugt, J. A. (2023). Probabilistic sensitivity analysis with dependent variables: Covariance‐based decomposition of hy-
drologic models. Water Resources Research, 59(4), e2022WR032834. https://doi.org/10.1029/2022WR032834

Gao, Y., Vrugt, J. A., Guilloteau, C., & Foufoula‐Georgiou, E. (2024). Datasets and MATLAB scripts: Functional decomposition of satellite
observations for studying soil moisture‐cloud‐precipitation feedback (version 1.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.
13310556

Gentine, P., Holtslag, A. A., D’Andrea, F., & Ek, M. (2013). Surface and atmospheric controls on the onset of moist convection over land. Journal
of Hydrometeorology, 14(5), 1443–1462. https://doi.org/10.1175/JHM‐D‐12‐0137.1

Golaz, J. C., Jiang, H., & Cotton, W. R. (2001). A large‐eddy simulation study of cumulus clouds over land and sensitivity to soil moisture.
Atmospheric Research, 59, 373–392. https://doi.org/10.1016/S0169‐8095(01)00113‐2

GPM Science Team. (2021). GPMDPR Ka environment L2A 1.5 hours 5 km V07 [Dataset]. NASA Goddard Earth Science Data and Information
Services Center (GES DISC). Retrieved from https://disc.gsfc.nasa.gov/datacollection/GPM_2AKaENV_07.html

Graf, M., Arnault, J., Fersch, B., & Kunstmann, H. (2021). Is the soil moisture precipitation feedback enhanced by heterogeneity and dry soils? A
comparative study. Hydrological Processes, 35(9), e14332. https://doi.org/10.1002/hyp.14332

Guillod, B. P., Orlowsky, B., Miralles, D., Teuling, A. J., Blanken, P. D., Buchmann, N., et al. (2014). Land‐surface controls on afternoon
precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmospheric Chemistry and Physics, 14(16), 8343–
8367. https://doi.org/10.5194/acp‐14‐8343‐2014

Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J., & Seneviratne, S. I. (2015). Reconciling spatial and temporal soil moisture effects on
afternoon rainfall. Nature Communications, 6(1), 6443. https://doi.org/10.1038/ncomms7443

Han, C., Brdar, S., & Kollet, S. (2019). Response of convective boundary layer and shallow cumulus to soil moisture heterogeneity: A large‐eddy
simulation study. Journal of Advances in Modeling Earth Systems, 11(12), 4305–4322. https://doi.org/10.1029/2019MS001772

Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O., Trömel, S., et al. (2017). Large‐eddy simulations over Germany using
ICON: A comprehensive evaluation. Quarterly Journal of the Royal Meteorological Society, 143(702), 69–100. https://doi.org/10.1002/qj.
2947

Acknowledgments
The authors would like to acknowledge the
support of NASA through the Global
Precipitation Measurement Mission
program (Grant 80NSSC22K0597) and the
Weather and Atmospheric Dynamics
program (Grant 80NSSC23K1304), as
well as the support of the NSF Division of
Information and Intelligent Systems
(ExpandAI2ES Grant IIS2324008). Yifu
Gao wishes to thank the support of the UCI
Engineering‐Los Alamos National
Laboratory (LANL) Fellowship, provided
by the UCI Samueli School of Engineering
and LANL. Chonggang Xu acknowledges
the support through RUBISCO Science
Focus Area (SFA) by DOE Office of
Science, Biological and Environmental
Research, Regional & Global Model
Analysis program. The constructive
comments from the two anonymous
reviewers are highly appreciated and have
substantially improved the manuscript.

