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* THEORETICAL STUDIES OF THE ALPHA DECAY OF u233 

R. R. Chasmant and J. 0. Rasmussen 

E. 0. L~wrence Radiation Laboratory and Department of Chemistry 
University of California, Berkeley, California 

February 1959 

ABSTRACT 

The alpha decay of a deformed odd-mass nucleus, u233, is treated by 

the use of numerical integration on an IBM-650 computer. The results of this 

treatment are compared with the theory of Bohr, Froman, and Mottelson. 

Approximate analytic methods are developed for predicting the inten­

sities of the higher members of the ground rotational band. 

A comparison is made between the numerical integration and the ex­

periments of Roberts, Dabbs, and Parker, in which they examine the angular 

distribution of alpha particles from aligned u233 nuclei. 

The results of the numerical integration of u233 are presented in 

matrices analogous to those of Froman, and numerical values· of the functions 

are given for selected values of "r". 

* These studies were made under the auspices of the U. S. Atomic Energy 
Commission. 

tPresent address~ Division of Chemistry, Argonne National Laboratory, 
Lemont, Illinois. 
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THEORETiCAL STUDIES OF THE ALPHA DECAY OF u233 

R. R. Chasman and J. 0. Rasmus sen 

Lawrence Radiation Laboratory and Department of Chemistry 
University of California Berkeley, California 

February 1959 

I. INmODUCTION 

The theory of Bohr-Framan-Mottelson (B.F.M.) makes definite pre­

dictions concerning the amplitudes of alpha partial waves at the nuclear 

surface, in the case of deformed nuclei. 1 It was decided to test the 

validity of their predictio~ in the case of the alpha decay of u233 by 

carrying out extensive numerical integrations of the alpha .wave equation 

including the nuclear quadrupole interaction. The relative intensities 

of the alpha particles to the low-lying .states of Th229 have been meas­

ured;2 there is a good deal of confidence in the spin assignments of these 

levels, and there are estimates of the nuclear quadrupole moment.3' 4 We 

use the estimates for the quadrupole moment of u233, as there are none 
. 229 229 avaJ.lable for Th • We expect the quadrupole moment of Th . to be 

roughly the same as that of u233. This information is summarized in 

Fig. 1. 

The study of u233 is of interest for reasons other than the com­

parison with B.F.M. At the time the problem was undertaken, alpha in­

tensities had been reported for higher members of the ground rotational 

band,5 intensities which differed considerably from B.F.M. predictions. 

Since that time, however, the gamma rays following the alpha decay have 
; 

been examined, and the large intensity of high-energy g~a rays indicates 

that the higher levels populated by the alpha decay are not all members 

of the ground rotational band. 6 

Roberts, Dabbs, and Parker 7 have aligned u233 nuclei at low 

temperatures in single crystals of Rb(U0-2) (No
3 

)
3 

and examined the aniso­

tropy of emitted alpha particles. They interpret their results as 

indicating that the £ = 2 wave is out of phase with the £ = 0 alpha partial 

wave in the alpha group to ground. Their experiment also puts limits on 
2~~ 

the amount of the £ = 2 wave which populates the ground state of Th C.':J. 
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We might hope that either the intensity limits of Roberts, ·Dabbs, 

and Parker or the boundary conditions at the nuclear surface of B.F.M. will 

eliminate one of the phase choices for the £ = 2 partial wave relative to 

the £ = 0. 

We have also developed approximate analytic methods to predict 

intensities of the alpha decay populating the 11/2 and 13/2 members of the 

Th229 ground state rotational band. 

II. FORMULATION OF THE ALPHA-DECAY PROBLEM 

The problem of alpha decay in the region of uranium is complif 

cated, as contrasted to the region of lead, by the existence of large 

quadrupole mo~ents which interact .with the escaping alpha particle. 

Favored alpha decay, i.e., decay between parent and daughter states having 

the same nucleonic wave functions and hence the same K (K is the projection 

of the nuclear spin on the nuclear symmetry axis), has been treated in this 

region of large quadrupole moments by several authors, both by numerical 
· 89W . ll integrations ' ' and by analytic approx1.mations for the case of even-

even nuclei. The quantum mechanical treatment of an odd-even nucleus is 
12 

quite similar to that of the even-even nucleus. We start from 

Schroedinger's eq~tion 

H 1jr = E 1jr (1) 

Here we have H = T + V + H where T is the kinetic energy of the system, nuc 
V its _potential energy, and. Hnuc the Hamiltonian for the internal energy of 

the recoil nucleus. We expand the potential V in spherical coordinates. 

