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Abstract 

Speakers of Chinese and English share decodable neural 
semantic representations, which can be elicited by words in 
each language. We explore various, common models of 
semantic representation and their correspondences to each 
other and to these neural representations. Despite very strong 
cross-language similarity in the neural data, we find that two 
versions of a corpus-based semantic model do not show the 
same strong correlation between languages. Behavior-based 
models better approximate cross-language similarity, but 
these models also fail to explain the similarities observed in 
the neural data. Although none of the examined models 
explain cross-language neural similarity, we explore how they 
might provide additional information over and above cross-
language neural similarity. We find that native speakers’ 
ratings of noun-noun similarity and one of the corpus models 
do further correlate with neural data after accounting for 
cross-language similarities. 

Keywords: cross-language semantics, multivoxel pattern 
analysis, semantic models, concept representation 

Introduction 
Multi-voxel pattern analyses and neural decoding methods 
have recently enabled cognitive neuroscientists to predict 
patterns of brain activity for word stimuli by generalizing 
from a training set of words and their associated functional 
neuroimaging data to new words (e.g., Mitchell et al., 2008) 
or new participants (e.g., Raizada & Connolly, 2012). One 
application of this inference has been using functional brain 
data to link words across languages, known as neural 
translation. Studies of bilingual speakers have shown 
decodable associations between a speaker’s mental 
representations of the same word in each of their two 
languages (Buchweitz et al., 2012; Correia et al., 2014). In 
recent work, we translated a small lexicon of seven words 
between native speakers for Chinese and English by 
comparing each group’s functional brain activity in 
representational similarity space (Zinszer et al., 2015). 

Findings in neural translation are generally consistent 
with hypotheses that suggest semantic representations 
should be strongly correlated across speakers based on 
shared extrinsic (e.g., sensory) information (Binder & Desai, 
2011; Hauk et al., 2006). For example, the appearance, 
sound, and general functions of a dog would be roughly the 
same for speakers of any language. Zinszer et al.’s (2015) 

neurally-based translation provides evidence that word 
representations do encode this perceptual information. Thus, 
on one hand, neural representations of translation equivalent 
words should be the same to the extent that experience in 
the world is shared across speakers of different languages. 
On the other hand, research in translation ambiguity shows 
that even translation equivalents evoke unique semantic 
information across languages (Degani & Tokowicz, 2010; 
Malt & Majid, 2013). Highly accurate models of word 
meaning should reflect some language-specific information 
and diverge across languages.  

In corpus-based models, word co-occurrence statistics 
differ between translation-equivalent words when those 
words are used in systematically different ways across 
languages. This problem is widely known in cross-language 
information retrieval (CLIR) and has inspired a number of 
approaches for improving translation accuracy (Zhou et al., 
2012). However, many translation models rely on parallel 
documents and contextual clues to compare translations for 
a particular token. This information is not available to 
human participants or models for the isolated single-word 
stimuli used in most neural decoding studies. 

Corpus-based semantic models reflect something 
important about word meaning as it is represented in the 
brain, as evidenced by their successful application to neural 
decoding (as in Mitchell et al., 2008), but the cross-language 
semantic differences that have vexed machine translation do 
not seem to prevent neural translation of small lexicons 
(Zinszer et al., 2015). In this sense, corpus-based models of 
word meaning may over-estimate these differences relative 
to speakers’ actual mental representations.  

In this study, we contrast three classes of model for word 
meaning: (1) Neural data for seven translation-equivalent 
concrete nouns in Chinese and English obtained by Zinszer 
et al. (2015), (2) two simple corpus-based models for the 
seven words in each language, and (3) behavioral models of 
word representation elicited from native speakers of each 
language. We compare these models using representational 
similarity analysis, evaluating cross-language similarity 
within the models and comparing the corpus- and behavior-
based models to the neural data.  

