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1. Introduction
The ocean plays a key role in the climate system, absorbing ∼25% of the annual carbon dioxide (CO2) emissions 
from anthropogenic activities over the years 1960–2020 (Friedlingstein et al., 2021). While this sea-air CO2 flux 
slows the rate of anthropogenic climate change (Le Quéré et al., 2018), it also enhances ocean acidification and 
can thus influence marine organisms, ecosystems, and the societies that depend on those ecosystems (Doney 
et al., 2020). Earth system models suggest that ocean carbon absorption will continue through the end of the 
century (Canadell et al., 2021; Ciais & Sabine, 2013), though the magnitude of the globally integrated sea-air 
CO2 flux will largely depend on our emissions trajectory (Canadell et al., 2021; Friedlingstein et al., 2021; Loven-
duski et al., 2016; Ridge & McKinley, 2021).

Global sea-air CO2 exchange is not steady with time, but rather exhibits temporal variability. Studies using esti-
mates of sea-air CO2 flux from sparse measurements of the surface ocean partial pressure of CO2 (pCO2) (Bakker 
et  al.,  2016) suggest that this CO2 flux variability is particularly pronounced on decadal timescales. These 
studies report a period of stagnation in global ocean carbon absorption over the decade 1990–1999 (DeVries 
et al., 2019; Landschützer et al., 2016; Le Quéré et al., 2009; Rödenbeck et al., 2015), followed by intensification 
of ocean carbon absorption over the decade 2000–2009 (DeVries et al., 2019; Fay & McKinley, 2013; Land-
schützer et al., 2016; Rödenbeck et al., 2015). These observed decadal trends in sea-air CO2 flux are superim-
posed on a background characterized by high interannual variability on global and regional scales (Landschützer 
et al., 2019), and this challenges our ability to quantify the magnitude of the decadal trends and to attribute them 

Abstract We use a statistical emulation technique to construct synthetic ensembles of global and regional 
sea-air carbon dioxide (CO2) flux from four observation-based products over 1985–2014. Much like ensembles 
of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble 
members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic 
ensembles illustrate an important role for internal variability in the temporal evolution of global and regional 
CO2 flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific 
externally forced signal and calculate the rank of the observed trends within the distribution of statistically 
modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation-based 
products exhibit small negative trends in globally integrated sea-air CO2 flux (i.e., enhanced ocean CO2 
absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. 
Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea-air 
CO2 flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global 
and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two 
standard deviations away from the mean in their ensembles. Our approach provides a new perspective on 
the important role of internal variability in sea-air CO2 flux trends, and furthers understanding of the role of 
internal and external processes in driving observed sea-air CO2 flux variability.
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to particular drivers (for example, Fay & McKinley, 2013; Le Quéré et al., 2007; Metzl et al., 2010; Schuster 
& Watson, 2007; Schuster et al., 2009; Thomas et al., 2008; Watson et al., 2009). While some studies link the 
decadal sea-air CO2 flux trends to modes of internal climate variability, such as the Southern Annular Mode 
or the El Niño-Southern Oscillation (ENSO; Landschützer et al., 2015, 2019), others cite external forcing from 
volcanic eruptions and changes in the atmospheric CO2 growth rate as the driving factor behind these trends 
(McKinley et al., 2020). It is critical that we quantify and understand the drivers of these decadal trends in sea-air 
CO2 flux for future predictions of the global carbon cycle that are reported in documents such as the Intergovern-
mental Panel on Climate Change (IPCC) reports.

Large initial condition ensembles of Earth system models are a relatively new tool that can be used to quantify 
the roles of internal climate variability and external forcing in long-term trends of Earth system variables. These 
large ensemble experiments are conducted with a single Earth system model wherein each ensemble member is 
subject to perturbations in initial conditions, but all ensemble members are subject to identical external forcing. 
This procedure produces an ensemble where each member portrays modes of internal climate variability with 
unique phasing and amplitude, and where the average across all ensemble members captures the response of the 
Earth system to external forcing (Deser et al., 2020). McKinley et al. (2016) and McKinley et al. (2017) used 
the Community Earth System Model Version 1 Large Ensemble (CESM1-LE; Kay et al., 2015) to illustrate how 
internal variability can cloud our ability to quantify and interpret sea-air CO2 flux trends on decadal and longer 
timescales. Their analysis demonstrates that decadal trends in sea-air CO2 flux from a single CESM1-LE ensem-
ble member are strongly affected by internal climate variability (McKinley et  al.,  2017). Since the historical 
record of sea-air CO2 flux variations is akin to a single ensemble member in this large ensemble framework, the 
magnitude of decadal trends in the historical record is likely heavily influenced by internal variability. However, 
the magnitude of sea-air CO2 flux variability in CESM1-LE and other Earth system models may not match that 
of the real world (Anav et al., 2013; Dong et al., 2016), and this necessitates our development of a large ensemble 
that is based on real-world observations.

Here, we use a statistical emulation method to place the observed estimates of sea-air CO2 flux into a large 
ensemble framework by constructing synthetic ensembles of sea-air CO2 flux from observation-based products. 
Much like a large ensemble of an Earth system model, each synthetic ensemble member experiences a different 
phasing of internal climate variability, but an identical externally forced signal. We develop synthetic ensembles 
of sea-air CO2 flux for four observation-based products and remark on the importance of internal climate varia-
bility for the interpretation of decadal trends in the observational record.

Section  2 reviews the observations, observation-based products, and models used for this study. Section  3 
describes the method of synthetic ensemble construction using real-world observations from the Drake Passage 
as an example. Section 4 is a presentation of our Results of synthetic ensembles from four observation-based CO2 
flux products. We test our approach and mention the assumptions made for this study in Section 5. Conclusions 
and Discussion are in Section 6.

2. Observations and Models
Our study utilizes a collection of interpolated observations and output from Earth system models to develop, 
analyze, and test our synthetic ensemble of observed sea-air CO2 fluxes. We illustrate our statistical methodology 
for the reader using sea-air CO2 fluxes derived from surface ocean pCO2 (𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 ) observations collected in the 

Drake Passage Time-series program. We then develop synthetic ensembles for four global, observation-based 
sea-air CO2 flux products, for which we use ensemble mean estimates of sea-air CO2 flux from Earth system 
models contributing to the sixth Coupled Model Intercomparison Project (CMIP6). Finally, we use output from 
the CESM1-LE and an upper-ocean box model representation of external forcing to test our statistical methodol-
ogy. In this section, we describe each of these datasets in turn.

2.1. Drake Passage Sea-Air CO2 Flux Estimates

We use a single time-series of annual mean sea-air CO2 flux derived from underway estimates of 𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 collected 

as part of the Drake Passage Time-series program over 2004–2018 (Figure 1a; Fay et al., 2018; Munro, Loven-
duski, Stephens, et  al., 2015; Munro, Lovenduski, Takahashi, et  al., 2015). Sea-air CO2 flux calculated as in 
Sweeney et al. (2007). NOAA Greenhouse Gas Marine Boundary Layer Reference used for atmospheric xCO2 
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(NOAA Global Monitoring Laboratory, web). Each annual mean estimate of sea-air CO2 flux is calculated from 
monthly means of all underway 𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 observations within a region in the center of the Drake Passage (i.e., from 

58 to 60°S and 61.5 to 65.5°W) where monthly Cross-Calibrated Multi-Platform version 2 (CCMPv2) winds 
were used to estimate sea-air CO2 flux (Atlas et al., 2011). Observations were collected in eight to eleven different 
months of each year within this region, from approximately twenty Southern Ocean crossings per year.

2.2. Observation-Based Products: Sea-Air CO2 Flux

Our synthetic ensembles of sea-air CO2 flux are derived from observation-based estimates that rely upon sparse 
𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 measurements collected in the Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016) and the Lamont-Do-

herty Earth Observatory database (LDEO; Takahashi et al., 2018). These observation-based products use a range 
of statistical and machine learning approaches to gap-fill 𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 where and when measurements are not available.

In this study, we use annual mean sea-air CO2 flux estimates from four observation-based products as produced 
by the SeaFlux product (Fay et al., 2021; Gregor & Fay, 2021; Table 1): The Council for Scientific and Industrial 
Research-Machine Learning ensemble (CSIR-ML6; Gregor et al., 2019), the Max Planck Institute Self-Organiz-
ing Map-Feed-Forward Neural Network (MPI-SOMFFN; Landschützer et al., 2013, 2014, 2015, 2016), the Max 
Planck Institute for Biogeochemistry-Mixed Layer Scheme (JENA-MLS; Rödenbeck et al., 2014), and the Coper-
nicus Marine Environment Monitoring Service Feed-Forward Neural Network (CMEMS-FFNN; Denvil-Sommer 
et al., 2019). Fluxes are calculated monthly and then averaged to annual values for analysis. The SeaFlux product 
corrects for the spatial coverage differences in each observation-based product pCO2 coverage by filling missing 
areas in each with a scaled climatology product which extends to coastal and high latitude regions (Landschützer 
et al., 2020). CO2 flux is then estimated from each product's area-filled pCO2 using common atmosphere, ice, and 
solubility, wind speed inputs, and a quadratic flux parameterization (Fay et al., 2021 for details). We use only the 
common observation-based product period of 1985–2014 for analysis.