Making the usual multipole expansion, we obtain 

z 00 

V=2e I I 
p=l i\=0 

e r i\ 
p p 
i\+1 r 

Pi\ (cos y) (2) 

where r gives the position of the alpha particle; r gives the position of 
_..E. 

the pth proton in the daughter nucleus, and. y is the angle between r and r 
_E. 
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·in the system of the recoil nucleus. In our treatment of the problem, we 

include the central and quadrupole terms of the potential. We next construct 

a solution of Schroedinger's equation of the form 

w = I 
£'I 'T' 

f 

-1 
r u£'I, 

f 

as the first step in the solution. Here 

X cP 
M-m' 
I I T' 

f ' 

(r) (3) 

( 4) 

£ 1 is the angular momentum of the alpha particle, and m1 is the component of 

its angular momentum on a space-fixed axis, If' and I are the final and 

initial nuclear angular momenta, and M-m 1 and M are projections of ~f' and I 

on the space-fixed axis, and T' represents all other quantum numbers 

specifying the nuclear st~te. Here <PMI-~
1

T 1 (X.) describes the intrinsic 
f ' ~ 

state of the daughter nucleus and the bracketed symbol isaClebsch-Gordan 

coefficient. The orthogonality condition on the Y~'~ , T function is 
' f ' 

J sin e d e d ~ d xi = 0 I 0 I I 0 i 
U If f TT 

We next substitute w into Schroedinger 1 s equation, multiply by 

(5) 

and then integrate over all variables but r. We do this for each value of 

£, If of interest in the daughter nucleus and we are left with a set of 

coupled ordinary differential equations of the form 
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2• 

~ 112 
d u.er l ~2 - E J f £ (£+1) + EI T u£I '2 + 

2 Mr
2 

2M dr f f 

(6) 

Qo 
2 

(cos y) I y~Ir'T.) = Ze2 

+ h' < IM* e 
+ 2 

u£If/Y u£'I , y£1 T r:3 
p2 

f f 
f 

All terms but the last summation describe the interaction of two charged 

particles. The last term gives a mixing of states, due to the perturbation 

induced by the nuclear quadrupole moment. 

III. A TEST OF THE B.F .M. HYPOTHESES 

The hypotheses of B.F.M. may be stated as follows: any alpha 

partial wave has a projection of its angular momentum on the nuclear-symmetry 

axis which is equal to Kf ± Ki ·at the nuclear surface, Kf and K. are the 
~ ' 

projections of the spins of the final and initial nuclear states on the 

nuclear-symmetry ax~s. For (Kf + Ki) > £ there is but one permissible value 

of m£' which is zero in the case bf favored alpha decay, Looking at the 

B.F.M. hypothe~~s in an I If' £ ) representation, on~ sees that a given £ 

wave will be apportioned among the states that it populates in proportion 

to the Clebsch-Gordan coefficient ( Ii, £, K, 0 I If~, i.) at the nuclear 

surface. This hypothesis will be referred to as B.F.M.-1. Forthermore, 

B.F.M. makes the approximation that the relative intensities of alpha decay 

to the various levels from population by a' given£ wave will be given by 

the square of the Clebsch-Gordan coefficient ( Ii' £, K, 0 I If' K ) times 

the barrier penetration factor for the particular alpha energy. This ap­

proximation, which we shall refer to as B.F.M.-2, would be exact only in 

the limit 'of infinite moment of inertia. In the case of favored alpha decay 

of even-even nuclei, a given alpha .partial wave populates just one level of 

the daughter nucleus and so affords us no test of the B.F.M. hypotheses. 

In the numerical work to be described, B.F.M~-1 and B.F.M.-2 are 

.tested separately for the first time. In the case of odd-even nuclei, we 

0 
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may utilize B.F.M.-1 to set bound&ry conditions at the nuclear surface for 

solutions of the alpha wave equations and then compare the alpha intensities. 

from numerical integration with the experimentally observed intensities. 

This gives us a test of B.F.M.-1, though our calculations did not include 

£ = 4 contributions. In the region of u233 the £ = 4 contribution s4ould 

not be very significant. 

IV. NUMERICAL INTEGRATION AND BOUNDARY CONDITIONS 

To return to the specific problem of u233, the equations describing 

the alpha particles as they leave the nucleus are: 

[.929 = 0 (7a) 

:2:~ + [.929 - 48;78 - r~ J u1 

1 
t01 "o + 38.71 '\ - 76.0 u2 - 26.4 "3]/ ~ 0 (7b) 

2 

-J] d tl2 L 921 - 48.78 -+ u2 
d r 2 . r 

1 
[ll7 "a - 76.0 2.58 u2 - 76.3 u

3
__] - -·- u - 0 

r3 1 (7c) 

2 

[.910 - 48;78 -J] ~ 
u3 2 + 

d r 

1 ~9. 3 "a - 26.4 "J. - 76.4 ~ - 18.1 "3~ - r3 = 0 (7d) 

u 
where r is in units of lO-l3 em; _Q is the 

r u 
populating the 5/2 state of Th229, and_!, . r 

radial function of the £ = 0 wave 
~ u .· 
r' and ~ are the radial functions 
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of the .£ = 2 wave populating the -5/2, 7/2, and ,9/2 levels of Th229 , respec­

tively. This set of equations includes only the .£ = 0 and .£ = 2 alpha partial 

waves. In this treatment we use a value of 13.2 barns for Q0 , and the alpha­

decay energies are 4.900, 4.857, and 4.801 Mev. 

