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Abstract

This paper addresses the problem of join query optimization in distributed relational data-
base systems. It concentrates on the development of heuristic procedures that attempt to minim-
ize the communication costs incurred by the distributed processing of queries. In particular, the
paper deals with a class of heuristics that use a semi-join strategy as the mechanism for com-
munication cost reduction. These heuristics are classified into two types -- local and global
heuristics. The global heuristic proposed in this paper is based on an optimal solution to a
mathematical model of a relaxed version of the problem. We develop a branch and bound pro-
cedure to derive that optimal solution. It is shown that the global heuristic can identify
beneficial semi-join operations not included in local heuristic solutions.
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1. Introduction

The dramatic decrease in hardware costs and advances in tcleccommunications have led
many organizations to distribute their data processing activities and resources. Distributed
proccssing offers enhanced availability, reliability, parallcliim, reduced system costs, and better
responsiveness to uscr necds. To realize those benefits, however, numerous problems have to
be solved, including processor selection, file and data allocation, concurrency control, backup
and rccovery, and query optimizations. For surveys of thosc problems, sec [DOWDS82|,
[TTALRS3], [JARKS4], and [ROTH77].

This paper deals with the problem of query optimization in the context of rclational
[CODD70] distributed data base management systems (DDBMS). The problem is how to
satisfy data rctricval rcquests in a way that optimizes a given performance mcasurc.  The
measurcs to be optimized can be communication cost, processing cost, and responsc time.
Models developed to solve various distributed query optimization prohlcmé include [APERS83],
[BERNS!L], [CHHANS2]|, [EPST79], [GAVI86], [SEGES6], [SELISO], [WONGT7], [YUS83], and
others (for surveys, see see [JARKS84] and [YUS84]). The join opcration is the most resource
consuming operation in a relational database. Therefore, the performance of a DDBMS is
highly dcpendent on the join optimization procedurc. There arc two basic strategics for
optimizing joins; the first performs the join operations dircctly, while the sccond precedes the
joins by scmi-join opcrations [BERNS81b} whencver benceficial. The cffect of semi-joins is to
reduce the size of the join operands. In the context of DDBMS, scmi-joins where introduced
to reducc communication costs. In [SEGIES88], it is shown that semi-joins also rcduce the

processing costs associated with distributed joins in many instanccs.

This paper concentrates on the development of heuristic procedures that attempt to
minimize the communication costs (or the amount of data transmitted) incurred by the
distributed processing of join querics. In particular, the paper deals with a class of hcuristics
that usc a scmi-join strategy as the mechanism for communication cost reduction (examples

for such hcuristics arc [APERS83], [BERNSI], and [IIEVN79]). The hcuristics that have been



proposed so far can be classified as local heuristics in the sense that their steps are based on
local mcasures. Most of the local heuristics are “greedy” heuristics, where at each step the
most “locally” beneficial semi-join is added to the set of sclected semi-joins. The contribution
of this paper is in the application of a glebal heuristic to the distributed join optimization
problem. It is global in the sensc of basing the semi-join selcction on an optimal solution to
a simplificd version of the original problem. The simplified problem rectains some global
characteristics of the original problem (hence the term “global heuristic” and the optimal
solution to the first is feasible to the latter. We show that the global'hcur_istic can generate

beneflicial semi-join operations not included in the solutions generated by local heuristics.

This paper is organized as follows. Section 2 presents the problem of optimizing distributed
joins and distinguishes local heuristics from global heuristics. The mathematical notation used
in the paper is cxplained in Scction 3 followed by a mathematical analysis of the global
heuristic in Scction 4. The results of computational expcriments are reported in Section 5,

and. the paper is summarized in Scction 6.

2. Local vs. Global Heuristics

The problem addressed in this paper is illustrated in Ifigurc 1. Two rclations R1 and R2
arc stored at sites 1 and 2 respectively. R1 contains employce data (cmployce number, name,
and the department number in which the employce works), and R2 contains data about
dcpartments and projccts (department number and project number combinations). If a query
at sitc 3 rcquires the join of Rl and R2 on D#, the shown RIESULT rclation has to be
displayed at site 3. The join opcra.tion concatenates rows (or tuples) of Rl and R2 whenever
the D# values arc cqual. An obvious way of exccuting the query is to send Rl and R2 to
site 3 where they are joined. Another option is to send R2 to site | (or RI to site 2), join
them there and send the result to site 3. The scmi-join strategy is used to climinate non-
qualifying tuples from the operand rclations. The result of scmi-joining R1 by R2 is shown

as R1 in Figure [. It is achicved by projecting the D# column from R2 (climinating duplicates)



and sending it to site 1 where it is joined with R1. Note that the semi-join operation is
asymmetric; a semi-join of R2 by Rl (shown as R2 in the figure) does not reduce the size of

R2.

