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Abstract

Medical natural language processing (NLP) systems are a key enabling technology for

transforming Big Data from clinical report repositories to information used to support disease

models and validate intervention methods. However, current medical NLP systems fall con-

siderably short when faced with the task of logically interpreting clinical text. In this paper,

we describe a framework inspired by mechanisms of human cognition in an attempt to jump

the NLP performance curve. The design centers on a hierarchical semantic compositional

model (HSCM), which provides an internal substrate for guiding the interpretation process.

The paper describes insights from four key cognitive aspects: semantic memory, semantic

composition, semantic activation, and hierarchical predictive coding. We discuss the design

of a generative semantic model and an associated semantic parser used to transform a

free-text sentence into a logical representation of its meaning. The paper discusses support-

ive and antagonistic arguments for the key features of the architecture as a long-term foun-

dational framework.

Introduction

Natural language processing (NLP) of clinical reports is an important area of research in medi-

cal informatics. It is considered a key enabling technology for transforming unstructured Big

Data from clinical repositories into a computer-understandable representation that would

allow for compiling phenotypic observations and treatments from a large number of patients

[1, 2]. These curated structured databases can then potentially be used to build individually tai-

lored predictive disease models and/or assist in identifying new patient stratification principles

for targeted therapies [3–5]. A comprehensive review of the tasks and applications that involve

NLP in the medical field are given in [6, 7].

Bibliographic reviews in the field of medical informatics have reported NLP-related

research to rank among the most cited topics [8] with an increasing number of publications

since at least 2007 [9]. Publicly available de-identified clinical data sets are now increasingly

available for researchers. Community-wide standards for tagging and representation of NLP
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semantic constituents (e.g., concepts and relations) are being actively defined [10–15]. Cooper-

ative publicly available toolkits and development environments are actively being contributed

to and supported (e.g., Open Health NLP Consortium [16]). New application areas continue to

arise. Yet, despite these efforts and the long history of medical NLP as a focused area of

research, the ability to perform deep understanding of clinical notes by computers remains

elusive and generally far from the abilities of human cognition. The driving need for a deep

understanding of medical text was emphasized as early as 2012 at a two-day workshop at the

National Library of Medicine. At this meeting, prominent researchers in both general and bio-

medical NLP were invited to discuss directions and strategies that would lead to more efficient

development of NLP solutions for diverse medical research applications [17]. These experts

agreed that there is a need for a new paradigm involving the integration of statistics, linguistic

knowledge, and domain knowledge. The late Dr. Donald Lindberg, then Director of the

National Library of Medicine, emphasized the need for natural language understanding

(NLU) over NLP. (For a description of the major issues related to the medical NLU problem,

see the Discussion Section under the subheading “Comparing the Problem Circumstances of

General versus Medical NLU”).

The challenge of bringing a medical text understanding system closer to human capabilities

is considerable. A key strategic design decision is specifying an overall system architecture to

provide the framework for how various NLP tasks and knowledge sources interact. Reviews of

architectural designs for medical NLP developments can be found in [6, 18, 19]. Currently,

there are no agreed integrated models for deep understanding of clinical text.

Fig 1 shows an overview of the basic NLU mapping problem that transforms an input

sequence of characters representing a sentence to a computer-understandable logical interpre-

tation. Defining an ontological representation at this level depends upon the driving applica-

tion, and in particular, the set of questions the NLU system should be able to answer. In other

words, the fidelity of the “True Intended Meaning” can be formulated in terms of how well the

Fig 1. Overall basic mapping problem. The NLU problem maps the characters of a sentence to a conceptual

representation of meaning. Defining the “internal semantic layers” is a key representational challenge.

https://doi.org/10.1371/journal.pone.0282882.g001
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NLU system can answer the set of application-driven queries in the paradigm of a Turing Test.

A stricter account would also charge the system to explain how it derived its answers. For

examples of various language level ambiguities within clinical text, see the Discussion Section

under the subsection “Comparing the Problem Circumstances of General versus Medical

NLU”.

In order to address the large joint state space associated with this mapping, a number of

internal layers are defined. Specifically, our approach involves factoring the NLU problem

using a hierarchical semantic compositional model (HSCM). This structure enables a more

efficient process of encoding sentence meaning by facilitating a generative model. The overall

goal then is to navigate a sentence interpretation through the internal layers and states of the

hierarchy using a predictive coding approach. Our design involves explicitly defining this

structure in a way that parallels the manner in which humans compose meaning. This process

contrasts with deep learning methods, which attempt to define these layers automatically

based on training data and an objective function related to the specific query being addressed.

In this paper, we describe the conceptual design of a processing framework that can poten-

tially serve as a foundational architecture for medical NLU applications. The architecture is

designed to provide an overarching global semantic structure to organize a diversity of sym-

bol-to-symbol mapping schemes in order to synthesize meaning from clinical text. These

schemes can include a diversity of approaches, including rule-based, symbolic pattern match-

ing, statistical inferencing methods, and deep learning approaches. The design decisions pre-

sented are in response to the known weakness inherent in data-driven approaches [20–22].

The main contribution of this paper is to present arguments for moving toward a symbolic-

based NLU framework that is inspired by cognitive principles. We hope these arguments will

stimulate much-needed open discussions toward the strategic developmental direction for

building effective, sustainable clinical NLU solutions.

Background

Although the exact nature of how humans can comprehend language so well and fast is still

uncertain, there are four main inter-related ideas that are likely critical to our ability to com-

prehend language. (See, for example, [23, 24]). The four ideas are: 1) predefined abstract

semantic representations; 2) semantic composition; 3) semantic activation; and 4) hierarchical

predictive coding. A brief background describing how these ideas relate to natural language

understanding is presented below.

Predefined semantic representations

Humans possess what is known as semantic memory, which stores knowledge about declara-

tive facts, ideas, meanings, concepts, and knowledge of the world we have acquired. Semantic

memory is an integral part of human intelligence. Evidence for its physical existence is being

investigated using fMRI activation studies, which show a continuous semantic space describ-

ing thousands of objects and action categories along the brain’s cortical surface [25]. There is

significant evidence that all animal brains have the ability to generalize and create categories

and concepts and encode them in neurons, where each group of such cells is dedicated to a sin-

gle category or concept [26]. Semantic memory can be viewed as precompiled informational

structures primed for understanding language. When humans are presented with unfamiliar

words or concepts, we adapt to our environment by evolving this representation (e.g., memory

formation). Conversely, concepts no longer fitting for our “survival” may also cause semantic

categories to be removed (memory loss). A radiologist, for example, might have a comprehen-

sive abstract informational template for what is a tumoral mass compared to a non-medically
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trained person. These templates allow language signals to be encoded efficiently into semantic

memory, which in turn is primed for efficient interpretation. One important point related to

semantic memory is that it is relatively comprehensive. It encompasses a representation for

conceivably every discussion item and characterizes the capacity for which a person can

understand language. Additionally, the stored summary representation used by the brain

allows for the production and comprehension of sentences beyond those that have been expe-

rienced [27, 28]. With respect to medical NLU, capturing the meaning of a sentence requires

the development of a sufficiently rich representation model suitable for its targeted situational

use. Circumscribing the scope of sanctioned interpretations is part of the application domain

modeling problem and, in general, there is a need to create application-specific (i.e., situational

or “realism-based”) ontologies and semantic models [29, 30].

Semantic composition

Utilizing a compositional approach to meaning representation is an idea deeply rooted in lan-

guage theory [31]. Composition allows a system to have a large descriptive capacity utilizing

combinations of more elementary units. The rationale for the approach can be summarized as

follows. Firstly, a direct mapping from text to sentence-level logical interpretation is unreason-

able given the variability of free text and the large state space associated with the universe of all

possible logical interpretations. To deal with these difficulties, it is typical to introduce layers

of intermediate structure representing sub-interpretations [32, 33]. This composition signifi-

cantly reduces the dimensionality of the mapping problem through independence assump-

tions. Secondly, humans understand text at several conceptual levels [34]. For example,

humans can derive meaning from text at the morphological level (e.g., word endings), lexical

level, within the context of a syntactic phrase, or within predicate argument constructions.

Thirdly, cognitive science research generally views language as a generative process [35–37].

This implies that the language can produce an infinite number of sentences from its basic con-

structions as well as understand sentences it has never seen. From a cognitive point of view, an

effective composition of a sentence implies that all the information that a human would expect

to decipher from the sentence should be extractable from the compositional representation

[38]. This structure implies that any questions that could be answered from the meaning of the

sentence should be answerable from the representation alone (see Fig 1). That is, we do not

lose any information stated within the sentence by factoring it into components that are them-

selves meaningful at various levels of semantic abstraction.

Semantic activation networks

One powerful feature of the brain is the connectivity of its memory units. This connectivity

allows the brain to support the notion of priming, in which memory units within the brain’s

semantic network are activated in such a way as to prepare the cognition system for encoding

to-be-interpreted language signals [39]. That is, humans rely on a significant amount of knowl-

edge in which words activate a cascade of semantically related concepts, relevant scenarios of

their use, and models of reality [40, 41]. For example, mentioning a “tumor” within a medical

report could prime an oncologist’s brain to expect various clinical characteristics and referents

of this topic concept. The mention of the phrase “located in” primes the cognitive system to

expect a description of a spatial location. Connections among semantic memory units allow

recalling related concepts to an activated concept, resulting in a functional integration of brain

areas and the spreading of activated semantic units. Depending upon the types of entailment

relationships coded within the network, the spreading of the activation can differ. This spread-

ing activation builds a dynamic semantic field that primes the brain for maximizing
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comprehension and introduces relevant context to elevate interpretation in response to and in

anticipation of the given input [42]. The connectivity of semantic units is based largely on

experience and knowledge. Knowledge aspects may involve a hierarchical typing system that

humans commonly use to categorize objects, while experience aspects may be used to effi-

ciently navigate to associated concepts based on past personal encounters [40]. Of note, the

configuration of the network is highly fluid. Mounting evidence suggests that such network

reconfiguration is necessary to help keep the overall cognitive system in healthy balance [43].