We note that as r approaches oo, the coupling term, which has a 

l/r3 dependence, becomes negligible. When we can ignore this term, the 

equations are decoupled, and their solutions are given by linear combinations 

of regular (F.£) and irregular (G.£) Coulomb functions. Because the alpha 
ikx 1 

particles are outgoing waves, the solution must be of the form Ce and 
-ikx' not have any component of the form e , where 

x' = p - (8) 

The notation is that of the general usage in Coulomb functions. 13 We note 

that as r approaches oo, F.£ approaches sin x', and G] approaches cos x 1
• 

Therefore, at large distances, our solutions must be of the form (A + i B) 

(G.£+ iF.£)' where A and Bare real constants. Pennington and Preston show 
10 in detail how the solutions approach this asymptotic form. 

The determination of the radial wave functions was accomplished 

by numerical integration on an IBM-650 computer in the region where the 

coupling could not be neglected. As we have four second-order differential 

equations, there are eight boundary conditions which must be applied. We 

begin by looking at the imaginary part of the solution. 

The procedure adopted was to give one of the u's an amplitude of 

one at a sphere of radius 9.0 x 10-l3 em (the nuclear surface) and the other 

three were given amplitudes of zero. The nonzero function was started .off 

as a regular Coulomb function, and the other three were kept at zero by 

conditions used on the derivatives. Carrying out the numerical integration 

for this set of boundary conditions, we obtain one set of solutions. When 

u. = 1 at the nuclear surface, at infinity we have u. =A .. F. + Bi. G .. The 
1 J 1J J J J 

coefficients Aij and Bij are obtained by fitting the numerical values from 

the computer program to linear combinations of Coulomb functions at large 
-12 distances, in this case 8.5 x 10 em. By separately setting each of the 

four u. 's equal to one, we obtain four independent solutions of the dif-
1 

ferential equations. The imaginary part of the solution of the physical 
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problem will be some linear combination of these four solutions, i.e., our 

solutions of physical interest have the form 

(9) 

where a. is same real number. 
J 

We make use of the experimental intensities 

of alpha partic.\es populating the various levels by noting that the intensity 

is 

(

3 
+ I: 

j::::O 
(10) 

The experimental intensities give us three boundary conditions, a trivial 

condition of over-all normalization and two relative intensities. For the 

final boundary condition, we make use of B.F.M.-1 to obtain the ratio of 

amplitudes of the £ :::: 2 wave at the nuclear surface populating the 5/2 and 

7/2 states of Th229 for the real part of the solution. Finally, as a test of 

B.F.M.-1, we may examine the relative amplitudes at the nuclear surface of 

the real part of the £ :::: 2 wave populating the 5/2 and 9/2 levels of Th229. 

If the B.F.M.-1 hypothesis is valid, all five conditions will be satisfied, 

We have calculated the real part of the wave function by using our knowledge 

of the asymptotic form of real and imaginary components of the wave function 

to obtain 

3 
I: 

j=O 
a. 

J 
(A.i G.- B .. F.) 

J ~ J~ ~ 
(11) 

-12 
at r :::: 8.5 x 10 em. We integrate inward numerically. Aji and Bji will 

be the same constants as were obtained from the imaginary part of the solutions, 

and the set of four a. values that comes closest to satisfying the three in-
J 

tensity conditions and the two constraints put on the real part of the solution 

by B.F.M.-1 is used. 
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V. RESULTS OF NUMERICAL INTEGRATION 

We found a set of a. values which approximately satisfies the con-
J 

ditions mentioned previously for the t = 2 wave both in phase and out of 

phase with the t = 0 wave at the nuclear surface. The conditions were not 

satisfied exactly in either case but were satisfied approximately in both, 

cases. The results for the amplitudes of the real parts of the wave func:·­

tions on a sphere in the nuclear surface region are given in Table I. 

5/2 

7/2 
9/2 

Table I 

-13 Relative D-Wave Amplitudes at r = 9.0 x 10 em. 

