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The role of N6-methyladenosine modification in
the life cycle and disease pathogenesis of hepatitis
B and C viruses
Geon-Woo Kim 1 and Aleem Siddiqui1

Abstract
N6-methyladenosine (m6A) is the most prevalent modification of mammalian cellular RNAs. m6A methylation is linked
to epigenetic regulation of several aspects of gene expression, including RNA stability, splicing, nuclear export, RNA
folding, and translational activity. m6A modification is reversibly catalyzed by methyltransferases (m6A writers) and
demethylases (m6A erasers), and the dynamics of m6A-modified RNA are regulated by m6A-binding proteins (m6A
readers). Recently, several studies have shown that m6A methylation sites have been identified in hepatitis B virus
(HBV) transcripts and the hepatitis C virus (HCV) RNA genome. Here, we review the role of m6A modification in HBV/
HCV replication and its contribution to liver disease pathogenesis. A better understanding of the functions of m6A
methylation in the life cycles of HBV and HCV is required to establish the role of these modifications in liver diseases
associated with these viral infections.

Introduction
Eukaryotic cellular RNAs contain diverse chemical

modifications, including N6-methyladenosine (m6A), 5-
methylcytidine (m5C), uridine to pseudouridine (U to Ψ),
adenosine to inosine (A to I), and addition to N7-
methylguanosine (m7G)1. Among the diverse RNA mod-
ifications, m6A methylation, methylation of the adenosine
base at the nitrogen 6 position, is the most well-
characterized and the most common modification of
cellular RNAs2,3. This modification has been linked to
various biological processes, including innate immune
responses, sex determination, stem cell differentiation,
circadian clock regulation, meiosis, stress responses, and
cancer development3. m6A methylation was first identi-
fied in the 1970s but the technology to map individual-
specific m6A sites in a given RNA became available only
recently4. The development of highly sensitive detection
methods with high-throughput sequencing revealed the
topology of m6A in the cellular transcriptome2,5. Over

25% of mammalian transcripts contain m6A modifications
and m6A modification occurs within the consensus
DRACH/RRACH motif (D=A, G, or U; R=G or A;
H=A, C, or U)2. Furthermore, this modification is typi-
cally enriched near the stop codon and the 3′-untranslated
region (UTR)2. Similar to DNA methylation, m6A
methylation is reversibly catalyzed by various methyl-
transferases and demethylases (Fig. 1). The cellular
m6A methyltransferase machinery is composed of
methyltransferase-like 3 (METTL3), METTL14, and
WT1-associated protein (WTAP)6,7. Other additional
subunits, such as Vir like m6A methyltransferase asso-
ciated (VIRMA), zinc finger CCCH-type containing 13
(ZC3H13), and RNA-binding motif protein 15/15B
(RBM15/15B), are also components of the m6A machin-
ery8–11. WTAP regulates the recruitment of the optimal
substrate and nuclear localization of METTL3/148.
RBM15/15B interacts with the U-rich RNA regions,
ZC3H13 is required for nuclear import of the METTL3/
14 complex, and VIRMA is necessary for writing m6A
in the 3′-UTR9–11. Fat mass and obesity-associated
protein (FTO) and AlkB homolog 5 (ALKBH5) are m6A
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demethylases that remove m6A from cellular RNA
(Fig. 1)12,13. The dynamics of m6A modified RNAs are
regulated by m6A readers, YT521-B homology (YTH)
domain family proteins (YTHDF1/2/3 and YTHDC1/2)14.
YTHDF3 first recognizes m6A-modified RNA and recruits
the YTHDF1 or 2 protein15. The YTHDF1-YTHDF3
complex induces the translation of m6A-methylated
mRNA, while the YTHDF2-YTHDF3 complex causes
the degradation of its target mRNA degradation16,17.
Thus, YTHDF3 regulates mRNA degradation and trans-
lation by cooperating with YTHDF1 or 2. Because
YTHDF2 has no RNase activity, it interacts with the
CCR4-NOT (C-C motif chemokine receptor 4 negative on
TATA-less) deadenylase complex to promote the degra-
dation of its target RNA17. YTHDC1 regulates mRNA
nuclear export in cooperation with the major export
receptor NXF1, as well as RNA splicing18,19. YTHDC2 is
the only m6A reader protein containing an RNA helicase
domain and induces the translation of m6A-modified
mRNA by interacting with a small ribosomal subunit20,21.
The helicase activity of YTHDC2 is essential for
YTHDC2-mediated mRNA translation, implying that
YTHDC2 helps to resolve mRNA secondary structure22.
Thus, m6A-methylated RNAs are epigenetically regulated
by diverse m6A-binding proteins. However, the mechan-
ism by which the m6A site recruits specific m6A binding
proteins remains to be elucidated.
Several recent reports highlighted the role of m6A in the

