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This work presents theoretical calculations of the two-dimensional electronic vi-

brational (2DEV) spectrum of a vibronically coupled molecular dimer using a near-

analytical method. In strongly coupled dimers, where the IR mode is resonant with

the electronic energy gap between the excitons, multiple infrared transitions become al-

lowed that are forbidden in weakly coupled systems that have a non-resonant IR mode.
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This formalism enables the coherences and population contributions to be explored sep-

arately, and allows efficient calculation of relaxation rates between the vibronic states.

At short times we find strong contributions of vibronic coherences to the 2DEV spec-

tra. They decay fairly rapidly giving rise to strong population signals. Although the

interpretation of 2DEV spectra is considerably more complex than for weakly cou-

pled systems, the richness of the spectra and the necessity to consider both visible

and infrared transition moments suggest that such analysis will be very valuable in

characterizing the role of vibronic effects in ultrafast molecular dynamics.

Two Dimensional Electronic Vibrational (2DEV) spectroscopy is a newly developing non-

linear four-wave mixing technique, where two UV-vis pulses interact with the system of

interest, followed by an IR pulse and eventually the system emits the signal IR pulse.1–6

Two Dimensional Vibrational Electronic (2DVE) spectroscopy is a complimentary method

in which two IR pulses initially interact with the system, followed by an UV-vis pulse and

the subsequent emission of a UV-vis pulse by the system is detected.7 Their well-established

counterparts, 2DES8–10 (Two Dimensional Electronic Spectroscopy) and 2DIR11–13 (Two Di-

mensional Infrared Spectroscopy) aim at investigating the temporal evolution of electronic

excitation and the consequent effects on dynamics, and the structural evolution in the ground

state, probed through IR frequencies, respectively. 2DEV spectroscopy aims at bridging the

gap between the electronic and vibrational regimes, to elucidate how photo-excited elec-

tronic excitation dynamics and structure, probed through vibrations, are inter-related. This

is specifically relevant for systems in condensed phase such as the photosynthetic light har-

vesting complexes. Here, the chromophores, despite identical structures and hence, energies,

if isolated, have an energy gradient, since the structures of the chromophores are modulated

and shaped by their mutual interactions and respective local environments. This, in turn,

increases the absorption bandwidth as well as creating an energy gradient for excitation

energy from the absorption site to the reaction center.

The observation of long lived quantum beating, in a photosystem with an elaborate en-
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vironment, is a subject of persistent intrigue.14 An example of such a complex system is

the photosynthetic FMO complex of the green sulfur bacteria with an oscillation lifetime of

660 fs at 77 K.15 The initial interpretation attributed these persistent quantum beatings to

a coherent wave-like transfer of electronic excitation among the optically excited eigenstates.

However, the presence of a complex environment should cause rapid decoherence, leading to

incoherent, Forster-like hopping of electronic excitation after a very short time among the

chromophores. An alternative conjecture attributes the persistence of such coherent oscilla-

tions to long-range fluctuations of the protein scaffold.16 Jonas and coworkers suggested that

the long-lived oscillations stem from vibrational wavepackets on the ground electronic state, a

manifestation of the delocalized, anti-correlated component of pigment vibrations that drive

nonadiabatic electronic energy transport.17 Another rationale proposes that the long oscilla-

tion lifetimes arise due to Vibrationally Assisted Electronic Energy Transfer (VA-EET).18–28

Here, the nuclear degrees of freedom are hypothesized to contribute a discrete, sharp vi-

brational/nuclear mode that is resonant/quasi- resonant with a pair of electronic excitons.

A back and forth coherent transfer of excitation between the excitons and such a discrete

mode could act like a field, driving Rabi-like oscillations, causing the excitonic coherences to

be retained longer than the expected decoherence timescale. However, recent studies report

that for modes with fairly small Huang Rhys factors, such electronic-vibrational quantum

mixtures, despite contributing to the long-lived spectral beating, do not play a major role in

electronic energy transport. It is, thus, important to appreciate that it is often non-trivial

to directly relate the experimental spectra to the system dynamics.29 It is imperative, then,

to model these different phenomena theoretically with a consistent model for both spectral

and population dynamics and use the information obtained to explain and understand the

experimental findings. To this end, we use 2DEV (2 Dimensional Electronic Vibrational)

spectroscopy, to investigate how the excitation energy evolves temporally and spatially. The-

oretical simulations are essential to enable an understanding of how the system dynamics

result in specific signatures in the 2DEV spectra. For mechanistic insight, we propose a
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computationally efficient approach that is essentially analytical in calculating decoherence

to evaluate 2DEV spectra of coupled dimers, using nonlinear response functions. We expect

that the features we obtain will also appear in more rigorous and exact numerical simulations.