B.F .M. -1 t = 2 in phase t = 2 
prediction 

-0.86 -0.86 

1 1 

-0.59 -0.55 

out of phase 

-0.88 

1 

-0.51 

Another way of stating B.F.M.-1 is as follows~ in an I.e, m.eJ 
representation only the component having m.e = 0 will be present in favored 

alpha decay. We transformed the wave functions to an I .e, m .e) represen­

tation and found the m.e = 0 component of the .e = 2 wave to be some two 

orders of magnitude larger than the other m.e components. The deviations 

from perfect agreement with B.F.M.-1 may be attributed to slight inaccuracies 

in the reported alpha intensities and incorrect choice of quadrupole moment in 

this calculation, or, finally, to the neglect of alpha particles with angular 

momenta greater than t = 2. Our calculations support the validity of B.F.M.-1. 

From our wave functions we may calculat~ the phase shifting of the 

alpha partial waves caused by the nuclear quadrupole moment. This informa­

tion will be of interest in the case of an odd-even nucleus, because it enters 

into calculations of angular distributions from angular correlation experi­

ments and nuclear alignment and nuclear polarization experiment~. The phase 

shifting of the !th alpha partial wave by the nuclear quadrupole moment is 

given by the relation 
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-1 ( 3 e1 = tan _L. 
J=O 

(12) 

vhere ei is given in radians. 

The calculated phase shifts are given in Table II in degrees. 

Table II 

Phase shifts caused by nuclear quadrupole moment 

t = 0 and t = 2 in phase t = 0 and t = 2 out of phase 

5/2,0 

5/2,2 

7/2,2 

9/2,2 

- ) .. 1 0 

'r40 
_, /, 

- 5.3° 

- 2.8° 

+ 1.94° 

+ 0.87° 

- 0.179° 

+ 7.16° 

These phase shifts may be compared with those calculated for even­

even alpha emitters in this region, ~ - 3° for the t = 2 wave when it is in 

phase with the t = 0 wave. In nuclear=alignment experiments, only the dif­

ference in phase shift of the 15/2,2 ) and \5/2,0/ is of direct 

interest. The interference term contributing to anisotropy has a factor 

cos (e
0 

- e2 ). The Coulomb phase dtff€rence between S and D waves here is 

about - 7° and, correcting for the quadrupole interaction, we have ~ - 10° 
for the t = 0 partial wave in phase with the t = 2 wave, and~ - 6° for the 

£ = 0 partial wave out of phase with the t = 2 wave. 

Next let us examine our numerical integration calculations to test 

the B.F.M.-2 approximation. From B.F.M.-2, one may predict the amount of 

£ = 2 wave and the amount of £ = 0 wave populating the 5/2 state of Th229 
independent of nuclear-alignment experiments. Using data from neighboring 

even-even nuclei, B.F.~~ conclude that 81% of the ground-state intensity is 
1 due to the £ = 0 wave, and 19% comes from the £ = 2 alpha wave. In the 

numerical calculation, our modified prediction is that only 75% of the 

ground-state intensity is due to the £ = 0 wave, and 25% is due to the £ = 2 
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wave. This conclusion holds for both choices of phase of the £ = 2 wave, 

under the constraint that B.F.M.-1 and the intensity conditions hold. This 

discrepancy suggested that one might find some other approximation that is 

superior to B.F.M.-2 but simpler than numerical integration to predict un­

seen intensities of odd-even nuclei and partial wave amplitudes at the 

nucle~ surface for even-even nuclei. 

VI. AN APPROXIMATE TREATMENT OF ALPHA . DECAY 

14 
An approximate .method that was developed and was used to treat 

u233 will be described briefly. 

We see that the solutions of the set of equations (7) would be 

regular or irregular Coulomb functions were it not for the quadrupole moment, 

that is, the r.~ght hand side of the equations would vanish if Q0 were zero. 

From an examination .of the series expansion of the W .K.B. integrajld, we 

surmise that the radial wave functions of the alpha partial waves might be 

well represented by functions of the form 

~£I ) 
' f 

(r) (13) 

in the region of the nuclear surface. Here a£ I and~£ I are parameters 
' f ' f 

fixed over all r values, and G is the irregular Coulomb function. It 
£,If. 

is clear that ~n,If/r3/2 
,c, approaches zero as r approaches oo, so one may 

identify L: a£ I as the square root of the quotient of the alpha partial-
£ ' f 

wave intensity and its velocity. 