Hierarchical predictive coding

Hierarchical predictive coding seems to be a fundamental mechanism for human cognition,

involved in both vision [44] and language processing [45]. The brain uses it to solve seemingly

intractable problems (e.g., scene analysis and language understanding) involving sensory inputs

(e.g., visual or auditory signals) in a highly efficient manner. The central idea is that the brain is

an organ of prediction guided by a hierarchical generative model of how it understands the

world. Interpretation is seen as a process of minimizing free energy. Free energy is small when

internal neural representations can accurately predict lower level inputs. Instead of minimizing

the entropy of the interpretations, the strategy is to minimize the entropy of the observations

(Free Energy Principle). Operationally, predictive coding refers to a processing paradigm that

utilizes an adaptive strategy for hierarchically interpreting input sensory signals using a hybrid

top-down and bottom-up processing approach. The top-down strategy uses lower level cues to

posit upper level hypotheses (i.e., causes) that are then tested based on evidence from lower level

inputs (i.e., observations). As part of the conceptual knowledge base of the brain, a predictive

algorithm assesses the virtual situation that given an upper level hypothesis prior, what is its

likelihood based on the state of the lower level inputs. Top-down processing will explain away

(by predicting) only those elements of the driving signal that conform to (and hence are pre-

dicted by) the current winning hypothesis. The higher-level guesses are thus acting as priors for

the lower-level processing in the fashion of so-called “empirical Bayes” [46] (such methods use

their own internal target data sets to estimate the prior distribution: a kind of bootstrapping

that exploits the statistical independencies that characterize hierarchical models). When a pre-

diction is accepted, the system updates the higher-level priors to posteriors. The bottom-up pro-

cessing relates to carrying lower level evidence that cannot be accounted for by the top-down

predictions to higher levels as residual prediction errors. Thus, the better the top-down matches,

the less we see prediction errors propagating up the hierarchy. Upper levels of processing pro-

vide greater context to interpret these residual errors (i.e., unaccounted tokens) due to the

hypotheses that have been previously crystallized. Thus, in predictive coding, navigating the

interpretation hierarchy relies on transitioning through the system’s internal states by utilizing

a cascade of top-down predictions to move up the hierarchy. The interesting aspect of the para-

digm is the utilization of both successful predictions (as defined by some tolerable error rate)

and unsuccessful predictions related to the input. This is an application of the idea of “analysis-

by-synthesis” [47–50]. The processing paradigm also supports the notion that language compre-

hension is a form of abductive reasoning [51] in which the process of interpreting sentences in

discourse can be viewed as the process of providing the best explanation of why the sentence

would be true. In this processing model of the brain, hierarchical predictive coding [52] can be

seen as a form of Bayesian filtering (least surprising interpretation) [44, 53–55].

Methods

In this section, we first introduce the overall NLU problem highlighting the need for a prede-

fined compositional structure. We then describe the elements and features of our central
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HSCM knowledge base. The model design contains elements that emulate the cognitive fea-

tures of semantic memory, semantic activation, and semantic composition. The design of the

semantic parser, which executes on an input sentence to derive an ontologic representation of

the meaning of the sentence, is then described. Finally, we highlight important principles

employed by the architecture, which provide the basis for what we believe to be a solid founda-

tion for future growth. Note that, for brevity, we focus only on foundational architectural

issues (i.e., what should be done) and leave specific implementations (i.e., how it should be

done) with respect to grammars, classifiers, and specific knowledge sources, as open options

within the framework.

Problem definition and overview

Hierarchical semantic compositional model. The HSCM knowledge source defines the

“hidden layers” of the NLU mapping problem. Fig 2 shows an overview of the elements associ-

ated with the model. These elements can be described in terms of semantic constituents,

semantic composition grammars, semantic networks, and a query processor. The HSCM

addresses the need for an NLU system to possess a comprehensive internal representation for

the universe of sentences it intends to understand (e.g., sentences that describe a tumor in a

radiology report), which is the semantic substrate needed to encode meaning (see Fig 2,

Box 1). The semantic constituents correspond to semantic memory elements within the cogni-

tive paradigm. Defining the constituents within the model is an open research question and

must be approached with caution since navigating and maintaining the knowledge source

becomes increasingly difficult as the number of nodes in the hierarchy increases. It is thus

imperative to apply various organizing principles including methods for building medical

ontologies [56], methods for analyzing complex systems [57, 58], and methods involving prob-

lem decomposition [59] (e.g., abstraction, encapsulation, modularity, and inheritance). Refer-

ring to prior efforts in building semantic grammars and semantic frames for both medical and

general NLP can also be productive [60, 61]. See, for example, work by the Linguistic Data

Consortium and the Abstract Meaning Representation [62].

In practice, defining the semantic compositional model for a class of target sentences is not

straightforward and can evolve to a variety of configurations. Accurately capturing the level of

specificity required by the anticipated driving queries is an exercise in carefully decomposing

each level of semantic detail. Topic-centric (e.g., tumoral mass) corpus-based (thoracic radiol-

ogy reports) methods can be applied in general [63–65]. Alternatively, one could approach the

problem from a syntactic point of view and proceed to learn, for example, the most common

verbs and their related semantic constructions [66, 67]. As previously mentioned, the semantic

nodes provide a template to encode language meaning at various levels of complexity.

Although there have been efforts in the literature to define the semantic primitives and higher-

order constituents for medical NLP, the specification of the constituent nodes is often by

necessity a personal and situational effort. (Like the brain, we constantly update our internal

expectation models of stimulus from our environment). Both bottom-up (“compositionality

principle” [68]) and top-down (“context principle” [69]) methods for modeling semantic

nodes are useful in designing appropriate levels of abstraction and organization. Fig 3 shows a

rough schematic of this semantic generative representation. For diagrammatic purposes, we

characterize various semantics constituents within domains according to specificity and/or

semantic richness. A brief description of these broad node types is given below.

Semantic constituents. Semantic layer 0—Surface words. The hierarchical layering starts

with a character stream for a given sentence. The first layer performs an initial surface level

(i.e., the verbatim string) grouping of characters into words. A factory of tokenization schemes
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can be used to parse the character stream into a sequence of surface word tokens. Rule bases

can be used to address dashes, slashes, apostrophes, and parentheticals [70].

Semantic layer 1—Functional words. Functional words can be defined as the primitive

semantic constituents of a language. The functional definition of a word reflects how the system

will strategize making semantic sense for a given segment of text. Different strategies for word-

level tokenization will lead an NLP system to process a given input text in different ways. Map-

ping surface words to functional words involves a number of subproblems including: a) spelling

corrections; b) identification of idiomatic expressions (e.g., throw up); d) identification of collo-

cations (e.g., vena cava, computed tomography, and medical center); e) identification and/or

parsing of symbol expressions; f) expansion and interpretation of abbreviations and acronyms;

and e) decomposition of compound words. Commons knowledge sources used to address these

subproblems include: idiomatic dictionaries, lexicons of common medical term collocations

[71], and co-occurrence phrase chunking models utilizing simple t-tests [72].

Semantic layer 2—Ontological primitives. Ontologic primitives represent the lowest level

internal HSCM constituents and are abstract units of meaning that are sanctioned by the inter-

pretation system. Example concepts include nodes for numbers, property names, property

Fig 2. Tasks associated with the construction of the hierarchical compositional semantic model.

https://doi.org/10.1371/journal.pone.0282882.g002
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Fig 3. Layers and example node instances for the HSCM. An example sentence illustrates how the input tokens can be interpreted by instantiating network paths

through the model. Each plane contains the domain of semantic constituents for the given abstraction level. For visual simplicity, arrows should be assumed to point

downward to indicate compositionality.

https://doi.org/10.1371/journal.pone.0282882.g003
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values, certainty, medical procedure names, anatomy descriptions and medical conditions.

Defining the granularity of these primitive constituents can be a challenging task often dictated

by the particular application under consideration. For example, with size measurements, an

application may simply want to parse the phrase “5cm x 4cm x 3cm” versus an alternative

application which may require the internal semantics to be specified (i.e., the individual

dimensions, units, and values). These choices in representation will influence strategies used

for parsing (e.g., finite state machines or hidden Markov models). Some functional words, like

“extends” and adverbs, are only identified within the HSCM in the context of higher order

constituents such as other propositional constructions or predicate-argument structures due

to their varying contextual roles across these targets. Thus, not all functional words will map

directly to ontologic primitives.

Semantic layer 3—Ontological propositions. Moving up the semantic compositional hierar-

chy, lower level constituents continue to compose higher-level constructions. Propositions can

be thought of as basic units of information (Finding Y is interpreted as Disease X). This level

of semantic nodes include descriptions of properties and their values (e.g., “size of 2.2cm x

3.0cm”), locative prepositions (e.g., “within the right lower lobe of the lung”), temporal rela-

tions (e.g., “within the last two weeks”), and various degrees of completion of predicate-argu-

ment structures (e.g., “extends from the third to the fifth intercostal space”). Note that we can

define complex propositions that provide more detailed descriptions by allowing the argu-

ments of a proposition to be HSCM nodes at any level of abstraction. These arguments of

propositions can include such node types such as ontologic primitives, other ontologic propo-

sitions, or higher-level object/event frames. For example, a spatial relation proposition could

be formed using an anatomy frame for its location argument. A proposition describing an

entity’s size (e.g., “mass is 5cm in cranio-caudal dimension”) could be constructed using a

quantification relation frame and a size measurement frame.

Semantic layer 4—Object / event frames. These high-level nodes define comprehensive rep-

resentational templates for targeted entities and events. Again, the definition of these node

descriptions (i.e., their attributes) should be determined by formal ontology design and frame-

based semantics methods. The richness of these nodes can be seen, for example, in defining a

semantic entity frame for a tumoral mass. The specification of a mass includes a timeline of its

states. A state is characterized by a collection of observations at a particular point in time. The

observation description, in turn, is composed of a reference to a procedure and the various

measurements associated with a property (e.g., size may be associated with three linear mea-

surements). A procedure description is composed of a description of date, facilities, devices,

and methodological protocols.

Semantic layer 5—Discourse and domain-specific templates. Conceptually, one could include

even richer templates (e.g., application domains) at the sentence level and beyond, which com-

prehensively capture a more extensive range of semantic abstractions and text spans. Examples

of such constructions include timelines, procedure-specific structured reports such as BiR-

ADS, topic or procedure specific discourse templates, and phenomenon-centric disease mod-

els [73]). Discourse templates provide an expectation model between a speaker (e.g., specialist)

and listener (e.g., referring physician). An example of a discourse model topic would be the

expected communicative goals of a radiologist describing a patient’s smoking habits in the

context of determining whether a patient is eligible for lung cancer screening. In particular,

this discourse model can be used to disambiguate instances of ellipsis commonly observed in

this domain (e.g., incomplete specification of units of pack-years, which can be implicated

from the discourse model). These high-level semantic templates are useful because they can be

linked to application-specific queries. For example, an instance of a radiology mass template
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could be used by a lung cancer screening application to help determine whether a patient

might be eligible for a particular screening protocol.

