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The gut microbiome is a significant risk factor
for future chronic lung disease
Yang Liu, PhD,a,b Shu Mei Teo, PhD,b,c,d Guillaume M�eric, PhD,b Howard H. F. Tang, PhD,b,c Qiyun Zhu, PhD,e,f
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Pekka Jousilahti, MD, PhD,k Leo Lahti, DSc,n Teemu Niiranen, MD, PhD,k,o Aki S. Havulinna, PhD,k,p Rob Knight, PhD,h,q,r

Veikko Salomaa, MD, PhD,k and Michael Inouye, PhDa,b,c,s,t,u,v,w Melbourne, Australia; Cambridge and London,

United Kingdom; Tempe, Ariz; Ithaca, NY; La Jolla, Calif; and Helsinki and Turku, Finland
Background: The gut-lung axis is generally recognized, but
there are few large studies of the gut microbiome and incident
respiratory disease in adults.
Objective: We sought to investigate the association and
predictive capacity of the gut microbiome for incident asthma
and chronic obstructive pulmonary disease (COPD).
Methods: Shallow metagenomic sequencing was performed for
stool samples from a prospective, population-based cohort
(FINRISK02; N 5 7115 adults) with linked national
administrative health register–derived classifications for
incident asthma and COPD up to 15 years after baseline.
Generalized linear models and Cox regressions were used to
assess associations of microbial taxa and diversity with disease
occurrence. Predictive models were constructed using machine
learning with extreme gradient boosting. Models considered
taxa abundances individually and in combination with other
risk factors, including sex, age, body mass index, and smoking
status.
Results: A total of 695 and 392 statistically significant
associations were found between baseline taxonomic groups and
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incident asthma and COPD, respectively. Gradient boosting
decision trees of baseline gut microbiome abundance predicted
incident asthma and COPD in the validation data sets with
mean area under the curves of 0.608 and 0.780, respectively.
Cox analysis showed that the baseline gut microbiome achieved
higher predictive performance than individual conventional risk
factors, with C-indices of 0.623 for asthma and 0.817 for COPD.
The integration of the gut microbiome and conventional risk
factors further improved prediction capacities.
Conclusions: The gut microbiome is a significant risk factor for
incident asthma and incident COPD and is largely independent
of conventional risk factors. (J Allergy Clin Immunol
2023;151:943-52.)
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economy.1,2 Both asthma and COPD are recognized as heteroge-
neous diseases with diverse phenotypes and various underlying
mechanisms.3-6 Currently, spirometry-confirmed airflow limita-
tion is the most common reference standard for establishing diag-
noses of asthma and COPD, yet a negative spirometry test result
does not rule out the disease.7,8 Other criteria that complement
evaluation include self-reported symptoms, medical history,
physical examination, and other diagnoses such as infection,
interstitial lung disease, and others.7,9 Despite rapidly changing
assessments and treatments, both asthma and COPD remain
largely underdiagnosed and thus undertreated, leading to lesser
quality of life and poorer disease outcomes.3,9

With recent advances in high-throughput sequencing,
improved characterization of the human respiratory and gastro-
intestinal microbiome has been followed by growing recognition
of the link between human microbiota and chronic respiratory
disease.10,11 The gut microbiome is by far the largest and most
studied microbial community in the human body.11,12 Although
the lung microbiome has become well characterized only
recently, the link between the lung microbiome and respiratory
diseases has been generally acknowledged.10,13-15 ‘‘Dysbiotic’’
changes in both airway and gut microbiome have been linked to
respiratory diseases; however, the precise mechanism or causal
pathway is, as yet, not well understood.16-19 Emerging evidence
suggests cross-talk between gut microbiome and the lungs, via
changes to immune responses as well as an interaction of micro-
biota between the sites, in a hypothesized ‘‘gut-lung axis.’’11,20

Existing studies on the association between gut microbiota and
asthma have focused mainly on disease development during
childhood,21-23 which is driven by evidence of the influence of
early-life microbial exposures on immune function.24,25 Previous
cross-sectional studies have reported compositional and func-
tional differences of the gut microbiome between adult patients
with asthma and healthy controls.26-29 However, little is known
about whether and to what extent the gut microbiome affects
the prospective risk of developing incident asthma in adults. For
COPD, there have been far fewer studies on the link between
the gut microbiome and disease. Recently, the first analysis of
gut microbiome in COPD by Bowerman et al30 reported that
the fecal microbiome and metabolome differentiate patients
with COPD and healthy controls, which suggests a possible
avenue for further investigation using prospective population-
scale data sets. Finally, it is only in recent years that methodolog-
ical and technological advances have opened up the possibility of
using large-scale microbial data to predict human respiratory dis-
ease,22,31 but the feasibility of suchmeasures is yet to be evaluated
for COPD.

