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Summary

Nan Laird has an enormous and growing impact on computational statistics. Her paper with 

Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited 

paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this 

brief survey, we revisit the derivation of some of her most useful algorithms from the perspective 

of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle 

and frees it from the shackles of missing data and conditional expectations. Instead, the focus 

shifts to the construction of surrogate functions via standard mathematical inequalities. The MM 

principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with 

a faster rate of convergence. In any case, the MM principle enriches our understanding of the 

EM principle and suggests new algorithms of considerable potential in high-dimensional settings 

where standard algorithms such as Newton’s method and Fisher scoring falter.
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1 INTRODUCTION

As of November 2021, the landmark paper on expectation-maximisation (EM) algorithms 

of Dempster et al. (1977) is the second most cited paper across all of statistics, boasting a 

cumulative count of 64,769 citations according to Google Scholar. This exposition explores 

variations of the algorithms derived by Dempster et al. (1977). These algorithms exemplify 

some of the most fundamental ideas Nan Laird has contributed to or inspired in statistical 

science: EM algorithms, the closely related minorisation-maximisation (MM) algorithms, 

and longitudinal data analysis by mixed models (Garrett et al., 2004).

The MM and EM algorithms replace the objective function by a simpler surrogate function. 

By design, optimising the surrogate function sends the objective function downhill in 

minimisation and uphill in maximisation. In constructing the surrogate function for an EM 

algorithm, statisticians rely on notions of missing data. The more general MM algorithm 
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calls on skills in inequalities and convex analysis. More often than not, concrete problems 

also involve parameter constraints. Modern penalty methods incorporate the constraints by 

imposing penalties on the objective function. A tuning parameter scales the strength of the 

penalties. In the classical penalty method, the constrained solution is recovered as the tuning 

parameter tends to infinity. In the augmented Lagrangian method, the constrained solution 

emerges for a finite value of the tuning parameter.

In the remaining sections, we adopt several notational conventions. Vectors and matrices 

appear in boldface type; for the most part parameters appear as Greek letters. The 

differential df (θ) of a scalar-valued function f (θ) equals its row vector of partial derivatives; 

the transpose ∇f (θ) of the differential is the gradient. The second differential d2f (θ) is 

the Hessian matrix of second partial derivatives. The Euclidean norm of a vector b and the 

spectral norm of a matrix A are denoted by ∥b∥ and ∥A∥, respectively. All other norms will 

be appropriately subscripted. The nth entry bn of a vector b must be distinguished from the 

nth vector bn in a sequence of vectors. To maintain consistency, bni denotes the ith entry 

of bn. A similar convention holds for sequences of matrices. For symmetric matrices, the 

relation A⪯B means that B − A is positive semidefinite.

2 THE EM AND MM ALGORITHMS

The numerical analysts Ortega & Rheinboldt (1970) first articulated the MM principle; de 

Leeuw (1976) saw its potential and created the first MM algorithm of value in statistics. 

Building on earlier work of Weiszfeld (1937), Voß & Eckhardt (1980) illuminated some 

convergence properties of MM algorithms. The MM principle currently enjoys its greatest 

vogue in computational statistics (Hunter & Lange, 2004; Lange et al., 2000; Lange, 2016). 

The basic idea is to convert a hard optimisation problem into a sequence of simpler ones. 

In minimisation, the MM principle majorises the objective function f (θ) by a surrogate 

function g(θ|θn) anchored at the current point θn. Majorisation combines the tangency 

condition g(θn|θn) = f (θn) and the domination condition g(θ|θn) ≥ f (θ) for all θ. The next 

iterate of the MM algorithm is defined to minimise g(θ|θn). Because

f θn + 1 ≤ g θn + 1 ∣ θn ≤ g θn ∣ θn = f θn ,

the MM iterates generate a deiscent algorithm drivng the objective function downhill. 