Semantic linkages. Downward links for compositionality. As part of the HSCM, a number

of semantic links are defined. Downward links define the constituents that can synthesize

an upper level node (see Fig 2, Box 2). Each upper level composite node has its own methods

for its grammatical construction. In practice, a variety of methods can perform these map-

pings. For example, the mappings may be implemented using dictionaries, lexico-semantic-

syntactic patterns, finite state machines, context free grammars, or hidden sequence meth-

ods (e.g., Bayesian and deep learning methods). These mappings define the constituents,

their sequencing, and the context for a valid construction. The methods of choice depend

on the state space associated with their mapping, which in turn depends on the richness of

the compositional model. As a note, although we use the term “downward link” to empha-

size compositionality, in practice, the rules for construction are quite flexible so that the

composition of higher order constituents (e.g., propositions, frames, and discourse tem-

plates) can be constructed using a variety of elements. For example, the arguments for a

proposition can be filled with another ontologic proposition or even an ontologic frame.

See the example described in the Parser Design section of this paper for further details and

specific examples of these possibilities.

Semantic activation network. In addition to downward compositional links, we define links

from lower level semantic types to higher-level semantic constituents (see Fig 2, Box 3). These

upward links activate a process that identifies plausible hypotheses for constituents higher up

in the HSCM given a set of tokens for a given sentence. For example, the word “extending”

would trigger a hypothesis for instantiating the higher-level propositional template corre-

sponding to the “extends” predicate argument structure. This link would then prime the sys-

tem to activate the associated grammar to search for identifying modifiers and arguments

associated with the semantic model for the “extends” proposition. Activation of hypotheses

also occurs by exploring the ontologic attributes of entities that have been identified. For

example, identifying the concept “tumoral mass” would automatically activate the grammars

for all the attribute concepts associated with the ontologic definition of a tumoral mass (e.g.,

size, shape, radiographic density, and border architecture). These upward links can thus be

seen as a means for allowing the parser to search for paths within the internal semantic hierar-

chical model to identify plausible interpretations of the input sentence. While downward com-

positional links are designed for high precision, the upward links that activate higher-level

semantic hypotheses are designed to emphasize high recall. In contrast to upward activation

links, suppression links can be activated by true negative language patterns to rule out a

hypothesis. For example, the word ‘mass’ in the context of the phrase ‘bone mass density”

could use the lexical pattern “bone mass density” as a suppression pattern for the hypothesis of

a (tumoral) mass concept.

The semantic activation network can also be extended using generalization-specialization

links between HSCM nodes (see Fig 2, Box 4). For example, the general ‘anatomy class’ con-

cept could include the subclass nodes “heart anatomy”, “lung anatomy”, and “liver anatomy”.

These concept relationships allow the HSCM to include such class level meta-nodes (i.e., anat-

omy class) that encapsulate the grammar model for the superclass. Thus, any subclass member

(e.g., lung) can activate the hypothesis of the existence of an instance of the superclass. In pro-

cessing a sentence, this implies that a subclass member (e.g., “lung”) can activate the grammar

attached to its superclass (e.g., anatomy concept).

HSCM query processing. Associated with the HSCM knowledge base is a query process-

ing manager (see Fig 2, Box 6). It supports the following basic queries:
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1. Retrieve all plausible hypotheses for the given token sequence and the given application

profile. This task aims to identify patterns in the input token sequence that can activate

upward links to higher-order semantic nodes within the HSCM. The query manager

returns the set of plausible hypotheses, with each hypothesis corresponding to a node

description in the HSCM. The hypothesis activation pattern can be influenced by the appli-

cation such as when there exists a specific situational ontology tied to the given application.

2. Determine the most likely semantic node assignment for an unknown token within a sen-

tence. For example, typing errors can be relatively common in medical reports. Various

methods can be used to address this query including sequence language models (see Fig 2,

Box 5), spelling correction algorithms, and context sensitive deep learning methods.

3. Given two incompatible hypotheses, decide which should be given precedence. The HSCM

model maintains a decision model for resolving instances where two hypotheses within a

sentence are conflicting due to overlapping tokens. Features such as compositional depen-

dencies, token spans comparisons, and contextualized precedence ordering rules are main-

tained within the HSCM knowledge base.

4. Determine the semantic compatibility between two constituents. In cases in which the

semantic parser (see next section) cannot combine a token into the overall semantic parse

due to inadequacies within the compositional grammar, the query processor can ask the

question: can the unattached token serve as an attribute for any of the other tokens within

the sentence. For example, upon encountering an agrammatical sentence such as: “Mass,

June 2020, 2.3cm in right lung, spiculated margins” if the concept “spiculated margins” is

left unaccounted for by the grammar, the query processor can explore the HSCM concept

“Mass”, examining the property space contained as part of its logical representation. In

effect, the query processor would convey to the client that the token “spiculated margins” is

compatible with the real world logical understanding that it is a sanctioned feature for the

concept of a “mass”.

Examples for each of these query classes are provided in the following section describing

the parser design.

Parser design. Parsing a sentence involves transforming an input sequence of characters

into well-formed logical representations sanctioned by the hierarchical compositional model.

The semantic parser utilizes the main ideas from a hierarchical predictive coding paradigm

and assumes the following HSCM knowledge sources are available: 1) a comprehensive inter-

nal model of the semantic constituents; 2) the associated grammar for synthesizing such con-

stituents; and 3) hypothesis activation link definitions. Intuitively, the sentence input (e.g.,

tokens) is passed through a series of progressively finer-grained processing levels as described

below. In this section, we use the running sentence example below to illustrate the overall pro-

cessor steps.

[Ex-1] “There is a 5.5cm mass in the left upper lobe.”

Fig 3 shows the transformations through the HSCM for Ex-1. Fig 4 shows the transforma-

tion through various processing levels of refinement as executed by the parser. Note that the

references to levels L0, L1, L2, L4, and L5 in the discussion of the parser (see Fig 4) are unre-

lated to the reference of the term “layer” in the HSCM representation.

Preprocessing steps. The first two processing levels, L0 and L1, utilize standard NLP

methods to handle relatively simple but useful, tasks and are briefly described below.
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L0 Tokenizer. The character sequence is mapped to a surface and functional word token

sequence. This step is initially performed using common delimiters for orthographic tokeniza-

tion (e.g., whitespaces and brackets). Attention to the particular input character representation

Fig 4. Parser execution diagram for Ex-1. The parser process involves iteratively transforming input tokens into higher levels of semantic

abstraction. Box colors of tokens correspond to the class of the semantic constituent within the HSCM. (See figure legend for color

assignments. Frame label definitions are as follows: pName.size–size property name; Ont.Cnpt–ontologic concept; Num.real–real number;

PName–property name; pValue–property value; Ont.E-Frame–ontologic entity frame; POS.art.indef–part-of-speech description, definite

article; Locative.prep–locative preposition).

https://doi.org/10.1371/journal.pone.0282882.g004
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scheme is vital for the proper application of tokenization rules (e.g., ASCII, UTF-32, and EBC-

DIC). Hyphens and slashes can be disambiguated using context sensitive pattern-based rules.

Certain characters such as quotes may be completely ignored in the tokenization process. In

our example, the L0 tokenization step results in ten surface word tokens as shown in Fig 4.

L1 Lexical analyzer. The L1 lexical analyzer processing task performs additional mappings

of surface words to functional words and computes some initial word level features for each

token. In identifying functional words, the lexical analyzer makes use of precompiled lexicons

for drug names, abbreviations, and medical idioms. Example word level features computed by

the lexical analyzer include morphological features of words, embedding assignments, context

free semantic classes from a general medical dictionary, part-of-speech tags, and dependency

syntactic parser linkages to other tokens in the sentence. Private to the lexical analyzer are

domain-specific pre-compiled lexicons (e.g., radiology terms, drug names, and special sym-

bols) that are used to assign an initial general word-level semantic class for each token. See

Table 1 for example semantic class and part-of-speech features for Ex-1. The granularity of the

L1 semantic tagset is similar to that of the UMLS semantic network. L1 semantics use an out-

line label-naming syntax to indicate class/subclass relationships (e.g., “physobj.anatomy”. Note

that the L1 semantics described here are not part of the HSCM model per se, but are used as

features to facilitate upward HSCM mappings, as in the task of semantic activation. This map-

ping is primarily used as the starting point (i.e., prior) for generalizing word-level context for

upper level interpretations, rather than for mapping to precise end-user meaning. Out-of-

vocabulary terms are initially assigned an L1 semantic tag of _UNKNOWN. The HSCM query

processor (see Fig 2, Box 6) can be consulted to posit initial labels as described above using pre-

dictive sequence models. The lexical analyzer also maintains a rule base containing hand-

crafted sequence patterns to resolve some word sense ambiguities. These ambiguities can often

be handled better at higher processing stage levels due to improved surrounding context. As a

final note, observe in Fig 4 that the surface token “5.5cm” was parsed into the two functional

word tokens of “5.5” and “cm”. This particular parse is performed to ultimately extract the

internal semantics of value and units of the length measurement separately. Further details of

these first two processing levels can be found in [71, 74].

L1 semantic class and part-of-speech features assigned to the function word tokens for Ex-

1. Note that the L1 semantic word classes are not part of the HSCM model and are used only

as features of the functional word class. The semantics categories are adapted from [71].

Predictive coding. Starting from the third processing level (L2), the parser proceeds using

the general ideas of hierarchical predictive coding. The parser performs an iterative procedure

summarized as follows:

Table 1. Example of functional word features as assigned to sentence Ex-1 during the lexical analysis step.

