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Abstract

Transport and topology in strongly correlated two-dimensional systems, using techniques
from one dimension

by

Aaron Miklos Strimling Szasz

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Many of the most interesting problems in theoretical condensed matter physics involve
the study of two- and three-dimensional materials, but this is in general very difficult. On
the other hand, one-dimensional quantum systems are much better understood, with exact
solutions possible using techniques like bosonization, and with extremely efficient numerical
approaches based on matrix product states. Thus one promising route to studying higher-
dimensional systems is the application of techniques developed for one-dimensional systems.
In this dissertation I discuss two research projects in which I use this approach.

In the first study, motivated by intriguing experiments that have shown two-dimensional
polymer films to be promising materials for thermoelectric devices, I consider a two-dimen-
sional material consisting of an array of one-dimensional systems. Each is treated as a
strongly-interacting Luttinger liquid, and I assume weak (incoherent) coupling between them,
an approximation which I refer to as the “quasi-atomic limit.” I find integral expressions
for the (interchain) transport coefficients, including the electrical and thermal conductivities
and the thermopower, and I extract their power law dependencies on temperature. Luttinger
liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number
is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥ 1 is a measure
of the electron-electron interaction strength in the system.

In the second project, motivated by experimental studies that have found signatures
of a quantum spin liquid phase in organic crystals whose structure is well described by
the two-dimensional triangular lattice, I study the Hubbard model on this lattice at half
filling using the infinite-system density matrix renormalization group (iDMRG) method.
On infinite cylinders with finite circumference, I identify an intermediate phase between
observed metallic behavior at low interaction strength and Mott insulating spin-ordered
behavior at strong interactions. Chiral ordering from spontaneous breaking of time-reversal
symmetry, a fractionally quantized spin Hall response, and characteristic level statistics in the
entanglement spectrum in the intermediate phase provide strong evidence for the existence
of a chiral spin liquid in the full two-dimensional limit of the model.
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Chapter 1

Introduction

The work presented in this dissertation primarily belongs to two research projects, which
have previously been discussed in the following papers:

• Aaron Szasz, Roni Ilan, and Joel E. Moore, “Electronic and thermal transport in
the quasiatomic limit of coupled Luttinger liquids,” Physical Review B 95, 085122
(2017).[110]

• Aaron Szasz, Johannes Motruk, Michael P. Zaletel, and Joel E. Moore, “Chiral spin
liquid phase of the triangular lattice Hubbard model,” arXiv 1808.00463.[111]

I include in the dissertation the key results of those studies, as well as the scientific context
for each and details of the calculations and the methods used. I hope that readers will find
the dissertation to be both of scientific interest and helpful as background future work.

At first glance, the two projects appear to be entirely unrelated—one concerns transport
phenomena in two-dimensional materials formed by coupling one-dimensional conductive
wires in a plane, while the other is about determining the nature of the ground state in
a full two-dimensional model, and furthermore one is largely analytical while the other is
primarily numerical. In fact, what the two projects share is a general approach to studying
complex and strongly interacting systems in two dimensions using an understanding of the
much better-understood physics of one-dimensional systems.

In general, studying two-dimensional systems with strongly interacting electrons is ex-
tremely difficult. Exact solutions are possible only for very special models with many con-
served quantities. Field theory approaches using renormalization group flows are very pow-
erful, as are variational methods with physically inspired simple ansatze, but for many of the
most interesting and difficult systems these methods, too, are unreliable. In such cases, one
must use heavily numerical approaches, but these are also limited. Exact diagonalization
is limited to exceedingly small system sizes, while density functional theory often fails to
correctly capture correlation effects, quantum Monte Carlo is often prevented from being
useful due to the sign problem, and two-dimensional tensor network-based methods can only
capture a limited amount of entanglement.
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One-dimensional systems, on the other hand, are far easier to study. From the perspective
of analytical calculations, the Bethe ansatz and bosonization allow for the exact solution
of even strongly interacting models. From the numerical perspective, techniques like the
density matrix renormalization group (DMRG) that are based on matrix product states are
extremely efficient, allowing ground state computations scaling only linearly in the system
size for gapped systems and remaining relatively efficient even for gapless ones. Studying
finite temperature systems and time evolution is still difficult with such numerical methods,
but even for these problems they remain quite useful.

It is therefore not surprising that one of the best ways to study two-dimensional systems
is to invoke either knowledge or methods from the study of one-dimensional systems, giving
as a result a controlled approximation that provides substantial insight into the original
system. I now explain how my collaborators and I used this approach in each of the two
projects.

1.1 Transport in weakly coupled Luttinger liquids

The coupled Luttinger liquid study is motivated by the surprising transport behavior of poly-
mer thin films.[139, 59, 18, 32] These are materials where long one-dimensional molecules
combine into a two-dimensional layer, which is partially ordered and partially amorphous.
Experiments on such materials have revealed remarkable transport behavior, distinct both
from transport in individual conductive one-dimensional systems as described by the Lut-
tinger liquid theory[37, 31] and from transport in two-dimensional conductive systems de-
scribed by the Fermi liquid theory. In particular, the polymer films are very promising as
thermoelectric materials, showing remarkably high thermoelectric figure of merit while also
being made from abundant and nontoxic materials, unlike traditional thermoelectrics.