This method of flux calculation pre-processing ensures that differences in decadal trends or interannual vari-
ance in our synthetic ensembles are due solely to differences in the pCO2 products themselves rather than from 
statistical artifacts or flux calculation parameter choices. The spread between these products' fluxes is due to the 
difference in machine learning or regression techniques used in each to interpolate full coverage from the avail-
able pCO2 observations.

2.3. Community Earth System Model Version 1 Large Ensemble

We evaluate our statistical methodology using output from CESM1-LE. CESM Version 1 is a fully coupled 
climate model that simulates Earth's climate system (Hurrell et al., 2013). The model is comprised of four compo-
nent models that synchronously simulate Earth's land, atmosphere, ocean, and sea ice, with one central  coupler 
component that exchanges fluxes and boundary conditions between the individual components (Hurrell 
et al., 2013). The ocean component model of CESM1 is the Parallel Ocean Program model with nominal 1° reso-
lution and 60 vertical levels (Danabasoglu et al., 2012) coupled to the Biogeochemical Elemental Cycling model 
for ocean biogeochemistry, including full carbonate chemistry thermodynamics and sea-air CO2 fluxes (Moore 
et al., 2004; Moore & Braucher, 2008; Moore & Doney, 2007). We analyze 34 ensemble members of CESM1-LE 
that span 1920–2005 and are forced with historical greenhouse gas and aerosol concentrations developed for the 
5th Coupled Model Intercomparison Project (CMIP5; Kay et al., 2015; Taylor et al., 2012). Random phasing of 
internal climate modes is accomplished in CESM1-LE via round-off-level differences in the 1 January 1920 air 
temperatures (Kay et al., 2015).

2.4. Earth System Models From CMIP6

We take advantage of newly available output from three CMIP6 Earth system models with active ocean bioge-
ochemistry that submitted multiple historical (1850–2014) ensemble members derived from initial conditions 
perturbations to the CMIP6 archive: the Canadian Earth System Model Version 5 (CanESM5; Swart et al., 2019), 
the Institut Pierre-Simon Laplace Coupled Model 6 (IPSL-CM6; Boucher et al., 2020), and the Community Earth 
System Model Version 2 (CESM2; Danabasoglu et al., 2020). We analyze 25 ensemble members of CanESM5, 
31 ensemble members of IPSL-CM6, and 11 ensemble members of CESM2. These simulation output were 
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derived from concentration-driven simulations (that is, their atmospheric CO2 concentrations were prescribed 
and were thus unaltered by variability in sea-air CO2 fluxes; Eyring et al., 2016). Our use of only three Earth 
system model ensemble means for this study has the potential to bias our estimate of external forcing. For this 
reason, we also test our approach using an alternative external forcing model (see next subsection).

2.5. Upper Ocean Box Model

We use a theoretical upper-ocean box model created by McKinley et al. (2020) to produce an estimate of exter-
nally forced variations in sea-air CO2 flux driven by variations in atmospheric pCO2 and volcanic eruptions alone. 
The box model solves for the time change of dissolved inorganic carbon (DIC) in the upper ocean (surface area 
for flux excludes ice-covered regions, as in the observation-based products) and contains a simple representation 
of overturning circulation. The rate of flux is estimated using the approach in Wanninkhof (2014). The biological 
pump is assumed constant over time. The box model uses the same 𝐴𝐴 𝐴𝐴CO

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

2
 data as that used to estimate 

sea-air flux in the observation-based products. Temperature is held at a constant global surface ocean value except 
in the years following the eruptions of El Chichón and Mt. Pinatubo, where the upper ocean cools according to 
that simulated by the CESM1-LE. The box model is spun up from 1959 to 1979 using observed 𝐴𝐴 𝐴𝐴CO

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎

2
 , and 

then time-stepped with monthly resolution over 1980–2018 with the external forcing described above.

3. Synthetic Ensemble Construction
Before analyzing the global sea-air CO2 flux from observation-based products, we first illustrate our synthetic 
ensemble approach for the reader using a single time-series of annual mean CO2 flux derived from observa-
tions collected in Drake Passage (Figure 1). Our method is built upon the approach developed in McKinnon 
et al., 2017; McKinnon and Deser (2018). We statistically model sea-air CO2 flux as:

𝑋𝑋𝑖𝑖𝑖𝑖𝑖
= 𝛽𝛽𝑖𝑖

0
+ 𝛽𝛽𝑖𝑖

𝐹𝐹
+ 𝛽𝛽𝑖𝑖

ENSO
𝑀𝑀𝑖𝑖

ENSO
+ 𝛽𝛽𝑖𝑖

PDV⟂

𝑀𝑀𝑖𝑖

PDV⟂

+ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖 (1)

Figure 1. Synthetic ensemble construction. (a–c) Statistical model of annual mean Drake Passage sea-air CO2 flux, as in Equation 1: (a) (solid) Time-series of CO2 
flux (black, X i,t) and (dashed) CO2 flux with temporal mean 𝐴𝐴

(

𝛽𝛽𝑖𝑖

0

)

 removed, (b) regression of CO2 flux anomalies (temporal mean and response to external forcing (a 
simple linear trend in this example), 𝐴𝐴 𝐴𝐴𝐹𝐹

𝑡𝑡 , removed) onto the El Niño-Southern Oscillation (ENSO) (red) and Pacific Decadal Variability (PDV) (blue) climate indices 
(𝐴𝐴 𝐴𝐴𝑖𝑖

ENSO
 , 𝐴𝐴 𝐴𝐴𝑖𝑖

PDV⟂

 ), and (c) residual variability, ɛ i,t. (d–f) Construction of the synthetic ensemble: (d) The block bootstrap process re-samples the residual variability, ɛ i,t, (e) 
the IAFFT technique produces surrogate ENSO and PDV⊥ indices (ENSO shown here), and (f) two synthetic ensemble members show alternative phasing of internal 
variability and different long-term trends (dashed) than the original time-series (solid black line same as in a). Positive fluxes correspond to decreased oceanic carbon 
uptake. Panel (d) adapted from Elsworth et al. (2020).
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where X i,t is the sea-air CO2 flux at location i, representing a single grid cell, a regional integral or a global 
integral, and time t, resolved annually. In this model, sea-air CO2 flux is described as a linear combination of 
the mean state 𝐴𝐴 𝐴𝐴0

𝑖𝑖 , the response to external forcing 𝐴𝐴 𝐴𝐴𝐹𝐹
𝑡𝑡 (which we assume to be spatially uniform globally), the 

response to climate modes 𝐴𝐴 𝐴𝐴𝑖𝑖

ENSO
𝑀𝑀𝑡𝑡

ENSO
 and 𝐴𝐴 𝐴𝐴𝑖𝑖

PDV⟂

𝑀𝑀𝑡𝑡

PDV⟂

 , and the residual internal variability ɛ i,t. The term 𝐴𝐴 𝐴𝐴𝐹𝐹
𝑡𝑡 

in Equation 1 captures the response of CO2 flux to external forcing, while 𝐴𝐴 𝐴𝐴𝑖𝑖

ENSO
𝑀𝑀𝑡𝑡

ENSO
 and 𝐴𝐴 𝐴𝐴𝑖𝑖

PDV⟂

𝑀𝑀𝑡𝑡

PDV⟂

 capture 
the role of these climate modes in sea-air CO2 flux. Both ENSO and Pacific Decadal Variability (PDV) have 
been shown to influence sea-air CO2 flux on global scales (McKinley et al., 2004, 2006, 2017). We address the 
covariance between ENSO and PDV by creating a time-series of PDV (PDV⊥) that is orthogonalized with respect 
to ENSO (method described in McKinnon & Deser, 2018).

Figure 1 (top row) illustrates our statistical model for Drake Passage CO2 flux, as in Equation 1. Figure 1a shows 
the annual mean flux in this region over 2004 to 2018 (X i,t) as a solid line, and anomalies in the flux once the the 
temporal mean flux 𝐴𝐴

(

𝛽𝛽0
𝑖𝑖
)

 has been subtracted as a dashed line. In this illustrative example, we model the external 
forcing 𝐴𝐴

(

𝛽𝛽𝐹𝐹
𝑡𝑡
)

 as a simple linear trend (note that we model external forcing differently for the four global observa-
tion-based products, discussed later in this section). We model the influence of climate modes on sea-air CO2 flux 
variability by calculating the linear regression between globally integrated CO2 flux and the standardized indices 
for ENSO and orthogonalized PDV (𝐴𝐴 𝐴𝐴𝑖𝑖

ENSO
 , 𝐴𝐴 𝐴𝐴𝑖𝑖

PDV⟂

 ; Figure 1b). The CO2 flux residuals (ɛ i,t) are modeled as the 
component of X i,t that is not captured by the external forcing or internal climate modes. As there is only a small 
linear correlation between sea-air CO2 flux and the ENSO and PDV indices (Figure 1b), these residuals capture 
a large fraction of the internal variability (95%).