Functional Word L1 Semantic Class POS

There is relation.exist.be connective

a pos.indef_art det

5.5 number adjective

cm propertyName.length noun

mass physobj.finding.abnormal noun.sing

in pos.in preposition

the pos.defin_art determiner

left propertyValue.spatial.direction adjective

upper propertyValue.spatial.direction adjective

lobe physobj.anatomy noun.sing

https://doi.org/10.1371/journal.pone.0282882.t001
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a. Instantiate a level manager. A level manager is instantiated to coordinate the global pro-

cessing for the current stream of tokens (see Fig 4). The level manager can access the current

stream of tokens and global knowledge of the report context and/or driving application (e.g.,

section heading, procedure description, and NLU task definition).

b. Perform hypothesis generation process. (see Fig 5, Box 1): The level manager queries the

HSCM knowledge base to identify all possible HSCM hypotheses given the current set of

tokens and situational context. The activation network is consulted for this task. The task is

treated as a node retrieval problem for most likely HSCM constituents given the current tokens

and driving application information. In our example, various functional word patterns can

activate a hypothesis. The function word “lobe”, for example, has an L1 semantic tag of “phy-

sobj.anatomy” which will activate the hypothesis of the HSCM ontologic concept “anatomy

concept”. Depending upon the driving application, a word such as “lobe” could activate a

more specialized ontologic concept class. For example, for a hepatology application, the word

‘lobe’ could activate a specialized HSCM concept node “anatomy.liver”. The specialized node

can either inherit the grammar from the more general class or can include its own local gram-

mar model in order to parse specific anatomic elements of the liver. Some tokens, like the

word “mass”, can activate hypotheses through several layers of the HSCM model. In Fig 3, the

L2 level manager will note that the function word “mass” has an upward link to the ontologic

Fig 5. Internal processes initiated by the level manager within the parser execution process.

https://doi.org/10.1371/journal.pone.0282882.g005
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concept “Finding.tumoralMass” which in turn has an upward link to the HSCM model for the

“Mass Description Frame”. Interestingly, the “Mass Description Frame” can activates hypothe-

sis pointing to the ontologic attributes associated with a tumoral mass. This causes a cascade of

new hypotheses that includes each of the possible properties associated with the mass. For

example, there is an HSCM node for “x-ray density signal intensity” associated with the radio-

logical attributes of a mass. This hypothesis could then be used to characterize the phrase “low

density” in the term “low density mass”.

c. Perform hypothesis testing process. (see Fig 5, Box 2): The level manager activates a bank

of agents to test each of the independent activated HSCM hypotheses utilizing their corre-

sponding local grammars. Each higher-level hypothesis is then tested against the current level

tokens to assess the validity of the hypothesis. An independent software agent is dispatched

per hypothesis. Encapsulated within the semantic node being tested is a grammar model for its

synthesis. Short spanning concepts (e.g., single word concepts such as “mass”, “spiculated”,

and “well-circumscribed”) can be identified with simple lexico-syntactic-semantic patterns

that may include left and right local context. Longer, more complex instances, can be tested,

using for example, a finite state machine grammar. Each hypothesis testing agent returns to

the level manager a report regarding the truth of the hypothesis. If the hypothesis is true, the

agent returns to the level manager the instance (or instances) of the hypothesized HSCM

node. Note that the level manager can control which hypothesis testing algorithms (i.e., gram-

mars) to apply depending upon the task application and/or prior failures under similar token

context during lower levels of processing.

d. Perform global level assessment of hypothesis testing results. (see Fig 5, Box 3): The level

manager receives all the results from each of the individual hypothesis testing agents. Again,

note that each hypothesis is tested in isolation from all others, thus the need for a global consis-

tency check. The level manager is responsible for adjudicating competitive and/or conflicting

hypotheses in order to decide which, if any, should be ultimately instantiated. That is, it must

decide which set of hypotheses can credibly explain the input sequence of tokens. Conflicts

may arise due to overlapping token sequences. If there are no partial overlapping tokens, a

simple rule to prefer the longer text span can be applied. For example, in Ex-1, the anatomy

phrase hypothesis “left upper lobe” would have preference over the hypotheses for the individ-

ual tokens “left” (as an anatomic direction), “upper” (also as an anatomic direct), and “lobe”.

Ideally, two different hypotheses with the same text span should not occur in the HSCM

model, and would be logged as an inconsistency in the model to be resolved by an adjudicating

process. Imposing semantic constraints can can be applied to resolve syntactic attachment

ambiguities and/or situations in which two hypotheses have partially overlapping token spans.

A rule base or classifier can be consulted as part of the HSCM query capabilities (see Fig 5,

box 3). For example, consider the sentence:

[Ex-2]: “There is mass in the right lower lobe that is still growing”.

Two possible competing hypotheses for the token sequence “that is still growing” are the

synthesis of an “Anatomy-Perturbation Frame” (“right lower lobe is still growing), or a “Mass-

Finding Frame” (“mass is still growing”).

Here, the HSCM manager would need to check whether the anatomy phrase “right lower

lobe” is semantically in the role of an anatomic reference location or the subject of an anatomic

description. From the valid construction of the spatial location predicate “in the right lower

lobe”, the HSCM query manager infers that the anatomy phrase is a reference location and

thus can rule out its participation within the “Anatomy-Perturbation Frame.” Thus, in general,
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various types of complex dependency relationships and their respective ordering precedence

can be maintained by the HSCM to resolve such conflicts.

e, f. Instantiate next level token sequence. (see Fig 5, Box 4): The last task of the level manager

is to define the token sequence for the next iteration of processing. In Fig 4, the L2-Level man-

ager has identified several 1-to-1 token mappings from the functional word level to elementary

ontologic concepts for sentence Ex-1. For example, the surface words “5.5” and “cm” are

mapped to the elementary concepts “number.real” and “property.length.unit”. Note that the

word “mass” was mapped to the high-level HSCM node referring to the “Mass Description

Frame”. The L2 manager combined the three tokens “left,” “upper,” and “lobe” into the general

class of anatomy concept. Note that there is a reduction from 11 to 8 tokens as the parser pro-

gressed from level 2 to level 3 processing stages. Also, note that at higher processing levels of

the example in Fig 4, the composition of instantiated tokens can be synthesized using a diver-

sity of node types. For example, the L3 level manager synthesizes two ontologic concept nodes

(the “5.5” and “cm” tokens) into a single ontologic proposition node (“Property-Value rela-

tion”). The L4 level manager constructs an ontologic proposition node describing a spatial

relation from an ontologic concept node (viz., the “locative.preposition” concept “in”) with an

ontologic entity frame (viz., “Anatomy Description” frame “the-left upper lobe”). As a final

example, the L5 level manager defines the top level “Mass Description Frame” from an ontolo-

gic concept (viz., the “_thereIs” concept), an ontologic entity frame (viz., “Mass Description”

Frame), and an ontologic preposition (viz., “Spatial Relation” preposition). Note also the appli-

cation of a recursion grammar for the “Mass Description Frame.” Finally, in defining the next

level of tokens, any tokens that cannot be integrated or refined are simply percolated up to the

next level processing stage. The idea is that these residual tokens will have a better chance to be

interpreted by the HSCM at the next level, where the context for its interpretative role is stron-

ger due to the reduced number of tokens and richer semantic elements.

Features of the design. In this section, we discuss some of the notable features of the

design and its rationale.

Structure first. The most notable element of the design is the presence of the HSCM. The

design emphasizes the need to impose a pre-defined internal structure governing the sentence

interpretation process. This structure allows the system to factor the understanding task into a

number of lower dimensionality problems. Without such structure, it is unlikely that a large

clinical corpus alone could model all the contextual variability required for deep understand-

ing. Assuming that the process of semantic compositionality accurately mirrors how humans

would factor the interpretation for a given utterance, the structure of the semantic hierarchy

will tend to be stable over time, although the stochastic nature of the network will vary across

document domains [75]. Once the representation for interpreting a sentence can be estab-

lished, then the process of acquiring the knowledge for how to navigate through the hierarchy

becomes systematically clear. Each node maintains a local grammar model for how it is synthe-

sized from its parts and context. The predefined semantic structure also greatly increases the

probability of generating only plausible interpretations. For example, given a comprehensive

frame model for a tumoral mass, the parser is guided by the semantic selectional constraints

defined by the frame definition and thus can instantiate only property states of the mass that

are sanctioned by the model.

Multi-scale representation. The parser borrows ideas related to scale-space representa-

tion in which the input token sequence of words is iteratively transformed to coarser levels of

representation. Each level results in either a reduction or semantic refinement of the tokens

from the previous level. Higher-level semantic abstractions summarize structures at finer

scales in a manner controlled by their defining semantic grammar. The multi-scale representa-

tion aim is to simplify further processing by compacting local details from the current level
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token sequence. From a signal processing point of view, the constituents at coarser scales con-

stitute simplifications of corresponding constituents at finer scales, a form of noise reduction

[76]. The suppression of fine-scale details generally improves the surrounding context for

making compositional aggregation decisions at higher processing levels.

Pattern activation and recognition. The brain primes itself to receive expected informa-

tion by activating various semantic memory units. This activation allows the brain to bring

into working memory prior semantic expectations for anticipated language signals. These acti-

vated nodes serve as hypotheses to be tested using “environmental sensors”, which in our

design are the semantic grammars associated with each HSCM node. Here the “environment”

refers to the current sequence of tokens being analyzed by the parser within the context of the

application. The activation in our design can be triggered in several ways:

1. Anchored triggering–where a detected base pattern activates associated grammar patterns

for an HSCM constituent; For example, the string “cm” might activate the HSCM node for

size which then activates the grammar for parsing a size expression (e.g., 4cm x 3cm).

2. Floating triggers—where grammar patterns are activated in any context. For example, we

automatically activate existence phrase grammars for all medical sentences.

3. Cascading activation–where a low-level pattern can activate a higher-level semantic frame,

which can activate patterns associated with frame’s attributes and/or entailment relation

relatives. For example, the string “mass” can activate the HSCM node for tumoral mass,

which then triggers all the property attributes associated with a tumoral mass.

These adaptive activation strategies provide an efficient mechanism for realizing sensible

hypotheses for an input sentence associated with plausible HSCM constituents. The activation

process also improves global situational awareness of expected information. The framework

thus provides the flexibility for integrating a variety of context-sensitive activation schemes

that can include features such as application goals, document type, semantic results from prior

document sentences, and external medical ontologies [77].