These polymer thin films are strongly correlated, and as a result a direct approach to the
two-dimensional system will, as discussed above, be very difficult. Instead, my collaborators
and I make use of the fact that the physical components of the material are one-dimensional
systems (the polymers), and we make the assumption that the strong electron interactions
occur only within each 1D system and not between electrons on different ones. We are then
able to use well-known properties of conductive wires, as described by the Luttinger liquid
theory, to account for the difficult-to-model interactions, resulting in tractable transport
calculations. We call this approximation of strong interactions within each one-dimensional
chain and weak coupling between them the “quasi-atomic limit.”

Using this approach, we are able to compute electrical and thermal conductivites as well
as the thermopower, and we extract their power law dependencies on temperature. We
find behavior distinct both from one-dimensional Luttinger liquid physics and from two-
dimensional Fermi liquid physics. The latter in particular is manifested in a violation of the
Wiedemann-Franz law; the Lorenz number, which measures the ratio between electrical and
thermal conductivity, is larger than the Fermi liquid value by a factor between γ2 and γ4,
where γ ≥ 1 is a measure of the electron-electron interaction strength in the system.
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The discussion of this project is contained in chapters 2, 3, and 4. Chapter 2 discusses
the context for the work, including past experimental and theoretical studies, and presents
the main results. In chapter 3 I present some details of the calculations, and in chapter 4
I show nearly every step of the calculations and also explain in some depth the methods I
used for linear response and numerical analytic continuation.

For background material on Luttinger liquids and the technique of bosonization, I refer
the reader to the book by Thierry Giamarchi, reference [31]. For background on linear
response theory, the precise version of the formalism that I use is explained in section 4.1
below, and is largely based off of the third edition of the book by Gerald Mahan, reference
[70].

1.2 Chiral spin liquid phase of the triangular lattice

Hubbard model

In the second project I have studied a very different kind of physical system, namely crystals
composed of large organic molecules. The key example is the crystal κ-(ET)2Cu2(CN)3,
which has nearly independent layers composed of the ET molecule, also known as BEDT-
TTF or bis(ethylenedithio)-tetrathiafulvalene; each ET layer acts approximately like a sim-
ple triangular lattice with one electron per site.[105] This crystal, and others like it, show
a remarkable lack of magnetic ordering down to extremely low temperatures, suggesting
that geometric frustration of antiferromagnetism may lead to a so-called spin liquid ground
state.[105, 135, 134, 50, 48, 133, 49, 81, 16, 132] To investigate this possibility, I have modeled
this kind of organic crystal with the Hubbard model on the triangular lattice.

The Hubbard model is one of the premier models for studying correlated-electron physics.
It is quite conceptually simple: electrons are considered localized on lattice sites, and they
have kinetic energy from moving around the lattice (characterized by an energy scale t) and
interaction energy from Coulomb repulsion if multiple electrons are on the same lattice site
(characterized by an energy scale U). Despite this conceptual simplicity, the model gives
rise to complex behavior. Even on bipartite two-dimensional lattices, its behavior is not well
understood, much less in the presence of frustration on the triangular lattice.

When U is large in comparison to t, the charges will be gapped when there is one electron
per site, and only the spin degrees of freedom will be relevant at low energy. These might
magnetically order, or alternatively they could form a (possibly topological) spin liquid, with
no magnetic ordering down to zero temperature. An antiferromagnetically ordered state is
strongly favored on a bipartite lattice, but the ordering becomes destabilized on a frustrated
lattice, making these great candidates to realize spin liquids.

In this project, my collaborators and I investigate the triangular lattice Hubbard model,
and we show that for a range of U/t, the ground state is a chiral spin liquid, a topological state
that spontaneously breaks the underlying time-reversal symmetry of the Hamiltonian.[53,
125] This is an exciting and surprising result. In particular, it is to my knowledge the first
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demonstration of a topological state with spontaneous time-reversal symmetry-breaking in
a model of itinerant fermions, and it also can potentially explain some behaviors of the
above-mentioned organic crystals that were not previously understood.

I performed the computations for this project using the density matrix renormalization
group (DMRG) technique.[128, 127, 86, 99] DMRG works by assuming a particular ansatz
for the wave function, namely a matrix product state (MPS), which has many thousands of
parameters, then optimizing those parameters to find the state with the lowest energy. The
number of parameters provides a controllable way to improve the accuracy of the simulation,
and the end result is an unbiased approximation to the true ground state.

There is, however, a catch: an MPS naturally describes one-dimensional systems, not
two-dimensional ones; as with the Luttinger liquid study discussed above, here too we are
using a one-dimensional computational method to approach a higher-dimensional problem.
To do so, we limit the two-dimensional triangular lattice to a finite width strip, which we roll
into a cylinder. By increasing the cylinder circumference, it is possible to get successively
better approximations to the full two-dimensional model. We also use magnetic flux insertion
through the cylinder to get information about the two-dimensional system from the quasi-
one-dimensional cylinders.