VII. APPLICATION OF APPROXIMATE METHOD TO u233 

To determine the values of the coefficients a£ 1 and~£ I , we 
' f ' f 

apply B.F.M.-1 to obtain two conditions, i.e., 'the partition of the£= 2 

alpha wave between the 5/2, 7/2, and 9/2 states at the nuclear surface. We 

then subs~itute the analytic approximation into the differential ~quations 
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and demand that the equations be satisfied exactly at some arbitrary inter-
12 mediate distance (2.0 x 10- em) to obtain four more conditions. The 

distance at which we demand that the approximate solutions satisfy the dif-

ferential equations is somewhat arbitrary; the reasons for choosing 1 
t. 

-12 2.0 x 10 em are mainly pragmatic -- using this value, we found that we 

could get best agreement with results of detailed numerical integrations for 

both em242 9 and u233, but it is to be emphasized that the results are not 

very sensitive to the distance chosen. The over-all normalization gives us 

a seventh condition. To obtain the final condition we may do one of two 

things~ (a) we can use the ratio of the t = 2 wave to the t = 0 wave at the 

nuclear surface obtained from a neighboring even-even nucleus, u232 or u234, 

or (b) we can use the ratio of any two experimental intensities, bearing in 

mind that the observed alpha intensity to any level I is equal to L: I at I j2 . 
t ' f 

Using (b) to obtain the final condition, we are then able to check the ap-

proximation with the third experimentaL intensity and with the amount of 

t = 2 wave calculated to populate the 5/2 state in the numerical integration. 

We compare the intensity predictions of this treatment with the predictions 

of B.F.M. We may compare several things in the following manner. We may 

use B.F.M.-1 as a boundary condition at ·the nuclear surface and then use 

B.F.M.-2 and the analytic method described here to calculate intensities at 

infinity. We may also use the results of the numerical integration to 

provide boundary conditions at the nuclear surface. We shall adjust the 

B.F.M. intensity predictions by the use of the relative intensities of the 

5/2 and 7/2 states. The comparisons are found in Table IIIo The agreement 

with experiment is fairly good for t = 2 alpha partial waves, using the 

B.F.M.-2 approximation; however, this method does not take into account dif­

ferent phase choices for the alpha partial waves. If we consider the 

relatively weaker t = 4 wave populating states of spins 11/2 and 13/2, the 

terms in the radial equations due to the nonvanishing nuclear quadrupole 

moment become more important in an intensity prediction of alpha decay, and 

the predictions may vary considerably, depending on the choice of partial 

wave phases. It .is for this application that we feel that the approximate 

method described here has a considerable advantage over the B.F.M.-2 approxi­

mation. 



If Experimental 
intensity 

5/2 100 

7/2 17.9 

9/2 1.9 
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Table III 

Test of B.F.M.-2 

Boundary conditions at nuclear surfaces 
B.F.M.-1 Numerical integration 

B.F.M.-2 

100 

17.9 

2.54 

Analytic Analytic 
approx. 

100 

17.9 

2.35 

B.F .M. -2 

100 

17.9 

2.2 

approx. 

100 

17.9 

1.85 

A calculation was made by the use of the analytic approximation in­

cluding the £ = 4 partial wave in the alpha decay of u233 to form Th229. We 

can then predict the alpha intensities populating the 11/2 and 13/2 states 

of Th229 that are members of the ground-state rotational band. If we neglect. 

the £ = 6 contributions and apply the data on relative amplitudes of alpha 

partial waves from the neighboring even-even nuclides, we obtain the intensity 

predictions for four phase choices .. We compare these with B.F.M.-2 and ex­

perimental observation in Table IV. The experimental values used here are 
6 from recent work by Ruiz and Asaro. 

Table IV 

Relative Intensity Predictions 

If Relative 
phase 

£ = 0 + + + + 
£ = 2 + + 
£ = 4 + + 

5/2 100 100 100 100 

7/2 16 ~18.3 16.8 15.5 

9/2 2.46 3.01 2.70 2.37 

11/2 0.036 0.286 0.180 0.016 

13/~ 0.007 0.020 0.012 0.0035 

B.F.M. Experi-
6 mental 

100 100 

13 17.9 

1.8 1.9 

0.2 .06 ± .03 

~ .02 
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Our intensity predictions do not include the effect of the phase 

shifting due to the quadrupole interaction; i.e., the wave functions at 

.large distances are of the form (A p, I +i B p, I ) ( G p, 1 +i F p, I ) and the 
2 ' f 2 ·' f ' f ' f 

true intensity is -E [ I A .P I I + I B.£ I I ] . In this approximation, we 
p, ' ~ ' f + . 2 

have taken the intensity to a given level as being -E lA f. I J.. To estimate 
p, ' .f 

the correction, we may calculate phase shifts for a neighboring even-even 
234 . ~ 2 

isotope, U , and using the equation I£ I = lAp, I I + IBp, I I , when 
ff f ' f ' f 