Agent based architecture. The conceptual design borrows ideas from distributed agents

that act independently. At each level of parser processing, independent software agents are

assigned to execute the testing of triggered HSCM hypotheses. Each processing level has a

manager that administers these spawned agents. The level manager collects the evidence

acquired by each agent to make a global set of actions for the current level of processing. The

level manager makes decisions regarding competing hypotheses as well as decides which par-

ticular methods for a constituent should be activated. For example, in our work, we have a gen-

eral semantic grammar for anatomy as well as a specialized more detailed grammar for eye

anatomy [78]. The level manager provides the framework to incorporate multiple strategies

for explaining away the input level tokens. This framework offers a flexible mechanism for

integrating multiple approaches to solve identical problems (e.g., pattern based, probabilistic

Markov models, finite state machines, etc.). This global knowledge of available methods and

their strengths and weaknesses allows the system to identify the best algorithm for the current

level environment and/or apply secondary, more generalized methods in the event that the

current methods do not work satisfactorily. For example, ideas of topic centering [79] could be

used to interprete residual tokens which are not satisfactorily accommodated by the HSCM

grammar.

Frame-based representation. Level 2 and higher processing steps implement the key cog-

nitive concept of a semantic frame [80–82]. Ontologic frames for medical entities are key rep-

resentational candidates for structuring clinical phenotypes. Anchoring the representation

around semantic frames allows the system to take advantage of key ideas such as object-
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oriented descriptions, recursion, and procedural triggers [83]. The semantic frame representa-

tion is used both by the HSCM knowledge base and for characterizing token instances during

parser execution.

Predictive coding. The predictive coding feature of the parser utilizes a hybrid top-down

and bottom-up approach to navigating a sentence through the HSCM. The top-down process-

ing attempts to estimate a forward probability, P(Evidence|Hypothesis), the likelihood, of a

given activated hypothesis, which is generally easier to estimate than the inverse probability, P
(Hypothesis|Evidence), the posterior. For example, given a concept we wish to articulate, defin-

ing a local grammar is easier than testing a sequence of words and testing for every possible

HSCM hypothesis. The top-level (“more cognitive”) nodes in the HSCM intuitively corre-

spond to increasingly abstract conceptualizations of the world, and these tend to capture or

depend upon regularities that span larger text excerpts. The fact that there are many more

arrows lower in the hierarchy indicates that the forward problem is generally easier than the

reverse problem. The bottom up problem focuses mainly on estimating P(Hypothesis) priors

for HSCM nodes. The semantic activation step reflects an intelligent assignment of priors. The

top-down step then focuses on using the semantic grammar for the hypothesis class, to test

whether the evidence (i.e., current token sequence) can successively generate the hypothesis.

Thus, the predictive coding step inverts the conventional view of bottom-up NLP processing.

A successful hypothesis, i.e., one that can be explained away the observed tokens, then allows

the priors to be updated to posteriors at the next iteration of processing in conformity with

Bayes’ theorem.

Generative approach. The generative approach uses the predictive coding strategy to pull

itself up the HSCM semantic interpretation hierarchy. The semantic structures at each level

provide transparency for explaining how high-level interpretations are derived. This structure

makes the framework relatively straightforward to debug. The generative approach provides a

path for loosely-connected group efforts to develop a progressively capable system for an

expanding scope of topics. Each group could develop shallow grammar models for relevant

nodes. As the HSCM model matures and its representation becomes more stable, global opti-

mization methods (e.g., various statistical / neural network models) can be applied.

Discussion

The challenge of bringing a medical text understanding system closer to human capabilities is

considerable. In this paper, we discuss a framework which we believe can serve as a founda-

tional architecture for deep understanding of clinical text for diverse clinical problems. The

presented framework is primarily knowledge-driven and currently heavily dependent upon

manipulating symbolic representations. This framework contrasts the current trend of high

performance NLP systems based on data-driven deep learning methods. Below, we present

arguments for specific discussion items likely to be of concern regarding our strategic design.

Comparing the Problem Circumstances of General versus Medical NLU

The first question one might ask is whether particular issues regarding the medical NLU prob-

lem that warrant moving towards a cognitive framework. Six perspective differences are pre-

sented below.

Task-oriented. With respect to problem definition, the medical NLU system’s value

hinges exclusively on providing the necessary information to accomplish an “actionable” task

[84]. Medical NLU systems thus are not intended to be general broad coverage applications,

but instead targeted agents that are tasked to understand text at sufficient levels of detail and

content to correctly guide a clinical or research action. It is important to realize that these tasks
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can be high-stake and/or mission critical responsibilities, compared to an NLP system that

may be searching for information stored on the web or in journal articles. Thus, ignoring tail

distribution cases may be unacceptable. For example, suppose the NLU system is tasked to

identify patients who should be screened for lung cancer, based on clinical reports describing

their chest x-ray findings and smoking habits. Failure to identify such patients should not be

hinged on idiosyncratic language including various difficult language phenomena (e.g., ellip-

sis, coreference resolution, presuppositional inferencing, and linguistic paraphrasing) used

within these medical reports. As Dunietz points out, “the field of natural language processing

is chasing the wrong goal” [85, 86]. This message implies that a robust NLU application must

consider all possible relevant content in all possible contexts for the driving task. He likens cur-

rent NLP research as analogous to “trying to become a professional sprinter by glancing

around the gym and adopting any exercises that look hard.” The paper also emphasizes the

importance of staying task-based as opposed to method-based in order to address all possible

comprehension intent issues.

Limited task scope. Clinical NLU problems focus on tasks with comparatively limited

scope of understanding compared to general applications such as a robotics personal assistant

application. There have been a number of potential target NLU applications identified across

various medical domains [87]. Some examples include: 1) characterization of patient lifestyle

habits (e.g., smoking, exercise, diet, alcohol consumption, use of recreational drugs) [88, 89];

2) characterization of mental health conditions (e.g., depression, suicidal, psychiatric syn-

dromes) [90]; 3) characterization of specific clinical findings (e.g., tumoral masses, aneurysms)

[91]; 4) identification of patients matching disease screening protocols (e.g., lung cancer) [92];

and 5) characterization of interventions (e.g., tube placement, medications, surgical details)

[12, 93]. Although the scope of the tasks can be seen as relatively narrow, the performance

requirements concerning semantic granularity, explanatory competence, and error frequency

and types can be demanding.

Limited text pool. The pool of possible sentences to be encountered by any single NLU

application is relatively narrow. This limits the vocabulary size and complexity of the grammar

compared to general free text. Clinical text, however, can be quite varied with respect to its for-

mality, style, and flow, especially across medical domains. For example, radiology reports typi-

cally have a formal declarative language style with complete sentences. Primary physician

notes often show abbreviated styles with sentence fragments. Discharge summaries often

include lengthy sentences of episodic descriptions in the context of event timelines. An admis-

sion note can include a patient’s own narrative description of their problem using lay language

and/or foreign words. The content contained in a given type of report also can vary with

respect to the experience of the authoring physician. For example, the reporting style of a nov-

ice physician (e.g., resident) can be significantly different from an experience physician (e.g., a

novice might generate longer wordier reports that include extraneous descriptions of low-level

findings) [94]. The above described variabilities can create challenges for an NLU system to

infer the main points of a report communication due to the presence of challenging language

aspects such as coordination, coreference resolution and ellipsis.

Predefined language representation. The output representation associated with a medi-

cal NLU task is predefined and highly structured. There are two main layers of representation:

1) a knowledge representation model associated with the written text per se; and 2) an ontolo-

gic based representation focused on the NLU task [95]. The first level builds a semantic repre-

sentation from the input sentence-level perspective [96]. General knowledge representations

for language provide the framework for semantic analysis and an effective structure for con-

straining the synthesis of semantic constituents [97]. Constituents at this level include word

senses, predicate argument structures, and semantic frame definitions. The second level, the

PLOS ONE A hierarchical semantic compositional framework for medical natural language understanding

PLOS ONE | https://doi.org/10.1371/journal.pone.0282882 March 16, 2023 19 / 37

https://doi.org/10.1371/journal.pone.0282882


application’s ontologic representation, is intended to directly support queries related to the

driving NLU task. This is related to the fact that the output representation is intended to

directly support inferencing operations for the clinical decision task in question. For example,

well-accepted de-facto reporting models such as BiRADS are specifically designed to infer

appropriate patient management strategies [98]. The RECIST model is designed explicitly to

standardize the reporting of cancer tumor characteristics in response to treatment [99]. The

United States Preventive Services Task Force has defined an information model for patient

smoking habits that can be used to infer candidate patients for lung cancer screening proce-

dures [100].

Speaker-listener model. There is an underlying speaker-listening coupling that facilitates

physician-to-physician communication [101]. That is, the author of a report has in mind the

needs of the reader, and the reader has in mind the intentions of the author [102]. This is espe-

cially strong among individual physicians who routinely communicate findings and recom-

mendations for given types of patient studies. Societal clinical reporting guidelines can

synchronize the expected information content to be communicated between physicians for

given types of investigations [103]. This allows the reader of a report to derive interpretations

beyond what can be inferred from words alone by leveraging diverse pragmatic knowledge

[104]. Thus, although various language complexities are common in medical reports (e.g., lexi-

cal and referential ambiguity, ellipsis, and punctuation ambiguity), they can often be mentally

corrected from within this overarching expectation model [105]. Contrarily, without the

assumed background knowledge, clinicians may be unable to impute the intended meaning of

ambiguously written text (“Curse of knowledge”) [106]. This can lead to misinterpretation of

medical data and, therefore negative patient outcomes [107–109]. Some examples of various

language understanding complexities observed in medical reports include:

• Underspecification of terms–e.g., the phrase “left apex” in a chest x-ray report refers to the

anatomic term “apex of the left upper lobe of the lung.”

• Wrong use of valid terminology–Physicians may misuse or mis-interpret the meaning of

obscure units of measure. For example, consider the sentence, “The patient has a cumulative
30 year smoking history of 20 packs per year.” The authoring physician, in this case, has mis-

used the units of “packs per year”. Since the sentence is a description of cumulative smoking

history, the correct unit that should be stated is “pack-years.” The two units, although sound-

ing very similar, have very different meanings, with “pack per year” describing the rate of

smoking behavior while “pack-years” is an integrated cumulative value for smoking history.

The correct interpretation is essential, since the critical description of “pack-years” is used to

determine eligibility for lung cancer screening.

• Punctuation Mis-use–In a medical report, physicians may ignore adding full-stop punctua-

tion between sentences. The text is thus seen with multiple sentences running together. The

reader’s basic knowledge of syntax allows sentences to be mentally identified.

• Ambiguous pronoun references–Pronoun reference resolution often depends on the reader

having knowledge regarding the physical state and/or dynamics of the referring object. Dis-

ambiguation depends on the reader’s ability to mentally assess real world consistencies and/

or test counterfactual hypotheses in order that the formulating interpretations of the text

adhere to an expected model of the world [110].