This project is discussed below in chapters 5, 6, and 7. In chapter 5, I present the
context of the work including a history of past experimental and theoretical studies, and I
present our key findings. In particular, I show that the model has metallic, nonmagnetic
insulating, and magnetically ordered phases, and I show that the second phase is in fact
a chiral spin liquid. In chapter 6, I provide some useful details of our approach to the
calculation, especially regarding the use of the one-dimensional DMRG approach to study a
two-dimensional system. Finally, in chapter 7, I present additional data from the numerical
simulations that help to support the claims in chapter 5.

Background material on spin liquids can be found in a number of reviews, including
by Balents[8]; Savary and Balents[97]; Zhou, Kanoda, and Ng[145]; and Knolle and Moess-
ner[62]. For background on matrix product states, I refer the reader to the excellent review
by Schollwöck, reference [99]. A clear discussion of the infinite-system DMRG method can
be found in a paper by Kjäll et al., reference [61], and an introduction to the mixed-space
approach to DMRG that my collaborators and I use can be found in a paper by Motruk et
al., reference [78].
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Part I

Study of transport in weakly coupled
Luttinger liquids
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Chapter 2

Electrical and thermal transport in
the quasi-atomic limit of coupled
Luttinger liquids

I first present my work on transport in weakly coupled one-dimensional systems, as published
in Physical Review B[110]. This work was performed in collaboration with Roni Ilan and
Joel Moore. In this chapter I present the context for the work and the key results, and I
discuss their significance. In chapter 3, I present some details of the calculations, and in
chapter 4 I discuss the methods used and present many further details.

2.1 Introduction

Recent experiments on thin films of doped polymers such as PEDOT-PSS, PEDOT-Tos,
and PBTTT have found both high conductivity and a large thermopower [139, 59, 18, 32].
There are some possible explanations for the source of conductive behavior in polymers [40,
96], but they are not yet definitive; in the work presented here, we will bypass this question
and instead analyze a different facet of the problem. Namely, since we take for granted the
conductive nature of individual polymers and can can therefore describe each polymer as a
Luttinger liquid, and we look for possible signatures of the Luttinger liquid behavior that
survive even when the one-dimensional systems are coupled to form a quasi-two-dimensional
material.

The Luttinger liquid model [37, 31] represents a one-dimensional electron gas modified
by interaction between the electrons and can therefore be viewed as the one-dimensional
analogue of the more well-known Fermi liquid model, though the generic behavior of the
system is quite different. In the Fermi liquid theory for two- and three-dimensional systems,
the interacting system actually behaves very much like the corresponding non-interacting
electron gas—the excitations are fermionic quasiparticles which behave qualitatively like
electrons even if specific properties like mass are renormalized to new values.



CHAPTER 2. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: RESULTS 7

By contrast, in one dimension interactions between electrons have a strong qualitative
effect on the behavior of the system. Schematically, one can picture electrons in higher-
dimensional systems having space to “go around” each other and thus they still remain
roughly independent (noninteracting), while in one dimension this is impossible, and so
electrons will move together, forming collective (bosonic) excitations. The Luttinger liquid
theory and the technique of bosonization make this intuitive idea concrete.

There are numerous convincing experimental results on one-dimensional systems that
confirm various predictions of the Luttinger liquid theory. For instance, Luttinger liquids
are expected to exhibit spin-charge separation, where charge and spin degrees of freedom act
independently [31]; spin-charge separation has been convincingly observed via photoemission
experiments in artificially created one-dimensional structures [101]. Likewise, the density of
states around the Fermi level is predicted to show a distinctive power law behavior [17]; this
was also observed in an artificially created 1D chain [15]. Other observations of Luttinger
liquid-like behavior, however, have been made not on actual one-dimensional chains but
rather on two-dimensional collections of one-dimensional systems such as in the polymer
films that motivated this work[139] or on highly anisotropic three-dimensional crystals[77,
119, 9]; it is not immediately clear that the results of these experiments should be directly
compared to theories of single Luttinger liquids. Rather, the coupling of 1D chains to form
a quasi-2D material may modify or destroy altogether the distinctive signatures of Luttinger
liquid behavior. A theory of coupled Luttinger liquids would thus be very helpful.

While the theory of weakly coupled Luttinger liquids has been considered in the past
by many different authors, there are very few results for thermal transport in a system
of infinitely many coupled chains. Some results deal with “ladders” consisting of just two
coupled chains [21, 31], while some of the most well-known treat coupling two half-infinite
chains at their ends as a way of modeling an impurity in the Luttinger liquid[56, 55, 54].
Both electrical and thermal transport have also been computed for many impurities on a
single chain[67]. Papers that do consider an infinite array of weakly coupled Luttinger liquids
have mostly focused only on the electrical conductivity [77, 22, 29] and not on any kind of
thermal transport. There is one recent paper on the off-diagonal terms of the thermopower
tensor for infinitely many coupled chains[98], but I am not aware of any previous results for
the thermal conductivity or Lorenz number in the type of model we consider. This is the
gap this work is intended to fill.