Here, we report association analysis and predictivemodeling of
the gut microbiome and incident asthma and COPD using stool
samples from more than 7000 participants of a prospective
population-based cohort (FINRISK 2002) with electronic health
records (EHRs) over approximately 15 years of follow-up.32 Spe-
cifically, we (1) describe the gut microbial composition from
shallow shotgun metagenomic sequencing and assess the associ-
ations with incident asthma and COPD, (2) use machine learning
approaches to quantify the predictive capacities of the gut micro-
biome at baseline for incident respiratory disease, and (3)
construct integrated models of the gut microbiome and conven-
tional risk factors and evaluate their predictive performance.
METHODS

Study design and participants
The FINRISK 2002 study was a population-based nationwide survey

carried out in Finland in 2002, consisting of random samples of the population

aged 25 to 74 years drawn from theNational Population Information System.32

The sampling was stratified by sex, region, and 10-year age group so that each

stratum had 250 participants. The survey included self-administered question-

naires, health examinations conducted at the study sites by trained personnel,

and collection of biological samples. The overall participation rate was 65.5%

(n 5 8798). The participants were followed up through linkage to national

administrative electronic registers that proved highly reliable.33-35 Inclusion

criteria have been described elsewhere.32 The present study excluded partici-

pants who did not have linked EHRs of clinical end points, who had prior di-

agnoses of the diseases for prediction, whowere pregnant at baseline, and who

had prescription of antibiotics use defined as ATC code of J01 up to 6 months

before baseline. The incident cases of asthma and COPD were identified ac-

cording to International Classification of Diseases, Tenth Revision diagnosis

codes (Finnish modification) from linked EHRs, which were last followed

up byDecember 31, 2016. COPD cases were defined using International Clas-

sification of Diseases codes J43|J44; asthma cases were defined using Interna-

tional Classification of Diseases codes J45|J46, or the Social Insurance

Institution of Finland (Kela) reimbursement code 203 for asthma medication,

or medicine purchases with Anatomical Therapeutic Chemical codes R03BA|

R03BC|R03DC|R03AK. Covariates included baseline age, sex, body mass in-

dex (BMI), and smoking.Written informed consent was obtained from all par-

ticipants. The Coordinating Ethics Committee of the Helsinki and Uusimaa

Hospital District approved the FINRISK 2002 study protocols (reference no.

558/E3/2001). The study was conducted according to the World Medical As-

sociation’s Declaration of Helsinki on ethical principles.
Sample collection
During the baseline survey, stool samples were collected by willing

participants at home using an ad hoc kit constructed in-house in the Finnish

Institute for Health and Welfare (THL) with detailed instructions and a scoop

method. The participants were advised to collect the sample preferably in the

morning, but any time convenient to the participant was considered accept-

able. The samples were mailed overnight between Monday and Thursday to

the laboratory of the Finnish Institute for Health and Welfare for storing at

2208C. Special care was taken to avoid delayed transit at the post office over
the weekend. The sample collection was done under winter conditions, with

average temperatures well below 08C in Finland from January through March

2002, and no special arrangements were made regarding the temperature dur-

ing transportation. The possible short-term exposure of samples to room tem-

perature after collection and the extended time before freezing might cause

variations in detection and relative abundances of rare taxa,36,37 which is rela-

tively minor given the average environmental temperatures well below 08C
and the focus on common taxa in this study. The frozen stool samples were

transferred to University of California San Diego for sequencing in 2017.

DNA extraction, sequence processing, and

taxonomic profiling
DNA extraction was carried out using the MagAttract PowerSoil DNA kit

(Qiagen, Venlo, The Netherlands) according to the Earth Microbiome Project
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protocols.38 Libraries were prepared using a miniaturized version of the KAPA