We consider a dimer, with an IR mode of angular frequency Ω (Ω = ΩA = ΩB, ~ = 1),

local to each of the monomers (labeled A and B, respectively), as the system of interest. The

IR modes on A and B are considered to have zero coupling with the other monomer. The

electronic coupling between A andB is given as 〈A | H | B〉 = 〈B | H | A〉 = J . The IR mode

has a frequency that is resonant with the energy gap between the electronic excitons, formed

from A and B, resulting in a strongly coupled dimeric system. The site basis, therefore,

should reflect information about both the electronic and vibrational degrees of freedom and

is given as | XvAα vBβ 〉. Here, X ∈ {g, A,B} labels the electronic state, where g denotes both A

and B are in their respective ground states, A indicates that only A is electronically excited

whereas B denotes that only B is electronically excited. Doubly-excited electronic states are

not considered, as they are not accessible in 2DEV spectroscopy. The superscript on v labels

if the vibrational mode is local to A or B and {α, β} ∈ {g0, g1, e0
′
, e1

′}, where g and e denote

if the monomer is in the ground or first excited electronic state, respectively. 0 and 1 are the

ground and first excited vibrational states on g, whereas 0
′ and 1

′ label the ground and first

excited vibrational states on e. For initial calculations, in the site basis, we approximate

that the electronic wavefunctions are independent of the nuclear wavefunctions, therefore,

| XvAα vBβ 〉 ≈| X〉⊗ | vAα 〉⊗ | vBβ 〉. The Huang Rhys factor, σ, describes the vibrational overlap

between the nuclear wavefunctions on the ground and excited electronic states, for a given

monomer: 〈vAg0 | vAe0′ 〉 = e−σ/2; 〈vAg0 | vAe1′ 〉 =
√
σe−σ/2; 〈vA

e0′
| vAg1〉 ≈ −

√
σe−σ/2;〈vAg1 | vAe1′ 〉 =

(1−σ)e−σ/2. In these expressions, we ignore frequency changes in the modes between ground

and excited states. This is a reasonable approximation for the chlorophyll molecules that

comprise green plant antennae.

The 2DEV spectra for coupled dimers, when described by nonlinear response functions,

have contributions from the Ground State Bleaching (GSB), Excited State Emission (ESE)
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and Excited State Absorption (ESA) pathways (see Figure 1). It is important to note

that the ground and the excited electronic states are coupled only radiatively. For the

GSB pathway, we work with the system Hamiltonian, Hsys,g, in the ground electronic state

manifold, described by the basis states | gvAg0vBg0〉, | gvAg0vBg1〉 and | gvAg1vBg0〉, respectively. The

state | gvAg0vBg0〉 is considered to have the zero of energy. Hsys,g is, therefore, given as:

Hsys,g =


0 0 0

0 Ω 0

0 0 Ω

 . (1)

The ESA and ESE pathways, on the other hand, are described by the system Hamiltonian

in the electronic excited state manifold, Hsys,ex, formed by the basis states | AvA
e0′
vBg0〉 ,

| AvA
e1′
vBg0〉, | AvAe0′v

B
g1〉, | BvAg0vBe0′ 〉, | Bv

A
g0v

B
e1′
〉 and | BvAg1vBe0′ 〉 (the site states are labeled as

I, II, III, IV, V and VI, respectively), and given as:

Hsys,ex =



EA 0 0 Je−σ J
√
σe−σ −J

√
σe−σ

0 EA + Ω
′

0 J
√
σe−σ Jσe−σ J(1− σ)e−σ

0 0 EA + Ω −J
√
σe−σ J(1− σ)e−σ Jσe−σ

Je−σ J
√
σe−σ −J

√
σe−σ EB 0 0

J
√
σe−σ Jσe−σ J(1− σ)e−σ 0 EB + Ω

′
0

−J
√
σe−σ J(1− σ)e−σ Jσe−σ 0 0 EB + Ω


.

(2)

The first excited electronic states of the monomers have energies EA and EB, respectively.