R1 C# Name D# R2 D# P# Result E# Name D# P#
E1 Tom Dt D1 P1 El Tom D1 P1
E2 Mark D1 D1 P2 El Tom D1t P2
E3 Frank D2 D2 P3 E2 Mark Dt P1
E4 Jay D3 E2 Mark D1 P2
E3 Frank D2 P3
rRi E# Name D# RrR2 D# P#
El Tom D1 D1 P1
E2 Mark D1 D1 P2
E3 Frank D2 D2 P3

Site 1 Site 2 Site 3

Fig. 1: An Example of Join and Semi-Join Operations

The problem of distributed join optimization is highly complex and various versions of
the problem were proved to be NP-Complete (sce [SEGE84]). For example, if n rclations are
referred to by the query and there are m join attributes, then the number of possible scmi-joins
is (assuming that every relation contains the m join attributes) S = n(n — 1)m, the number of
feasible scts of semi-joins is 2"*~ D™ and the number of feasible semi-join strategies is

s /S
ST=% ( )i!. Ifn=rm=4, then S =48 and ST = 10°%
i=0 \ i/



The complexity of the problem renders the use of complete enumeration (or a restricted
cnumeration like a Branch and Bound method) impractical for most queries that involve joins.
Conscquently, it is expected that heuristic rather than optimal solutions will be used for on-line
rcal world applications. In those instances, mathematical modeling and the derivation of lower
bounds for the problem are a useful mechanism to evaluate the performance of the heuristic
proccdures [SEGE86] because conducting a significant empirical analysis using complete enu-

mcration for sizable probiems is likely to be too costly for most researchers.

In this paper, we broadly classify heuristic procedures into two types: local heuristics and
global hcuristics. Local heuristics, which includ.e query optimization heuristics proposcd so
far, arc “greedy” procedures [HORO78]; they search for the optimal solution by choosing the
“best” next solution, where “best” is defined in terms of a criterion relative to the current
solution. Those algorithms terminate when no local improvement can be achieved. Many of
the algorithms for distributed query optimization can be classificd as ADD procedures, e.g.
[BERNS8I], [CITANS2]. Those algorithms start with an empty sct of scmi-join opcrations and
at cach stcp add the most bencficial semi-join to the set. ADD proccdures differ from each
other in the set to be selected and the criteria for adding an clement to the sct. TFor some
problems the selected set constitutes a solution, while for others additional decision variables
have to be dctermined. As an cxample, consider a distributed join optimization problem.
After a set of scmi-join operations is selccted, onc might still have to allocate those operations
to sites and to optimizc the required transmissions (it would not be necessary if these decisions
were made by the set selection procedurc). The value of an ADD procedure is that for a
given sclected sct .it is often casy to find an optimal or good solution for thc rest of the

dccision variables.

Global heuristics arc derived by solving a mathematical modcl of a rclaxed version of the
problem, such that the resulting values of the decision variables arc fcasible for the original
problem. To dcterminc a semi-join strategy, two decisions have to be made. [First, a subset
of feasible semi-joins has to be selected, and second, the scquence of thosc semi-joins has to

be determined.! Many of the query optimization algorithms dctermine the set of selected



semi-joins and their sequence simultaneously. The global hcuristic proposed in this paper first
rclaxes the scquencing aspect of the problem and determines an optimal sct of semi-joins for
the rclaxed problem. The sequence of those semi-joins is then determined by using an heuristic
procedure. It is expected that such a global heuristic will gencrate bencficial semi-jBin
operations not included in a local heuristic solution; in scction 5, we present computational

results that support this conjecture.

3. Notation

In what follows, we will assume that the problem involves a single join attribute; this
assumption is for expository rcasons only, and it is shown in Scction 4.3 that the resulting
mathematical model is also valid for the casc of multiple join attributes. The (ollowing

notation will be used henceforth:

T=": The index sct of sites and relations.

q=: The index of the query sitc.