Strictly speaking, the descent property depends only on decreasing g(θ|θn), not on 

minimising it. Constraint satisfaction is automatically enforced in finding θn + 1. Under 

appropriate regularity conditions, an MM algorithm is guaranteed to converge to a local 

minimum of the objective function (Lange, 2010; Lange et al., 2021). In maximisation, we 

first minorise and then maximise. Thus, the acronym MM does double duty in the forms 

majorise-minimise and minorise-maximise.

When it is successful, the MM algorithm simplifies optimisation by (a) separating the 

variables of a problem, (b) avoiding large matrix inversions, (c) linearising a problem, (d) 

restoring symmetry, (e) dealing with equality and inequality constraints gracefully, and (f) 

turning a nondifferentiable problem into a smooth problem. The art in devising an MM 
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algorithm lies in choosing a tractable surrogate function g(θ|θn)that hugs the objective 

function f (θ)as tightly possible.

The majorisation relation between functions is closed under the formation of sums, 

nonnegative products, limits, and composition with an increasing function. These rules allow 

one to work piecemeal in simplifying complicated objective functions. Skill in dealing with 

inequalities is crucial in constructing majorisations. Classical inequalities such as Jensen’s 

inequality, the information inequality, the arithmetic-geometric mean inequality, and the 

Cauchy–Schwartz inequality prove useful in many problems. The supporting hyperplane 

property of a convex function and the quadratic upper bound principle (Böhning & Lindsay, 

1988; de Leeuw & Lange, 2009) also find wide application.

The derivation of the EM principle hinges upon a missing data structure. Let f (θ) be the log-

likelihood of the observed data with parameter vector θ. In the E step, a surrogate function 

Q(θ|θn) is calculated as the conditional expectation of the complete data log-likelihood 

given the observed data and the current parameter iterate θn. Well-known calculations 

(Dempster et al., 1977) based on the information inequality demonstrate that the Q function 

satisfies the domination inequality

f(θ) ≥ Q θ ∣ θn − Q θn ∣ θn + f θn

for all θ. The tangency condition obviously holds at θ = θn. This effectively validates 

Q(θ|θn)as a minorisation of f (θ) up to an additive constant. Figure 1 displays the Q function 

of the EM algorithm and the minorisation function of an MM algorithm for the variance 

component model studied in Section 4. In this example, MM differs from EM, and the MM 

minorisation function hugs the log-likelihood function tighter than the Q function of the EM 

algorithm, resulting in faster convergence of MM than EM as depicted later in Figure 2.

3 MM ALGORITHMS FOR TRADITIONAL PROBLEMS

Convexity and concavity figure prominently in the construction of many MM algorithms. 

The supporting hyperplane minorisation

f(x) ≥ f xn + df xn x − xn

of a convex function f (x) is natural in many applications. For the choice f (x) = −ln(x), this 

reads

−ln x ≥ − lnxn − x − xn
xn

.

Jensen’s inequality is instrumental in majorising composite functions of the form f [u(x)

+v(x)], where f (y) is convex and u and v are positive functions of some underlying 

parameter vector x. In practice, it is often convenient to split the contributions of u and v. 

The majorisation (De Pierro, 1993)
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f(u + v) ≤ un

un + vn
f un + vn

un
u + vn

un + vn
f un + vn

vn
v (1)

achieves this goal. Equality clearly holds whenever (u, v) = (un, vn). For the special case f 
(x) = −ln x, the minorisation

ln(u + v) ≥ un
un + vn

ln u + vn
un + vn

ln v + cn

relies on a constant cn depending only on (un, vn). This minorisation is handy in splitting 

log-likelihoods in maximum likelihood estimation with mixture models. It extends to from 

two to multiple summands. Armed with these ideas, we now explore four examples.