In this work we consider a model of coupled one-dimensional systems in which each 1D
chain is treated as a (spinless) Luttinger liquid, and the individual chains are coupled by
a perturbatively weak interchain hopping. We refer to this situation of strong interactions
within 1D chains and weak, incoherent coupling between them as the “quasi-atomic limit.”
The approximations and assumptions inherent in this model, as well as some justifications
of their validity, are discussed in section 2.2.

We consider two somewhat different versions of the model, which incorporate Luttinger
liquid behavior at different stages of the calculation. In both cases, we calculate transport
coefficients using the Kubo formalism. In the first model, discussed in section 2.3, the
electronic system is initially assumed to be noninteracting so that the state of the system
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can be described by occupation of single-particle orbitals; we introduce Luttinger behavior
via the electronic density of states. In the second model (section 2.4), we use the full
Luttinger liquid correlation functions. In section 2.5, we summarize our key results and
their applicability to experimental systems, and we further discuss the comparison between
the two models.

We find that both models predict the same power law dependence on temperature for
the transport coefficients, σ ∝ T 2γ−3 and κ ∝ T 2γ−2, where γ is a measure of interaction
strength as defined in equation (2.11), but that the precise values of the transport coefficients
(as measured by the Lorenz number) vary with electron-electron interaction strength more
strongly in the second, more complete, calculation. In the generalized noninteracting model
(section 2.3) we find that the Lorenz number is larger than the value predicted by the
Wiedemann-Franz law by a factor between γ2 and γ2.4. In the full Luttinger liquid model
(section 2.4), we find an even larger violation, with the Lorenz number augmented by as
much as γ3.6.

2.2 Assumptions and approximations: the

quasi-atomic limit

In the Hubbard model, the “atomic limit” is the limit as the hopping between lattice sites
vanishes while electron-electron interaction is held constant [11, 80]. We study the problem of
weakly coupled chains with a similar approach, in which we do a perturbative calculation to
lowest order in the interchain hopping while treating each one-dimensional chain as a single
coherent quantum system. This limit of full coherence in one direction (along chains) and
weak incoherent hopping in the other direction (between chains) we call the “quasi-atomic
limit.”1

To be more precise, we make the following assumptions:

(1) There is no electron-electron interaction between the 1D chains.

(2) The different chains are perturbatively coupled through a weak hopping of electrons
between adjacent chains.

(3) The 1D chains are located at evenly spaced points along a one-dimensional line, meaning
that electrons may hop from one polymer to adjacent ones on either side of it and that
the hopping strength between any pair of adjacent polymers is the same.

We will briefly justify the applicability of these assumptions to real physical systems, begin-
ning with assumption (2). To measure transport properties for a macroscopic object (like a
polymer film) we really want to use not the microscopic model of the system but rather an

1Note that the term “quasi-atomic limit” has been used in the past to describe situations between full
coherence and the atomic limit[107, 92]; we use it instead to indicate a system that is fully in the atomic
limit in one direction and not at all in the other.
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effective theory that results from a renormalization group flow. At zero temperature, any
coupling between chains is a relevant perturbation in the renormalization group sense, but
fortunately this is not the case at finite temperature[23, 21, 12]. This means that, so long as
the temperature is much higher than the energy scale of the interchain coupling, the atomic
limit will be valid. For any particular material, this sets a lower bound on the temperature
regime in which our results are applicable.

In this temperature regime of validity, the thermalization time within each chain (pro-
portional to 1/T ) will be much less than the interchain hopping time (proportional to the
inverse hopping strength), so that each individual one-dimensional chain will thermalize
between hopping events. We can therefore intuitively think of the interchain hopping as
incoherent, though we do not explicitly use that fact anywhere in our calculations.

Assumption (3) is an accurate description for the case of anisotropic crystals. The appli-
cation to polymer films is less direct, as they are known to have regions where the polymers
are relatively aligned in some organized array (as in assumption 3), as well as amorphous
regions [83, 18, 109]. In the latter regions, which may account for a significant fraction of the
overall film, as long as the polymers form a single two-dimensional layer and do not cross,
at a sufficiently small scale the polymers should still form a neat array and our assumption
will apply. We can therefore approximately treat the film as consisting of a collection of
randomly oriented domains, each of which individually satisfies the assumption. We discuss
this further in section 2.5.

2.3 Generalized noninteracting model

The first version of our model is intended to capture the key Luttinger liquid behavior while
still being simple enough to provide helpful physical intuition about the system we study.
We thus use a noninteracting model for most of the calculation, finally substituting the
Luttinger liquid density of states at the end.

To be precise, we add two more simplifying assumptions to those given in section 2.2
above:

(4) Each individual 1D chain can be described by a set of non-interacting single-particle
orbitals, given by the Fourier modes of the localized on-site orbitals; the orbitals’ energies
are distributed according to the tunneling density of states of a Luttinger liquid, and
each chain’s orbitals are the same.