genomes of RNA viruses as well as in the transcripts of
DNA viruses23–32. m6A modification can affect viral life
cycles in a complex way. Viral RNAs can be m6A
methylated; therefore, m6A can play an antiviral or pro-
viral role in the viral life cycle through the recruitment of
different m6A-binding proteins. In addition, m6A can

indirectly affect viral replication by regulating the
expression of specific genes involved in the viral life cycle.
A better understanding of the biological functions of m6A
modification in viruses is important to establish their role
in viral pathogenesis and to design innovative prevention
measures to affect viral infection. In this review, we will
summarize the emerging roles of m6A modifications in
HBV and HCV infections and discuss their functions and
associated mechanisms related to the biological processes
of viral infection.

The role of m6A during hepatitis B and C virus
infections
The role of m6A in the HBV life cycle
HBV infection leads to chronic hepatitis and carries a

risk for the development of hepatocellular carcinoma
(HCC)33,34. HBV belongs to the Hepadnaviridae family
and contains a partially double-stranded DNA genome.
Although HBV is a DNA virus, it replicates by reverse
transcription of an RNA intermediate termed pregenome
RNA (pgRNA) to ultimately produce viral genomic DNA
in a covalently closed circular conformation termed
cccDNA35. Initially, pgRNA is reverse transcribed to
relaxed circular DNA (rcDNA) in the cytoplasmic core
particles, and rcDNA is subsequently converted to
cccDNA in the nucleus, where it functions as a template
for transcription34. Transcription from cccDNA is
achieved through the cellular polymerase II machinery to
synthesize viral RNAs. Synthesis of HBV transcripts is
initiated from different transcription start sites in the
HBV genome, but it terminates at a common transcrip-
tion termination signal34. Hence, HBV transcripts have
different 5′ termini but share a common 3′ terminal
sequence. These HBV transcripts encode the following

Fig. 1 The roles of the cellular m6A machinery and m6A reader proteins in regulating cellular RNA and viral RNA.m6A modification occurs in
consensus DRACH motifs of cellular and viral RNAs. This modification is reversibly catalyzed by an m6A ‘writer’ or ‘eraser’. The m6A ‘writer’
(methyltransferase) complex is composed of METTL3, METTL14, and WTAP, and FTO or ALKBH5 is m6A ‘eraser’ (demethylase). The dynamics of m6A-
modified RNAs are regulated by the m6A ‘reader’ proteins, including YTHDF1/2/3, YTHDC1/2, and IGF2BP1/2/3.
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proteins: surface (HBs), precore or ‘e’ (HBe), and core
(HBc) antigen, polymerase, and X (HBx) proteins.
We first reported that HBV transcripts were m6A

methylated at an m6A consensus motif (A1907) located
within the epsilon stem-loop region present in all HBV
RNAs23. pgRNA of HBV acquires this m6A motif at two
locations-at the 5′ and 3′ termini due to terminal redun-
dancy, but this motif is presented only once in the 3′
termini of the other subgenomic viral transcripts34.
Importantly, m6A modification of HBV RNAs differen-
tially regulates the viral life cycle depending on its posi-
tion in the viral RNAs (Fig. 2)23. m6A modification at the
3′ epsilon stem-loop of HBV RNA transcripts reduces
their RNA stability, leading to decreased viral protein
expression23. The reduction in viral RNA stability
resulting from m6A is mediated by the recognition of the
m6A site at the 3′ epsilon stem-loop by YTHDF2 and 3
(m6A binding proteins). On the other hand, the m6A site
located in the 5′ epsilon stem-loop of pgRNA positively

regulates reverse transcriptase activity, but the exact
mechanism remains to be characterized. Therefore, these
results reveal that m6A modification in the epsilon stem-
loop structure of HBV regulates effects on HBV RNA
stability and reverse transcription.
We have recently discovered that HBV utilizes a specific