Example Power Series Distributions

A random variable X concentrated on an interval [r, ∞) of nonnegative integers is said to 

have a power series distribution if Pr(X = k) = ckθk
q(θ)  for all k ∈ [r, ∞). In this definition, 

θ is a positive parameter, the coefficients ck are nonnegative, and q(θ) = ∑k = r
∞ ckθk is the 

appropriate normalising constant (Rao, 1973). Examples include the binomial, negative 

binomial, Poisson, and logarithmic families and versions of these families truncated at any 

nonnegative number r, especially r = 1. For example, the negative binomial distribution has 

ck = j + k − 1
k  and q(θ) = (1 – θ)–j for r = 0 under no truncation. If x1, …, xm is a random 

sample from the power series density and q(θ) is log-concave, then the log-likelihood of the 

data is minorised, via the supporting hyperplane inequality, by

L(θ) ≥ ∑
i = 1

m
xiln θ − m ln q θn − m ln q θn ′ θ − θn + cn

= ∑
i = 1

m
xiln θ − m ln q θn − mq′ θn

q θn
θ − θn + cn,

where cn is a constant independent of θ. Setting the derivative of this surrogate function 

equal to 0 leads to the MM update

θn + 1 = xq θn
q′ θn

,

where x is the sample average of the observations xi. Anderson et al. (2007) derive a 

straightforward test for log-concavity of q(θ). Namely, if the coefficients ck are positive and 

the ratio (k + 1)ck + 1/ck is decreasing in k, then q(θ) is log-concave. The negative binomial 

fails this test, but the Poisson and binomial distributions qualify. These ideas are pursued in 

more depth by Wu & Lange (2010).□

Example Cauchy Location and Scale
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The Cauchy density with location μ and scale σ can be written as

f(x) = 1

πσ 1 + x − μ
σ

2 .

The usual approach to maximum likelihood estimation of μ and σ involves finding the roots 

of polynomials of degree 2m − 1 and 2m, respectively, for m sample points x1, …, xm. 

However, this process tends to be complicated by the existence of multiple local maxima. 

From the MM perspective, one can exploit the convexity of the function h(y) = −log(1 

+ y) via the supporting hyperplane minorisation. If we substitute x − μ
σ

2
 for y, then the 

log-likelihood is minorised by

L(μ, σ) ≥ − m log σ − ∑
i = 1

m
wni

xi − μ
σ

2
+ cn

wni = 1

1 + xi − μn
σn

2

at iteration n, where cn is an irrelevant constant. The MM algorithm for estimating μ and σ 
now reduces to weighted least squares with updates

μn + 1 =
∑i = 1

m wnixi

∑i = 1
m wni

 and σn + 1 =
2∑i = 1

m wni xi − μn + 1
2

m . 

These updates stably increase the likelihood at each iteration. The median of the xi serves as 

a starting value for μ. As recommended by Wikipedia, half the sample inter-quartile range 

is a reasonable starting value for σ. This example is a special case of the broader algorithm 

discussed in the next example. □

Example Elliptically Symmetric Distributions

An elliptically symmetric probability density takes the form

f(y) =
e− 1

2κ δ2

(2π)
p
2(detΩ)

1
2

,

where y ∈ ℝp and δ2 = (y – μ)* Ω–1 (y – μ) denotes the Mahalanobis distance between y 

and μ. Here, we assume that the function κ(s) is strictly increasing and strictly concave 

and that the matrix Ω is positive definite. Such densities serve as substitutes for the 
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multivariate normal distribution in robust estimation (Huber, 2004; Lange et al., 1989; Lange 

& Sinsheimer, 1993).

Dutter and Huber (Huber, 2004) introduced an MM algorithm driven by the affine 

majorisation

κ(t) ≤ κ tn + κ′ tn t − tn .