The IR mode has a shifted frequency Ω
′ in the excited electronic state. The system interacts

with the bath/environment, which is modeled to be a collection of harmonic oscillators and

the system-bath coupling is approximated to be linear in the position coordinates of the bath
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oscillators. The total Hamiltonian is, therefore, given as:

Hg/ex =
∑
i

(Ei +Qi) | i〉〈i | +
∑
i,j;i 6=j

Vij | i〉〈j | +Hph, (3)

where

Hph =
∑
i,k

(
p2
ik

2mik

+
1

2
mikq

2
ikω

2
ik). (4)

Here, i runs over 3 basis states for Hg, as discussed above and 6 basis states for Hex,

respectively. Vij describes the off-diagonal coupling between system states, given by the

electronic coupling between the monomers and the vibrational overlap between the nuclear

wavefunctions, expressed in terms of the Huang Rhys factors. The system-bath coupling is

expressed as Qi = Σkmikνikqik, where mik, νik, qik, pik and ωik are the mass, bath coupling

strength, position, momentum and angular frequency, respectively, of the kth bath oscillator

pertaining to the ith system state. Hg, when written out, is diagonal with respect to the

system basis and therefore, easy to work with. Hex, on the other hand, does not enjoy the

same advantage and when diagonalized, can be written as:

Hex =
∑
m

εm(Q) | m(Q)〉〈m(Q) | +Hph, (5)

where | m(Q)〉 is the adiabatic basis. The adiabatic basis is nontrivial to work with, due

to its dependence on the system-bath coupling vector, Q. Also, the position coordinates

of the bath oscillators do not commute with their momenta. To circumvent this issue, we

introduce a unitary transformation U(Q), which maps from the adiabatic basis | m(Q)〉 to

the stationary adiabatic basis | m(Q = 0)〉, the adiabatic basis frozen at its equilibrium

geometry, to be denoted henceforth as | m〉.30–32 Thus, | m(Q)〉 = U(Q) | m〉, where U(Q)

is defined as:

−i~∇QU(Q) = U(Q)Â(Q). (6)

Here, Â(Q) is a vector describing non-adiabatic transitions, with j components, where the
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jth component is given as Aj(Q) =
∑

n,mA
j
n,m(Q) | n〉〈m |, where

Ajn,m(Q) = −i〈n(Q) | ∂

∂Qj

| m(Q)〉

= −i〈n(Q) | j〉〈j | m(Q)〉
εn(Q)− εm(Q)

.

(7)

Therefore, Hex, when unitary transformed, gives H̄ex (= U †(Q)HexU(Q)), given as:

H̄ex = H̄0 + H̄na, (8)

where H̄0 =
∑

m εm(Q) | m〉〈m | +Hph and H̄na is approximated as:

H̄na ≈
1

2
(PjA

j(0) + Aj(0)Pj), (9)

where Pj =
∑

k νjkpjk and Aj(0) = −i 〈n(0)|j〉〈j|m(0)〉
εn(0)−εm(0)

. We approximate that the system

stays close to its adiabatic limit, so that we can neglect the terms quadratic in Aj(Q)

in H̄ex, treating non-adiabatic transitions perturbatively. Also, Aj(Q) = Aj(0), since the

overlap between the adiabatic and the site states, and the energy difference between the

adiabatic states is mostly insensitive to the phonon fluctuations. While εm(Q) in H̄0 describes

fluctuations in a stationary adiabatic state that accounts for decoherence, H̄na describes

phonon-mediated population relaxation between the stationary adiabatic states m and n.

Therefore, the unitary transformation affords separability of the Hamiltonian into a term

responsible for decoherence and a term responsible for incoherent population relaxation,

which, in turn, is treated perturbatively. However, it should be noted that as a result of

this decoupling, coherence transfer events and coherence to population transfer events are

not considered. We do not expect such events to have a significant effect on the current

calculations.

We use the intuitive approach of employing Nonlinear Response Functions (NRFs), de-

scribed by Feynman diagrams, to theoretically evaluate 2DEV spectra. The NRFs for the
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Figure 1: ESA, ESE and GSB Rephasing Pathways. The black arrows label the electronic
pulses and the red arrows label the IR pulses. Here, mi label the stationary adiabatic states
in the electronic excited manifold and ni label the states in the ground electronic manifold.
n1 ∈ {| gvAg0vBg0〉, | gvAg1vBg1〉} and n2 ∈ {| gvAg0vBg1〉, | gvAg1vBg0}〉. Population relaxation is allowed
during the waiting time t2.
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ESA, ESE and GSB pathways are shown in Figure 1. The distinction between the ESA and