Gy = The transmiséion cost ratc between site 7 and site .

R = Relation /.

S; = Size of relation .

D;=: Size of the projection of relation ¢ on its joiri attributc.

R~ R;=: A semi-join between R; and R;, where R; is the relation to be restricted.



a; = The sclectivity factor for R; < R;, i.e., the sizc of the result of R; — R; is S;a;.

If i =j, then a; = L.
If S is a sct, [S] is its cardinality.

Note: There is a one-to-one correspondence between a sitc number and relation number.
IFor cxample, rclation 4 is stored at site 4. That is why the same index sct T is
used for sites and relations. Frequently, we will use thc notation “join attribute ¢ ” -

to mecan “the projection of relation / on its join attributc”; that meaning will be

obvious {rom the context.

Additional notation and definitions will be introduced as nccessary.

4. The Global Heuristic

Consider the following query optimization strategy: for cach rclation i cxccute a set
(possibly ecmpty) of semi-joins {R; — RiljeJ =T, j # i} and then send the restricted relation

i to the query sitc where a final join is executed. The benelit associated with that sct of

scmi-joins is given by

S,.C,.q(l - jnjau) .

Si Ciq is the cost of sending the unrestricted relation i to the query site. S;TT ay is the size of
jeJ

rclation ¢ after all scmi-joints have been cxccuted. Note that under the assumption that the

values of the join attributes and independently and uniformly distributed, the total reduction

lactor is the product of the selectivity factors (sce [BERNSI] for further dctails).

The cost associated with that sct of semi-joins is



0;G;.

jeJ

where Dj is the size of join attribute j used for the execution of R; « R;. Dj is not nccessarily
cqual to D; because relation j might have been reduced by the semi-join R; « Ry prior to the

cxecution of R;« R;. In that case (assuming that R; was not involved in restricting Ry),

Dj = Dy

It is cvident from the above expressions that the bencfit of a sct of semi-joins is independent
of the scquence of thosc semi-joins, while the cost of the sct is dependent on the scquence
(sincc Dj is dependent on the-extent to which R; was restricted prior to R; « R;). The idea
behind the global heuristic is to remove the sequence dependency property from the mathe-
matical model. This is done by assuming that the cost of a scmi-join R; « R; is D;Cy, that
is, the original attribute of relation j is used in the above scmi-join.  The cflect of this
rclaxation i1s an overcstimate of a semi-join cost. Section 4.1 presents a mathematical modcling
and the solution of the sequence-independent version of the problem (/; replaces D} in the

cost arguments).

The solution generated in Scction 4.1 consists of a feasible sct of semi-joins which arc

then scquenced in Scction 4.2.

4.1 A Mathematical Model of the Sequence-Independent Problem

The following deciston variables are used in the mathematical formulation of the problem.

Y, =

{l, if relation R; is semi-joincd by rclation Rj
i

0, otherwise



Since the simplificd problem is sequence-independent, the decisions regarding the restriction
of the various relations are independent of each other. For each relation R;, i = 1,...,|T], we

have the following cost minimization non-linear integer problem.

Problem (NLP)):

Min{s;Cy I1 (max{(1 = ¥}), 0;}) + ;chﬂ.yy}
: 4

Subject to: Yie{0, 1}, jeT

The first part of the objective function accounts for the cost of sending the restricted
rclation to the query site.  The total restriction factor is represented by the product part,
where max{(1 — ¥j), a;} assurcs that the sclectivity factor o < a; < | will be part of the

product only il ¥;; = 1. The sccond part of the objective {unction accounts for the cost of

sclected semi-joins.

Problems (NLP;) werc solved by a branch and bound proccdure and by a heuristic
algorithm (dcnoted as Algorithm 1). Algorithm | which is described below was used as the
upper bound in the branch and bound procedurc. Algorithm | is not proven to bc optimal
for problems (NLP;), but in all problem instances that we cxamined (200 cascs) it gencrated

the optimal solution.?