Figure 1 (bottom row) illustrates how we construct a synthetic ensemble from our statistical model of Drake 
Passage CO2 flux. We use block bootstrapping to re-sample the residuals (ɛ i,t) 1,000 times (Figure  1d). As 
described in Wilks  (1997), we use a block length of 3 years to ensure that the time blocks are suitably large 
relative to the autocorrelation timescale, while also producing enough time blocks to generate sufficient varia-
bility between samples (Wilks, 1997; Equation 19). Block bootstrapping selects any contiguous 3-year block of 
sea-air CO2 flux from the anomaly time-series and randomly samples these blocks with replacement to generate 
a new time-series with the same length as the original. Note that this approach maintains the temporal relation-
ship within each block (Figure 1d). Next, we use the Iterative Amplitude Adjustment Fourier Transfer (IAAFT) 
technique (Schreiber & Schmitz, 1996, 2000) to produce 1,000 surrogate ENSO and PDV indices with similar 
spectral characteristics as the original climate indices (Figure 1e). For example, an IAFFT-generated surrogate 
ENSO index will exhibit a spectral peak in the 3- to 7-year time window, as the observed ENSO index does, but 
the amplitude and phasing of surrogate ENSO events will differ from the observed ENSO index. As described 
in McKinnon and Deser (2021), the IAAFT method produces surrogate time series that differ in their temporal 
evolution but share the same amplitude distribution and Fourier spectra as the original time series. We produce 
1,000 unique synthetic ensemble members of Drake Passage CO2 flux (2 members shown in Figure  1f) by 
combining the re-sampled residuals (ɛ i,t), the CO2 flux evolution due to the surrogate climate modes (𝐴𝐴 𝐴𝐴𝑖𝑖

ENSO
𝑀𝑀𝑡𝑡

ENSO
 

and 𝐴𝐴 𝐴𝐴𝑖𝑖

PDV⟂

𝑀𝑀𝑡𝑡

PDV⟂

 ), the external forcing 𝐴𝐴
(

𝛽𝛽𝐹𝐹
𝑡𝑡
)

 , and the temporal mean flux 𝐴𝐴
(

𝛽𝛽0
𝑖𝑖
)

 . This technique produces 1,000 
“alternative histories” of sea-air CO2 flux in this region.

Figure 1f shows the temporal evolution of Drake Passage CO2 flux from two synthetic ensemble members and 
the original observations over 2004–2018. Each synthetic ensemble member has statistical properties that are 
similar to the observational record and an identical externally forced signal, but a unique sequence of internal 
variability. Here, we see the clear influence of internal variability on the long-term trend: different phasing of 
internal variability in sea-air CO2 flux between members is substantial enough to drive different estimates of 
the long-term trend (Figure 1f). The effect of internal variability on long-term trends is especially pronounced 
over the relatively short time period and at the regional scale of the Drake Passage observations (Hawkins & 
Sutton,  2009). While the observed CO2 flux and synthetic ensemble members exhibit negative trends (more 
ocean carbon absorption with time), ensemble member 174 exhibits a much larger negative trend than the others 
over the same period. This outcome emphasizes the importance of internal variability in modifying the long-term 
trends in sea-air CO2 fluxes in this region.

We use our statistical emulation technique to develop synthetic ensembles of globally and regionally integrated 
sea-air CO2 flux for each of the observation-based products (CSIR-ML6, MPI-SOMFFN, JENA-MLS, and 
CMEMS-FFNN; Figure 2) and for the average of the four observation-based products. Our approach is identical 
to that described for the Drake Passage time-series, with the exception of our model for the externally forced 
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signal 𝐴𝐴
(

𝛽𝛽𝐹𝐹
𝑡𝑡
)

 . Here, we model 𝐴𝐴 𝐴𝐴𝐹𝐹
𝑡𝑡 as the mean of three ensemble mean CO2 

flux estimates from historical simulations of CMIP6 Earth system models 
(Figure 2; see Section 2.4). As sea-air CO2 flux is sensitive to variations in 
atmospheric pCO2 and short-term volcanic forcing (McKinley et al., 2020), 
we use the ensemble mean time-series of CO2 flux from Earth system models 
that are driven by these external forcing variations to isolate the temporal 
evolution of the forced signal (𝐴𝐴 𝐴𝐴𝐹𝐹

𝑡𝑡 ; McKinley et al., 2016). This allows us to 
generate synthetic ensemble members that differ due to internal variability, 
rather than anthropogenic and natural external forcing. We further account 
for differences in model structure for estimation of the forced signal by aver-
aging across ensemble means from three different Earth system models. In 
Section 5, we explore the sensitivity of our results to the statistical model of 
the externally forced signal.

4. Results
The synthetic ensemble of globally integrated sea-air CO2 flux from the 
four observation-based products reveal multiple possible trajectories for the 
temporal evolution of ocean carbon uptake (Figure 3). While the ensemble 
mean trend is negative over 1985–2014 (increased ocean carbon absorption 
with time and driven by external forcing), different phasing of internal varia-
bility produces alternative CO2 flux evolution across the synthetic ensemble 
(Figure 3). In Figure 3, we highlight the CO2 flux from the original products 
in yellow and a single synthetic ensemble member in black (with the remain-
ing 999 synthetic members as thinner, multi-hued lines) for each product 
to illustrate how the observed temporal evolution of CO2 flux may not be 
replicated by the synthetic ensemble member, and the observed long-term 

trend may be amplified or muted in the synthetic ensemble member. This showcases the utility of the synthetic 
ensemble for quantifying the effects of internal variability on particular features of the time-series and the long-
term trend.

The synthetic ensembles of globally integrated CO2 flux from the four observation-based products display statis-
tical properties that are different for each product (Figure 3). While all four ensembles show a long-term negative 
ensemble mean trend (increased ocean carbon absorption with time), the average ensemble spread ranges from 
0.13 Pg C yr −1 (1σ, CMEMS-FFNN) to 0.27 Pg C yr −1 (1σ, JENA-MLS). This synthetic ensemble spread derives 
from the variance in the original observation-based product (Figure 2), and so it is not surprising that the product 
with the highest variance (JENA-MLS) exhibits the largest synthetic ensemble spread (Figure 3c), while the 
product with the lowest variance (CMEMS-FFNN) exhibits the lowest synthetic ensemble spread (Figure 3d).

If internal variability had been phased differently in the past, would we have observed the same decadal trends in 
sea-air CO2 flux? We answer this question by analyzing the statistical properties of linear CO2 flux trends over 
1990–1999 and 2000–2009 from the four synthetic ensembles and displaying the results as probability density 
functions (PDFs; Figure 4). These decades were selected for analysis as they are associated with stagnation and 
growth of the ocean carbon sink, respectively, in several previous studies (see, for example, Ritter et al., 2017). 
The forced trend is nearly identical in each decade (−0.05 Pg C yr −1 for both decades), and thus the differences 
in the observation-based product trends in each decade are due to internal variability. The PDFs in Figure 4 show 
the distributions of trends over the two decades in globally integrated CO2 flux from 1,000 synthetic ensemble 
members of each observation-based product (purple line; kernel density estimation), with the 1σ (67%) confi-
dence intervals shaded in purple and the 2σ (95%) confidence intervals shaded in pink. The width of these trend 
distributions vary across products, with MPI-SOMFFN exhibiting the widest distribution and CMEMS-FFNN 
exhibiting the narrowest (Table 2); for MPI-SOMFFN, internal variability alone can produce a wide range of 
trends for globally integrated flux (nearly 0.2 Pg C yr −2 in a single decade, Table 2). For CMEMS-FFNN, the 
range of trends is nearly half of MPI-SOMFFN (∼0.1 Pg C yr −2 in a single decade, Table 2). The answer to the 
question posed at the beginning of this paragraph requires not only information about the width of the trend distri-
butions, but also information about the center of the trend distributions. Our approach assumes that the center 

Figure 2. Global CO2 flux variations. Temporal evolution of globally 
integrated sea-air CO2 flux anomalies (temporal mean, 𝐴𝐴 𝐴𝐴𝑖𝑖