ESE pathways arises from the fact that in ESA, m4 undergoes stimulated IR absorption

to form m3, whereas in ESE, m2 undergoes stimulated IR emission to form m3. Because

of the greater complexity of the energy levels and the re-working of the vibrational oscilla-

tor strengths from the mixing, IR stimulated emission becomes possible for transitions that

would not exist in uncoupled systems. We do assume that the IR pulse spans the exci-

tonic/vibronic manifold, but not that the visible pulse creates populations in v = 2 in the

excited manifold. This is seen only for the case of coupled dimers and for systems with more

than 2 chromophores/monomers and/or multiple IR modes, where the IR modes could be in

their ground or first excited vibrational states. For monomeric systems, the 2DEV spectra are

described by the ESA and GSB pathways, provided the initial excitation does not populate

v = 2 or higher levels. In the GSB pathway shown in Figure 1(c), n2 ∈ {| gvAg0vBg1〉, | gvAg1vBg0}〉,

as a result of stimulated IR absorption from g0. The bandwidth/center wavelength of the

visible pulse could be sufficient to create vibrational wavepackets even if the center wave-

length was not short enough to do so in the excited state. To describe this, we would need to

add Impulsive Stimulated Raman Scattering (ISRS) to our calculations. In Figure 1(c), we

consider n1 ∈ {| gvAg0vBg0〉, | gvAg1vBg1〉}, where n1 is formed by a stimulated electronic emission

from m1. We discuss in detail the ESA rephasing pathway, other pathways are evaluated in

an analogous fashion. For easy notation, g0 denotes the site state | gvAg0vBg0〉 and mi denotes

a stationary adiabatic state in the electronic excited manifold, i being a positive integer.

It is important to note that the stationary adiabatic states, despite the different technical

definition, have the same energies as the eigenstates obtained by diagonalizing Hsys,ex. The

ESA rephasing NRF, depicted pictorially Figure 1(a), is:

RESA(t3, t2, t1) = 〈µel(0)µvib(t1 + t2 + t3)µvib(t1 + t2)µel(t1)ρ(0)〉, (10)

where ρ(0) =| g0〉〈g0 | ρph(0). µel/vib(t) is the transition dipole operator in the Heisenberg
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representation, defined as µel/vib(t) = eiHextµel/vibe
−iHext. Using these definitions, we have

RESA(t3, t2, t1) = Trph{〈g0 | µeleiHex(t1+t2+t3)µvibe
−iHext3µvibe

−iHext2µele
−iHext1 | g0〉ρph(0)}.

(11)

We now introduce the unitary transformation and the stationary adiabatic basis.

RESA(t3, t2, t1) =
∑
{m}

µel,g0m1µvib,m2m3µvib,m3m4µel,m5g0e
−iHpht1Fm1m2m3m4m5(t3, t2, t1), (12)

where

Fm1m2m3m4m5(t3, t2, t1) = Trph{〈m1 | eiH̄ext1 | m1〉〈m1 | eiH̄ext2 | m2〉〈m2 | eiH̄ext3 | m2〉

× 〈m3 | e−iH̄ext3 | m3〉〈m4 | e−iH̄ext2 | m5〉ρph(0)}.
(13)

In Eq. 13, we have approximated 〈g0 | µ | mi(Q)〉 ≈ 〈g0 | µ | mi〉. In the 2DEV spectroscopy

experiments, t1 and t3 are small enough compared to phonon relaxation time to neglect

phonon-mediated population relaxation. t2 is the dynamics time. If t2 is large compared to

phonon relaxation time, population relaxation during t2 needs to be considered. However, if

t2 is small, we can neglect population relaxation during t2, so that m1 = m2 and m4 = m5.

Also, since decoherence and population relaxation are essentially different phenomena and

mostly independent of each other, we can decouple them at the lowest order. To evaluate

Fm1m2m3m4m5(t3, t2, t1), we introduce the zeroth order transformed Hamiltonian H̄0 to obtain:

Fm1m2m3m4m5(t3, t2, t1) ≈ Dm1m2m3m4(t1, t2, t3)× pm1m2m4m5
(t2), (14)

where

Dm1m2m3m4(t1, t2, t3) = Trph{(T̂ †ei
∫ t1
0 dt′εm1 (Q(t′)))(T̂ †ei

∫ t2
0 dt′εm2 (Q(t′)))(T̂ †ei

∫ t3
0 dt′εm2 (Q(t′)))

× (T̂ e−i
∫ t3
0 dt′εm3 (Q(t′)))(T̂ e−i

∫ t2
0 dt′εm4 (Q(t′)))ρph(0)}eiHpht1 ,

(15)
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and

pm1m2m4m5
(t2) = Trph{〈m1 | U†I(t2) | m2〉ρph(0)〈m4 | UI(t2) | m5〉}. (16)