I £,If is the intensity of the £th partial wave populating If' and noting 
-1 Bp, -

that ep, =tan A' estimate Bp, from the value of A£' which we have 

calculated; ep, is p, the phase shift and is given for the various sets of 

phases in Table V, for the 1st and 4th sets of phase choices. The 2nd and 
rd 3 sets of phase seen to be ruled out by the experimental value of the 11/2 

intensity. The phase shifts are calculated using a method previously 

developed. 14 

Table V 

Phase Shifts Calculated From u23 Data 

Phase shift Relative phase 
p, = 0 
p, 2 
p, = 4 

e£=0 

e£=2 

e 4' £= I 

+ 

+ 

+ 

- .04 

- .11 

- .20 

+ 

+ .04 

+ .03 

- .22 

Using t~ese data, we modify the predicted intensities; only the 

11/2 and 13/2 levels are changed preceptibly. 
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Table VI 

Modified Intensity Predictions 

If ~elati.ve phase B.F.M. Experimental 

+ + 

+ 

+ 

5/2 100 100 100 100 

7/2 16 15.5 13 17.9 

9/2. ~.46 2.37 1.9 

ll/2 0.037 0,017 0.2 0' . . ± .03 

13/2 0.007 0,0037 ~ .02 

The phase shift corrections here are only approximate, since phase 

shifts for individual u233 groups will not be identical to those in u234 ' 
especially for the relatively weak £ = 4 groups. 

Vlll COMPARISON WITH NUClEAR-ALIGNMENT EXPERIMENT 

Some experimental data are available on the relative phases of the 

.£ = 0 and £ = 2 alpha partial waves. Roberts, Dabbs, and Parker have 

aligned u2
33 nucle~ in a single crystal of Rb(Uo2 )(N0~) 3 and have obtained 

an angular distribution of alpha particles.7 They have interpreted their 

results as indicating that the £ = 2 partial wave populating the ground 

state of Th229 is out of phase with the £ = 0 wave. To arrive at this 

conclusion, they make the assumption that the ~uadrupole 

~ = 
3 e Qspec. 
4I ( 2I - l) < o

2

0
vy)) 

coupling constant, 

(14) 

is negative. Here e is the electronic unit of charge, Q is the spec-spec. 
troscopic value of the nuclear ~uadrupole moment and 

< o
2

0
vjo)) 

is the gradient of the electronic field evaluated at the surface of u233. 
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The calculations ofE:irenstein and Pryce15 are interpreted by Roberts et al. 7 

as indicating that 

++ is positive in the uo
2 

ion. As this conclusion is not entirely proved and 

since it creates difficulties for a comprehensive interpretation of alpha 

decay of deformed nuclei general~, we also consider the possibility of the 

;, = 2 wave in phase with the £ = 0. If we d.efine the percent of £ = 2 ad­

mixture in the population of the 5/2 state as 100 o2j(l+o2); Roberts et al. 

show from the measurements that they have made that 

0.795 o2 
+ 4.145 0 + 0.226 • ~ 

1 + 0.835 o2 k 
0.0625 ± .0025°K1 yhere K is 

I 
(15) 

the Boltzmann constant. 

Using the values of o which we obtained in the numerical integration of u233, 

we may then calculate a value for q. If the P, = 2 wave is in phase with the 

P, = 0 wave, we have o = 0.577; if the P, = 2 wave is out of phase with the 

£ = 0 wave, we have o = -0.577. For the .£ = 2 wave in phase we calculate ~ 
= 0.0277°K; for the P, = 2 wave out of phase, we calculate ~ = -0.04l8°K. 

R6beJ('ts et &· give a value for 1~1 of 0.0388 .± .0086°K from specific heat 

measUrements, but the sign is not determined in these measurements.. Roberts 

et al. argue that the sign of q is negative in a .manner analogous to Bleaney 

et al. for Np237. 16 From paramagnetic-resonance measurements, Bleaney 

shows that the magnetic moment of Np237 and the quadrupole coupling constant 

of Rb(Npo2 )(No
3

)
3 

must have opposite signs. Bleaney suggests -that the 

magnetic moment, ~' is positive and q is negative on theoretical grounds. 

Our value calculated for the £ = 2 wave out of phase with the ;, = b is well 

within the limits of error of their measurement, and the value for the .£ = 2 

wave in phase with the .£ = 0 seems to be outside the limits of error. 

We will 'be able to make a definite phas~ choi~e only when more 

experimental data become available. Either a higL-precision determination 

of the populations of the 11/2 and 13/2 levels of Th229 by alpha decay, or 

a measurement of the sign of 
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<o2ovY)) 
will definitely determine the relative phases of the £ ~ 0 and the £ ~ 2 

partial waves • 

IX. RESULTS OF THE NUMERICAL INTEGRATION OF u233 

The results of the numerical integrations of u2
33 may be expressed 

in several ways. In analogy with Fro~an, we give matrices through which one 

may convert amplitudes of partial waves at the nuclear surface of amplit~es 

at infinity which are (intensityjvelocity)1/ 2 . 