We predicted that corpus- and behavior-based models of 
word representation would reflect the translation 
relationships between words through high cross-language 
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correlations, although we expected this correlation to be 
somewhat attenuated in the corpus models given the 
nuances of translation ambiguity captured in the source 
material. We expect these models to be strongly correlated 
to the neural data. However, if the corpus- or behavior-
based models also capture language-specific aspects of 
meaning, we predict that the models will correlate with 
variance in neural data not explained by the cross-language 
similarity between the neural data of the two groups. 

Method 

Target Nouns 
The target nouns were seven translation-equivalent words in 
English and Chinese. These words were selected based on 
four requirements: (1) concrete nouns, (2) monosyllabic in 
both languages, (3) represented by a single Chinese 
character, and (4) unlikely for English translations to be 
known by the Chinese participants (see Table 1 for list). To 
verify criterion (4), Chinese participants in the fMRI study 
completed a brief quiz in which they wrote the English 
translations for twenty Chinese words. Mean translation 
accuracy was 1.56 of the 7 target nouns. In the following 
analyses, we describe a variety of different multivariate 
representations for these target nouns based on data from 
neuroimaging, corpus, and behavioral measures. 

 
Table 1. Target nouns (first and bolded) and semantic 

associates in English and Chinese (with pinyin) 
 

English Chinese 
axe, knife, sword 斧  (fǔ)，锯，剑 
broom, mop, vacuum 帚  (zhŏu)，拖把，簸箕 
gown, dress, robe 袍  (páo)，裙，礼服 
hoof, paw, foot 蹄  (tí)，爪，脚 
jaw, mouth, bone 颚  (è)，口，骨 
mule, horse, donkey 骡  (luó)，马，驴 
raft, boat, barge 筏  (fá)，船，艇 

Neural Representations 
Functional MRI data were acquired from Zinszer et al.’s 
(2015) neural translation experiment. In that experiment, 
eleven native speakers of English (4 M / 7 F) and Mandarin 
Chinese (3 M / 8 F) at Dartmouth College completed a 
simple semantic relatedness task while undergoing fMRI. 
Participants viewed 49 words (7 target nouns, 42 filler) in 
pseudorandom order, repeated over seven runs. To ensure 
semantic processing of the stimulus words, they were 
periodically asked to rate the semantic relatedness of a word 
to the preceding word. Individual participants’ neural 
responses were estimated for the seven target nouns based 
on a GLM model of functional activity. Each participant’s 
functional responses were abstracted into similarity space 
(see “Representational Similarity Analysis”) and these 
similarity structures were averaged across participants 
within the same language group. Similarity structures were 

estimated for whole brain data as well as for each of 96 
ROIs in the Harvard-Oxford neuroanatomical atlas. Further 
details of these procedures are described in the original 
study (Zinszer et al., 2015). 

Corpus-Based Representations 
Following the method of Mitchell et al. (2008), semantic 
representations were constructed for each target noun based 
on their co-occurrence rates with 25 verbs in a large corpus 
of webpages. The 25 Chinese verbs were obtained from five 
Chinese-English bilinguals who translated the English verbs 
independently and were then aggregated based on majority 
consensus (see Table 2). In a few cases, two English verbs 
most frequently translated to the same Chinese verb (e.g., 
hear and listen as 听). In these cases, a lower frequency or 
compound Chinese verb with similar meaning was 
substituted to maintain 25 unique dimensions. 

We used the Leeds University query tool for two similar 
Internet corpora in Chinese (90 million words) and English 
(160 million words; http://corpus.leeds.ac.uk/internet.html; 
Sharoff, 2006) to obtain concordance counts in a three word 
window for each noun-verb pair. Count data vectors were 
normed to unit length, yielding a 25-dimensional vector for 
each noun. 

Due to the low frequency of some target nouns, we also 
generated broadened representations from the same corpus 
data. For each target noun, two associated nouns were 
selected to help bring out defining elements of the target 
noun relative to noise-level co-occurrences (e.g., mop and 
vacuum capture information about shape and function of 
broom). The three 25-d vectors for the target noun and its 
two associates were averaged to produce the broadened 
representation. Table 1 lists associates of each target noun. 