In Eq. 15, T̂ †ei
∫ t
0 dt

′εmi (Q(t′)) = eiεmi t(T̂ †ei
∫ t
0 dt

′∇Qεmi (Q(t′))·Q(t′)). The Q dependence of εmi

results in decoherence due to the system-phonon coupling. If the environment is modeled

by a Debye or Ohmic spectral density, the decoherence term Dm1m2m3m4(t1, t2, t3) can be

evaluated analytically, almost exactly.30,31 However, for other spectral densities, numerical

evaluation is required. pm1m2m4m5
(t2) causes population relaxation, where UI = eiH̄0te−iH̄ext

and is treated perturbatively by a Markovian master equation, that is evaluated using matrix

equations.30,31 This is justified from the previous approximation that the system resides near

its adiabatic limit, so non-adiabatic transitions can be described perturbatively.

In the ESA and ESE rephasing response functions considered together (Figure 1), mi

(i ∈ {1, 2, 3, 4, 5}) could be any of the 6 states obtained by diagonalizing Hsys,ex, resulting

in 65 pathways. Evaluating contributions for each of these pathways is tedious and time-

consuming. Since we are seeking to gain mechanistic insights, we exploit the separability of

the transformed Hamiltonian into decoherence and population relaxation. The population

relaxation rates are given as:30

Γmn = 2π
1

eβωmn − 1

∑
j

Jj(ωmn)(〈n | j〉〈j | m〉)2, (17)

and Γnm = eβωmnΓmn. Here, m and n label the stationary adiabatic states while j labels

the site state. The spectral density for the jth site is given as Jj(ω) and ωmn = εm − εn,

ωmn > 0. The population relaxation rates afford us the flexibility to discard pathways that

have negligible rates. In addition, we discard pathways that have small transition dipole

moments. Using these two tools, we are able to substantially reduce the number of pathways

that have significant contributions to the response function at a given waiting time t2.

In our calculations, EA = 12000 cm−1, EB = 12900 cm−1, J = 250 cm−1, σ = 0.0025,

Ω = 1030 cm−1 and Ω
′

= 950 cm−1. The site states I and IV, in Eq. 2, are electronic-only
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Figure 2: (a) The site basis, labeled by I-VI and the exciton basis, labeled by 1-6. In site
I, for example, the left lower potential surface denotes the ground electronic state of A and
the left upper potential surface denotes the excited electronic state of A, with the jagged
arrows in each surface depicting the state of the vibrational energy. Similarly, the right
lower and upper surfaces depict the ground and excited electronic states of B. In the exciton
basis, the length of each color bar in each state is representative of the contribution of the
corresponding site state. (b) The electronic absorption spectrum of the coupled dimer, with
broadening added to mimic an experimental spectrum.

Table 1: IR transition dipole moments

1 2 3 4 5 6
1 -0.784 -0.602 0.172
2 -0.772 -0.609 0.159
3 -0.784 -0.772 0.502
4 -0.602 -0.609 -0.907
5 0.172 0.159 -0.961
6 0.502 -0.907 -0.961
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whereas states II, III, V and VI are vibronic since they have both electronic and vibrational

excitations. The electronic transition dipole moments for the transition from the ground to

the first excited electronic state for the monomers, A and B, are considered to be unity. The

IR transition dipole moments for a vibrational transition from the ground to the first excited

vibrational state in each of the monomers, A and B, are also considered to be unity. The

eigenvector components and energies for the stationary adiabatic/exciton states, obtained by

diagonalizing Hsys,ex, and electronic transition dipole moments with respect to g0 are shown

in Table SI.1. In the table, we discard very small eigenvectors. Figure 2 shows the site and

exciton bases and the electronic absorption spectrum for this coupled dimer. We see that

excitons 1, 2 and 6 are formed from either electronic-only or vibronic-only site states, 1 being

formed from site states II and VI, 2 from III and V, and 6 from I and IV. Exciton 5 has

mostly contributions from the vibronic-only states II and VI, and a smaller contribution from

the electronic-only state IV. Excitons 3 and 4 are the most mixed excitons, having sizable

contributions from both the electronic-only and vibronic-only site states. Excitons 3, 4 and

6 have large electronic transition dipole moments (−0.961, −0.732 and 0.717, respectively,

see Table SI.1). The IR transition dipole moments for the six exciton states are given in