If y1, …, ym is a random sample from the density (3), then the multivariate normal log-

likelihood

g θ ∣ θn = − 1
2 ∑

i = 1

m
wniδi

2(θ) + ln detΩ + cn

with weights wni = κ′ δi
2 θn  and irrelevant constant cn minorises the log-likelihood of the 

data under the elliptically symmetric density. The array of techniques from linear algebra 

for estimating the parameters of a multivariate normal distribution can be brought to bear on 

maximising g(θ|θn). For normal/independent distributional families such as the multivariate 

t, the Dutter–Huber algorithm reduces to an EM algorithm (Dempster, 1980; Lange & 

Sinsheimer, 1993). Given an unstructured mean vector and covariance matrix, the MM 

updates (Lange et al., 1989; Lange & Sinsheimer, 1993; Little & Rubin, 2019) are

μn + 1 = 1
sn

∑
i = 1

m
wniyi

Ωn + 1 = 1
m ∑

i = 1

m
wni yi − μn + 1 yi − μn + 1

⊤,

where Sn = ∑i = 1
m wni is the sum of the case weights. For the multivariate t, Kent et al. (1994) 

suggest a faster algorithm that replaces the update of Ω by

Ωn + 1 = 1
sn

∑
i = 1

m
wni yi − μn + 1 yi − μn + 1

⊤ .

Meng & Van Dyk (1997) justify this amendment within the EM framework.

Example EM for Mixture Models

Many naive data scientists conflate the EM principle with the EM algorithm for normal 

mixtures. This level of ignorance is testimony to the importance of this special case. 

Dempster et al. (1977) review the history of the EM clustering algorithm and demonstrate 

that it possesses the critical ascent property. The EM algorithm makes soft cluster 

assignments in contrast to the hard assignments of k-means clustering. The alternative of 
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soft choices is possible with admixture models (McLachlan & Krishnan, 2007; Mengersen et 
al., 2011). An admixture probability density h(y) can be written as a convex combination

ℎ(y) = ∑
j = 1

k
πjℎj(y),

where the πj are nonnegative probabilities that sum to 1 and hj(y) is the probability density 

of group j.

Suppose the observations y1, …, ym represent a random sample from the admixture density 

(3). In practice, we want to estimate the admixture proportions πj and whatever further 

parameters θ characterise the densities hj(y|θ). An EM algorithm is natural in this context 

with group membership as the missing data (Dempster et al., 1977). The EM updates can be 

derived by invoking the Jensen minorisation (3) for each observation yi in the form

ln ∑
j = 1

k
πjℎj yi ∣ θ ≥ ∑

j = 1

k
wnij lnπj + lnℎj yi ∣ θ + cn,

where cn is an irrelevant constant and wnij is the posterior probability that yi belongs to 

cluster j given the current admixture vector πn and density vector θn. Fortunately, this 

minorisation separates the π parameters from the θ parameters. The problem of maximising 

the objective ∑j = 1
k dj ln πj for dj = ∑i = 1

m wnij is standard with intuitive solution πn + 1, j = dj/m. 

Updating the remaining parameters is possible for elliptically symmetric distributions as 

discussed in the previous example. This involves a second minorisation, which is often ill 

advised because it generates slowing converging algorithms. It is viable here if we employ 

a common scale matrix across the groups and the Kent et al. (1994) acceleration for the 

multivariate t. □

4 MULTI-RESPONSE VARIANCE COMPONENT MODELS

In this example, we contrast the derivations of an EM algorithm and an MM algorithm 

for the multi-response variance component model. This model involves an m × d response 

matrix Y with mean E(Y) = XB and covariance

Ω = Cov(vec Y ) = ∑
j = 1

k
Γ j ⊗ V j .

The p × d coefficient matrix B collects the fixed effects, the d × d covariance matrices Γj 

collect the unknown variance components, and the m × m covariance matrices Vj collect 

the known variance components. When the vector vecY is normally distributed, Y equals a 

sum of independent matrix normal distributions (Gupta & Nagar, 1999). We now make this 

assumption and pursue estimation of B and the Γj, which we collectively denote as Γ. Under 

the normality assumption, Roth’s Kronecker product identity vec(CDE) = (E⊤ ⊗C)vec(D) 

yields the log-likelihood
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L(B, Γ ) = − 1
2ln detΩ − 1

2 vec Y − ZvecB ⊤Ω−1 vec Y − ZvecB , (2)

where Z = Id⊗X.