Geophysical Research Letters 10.1029/2024GL110347

GAO ET AL. 10 of 12

 19448007, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110347, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/JHM-D-20-0132.1
https://doi.org/10.1088/1748-9326/abfb2e
https://doi.org/10.1088/1748-9326/abfb2e
https://doi.org/10.1175/JHM-D-12-0111.1
https://doi.org/10.1007/BF00119502
https://doi.org/10.1175/JHM-D-15-0032.1
https://doi.org/10.1175/JHM-D-15-0032.1
https://doi.org/10.1175/1525-7541(2004)005%E2%8C%A90086:IOSMOB%E2%8C%AA2.0.CO;2
https://doi.org/10.1007/978-3-319-69956-1%E2%88%96%5Ctext%7B%5C_%7D18
https://doi.org/10.1029/2019MS001727
https://doi.org/10.1038/ncomms13429
https://doi.org/10.1175/2011JHM1380.1
https://doi.org/10.1175/1525-7541(2003)004%E2%8C%A90552:ACOSML%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%E2%8C%A90570:ACOSML%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%E2%8C%A90570:ACOSML%E2%8C%AA2.0.CO;2
https://doi.org/10.1038/ngeo1174
https://doi.org/10.1002/2015jd023975
https://doi.org/10.1002/2015jd023975
https://doi.org/10.1175/JHM-D-14-0005.1
https://doi.org/10.5194/hess-19-3617-2015
https://doi.org/10.1029/2022JD037934
https://doi.org/10.1175/2009MWR2865.1
https://doi.org/10.1029/2022WR032834
https://doi.org/10.5281/zenodo.13310556
https://doi.org/10.5281/zenodo.13310556
https://doi.org/10.1175/JHM-D-12-0137.1
https://doi.org/10.1016/S0169-8095(01)00113-2
https://disc.gsfc.nasa.gov/datacollection/GPM_2AKaENV_07.html
https://doi.org/10.1002/hyp.14332
https://doi.org/10.5194/acp-14-8343-2014
https://doi.org/10.1038/ncomms7443
https://doi.org/10.1029/2019MS001772
https://doi.org/10.1002/qj.2947
https://doi.org/10.1002/qj.2947


Hohenegger, C., Brockhaus, P., Bretherton, C. S., & Schär, C. (2009). The soil moisture‐precipitation feedback in simulations with explicit and
parameterized convection. Journal of Climate, 22(19), 5003–5020. https://doi.org/10.1175/2009JCLI2604.1

Holloway, C. E., & Neelin, J. D. (2010). Temporal relations of column water vapor and tropical precipitation. Journal of the Atmospheric Sci-
ences, 67(4), 1091–1105. https://doi.org/10.1175/2009JAS3284.1

Hooker, G. (2007). Generalized functional ANOVA diagnostics for high‐dimensional functions of dependent variables. Journal of Computational
& Graphical Statistics, 16(3), 709–732. https://doi.org/10.1198/106186007X237892

Hu, H., Leung, L. R., & Feng, Z. (2021). Early warm‐season mesoscale convective systems dominate soil moisture–precipitation feedback for
summer rainfall in central United States. Proceedings of the National Academy of Sciences, 118(43), e2105260118. https://doi.org/10.1073/
pnas.2105260118

Iguchi, T., Seto, S., Meneghini, R., Yoshida, N., Awaka, J., Le, M., et al. (2010). GPM/DPR level‐2 algorithm theoretical basis document. NASA
Goddard Space Flight Center.

Klein, C., & Taylor, C. M. (2020). Dry soils can intensify mesoscale convective systems. Proceedings of the National Academy of Sciences,
117(35), 21132–21137. https://doi.org/10.1073/pnas.2007998117

Knist, S., Goergen, K., Buonomo, E., Christensen, O. B., Colette, A., Cardoso, R. M., et al. (2017). Land‐atmosphere coupling in euro‐cordex
evaluation experiments. Journal of Geophysical Research: Atmospheres, 122(1), 79–103. https://doi.org/10.1002/2016JD025476

Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., et al. (2004). Regions of strong coupling between soil moisture and
precipitation. Science, 305(5687), 1138–1140. https://doi.org/10.1126/science.1100217

Koster, R. D., Liu, Q., Mahanama, S. P. P., & Reichle, R. H. (2018). Improved hydrological simulation using SMAP data: Relative impacts of
model calibration and data assimilation. Journal of Hydrometeorology, 19(4), 727–741. https://doi.org/10.1175/JHM‐D‐17‐0228.1