HyperPlus Illumina-compatible prep kit according tomanufacturer’s protocol.39

The extracted DNAwas normalized to 5 ng total input per sample with an Echo

550 acoustic liquid-handling robot (Labcyte Inc, San Jose, Calif). A 1/10 scale

enzymatic fragmentation, end-repair, and adapter-ligation reactions were per-

formed with a Mosquito HV liquid-handling robot (TTP Labtech, Melbourn,

United Kingdom). Sequencing adapters were performed on the basis of the

iTru protocol40 by ligating universal adapter stubs and adding sample-specific

barcoded sequences in a subsequent PCR step. Amplified and barcoded libraries

were quantified with the PicoGreen assay and pooled in approximately equi-

molar ratios. An Illumina HiSeq 4000 instrument was used to perform shallow

shotgun metagenomics sequencing41 to a mean depth of approximately 106

reads/sample. The stool shotgun sequencing was successfully performed in

7231 individuals. The metagenomic sequences were processed using an auto-

mated Snakemake workflow pipeline (https://github.com/tanaes/

snakemake_assemble).39,42 Removal of low-quality sequences and adapters

was performed using Atropos.43 Host reads were removed with Bowtie244 by

mapping against human genome assembly GRCh38. Samples with total reads

lower than 400,000were removed to preserve the quality of data while retaining

most of the disease cases.

The raw shotgunmetagenomes were mapped to an index database based on

taxonomic nomenclature introduced and updated in the Genome Taxonomy

Database (GTDB) release 8945 using default parameters in the k-mer–based

metagenomic classification tool Centrifuge 1.0.4.46 In total, 151 phyla, 338

classes, 925 orders, 2,254 families, 7,906 genera, and 24,705 species were

uniquely identified on the basis of GTDB taxonomy. The relative abundances

of a bacterial taxon at phylum, class, order, family, genus, and species levels

were computed as the proportion of reads assigned to the clade rooted at this

taxon among total classified reads. The relative abundance of a taxon with no

reads assigned was considered as zero in the metagenome. The present ana-

lyses focused on common and relatively abundant microbial taxa with relative

abundances greater than 0.01% in more than 1% of samples. Three measures

of microbial diversity were calculated: Shannon’s alpha diversity, Chao1 rich-

ness, and Pielou’s evenness (R packages vegan v2.5.5 and otuSummary

v0.1.1). To overcome the sample comparison biases of compositional data,

the centered log-ratio (CLR) transformation was performed on abundance

data (R package compositions v1.4.2), of which zeros were substituted with

1/10 of nonzero minimum abundance.
Machine learning and statistical analysis
A machine learning framework was used to develop prediction models at

different taxonomic levels separately. The samples were randomly partitioned

into 2 subsets: (1) a training data set (70% of samples) for developing models

and (2) a validation data set (30% of samples) for evaluating prediction

performance.We resampled the data 10 times and performed the same training

and validation procedure for each sampling partition. In each training data set,

we first selected microbial indicators for predicting incident asthma and

COPD; we analyzed the relationships between taxon-level abundance and

incident disease using logistic regression adjusted for age and sex, Cox

regression for time to disease onset adjusted for age and sex, and Spearman

correlation. These approaches have been widely used to explore the relation-

ship between microbiome features and disease-related traits in previous

studies.30,31,47 Logistic regression naturally models binary outcomes; Cox

regression takes into account the time until events occur; Spearman correlation

is a nonparametric measure of the strength and direction of nonlinear correla-

tion. To include any taxa with potential predictive signals, we considered taxa

that were associated with incident diseases at a significance threshold of P less

than .05 by any of the above approaches for further analyses. To avoid over-

fitting of feature selection, we did not use algorithms that take into account

all the features simultaneously. The selected taxa together with diversity mea-

surements were considered as microbial predictors for developing gradient

boosting decision tree model, an ensemble method of sequential and additive

training of trees. Each tree fits the residuals of the previous tree in sequence to

minimize errors, which makes gradient boosting a highly efficient method. In

addition, gradient boosting decision trees are robust to correlated features that

naturally exist in microbiome abundance data and apply regularization to
reduce overfitting. Gradient boosting decision tree models were implemented

with XGBoost 0.82 through 5-fold cross-validation to determine optimal hy-

perparameters with Bayesian optimization (R package mlrMBO 1.1.2).

XGBoost models were developed with objective ‘‘binary:logistic’’ and param-

eters considered include eta[0.001, 0.5], max_depth[3,10], min_child_weight

[5,100], subsample[0.8,0.95], colsample_bytree[0.6,0.85], gamma[0,5],

lambda[0.0001, 1], max_delta_step[0,8], early_stopping_rounds[10,20], and

nrounds[100,1500]. The optimal settingwas then trained on thewhole training

data to build the finalmodel used in validation. For asthma and COPD, the pre-

dicted values from the optimal gradient boosting model of gut microbial fea-

tures were used as the gut microbiome scores in the validation data set where

the scores were used for further Cox analyses for each disease condition. We

additionally performed ridge logistic regression to compare the prediction

performance using the same samples for training and testing. The gradient-

boosted trees-based models outperformed those based on ridge logistic

regression. A similar trend of prediction performance across taxonomic levels

was observedwith bothmethods. The final performance across variousmodels

and partitions was assessed in the validation data sets.