4.1 MM Derivation

Updating B given Γn is accomplished by solving the general least squares problem 

met earlier in the univariate case. Updating Γj given Bn is difficult due to the positive 

semidefiniteness constraint. Typical solutions involve reparameterization of the covariance 

matrix (Pinheiro & Bates, 1996). The MM algorithm derived in this section gracefully 

accommodates this constraint.

Updating Γ given B requires two minorisations. The convexity of the function −ln detΩ 
implies the supporting hyperplane minorisation

− 1
2ln detΩ ≥ − 1

2ln detΩn − 1
2tr Ωn

−1 Ω − Ωn .  (3)

We must also generalise Jensen’s majorisation (1). This is accomplished by noting that the 

function

f(X, M) =
1
2v*X*M−Xv Xv ∈ Range(M)

∞ Xv ∉ Range(M)

is convex for v fixed, where M is positive semidefinite, X is conformable to M, and M– is 

the pseudo-inverse of M (Lange, 2016). Given this fact and the identities (A⊗B)(C⊗D) = 

(AC)⊗(BD), (A⊗B)–1 = A−1⊗B−1, and AA−1A = A, we have

ΩnΩ−1Ωn = k 1
kj

∑
j = 1

k
Γnj ⊗ V j

1
k ∑

i = 1

k
Γ j ⊗ V j

−1
1
k ∑

i = 1

k
Γnj ⊗ V j

⩽ k ∑
j = 1

k 1
k Γnj ⊗ V j Γ j ⊗ V j

−1 Γnj ⊗ V j

= ∑
j = 1

k
ΓnjΓ j

−1Γnj ⊗ V j,

or equivalently

Ω−1 ⩽ Ωn
−1 ∑

j = 1

k
ΓnjΓ j

−1Γnj ⊗ V j Ωn
−1 . (4)

This derivation relies on the invertibility of the matrices Vj. One can relax this assumption 

by substituting Vϵ, j = Vj + ϵIm for Vj and sending ϵ to 0.

Lange and Zhou Page 8

Int Stat Rev. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Up to an irrelevant constant, the majorisations (3) and (4) jointly yield the surrogate

g Γ ∣ Γn1, …, Γnk

= − 1
2 ∑

j = 1

k
tr Ωn

−1 Γ j ⊗ V j + vec Rn
⊤ ΓnjΓ j

−1Γnj ⊗ V j vec Rn ,

where Rn is the m × d matrix satisfying

vec Rn = Ωnvec Y − XBn . (5)

The first trace here is linear in Γj and can be expressed as

tr Ωn
−1 Γ j ⊗ V j = tr MnjΓ j

Mnj = Id ⊗ 1m
⊤ 1d1d

⊤ ⊗ V j ⊙ Ωn
−1 Id ⊗ 1m , (6)

where ⊙ takes the Hadamard (pointwise) product of two matrices. To prove this fact, note 

that if Ωn
−1

rS is the (r, s)th m × m block of Ωn
−1, then the coefficient of the entry (Γj)rs is equal 

to

tr Ωn
−1

rsV j = 1m
⊤ V j ⊙ Ωn

−1
rs 1m .

Furthermore, (Id⊗1m) is a diagonal block matrix with each diagonal block equal to 1m and 

(1d1d
⊤ ⊗Vj) is a block matrix with all blocks equal to Vj.

The second trace of g(Γ|Γn) simplifies owing to the Kronecker identities vec(CDE) = (E⊤ 

⊗C)vec(D) and vec(A)⊤ vec(B) = tr(A⊤ B). It follows that the surrogate can be rewritten as

g Γ ∣ Γn1, …, Γnk

= − 1
2 ∑

j = 1

k
tr Ωn

−1 Γ j ⊗ V j + tr Rn
⊤V jRnΓnjΓ j

−1Γnj
⊤

= − 1
2 ∑

j = 1

k
tr MnjΓ j + tr Γnj

⊤Rn
⊤V jRnΓnjΓ j

−1 .