• Temporal Ambiguity–For example, consider the sentence: “Patient is widowed since 1972, no
tobacco, no alcohol, lives alone, smoked 3 packs per day x 17 years,” (taken from I2B2 smoking

corpus) [111]. Here, the reader should assume that the patient currently does not smoke but
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previously did smoke for 17 years, with the start time and end time of smoking history

unspecified.

• Inferred information from practice guidelines–From a description of a medical conclusion,

one can positively infer other useful information. For example, in the sentence: “This patient
satisfies age and smoking criteria for routine annual screening.” This implies that, according

to the 2018 American Cancer Society guidelines, that the patient is between 55 and 74 years

of age, has a smoking history of at least 30 pack years, and either currently smokes or has

quit within the past 15 years [112]. Note that this guideline can change and recently (2021)

this guideline is being reviewed for revisions based on the latest scientific evidence.

This listener-speaker assumption allows the reporting physician to avoid excessive verbiage.

The report need not make explicit every level of detail. In some cases, however, physicians can

be overly detailed in a negative way. For example, pathologists have been shown to emphasize

the completeness of details, but have largely ignored the ability of clinicians to comprehend

such detail [113]. This can hinder the intent of the pathologist to convey a more detailed

description about the nature of a patient’s disease state, which could be useful for determining

the best management strategies.

Comprehensive evaluation required by medical NLU systems. The evaluation proce-

dure for medical NLU applications must go far beyond the technical assessments reported in

general NLP studies. This is because the relative importance of various outcome measures is

different within an applied field compared to a more basic computing field such as computer

science. At the heart of the manner is the fact that in an applied field, development is applica-

tion specific. By contrast, in a computing field, it is data centric. Thus, in a data-driven field,

contributions are targeted toward how much data can be accounted for by the model, as well

as the number of applications that can be supported. In contrast, medical NLU applications

are evaluated with respect to their effect on clinical care [114]. The general data-driven fields

maintains leaderboards for broad tasks, which are scored based on contingency statistics (e.g.,

precision, recall, AUROC). Performance is evaluated based on models developed on shared

pre-defined training and test data. Strategies for handling difficult test cases are rarely

reported. Medical NLU applications, however, require not only a technical evaluation compo-

nent but also are subjected continuously to various levels of scrutiny over the lifetime of its

deployment [115–117]. The evaluation is end-user focused in the sense of what the actual

impact the application has on clinical care. Application-centric metrics can take on addressing

questions such as the following:

• How many patient cases was the NLU system used?

• How much time and manpower did the system save?

• How much more time was required by the user to review a patient’s record?

• How many times did the system agree with the expert within the context of actual clinical

care?

• How many unexpected results lead to negative patient outcomes?

• How many times did the system improve patient outcomes?

• How many times was the system unavailable to provide a satisfactory answer? This might

involve the inability of the system to provide a reasonable explanation.

• How responsive is the development team to correcting reported errors?
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• How confident are clinicians in using the application?

The medical NLU system must be continuously evaluated with respect to its failures and

how these failures are addressed. These failures must be evaluated not only from a technology

perspective but also from an operational /organizational perspective in which the system is

deployed [118].

Integrating existing knowledge sources and algorithms into the

architecture

NLU at its core involves a number of mapping problems in order to achieve a level of under-

standing. From this perspective, medical language processing implies the development of

mathematical models to represent language phenomena (e.g., words, meaning, syntactic con-

structions) and the study of transformations that generatively map such constituents into

higher order computer understandable representations that preserve meaning. A fundamental

question then relates to exactly what mappings should be performed and how interpretable

they should be. The design described in this paper is open to any implementations that satisfy

the mapping tasks defined within the HSCM. A clear way to understand the role of existing

NLP efforts is to view the NLU system from the Marr Tri-level perspective for complex infor-

mation processing systems [49, 57, 119, 120]. This perspective includes the: 1) computational

level (i.e., what problems the system is faced with, and levels of acceptable uncertainty); 2)

algorithmic/representational level (i.e., how the problems can be solved, including for example,

Bayesian methods, deep learning methods, and symbolic approaches); and 3) the physical level

(i.e., how the system is physically realized). As preliminary work, we reviewed the general and

medical NLP literature and conceptually organized NLP subproblems, algorithms, and knowl-

edge sources along the Marr tri-level perspectives (see [58]). The review shows the relationship

between the following items: the HSCM semantic layers, the state space of nodes within each

layer, the mapping tasks between semantic layers, the sub-problems associated with each map-

ping class, the common knowledge sources employed within each layer, the typical algorithms

and tools associated with various subtasks, and global optimization methods that can be

employed. Thus, for example, Layers 0 and 1 of the HSCM identify word level semantics. The

state space includes the inventory of all word level semantic descriptions. The subproblems

associated with instantiating a node include: spelling correction, morpho-syntactic analysis,

part-of-speech tagging, and assignment of word embeddings. The knowledge sources

employed for these subtasks consist of probabilistic language models, medical idiomatic

expression dictionaries, semantic lexicons, semantic selectional rules, and pre-trained deep

learning transformer models. The algorithms and tools that could be employed for these tasks

include clustering algorithms, regular expressions pattern matching, finite state machines, hid-

den Markov models, and neural network-based classifiers. The other layers of the HSCM can

also be similarly viewed along these same perspectives. In summary, the HSCM is required to

define the mappings for realizing a generative language-understanding framework. The execu-

tion strategies of these mappings can take on any best available approaches.

Technical design evaluation metrics. The evaluation metrics associated with the archi-

tecture can be linked to the described arguments concerning its conceptual advantages and

disadvantages. A summary of possible metrics from various perspectives is summarized below.

Human development effort point of view. Since the HSCM should parallel how humans

model the semantics of words, objects, events, and topics, an important metric is the cost asso-

ciated with the effort by humans to construct the model. Various aspects per application might

include the level of expertise, man-hours required for model development, and level of compe-

tence (e.g., errors and consistency) of HSCM authors in following guideline rules.
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From a knowledge engineering perspective. Evaluation for building the HSCM knowl-

edge base can be expressed in terms of traditional metrics used for ontologies and include

expressiveness (representational adequacy), inferential adequacy (ability to infer new informa-

tion), inferential efficiency, and acquisitional efficiency [121].

From a software engineering perspective. The HSCM defines a hierarchical graph based

on semantic frames. Thus it embodies the ideas of an object-oriented organization for classes

and their associated methods. Thus, the important object-oriented features of inheritance,

abstraction, encapsulation, modularity, recursion, and procedural triggers can be easily real-

ized by the architecture. Metrics associated with object-oriented software systems are defined

in [122]. Performance metrics that can be defined from these features include time/effort to

define new or edit existing HSCM nodes, and time/effort to debug definitional errors. Addi-

tional metrics related to the complexity of the HSCM graph include branching complexity,

path complexity, data complexity and decisional complexity. These metrics become increas-

ingly important as the breadth of semantic constituents and their complexity rises.

From a computation perspective. The general problem of NLU is difficult since it

requires a mapping from all possible sentence inputs for a domain to all possible interpreta-

tions sanctioned by the software system. This results in a huge state space mapping. To tackle

the “curse of dimensionality” issue, the system introduces structure in terms of hierarchical

semantic composition. This allows the joint problem to be factored into a number of lower

dimensional mappings. Computation time for the parser to search the HSCM for an optimal

interpretation path is facilitated using a predictive coding algorithm. The search time savings

is conceptually reduced from an exhaustive bottom-up search to a controlled hybrid search

defined by only plausible hypotheses.

Comparison of the HSCM and transformer model internal layers. Transformer models

such as BERT have become the state of the art for developing medical NLP applications [123,

124]. Deep learning models can generate these pre-trained encoder models in an unsupervised

manner using vector based methods within a self-attention architecture [125]. Tenney et al.

describes that when probing a BERT transformer model, one can discover that qualitatively

the internal layers seem to be encoding raw language properties of input text such as part-of-

speech tags, syntactic constituents, syntactic dependencies, semantic roles, co-references, and

prototype roles [126]. The layers of the BERT model thus show some similarities to the HSCM

layers. As in a traditional NLP pipeline, the lower levels of such encoder models emphasize

local syntax, while the upper layers describe increasingly higher-level semantics. Autoencoders

in deep learning methods have been shown to promote a hierarchical compositional represen-

tation to some degree [127, 128]. Although BERT does indeed show these abilities to identify

various language-specific properties, relations and constituents, these mappings are made in a

fuzzy statistical manner based on word associations using various self-attention mechanisms.

In the case of the HSCM, the layering is based on a manually-specified semantic compositional

view that reflects how human developers perceive language. The developers can precisely

define the semantic granularity of the model that is useful for potential clients of the NLU

application. For example, there is a general agreement on how one might create predicate-

argument structures, or how a radiologist might define a semantic frame describing the prop-

erties of a mass (e.g., structured reporting forms such as BI-RADS [129]). In BERT models,

there is no grounding of any constituents to real world ontologic definitions, although in some

cases they can approximate this mapping [21]. Given the prolific applicability of BERT for

many NLP problems however, it is clear that a sharable high quality language encoding knowl-

edge source can be a core resource for many language-processing tasks. BERT was developed

with the spirit of being a general language resource. The HSCM is being developed as a task

PLOS ONE A hierarchical semantic compositional framework for medical natural language understanding

PLOS ONE | https://doi.org/10.1371/journal.pone.0282882 March 16, 2023 23 / 37

https://doi.org/10.1371/journal.pone.0282882


specific resource. Table 2 compares some of the properties associated with the HSCM model

versus popular deep learning transformer models such as BERT.

Efficiency mechanisms. Computational efficiencies of the HSCM design are mainly

achieved from manifestations of semantic composition (representational efficiency) and hier-

archal predictive coding (processing efficiency). Imposing a compositional structure (i.e., fac-

torization) is known to contribute significantly to reducing the dimensionality (i.e.,

computational complexity) of the parsing problem [130, 131]. Efficiencies are gained by factor-

ing the overall NLU problem into a number of lower-dimensional mappings. A compositional

structure provides a framework for ‘part sharing’ which allows development to proceed in a

piece-wise systematic way. This part sharing strategy can lead to an enormous reduction in

computational complexity [132, 133]. Predictive coding offers processing efficiency since only

plausible hypotheses specified within the HSCM need be tested. A combination of bottom-up

(hypothesis formulation) and top-down (hypothesis testing) processing conducted within a

hierarchical predictive paradigm greatly reduces the search state space for a viable global sen-

tence parse. Note that a purely bottom-up (inverse problem) approach to semantic parsing is

regarded as an ill-posed problem [134]. The HSCM model provides semantic compositional

constraints to reduce the number of possible interpretations. A full theoretical discussion of

how predictive coding can readily solve high-dimensional mapping problems (e.g., all possible

input signals to all possible interpretations) using the free-energy theory” can be found in

[135]. Worth mentioning is the relation of predictive coding to backpropagation learning and

its efficiencies as employed by neural networks [136, 137].