Wilcoxon rank-sum test was performed to compare differences in patient

characteristics and microbial diversity metrics between incident cases and

noncases across all samples for each disease. Cox regression with adjustment

of age and sex was used to assess the association between taxon-level CLR

abundance and incident disease using all samples. Benjamini-Hochberg

correction was used to control for multiple testing at each taxonomic rank,

and false-discovery rate less than 0.05 was considered as statistical

significance. We additionally applied Benjamini-Yekutieli correction across

all taxonomic levels and reported corrected P values.

Cox models of conventional risk factors and in combination with the gut

microbiome score were built using the time from baseline to the occurrence of

the disease or end of follow-up in the validation data set (R package survival

2.44). Sensitivity analyses considered income and education level as risk

factors and were performed in the validation data set using samples with

complete data of risk factors. Association of risk factors was assessed

separately and in combination using Cox models for incident asthma and

COPD. Education was classified into 3 groups, low, middle, and high

education, on the basis of years at school tertiles adjusted for birth cohort as

reported in the questionnaire. Income level was represented as an ordinal

variable of 1 to 9 according to household’s income before tax deduction with

the following cutoffs: less than 50,000 FIM (<8,400V), 50,001 to 100,000 FIM

(8,401-16,820V), 100,001 to 150,000 FIM (16,821-25,230V), 150,001 to

200,000 FIM (25,231-33,640V), 200,001 to 250,000 FIM (33,641-

42,050V), 250,001-300,000 FIM (42,051-50,460V), 300,001-350,000 FIM

(50,461-58,870V), 350,001-400,000 FIM (58,871-67,280V), and more than

400,000 FIM (>67,280V). Statistical analyses were carried out with R 3.6.1.
Data and code availability
The FINRISK data for the present study are available with a written

application to the THL Biobank as instructed on the website of the Biobank

(https://thl.fi/en/web/thl-biobank/for-researchers). A separate permission is

needed from FINDATA (https://www.findata.fi/en/) for use of the EHR data.

Custom code for analysis in this study is available at https://github.com/

dpredprj/gut_respiratory_link.
RESULTS
A total of 7115 FINRISK02 participants with baseline gut

microbiome profiles and EHR linkage were available for the
present study. A summary description of the cohort is given in the
Methods section, and baseline characteristics are reported in
Table I. After quality control and exclusion criteria were applied,
435 and 145 incident cases of asthma and COPD, respectively,
occurred during a median follow-up of 14.8 years after gut micro-
biome sampling at baseline. Notably, more males than females
developedCOPD, and incident COPD cases displayed older base-
line age than noncases (P < .001). The age of onset of incident

https://github.com/tanaes/snakemake_assemble
https://github.com/tanaes/snakemake_assemble
https://thl.fi/en/web/thl-biobank/for-researchers
https://www.findata.fi/en/
https://github.com/dpredprj/gut_respiratory_link
https://github.com/dpredprj/gut_respiratory_link


TABLE I. Characteristics of study participants

Characteristic

Asthma COPD

Incident cases (n 5 435) Noncases (n 5 5244) Incident cases (n 5 145) Noncases (n 5 5932)

Sex: female, n (%) 252 (57.9) 2740 (52.3) 43 (29.7) 3204 (54)

Baseline age (y) 50.9 (40.5-60.5) 50.5 (39.2-59.3) 59.5 (53.6-66.5) 50.5 (39.2-59.5)

Age at first event (y) 57.6 (46.7-67.3) — 69.1 (61.3-73.6) —

BMI (kg/m2) 26.7 (24-30.7) 26.3 (23.7-29.3) 26.6 (23.5-29.6) 26.4 (23.7-29.5)

Current smoker, n (%) 151 (34.8) 1192 (22.8) 105 (72.9) 1313 (22.2)

Ex-smoker, n (%) 94 (21.6) 1181 (22.5) 32 (22.1) 1321 (22.3)

Continuous variables are presented as median (interquartile range).
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COPD was older compared with that of incident asthma (P <
.001). A higher BMI was observed in asthma cases versus non-
cases (P5.002), whereas therewas no difference in BMI between
COPD cases and noncases. For both COPD and asthma, a higher
proportion of current smokers during the survey year were
observed in disease cases than in noncases.