(7)

The directional derivative of g(Γ|Γn1, …, Γnk) with respect to Γj in the direction Δj is

− 1
2tr MnjΔj + 1

2tr Γnj
⊤Rn

⊤V jRnΓnjΓ j
−1ΔjΓ j

−1

= − 1
2tr MnjΔj + 1

2tr Γ j
−1ΓnjRn

⊤V jRnΓnjΓ j
−1Δj .

Because all directional derivatives of the surrogate vanish at a stationary point, the matrix 

equation

Mnj = Γ j
−1ΓnjRn

⊤V jRnΓnjΓ j
−1

(8)
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holds. Fortunately, this equation admits an explicit solution. For positive scalers a and b, the 

solution to the equation b = 1x–1ax–1 is x = ± a/b The matrix analogue of this equation is 

the Riccati equation B = X–1 AX–1, whose solution is summarised in the next lemma.

Lemma 1. Assume A and B are positive definite and L is the Cholesky factor of B. Then 
Y = (L–1)⊤ (L⊤AL)1/2L–1 is the unique positive definite solution to the matrix equation B = 

X–1AX–1.

The Cholesky factor L in Lemma 4.1 can be replaced by the symmetric square root of B. 

The solution, which is unique, remains the same. The Cholesky decomposition is preferred 

for its cheaper computational cost and better numerical stability.

Algorithm 1 summarises the MM algorithm for fitting the multi-response model (1). Each 

iteration invokes k Cholesky decompositions and symmetric square roots of d × d positive 

definite matrices. Fortunately in most applications, d is a small number.

4.2 EM Derivation

The landmark paper (Dempster et al., 1977) by Nan Laird and co-authors features the 

EM derivation for variance component models with univariate response. Later extensions 

to multivariate responses include Reinsel (1984) and Glanz & Carvalho (2018). We give a 

self-contained derivation here for ease of comparison with the MM algorithm. Derivation of 

the EM algorithm hinges upon the missing data and conditional expectation. If the response 

matrix Y can be written as the sum Y = XB + Z1 + … + Zk of independent random matrices 

with vecZj ~ N(0, Ωj), then vecY ~ N(vec(Xβ); Ω), where Ω = ∑j = 1
k Ωj. Under the matrix 

normal assumption, Ωj = Γj⊗Vj. The complete data log-likelihood for the unobserved Zj is

− 1
2 ∑

j = 1

k
lndet+Ωj − 1

2 ∑
j = 1

k
vecZj

TΩj
+ vecZj ,

where det+ Ωj denotes the pseudo-determinant of Ωj and Ωj
+ the pseudo-inverse of Ωj. To 

compute the surrogate function for the EM algorithm, one needs the conditional expectations

Enj = E vecZj ∣ Y , θn = ΩnjΩn
−1vec Y − XBn
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and the conditional covariances

Fnj = Cov vecZj ∣ Y , θn = Ωnj − ΩnjΩn
−1Ωnj,

where θ is the parameter vector. These are employed to compute the conditional second 

moments

Gnj = E vecZj vecZj
⊤ ∣ Y , θn = Fnj + Enj Enj

⊤ .

Here, the random vector Zj should be replaced by Zk – XBn when j = k.

One can readily check that Ωj
+ = Γ j

+ ⊗ V j
+ = Γ j

−1 ⊗ V j
+ for Γj invertible. Because the pseudo-

determinant of a positive semidefinite matrix equals the product of its positive eigenvalues, 

the formulas

det+ Ωj = detΓ j
ri det+ V j

si

lndet+ Ωj = rj ln detΓ j + silndet+V j

apply, where rj = rank V j
+  and sj = rank Γ j

+ . In the M step of the EM algorithm, one 

maximises the surrogate

− 1
2 ∑

j = 1

k
rjln detΓ j − 1

2 ∑
j = 1

k
tr Γ j

−1 ⊗ V j
+ Gnj . (9)

For Γj unstructured, we substitute Λj = Γ j
−1 and maximise with respect to Λj. Fortunately, the 

next lemma can be invoked.