 
Table 2. Verbs in English and Chinese 

 
English Chinese English Chinese 
see 看 enter 进入 
say 说 move 移动 
taste 尝 listen 倾听 
wear 穿 approach 接近 
open 开 fill 填 
run 跑 clean 清理 
near 靠近 lift 举 
eat 吃 rub 擦 
hear 听 smell 闻 
drive 驾驶 fear 怕 
ride 骑 push 推 
touch 碰 manipulate 操纵 
break 打破   

Behavior-Based Representations 
Eleven native English speakers (4 M / 7 F) and eleven 
native Chinese speakers (6 M / 5 F) at the University of 
Rochester (Rochester, NY, USA) completed two semantic 

2250



relatedness judgment tasks in their respective native 
languages. 

In the first task (hereafter the NN ratings), participants 
judged the semantic relatedness for every pairwise 
combination of the seven target nouns (21 total 
comparisons). Order of words in each pair and order of pairs 
were randomized for each participant. Semantic relatedness 
judgments were made on a scale of 1 (unrelated) to 5 
(highly related) and averaged over participants. 

After an unrelated intervening task (visual categorization 
of animal-like figures), participants made binary semantic 
relatedness judgments for every target noun with each of the 
25 verbs (175 total binary ratings, hereafter the NV ratings). 
Responses were averaged across participants to yield 
decimal values for each NV pair. 

Representational Similarity Analysis 
Representational similarity analysis compares the way a set 
of referents (such as the seven target nouns) is organized in 
different representational spaces. For example, multivariate 
brain activation patterns and corpus-based models described 
in the preceding sections can be compared to each other 
when each is abstracted into similarity space. This similarity 
space is composed of Pearson pairwise correlations between 
the multivariate representations for each of the seven target 
nouns, resulting in a 7x7 similarity matrix in which each 
noun is described by the correlation of its multivariate 
representation to those of the other six nouns. The 
correlation values are further transformed using Fisher’s r-
to-z for normalizing correlation coefficients. We can then 
compare two 7x7 similarity spaces by Pearson correlation of 
their 21 unique values (the lower-left triangle of the matrix). 

Results 
We computed similarity structures for the each measure of 
neural and semantic relatedness. The NN ratings were used 
directly by averaging the English and Chinese participants’ 
responses to the semantic relatedness task for each noun . 

Cross-Language Correlations 
For all measures, 21 unique values from the 7x7 similarity 
matrices (as in Figure 1) were correlated across languages, 
such as NN English vs. NN Chinese. Table 3 reports these 

cross-language correlations. The whole brain fMRI data and 
both sets of behavioral ratings (NN and NV) reflected strong 
cross-language correlations (r<0.60, p<=0.003). The Leeds 
corpus measure showed no such cross-language correlation, 
although the Broadened Leeds representations were 
moderately correlated (r=0.44, p<0.05). 
 

Table 3. Cross-language correlations for each measure of 
word representation 

 
Measure r  p  
MRI - Whole brain 0.89 < 0.001 
NN rating 0.85 < 0.001 
NV rating 0.61 0.003 
Broadened Leeds 0.44 0.045 
Leeds -0.08 0.726 

Model-to-Brain Correlations 
Next we compared each semantic model to fMRI data from 
the corresponding language to measure the degree to which 
patterns of functional activity correspond to the words’ 
semantic representations in the models. These correlations 
are reported in Table 4 for the whole brain data, and 
summary statistics are provided for correlations across 96 
anatomical ROIs as defined by the Harvard-Oxford brain 
atlas (http://www.fmrib.ox.ac.uk/fsl/). 
 
Table 4. Correlation of each semantic model to whole brain 
neural data and summary statistics for correlations at ROIs. 