0
 , removed) from 

the (blue) Council for Scientific and Industrial Research-Machine Learning 
ensemble (CSIR-ML6), (purple) Max Planck Institute Self-Organizing 
Map-Feed-Forward Neural Network (MPI-SOMFFN), (pink) Max Planck 
Institute for Biogeochemistry-Mixed Layer Scheme (JENA-MLS), and 
(orange) Copernicus Marine Environment Monitoring Service Feed-Forward 
Neural Network (CMEMS-FFNN) observation-based products. Black line 
shows the global CO2 flux response to external forcing, 𝐴𝐴 𝐴𝐴𝐹𝐹

𝑡𝑡 , estimated as 
the mean of three ensemble means from Earth system model (ESM) output 
contributed to the sixth Coupled Model Intercomparison Project (CMIP6) 
archive (CanESM5, IPSL-CM6, CESM2). Positive flux anomalies correspond 
to decreased oceanic carbon uptake.
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of the trend distribution (vertical purple lines in Figure 4) is the mean of three Earth system model ensemble 
means and is thus identical for all of the observation-based synthetic ensembles in each time period (we examine 
this assumption in further detail in Section 5). Next, we quantify the probability of the observed decadal trends 
(vertical black lines in Figure 4) in the context of the synthetic ensemble trend distribution for each observa-
tion-based product (Table 2; trend probabilities estimated as the lower/upper cumulative distribution for a normal 
distribution). The observed trend in globally integrated CO2 flux over 1990–1999 is a small negative number 
(more ocean carbon uptake with time) that falls within the 1σ range around the mean in the synthetic ensem-
bles of three of the four products (CSIR-ML6, JENA-MLS, and CMEMS-FFNN) (Figures 4a–4d and Table 2). 
Whereas the  observed trend in MPI-SOMFFN over 1990–1999 is a positive number (less ocean carbon uptake 
with time)  that falls outside the 1σ range around the mean in the distribution of synthetic trends (Figures 4b and 
Table 2). Over 2000–2009, three of four observation-based products (CSIR-ML6, MPI-SOMFFN, and CMEMS-
FFNN) exhibit large negative trends that are in the tails of the synthetic trend distributions (Figures 4e–4h and 
Table 2). Thus, the answer to the question we posed at the beginning of this paragraph is product and period 
dependent. Over 1990–1999, three of the four products have trends that are within one standard deviation from 
the mean in their respective synthetic ensembles, but over 2000–2009, three of the four products have trends 
that are nearly two standard deviations away from the mean with different phasing of internal variability, with 
only one observed trend (JENA-MLS) falling near the center of the distribution (Figure 4g and Table 2). For 
MPI-SOMFFN, however, the observed trends fall on the tails of the PDFs for both decades. This aligns with 
Gloege et al. (2021), who find that the MPI-SOMFFN product overestimates the amplitude of global CO2 flux 
variability on decadal timescales. A synthetic ensemble generated from the average of all four observation-based 
products produces a relatively narrow synthetic trend distribution (0.11 Pg C yr −2) and observed trends fall within 

Figure 3. Synthetic ensembles of global sea-air CO2 flux. Temporal evolution of globally integrated sea-air CO2 flux from 
1,000-member synthetic ensembles of the (a) Council for Scientific and Industrial Research-Machine Learning ensemble 
(CSIR-ML6), (b) Max Planck Institute Self-Organizing Map-Feed-Forward Neural Network (MPI-SOMFFN), (c) Max Planck 
Institute for Biogeochemistry-Mixed Layer Scheme (JENA-MLS), and (d) Copernicus Marine Environment Monitoring 
Service Feed-Forward Neural Network (CMEMS-FFNN) observation-based products. Yellow lines show the CO2 flux 
evolution from the given observation-based product, and black line shows the temporal evolution of a single ensemble 
member with the remaining 999 members shown in thin multi-hued lines. Negative fluxes correspond to ocean carbon uptake.
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1σ in the synthetic ensemble in 1990–1999 and within 2σ in 2000–2009 (Figure S1 in Supporting Information S1; 
Table 2).

We create probability distributions for the range of decadal trends in regional, observation-based sea-air CO2 flux 
over 1990–1999 and 2000–2009 by generating synthetic ensembles of CO2 flux integrated over “super-biomes”, 
that is, biomes that capture large-scale oceanographic regions (Canadell et al., 2021), and performing similar 
statistical analyses as for the globally integrated fluxes (Figure 5 and Figures S2–S5 in Supporting Informa-
tion S1). We focus our discussion here on the Southern Ocean region, as previous work suggests large, oppo-
site-signed decadal CO2 flux trends in this region across the two decades of interest (Landschützer et al., 2015; 
Le Quéré et al., 2007; Lovenduski et al., 2008; Ritter et al., 2017). The observation-based synthetic ensembles of 
sea-air CO2 flux integrated over the Southern Ocean Ice, Subpolar and Subtropical Seasonally Stratified biomes 
(SO ICE, SO-SPSS, SO-STSS; biomes defined in Fay & McKinley, 2014) produce mostly narrow PDFs of the 
decadal trends over 1990–1999 and 2000–2009 (MPI-SOMFFN is nearly double the other products) (Figure 5; 
all 4 observation-based products were masked identically to ensure consistency in a region where areas might 
be missed or miscalculated due to sea-ice). The externally forced trend (mean of Earth system model ensemble 
means) in the Southern Ocean is negative for both decades (more Southern Ocean carbon absorption with time, 
purple vertical lines in Figure 5). The 95% confidence interval of the synthetic trends ranges from −0.04 to 0.03 
Pg C yr −2 in each decade across the products (Figure 5), suggesting that both negative and positive trends are 
possible with different phasing of internal variability in both decades. However, the observed Southern Ocean 
flux trends range from negative to positive and do not always fall within 1σ of the PDFs (black vertical lines in 
Figure 5). For example, observed trends in the CSIR-ML6 and MPI-SOMFFN products over both decades fall 
outside the 1σ confidence interval of the PDFs, indicating a low chance of occurrence of the observed trend in the 
synthetic ensemble given different phasing of internal variability (Figures 5a, 5b, 5e and 5f). We note the remark-
able consistency of all four observation-based products that agree the observed trends (black lines in Figure 5) 
were more positive than the forced trend (purple vertical lines in Figure 5) during the 1990s, and more negative 
than the forced trend during the 2000s.

Figure 4. Distribution of decadal trends in global CO2 flux derived from the synthetic ensembles. Probability density functions (kernel density estimation, purple 
curves) of decadal trends in globally integrated sea-air CO2 flux for (first row) 1990–1999 and (second row) 2000–2009, as estimated from synthetic ensembles of 
the (first column) Council for Scientific and Industrial Research-Machine Learning ensemble (CSIR-ML6), (second column) Max Planck Institute Self-Organizing 
Map-Feed-Forward Neural Network (MPI-SOMFFN), (third column) Max Planck Institute for Biogeochemistry-Mixed Layer Scheme (JENA-MLS), and (fourth 
column) Copernicus Marine Environment Monitoring Service Feed-Forward Neural Network (CMEMS-FFNN) observation-based products. Purple vertical lines show 
the ensemble mean trend, and the 1σ (67%) and 2σ (95%) confidence intervals are shaded in purple and pink respectively. Black lines show the observed decadal trend 
from each product. Negative trends correspond to increased ocean carbon uptake with time.
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The observed trends and the distributions of synthetic trends in other super-biomes over 1990–1999 and 2000–
2009 are shown in Figures S2–S5 in Supporting Information S1 and briefly described here. In the Northern 
hemisphere high latitude super-biome, the distribution of synthetic trends is very broad (−0.4 to 0.4 Pg C yr −2; 
minimum and maximum values of PDFs) and, like the global fluxes, the observed trends of all observation-based 

Figure 5. Distribution of decadal trends in Southern Ocean CO2 flux derived from the synthetic ensembles. As in Figure 4, but for the CO2 flux integrated over the 
Southern hemisphere super-biome, made up of Southern Ocean Ice, Subpolar and Subtropical Seasonally Stratified biomes (biomes defined in Fay & McKinley, 2014).

Figure 6. Synthetic ensemble of global CO2 flux using Community Earth System Model Version 1 Large Ensemble (CESM1-LE). Temporal evolution of the globally 
integrated sea-air CO2 flux from the (pastel colors) CESM1-LE and (gray) synthetic ensemble of CESM1-LE member 21 (shown in black). Negative fluxes correspond 
to ocean carbon uptake.
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products over 2000–2009 fall within the 2σ range around the mean (Figure S2 in Supporting Information S1). 
The subtropical super-biomes in the Northern and Southern hemispheres exhibit narrow distributions of synthetic 
trends, due to lower interannual variability in CO2 flux in these regions (−0.2 to 0.1 in the both hemispheres, 
Figures S3 and S4 in Supporting Information S1). The Equatorial super-biome synthetic ensemble produces a 
wide distribution of decadal trends over both periods (−0.5 to 0.4 Pg C yr −2) and all observation-based prod-
uct trends fall near the mean or within 1σ (Figure S5 in Supporting Information S1). Thus, the analysis of our 
super-biome synthetic ensembles suggests that our findings are also regionally dependent.