mechanism to guide m6A modification on viral RNAs36.
During HBV infection, HBx interacts with m6A methyl-
transferases, which in turn stimulates their nuclear import
and thereby delivers the m6A methyltransferases to HBV
cccDNA to achieve cotranscriptional m6A modification of
HBV RNAs. On the other hand, infection with HBx-
defective HBV fails to produce m6A-modified viral tran-
scripts36. In this role, HBx regulates the HBV life cycle by
modulating m6A modification of viral RNAs. These findings
highlight the unique role of HBx in the cotranscriptional
RNA modification at the sites of transcription initiation, in
addition to its transactivating function affecting the Smc5/6
complex and HBx-DDB-mediated degradation activity37–39.

Fig. 2 The role of m6A modification in differentially regulating the HBV life cycle. HBV transcripts are cotranscriptionally m6A-methylated at a
consensus DRACH motif in the epsilon stem-loop region. HBV pgRNA contains two such motifs at the 5′ and 3′ termini owing to terminal
redundancy, but other viral transcripts contain only one such motif, in the 3′ terminal sequence. m6A methylation of the 5′ terminus occurs in the
area surrounding the priming site for reverse transcription initiation and induces reverse transcription of HBV DNA from pgRNA, whereas m6A at the
3′ terminus in all viral transcripts reduces RNA stability by interacting with YTHDF2.
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In addition, m6A modification plays an important role
in interferon (IFN)-mediated inhibition of HBV replica-
tion40. IFN treatment of HBV-infected cells promotes the
reduction of viral replication through the degradation of
viral RNAs by the exonuclease activity of the IFN-
stimulated gene 20 (ISG20)41. ISG20 induced by IFN
treatment is recognized by YTHDF2, and YTHDF2 then
deliveries ISG20 to the m6A-methylated HBV RNAs for
their degradation40. Mutation of the m6A site of HBV
RNA abrogates ISG20-mediated viral RNA degradation.
This study shows a new function of m6A reader proteins
in IFN-mediated HBV RNA degradation.

The role of m6A in the HCV life cycle
Hepatitis C virus (HCV) belongs to the Flaviviridae

family42. HCV is a positive-sense single-stranded RNA
virus and encodes a polyprotein of ~3010 amino acids
that is cleaved by cellular and viral proteases into struc-
tural and nonstructural proteins. The viral polymerase has
RNA-dependent RNA polymerase activity to replicate
viral RNA from a template RNA.
Horner and colleagues reported that the HCV RNA

genome is m6A methylated at approximately 19 regions
and that all YTHDF proteins broadly interact with the
HCV genome24. Interestingly, m6A modification in the
HCV genome decreased extracellular viral RNA levels and
viral particle production without affecting viral replication
or protein translation. YTHDF1-3 proteins recognized the
m6A-methylated HCV genome and relocalized HCV
RNAs to the lipid droplet fraction to inhibit HCV RNA
packaging into virions (Fig. 3)24. To elucidate the func-
tional relevance of a specific m6A site in the HCV gen-
ome, Gokhale et al. mutated m6A sites within the HCV E1
coding region. Mutations of these m6A sites in the HCV
E1 gene increased HCV virion production by abolishing
HCV E1 recognition by YTHDF1-3 proteins. These
results suggest that m6A modifications of the HCV E1
gene regulate viral RNA packaging into virions via inter-
actions with YTHDF1-3 proteins24.
Gokhale et al. further analyzed m6A motifs in the RNA

genomes of other members of the Flaviviridae family,
including dengue, yellow fever, West Nile, and Zika
viruses24. Among these viruses, some m6A sites were
enriched within the NS3 and NS5 regions. Furthermore,
HCV, Zika virus, and dengue virus contained similar m6A
sites in the E1 region. Therefore, these data suggest that
potentially conserved m6A sites in flaviviruses could reg-
ulate the virion maturation process.