(5) Electrons hop from a well-defined single-particle eigenstate on one chain to an eigenstate
with approximately the same energy and momentum on an adjacent chain. The hopping
strength is sharply peaked in |k − k′| where k and k′ are the wavenumbers on the two
chains, and the value at k = k′ is independent of k. (In practice, we assume the hopping
is Gaussian in k − k′, but this assumption is only needed when we compare the two
versions of our model, see section 3.3 of the next chapter.)
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The five assumptions above lead to a specific interpretation of the standard tight-binding
Hamiltonian

H =
∑
j,k

Ekc
†
jkcjk −

∑
jkk′

(
tkk′c

†
j,kcj+1,k′ + h.c.

)
(2.1)

The index j labels 1D chains, while k and k′ label extended (Fourier state) orbitals on each
chain. c† and c are the usual fermion creation and annihilation operators, while Ek is the
single-particle energy corresponding to the orbital k.

In the noninteracting limit, the Ek are just the energies of a one-dimensional tight-
binding model H0 = −t//

∑
i c
†
ici+1 + h.c.; if the lattice spacing is a, the energy levels are

Ek = −2t//cos(ka), which are then linearized around the Fermi points k = ±kF . When
interactions are introduced, there are no longer well-defined single-particle orbitals, so we
cannot give an explicit formula for the energies Ek. Instead, we will derive an expressions
for the transport coefficients in which the energy spectrum only appears via the density of
states, for which we can use the well-defined single-particle tunneling density of states of a
Luttinger liquid.

Calculation of transport coefficients

We calculate the transport coefficients in this model using the Kubo formalism. For consis-
tency with standard references, we use the conventions of reference [70], in which case the
electrical conductivity, thermal conductivity, and thermopower are given by

σ =
e2

T
L(11) (2.2a)

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
(2.2b)

S = − 1

eT

L(12)

L(11)
(2.2c)

In a two dimensional material, each of these coefficients is actually a 2x2 matrix; the diagonal
entries give the response in the direction of an applied field, while the off-diagonal entries give
the response in a perpendicular direction (e.g., the Hall conductivity). We will specifically
focus on the longitudinal response in the interchain direction.

The L(il) coefficients in the transport coefficient formulas are defined by[70, eqs. 3.487,
3.488]

J = − 1

T
L(11)∇(eV ) + L(12)∇

(
1

T

)
(2.3a)

JE = − 1

T
L(21)∇(eV ) + L(22)∇

(
1

T

)
(2.3b)
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where J is the particle current, or electrical current divided by the charge per particle, and
JE is the energy current. Note that L(12) = L(21). In practice, we find the L(il) coefficients
in terms of current-current correlation functions as2

L(il) = lim
ω→0

lim
δ→0

1

ω

[−i
Ωβ

∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉
]

(2.4)

iωn→ω+iδ

where j1 is the particle current operator J and j2 is the energy current operator JE. Both are
the current operators for the interchain direction. Ω is the volume of the system. Because we
calculate the transport coefficients at finite temperature, we perform the calculation using
the Matsubara formalism. τ is the imaginary time, ωn = 2πn/β for n = 0, 1, 2, · · · are the
discrete (bosonic) Matsubara frequencies, and iωn → ω + iδ indicates analytic continuation
from the positive imaginary axis to just above the positive real axis. In practice we will take
only the real part of L(il), since we are interested specifically in transport.

The current operators we find using [80]

J = lim
k→0

1

k

∑
j

[Nj, H]eikacj (2.5a)

JE = lim
k→0

1

k

∑
j

[Hj, H]eikacj (2.5b)

in units where ~ = 1. Here ac is the distance between 1D chains and Nj is the total number

operator on chain j, Nj =
∑

k c
†
jkcjk. Hj is the part of the Hamiltonian associated with

chain j, which includes both the on-chain portion

hj =
∑
k

Ekc
†
jkcjk (2.6a)

and the hopping portion

h′j = −1

2

∑
kk′

tkk′
(
c†j,kcj+1,k′ + c†j−1,kcj,k′

)
+ h.c. (2.6b)

This leads, after some algebra, to the expressions

J = iac
∑
jkk′

tkk′c
†
j−1,kcj,k′ − t∗kk′c†j,k′cj−1,k (2.7a)

JE = iac
∑
jkk′

[(
Ek + Ek′

2

)(
tkk′c

†
j−1,kcjk′ − h.c.

)]
(2.7b)

2Equation (2.4) is a corrected version of (3.518) from reference [70]; see chapter 4 for details.



CHAPTER 2. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: RESULTS 12

From these current operators and equation (2.4), we derive (see section 3.1 of the next
chapter) the expression

Re
[
L(il)

]
=
Aact

2vβ−nil

2π4

∫
g2(y/β)ynil

(1 + ey) (1 + e−y)
dy (2.8)

where nil = i+ l− 2 (e.g., 0 for L(11)), v is the (possibly renormalized by interactions) Fermi
velocity, A is a dimensionless number, t is the peak value of the interchain hopping t = tkk,
β as usual is 1/T (we use units of kB = 1), and g(E) is the electronic density of states. The
integral over the dimensionless variable y = βE runs from −∞ to ∞.