Koster, R. D., Sud, Y. C., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W., et al. (2006). Glace: The global land–atmosphere coupling
experiment. Part I: Overview. Journal of Hydrometeorology, 7(4), 590–610. https://doi.org/10.1175/JHM510.1

Koukoula, M., Nikolopoulos, E. I., Kushta, J., Bartsotas, N. S., Kallos, G., & Anagnostou, E. N. (2019). A numerical sensitivity analysis of soil
moisture feedback on convective precipitation. Journal of Hydrometeorology, 20(1), 23–44. https://doi.org/10.1175/JHM‐D‐18‐0134.1

Krakauer, N. Y., Cook, B. I., & Puma, M. J. (2010). Contribution of soil moisture feedback to hydroclimatic variability. Hydrology and Earth
System Sciences, 14(3), 505–520. https://doi.org/10.5194/hess‐14‐505‐2010

Kucherenko, S., Feil, B., Shah, N., & Mauntz, W. (2011). The identification of model effective dimensions using global sensitivity analysis.
Reliability Engineering & System Safety, 96(4), 440–449. https://doi.org/10.1016/j.ress.2010.11.003

Lasser, M., O, S., & Foelsche, U. (2019). Evaluation of GPM‐DPR precipitation estimates with WegenerNet gauge data. Atmospheric Mea-
surement Techniques, 12(9), 5055–5070. https://doi.org/10.5194/amt‐12‐5055‐2019

Lauwaet, D., van Lipzig, N. P. M., & De Ridder, K. (2009). The effect of vegetation changes on precipitation and Mesoscale Convective Systems
in the Sahel. Climate Dynamics, 33(4), 521–534. https://doi.org/10.1007/s00382‐009‐0539‐2

Li, G., & Rabitz, H. (2010). D‐MORPH regression: Application to modeling with unknown parameters more than observation data. Journal of
Mathematical Chemistry, 48(4), 1010–1035. https://doi.org/10.1007/s10910‐010‐9722‐2

Li, G., & Rabitz, H. (2012). General formulation of HDMR component functions with independent and correlated variables. Journal of Math-
ematical Chemistry, 50(1), 99–130. https://doi.org/10.1007/s10910‐011‐9898‐0

Liao, L., & Meneghini, R. (2022). GPM DPR retrievals: Algorithm, evaluation, and validation. Remote Sensing, 14(4), 843. https://doi.org/10.
3390/rs14040843

Marshall, J., & Palmer, W. M. (1948). The distribution of raindrops with size. Journal of meteorology, 5(4), 165–166. https://doi.org/10.1175/
1520‐0469(1948)005<0165:tdorws>2.0.co;2

Miralles, A. J., Diego, G. T., van Heerwaarden, C. C., & Vilà‐Guerau de Arellano, J. (2014). Mega‐heatwave temperatures due to combined soil
desiccation and atmospheric heat accumulation. Nature Geoscience, 7(5), 345–349. https://doi.org/10.1038/ngeo2141

Oerter, E., Slessarev, E., Visser, A., Min, K., Kan, M., McFarlane, K. J., et al. (2021). Hydraulic redistribution by deeply rooted grasses and its
ecohydrologic implications in the southern Great Plains of North America. Hydrological Processes, 35(9), e14366. https://doi.org/10.1002/
hyp.14366

Pejcic, V., Saavedra Garfias, P., Mühlbauer, K., Trömel, S., & Simmer, C. (2020). Comparison between precipitation estimates of ground‐based
weather radar composites and GPM’s DPR rainfall product over Germany. Meteorologische Zeitschrift, 29(6), 451–466. https://doi.org/10.
1127/metz/2020/1039

Qian, Y., Huang, M., Yang, B., & Berg, L. K. (2013). A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in
the Southern Great Plains. Journal of Hydrometeorology, 14(3), 700–721. https://doi.org/10.1175/JHM‐D‐12‐0134.1