Let at 1 be a column vector giving the amplitudes of partial waves 

at the nuclear surface, where t denotes indices £ and If. We may relate 

this to a column vector bt' which gives the amplitudes of the partial waves 

at infinity, by an equation of the form bt ~ ~ kt tuatu• We then factor 
t i ' 

kt t' into two matrices, 
' 

~ ~ 

t" 

-1 
Gt" (R) ~\ t 11 J k't" t' 

' ' 

in the case of the real (irregular) components, and in the case of the 

imaginary parts, 

~ ~ 

t" 

-1 
[ Ft" (R) 0t t" ] k'tn ·t' 

' ' 

(16) 

(17) 

In both cases the Coulomb functions are evaluated at the nuclear radius, in 

our work chosen to be 9.0 x 10-l3 em. The matrices k't t' are similar to 

those given by Fr(:)man9 and by Rasmussen and Hansen11 and are a convenient 

way of displaying the detailed effects of the quadrupole interactio:Q!:. The 

matrices k't t' become simple unit matrices ot t' in the limit of zero 
' ' nuclear quadrupole moment. It should be pointed out thatthese matrices apply 

to a spherical surface at the nucleus whereas Froman's matrices are given 

for a spheroidal nuc1ear surface. 

From the imaginary part of the numerical integration we obtain the 

matrix k't t' (Table VII). 
' 



'· 

~ 
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Table VII 

k 1 t t 1 Matrix From Imaginary Part of Numerical Integration 

' 

1.000 -d.OlOi 0.150 -0.0301 -O.l8o +0.043i 

0.1541 -0.01951 0.886 -O.OlOi -0.111 +0.0221 

£1 = 2 

I I - 9/2 f -

0.118 -0.030i 

-0.054 +0.00491 

-0.173 +0 .027i =0·.i06 +0 .013i 0.849 -0.03531 -0.110 +0.022i 

0.096 -0.00671 -0.021 +0.0024i -0.099 +0.00(6i 0.854 +0.0006i 

Table VIII shows the matrix k't t' obtained from the real part of the numerical 
' integration. 

Table VIII 

k't t' Matrix From Real Part of Numerical Integration 
' .£1 = 0 .£' = 2 .£1 = 2 .£' = 2 

I ·I = 5/2 If 
I = 5/2 If 

I = 7/2 I I 
f f' = 9/2 

.e = 0 1.000 +0.013i -0.166 -0.0161 0.1953 +0.0131 -0.1024 -0.00371 
Ir=5/2 

.e = 2 -0.1948 -0.0221 0.9053 +0.0121 0.116 +0.0068i 0.059 +0.0058i 
Ir=5/2 

.e = 2 0.2421 +0.0221 0.128 
If=7/2 

+0.00521 1.007 =0.027i 0.126 +0.0005i 

.e ~ 2 
-0.143 -0.0481 0.057 +0.0321 0.093 +0.01$1 0.911 +0.0191 

Ir=9/2 
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Finally we give in Tables IX and X numerical values df the raclial-wave 

functions ~t,£' for several values of r. 

X. SUMMARY 

We believe this detailed numerical integration of the alpha-decay wave 

equation for u233 shows the essential validity of the Bohr=Froman-Mottelson 

hypothesis (B.F.M.-1) that for favored alpha decay there is 'zero projection of 

alpha angular momentum on the nuclear-symmetry axis while the alpha is near 

the surface. The approximation (B.F.M.-2) that the projection remains zero 

near the classical turning point is shown to be a fairly good approximation 

for the relatively abundant .e = 2 wave but a very poor approximation for the 

weak .e = 4 wave. The analytical approximation based on modified Coulomb 

functions is shown to give results nearer those of the numerical integration 

than does the B.F.M.-2 approximation. The extra phase shifts due to the 

quadrupole interactio~ were derived, and the shifts most significant to the 

interpretation of nuclear-alignment experiments were shown to be negligibly 

small. 
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Table IX 

Real ;eart of al;eha wave functions for u233 deca;li with .£ = 0 and .£ = 2 in ;ehase 
-13 rxlO em I 5/2,o > I 5/2,2 > I 112}2 > I 9/2,2 > 

9.0 l. 52(17)a l. 26(17)a -L 46(17)a 8.o8(l6)a 

9.2 9.89(16) 8.23(16). -9.47(16) 5.22(16) 

9.6 4.28(16) 3.54(16) -4. 07(1$;) 2.24(16) 