The form of the integrand can be intuitively understood from a semiclassical perspective.
If a particle is hopping from an orbital at energy E on one chain to an orbital at energy
E on another, then the number of ways that can happen is the number of orbitals at that
energy on the first chain, g(E), multiplied by the fraction that are occupied, (1 + eβE)−1,
times the number of orbitals at that energy on the second chain, g(E), multiplied by the
fraction that are unoccupied, (1 + e−βE)−1. Multiplying all of these factors and integrating
over the energy gives ∫

g2(E)

(1 + eβE)(1 + e−βE)
dE. (2.9)

This should be proportional to the hopping rate, and therefore to the electrical conductivity.
Indeed, equation (2.9) looks just like the integrand in equation (2.8) for L(11), which is
proportional to the electrical conductivity. The fact that a semiclassical picture is helpful in
understanding equation (2.8) is not too surprising given that our weak hopping assumption is
only valid when the temperature is high enough for the interchain hopping to be incoherent.

This is the point in the calculation where the fact that each 1D chain is a Luttinger
liquid becomes important. The density of states for a Luttinger liquid is given by Eq. (61)
of reference [17] as

gLL(E) = 2
|E/W |γ−1

2πvΓ(γ)
, (2.10)

valid for E � W , where W = v/a is proportional to the Fermi energy (EF ∝ k2
F/m =

(kF/m)/k−1
F ∝ v/a) or bandwidth of the underlying 1D model and γ is a measure of inter-

action strength in the Luttinger liquid defined by

γ =
K +K−1

2
. (2.11)

K is the usual Luttinger liquid interaction parameter, as defined for the Luttinger liquid
Hamiltonian below (equation 2.23). (Note that using K for this parameter is a relatively
standard convention, used for instance in the book by Giamarchi[31], though some authors
refer to it as g or K2.[56, 55, 54, 71]) K = 1 corresponds to noninteracting electrons,
while K < 1 corresponds to repulsive interactions and K > 1 corresponds to attractive
interactions. We have introduced the new parameter γ, which is symmetric in K and K−1
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and thus is independent of whether the interactions happen to be attractive or repulsive. It
always satisfies γ ≥ 1, and γ = 1 if and only if the system is noninteracting.

Substituting equation (2.10) into equation (2.8) and using that result in equations (2.2),
we find the following results for the transport coefficients:

σ =
ace

2t2

vT

(
T

W

)2(γ−1)

× A

2π6Γ(γ)2

∫
y

|y|2(γ−1)

(1 + ey) (1 + e−y)
dy (2.12a)

κ =
act

2

v

(
T

W

)2(γ−1)

× A

2π6Γ(γ)2

∫
y

y2|y|2(γ−1)

(1 + ey) (1 + e−y)
dy (2.12b)

S = 0 (2.12c)

Both the thermopower and the second term of equation (2.2b) for the thermal conductivity
vanish because L(12) is 0 when the density of states is particle-hole symmetric. Mathe-
matically this follows because the integrand in equation (2.8) is odd when g(E) is an even
function.

Correction for nonzero thermopower

To model a real material and get nonzero thermopower, we can introduce an asymmetry
in the band structure. In particular, the Tomonaga-Luttinger model begins by linearizing
a typical 1D band structure around the Fermi points, so we adopt the picture that the
Luttinger liquid arises from adding interactions to a 1D electron gas with a typical dispersion
E = ~2k2

2m
∝ k2. In that case, the density of states is dk/dE ∝ E−1/2. In our calculations

above we have set the Fermi level to E = 0, in which case the noninteracting density of
states becomes

g1D(E) ∝ (EF + E)−1/2. (2.13)

The Fermi energy is proportional to v/a, so for consistency with equation (2.10) we can
write it as EF = bW for a dimensionless constant b. Using this 1D density of states as a
correction to the Luttinger liquid one gives

g(E) =
gLL(E)√

1 + E/(bW )
≈ gLL(E)

(
1− 1

2

E

bW

)
. (2.14)

This density of states is a phenomenological way of capturing the real physical behavior
of the system which should be accurate enough to find how the thermopower depends on
temperature. The most important features are the violation of particle-hole symmetry by
the introduction of a bandwidth and the preservation of the density of states to lowest order
in E/W when E is small (near the Fermi energy).
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If we calculate L(12) with equation (2.14) replacing equation (2.10) as the density of
states, we find for the thermopower

S =
k2
BT

We
×
∫ y2|y|2(γ−1)

(1+ey)(1+e−y)
dy

b
∫ |y|2(γ−1)

(1+ey)(1+e−y)
dy

(2.15)

where Boltzmann’s constant has been restored to get the correct final units.
Note that in principle we could also use the same correction for the conductivities, equa-

tions (2.12), but any additional terms would be higher order in kBT/W than those given
above. kBT/W must be small, otherwise the Tomonaga-Luttinger model, which is based on
a linearized band structure (i.e., W →∞), would not be applicable at that temperature.