Lemma 2. If the matrices A, B, and C are d × d, m × m, and dm × dm respectively, then

tr (A ⊗ B)C⊤ = tr Id ⊗ 1m
⊤ 1d1d

⊤ ⊗ B ⊙ C Id ⊗ 1m A⊤ .

Proof This trace identity is essentially proved in our derivation of the corresponding MM 
algorithm in Section 4.1. □

Lemma 4.2 yields

tr Λj ⊗ V j
+ Gj

(t) = tr Id ⊗ 1m
⊤ 1d1d

⊤ ⊗ V j
+ ⊙ Gj

(t) Id ⊗ 1m Λj .

The stationarity condition
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0 = 1
2rjΛj

−1 − 1
2 Id ⊗ 1m

⊤ 1d1d
⊤ ⊗ V j

+ ⊙ Gj
(t) Id ⊗ 1m

now entails the update

Γn + 1, j = rj
−1 Id ⊗ 1m

⊤ 1d1d
⊤ ⊗ V j

+ ⊙ Gnj Id ⊗ 1m

= Γ nj − rj
−1ΓnjMnjΓnj + rj

−1ΓnjRn
⊤V jRnΓnj,

(10)

where Mnj is the d × d matrix defined by (6) and Rn is the m × d matrix defined by (5). 

The second equation invokes the identities V jV j
+V j = V j, tr V jV j

+ = rank V j , and the cyclic 

permutation property of the trace.

In the case k = 1, the single update reduces to

Γn + 1 = 1
r Y − XBn

⊤V + Y − XBn ,

which matches the earlier result of Glanz & Carvalho (2018). When Γj is the scalar σj
2, the 

update (10) reduces to the classical update (Dempster et al., 1977)

σn + 1, j
2 = σn, j

2 − σn, j
4

rj
tr Ωn

−1V j − y − Xβn
⊤Ωn

−1V jΩn
−1 y − Xβn .

Algorithm 2 summarises the EM algorithm for fitting the multi-response model (2). The 

additive update of Γj in the EM algorithm differs markedly from the multiplicative update in 

the MM algorithm. The computational cost of each EM iteration is similar to that of MM. 

Both are dominated by the inversion of the md × md covariance matrix Ωn.

For the univariate response case d = 1, Zhou et al. (2019) show that the MM algorithm 

enjoys a faster convergence rate than EM. Here, we verify the same behaviour empirically 

for a variance component model with d = 4 responses for m = 500 subjects, k = 3 variance 

components, and p = 3 fixed effect covariates. We start both algorithms from the same initial 

point in each of 100 simulation replicates. Figure 2 shows that MM algorithm converges 

faster than EM in all replicates.
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4.3 A Problem Involving a Moore–Penrose Inverse

The derivations so far assume that the variance components Γj are unstructured covariance 

matrices with kd(d + 1)/2 parameters. Under a limited sample size, Γj cannot be estimated 

reliably, especially when the numbers of responses d and variance components k are large. 

A more parsimonious model imposes a low rank structure on all Γj except that associated 

with Vk = Im. Then maximising the MM surrogate function (7) boils down to the problem of 

minimizing

tr(MX) + tr NX+

where M and N are known d × d positive definite matrices and X is a positive semidefinite d 
× d matrix of rank r ≤ d. Denote the thin eigendecomposition X = UΣU⊤, where U⊤ U = Ir 

and Σ = diag(σ1, …, σr) with σi > 0. We first determine the optimal eigenvalues σi and then 

eigenvectors U. The objective is

tr U⊤MUΣ + tr U⊤NUΣ+

= tr(AΣ) + tr BΣ+

= ∑
i = 1

r
σiaii + ∑

i = 1

r
σi

−1bii,

where A = U⊤ MU, B = U⊤ NU. Setting the derivatives to zero yields the optimal 

eigenvalues σi = bii/aii.