A Branch and Bound Procedure

The root level of the branch and bound tree is numbered zero. The Icaf lcvel is numbered
77 — 1. There are |T] — | decision variables since Y; can be arbitrarily set to cither 1 or 0
(recall that a; = 1). The tree nodes at level & represent the binary decisions for variable Yitk)
where (k) denotes an original relation number. We need to use (k) and not 4 since the order
of the tree Ievels does not necessarily correspond to the original order of the relations. For
a nodc at level 4, let PI{ED,I(k) = {jl Y;; correspond to nodces on the path from the root to
node d}; the variable ¥ corresponding to node  is not included in PRED (k). We divide
PRIED,(k) into two sets (note that T, T, A(TY), and B" below arc a function of node 4

to simplify the notation we don’t add an explicit reference to d'):

T§ = {je PRED (k) ¥; = 0}

11 = {je PRED (k)Y

1

]

7§ and T% represent the sets of variables that have alrcady been fixed at 0 and [ respectively.

We also dcefine the current restriction factor associated with the sct PRED (k) as:

ATy = s,c;q n a;

Il nodc d at level & represents the decision Yy = 1, then the net benelit of that node is defined

as:

k e ' .
Bf = KTTY1 = ap) = G .



Using the above definitions, we are now in the position to describe the ordering and fathoming

rules associated with the branch and bound tree.

A Dominance Rule: Y, dominates Yy, if in an optimal solution to problem (NLP;), ¥j; = 0

implics Y, = 0 and Yy, =1 1mpllcs Y, = L

Lemma |

”,ﬂm < ay and D; C; < Djz(,}z,, then Yj; dominates Yy,

Proof

(By contradiction). Assume that in an optimal solution to problem (NLP;) ¥ = 0 and

Y;

i, = 1. Let the optimal value of the objective function be 7 Itis casy to scc that by

setting Y = 1 and Yy, =

that Z < Z°.  [__]

0 the resulting value of the objective fu?actioﬁ, denoted Z, is such

We use the above result to construct the branch and bound trece such that the top levels
correspond to variables in dominance order (if it exists); more specilically, let Vj, ..., ¥j, be

such that @y, < ag, . and D;.Gy < Dy, (D, forp=1,..,m— 1. The variables Y} Yy

i oo

correspond to levels | through m of the trece. During the traversal of the tree, if a noded
corresponding to Yy, = 0 is visited (and not fathomed), only a singlc path is followed in the
sub-trce rooted at notc d betwcen levels P + | and m; that path corresponds to Y = 0 for
J=Jp+1, - Jm The rest of the ¥j; variables correspond to levels m + 1 through |T| — 1; they

arc ordercd bascd on B}‘ whose value at the root node is: Bj = S5 Gy — a,j) j,l) Vanables

10



with lower BJO arc at a lower tree level. The logic underlying this ordering is that fathoming
(bascd on the rule described below) is more likely to occur at the top of the tree when such

an ordcring is used.

[.emma 2

When node 4 at level 4 is visited, and it represents the decision Yj; = I, then il Bj’~< <0
there cxists an optimal solution (given that the variables for levels | through & — 1 are fixed

as given by T’f and T(/)‘), such that ¥; = 0.

Proof

Substituting the dccision variable values according to ¢ and T§ in problem (NLDP))

produces the following new problem (corresponding to level & of the tree):

Problem (NLPK ).

Min{l’('l‘{‘) n , (max{=Y)ap) + LDG+ 3 @(fm}

HT-T{ - Tg) jeTi HT-Tk-Th

Subject to: Y;e(0, 1), jeT - Tf - T§

Assume that in an optimal solution to problem (NLPX) with an objcctive value of zZ,

~ A ~
there is a ; such that YJ =] and ny <0. Also, let T} = {j:ﬁ J 1Y is sct to 1 in an

11



optimal solution to problem (NLP{-‘)}. Substituting YU~ =1 by YJ = 0, the new objective

value is Z’ and

‘- * = g K . - ~) = a (~
Z -2z = KT} _r}k (a1 = a2) = D=Cs .
7T

Now, Bj@ < 0 implics that F(TH)(1 — a,5) = Cy,Dy < 0, and since 0 < T1 (ay) < 1 it follows

that Z' — Z" < 0. [:] JeTy

Following Lemma 2, a node 4 at level & that represents Y;; = 1 is fathomed if Bj/-‘ <0.

Additional fathoming is done when a value of a lower bound at a nodc is greater than
or cqual to thc upper bound valuc gencrated by Algorithm 1 (described below). We derive
the lower bound value as follows. Consider a node d at level k. Let Zx denote the optimal
solution to problem (NLP;)) given that the variables corresponding to levels | through & are
fixed as dctermined by 7’5, ’I"f and node d. Also, lct jy identily the variable Yj; corresponding

to nodec 4, and [I; be | if-- Y,

g = [. and 0 _ otherwisc. We  define .