5. Testing Our Approach and Assumptions
We now consult the CESM1-LE as a testbed, where we apply our synthetic ensemble method to a single ensemble 
member to see if we reproduce the spread across the full ensemble. Using the globally integrated CO2 flux from a 
single ensemble member of CESM1-LE, our statistical emulation technique generates a synthetic ensemble of CO2 
flux that is similar to the true CESM1-LE (Figure 6). We model the statistical properties of a particular CESM1-LE 
ensemble member (in this case, member 21, black line in Figure 6) using Equation 1 with the external signal 𝐴𝐴

(

𝛽𝛽𝐹𝐹
𝑡𝑡
)

 
modeled as the mean of three ensemble mean CO2 flux estimates from historical simulations of CMIP6 Earth 
system models (see Section 2.4; note that a different external signal produces different results as discussed later in 

Figure 7. Distribution of decadal trends in global CO2 flux with alternative model of external forcing. Probability density 
functions (kernel density estimation, purple and pink curves) of decadal trends in globally integrated sea-air CO2 flux for 
(first row) 1990–1999 and (second row) 2000–2009, as estimated from synthetic ensembles of the (first column) Council for 
Scientific and Industrial Research-Machine Learning ensemble (CSIR-ML6), (second column) Max Planck Institute Self-
Organizing Map-Feed-Forward Neural Network (MPI-SOMFFN), (third column) Max Planck Institute for Biogeochemistry-
Mixed Layer Scheme (JENA-MLS), and (fourth column) Copernicus Marine Environment Monitoring Service Feed-Forward 
Neural Network (CMEMS-FFNN) observation-based products. Purple curves show probability density when the external 
signal is derived from the mean of three ensemble means from Earth system model (ESM) output submitted to the sixth 
Coupled Model Intercomparison Project (CMIP6) archive. Pink curves show probability density when the external signal is 
derived from the McKinley et al. (2020) upper ocean box model. Pink and purple vertical lines indicate the ensemble mean 
trend, and black vertical lines show the observed decadal trend from each product.

Observation-based product Abbreviation Reference

Council for Scientific and Industrial Research-Machine Learning ensemble CSIR-ML6 Gregor et al. (2019)

Max Planck Institute Self-Organizing Map-Feed-Forward Neural Network MPI-SOMFFN Landschützer 
et al. (2013, 2014, 2015, 2016)

Jena, Germany, Max Planck Institute for Biogeochemistry - Mixed Layer Scheme JENA-MLS Rödenbeck et al. (2014)

Copernicus Marine Environment Monitoring Service Feed-Forward Neural Network CMEMS-FFNN Denvil-Sommer et al. (2019)

Note. See Section 2.2 for details.

Table 1 
Observation-Based Products of Sea-Air CO2 Flux Used in This Study
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this section), and the climate modes (𝐴𝐴 𝐴𝐴𝑡𝑡

ENSO
 and 𝐴𝐴 𝐴𝐴𝑡𝑡

PDV⟂

 ) produced from CESM1 for this ensemble member. We 
then generate a 1,000-member synthetic ensemble of ensemble member 21 using the steps described previously. 
Figure 6 illustrates the resulting synthetic ensemble in pastel colors overlain on the original CESM1-LE ensemble 
in gray. The envelope of variability in our synthetic ensemble is larger than that of the full CESM1-LE (Figure 6), 
as the average standard deviation (trend removed) of the synthetic ensemble is 11% different from that of full 
CESM1-LE over 1920–2005 (Table 3). We generate a synthetic ensemble of globally integrated sea-air CO2 flux 
for each of the 34 CESM1-LE ensemble members and display the quotient of the two standard deviations (synthetic 
ensemble divided by the CMIP6 Earth system model mean of three ensemble means; Section 2.4) averaged over 
1920–2005 in Table 3. This analysis reveals that the synthetic ensemble can overestimate the standard deviation 
by as much as 69% (ensemble member 8) depending upon the statistical properties of the original time-series used 
to generate the synthetic ensemble. On average across the 34 ensemble members, the overestimation bias in the 
standard deviation is 34% (Table 3). If, instead of modeling external forcing as the mean of CMIP6 model means, 
we instead use the CESM1-LE ensemble mean, the standard deviation bias averaged across all ensemble members 
is 4%. Thus, results from this analysis suggest that our statistical emulation technique for synthetic ensemble 
generation is reasonably unbiased and sensitive to the model of external forcing.

The length of the time-series used to generate the synthetic ensemble can have an influence on its statistical prop-
erties (Table 3). In this study, we generate a synthetic ensemble from observation-based products that are only 
30 years long (1985–2014) and thus may not capture the full temporal spectrum of internal variability that occurs 
in the real world (McKinnon et al., 2017; McKinnon & Deser, 2018). We assess whether this shorter time-series 
can produce biased estimates of variance by generating synthetic ensembles of each CESM1-LE member over 
1976–2005 (a 30-year period) and comparing their standard deviations to that of the full CESM1-LE over the 
same time period (Table 3). Interestingly, the synthetic ensembles generated from the shorter record produce 
smaller biases in the standard deviations of the synthetic ensembles than the synthetic ensembles generated from 
the longer record, with the average standard deviation bias as 15% (Table 3). If we instead use the CESM1-LE 
mean as the external forcing representation, the average standard deviation bias lessens to 2%.

The distributions of synthetic trends reported in the previous section are undoubtedly sensitive to the externally 
derived signal. Because the externally derived signal sets the mean value of the synthetic trend distribution, 
a different assumption about this signal can shift the distribution to the left/right and affect the placement of 
the observed trend within the synthetic ensemble distribution. Recall that our estimate of the externally forced 
signal is derived from the mean of three Earth system model ensemble means. McKinley et al.  (2020) used 
an idealized upper-ocean box model to produce an estimate of externally forced variations in sea-air CO2 flux 
driven by variations in atmospheric pCO2 and volcanic eruptions alone. Figure 7 illustrates that the placement 
of observed trends within the synthetic ensemble distributions are similar regardless of whether we model the 
external forcing 𝐴𝐴

(

𝛽𝛽𝐹𝐹
𝑡𝑡
)

 using the McKinley et al. (2020) box model or the mean of the three Earth system model 
ensemble means.

Observation-based product

Width of trend 
distribution 
1990–1999

Width of trend 
distribution 
2000–2009

Percentile of observed trend 
within synthetic ensemble 

distribution 1990–1999

Percentile of observed trend 
within synthetic ensemble 

distribution 2000–2009

CSIR-ML6 0.13 0.13 64% 19%

MPI-SOMFFN 0.19 0.19 25% 17%

JENA-MLS 0.14 0.14 44% 21%

CMEMS-FFNN 0.08 0.09 72% 20%

Average of all observation-

based products 0.11 0.11 22% 15%

Note. Widths estimated as 4σ (Pg C yr −2).

Table 2 
Width of Trend Distributions and Trend Percentiles for Synthetic Ensembles of Globally Integrated CO2 Flux Produced 
From the Council for Scientific and Industrial Research-Machine Learning Ensemble (CSIR-ML6), Max Planck Institute 
Self-Organizing Map-Feed-Forward Neural Network (MPI-SOMFFN), Max Planck Institute for Biogeochemistry-Mixed 
Layer Scheme (JENA-MLS), and Copernicus Marine Environment Monitoring Service Feed-Forward Neural Network 
(CMEMS-FFNN) Observation-Based Products
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Ensemble member 𝐴𝐴
𝜎𝜎SE

𝜎𝜎CMIP6

 1920–2005𝐴𝐴 𝜎𝜎SE

𝜎𝜎CESM1-LE

 1920–2005𝐴𝐴 𝜎𝜎SE

𝜎𝜎CMIP6

 1976–2005𝐴𝐴 𝜎𝜎SE

𝜎𝜎CESM1-LE

 1976–2005

1 1.54 1.14 1.22 1.08

2 1.17 0.91 1.26 1.10

3 1.45 1.22 0.94 0.83

4 1.20 0.99 1.02 0.90

5 1.53 1.21 1.05 0.92

6 1.33 0.95 1.01 0.88

7 1.32 0.92 0.78 0.69

8 1.69 1.40 1.21 1.07

9 1.28 1.08 1.36 1.18

10 1.31 1.02 1.38 1.21

11 1.29 1.18 1.27 1.10

12 1.26 1.06 1.38 1.22

13 1.21 0.80 0.88 0.78

14 1.33 0.97 1.20 1.05

15 1.32 1.03 1.29 1.14

16 1.15 1.04 0.95 0.84

17 1.20 0.93 1.06 0.93

18 1.31 1.03 1.27 1.10

19 1.45 0.90 0.88 0.78

20 1.26 0.96 1.07 0.94

21 1.11 0.99 1.07 0.93

22 1.47 1.10 1.43 1.26

23 1.29 1.08 1.09 0.94

24 1.62 1.19 1.34 1.17

25 1.32 1.04 1.18 1.02

26 1.39 0.99 1.06 0.94

27 1.19 0.88 0.83 0.72

28 1.45 1.10 1.77 1.54

29 1.40 1.09 1.41 1.24

30 1.48 1.06 1.15 1.00

31 1.46 1.06 1.17 1.03

32 1.44 1.11 1.16 1.03

33 1.44 1.30 1.14 0.99

34 1.31 0.89 1.06 0.93

mean 1.34 1.04 1.15 1.02

Note. The mean standard deviation across all ensemble members for two time periods is on the last line of the table.