Table 2. Comparison of properties of neuro transformer models versus the HSCM.

Aspect Transformer Models HSCM

Description of Layers Can resemble a traditional NLP pipeline, with graded levels of

semantic composition. Semantic constituents are coarse-grained.

Highly dependent upon training corpus used and internal deep

learning parameters.

Layers consist of a hierarchy of semantic types with ontological

grounding. Constituents, in general, are fine-grained. Semantic

composition of meaning consistent with human perspectives.

Semantic abstractions can be high-level informational templates

common to the medical informatics community (e.g., BiRads,

RECIST)

Intended Use General resource across diverse domains and tasks. Tailored for each NLU task.

Semantic Granularity Varies with training corpus; indeterminate. Controlled by developers per NLU task

Effort Data driven, unsupervised (BERT). (Not including decoding top-level

classifier development effort per task).

Knowledge and data-driven, supervised. Substantial effort required in

defining the semantic compositional hierarchy with associated

grammars. Requires domain expertise. Development is progressive,

benefiting from prior efforts. Parallel development can be relatively

straightforward due to the localization of grammars to specific HSCM

nodes. Standardization of methods for group development, however,

will require community agreement.

Capabilities and Long

Term Potential

Shows good performance for applications that require robust

language sequence models. Concerns include a lack of ontologic

grounding and awareness of real-world knowledge (e.g., discourse

models, situational micro-theories, and clinical context). It is unclear

what the necessary parameterization of a network should be to ensure

it works for a growing number of medical NLU tasks.

Framework conceptually has the potential for interpreting the

intensions of authors by incorporating expectation models for

targeted clinical communication topics. Concerns include the level of

development effort and integration of knowledge sources into the

representation.

Adaptability /

Configurability

Transformer encoder models such as BERT are static in the sense that

the structure and parameters do not change once they are trained.

They are computationally expensive to train limiting the pool of

individuals/organizations that can generate such a model.

The HSCM is used in a dynamic fashion depending upon the global

contextual specifications of the NLU task, and the upward activation

patterns (i.e., dynamic routing) fired during the predictive coding

steps (i.e., performs adaptive computation depending on local and

global contexts).

Transparency Relatively opaque; not uncommon for tasks to utilize spurious

correlations in data for features.

Explanations realized from paths through the HSCM for a given parse

of a text excerpt.

https://doi.org/10.1371/journal.pone.0282882.t002
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Importance of compositionality. Compositionality for language understanding is central

in our design on the grounds of two long-standing principles in linguistics: 1) Bottom-up:

Principle of Composition–that the meaning of the whole sentence is a function of the meaning

of its parts [31, 68, 69, 138]; and 2) Top-Down: Context Principle–that words have meaning

only as constituents of the sentence [138]. Fillmore described language understanding from

the perspective of semantic frames and the idea that contextual regularities can be encapsu-

lated in a grammar [139]. Our design incorporates these ideas by proposing the use of seman-

tic frames for all levels of tokens, attaching grammars for each constituent within the HSCM,

and hierarchical incremental parsing to improve context within each processing stage. Fig 4

shows the incremental synthesis of semantic constituents that are aggregated into a unifying

sentence-level semantic frame. For a general discussion of computational efficiencies gained

from compositional factorization, see [130, 132]. Additionally, there has been much discussion

within the AI community related to what types of knowledge are required for systems to truly

generalize beyond their training data. Central to these discussions is the need for composition-

ality [35]. Further discussion regarding the benefits of compositionality for NLU can be found

in [131], including its benefits with respect to annotation consistency.

Balance between fine-grained comprehension and general applicability. Inference

models generally experience a familiar trade-off between accuracy and robustness (e.g., recall

vs. precision) [140]. A number of design compromises need to be considered for each given

task. These considerations include a) performance requirements of the driving NLU task (e.g.,

error rates, semantic granularity, b) the need for an explanation of answers, c) the types of

errors observed (e.g., similar to humans), d) processing speed, and e) text coverage. The

weighting placed upon such considerations often depends upon whether the NLU task is pop-

ulation-centric or patient centric. The population class includes medical applications that aim

to estimate or improve upon a population parameter. Examples of tasks that prioritize breadth

of coverage (i.e., generality) include the identification of patients who match inclusion criteria

for assembling teaching cases and discerning patients who are possible candidates for a specific

clinical trial. General-purpose language knowledge sources such as BERT can be quite effective

in improving targeted performance parameters (e.g., percent of patients enrolled in a clinical

trial). If the pool size of the patient population is large, the expectations of an NLU application

may allow tail distribution samples to suffer from relatively poor performance. That is, it may

be acceptable to have a relaxed expectation of accuracy for rare/difficult language use. How-

ever, there are also cases, such as in identification of patients with rare conditions, where it is

important to identify specific criteria and/or infer target cases based on causality. In such situa-

tions, a system that outputs rich semantics and/or infers causal meaning might be more effec-

tive. The second class of problems to consider is patient-centric NLU applications. While

robustness across all expected note types, authors, and institutions is desirable, sacrifices in

accuracy can be highly detrimental to long-term clinical acceptance. This can be especially

true if blatant errors are experienced in, for example, point-of-care applications or patient

treatment planning meetings such as tumor boards [141]. To avoid such issues, precise micro-

theories that can supplement the required context for text comprehension may be necessary.

Such fine-grained modeling can impose real-world semantic constraints on meaning represen-

tations [95]. Until various levels of clinical evaluation are performed [115, 117], it is often diffi-

cult to estimate the required performance parameters of a task until several rounds of efficacy

and clinical outcome studies have been performed. This is most evident in the fact that there

are a large number of technical evaluations reported in the medical NLP literature, yet the

number of implementations in actual clinical use with reported clinical value remains scarce

[116, 142, 143]. Transparency of algorithms and patient safety concerns remain as critical con-

cerns in this regard [142, 144].
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Summary of main arguments in favor of a cognitive framework for medical NLU. This

is a difficult question because in making a decision about strategic directions, one must care-

fully evaluate the growth potential of alternative systems and project which paradigm can best

serve as a long-term framework for efficiently deploying medical NLU applications at the high-

est possible standards, including maximizing patient benefits, minimizing patient harm, and

minimizing cost to society.

The question of whether a data-driven, knowledge-driven, or hybrid system should be the

driving paradigm for language understanding has been lively debated for many years [35, 145,

146]. The two paradigms vary significantly in many respects. Deep learning system develop-

ment is data-driven, relying of manipulating numeric representations that are continuous.

Cognitive system development is largely knowledge-driven, relying on the manipulation of

symbolic representations that are discrete in nature [147].

Much of the discussion regarding the strategic direction to follow centers on the degree to

which prior knowledge is required for language understanding, as for example, argued by the

rationalist versus empiricist views [148]. In principle, there is agreement that NLU systems

need declarative knowledge in order to achieve human levels of understanding [149]. The dif-

ferences in the two paradigms relates largely to how this knowledge is to be acquired and rep-

resented within a software system. A few issues to consider are presented below.

Amount and acquisition approach of knowledge. The sheer amount of estimated knowl-

edge can deter what strategic directions one follows. In deep-learning data driven methods, it

is typically assumed that the goal of a knowledge base is to serve as a foundational language

resource for a broad spectrum of applications [150]. These foundational models thus assume

that the application space and associated text are open-ended and ambiguous and that it is not

feasible to specify the required knowledge using manual or supervised methods. Self-super-

vised methods such as autoregressive self-learning (e.g., GPT-3) and auto-encoding self-learn-

ing approaches (e.g., BERT) are commonly used. The assumption is that the knowledge will

emerge automatically by analyzing a large amount of text using such self-learning algorithms.

The base “genetics” supplied to these algorithms that dictate how the knowledgebase will

evolve from no structure to highly structured (billions of parameters) is, surprisingly, a simple

set of rules that are applied iteratively to the training corpora [151]. The mottos of “attention is

all you need” [125] and “scale is all you need” [152] encapsulate the ideas of how such founda-

tional models are realized.

Conversely, the cognitive approach seeks to adapt or incrementally acquire knowledge on

an application-by-application basis. The assumption is that, given the limited scope of each

task, it is feasible to manually specify over time a comprehensive metaphysical logical represen-

tation of the essential information content required by a driving application. It further assumes

that this representation will be relatively stable and can evolve incrementally. The approach

emphasizes meaning by grounding semantic constituents to real-world interpretations. New

applications are supported by either utilizing views of the model already developed (i.e., part

sharing) or adding/modifying new components and linkages to the overall representation.

Quality of knowledge. The data-driven approach emphasizes breadth of knowledge,

attempting to extract whatever regularities can be inferred using the attention-based rules

ingrained by self-learning algorithms. While the breadth of knowledge captured by pre-trained

deep learning models appears substantial, their quality is indeterminate. Because of their emer-

gent behavior, deep learning models are hard to understand and control. The quality of the

knowledge depends on the locality rules for attention (i.e., close to broad), the training text

(e.g., amount, type, and order), the model structure (e.g., network size), and training protocol.

While the quality of knowledge captured in pre-trained models such as BERT appears surpris-

ingly exceptional based on their remarkable successes, it is not uniform across the spectrum of

PLOS ONE A hierarchical semantic compositional framework for medical natural language understanding

PLOS ONE | https://doi.org/10.1371/journal.pone.0282882 March 16, 2023 26 / 37

https://doi.org/10.1371/journal.pone.0282882


knowledge elements intrinsic within the text they are trained on. Current models are designed

to solve the language masking problem, which may be unrelated to an applied downstream

task. These models seem to be able to learn some types of regularities in language rather accu-

rately (e.g., syntactic relationship) but poorly at others (e.g., temporal reasoning tasks) [153].