17(74f)+ = 1’(7"1‘) x max {(1 = I), a;,}. The following Lemma defincs a lower bound ZE as-

sociated with node 4 at level 4.

Lemma 3

Let

+
L= {e{T = T{ = T§ = j}(D,C; = KT (1 = ap) <0},

and

| A . w7
7= [Ty + ZkD,-C},- + D, Gl +jeZL(Dfo" - KT (1= ay).
Ty

12



Then, ZF < Z;.

Proof

When node d at level k is {ixed to either 0 or 1, the remaining problem is

. ok + -
Min {I'(T,) M, (max((1 = ¥, ap}) + L DG+ DGy

. & ;
JHT-T7 =Ty~ jg JeT?

o @QW}

JHT-TE-TE -1y

Subject to:  Y;e(0, 1), jeT - Tt - Tk - j;
The basis of the lower bound is the following incquality (recall that 0 < ay; < [):

l;laljzl - ;(l —(lij)'

Conscquently, for any combination of Vj values in the product term of the above objective

function, the following inequality holds:

N (max{(1-¥)a)) 21- 2 (I-a)¥;.

P S
HT=T{ =T~ i) JHT-TE-TE =1

13



Replacing the left-hand side by the right-hand side of this incquality in the objective function
and solving the revised problem optimally yields a lower bound. In the revised problem

Yy = 1if jelL and 0 otherwise. Consequently, the resulting value of ZE is as given in the

I.emma statement. !:]

An Upper Bound Procedure

The upper bound procedure is an ADD procedure (stated as Algorithm | below) which
uses the logic introduced as part of the branch and bound procedure. Since we necd only
dcnote current values in the description of the procedure, the notation T, ’1"1‘, and F(T’f) is
replaced by T("), 7‘1 and F(T‘i). 7‘6 = {je TIY; = 0} denotes the current’'sct of variables set to
0 at any stage of Algorithm | when applied to problem (NPL;). Similarly, 7{ = {je 7] Y= 1},
and the current restriction factor is defined as F(T‘i) =_S,-C,~qjg a; . At cach iteration of
Algorithm I, the next semi-join to be chosen (i.e., added to T ) is thc one which maximizes

the net benefit relative to the current restriction factor. The nct benefit for R; « R; is given

by 8= F(1{)(1 = a5) - Gi);. | o ==

Algorithm [ resorts B; in descending order to take advantage of the fact that once B;
becomes negative Yjj can be set to zero. Algorithm | terminates when cither IT - 7'6 - T’ll =0
(Step 6¢) or all the clements in T — T — T} have ncgative nct bencfit (Step 4b). When the

algorithm terminates, the sct 7Y represents the set of semi-joins sclected to restrict relation R;.

After the branch and bound procedure and/dr Algorithm [ arc run |T'| timcs {once for

cach rclation R;), the global set of sclected semi-joins is given by the union of the sets T}

i=1,...,|T|]. Those semi-joins are sequenced in Section 4.2.

14



Algorithm 1
Step 1:  (Initialization) Th=T{ =9, FT{)=S;Cy

Step 22 Calculate By = F(T{)(1 — a3) — GyD; for all jeT — ThH— Ti.
Let n=|T-Th-Ti.

Step 3:  Sort B; in descending order. Let (j) denote the original index of element j in the

sorted sequence.

Step 4.  If B > 0.go to Step'S; clse do:
a. Ym=0,j=l,...,n.
b. Go to Step 7.

Step 5:  a. Y =1
b, HTY) = AT

c. 1=T{+{(1)

Step 6: Let 7 be the first index j = 2,...,n such that B; < 0.
Do a. Yp=0, j=7,.,n

b Th=Th+{((F) (F + 1),..,(m}
c lf"'T—Tﬁ— ‘i|>0,go to Step 2.

Step 7:  Stop.