Table 3 
Standard Deviation Quotient (Synthetic Ensemble Standard Deviation Divided by External Forcing 
Representation). Column 1 Is the Sixth Coupled Model Intercomparison Project (CMIP6) Earth System Model Mean of 
Ensemble Means Standard Deviation and Column 2 Is the Community Earth System Model Version 1 Large Ensemble 
(CESM1-LE) Mean Standard Deviation for Synthetic Ensembles of Globally Integrated CO2 Flux Produced From 
Each CESM1-LE Member for 1920–2005. Columns 4 (CMIP6 Earth System Model Mean of Ensemble Means) and 5 
(CESM1-LE Mean) Are the Standard Deviation Quotients for Synthetic Ensemble Members for 1976–2005
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6. Conclusions and Discussion
We develop synthetic large ensembles of global and regional sea-air CO2 flux from four observation-based 
products using a statistical emulation technique. Much like a large initial condition ensemble of an Earth 
system model, the resulting synthetic ensemble members exhibit different phasing of internal variability and 
a common externally forced signal. We use these synthetic large ensembles to quantify the placement of 
decadal trends in CO2 flux for each observation-based product within the synthetic ensemble trend distribu-
tion. We find that the phasing of internal variability creates unique features in the time-series of CO2 flux and 
plays an important role in setting the multi-decadal trends in sea-air CO2 flux for each synthetic ensemble 
member. The statistical properties of the synthetic large ensembles differ across the four observation-based 
products with JENA-MLS exhibiting the highest variance and CMEMS-FFNN exhibiting the lowest variance. 
Over the decade 1990–1999, three of the four products show negative observed trends in globally integrated 
sea-air CO2 flux that fall within 1σ of the mean with different phasing of internal variability in the synthetic 
ensemble. However, over the decade 2000–2009, all four products show larger negative trends in sea-air CO2 
flux and three of the four products fall nearly two standard deviations away from the mean in the distribution 
of synthetic trends. The JENA-MLS product trends over these decades fall within 1σ of the mean within 
the synthetic ensemble, while the MPI-SOMFFN product trends over these decades fall outside 1σ range 
of the mean with different phasing of internal variability in the synthetic ensemble. In the Southern Ocean, 
CSIR-ML6 and MPI-SOMFFN exhibit large trends that fall outside the 1σ range of the mean with different 
phasing of internal variability in the synthetic ensemble. While the short length of the time-series used to 
construct the synthetic ensembles can bias the resulting statistical properties of the synthetic ensemble, the 
results of our study are similar whether we use an Earth system model or a box model to estimate the exter-
nal signal, and are capable of producing robust estimates of the statistical properties when we construct the 
synthetic ensembles using longer time-series.

Our approach provides a new perspective on the important role of internal variability in short-term global 
and regional sea-air CO2 flux trends estimated from the observational record. While we are not the first to 
demonstrate this point (see, for example, Fay & McKinley, 2013; McKinley et al., 2011, 2016), our synthetic 
ensembles provide visualizations of this variability. Further, the statistical properties of the synthetic ensem-
bles provide a basis for examining the frequency of a particular global/regional trend in sea-air CO2 flux 
given different phasing of internal variability over a particular time span and with no prior knowledge about 
the climate state. Finally, our work adds to the recent discussion about the role of internal versus exter-
nal processes in interannual to decadal variations in sea-air CO2 flux (DeVries et al., 2017; Landschützer 
et al., 2019; McKinley et al., 2020). While this study is successful in separating internal variability and exter-
nal forcing, the external signal is an uncertain quantity. Regardless of how we model the externally forced 
signal, however, internal variability seems to play a key role in the distribution of decadal trends across our 
synthetic ensembles.

Data Availability Statement
Our synthetic ensembles are available at https://doi.org/10.5281/zenodo.5227342. Underway DPT pCO2 meas-
urements are submitted to SOCAT and archived at NOAA's National Centers for Environmental Information 
(https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/VOS_Program/LM_gould.html). ENSO 
and PDV indices were provided by the NOAA Climate Prediction Center (https://origin.cpc.ncep.noaa.gov/). 
CESM ensemble output is available from the Earth System Grid (https://www.earthsystemgrid.org/dataset/ucar.
cgd.ccsm4.CESM_CAM5_BGC_LE.html). CESM computing resources were provided by CISL at NCAR. 
CESM1-LE climate indices were calculated using the Climate Variability Diagnostics package (https://www.
cesm.ucar.edu/working_groups/CVC/cvdp/). Coupled Model Intercomparison Project output was provided by 
the Earth System Grid Federation (https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/). Trend probabilities were 
calculated via the Keisan Online Calculator service provided by Casio Computer Co., Ltd. (https://keisan.casio.
com/exec/system/1180573188).

https://doi.org/10.5281/zenodo.5227342
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/VOS_Program/LM_gould.html
https://origin.cpc.ncep.noaa.gov/
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html
https://www.cesm.ucar.edu/working_groups/CVC/cvdp/
https://www.cesm.ucar.edu/working_groups/CVC/cvdp/
https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/
https://keisan.casio.com/exec/system/1180573188
https://keisan.casio.com/exec/system/1180573188


Global Biogeochemical Cycles

OLIVAREZ ET AL.

10.1029/2021GB007174

14 of 16

References
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., et al. (2013). Evaluating the land and ocean components of the global carbon 

cycle in the CMIP5 Earth System Models. Journal of Climate, 26(18), 6801–6843. https://doi.org/10.1175/JCLI-D-12-00417.1
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., & Gombos, D. (2011). A cross-calibrated, multiplatform 

ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 
92(2), 157–174. https://doi.org/10.1175/2010BAMS2946.1

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., et al. (2016). A multi-decade record of high-quality fCO2 data 
in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413. https://doi.org/10.5194/essd-8-383-2016

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL-
CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002. https://doi.org/10.1029/2019MS002010

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., da Cunha, L. C., Cox, P. M., Eliseev, A. V., et al. (2021). Global carbon and other biogeochem-
ical cycles and feedbacks In V. P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al. (Eds.), Climate change 2021: The physical 
science basis. Contribution of working group I to the sixth assessment Report of the intergovernmental Panel on climate change.

Ciais, P., & Sabine, C. (2013). Chapter 6: Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. 
K. Allen, J. Boschung, et al. (Eds.) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment 
report of the intergovernmental Panel on climate change. Cambridge University Press.

Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., et al. (2012). The CCSM4 ocean component. Journal of 
Climate, 25(5), 1361–1389. https://doi.org/10.1175/jcli-d-11-00091.1

Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. (2020). The community Earth system model 
version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/10.1029/2019MS001916

Denvil-Sommer, A., Gehlen, M., Vrac, M., & Mejia, C. (2019). LSCE-FFNN-v1: A two-step neural network model for the reconstruction of 
Surface Ocean 𝐴𝐴 𝐴𝐴CO𝑜𝑜𝑜𝑜

2
 over the global ocean. Geoscientific Model Development, 12(5), 2091–2105. https://doi.org/10.5194/gmd-12-2091-2019

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., et al. (2020). Insights from Earth system model initial-condition 
large ensembles and future prospects. Nature Climate Change, 10(4), 277–286. https://doi.org/10.1038/s41558-020-0731-2

DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 
542(7640), 215–218. https://doi.org/10.1038/nature21068

DeVries, T., Le Quéré, C., Andrews, O., Berthet, S., Hauck, J., Ilyina, T., et al. (2019). Decadal trends in the ocean carbon sink. Proceedings of 
the National Academy of Sciences, 116(24), 11646–11651. https://doi.org/10.1073/pnas.1900371116

Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The impacts of ocean acidification on marine ecosystems and reliant human 
communities. Annual Review of Environment and Resources, 45(1), 83–112. https://doi.org/10.1146/annurev-environ-012320-083019