Table 1. Excitons 1, 2 and 6 are, each, strongly IR-coupled to excitons 3, 4 and 5. The

environment is modeled using the Debye spectral density, with the parameters: electronic

reorganization energy λel = 50 cm−1, vibrational reorganization energy λvib = 5 cm−1, cut-

off frequency ωc = 53.3 cm−1 and temperature T = 77 K. α0 = 0.6 and α1 = 1.6 are the

ratio of the displacements for the IR mode in the ground and excited vibrational states in

the electronic excited state with respect to the ground electronic state, respectively.2 The

numerical values for the parameters used in our calculation are typical of light-harvesting

photosynthetic complexes. The population relaxation rates, calculated using Eq. 17, are

given in Table SI.2, where we discard rates that are very small. It is evident that there is

strong population relaxation between closely spaced excitons 3 and 4. The visible excitation

is assumed to have a bandwidth that spans transitions from g0 to the excitons 1-6 and the
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IR pulse has a bandwidth that covers all intra-exciton transitions.
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Figure 3: The mapping of a pathway, described by its Feynman diagram, to its 2DEV
spectrum. (a) depicts ρ34 at t2 = 0 fs, with exciton 3 IR-coupled to exciton 1 in the ESA
pathway, which generates a negative peak at {ε4, ε1 − ε4}, (b) depicts ρ33 at t2 = 0 fs, with
exciton 3 IR-coupled to exciton 1 in the ESA pathway, which generates a negative peak at
{ε3, ε1 − ε3} and, (c) depicts ρ33 → ρ44 at t2 = 625 fs, with exciton 4 IR-coupled to exciton
6 in the ESE pathway, which generates a positive peak at {ε3, ε4 − ε6}.

As discussed above, our method affords us an independent view of coherences and pop-

ulations. To elucidate this, we depict the components of the 2DEV spectrum describing

a coherence at t2 = 0 fs in Fig. 3(a), a population at t2 = 0 fs in 3(b), and a relaxing

population at t2 = 625 fs in 3(c), and the mapping to their respective Feynman diagrams.

In the plots, εi denotes the energy (~ = 1) of the stationary adiabatic state mi (see Eq.

15). For the sake of clarity, we describe in detail Fig. 3(a). The initial electronic pulse

induces a g0 → 4 excitation on the bra side, followed by an electronic excitation g0 → 3

after time t1 on the ket side. During the time interval t2, we thus have the coherence matrix

element ρ34 propagating, followed by an IR absorption at time t1 + t2 on the ket side to

exciton 1. Table 1 shows that 3 has a strong IR-coupling to 1, resulting in a strong pres-
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ence for this pathway in the 2DEV spectrum at t2 = 0. The system finally emits a signal

pulse at t1 + t2 + t3, resulting in de-excitation of 1 on the ket side to 4. Therefore, we have

ρg04 propagating during t1, that corresponds to w1 = ε4 = 12951 cm−1(~ = 1), where w1

is the Fourier transform frequency variable of t1. ρ34 propagates during t2 = (0 fs) and

ρ14 propagates during t3, resulting in w3 = ε1 − ε4 = 1039 cm−1, where w3 is the Fourier

transform frequency variable of t3. Comparing with Figure 1(a), it is easy to deduce that

for the NRF calculation, m1 = m2 = 4, m3 = 1 and m4 = m5 = 3. Similarly, in Figure

3(b), ρg03 propagates during t1, resulting in w1 = ε3 = 12976 cm−1. The population density

matrix element ρ33 propagates during t2 = 0 fs and ρ13 propagates during t3, resulting in

w3 = ε1 − ε3 = 1014 cm−1. For this pathway, m1 = m2 = 3, m3 = 1 and m4 = m5 = 3. In

Figure 3(c), ρg03 propagates during t1, resulting in w1 = ε3 = 12976 cm−1, the population

density matrix element ρ33 undergoes downhill population relaxation during t2(= 625 fs) to

ρ44. From Table 1, 4 is strongly IR-coupled to 6. However, ε6 < ε4, so we have a stimulated

emission on the bra side inducing this transition. Thus, ρ46 propagates during t3, resulting

in w3 = ε4 − ε6 = 1016 cm−1. In 3(a) and (b), since the IR pulse causes a transition to

a higher energy state (stimulated absorption), we have the ESA pathway for these cases,

resulting in negative peaks. On the other hand, in 3(c), the IR pulse de-excites to a lower

energy state (stimulated emission), hence we have the ESE pathway, resulting in a positive

peak. Therefore, we find that not all excited state signals are negative for a strongly coupled

dimer, in contrast to the weak coupling case where it is possible to arrange pulse durations

and center wavelengths so that only negative ESA peaks are observed.