 
 Whole brain Harv.-Oxf. ROIs 
Model r p mean r s.d. max |r| 
English      
   NN 0.15 0.52 0.16 0.13 0.47 
   NV 0.11 0.64 0.05 0.13 0.49 
   Broad -0.24 0.30 -0.14 0.17 0.60 
   Leeds -0.24 0.30 -0.13 0.15 0.41 
Chinese      
   NN -0.11 0.62 -0.09 0.13 -0.36 
   NV -0.08 0.72 -0.10 0.14 -0.43 
   Broad -0.47 0.03 -0.45 0.11 -0.69 
   Leeds -0.17 0.46 -0.15 0.10 -0.38 
 

All semantic models and the two sets of whole brain data 
were plotted using multi-dimensional scaling for cosine 
similarity (Figure 2, next page). As suggested by the 
correlations to brain data reported in Table 4, Chinese and 
English speakers’ patterns of functional response were 
closer to one another than they were to any of the semantic 
models. Behavior-based models (NN and NV) clustered 
together in the MDS projection, and the NN models were 
both the most similar across languages and the closest 
approximations of the brain data. The Leeds corpus-based 
representations were distantly separated from one another 
and from the brain data, but the Broadened model in 

Figure 1. Neural similarity in each language group. 
Comparable similarity matrices were computed for the 

target nouns in each corpus and behavioral model, 
allowing cross-language and cross-model comparisons. 	
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Chinese more strongly (though negatively) correlated with 
the brain data.  

Residuals Analysis 
The four semantic models offered a poor account of the 
neural responses in both languages, suggesting that the 
cross-language similarity supporting neurally-based 
translation was not explained by any of the proposed 
corpus- or behavior-based models. In our next analysis, we 
turned our attention to the language-specific components of 
the neural representations by isolating the residuals of the 
neural representations in each language that remained after 
accounting for cross-language neural correlations. 

In this residuals analysis, we again correlated the 
semantic models (behavior- and corpus-based) to neural 
data, but we evaluated the models against only the 
unexplained variance in the Chinese and English neural data 
that remained after cross-language correlation (that is, the 
residuals of the correlation). Here we ask to what degree our 
semantic models explain the remaining variance between 
the Chinese and English neural representations after 
accounting for the language-invariant components.  

For each ROI, we saved the residuals from the correlation 
between the Chinese and English neural representations and 
used them in lieu of the original neural representations. We 
then repeated the correlations reported in the preceding 
section. We found that across the 96 ROIs, correlations were 
generally weak and distributed around zero (see Table 5). 

Because this analysis is principally concerned with the 
language-specific contribution of the semantic models after 
controlling for cross-language similarity, we searched for 
ROIs where the both correlation between the English model 
and English residuals and the correlation between the 

Chinese model and Chinese residuals were significant. 
Thus, each ROI has a p-value indicating the probability of 
both languages’ models producing significant correlations 
under the null hypothesis. Using this constraint, a critical p-
value of 𝛼 in each language produces a joint probability of 
Type I error equal to 𝛼 for an ROI if the null hypothesis is 
true. Bonferroni correction for multiple comparisons across 
the 96 ROIs yields a threshold of 𝛼 = 0.00052 for each 
ROI, and thus we highlighted ROIs where both the Chinese 
and English correlations were 𝑝 < 0.00052 or 0.023. 

 
Table 5. Summary statistics for correlations of each 

semantic model to neural data in Harvard-Oxford ROIs. 
 

 Harv.-Oxf. ROIs 
Model mean r s.d. max |r| 
English    
   NN 0.14  0.18 0.56 
   NV -0.02 0.20 0.42 
   Broad -0.03 0.23 0.63 
   Leeds 0.07 0.19 0.40 
Chinese    
   NN -0.11 0.19 -0.66 
   NV -0.08 0.21 -0.55 
   Broad -0.30 0.18 -0.69 
   Leeds -0.10 0.15 -0.39 

 
Table 6. Cortical regions in which a semantic model 

significantly correlates with neural representations in the 
same language after controlling for cross-language neural 

similarity. 
 