Gut microbiome composition and taxon-level

abundances
Individual gut microbiome compositions were characterized by

shallow shotgunmetagenomic sequencing of stool samples (see the
Methods section). The present study focused on microbial taxa
whose relative abundance exceeded 0.01% in at least 1% of
samples; this yielded 46 phyla, 71 classes, 124 orders, 232 families,
617 genera, and 1224 species, as classified according to the
Genome Taxonomy Database (GTDB) release 89.45 Most of the
gut microbiota were dominated by the Firmicutes_A and Bacteroi-
dota phyla (Fig 1, A), which mostly comprised members of classes
Clostridia and Bacteroidia, respectively. At the genus level, Faeca-
libacterium and Agathobacter in phylum Firmicutes_A, as well as
Bacteroides, Bacteroides_B, and Prevotella in phylum Bacteroi-
dota, were most abundant in most samples (Fig 1, B).

Baseline alpha-diversity measures differed between incident
asthma cases and noncases (P < .01), with lower values of Shan-
non’s, Chao1, and Pielou’s indices in individuals who went on
to develop asthma (Fig 1, C). There was no statistical difference
in alpha-diversity indices between COPD cases and noncases.
Principal- component analysis of the CLR-transformed abun-
dances showed no clear separation between incident cases and
noncases (Fig 1, D), suggesting that the association of incident
asthma and COPD with the gut microbiome was unlikely related
to the whole microbial community and may be attributable to spe-
cific microbial taxa.

We assessed the association between baseline taxon-level
microbial abundances and incident respiratory diseases using
Cox regression, based on CLRs (see the Methods section). At 5%
false-discovery rate, statistically significant associations of
incident asthma were found in 5 phyla, 5 classes, 18 orders, 111
families, 257 genera, and 299 species (see Table E1 in this arti-
cle’s Online Repository at www.jacionline.org); for incident
COPD, we found associations with 5 phyla, 7 classes, 32 orders,
57 families, 133 genera, and 158 species (see Table E2 in this
article’s Online Repository at www.jacionline.org). Of the
asthma- and COPD-associated taxa, 76% and 68.6% showed pos-
itive associations with disease incidence, respectively. A number
of highly abundant genera were associated with incident asthma,
such as Bacteroides, Faecalibacterium, Agathobacter, Blautia_A,
and Roseburia (Fig 1, E). Among the most abundant COPD-
associated genera, increased abundance of Faecalicatena, Oscil-
libacter, Lawsonibacter, Flavonifractor, and Streptomyces and
reduced abundances of Lachnospira, ER4, KLE1615, Eubacter-
ium_F, and Coprococcus were associated with incident COPD.
Gut microbiome and gradient boosting decision

trees to predict incident asthma and COPD
To investigate whether the baseline gut microbiome was

predictive of incident asthma and COPD, we train and validate
prediction models via the machine learning algorithm of gradient
boosting decision trees. These models were trained with 5-fold
cross-validation in 70% of the individuals and then the perfor-
mances were validated in the remaining 30% (see the Methods
section); all performance metrics given are based on the 30%
validation set unless otherwise specified. Models were developed
at different taxonomic levels separately and for a combination of
all taxonomic levels (see Fig E1 in this article’s Online Reposi-
tory at www.jacionline.org). To assess sampling variation, we re-
sampled training and testing partitions at different taxonomic
levels 10 times and report mean values of prediction performance.

The best performance was obtained at individual taxonomic
levels, rather than their combination, for both asthma and COPD
prediction. Generally better prediction performance was attained
at lower taxonomic levels, particularly for COPD where the
highest average area under the operating characteristic curve
(AUC) was at species level (mean AUC, 0.780), followed by
genus (mean AUC, 0.734) and family (mean AUC, 0.688) levels.
For prediction of incident asthma, the best performance was
obtained at family level (mean AUC, 0.608), with slight
attenuation of AUC scores obtained at genus (mean AUC,
0.592) and species (mean AUC, 0.593) levels.

The gut microbiome had greater predictive value

than individual conventional risk factors
To compare the predictive value of conventional risk factors

and the gut microbiome for incident asthma and COPD, we first
conducted univariate analysis using Cox models. We used the
optimal cross-validated gradient boosting model at family and
species level for asthma and COPD, respectively, and refer to the
resultant score as a ‘‘gut microbiome score’’ for each condition.
We found that the gut microbiome score had a relatively high pre-
dictive capacity with C-indices of 0.623 for asthma and 0.817 for
COPD, which were each greater than those of other risk factors
(Fig 2). Smoking status at baseline was associated with increased
risk of both asthma (hazard ratio [HR], 2.21; 95% CI, 1.53-3.20;
P < .001) and COPD (HR, 8.16; 95% CI, 4.55-14.64; P < .001)
compared with nonsmoking (Table II). Increased incidence of