Dong, F., Li, Y., Wang, B., Huang, W., Shi, Y., & Dong, W. (2016). Global air–sea CO2 flux in 22 CMIP5 models: Multiyear mean and interannual 
variability. Journal of Climate, 29(7), 2407–2431. https://doi.org/10.1175/JCLI-D-14-00788.1

Elsworth, G. W., Lovenduski, N. S., McKinnon, K. A., Krumhardt, K. M., & Brady, R. X. (2020). Finding the fingerprint of anthropogenic climate 
change in marine phytoplankton abundance. Current Climate Change Reports, 6(2), 37–46. https://doi.org/10.1007/s40641-020-00156-w

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.
org/10.5194/gmd-9-1937-2016

Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., et al. (2021). Seaflux: Harmonization of air–sea CO2 fluxes 
from surface pCO2 data products using a standardized approach. Earth System Science Data, 13(10), 4693–4710. https://doi.org/10.5194/
essd-13-4693-2021

Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C., Gray, A. R., et al. (2018). Utilizing the Drake Passage time-se-
ries to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15(12), 3841–3855. https://doi.org/10.5194/
bg-15-3841-2018

Fay, A. R., & McKinley, G. A. (2013). Global trends in surface ocean pCO2 from in situ data. Global Biogeochemical Cycles, 27(2), 541–557. 
https://doi.org/10.1002/gbc.20051

Fay, A. R., & McKinley, G. A. (2014). Global open-ocean biomes: Mean and temporal variability. Earth System Science Data, 6(2), 273–284. 
https://doi.org/10.5194/essd-6-273-2014

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. (2021). Global carbon budget 2021. Earth 
System Science Data Discussions, 1–191. https://doi.org/10.5194/essd-2021-386

Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R., Frölicher, T. L., Fyfe, J. C., et al. (2021). Quantifying errors in observationally based 
estimates of ocean carbon sink variability. Global Biogeochemical Cycles, 35(4), e2020GB006788. https://doi.org/10.1029/2020GB006788

Gregor, L., & Fay, A. (2021). SeaFlux: Harmonised Sea-air CO2 fluxes from surface pCO2 data products using a standardised approach, Zenodo. 
https://zenodo.org/record/5482547#.YpEitC-B30o

Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A comparative assessment of the uncertainties of global surface ocean CO2 
estimates using a machine-learning ensemble (CSIR-ML6 version 2019a)—Have we hit the wall? Geoscientific Model Development, 12(12), 
5113–5136. https://doi.org/10.5194/gmd-12-5113-2019

Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin America Meteorology Social, 
90(8), 1095–1107. https://doi.org/10.1175/2009BAMS2607.1

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. (2013). The community Earth system model: A framework 
for collaborative Research. Bulletin America Meteorology Social, 94(9), 1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The community Earth system model (CESM) large ensemble 
project: A community resource for studying climate change in the presence of internal climate variability. Bulletin America Meteorology 
Social, 96(8), 1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1

Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical 
Cycles, 30(10), 1396–1417. https://doi.org/10.1002/2015GB005359

Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., et  al. (2013). A neural network-based estimate of 
the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10(11), 7793–7815. https://doi.org/10.5194/
bg-10-7793-2013

Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., et al. (2015). The reinvigoration of the Southern 
Ocean carbon sink. Science, 349(6253), 1221–1224. https://doi.org/10.1126/science.aab2620

Acknowledgments
The Surface Ocean CO2 Atlas (SOCAT) 
is an international effort, supported by the 
International Ocean Carbon Coordination 
Project (IOCCP), the Surface Ocean 
Lower Atmosphere Study (SOLAS), 
and the Integrated Marine Biogeo-
chemistry and Ecosystem Research 
program (IMBER), to deliver a uniformly 
quality-controlled surface ocean CO2 
database. The many researchers and 
funding agencies responsible for the 
collection of data and quality control 
are thanked for their contributions to 
SOCAT. The authors are grateful for the 
efforts of the marine and science support 
teams of the ARSV Laurence M. Gould, 
particularly Bruce Felix, Andy Nunn, 
and Kevin Pedigo. We are grateful for 
funding from the National Science Foun-
dation (OCE-1558225, OCE-1752724, 
OCE-1948664, PLR-1543457, and the 
Graduate Research Fellowship Program). 
This work benefited from computational 
assistance from G. Elsworth, E. Maroon, 
and H. Zanowski. We are grateful to T. 
DeVries and an anonymous reviewer for 
providing feedback that helped to improve 
the manuscript.

https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1175/2010BAMS2946.1
https://doi.org/10.5194/essd-8-383-2016
https://doi.org/10.1029/2019MS002010
https://doi.org/10.1175/jcli-d-11-00091.1
https://doi.org/10.1029/2019MS001916
https://doi.org/10.5194/gmd-12-2091-2019
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1038/nature21068
https://doi.org/10.1073/pnas.1900371116
https://doi.org/10.1146/annurev-environ-012320-083019
https://doi.org/10.1175/JCLI-D-14-00788.1
https://doi.org/10.1007/s40641-020-00156-w
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/essd-13-4693-2021
https://doi.org/10.5194/essd-13-4693-2021
https://doi.org/10.5194/bg-15-3841-2018
https://doi.org/10.5194/bg-15-3841-2018
https://doi.org/10.1002/gbc.20051
https://doi.org/10.5194/essd-6-273-2014
https://doi.org/10.5194/essd-2021-386
https://doi.org/10.1029/2020GB006788
https://zenodo.org/record/5482547#.YpEitC-B30o
https://doi.org/10.5194/gmd-12-5113-2019
https://doi.org/10.1175/2009BAMS2607.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1002/2015GB005359
https://doi.org/10.5194/bg-10-7793-2013
https://doi.org/10.5194/bg-10-7793-2013
https://doi.org/10.1126/science.aab2620


Global Biogeochemical Cycles

OLIVAREZ ET AL.

10.1029/2021GB007174

15 of 16

Landschützer, P., Ilyina, T., & Lovenduski, N. S. (2019). Detecting regional modes of variability in observation-based surface ocean pCO2. 
Geophysical Research Letters, 46(5), 2670–2679. https://doi.org/10.1029/2018GL081756

Landschützer, P., Laruelle, G. G., Roobaert, A., & Regnier, P. (2020). A uniform pCO2 climatology combining open and coastal oceans. Earth 
System Science Data, 12(4), 2537–2553. https://doi.org/10.5194/essd-12-2537-2020

Landschützer, P., Peter, N., Gruber, D. C. E. B., & Schuster, U. (2014). Recent variability of the global ocean carbon sink. Global Biogeochemical 
Cycles, 28(9), 927–949. https://doi.org/10.1002/2014GB004853

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). Global carbon budget 2017. Earth System 
Science Data, 10(1), 405–448. https://doi.org/10.5194/essd-10-405-2018

Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., et al. (2009). Trends in the sources and sinks of carbon dioxide. 
Nature Geoscience, 2(12), 831–836. https://doi.org/10.1038/ngeo689

Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., et al. (2007). Saturation of the Southern Ocean CO2 
sink due to recent climate change. Science, 316(5832), 1735–1738. https://doi.org/10.1126/science.1136188

Lovenduski, N. S., Gruber, N., & Doney, S. C. (2008). Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon 
sink. Global Biogeochemical Cycles, 22(3), GB3016. https://doi.org/10.1029/2007GB003139

Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake 
projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.
org/10.1002/2016GB005426

McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S. (2020). External forcing explains recent decadal variability of the 
ocean carbon sink. AGU Advances, 1(2), e2019AV000149. https://doi.org/10.1029/2019AV000149

McKinley, G. A., Fay, A. R., Lovenduski, N. S., & Pilcher, D. J. (2017). Natural variability and anthropogenic trends in the ocean carbon sink. 
Annual Review of Marine Science, 9(1), 125–150. https://doi.org/10.1146/annurev-marine-010816-060529

McKinley, G. A., Fay, A. R., Takahashi, T., & Metzl, N. (2011). Convergence of atmospheric and North Atlantic carbon dioxide trends on 
multidecadal timescales. Nature Geoscience, 4(9), 606–610. https://doi.org/10.1038/ngeo1193

McKinley, G. A., Follows, M. J., & Marshall, J. (2004). Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlan-
tic. Global Biogeochemical Cycles, 18(2), C07S06. https://doi.org/10.1029/2003GB002179

McKinley, G. A., Pilcher, D. J., Fay, A. R., Lindsay, K., Long, M. C., & Lovenduski, N. S. (2016). Timescales for detection of trends in the ocean 
carbon sink. Nature, 530(7591), 469–472. https://doi.org/10.1038/nature16958

McKinley, G. A., Takahashi, T., Buitenhuis, E., Chai, F., Christian, J. R., Doney, S. C., et al. (2006). North Pacific carbon cycle response to climate 
variability on seasonal to decadal timescales. Journal of Geophysical Research, 111(C7), C07S06. https://doi.org/10.1029/2005JC003173