  Model-to-brain 
Model Harvard-Oxford ROI Eng. r Chi. r 
NN 3 R Middle Frontal Gyrus 0.52 -0.53 
 16 R Postcentral Gyrus 0.56 -0.66 
     
Broad 40 R Frontal Operculum 0.64 -0.53 
 46 L Supracalcarine Gyrus 0.51 -0.61 

 
The NN behavioral model and Broadened Leeds corpus 

model yielded significant results in both languages. Table 6 
lists the regions where English and Chinese models 
explained additional variance in their respective languages 
beyond the cross-language neural similarity. We also 
investigated whether the semantic models in each language 
exclusively correlated to the neural data for that language, 
or whether they also correlated with the opposite language. 
This test of double-dissociation identifies whether the 
semantic model is using language-specific information to 
explain variance in the target language (e.g., English model 
only correlates with English neural data) or language-
invariant information (e.g., English model correlates with 
both English and Chinese neural data). In all four regions of 
interest identified in Table 6 we found that at least one of 
the models (English or Chinese) significantly correlated 
with the neural data in both languages (p<0.05).  

Figure 2. MDS plot of similarity space for semantic 
models and whole brain representations in Chinese (c) 
and English (e). Brain-e and Brain-c representations are 
overlapping. 
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Discussion 
In this paper, we compared four semantic models (two 
corpus-based and two behavior-based) in Chinese and 
English with neural similarity structures that have 
previously been used to translate between speakers of 
English and Chinese. The strong cross-language correlations 
in the neural data reported by Zinszer et al. (2015) indicate 
that important language-invariant information underlies the 
neural responses to word stimuli. Cross-language 
correlations revealed in the behavioral models also 
supported this conclusion, but these models did not correlate 
with the neural responses, pointing to another source of 
information. Given the previous success of using corpus-
based models of word meaning to decode neural data (e.g., 
Mitchell et al., 2008), we reasoned that language-specific 
aspects of word meaning might be captured by our models 
and offer insight into the what aspects of the neural 
representations were language-specific and what aspects 
were attributable to universally available conceptual 
information (i.e., world-knowledge). 

Representations Shared Across Languages 
The strong cross-language correlations in the neural data 
indicate that language-invariant semantic information 
underlies a significant portion of the neural responses to 
word stimuli. Although neither the corpus nor behavioral 
models showed the same degree of cross-language 
convergence, the NN ratings were very close despite the 
potential differences in word meanings across languages 
(Degani & Tokowicz, 2010). In this sense, directly querying 
native speakers’ intuitions about the similarity in word 
meanings (the NN model) produced the most accurate 
reflection of cross-language similarities in the neural 
representation of word meaning. Analogous ratings of 
object similarity have proved useful in identifying 
individual differences in the neural representations of 
objects (Charest et al., 2014), so this close link between 
direct behavioral query of a representation (the NN ratings) 
and neural similarity is not surprising. 

Surprisingly, correlations between the whole-brain data 
and all four semantic models proved almost entirely 
insignificant, with the exception of the Broadened Leeds 
model’s correlation with the Chinese neural data. Searching 
the 96 cortical regions of the Harvard-Oxford atlas did not 
yield strong correlations between the neural representations 
and most of the semantic models. Only the Broadened 
Leeds corpus showed an overall trend towards correlating 
with the Chinese data, but none of these correlations 
survived correction for multiple comparisons.  

Taken as a whole, these results are suggestive of at least 
two important underlying sources of information. The 
regularities in similarity structures between languages 
suggest that both the neural data and behavioral model can 
only be explained by language-invariant representations, 
and the failure of these two measures to correlate with one 
another suggests that they may capture different aspects of 
semantic knowledge. The corpus-based models did not 

show as much cross-language regularity, nor did they 
correlate with the neural data, leaving their meaning 
ambiguous in this context.  