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 1. Gut microbiome composition and characteristics. A,Gut microbiome profiles at phylum level. B, Box

plots of the 20 most abundant genera sorted by mean relative abundance. C, Shannon’s, Pielous’s, and

Chao1 indices at genus level between cases and noncases. Median values are represented by horizontal

lines. D, Principal-component analysis on CLR-transformed abundances at genus level. E, Genera associ-

ated with incident asthma or COPD surpassing a false-discovery rate threshold of 5% (PFDR < 0.05) with

Benjamini-Hochberg correction. Only the top 10 most abundant genera for each of combination of positive

or negative associations, with COPD or asthma.
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FIG 2. Predictive capacity of each risk factor separately for (A) incident asthma or (B) COPD. Univariate Cox

models were used for each of sex, baseline age, BMI, smoking, and gut microbiome individually. Points and

error bars represent the C-indices and 95% CIs.
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FIG 3. Subgroup analyses for (A) incident asthma or (B) COPD. Cox models were applied to test for inter-

actions between gut microbiome and patient characteristic subgroups. Points and error bars represent

HRs per SD and 95% CIs of gut microbiome score across subgroups.

TABLE II. Association of risk factors separately and jointly for incident asthma and COPD

Covariate

Asthma COPD

Univariable Multivariable Univariable Multivariable

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Sex: male 0.71 (0.49-1.03) .07 0.67 (0.46-0.97) .03 2.19 (1.25-3.82) .01 1.35 (0.76-2.4) .31

Baseline age (y) 0.99 (0.98-1.01) .28 1.00 (0.98-1.01) .75 1.07 (1.04-1.1) <.001 1.1 (1.07-1.13) <.001

BMI (kg/m2) 1.02 (0.99-1.06) .22 1.03 (0.99-1.07) .13 1.02 (0.97-1.08) .48 0.99 (0.92-1.06) .8

Smoking (yes) 2.21 (1.53-3.2) <.001 2.06 (1.4-3.03) <.001 8.16 (4.55-14.64) <.001 11.07 (5.81-21.09) <.001

Gut microbiome 1.44 (1.23-1.67) <.001 1.34 (1.15-1.57) <.001 1.39 (1.3-1.49) <.001 1.18 (1.08-1.29) <.001

Gut microbiome score is represented as microbiome-based predictions per SD. All analyses were performed in the validation set.
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COPD was also associated with male sex (HR, 2.19; 95% CI,
1.25-3.82; P 5 .01) and older baseline age (HR, 1.07 per year;
95%CI, 1.04-1.10;P <.001). The gutmicrobiome scorewas asso-
ciated with increased incidence of both asthma (HR, 1.44 per SD;
95% CI, 1.23-1.67; P < .001) and COPD (HR, 1.39 per SD; 95%
CI, 1.30-1.49; P < .001). In sensitivity analysis that additionally
accounted for income and education levels, the findings of higher
predictive capacity in C-index of the gut microbiome score than
other individual risk factors further held for both asthma and
COPD (see Table E3 in this article’s Online Repository at
www.jacionline.org), and higher income and high education level
were associated with lower risk of COPD (HR, 0.63, 95% CI,
0.53-0.76, P < .001, and HR, 0.3, 95% CI, 0.14-0.67, P 5 .003,
respectively).
Integrated prediction models of the gut microbiome

and conventional risk factors
When integrating risk factors and gut microbiome score, the

Coxmodel for asthma showed that current smoking status and gut
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microbiome were associated with higher risk (HR, 2.06, 95% CI,
1.40-3.03, P < .001, and HR, 1.34 per SD, 95% CI, 1.15-1.57,
P < .001, respectively), and male sex was associated with lower
risk (HR, 0.67, 95% CI, 0.46-0.97, P 5 .03), whereas there
were no associations for baseline age and BMI at a statistical sig-
nificance level (Table II). For COPD, baseline age, current smok-
ing status, and gut microbiome score were statistically significant
predictors (HR, 1.1 per year, 95% CI, 1.07-1.13, P < .001; HR,
11.07, 95% CI, 5.81-21.09, P < .001; and HR, 1.18 per SD,
95% CI, 1.08-1.29, P < .001, respectively). Although consistent
with the individual predictive power of the gut microbiome score,
the multivariable Cox model showed that the risk associated with
current smokers at baseline was significantly greater than that for
other risk factors for COPD. Sensitivity analyses additionally ad-
justing the Cox model for income and education level confirmed
similar estimates of effects of sex, age, BMI, smoking, and the gut
microbiome score in the combined model (see Table E3 in this ar-
ticle’s Online Repository at www.jacionline.org), whereas no sta-
tistical significance was detected for income and education.