Lorenz number

The expressions for the conductivities, equations (2.12), are clear and understandable, but
they do contain material-dependent parameters like ac, v, and W . To find a robust result that
can be tested experimentally, we would like a quantity in which these material-dependent
quantities do not appear. One such parameter is the Lorenz number,

L =
κ

σT
. (2.16)

This is a particularly useful quantity to consider, since the Wiedemann-Franz law states that
for a noninteracting system or for a Fermi liquid, the Lorenz number should take a specific
value, namely

L0 =
π2

3

(
kB
e

)2

. (2.17)

The Lorenz number for our model can be found by dividing the results from equations (2.12)
to get

L =
k2
B

e2

∫ y2|y|2(γ−1)

(1+ey)(1+e−y)
dy∫ |y|2(γ−1)

(1+ey)(1+e−y)
dy
. (2.18)

As expected from the Wiedemann-Franz law, in the noninteracting limit of γ = 1 we get
precisely L0. At γ > 1, this expression for L can be evaluated via numerical integration.
With interactions, γ > 1, we find that L > L0, violating the Wiedemann-Franz law. The
Lorenz number is plotted as a function of the interaction strength γ in the lower curve in
figure 2.1.

The Lorenz number should scale approximately as γ2 in this model, since the extra two
powers of y in equation (2.8) that appear for L(22) (and therefore κ) but not for L(11) (and
therefore σ) become derivatives with respect to x if the expression is rewritten via Fourier
transform; these derivatives act on the Green’s function that looks roughly like f(x)−γ and
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Figure 2.1: (Color online) Lorenz number, L, as calculated in the generalized noninteracting
(GN) and Luttinger liquid (LL) models. The Lorenz number is plotted as a function of the
interaction strength γ in units of L0, the value expected from the Wiedemann-Franz law.
For both models, we find that L = L0 in the noninteracting case γ = 1. Electron-electron
interactions (γ > 1) lead to a violation of the Wiedemann-Franz law; the violation is stronger
in the LL model than in the GN model. The Lorenz number is evaluated at discrete points
in the LL model; error bars indicate the precision of numerical results as described in the
text. Lines connecting the data points for the LL model show linear interpolation between
adjacent points, and the dashed line below γ = 1.005 in the inset shows extrapolation to
γ = 1.

thus pull down two factors of γ. To test that it is indeed the case that L ≈ L0γ
2, we define

a(γ) by L = L0γ
a(γ) in which case

a(γ) =
log(L/L0)

log(γ)
. (2.19)

This quantity is plotted in figure 2.2. From the plot we see that the exponent a is between
2.35 and 2 for all interaction strengths γ. For large γ, the scaling of the Lorenz number is
close to γ2; for small γ, expanding around γ = 1 gives

a(γ ≈ 1) = 1− 2 log(π) +
6

π2

(
γ1
′
(

1

2

)
− γ1

′(1)

)
≈ 2.3432 (2.20)

where γ1(ν) is a generalized Stieltjes constant[13],3.

3For purposes of calculation, the generalized Stieltjes constant is implemented in the commercial software
Wolfram Mathematica as γn(ν) = StieltjesGamma[n, ν][121]
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Figure 2.2: The Lorenz number scales as L/L0 = γa(γ). For the generalized noninteracting
model we find 2 < a(γ) < 2.35 for all γ, with L ≈ L0γ

2 for large γ.

Summary of generalized noninteracting model

Our most robust predictions are those that do not depend on any material-dependent pa-
rameter but the interaction strength. These are (a) the power law dependencies of σ, κ, and
S on temperature and (b) the Lorenz number. We find that

σ ∝ T 2γ−3 (2.21a)

κ ∝ T 2γ−2 (2.21b)

S ∝ T (2.21c)

and

L =
k2
B

e2

∫ y2|y|2(γ−1)

(1+ey)(1+e−y)
dy∫ |y|2(γ−1)

(1+ey)(1+e−y)
dy

≈ L0γ
2 (2.22)

In the noninteracting case, γ = 1, the Lorenz number agrees with the usual Wiedemann-
Franz Law. With either attractive or repulsive interactions, the Wiedemann-Franz law is
violated as shown in figure 2.1.

2.4 Luttinger liquid model

In the second version of our model, we introduce Luttinger liquid physics much earlier in
the analysis. To do so, we replace assumptions (4) and (5) with two new, corresponding
assumptions:
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(4’) Each individual 1D chain is described by the Luttinger liquid Hamiltonian[31],

H =
1

2π

∫
dx
[
vK(∇θ)2 +

v

K
(∇φ)2

]
(2.23)

where again we have set ~ = 1. As above, K is a parameter that measures interaction
strength and v is the renormalized Fermi velocity. φ and θ are bosonic field operators
related to the fermion operators by[31]

ψα(x) = Uα lim
a→0

1√
2πa

eiαkF xe−i(αφ(x)−θ(x)) (2.24a)

ψ†α(x) = U †α lim
a→0

1√
2πa

e−iαkF xei(αφ(x)−θ(x)) (2.24b)

where α can be R or L (labeling right-movers versus left-movers) when used as an
index and 1 or −1, respectively, when used as a multiplicative factor. The Ur operators
are called Klein factors, and are included to make sure that the fermion operators
anticommute and that they do not conserve particle number.