Language-Specific Representations 
The initial corpus-based semantic models were extremely 
divergent from one another across languages, suggesting 
that they may encode highly language-specific aspects of 
word meaning. These models perhaps even exaggerate the 
differences between speakers’ semantic representations in 
Chinese and English, in light of the high correlations across 
the behavioral models. However, this divergence is not as 
surprising when one considers the broad structural 
differences between written Chinese and English.  

Although neither the corpus nor behavioral models 
showed explanatory power for the neural representations, 
we show in the residuals analysis that some divergent 
information is contained in this neural signal. The noun-
noun similarity ratings and Broadened Leeds corpus models 
both added explanatory power over and above the direct 
comparison of neural representations in each language, 
confirming that these models encode real, neurally-
implemented information that is not shared across the 
speakers’ neural responses in each language. However, this 
explanatory power was (paradoxically) not language-
specific. Every region in which the models significantly 
correlated with their own language was also explained by at 
least one model from the other language. This observation 
challenges the assumption that the NN or Broadened Leeds 
semantic models represent purely language-specific 
information. An alternate explanation may be that language-
invariant information encoded in these models is 
differentially represented in the brains of speakers of one 
language or the other.  

The ROIs showing the strongest such relationships are 
also intriguing. Bilateral postcentral gyri produced strong 
correlations between languages in Zinszer et al.’s (2015) 
cross-language comparison of neural data, a fact that was 
taken as evidence for language-independent somatosensory 
involvement. The correlation between representations in the 
L Supracalcarine gyrus and the Broadened Leeds corpus are 
somewhat puzzling, given this region’s importance in visual 
processing. The corpus model is not particularly visually 
oriented, and one would not expect visual correlates of 
meaning to be more apparent in a model of word co-
occurrence than in a behavioral model or cross-language 
neural similarity. 

Future Work 
Several perplexing and tantalizing questions arise from 
these comparisons of neural, corpus, and behavioral models 
of word meaning in Chinese and English. One major 
limitation of the present study is the amount of statistical 
power available from an analysis of only seven words in 
each language. While many of our investigations yielded 
null results, this finding could arise from a genuinely null 
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relationship or from the impoverished representation of each 
language in this highly constrained set of stimuli. 

Further, the meaning of significant negative correlation 
between the broadened Chinese corpus model and Chinese 
neural data is not immediately clear. This correlation 
indicates regularity in both structures (less similarity in the 
corpus reliably corresponds to greater similarity in the 
brain), but we propose that these measures may be mutually 
informative in future studies of neural decoding. Our own 
informal investigations suggest that the co-occurrence 
relationships of interest may be more remote than detectable 
in the three word window, thus skewing the present model 
based on syntactic constraints. 

Finally, while we know that functional responses of 
Chinese and English speakers contain information that can 
discriminate between words in both languages, this shared 
information is still not adequately explained by any 
individual model described in this paper. What then do each 
of the neural, behavioral, and corpus models represent? 
Recent neural decoding research has focused on 
decomposing the neural signal into interpretable 
components of meaning (e.g., sensory modalities or 
cognitively plausible features). An integrative approach has 
indeed proved important for comparing experiential and 
corpus-based representations (Andrews et al., 2009). Thus 
evaluating a more elaborated set of stimulus words with a 
combination of these more detailed models may be 
instrumental in unlocking these various sources of semantic 
information encoded in the brain. 

Conclusions 
We know that cross-language neural similarity is 
meaningful because it permits decoding across languages, 
but whatever the source of these cross-speaker and cross-
language regularities, it is not directly derived from 
speakers’ intuitions about semantic relatedness nor from 
corpus statistics, nor are these sources of information 
irrelevant to neural representation of semantics since they 
do provide some explanatory power beyond the cross-
language correlations. Alternate representational models and 
more representative stimulus words may yet provide better 
descriptions of cross-language semantics and their 
respective implementations in the brains of a language’s 
speakers. Future research will test such models’ ability to 
decode word-elicited concepts across languages and clarify 
this highly complex emerging picture. 
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