In subgroup analyses, the gut microbiome score association
patterns were generally consistent with those above (Fig 3). For
COPD, where current smoking status had a relatively large HR,
the gut microbiome scorewas independently associated with inci-
dent COPD in both current smokers and nonsmokers. In individ-
uals who indicated past smoking but who were not current
smokers at survey (n 5 414), we found that the gut microbiome
score was not associated with incident COPD (HR, 1.22 per
SD; 95% CI, 0.89-1.68; P 5 .22) but that, in individuals who re-
ported never smoking (n 5 970), there was an association with
incident COPD (HR, 1.40 per SD; 95% CI, 1.02-1.91; P 5 .04).
Finally, in COPD, we observed evidence for statistical interac-
tions of the gut microbiome score with age and sex (Fig 3).

The integrated models showed improved predictive capacity
for both incident asthma and COPD (Fig 4). For asthma, a refer-
ence model of age, sex, and BMI yielded C-index of 0.567; addi-
tion of smoking status and then gut microbiome score increased
the C-index further to 0.626 and 0.656, respectively. For COPD,
the reference model of age, sex, and BMI yielded C-index of
0.735; addition of smoking status and then gut microbiome score
increased the C-index further to 0.855 and 0.862, respectively.
DISCUSSION
In this prospective study, we investigated the association and

predictive capacity of the gut microbiome for future chronic
respiratory diseases, asthma and COPD, in adults using shotgun
metagenomics. We demonstrated that the gut microbiome is
associated with incident asthma and COPD and evaluated the
relative contributions of traditional risk factors and a gut micro-
biome score. We then constructed integrated risk models that
maximized predictive performance. Taken together, our findings
indicate that the gut microbiome is a potentially substantive
biomarker with clinical validity for both asthma and COPD.

The gut and lung microbial communities, although residing in
distal sites, are dominated by broadly similar bacterial phyla,
including Firmicutes and Bacteroidetes, but differ in local
compositions and total microbial biomass.11 Some of our findings
are relevant to previous microbial studies of the respiratory tract.
For example, Haemophilus and Streptococcus have been previ-
ously found to be positively associated with respiratory illnesses
in the airways.18,48,49 In our gut microbiome samples, we also
found positive associations between Streptococcus and incident
asthma; however, we found that multiple Haemophilus spp.
were negatively associated with incident COPD. An increased
abundance of Pseudomonas spp. from the airway microbiome
was previously reported in COPD exacerbations50,51 and
impaired pulmonary function.52,53 Consistent with this, we found
positive associations of the Pseudomonas, Pseudomonas_A, and
Pseudomonas_E genera (all part of Pseudomonas according to
the NCBI taxonomy) with incident asthma and COPD. These
findings support the emerging evidence of possible functional
links between the respiratory tract and the gastrointestinal tract;
however, the underlying mechanisms by which microorganisms
between the sites may interact remain unclear.54,55

Despite increasing recognition of the existence of gut-lung
cross-talk, the role of the gut microbiota in respiratory disease has
been primarily studied in children. Its relevance in adults has been
unclear. Previous studies have demonstrated that the early-life gut
microbial alteration and maturation patterns influence the risk of
asthma development in childhood.22,23,56 In our data, we found
that higher abundances of Escherichia,31 Enterococcus, Clos-
tridium, Veillonella, and B fragiliswere associated with increased
incidence of asthma in adulthood, consistent with that observed
for childhood asthma.22,57,58 In contrast to previous findings
showing that the relative abundances of Faecalibacterium, Rose-
buria, and Flavonifractor were decreased in childhood
asthma,22,57 we found positive associations with adult-onset
asthma. We confirmed previous findings that increased abun-
dances of Clostridium and Eggerthella lenta in the adult gut mi-
crobiome were associated with asthma.27 The relationship
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between the gut microbiome and COPD is even less understood.
A recent study reported that Streptococcus sp000187445 was en-
riched in patients with COPD and was correlated with reduced
lung function,30 which was also confirmed by a positive associa-
tion with incident COPD in our study.