Rabitz, H., & Aliş, Ö. F. (1999). General foundations of high‐dimensional model representations. Journal of Mathematical Chemistry, 25(2), 197–
233. https://doi.org/10.1023/A:1019188517934

Reichle, R. H., De Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., & Liu, Q. (2022). SMAP L4 global 3‐hourly 9 km EASE‐Grid surface
and root zone soil moisture analysis update, version 7 [Dataset]. NASA National Snow and Ice Data Center Distributed Active Archive Center.
https://doi.org/10.5067/LWJ6TF5SZRG3

Reichle, R. H., De Lannoy, G. J. M., Liu, Q., Koster, R. D., Kimball, J. S., Crow, W. T., et al. (2017). Global assessment of the SMAP Level‐4
surface and root‐zone soil moisture product using assimilation diagnostics. Journal of Hydrometeorology, 18(12), 3217–3237. https://doi.org/
10.1175/JHM‐D‐17‐0130.1

Reichle, R. H., Lucchesi, R. A., Ardizzone, J. V., Kim, G.‐K., Smith, E. B., & Weiss, B. H. (2015). Soil moisture active passive (SMAP) mission
level 4 surface and root zone soil moisture (L4_SM) product specification document (tech. rep.). NASA Goddard Space Flight Center.
Retrieved from https://nsidc.org/sites/default/files/reichle789.pdf

Sakaguchi, K., Berg, L. K., Chen, J., Fast, J., Newsom, R., Tai, S., et al. (2022). Determining spatial scales of soil moisture—Cloud coupling
pathways using semi‐idealized simulations. Journal of Geophysical Research: Atmospheres, 127(2), e2021JD035282. https://doi.org/10.1029/
2021JD035282

Santanello, J. A., Peters‐Lidard, C. D., Kennedy, A., & Kumar, S. V. (2013). Diagnosing the nature of land‐atmosphere coupling: A case study of
dry/wet extremes in the us southern great plains. Journal of Hydrometeorology, 14(1), 3–24. https://doi.org/10.1175/JHM‐D‐12‐023.1

Santanello, J. A., Peters‐Lidard, C. D., Kumar, S. V., Alonge, C., & Tao, W.‐K. (2009). A modeling and observational framework for diagnosing
local land–atmosphere coupling on diurnal time scales. Journal of Hydrometeorology, 10(3), 577–599. https://doi.org/10.1175/
2009JHM1066.1

Sathyanadh, A., Prabha, T. V., Balaji, B., Resmi, E. A., & Karipot, A. (2017). Evaluation of WRF PBL parameterization schemes against direct
observations during a dry event over the Ganges valley. Atmospheric Research, 193, 125–141. https://doi.org/10.1016/j.atmosres.2017.02.016

Schär, C., Lüthi, D., Beyerle, U., & Heise, E. (1999). The soil–precipitation feedback: A process study with a regional climate model. Journal of
Climate, 12(3), 722–741. https://doi.org/10.1175/1520‐0442(1999)012〈0722:TSPFAP〉2.0.CO;2