Now the task is to minimise

f(U) = 2 ∑
i = 1

r
aiibii = 2 ∑

i = 1

r
ui

⊤Muiui
⊤Nui

under the orthogonality constraint U⊤ U = Ir, which is subject to a suite of algorithms for 

manifold optimisation such as Manopt (Boumal et al., 2014) or a simple projected gradient 

descent algorithm. We record the gradient as

∇uif(U) = 2 ui
⊤Nui

ui
⊤Mui

Mui + 2 ui
⊤Mui

ui
⊤Nui

Nui .

Alternatively, split variables by replacing U by A and U⊤ by B⊤. Then impose the 

constraints A = B and B⊤ A = Ir. The penalised objective

tr B⊤MAΣ + tr B⊤NAΣ+ + ρ
2 B⊤A − Ir F

2
+ ρ

2 A − B
F

2

for ρ > 0 large has differential with respect to A of

Lange and Zhou Page 13

Int Stat Rev. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΣB⊤M + Σ+B⊤N + ρ B⊤A − Ir
⊤B⊤ + ρ(A − B)⊤ .

Set this equal to 0 and solve for A in the form

A⊤ = − ρ−1ΣB⊤M + ρ−1Σ+B⊤N − 2B⊤ Id + BB⊤ −1 .

A similar update holds for B.

5 DISCUSSION

The senior (citizen) author of this paper remembers being mesmerised by Nan Laird’s EM 

seminar at UCLA in the late 1970s. Nan opened an entirely new toolbox of optimisation. 

The beautiful abstraction and generality of the EM principle has served the statistics 

community well for decades. The principle is capable of generating maximum likelihood 

algorithms motivated by intermediate quantities of natural statistical interest. It is worth 

stressing that EM and Fisher scoring are unique contributions by statisticians to optimisation 

practice. However, there is no panacea in optimisation. Each problem class presents unique 

challenges and deserves to be attacked from a variety of perspectives. Often hybrid 

algorithms work best.

The MM principle distils the essence of EM and frees it from the sometimes elusive 

notion of missing data. As we have witnessed, EM and MM algorithms for the same 

problem do not necessarily coincide. When they differ, their rates of convergence and 

computational complexity can also differ. Our exposition of EM and MM algorithms for 

variance component models illustrates these points. In this case, the MM algorithm appears 

faster.

The current paper offers, at best, a snapshot of the current state of the MM art. New 

applications are in the pipeline. Our recent research on constrained optimisation shows 

how the MM principle, set projection, and the Courant penalty method can cooperate to 

solve constrained problems involving nonconvexity and sparsity (Chi et al., 2014; Keys 

et al., 2019; Landeros et al., 2022; Xu et al., 2017). Many challenges remain in theory, 

numerical practice, and software development. Fortunately, current researchers stand on the 

shoulders of giants such as Nan Laird and Jan de Leeuw in attacking these issues. We 

are profoundly grateful to Nan for her many advances in computational statistics. Only a 

handful of statisticians can claim a legacy of such distinction.
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Figure 1. 
The Q function of EM and the corresponding MM surrogate minorise the log-likelihood 

surface of a univariate response, two variance component model at the point (18.5, 0.7). 

In this example, the MM surrogate hugs the log-likelihood surface tighter than the EM 

surrogate
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Figure 2. 
MM algorithm converges faster than EM for a multi-response variance component model 

with d = 4 responses for m = 500 subjects, k = 3 variance components, and p = 3 fixed effect 

covariates. L⋆ – Ln indicates the difference in log-likelihood between the found MLE and the 

nth iterate. EM and MM algorithms start from the same point in each of the 100 simulation 

replicates
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