Regarding consideration of causality in observational studies,
it is challenging to determine whether the composition of the gut
microbiome is a cause or consequence of respiratory disease. In
this respect, one strength of our study was the use of baseline gut
microbiome and incident disease systematically identified
through EHRs. The follow-up using EHRs was nearly complete
in all samples (except for the small number of participants who
moved abroad permanently). Using machine learning models, we
found that the baseline gut microbiome had moderate predictive
capacities in distinguishing incident cases from noncases for
asthma and COPD, suggesting that there are detectable changes in
the gut microbiome antecedent to the onset of symptomatic
disease. This does not confirm causality or eliminate other
possibilities. For example, disease-associated host changes and
gut microbial alteration may influence each other and operate
simultaneously.54 We also showed that the association between
gut microbiome–based predictions and incident asthma or
COPD was largely independent of age, sex, BMI, and smoking,
all of which can influence susceptibility to respiratory dis-
eases.59-62 Moreover, interactions of gut microbiome by sex and
age were found for COPD with relatively weak signals, suggest-
ing different impact of gut microbiome on age and sex groups,
consistent with findings in other settings.63-65

Importantly, our study affirms the large body of evidence that
smoking is associated with respiratory illness, especially COPD.
Despite many ways to characterize the smoking phenotype, we
found that individuals who reported being current smokers were at
high risk of future asthma and COPD. The association between
smoking and gut microbiota is well established, and smoking
cessation has been shown to have profound, putatively causal
effects on the gut microbiome.66 Our results show that, particularly
for COPD, the gut microbiome is both a substantial independent
predictor of future disease and that its predictive power is partially
explained by smoking behavior. As such, our findings are both
consistent with previous studies and take us a step closer to delin-
eating which and to what extent particular gut microbial taxa sit
along the causal path from smoking behavior to future asthma
and COPD. For the latter, larger prospective studies will be neces-
sary but population-scale gut microbiome and e-health studies are
underway. There are other traditional risk factors that could be
investigated in future studies, such as family history, environmental
pollutants, exposure to allergens or irritants, and other lifestyles.
Family history of asthmaand/or allergyhas been linked to increased
risk of childhood asthma in particular, and the impact of paternal
asthma continues to young adulthood.67-69 Although previous
studies have suggested that the impact of family history of asthma
and allergy decreases with age and paternal allergic disease is not
associatedwith late-onset asthmawith a cutoff age of 12 years,70,71

the effect of family history on adult-onset asthma could be further
explored in the future.

There are limitations of the present study. First, despite a
relatively large sample size, our study was enrolled from a single
European country (Finland), and the generalizability of the
findings to other geographically and culturally distinct settings
will require further investigation in external cohorts with baseline
gut microbiome and long-term respiratory disease data.
Furthermore, only 1 time point of the gut microbiome was
sampled per individual, which did not allow for dynamic or
temporal assessment of gut microbiome alterations along with
incident disease onset. Changes in diet and environmental
exposures (apart from smoking) can induce changes in gut
microbiota and should be considered in future studies. Limita-
tions also concern the disease phenotyping in the present study,
where incident cases were identified by a combination of EHRs of
diagnosis codes, medicine purchases, and insurance reimburse-
ments (see theMethods section). This might be subject to possible
misclassification of borderline cases due to incorrect diagnostic
labeling, particularly overlabeling of asthma. For example,
patients with COPD might be mislabeled as asthma due to
smoking-related stigma of COPD and better medication re-
imbursements of asthma. Inaccurate diagnosis may also be
attributed to the asthma-COPD overlap syndrome characterized
by coexistence of clinical features of both asthma and COPD.72

Future studies should consider differential diagnostic characteris-
tics of asthma, COPD, and potentially a third group of asthma-
COPD overlap syndrome for improved disease phenotyping.73-75

Although the asthma and COPD phenotypes can be difficult to di-
agnose or indeed overlap in some individuals, our study takes a
pragmatic approach and future clinical cohorts may be necessary
to precisely quantify disease-specific effects. Finally, although
formal lung function test results (FEV1, FVC) may further
improve prediction, it was not feasible to perform whole-scale
clinical examination of airflow obstruction at the population level.
Regardless, our study demonstrates that future exploration of the
influence of the gut microbiome in severity and progression of
asthma and COPD is warranted, and may lead to further clinically
significant findings.

Our study supports the role of gut microbiome in adult
respiratory disease and as potential biomarkers that might aid in
risk profiling of asthma and COPD. The underlying mechanisms
and causal links by which gut microbiota influence the lung, and
vice versa, remain to be established.

Key message

d The gut microbiome features are associated with incident
COPD and adult-onset asthma.

d The gut microbiome is potentially a predictive biomarker
for primary prevention of asthma and COPD.
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