Excitons 3, 4 and 6 have large values of electronic transition dipole moments. Excitons

3 and 4 are, in turn, strongly IR-coupled to excitons 1, 2 and 6, and exciton 6 is strongly

IR-coupled to 4 and 5, resulting in large initial populations from these pathways. In Figure

4, (a), (b), (c) and (d) show some of the important population contributions at t2 = 0 fs: (a)

ρ33, exciton 3 being IR-coupled to exciton 2, (b) ρ44, exciton 4 being IR-coupled to exciton

6, (c) ρ66, exciton 6 being IR-coupled to exciton 4, and (d) ρ66, exciton 6 being IR-coupled to
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exciton 5. The peaks from ρ66 propagating during t2 are negative, since the IR pulse induces

a stimulated absorption from 6 to 4 or 5. On the other hand, for ρ33 and ρ44 propagating

during t2, we have negative ESA peaks if they undergo absorption to exciton 1 or 2 and

a positive ESE peak if the IR pulse induces a stimulated emission to exciton 6. Phonon-

mediated population relaxation is strongest between the strongly mixed excitons 3 and 4

(see Table SI.2, for the population relaxation rates). We are able to evaluate contributions

from the important pathways that contribute to population relaxation at t2 = 625 fs. We

show one such instance in Figure 3(c) where population relaxes from 3 to 4, with 4 being

strongly IR-coupled to 6, resulting in a positive ESE peak.

Figures 4 (e) and (f) show some of the most prominent coherences at t2 = 0 fs. The

coherences between the strongly mixed excitons, 3 and 4, are the strongest and of similar

magnitudes to the initial populations at 3, 4 and 6 (see Table SI.3). Table 1 shows that

excitons 3 and 4 are each strongly IR-coupled to excitons 1, 2 and 6, hence the related

pathways are the most important. Thus, if the IR pulse excites 3 or 4 to the higher energy

states 1 or 2, we have negative peaks arising due to the ESA pathway whereas if the IR pulse

induces a stimulated emission from 3 or 4 to the lower energy exciton 6, we have negative

peaks arising from the relevant ESE contribution. Figure 4 (e) shows ρ34 at t2 = 0, with

exciton 3 being IR-coupled to exciton 1. Figure 4 (f) shows ρ43 at t2 = 0, with exciton 3

being IR-coupled to exciton 6. The coherences arising from the other excitons do not have

a strong presence, even at t2 = 0. Figures 4 (g) and (h) show the evolution of the 2DEV

amplitudes of the coherences shown in Figures 4 (e) and (f), respectively, with t2. They decay

by ∼ 200 fs. The vibronic decoherence, here, is thus much more rapid than a vibrational

coherence in the ground electronic state, which has a typical decoherence timescale of several

picoseconds. The decoherence time is expected to be longer for stronger electronic coupling

between the monomers and larger Huang-Rhys parameters, as these lead to more strongly-

mixed excitons. On the other hand, increasing the environmental reorganization energy,

specifically the electronic reorganization energy, will result in a shorter decoherence time.
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No obvious oscillatory character is evident in the coherence peaks as a result of the rapid

decoherence, and the low frequency of the 3, 4 beat.
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Figure 4: Contributions to 2DEV spectra from populations and coherences at t2 = 0. (a)
ρ33 (population), exciton 3 IR-coupled to exciton 2, at t2 = 0; ESA pathway; w1 = ε3 =
12976 cm−1 and w3 = ε2 − ε3 = 944 cm−1, (b) ρ44 (population), exciton 4 IR-coupled to
exciton 6, at t2 = 0; ESE pathway; w1 = ε4 = 12951 cm−1 and w3 = ε4 − ε6 = 1016 cm−1,
(c) ρ66 (population), exciton 6 IR-coupled to exciton 4, at t2 = 0; ESA pathway; w1 = ε6 =
11935 cm−1 and w3 = ε4 − ε6 = 1016 cm−1, (d) ρ66 (population), exciton 6 IR-coupled to
exciton 5, at t2 = 0; ESA pathway; w1 = ε6 = 11935 cm−1 and w3 = ε5 − ε6 = 953 cm−1,
(e) ρ34 (coherence), exciton 3 IR-coupled to exciton 1, at t2 = 0; ESA pathway; w1 = ε4 =
12951 cm−1 and w3 = ε1 − ε4 = 1039 cm−1, (f) ρ43 (coherence), exciton 3 IR-coupled to
exciton 6, at t2 = 0; ESE pathway; w1 = ε3 = 12976 cm−1 and w3 = ε4 − ε6 = 1016 cm−1,
(g) coherence ρ34, with exciton 3 IR-coupled to exciton 1, evolving with t2 and (h) coherence
ρ43, with exciton 3 IR-coupled to exciton 6, evolving with t2. We see from (g) and (h) that
the coherences decay off by 200 fs.