Geophysical Research Letters 10.1029/2024GL110347

GAO ET AL. 11 of 12

 19448007, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110347, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/2009JCLI2604.1
https://doi.org/10.1175/2009JAS3284.1
https://doi.org/10.1198/106186007X237892
https://doi.org/10.1073/pnas.2105260118
https://doi.org/10.1073/pnas.2105260118
https://doi.org/10.1073/pnas.2007998117
https://doi.org/10.1002/2016JD025476
https://doi.org/10.1126/science.1100217
https://doi.org/10.1175/JHM-D-17-0228.1
https://doi.org/10.1175/JHM510.1
https://doi.org/10.1175/JHM-D-18-0134.1
https://doi.org/10.5194/hess-14-505-2010
https://doi.org/10.1016/j.ress.2010.11.003
https://doi.org/10.5194/amt-12-5055-2019
https://doi.org/10.1007/s00382-009-0539-2
https://doi.org/10.1007/s10910-010-9722-2
https://doi.org/10.1007/s10910-011-9898-0
https://doi.org/10.3390/rs14040843
https://doi.org/10.3390/rs14040843
https://doi.org/10.1175/1520-0469(1948)005%3C0165:tdorws%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1948)005%3C0165:tdorws%3E2.0.co;2
https://doi.org/10.1038/ngeo2141
https://doi.org/10.1002/hyp.14366
https://doi.org/10.1002/hyp.14366
https://doi.org/10.1127/metz/2020/1039
https://doi.org/10.1127/metz/2020/1039
https://doi.org/10.1175/JHM-D-12-0134.1
https://doi.org/10.1023/A:1019188517934
https://doi.org/10.5067/LWJ6TF5SZRG3
https://doi.org/10.1175/JHM-D-17-0130.1
https://doi.org/10.1175/JHM-D-17-0130.1
https://nsidc.org/sites/default/files/reichle789.pdf
https://doi.org/10.1029/2021JD035282
https://doi.org/10.1029/2021JD035282
https://doi.org/10.1175/JHM-D-12-023.1
https://doi.org/10.1175/2009JHM1066.1
https://doi.org/10.1175/2009JHM1066.1
https://doi.org/10.1016/j.atmosres.2017.02.016
https://doi.org/10.1175/1520-0442(1999)012%E2%8C%A90722:TSPFAP%E2%8C%AA2.0.CO;2


Schlemmer, L., Hohenegger, C., Schmidli, J., & Schär, C. (2012). Diurnal equilibrium convection and land surface–atmosphere interactions in an
idealized cloud‐resolving model. Quarterly Journal of the Royal Meteorological Society, 138(667), 1526–1539. https://doi.org/10.1002/qj.
1892

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a
changing climate: A review. Earth‐Science Reviews, 99(3), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Seneviratne, S. I., Lüthi, D., Litschi, M., & Schär, C. (2006). Land–atmosphere coupling and climate change in europe. Nature, 443(7108), 205–
209. https://doi.org/10.1038/nature05095

Shereena, O. A., & Rao, B. N. (2019). HDMR‐based Bayesian structural system identification. In Recent advances in structural engineering (Vol.
1, pp. 453–464). Springer. https://doi.org/10.1007/978‐981‐13‐0362‐3_36

Sherwood, S. C. (1999). Convective precursors and predictability in the tropical western Pacific.Monthly Weather Review, 127(12), 2977–2991.
https://doi.org/10.1175/1520‐0493(1999)127〈2977:CPAPIT〉2.0.CO;2

Soboľ, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling in Civil Engineering, 1(4), 407–414.
Song, J. I., Yum, S. S., Park, S. H., Kim, K. H., Park, K. J., & Joo, S. W. (2021). Climatology of melting layer heights estimated from cloud radar
observations at various locations. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034816. https://doi.org/10.1029/
2021JD034816

Spennemann, P. C., Salvia, M., Ruscica, R. C., Sörensson, A. A., Grings, F., & Karszenbaum, H. (2018). Land‐atmosphere interaction patterns in
southeastern South America using satellite products and climate models. International Journal of Applied Earth Observation and Geo-
information, 64, 96–103. https://doi.org/10.1016/j.jag.2017.08.016

Su, H., & Dickinson, R. E. (2017). On the spatial gradient of soil moisture–precipitation feedback strength in the April 2011 drought in the
Southern Great Plains. Journal of Climate, 30(3), 829–848. https://doi.org/10.1175/JCLI‐D‐13‐00185.1

Tavakol, A., Rahmani, V., Quiring, S. M., & Kumar, S. V. (2019). Evaluation analysis of NASA SMAP L3 and L4 and SPoRT‐LIS soil moisture
data in the United States. Remote Sensing of Environment, 229, 234–246. https://doi.org/10.1016/j.rse.2019.05.006

Tawfik, A. B., Dirmeyer, P. A., & Santanello, J. A. (2015). The heated condensation framework.: Part i: Description and southern great plains case
study. Journal of Hydrometeorology, 16(5), 1929–1945. https://doi.org/10.1175/jhm‐d‐14‐0117.1