15



4.2 A Sequencing Algorithm

Algorithm 1 gencrates a set of selected semi-joins. The sequencing of those semi-joins
has a significant impact on the resulting communication costs. In this section a scquencing
algorithm is proposed whose output is the order of execution of the selected semi-joins. That
order of cxecution can be represented as a directed acyclic lowgraph [BERNS8I]. Algorithm
2 below orders the execution of the semi-joins based on their net benefit. The net benefit is
defined to be the benefit of the semi-join minus its cost. The bencfit of a semi-join in the
context of scquencing is not the reduction of the restricted relation (because that reduction
is scquencec-independent for a given set of semi-joins), but rather a lower cost of subsequent
s.cmi-joins due to size reduction of the join attribute of the restricted relation. For example,
il scmi-joins R; « R; and Ry « R; are selected (i.e., ¥ = ¥j; = 1), then the benefit of R; « R;
(assuming that it is the first to be executed) is in reducing the cost of R, « R;; the net benefit
cquals to D;Cy(l — ay) — D; G At every itcration Algorithm 2 adds the scmi-join with
maximum current nct benefit to the sequence, modifies the size of-the restricted relation’s join
attribute and selectivity factors, updates the net benefits, and procceds with the next iteration.
SCOST is the-cost of the semi-joins and is updated in Step 6 after a new semi-join is added

to the scquence SQ (which is initially empty) in Step S.

Algorithm 2
Step 11 (Initialization) SCOST = 0, SQ =9, D;=D;, aj=q;, forall ;eT.
Step 2: For every ie T and je T} calculate:

Net Benefit = ) (D;Cu(l — af)) — D;C;;
(kiYpi=1)

16



Step 3:  Let 7 and 7 be the subscripts for which net benefit is maximized.
Step 4@ Update D; and aj; as described in [BERNS81].

Step S5: Rcmove 7 from T’i and add (7_, 7) to SQ.

Step 6 SCOST = SCOST + D7ij7

Step 7:  If U{T}} is not empty, go to Step 2, else stop.
4

4.3 Extensions of the Model

The procedures described in Sections 4.1 and 4.2 are for a singlc join attribute. The case
of multiple join attributes is handled in the following way. a; is changed to a;x and D is
changed to Dy, where £ denotes the attribute number.  Additional index sct, denoted by A4,

is used to subscript the join attributes, and problem (NLP;) is changed to:

Min {Si(,".q]g‘g (max {(r - Yijk)» “ijk}) + ,:ZT; Djk(‘}‘iyg‘/k}
Subject to: Yiee {0, 1}, jeT, ked
where:

Y,

{

{l, if R; is scmi-joincd by R; on join attributc &
ik

0, otherwisec.

17



This problem is exactly the one described in Section 4.1, though with a greater number of
variables (renumbering the subscripts is required to get the original form of problem (NLP})).
The absence of attribute ke A from relation i is taken care of by setting Dy = 0 and a; = 1,

for all jeT.

The global heuristic can be. improved by following the sequencing algorithm with any
query optimization algorithm that will consider only the sets T6, i=1,..,]T]. This may add

morc beneficial semi-joins to the sequence.

5. Computational Experiments

A sct of computational experiments was carried out to cvaluate the performance of both
the branch and bound procedure and Algorithm 1. Problems (NI.P>;) were solved for 200 cases
in all of which Algdrithm I gencrated the optimal solution. In order to cvaluate the semi-join
stratcgy generated by the global hcuristic, it was comparcd with an cnhanced version of the
SDD-1 query optimization algorithm (Algorithm OPT f{rom [BERNSH-). The cnhanccr?xcm to
Algoritﬁm OPT is based on [YUS8S], and we will rcfer to it as Algorithm EOPT. Since
algorithm EOPT assumes a uniform transmission cost rate, Cjj = C= 3§, for all i, jeT was
uscd in the experiments. The results of the experiments are shown in Table 1. The figures
in the table represent the average (of eight data sets) ratio of algorithm EOPT’s cost to the
global hcuristic’s cost. The number of relations and join attributes was S and 4 for two cases,
4 and 3 for two cascs, 4 and 2 for two cascs, and 3 and 2 for two cases. The cxtended

version of the global heuristic (sce Scction 4.3) was used in the cxperiments.
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- The most important parameters in the distributed join optimizatiod problem are a;, D;
and S;. The smaller the selectivity factors, the more beneficial the semi-joins are likely to be.
Smaller D; makes the semi-join cost lower. Since the benefit of a semi-join R; « R; (for a
given a; and Dj) is dependent on the size of R;, that is, the larger §; the more beneficial the
semi-join, we usc the paramecter B to express the relative weight of the join attributes and
relation sizes. When a and B assume large values, the global hcuristic achieves roughly the
same solution as EOPT. This is expected since not many scmi-joins are beneficial, and the
global heuristic does not have the “opportunity” to discover benelicial semi-joins. For very
small valucs of a and B (c.g., « = [.01, .02] and B = [.01, .05]) we would expect the performance
of the algorithms to be similar because most semi-joins are clearly beneficial. We would expect
the global heuristic to exhibit the best relative performance when § values are relatively small
(in that case, the sequence-independent problem is a very good modecl of the actual problem)
and «a valucs are not too small and not too large (in that case, identifying the complcte set
" of beneficial semi-joins is difTicult). Of course, dctcrminihg what is “too small” or “téo large”

is the subject of a simulation study in the context of a particular casc.