Karlgen and Kanerva discuss the theoretical issues limiting the semantic accuracy and seman-

tic similarity abilities of high-dimensional vector representations [154]. Global and irrelevant

statistical dependencies can blur local intrinsic relevant features in high-dimensional represen-

tations, as noted when computing multi-dimensional centroids (a form of lossy compression).

Composition within a deep learning architecture can further exasperate the semantic quality

of such latent representations, entangling concepts in a spurious manner [155, 156].

The cognitive approach emphasizes high-quality knowledge that is consistent with views of

how the problem domain should perceive the world situation. The semantic granularity of a

cognitive model is under the developer’s control. The modeling process ensures at a logical

level that the necessary content for explanation is included. It focuses on including only

enough information required to understand the text to support the NLU actionable response.

The definition of the logical model however is subjective and is based on the views of the devel-

opers and/or adapting communities. In general, it may require numerous iterations to be com-

prehensive for the target application over many site deployments. The quality of the

knowledge to be included is very specific to the micro-world associated with an NLU task in

order to address difficulties such as coreference resolution, clarification of ellipsis, interpreta-

tion of coordinating conjunctions, and proper assessment of event temporal order. This onto-

logic grounding of meaning provides the key knowledge substrate for debugging, transparency

and explanation. A valid question to be raised about the cognitive paradigm is whether such a

comprehensive model can be pre-defined for a given application, and what are the dangers of

incomplete or erroneous constraints within the model. Such deficiencies can limit the perfor-

mance of an NLU application and have a significant impact on the performance of unseen

samples [145].

Integration of external knowledge. Current transformer models do not have specific map-

pings to ontologic concepts. Their distributed multi-dimensional representation makes map-

pings to a specific user-defined view of the domain difficult. The cognitive view emphasizes

ontologic representations at various levels of semantic abstraction. Integrating external knowl-

edge sources is conceptually possible to order to increase the scope of queries supported by the

knowledgebase. Common sources include thesauruses (e.g., WordNet and UMLS), logical def-

initions of predicate-argument structures (e.g., PropBank [60, 62]), and numerous medically

topic-specific ontologies (see, for example, the compilations at The Open Biological and Bio-

medical Ontology Foundry [157]. At a practical level, integration of heterogeneous ontologies

can be challenging due to the standardization of interfaces at both the logical model and pro-

cessor levels. This overhead is commonly seen in issues related to mismatches in syntax,

intended use, node definitions, label ambiguity, and inheritance complexities [158].

Is required knowledge known to humans?. A more basic question related to knowledge

inclusion is whether or not it can be specified. That is, if it can be formally specified, it can be

theoretically implemented in software. For example, deep learning systems for image and sig-

nal analysis domains have been able to reach high levels of recognition accuracy because they

have the potential to detect complex imaging patterns (e.g., textures, hierarchical layered, peri-

odicities, and self-similarity features) that may not be obvious to human observers. In lan-

guage, however, humans have an inherent ability to identify relevant content for almost all

language understanding tasks, and there is a long and rich academic history of defining repre-

sentations for language [96]. The point here is that, although we have the practical knowledge

to specify a comprehensive semantic substrate for inferring meaning intent for a given NLU
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task, the trend is to avoid such unfashionable building of this logical symbolic layer through

manual means.

Computational science fields vs. medical informatics culture. The direction of medical natu-

ral language processing research has been significantly influenced by the academic culture of

traditional computing fields such as computer science and statistics. The computational disci-

plines value algorithms that are generally applicable to a wide scope of problems, with a bal-

ance of effectiveness and efficiency. The estimates of time and space complexities of an

algorithm are valued with the assumption that the algorithm will perform complex operations

on large amounts of diverse input data. Manual specification of domain knowledge has been

traditionally discouraged by criticisms related to algorithm generalizability. Annotation of

training examples, which may require domain expertise, is commonly viewed as “tedious,”
“expensive,” and/or “extremely time consuming.” This places a high value on unsupervised

methods. Feigenbaum comments that this reluctance to avoid domain knowledge is likely

related to the skill and interest boundaries between computational-oriented experts (e.g., com-

puter scientists and statisticians) and domain-application experts (e.g., medical informaticians

and clinicians) [159]. Within our applied field, adapting these biases simply perpetuates the

theory-practice chasm, potentially limiting the abilities of NLU systems to achieve a human-

level of comprehension. There is a tendency because of this bias to take a “do nothing”

approach. Computationalists, we might say, tend toward being generalists, with the goal of

applying algorithms to a broad class of data. Informaticists focus on tasks, thereby, operating

within the mindset of a specialist, investigating all aspects of a problem in all use scenarios to

strive toward a perfected product. The criteria for a good algorithm (e.g., generalizability) are

not necessarily applicable to the criteria for a good application. Without a specialist demeanor,

an NLU application likely will not survive within a clinical environment as it must perform

and be managed according to the needs presented within the realities of a clinical ecosystem.

The medical informatics community ultimately values a system that facilitates medical care,

regardless of whether a particular solution is computationally fashionable. We cannot selec-

tively filter which issues brought up by users of an NLU application to ignore based on the lim-

itations of preferred methods. We cannot ignore complex language understanding

phenomena that may exist in the data because there is no theoretical framework for intentional

inference or because of an unwillingness to put effort into solutions that require manual effort.

As an applied field, we believe the development of rich medical domain-specific models, which

provide the basis and transparency for interpretation, should be promoted. The medical infor-

matics community, in fact, has a long history of enthusiastically pursuing the construction of

fine-grain data models and ontologies. Friedman had previously discussed the merits of build-

ing sublanguage models for improving the semantic granularity of medical NLP system out-

puts [160]. Given the relative stability of the concepts, predicates, and communicative goals of

a given task, we speculate that these models should be realizable with diligent and persistent

efforts from knowledge engineers.

Hybrid neuro-symbolic directions. Deep learning is a highly active, rapidly changing

field. New directions that emphasize learning compositional models of real-world objects and

events are being investigated in order to acquire more human levels of cognition [149]. Hybrid

systems that borrow from the strengths of symbolic and deep learning paradigms are being

actively pursued [155, 161, 162]. Leading AI experts have acknowledged the need for NLU sys-

tems to integrate knowledge at all levels of comprehension [149, 163]. Google Search, for

example, uses both a deep learning BERT model and a symbolic knowledge graph to disambig-

uate word sense. Commonsense knowledge inferred using deep learning methods is an active

area of research [164]. Symbolic systems have the advantage of symbol grounding from which

various types of logical inference can be performed. Symbolic systems are at risk for lack of
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coverage and/or context-specific errors in their structural and semantic specifications. Deep

learning systems have the advantages of learning complex semantic abstractions as well as con-

textualizing word/phrase used over broad coverage. Generalizing grammar patterns and/or

improving semantic activation within a cognitive paradigm can be significantly supplemented

using deep learning features [165]. Dynamic agents can easily then combine symbolic features

(e.g., syntactic-semantic word patterns) and deep learning features (e.g., word and graph

embeddings) to generalize compositional grammars and/or semantic activation triggers for

hypothesis testing and generation. A comprehensive discussion of general arguments in sup-

port of a hybrid paradigm for AI is given in [166].

Conclusion

The strategic direction to pursue for medical NLU is a topic that has not been thoroughly dis-

cussed. Many have already conceded to the direction of deep learning architectures. However,

many of the arguments and biases of a data-driven deep learning approach stated in the gen-

eral computing field do not necessarily hold within the medical informatics application field.

Medical NLU problems typically do not require processing huge amounts of data within a lim-

ited time. Medical informatics endeavors do not find it difficult to seek the collaboration of

domain experts, but rather always work closely with them. The medical informatics commu-

nity is not often deterred from constructing comprehensive knowledge sources. It has a long

rich history of building metaphysical representation of various medical/biological phenomena.

Data-driven claims that applications are “ephemeral” are not applicable [see The Data-Centric

Manifesto–datacentricmanifesto.org]. Medical NLU tasks are motivated by real needs that

have relatively stable specifications. Clinical failures are primarily due to implementation

issues and not specification of needs [58, 117]. Our position is that the knowledge driven cog-

nitive paradigm better address a number of theoretical and practical concerns of data driven

methods. The cognitive approach allows each NLU task to define its required level of semantic

content and granularity. It defines an organic transparent semantic substrate to support logical

inferencing and from which explanations can be derived. It provides a means of integrating

various existing ontologies to extend its coverage and inferencing capabilities. Semantic com-

position allows constituent grammars to be defined locally to each HSCM node, thereby facili-

tating community development. Composition can also simplify training efforts using

grammar-based semantic annotation schemes, which become increasingly important with the

complexity of the NLU task [130].

In conclusion, we present arguments for an NLU architecture that is cognitively inspired.

At its core is the HSCM that imposes structural constraints on the expectations of how infor-

mation is expressed in the targeted language domain. This applied structure allows the system

to process input sentences using a predictive coding paradigm. An agent based processing

scheme allows various algorithms and inferencing modes to be available for a given NLU sub-

task. Although we acknowledge that a number of alternative architectures are possible, we

believe that this framework has the potential for accommodating important design consider-

ations including:

1. Theory–a foundational architecture should be able to accommodate the best theories of lan-

guage understanding from linguistics, cognitive science, and neuroscience;

2. Computation–the framework must accommodate the most recent advances related to com-

puting the most likely interpretation (in an information-theoretic sense) for a given text

input;
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3. Flexibility–the design needs to be adaptable, allowing for different algorithmic approaches

to be explored;

4. Transparency / Explainability–It is desirable for an NLU system to be transparent as to how

it is making its decisions. The model should be able to explain how it derived its final inter-

pretation in terms of only sanctioned (sub) interpretations as defined by the HSCM.

5. Applicability–the architecture must be applicable to diverse domains/applications that may

require different degrees of accuracy and coverage and processed in a timely manner;

6. Interoperability–the logical compositional model should ultimately be able to semantically

interoperate with other knowledge sources (e.g., causal models of disease and various ontol-

ogies) in order to perform higher-level inferences at any level of interpretation.

7. Scope / Scalability–The architecture should have a high growth potential, evolving into a

high-density system of nodes and connections that can be utilized to understand a greater

scope of sentences within a greater range of application contexts. The architecture should

be able to build upon existing efforts in a theoretically principled and unifying manner.

Implementation of a prototype system for analyzing descriptions of tumors from radiology

reports has been ongoing within our department and has been the driving application for

developing many of the ideas of this design. Details of this implementation are planned to be

reported in the near future.
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