Taylor, C. M. (2015). Detecting soil moisture impacts on convective initiation in Europe. Geophysical Research Letters, 42(11), 4631–4638.
https://doi.org/10.1002/2015GL064030

Taylor, C. M., de Jeu, R. A.M., Guichard, F., Harris, P. P., & Dorigo,W. A. (2012). Afternoon rain more likely over drier soils.Nature, 489(7416),
423–426. https://doi.org/10.1038/nature11377

Taylor, C. M., & Ellis, R. J. (2006). Satellite detection of soil moisture impacts on convection at the mesoscale. Geophysical Research Letters,
33(3). https://doi.org/10.1029/2005GL025252

Taylor, C. M., Gounou, A., Guichard, F., Harris, P. P., Ellis, R. J., Couvreux, F., & De Kauwe, M. (2011). Frequency of Sahelian storm initiation
enhanced over mesoscale soil‐moisture patterns. Nature Geoscience, 4(7), 430–433. https://doi.org/10.1038/ngeo1173

Taylor, C. M., Harris, P. P., & Parker, D. J. (2010). Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case‐
study from the AMMA special observing period.Quarterly Journal of the Royal Meteorological Society, 136(S1), 456–470. https://doi.org/10.
1002/qj.465

Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk
microphysics scheme. Part II: Implementation of a new snow parameterization.Monthly Weather Review, 136(12), 5095–5115. https://doi.org/
10.1175/2008MWR2387.1

Thompson, G., Rasmussen, R. M., &Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.
Part I: Description and sensitivity analysis. Monthly Weather Review, 132(2), 519–542. https://doi.org/10.1175/1520‐0493(2004)132〈0519:
EFOWPU〉2.0.CO;2

Tuttle, S. E., & Salvucci, G. D. (2017). Confounding factors in determining causal soil moisture‐precipitation feedback. Water Resources
Research, 53(7), 5531–5544. https://doi.org/10.1002/2016WR019869

Wallace, C. E., Maddox, R. A., & Howard, K. W. (1999). Summertime convective storm environments in central Arizona: Local observations.
Weather and Forecasting, 14(6), 994–1006. https://doi.org/10.1175/1520‐0434(1999)014〈0994:SCSEIC〉2.0.CO;2

Wang, G., Fu, R., Zhuang, Y., Dirmeyer, P. A., Santanello, J. A., Wang, G., et al. (2024). Influence of lower‐tropospheric moisture on local soil
moisture–precipitation feedback over the US Southern Great Plains. Atmospheric Chemistry and Physics, 24(6), 3857–3868. https://doi.org/10.
5194/acp‐24‐3857‐2024

Wang, G., Kim, Y., & Wang, D. (2007). Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface
water budget. Journal of Hydrometeorology, 8(3), 551–570. https://doi.org/10.1175/JHM573.1

Wang, H., Chen, L., Ye, F., & Chen, L. (2017). Global sensitivity analysis for fiber reinforced composite fiber path based on D‐MORPH‐HDMR
algorithm. Structural and Multidisciplinary Optimization, 56(3), 697–712. https://doi.org/10.1007/s00158‐017‐1681‐9

Welty, J., & Zeng, X. (2018). Does soil moisture affect warm season precipitation over the southern Great Plains? Geophysical Research Letters,
45(15), 7866–7873. https://doi.org/10.1029/2018GL078598

Williams, I. N. (2019). Evaluating soil moisture feedback on convective triggering: Roles of convective and land‐model parameterizations.
Journal of Geophysical Research: Atmospheres, 124(1), 317–332. https://doi.org/10.1029/2018JD029326

Xu, Z., Chen, H., Guo, J., & Zhang, W. (2021). Contrasting effect of soil moisture on the daytime boundary layer under different thermodynamic
conditions in summer over China. Geophysical Research Letters, 48(3), e2020GL090989. https://doi.org/10.1029/2020GL090989