McKinnon, K. A., & Deser, C. (2018). Internal variability and regional climate trends in an observational large ensemble. Journal of Climate, 
31(17), 6783–6802. https://doi.org/10.1175/JCLI-D-17-0901.1

McKinnon, K. A., & Deser, C. (2021). The inherent uncertainty of precipitation variability, trends, and extremes due to internal variability, with 
implications for Western U.S. water resources. Journal of Climate, 34(24), 9605–9622. https://doi.org/10.1175/JCLI-D-21-0251.1

McKinnon, K. A., Poppick, A., Dunn-Sigouin, E., & Deser, C. (2017). An “Observational Large Ensemble” to compare observed and modeled 
temperature trend uncertainty due to internal variability. Journal of Climate, 30(19), 7585–7598. https://doi.org/10.1175/JCLI-D-16-0905.1

Metzl, N., Corbière, A., Reverdin, G., Lenton, A., Takahashi, T., Olsen, A., et al. (2010). Recent acceleration of the sea surface fCO2 growth 
rate in the North Atlantic subpolar gyre (1993–2008) revealed by winter observations. Global Biogeochemical Cycles, 24(4). https://doi.
org/10.1029/2009GB003658

Moore, J. K., & Braucher, O. (2008). Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences, 5(3), 631–656. 
https://doi.org/10.5194/bg-5-631-2008

Moore, J. K., & Doney, S. C. (2007). Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and 
nitrogen fixation. Global Biogeochemical Cycles, 21(2). https://doi.org/10.1029/2006GB002762

Moore, J. K., Doney, S. C., & Lindsay, K. (2004). Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global 
Biogeochemical Cycles, 18(4), GB4028. https://doi.org/10.1029/2004GB002220

Munro, D. R., Lovenduski, N. S., Stephens, B. B., Newberger, T., Arrigo, K. R., Takahashi, T., et al. (2015). Estimates of net community produc-
tion in the Southern Ocean determined from time series observations (2002–2011) of nutrients, dissolved inorganic carbon, and surface ocean 
pCO2 in Drake Passage. Deep-Sea Res. II, 114(0), 49–63. https://doi.org/10.1016/j.dsr2.2014.12.014

Munro, D. R., Lovenduski, N. S., Takahashi, T., Stephens, B. B., Newberger, T., & Sweeney, C. (2015b). Recent evidence for a strengthening CO2 
sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophysical Research Letters, 42(18), 
7623–7630. https://doi.org/10.1002/2015GL065194

NOAA Global Monitoring Laboratory (web) NOAA greenhouse gas marine boundary layer reference. Retrieved from https://gml.noaa.gov/ccgg/
mbl/mbl.html

Ridge, S. M., & McKinley, G. A. (2021). Ocean carbon uptake under aggressive emission mitigation. Biogeosciences, 18(8), 2711–2725. https://
doi.org/10.5194/bg-18-2711-2021

Ritter, R., Landschützer, P., Gruber, N., Fay, A. R., Iida, Y., Jones, S., et al. (2017). Observation-based trends of the Southern Ocean carbon sink. 
Geophysical Research Letters, 44(24), 12339–12348. https://doi.org/10.1002/2017GL074837

Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., et al. (2015). Data-based estimates of the ocean carbon sink 
variability—First results of the surface ocean pCO2 mapping intercomparison (SOCOM). Biogeosciences, 12(23), 7251–7278. https://doi.
org/10.5194/bg-12-7251-2015

Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., et al. (2014). Interannual sea–air CO2 flux variability from an 
observation-driven ocean mixed-layer scheme. Biogeosciences, 11(17), 4599–4613. https://doi.org/10.5194/bg-11-4599-2014

Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Review Letters, 77(4), 635–638. https://doi.
org/10.1103/PhysRevLett.77.635

Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3), 346–382. https://doi.org/10.1016/
S0167-2789(00)00043-9

Schuster, U., Watson, A., Bates, N., Corbiere, A., Gonzalez-Davila, M., Metzl, N., et al. (2009). Trends in North Atlantic Sea surface fCO2 
from 1990 to 2006 North Atlantic Sea-surface fCO2 from 1990 to 2006. Deep-Sea Res. II, 56(8–10), 620–629. https://doi.org/10.1016/j.
dsr2.2008.12.011

Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 
112(C11), C11006. https://doi.org/10.1029/2006JC003941

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., et al. (2019). The Canadian Earth system model version 5 
(CanESM5.0.3). Geoscientific Model Development, 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

https://doi.org/10.1029/2018GL081756
https://doi.org/10.5194/essd-12-2537-2020
https://doi.org/10.1002/2014GB004853
https://doi.org/10.5194/essd-10-405-2018
https://doi.org/10.1038/ngeo689
https://doi.org/10.1126/science.1136188
https://doi.org/10.1029/2007GB003139
https://doi.org/10.1002/2016GB005426
https://doi.org/10.1002/2016GB005426
https://doi.org/10.1029/2019AV000149
https://doi.org/10.1146/annurev-marine-010816-060529
https://doi.org/10.1038/ngeo1193
https://doi.org/10.1029/2003GB002179
https://doi.org/10.1038/nature16958
https://doi.org/10.1029/2005JC003173
https://doi.org/10.1175/JCLI-D-17-0901.1
https://doi.org/10.1175/JCLI-D-21-0251.1
https://doi.org/10.1175/JCLI-D-16-0905.1
https://doi.org/10.1029/2009GB003658
https://doi.org/10.1029/2009GB003658
https://doi.org/10.5194/bg-5-631-2008
https://doi.org/10.1029/2006GB002762
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1016/j.dsr2.2014.12.014
https://doi.org/10.1002/2015GL065194
https://gml.noaa.gov/ccgg/mbl/mbl.html
https://gml.noaa.gov/ccgg/mbl/mbl.html
https://doi.org/10.5194/bg-18-2711-2021
https://doi.org/10.5194/bg-18-2711-2021
https://doi.org/10.1002/2017GL074837
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.5194/bg-11-4599-2014
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1016/j.dsr2.2008.12.011
https://doi.org/10.1016/j.dsr2.2008.12.011
https://doi.org/10.1029/2006JC003941
https://doi.org/10.5194/gmd-12-4823-2019


Global Biogeochemical Cycles

OLIVAREZ ET AL.

10.1029/2021GB007174

16 of 16

Sweeney, C., Gloor, E., Jacobson, A., Key, R., McKinley, G., Sarmiento, J. L., & Wanninkhof, R. (2007). Constraining global air-sea gas exchange 
for CO2 with recent bomb  14c measurements. Global Biogeochemical Cycles(GB2015), 21. https://doi.org/10.1029/2006gb002784

Takahashi, T., Sutherland, S., & Kozyr, A. (2018). Global ocean surface water partial pressure of CO2 database (LDEO database version 2019): 
Measurements performed during 1957-2019 (NCEI accession 0160492). NOAA National Centers for Environmental Information. Dataset. 
https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin America Meteorology Social, 
93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Thomas, H., Friederike Prowe, A. E., Lima, I. D., Doney, S. C., Wanninkhof, R., Greatbatch, R. J., et al. (2008). Changes in the North Atlantic 
oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Global Biogeochemical Cycles, 22(4), GB4027. https://doi.
org/10.1029/2007GB003167

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 
12(6), 351–362. https://doi.org/10.4319/lom.2014.12.351

Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M., et al. (2009). Tracking the variable north Atlantic 
sink for Atmospheric CO2. Science, 326(5958), 1391–1393. https://doi.org/10.1126/science.1177394

Wilks, D. (1997). Resampling hypothesis tests for autocorrelated fields. Journal of Climate, 10(1), 65–82. https://doi.org/10.1175/1520-0442(1
997)010<0065:rhtfaf>2.0.co;2

https://doi.org/10.1029/2006gb002784
https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015)
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1029/2007GB003167
https://doi.org/10.1029/2007GB003167
https://doi.org/10.4319/lom.2014.12.351
https://doi.org/10.1126/science.1177394
https://doi.org/10.1175/1520-0442(1997)010%3C0065:rhtfaf%3E2.0.co;2
https://doi.org/10.1175/1520-0442(1997)010%3C0065:rhtfaf%3E2.0.co;2

	Alternate Histories: Synthetic Large Ensembles of Sea-Air CO2 Flux
	Abstract
	1. Introduction
	2. Observations and Models
	2.1. Drake Passage Sea-Air CO2 Flux Estimates
	2.2. Observation-Based Products: Sea-Air CO2 Flux
	2.3. Community Earth System Model Version 1 Large Ensemble
	2.4. Earth System Models From CMIP6
	2.5. Upper Ocean Box Model

	3. Synthetic Ensemble Construction
	4. Results
	5. Testing Our Approach and Assumptions
	6. Conclusions and Discussion
	Data Availability Statement
	References