The role of m6A in the modulation of host response by
HBV and HCV infections
Activation of host pattern recognition receptors (PRRs) by

viral infection allows the detection of pathogen-associated
molecular patterns and initiates innate immune responses

to ultimately eliminate viral infection43. PRRs, which detect
foreign RNAs, rely on specific molecular signatures and
structures to distinguish these RNAs from cellular RNAs
and this recognition of foreign RNA is an important cellular
surveillance strategy44. Interestingly, the ability to use m6A
to distinguish self from non-self RNAs has been recently
highlighted during HBV and HCV infection based on the
finding that m6A suppresses recognition by retinoic acid-
inducible gene I (RIG-I)-like PRRs45. The 5′ epsilon struc-
ture of HBV pgRNA and the 3′-end poly(U/UC) region of
HCV are high-affinity RIG-I ligands46,47. m6A modifications
at the 5′ epsilon stem-loop of HBV pgRNA and the ade-
nosine nucleotide at position 8766 of HCV reduced the
sensing activity of RIG-I, while abrogation of these m6A
sites in HBV and HCV enhanced RIG-I signaling45.
YTHDF2 interacted with m6A sites within RIG-I ligand
regions of the HBV and HCV RNAs and inhibited RIG-I
signaling. Thus, YTHDF2 may inhibit the sensing of m6A-
modified viral RNAs by RIG-I by sequestering these RNAs
from RIG-I. A similar role of m6A in preventing the sensing
of viral RNAs by PRRs was also studied in human metap-
neumovirus (HMPV)48. The genome and antigenome of
HMPV were m6A-methylated and m6A modification of the
HMPV genomes suppressed RIG-I sensing and subsequent
IFN production. In contrast, deficient m6A modification in
the HMPV genomes increased the recognition by RIG-I,

Fig. 3 The role of m6A modification in regulating the HCV virion
packaging. The HCV genome is m6A-methylated in several regions
(~19 regions), including the HCV E1 region. m6A methylations in the
HCV E1 region decrease extracellular viral RNA and virion production
via recognition by YTHDF proteins. YTHDF proteins sequester the
m6A-methylated HCV genome to inhibit interaction with the HCV core
protein in the lipid droplets.
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leading to enhanced IFN synthesis. Together, these studies
indicate that m6A modification of viral RNAs contributes to
inhibiting RIG-I sensing through its sequestration by m6A
binding proteins.
In addition to regulating the host immune response,

viral infection can regulate host gene expression and
cellular processes to optimize long-term survival49–52. As
m6A methylation can regulate many cellular pathways,
including stress responses and cancer development, its
role in viral infection-related cellular gene expression is an
important aspect of virus–host interactions3. Indeed,
several studies have shown that diverse viral infections
modulate the m6A profile within the host tran-
scriptome53–56. We recently analyzed changes in the m6A
profile of cellular RNAs during HBV infection53. Among
the host genes whose m6A status was dramatically altered
by HBV infection was the phosphatase and tensin
homolog (PTEN) transcript, which exhibited enhanced
levels of m6A methylation during HBV infection. Impor-
tantly, increased m6A modification of PTEN mRNA by
HBV decreased its stability, affecting its protein expres-
sion. PTEN is a phosphatase of both proteins and lipids
that functions as a metabolic regulator as well as a tumor
suppressor57,58. Chronic HBV infection causes HCC via
diverse pathways, including inflammation and oxidative
stress pathways59. Thus, the decreased PTEN expression
by HBV partially explains its role in HBV-associated
hepatocarcinogenesis. In addition to its role as a tumor
suppressor, PTEN plays an important role in the innate
immune response during viral infections60. PTEN pro-
motes IRF-3 nuclear translocation to activate the IFN
signaling pathway by inducing dephosphorylation at the
Ser96 residue of IRF-3. Based on these findings, HBV
inhibits the host immune response through upregulation
of m6A modification of PTEN53. Interestingly, the HBx
protein cotranscriptionally regulates m6A modification of
cellular RNA, including that of PTEN36. HBx promoted
the recruitment of m6A methyltransferases (METTL3/14)
to the PTEN chromosomal locus to add m6A to PTEN
transcripts. In addition to its role as a viral protein, the
HBx protein is widely acknowledged to be indirectly
involved in the development of HCC and viral immune
evasion61,62. These studies highlight the unique role of the
HBx protein in regulating virus/host gene expression,
immune responses, and HBV-associated hepatocarcino-
genesis by modulating m6A modification of cellular
RNAs.
HCV infection also regulates host gene expression by