In gencral, the results presented in Table | validate the above conjecturcs, and it is

evident that the global heuristic exhibits a promising performance. It should be noted that

the join optimization problem is more diflicult when the inter-site communication cost rates
arc not cqual. In that case it is cxpected that the global heuristic will perform better (relative
to local heuristics) than in the casc ol equal inter-sitc communication cost rates. In order to
compare the global heuristic with an cstablished iocal heuristic we uscd cqual communication
cost rates in the cxperiments. Finally, in all the cases that were run, the optimal solution

was achicved in less than one sccond of CPU time on an 1BM3090.
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a
Range
B (.01, .02 (.01, .04] (01, .08] | [.01, .16] [.01, .32]
Range A
101, .05] 1.05 1.43 129 1.48 0.99
(o1, .100  |. LIO 1.33 1.20 1.15 105
.01, .20] 1.16 1.25 1.17 1.02 1.02
[.01, .40] : 1.26 1.16 0.93 1.13 1.00
[.01, .60] 1.10 1.10 0.98 1.00 1.00

[

Notes: 1. a Range designates the range of the uniform distribution from which the

selectivity factors a; were drawn.

LIRS

2. B Range designates the range of the uniform distribution from which B; =

were drawn.

Table 1: Cost Ratios (Algorithm EOPT to Global Heuristic)

6. Conclusions

This paper has dcalt with a class of heuristic procedures that attcmpts to minimize the
communication costs incurred by the distributed processing of join queries in a relational
DBMS. Those heuristics use the semi-join strategy as the mechanism for communication cost
reduction. The paper has classified heuristic procedures into two types: local heuristics and

global heuristics.

A global heuristic has been proposed in this paper; it consists of three stages: 1) selecting

a set of scmi-joins by solving a mathematical model of a simplified version of the problem;
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2) scquencing the execution of those semi-joins; and 3) looking for bencficial semi-joins not
selected in stage 1. The simplificd model used in stage 1| is achicved by ignoring the effect
of the semi-join sequence on the cost of the semi-joi.ns. That model, however, considers the

global cfTect of the selected set of semi-joins on the size reduction of the relations.

lFor stage 1 of the problem, we have developed a branch and bound procedure. The
procedurc cmploys fathoming rules and a lower bound as was stated in Lemmas 1 through
3. Algorithm 1 was uscd to produce an upperbound for the branch and bound procedure.
It turncd out, however, that for all the cases that were run, Algorithm 1 produced the optimal
solution. Algorithm | is not proven or disproven to be optimal, and it will be a challenging
excrcisc to ascertain one of the two possibilities. Given the performance of Algorithm 1, and
the fast processing time required {or some ad-hoc online queries, it is recommended that for
such cases this algorithm rather than the branch. and bound procedure 1s used. [for small
number of relations, and for pre-compiled querics, it is appropriate to usc tl~1c branch and
bound proccdure. Since the overail solution is not nccessarily opti}nal, and Algorithm 1
generates fcasible solutions, it can be uscd rcgardless of whether or not it is optimal for

problem (NLP)).

The paper has presented the results of computational experiments. Thosc results exhibit
a promising performance of the global heuristic and validate some conjectures about the global
heuristic. Current and f(uture rescarch concentrate on further applications of the global
heuristic. That is, we find the approach uscd in this rescarch to be of significance to other

distributcd qucry optimization problems.

21



Acknowledgement

I would like to thank Mr. Steve Cosares of the University of California at Berkeley for

programming the algorithms and running the computational experiments.

FOOTNOTES

1. TFor morc complicated stratcgies not discussed in this paper, a third decision is the

location of semi-join exccution (see [SEGES6] for a description of thosc strategies).

- 2. The consequences of non-optimality are discussed in Scction 6.
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