10.0 1.89(16) l. 55(16) -1. 79(16) 9.81(15) 

10.4 8.55(15) 6.99(15) -8.02(15) 4.39(15) 

ll.O 2.70(15) 2.18(15) -2.51(15) L 37(15) 

12.0 4. 32(14) 3.45(14) -3-95(14) 2.14(14) 

14.0 1.49(13) 1.16(13) -1. 32(13) 7.05(12) 

16,0 7.08(11) 5-39(11) -6.11(11) 3. 23 ( ll) 

18·.0 4.42(10) 3.30(10) -3.72(10) l. 94(10) 

20,0 3.48 (9) 2.55 (9) -2.8t (9) 1.47 (9) 
\•.:•t 

25.0 l. 40 (7) 9-87 (6) -1.09 (7) 5. 42 ( 6) 

30.0 l. 51 ( 5) 1.03 (5) -]~11 (5) 5.35 (5) 

35.0 3. 74 ( 3) 2. 49 (3) -2.60 (3) l. 20 (3) 

40.0 l. 98 ( 2) . L 29 (2) -1.29 (2) 5.68 (l) 

45.0 2. 29 :(;l) l. 45 (l) -1.38 (l) 5.61 (0) 

50.0 6.51 (o) 3.99 (o) -3.§4 (o) 1.30 (0) 
·.,. 

55.0 2.17 (0) 1.38 (o) -1.36 (o) 5.39(~1) 

60.0 -2.65 (o) ~L 51 (o) __::j_l. 03 ( 0) -2.25(fl) 

65.0 -8.95(-l) -6. 58( -1) 8.61(-l) -4.01(-l) 

70.0 2.62 (o) L 61 (0) ... ;l. 40 (0) 4. 39(~1~) 

75.0 -2.66 (o) -1.55 (0) 1.09 (o) -2.16(-l) 

80.0 2.14 (o) 1.19 (o) -6.18( -l) 2.31(-3) 

aNumber in parentheses indicat¢s power of ten by which preceding number is to 

be multiplied. 
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Table X 
. . . . . .· . . " . 233 . ,-~- . .. .. , . .. ' .· Real part 9fl :a1:12ha :f1ffict1ons ,.for U·. . deca;yc•.Wl i;.Q. :e = •0. and £ ,;::;u2 ottt:-:of phase 

-13 rxlO em I 5/2,o > I 5/2,2 > I 7/2:,.2 > I 9/2,2 > 

9.0 5.65(17)a -6.76(17)a 7.68(17)a -3.92(17)a 

9.2 3.81(17) -4.45(17) 5.05(17) -2.58(17) 
9.6 1.75(17) -1.95(17) 2.22(17) -1.13(17) 

10.0 8.16(16) -8.78(16) 9.98(16) -5.08(16) 
10.4 3.87(16) -4.02(16) 4.57(16) -2.32(16) 
11.0 1. 30(16) -1.30(16) 1. 47(16) -7.45(15) 
12.0 2.26(15) -2.12(15) 2.41(15) -1.22(15) 
14.0 8.79(13) -7.58(13) 8.59(13) -4.31(13) 
16.0 4.55(12) -3.71(12) 4.110(12) -2.08(12) 
18.0 3.02(11) -2.36(11) 2. 64

1

(11) -1.31(11) 
20.0 2.48(10) -1. 88(10) 2.10(10) -1.03(10) 
25.0 l.08t,(8) -7.67 (7) 8. 42 (7) -4.04 ( 7) 
30.0 

-~ 

1. 22 '(6) -8.33 . ( 5) 8.97 (5) -4.18 (5) 

35.0 3.13 ( 4) -2.07 (4) 2.17 (4) -9-79 (3) 
40.0 1. 70 (3) -1.09 (3) 1.11 (3) -4.79 (2) 
45.0 2.01 (2) -1.26 (2) 1. 21 (2) -4.92 (1) 
50.0 5.83 (1) -3.56 (1) 3.22 (1) -1.19 (1) 
55.0 1. 70 (1) -L10 (1) 1.14 (1) -4.34 (0) 
60.0 -2.50 (1) JL42 (1) -1.01 (1) 3. 29 ( 0) 
65.0 -6.96 (0) 5.22 (o) -7.30 (0) J. 25 ( 0) 
70.0 2.35 (1) -1.44 (1) 1. 29 (1) -4.27 (0) 
75.0 -2.47 (1) 1. 43 (1) -1.05 (1) 2. 62 ( 0) 

80.0 2.05 (1) -1.14 (1) 6.45 (0) -7.69(~1) 

aNumber in parentheses indicates power of ten by which preceding number is to 
be multiplied. 
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