modulating m6A modification of cellular mRNAs54. HCV
infection increased the m6A level of cellular RIOK3
mRNA, promoting its translation54. RIOK3 is a serine/
threonine kinase that may be involved in antiviral sig-
naling63. Importantly, viral activation of the innate
immune response contributed to the increased m6A levels

of RIOK3, and the increase in RIOK3 expression by m6A
promoted the production of IFN, leading to inhibition of
HCV replication. In addition, the m6A level of CIRBP, a
stress-induced RNA-binding protein, was changed during
HCV infection, although this transcript lost m6A mod-
ification54,64. In the case of CIRBP, m6A deficiency pro-
moted alternative splicing to its shorter isoform.
Interestingly, endoplasmic stress induced by viral infec-
tion promoted the loss of m6A in CIRBP, and the
expression of the short isoform of CIRBP positively
regulated HCV replication54,65. The precise mechanisms
by which HCV infection changes the m6A status of
individual transcripts are not clear, but these data suggest
that activation of host cell pathways during infection may
affect the m6A status of individual cellular RNAs.

Conclusion and future perspectives
New roles of m6A in epigenetically regulating cellular

RNAs and viral RNAs are constantly emerging. Recently,
reports have demonstrated that the genomes of several
RNA viruses, as well as the RNA transcripts of DNA
viruses, are modified by m6A methylation and that this
modification of viral transcripts regulates various aspects
of the viral life cycle and the development of pathogen-
esis23–31. In this review, we discussed the recently iden-
tified functions of m6A modification during HBV and
HCV infections. m6A modification regulates the HBV and
HCV life cycles in a complex way because it can differ-
entially affect both viral and host RNAs depending on
their location in the genome. Eventually, the regulation of
HBV and HCV infections by m6A affects the development
of liver disease, suggesting that m6A modification plays
previously undefined roles in regulating the hepatitis B
and C virus life cycles.
Generally, histone H3 trimethylation at lysine 36

(H3K36me3) is bound directly by the cellular m6A
machinery, which in turn promotes the binding of
the m6A machinery to adjacent RNA polymerase II
molecules, thereby transporting the m6A machinery to
the transcribed nascent RNA to add m6A cotran-
scriptionally66. Importantly, m6A methyltransferases are
present in the cytoplasm as well as the nucleus67. Because
HCV replication occurs in the cytoplasmic fraction42, it is
conceivable that m6A methylation of the HCV genome
may be accomplished by the cytoplasmic methyl-
transferases. However, the functional roles of cytoplasmic
methyltransferases in mammalian cells are not yet clear.
To gain a broad understanding of the mechanism by
which the m6A machinery and its bound cellular proteins
regulate viral infection, future research must address the
roles of both the cytoplasmic and nuclear m6A machinery
in the regulation of viral infection and cellular pathways.
Furthermore, an understanding of how and whether viral
infections regulate the function of the cellular m6A
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machinery and the m6A profiles of host RNAs are needed
to enhance our understanding of the role of m6A in
virus–host interactions. This understanding may offer
novel avenues for possible m6A-based therapeutic inter-
ventions to promote viral genome clearance from infected
cells. In addition, m6A reader proteins are known to
interact with many RNA-binding proteins, suggesting that
these interactions can affect viral replication and trans-
lation17,21. Hence, the interactome of the m6A binding
proteins during viral infection needs to be identified,
which may reveal the unique roles of the RNA-binding
protein network that affects the viral life cycle.
Recent studies have highlighted the distinct role of m6A

methylation in differentiating self RNAs from non-self
RNAs based on the findings that m6A modification
reduces recognition by Toll-like receptor 3 (TLR3), TLR7,
and RIG-I68–70. In this respect, m6A methylation may
allow self RNAs to be distinguished from non-self RNAs
to evade recognition by cellular RNA sensor proteins,
which trigger the immune response. In addition to m6A
modification, several other chemical modifications,
including 5-methylcytosine (m5C), uridine to pseudour-
idine (U to Ψ) editing, and adenosine to inosine (A to I)
editing, occur in viral transcripts, and the functions of
these modifications are being characterized70–73. These
modifications can also be used by viruses to mimic self
RNA and disrupt the host immune response. This inter-
esting issue is currently under further investigation.
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