Yin, J., Albertson, J. D., Rigby, J. R., & Porporato, A. (2015). Land and atmospheric controls on initiation and intensity of moist convection:
CAPE dynamics and LCL crossings. Water Resources Research, 51(10), 8476–8493. https://doi.org/10.1002/2015WR017286

Yin, J., Porporato, A., & Albertson, J. (2014). Interplay of climate seasonality and soil moisture‐rainfall feedback. Water Resources Research,
50(7), 6053–6066. https://doi.org/10.1002/2013WR014772

Yuan, S., Wang, Y., Quiring, S. M., Ford, T.W., &Houston, A. L. (2020). A sensitivity study on the response of convection initiation to in situ soil
moisture in the central United States. Climate Dynamics, 54(3–4), 2013–2028. https://doi.org/10.1007/s00382‐019‐05098‐0

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., et al. (2016). Multi‐Radar Multi‐Sensor (MRMS) quantitative precipitation
estimation: Initial operating capabilities. Bulletin of the American Meteorological Society, 97(4), 621–638. https://doi.org/10.1175/BAMS‐D‐
14‐00174.1

Zhang, L., He, C., & Zhang, M. (2017a). Multi‐scale evaluation of the SMAP product using sparse in‐situ network over a high mountainous
watershed, Northwest China. Remote Sensing, 9(11), 1111. https://doi.org/10.3390/rs9111111

Zhang, X., Zhang, T., Zhou, P., Shao, Y., & Gao, S. (2017b). Validation analysis of SMAP and AMSR2 soil moisture products over the United
States using ground‐based measurements. Remote Sensing, 9(2), 104. https://doi.org/10.3390/rs9020104

Geophysical Research Letters 10.1029/2024GL110347

GAO ET AL. 12 of 12

 19448007, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110347, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/qj.1892
https://doi.org/10.1002/qj.1892
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1038/nature05095
https://doi.org/10.1007/978-981-13-0362-3_36
https://doi.org/10.1175/1520-0493(1999)127%E2%8C%A92977:CPAPIT%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/2021JD034816
https://doi.org/10.1029/2021JD034816
https://doi.org/10.1016/j.jag.2017.08.016
https://doi.org/10.1175/JCLI-D-13-00185.1
https://doi.org/10.1016/j.rse.2019.05.006
https://doi.org/10.1175/jhm-d-14-0117.1
https://doi.org/10.1002/2015GL064030
https://doi.org/10.1038/nature11377
https://doi.org/10.1029/2005GL025252
https://doi.org/10.1038/ngeo1173
https://doi.org/10.1002/qj.465
https://doi.org/10.1002/qj.465
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/1520-0493(2004)132%E2%8C%A90519:EFOWPU%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132%E2%8C%A90519:EFOWPU%E2%8C%AA2.0.CO;2
https://doi.org/10.1002/2016WR019869
https://doi.org/10.1175/1520-0434(1999)014%E2%8C%A90994:SCSEIC%E2%8C%AA2.0.CO;2
https://doi.org/10.5194/acp-24-3857-2024
https://doi.org/10.5194/acp-24-3857-2024
https://doi.org/10.1175/JHM573.1
https://doi.org/10.1007/s00158-017-1681-9
https://doi.org/10.1029/2018GL078598
https://doi.org/10.1029/2018JD029326
https://doi.org/10.1029/2020GL090989
https://doi.org/10.1002/2015WR017286
https://doi.org/10.1002/2013WR014772
https://doi.org/10.1007/s00382-019-05098-0
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.3390/rs9111111
https://doi.org/10.3390/rs9020104

	description
	Soil Moisture‐Cloud‐Precipitation Feedback in the Lower Atmosphere From Functional Decomposition of Satellite Observations
	1. Introduction
	2. Data and Experimental Region
	3. Method
	3.1. Data Preprocessing
	3.2. High‐Dimensional Model Representation

	4. Results
	4.1. Cloud Height and Temporal Lag of SMCPF
	4.2. The SMCPF Across Space

	5. Discussion and Conclusion
	Data Availability Statement