Figure 5 shows the total 2DEV spectra, the sum of the ESA, ESE and GSB pathways,

at t2 = 0 fs and t2 = 625 fs, respectively. The GSB pathway has positive peaks emerging

due to excitons 3, 4 and 6, owing to their large electronic transition dipole moments. For

ESA and ESE pathways, at t2 = 0, the spectrum shows the contributions from large initial

populations at excitons 3, 4 and 6, and large initial coherences between 3 and 4. In Fig. 5(a),

A and C contain concentrated positive peaks with underlying more diffuse negative peaks (as

evident from the diffuse tails seen in B and D) resulting in cancellation of some intensities

at A and C. The chief components contributing to these peaks are shown in Table SI.3.
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At t2 = 625 fs, the positive peaks have higher intensities compared to t2 = 0 peaks. This

arises chiefly from the vanishing negative peaks at t2 = 625 fs originating from the coherence

density matrix elements ρ34 and ρ43, propagating during t2 and each being IR-coupled to 1,

2 and 6, respectively, due to rapid decoherence. The chief components contributing to the

peaks at E and F in Fig. 5(b) are shown in Table SI.4.

To conclude, for this coupled dimeric system, where we have strongly mixed excitons 3

and 4, the initial coherences between these excitons are similar in magnitude to the initial

populations from excitons 3, 4 and the electronic-only lowest energy exciton 6. The initial

populations are dictated by the electronic transition dipole moments of the excitons and

the peak intensities are determined by both the initial electronic dipole moments and the

IR transition dipole moments. Population relaxation is the strongest between the strongly

mixed excitons 3 and 4. Decoherence occurs rapidly, resulting in more positive intensities in

the 2DEV spectrum with increasing t2, until decoherence is complete. The positive peaks

arise from the GSB and the ESE population pathways. The ESE pathways for the coherences

ρ34 and ρ43 during t2, and IR-coupled to 6, are seen to have negative peaks due to the negative

initial amplitude and with increasing t2, decay to zero due to rapid decoherence. The ESA

pathway leads to negative peaks, for both populations and the ρ43 and ρ34 coherences,

propagating during t2, and IR-coupled to 1 and 2, before the peaks decay to zero.

The calculations above demonstrate that the interpretation of 2DEV spectra of vibron-

ically coupled systems is considerably more complex than in weakly coupled systems that

have an IR mode that is non-resonant with the energy gap between the electronic excitons

formed by the monomers. Nonetheless, the richness of the spectra, the presence of short-lived

features arising from vibronic coherences and the necessity to take both visible and infrared

transition moments into account suggest that careful comparison with experimental data will

enable the role of vibronic effects in ultrafast reactions to be clarified. Several developments

of the model described above are likely to be significant in developing the necessary machin-

ery for such a program. First, anisotropy measurements will aid assignments. Second, as
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Figure 5: 2DEV spectra at (a) t2 = 0 fs and (b) t2 = 625 fs. The chief components
contributing to the intensities at A, B, C, D, E and F are discussed in Table SI.3 and Table
SI.4.

the coherences are sensitive to the degree of resonance between donor and acceptor levels,

the role of inhomogeneous broadening of both electronic and vibrational levels needs to be

carefully considered. It is also noteworthy that weak transitions that may not be evident in

a 1D or a 2D electronic spectrum can be easily observed in a 2DEV spectrum through the

IR transition moments.

The role of resonant vibrations on population relaxation is also significant. As we show

in a forthcoming publication, when there are no resonances between the vibrational modes

and the electronic eigenstates, population relaxation between electronic-only eigenstates is

slower than that between the vibronically mixed excitons when resonance is present. The

ability to separate the contributions from coherence and population relaxation is a feature of

the near-analytical method developed here. Whether such discrimination can be achieved in

2DEV spectroscopy constitutes a challenge to experimentalists, but in any case the specificity

of the initial states and coherences, along with the relaxation pathways, suggest that 2DEV

spectroscopy will be of significant value in the characterization of complex vibronic systems,

such as photosynthetic pigment-protein complexes.

Finally we note that while specific peak frequencies and amplitudes are, of course, con-

trolled by the parameters of our model, we expect the overall behavior of the 2DEV spectrum
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to be generic for strongly coupled vibronic systems. In future work, we will explore the roles

of multiple vibrational degrees of freedom, the nature of the spectral lineshapes, how well

singular value decomposition works to recover underlying dynamics, and what tests might

be available to discriminate between vibronic coherences and short-lived populations.
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