(5’) Electrons hop between real-space localized orbitals. The hopping strength is sharply
peaked in |x − x′|, where x and x′ are the locations along the two chains, measured
from the same “center” point (so that all the “x = 0” points lie on a line perpendicular
to the chains). In the thermodynamic limit, a delta-function hopping in real space is
consistent with the sharply peaked hopping in Fourier space from assumption (5) from
the first version of our model (see section 3.3 in the next chapter). We also assume that
right-movers on one chain can only hop to right-movers on the adjacent chain and the
same for left-movers; this is needed for consistency with the approximate momentum
conserving hopping in the generalized noninteracting model.

Including both on-chain and hopping terms, the Hamiltonian for this second version of our
model is:

H =
∑
j

Hj =
∑
j

hj + h′j

hj =
1

2π

∫
dx
[
vK (∇θj)2 +

v

K
(∇φj)2

]
(2.25)

h′j =−1

2

∑
αβ

∫
dx dx′

[
tαβ(x− x′)

(
ψ†jα(x)ψj+1,β(x′) + ψ†j−1,α(x)ψjβ(x′)

)
+ h.c.

]

Calculation of transport coefficients

As in the generalized noninteracting model, to find the transport coefficients we first find
operators for the electrical and energy currents. This can be done using equations (2.5) just
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as before, but with the new definitions for hj and h′j. The results (for some details of the
calculation, see section 3.2 in the next chapter) are

J = −iac
∑
j

∑
αβ=R,L

∫
tαβ(x− x′)

[
ψ†jα(x)ψj−1,β(x′)− ψ†j−1,α(x)ψjβ(x′)

]
dx dx′ (2.26a)

JE = −iacv
2

∑
jαβ

∫
tαβ(x− x′)

[(
[∇j]

α
x + [∇j−1]βx′

)
ψ†jα(x)ψj−1,β(x′) (2.26b)

−
(

[∇j−1]αx + [∇j]
β
x′

)
ψ†j−1,α(x)ψjβ(x′)

]
dx dx′

where
[∇j]

α
y = αK∇θj(y)−K−1∇φj(y). (2.27)

Unlike in the generalized noninteracting model, we do not find a single simple formula like
equation (2.8) that gives all the transport coefficients. Instead, the particularly nice expres-
sions that we find are for the current-current correlators in terms of the Green’s function for
a single Luttinger liquid:

〈J(τ)J〉 = −2NcL

(
act

2π

)2∑
α

∫
dxGα(x, τ)Gα(−x,−τ) (2.28a)

〈JE(τ)JE〉 = −2NcLγ
2

(
acvt

2π

)2∑
α

∫
dx
[
(kF + iα∂x)Gα(x, τ)

]
×
[
(kF − iα∂x)Gα(−x,−τ)

]
(2.28b)

〈JE(τ)J〉 = 2vγNcL

(
act

2π

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)Gα(−x,−τ) (2.28c)

For the Green’s function we use the expression[71, 17]

Gα(x, τ) = −e
iαkF x

2πa

 −ia
vβ
π

sinh
(
x−ivτ
vβ/π

)

γ−α
2
 ia

vβ
π

sinh
(
x+ivτ
vβ/π

)

γ+α
2

(2.29)

and we are then able to perform the integration over x exactly, getting results in terms of the
Appell hypergeometric function F1 as defined in §16.13 of reference [82].4 As an example,
the result for 〈J(τ)J〉 is

〈J(τ ′)J〉 = 4NcL

(
act

2π

)2 2a

(2πa)2

(
2πa

vβ

)2γ−1(
2f(γ, τ ′, 1, 1)−cos(2τ ′)

(
f(γ, τ ′, 0, 1)+f(γ, τ ′, 2, 1)

))
(2.30)

4For purposes of calculation, the function F1 is implemented in the commercial software Wolfram Math-
ematica as F1(a; b1, b2; c;x, y) = AppellF1[a, b1, b2, c, x, y][120]
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where τ ′ is a scaled version of the imaginary time, τ ′ = τπ/β, and

f(γ, τ, n,m) =
F1(γ + n; γ +m, γ +m; γ + n+ 1; e2iτ , e−2iτ )

γ + n
. (2.31)

The analogous expressions for the other two current-current correlators are longer and more
complex, and thus proportionally less enlightening. We present them in section 3.2 of the
next chapter for the edification of the interested reader.

The next step is to evaluate each of the L(il) coefficients using equation (2.4). In the
previous model it was possible to perform the Fourier transform and analytic continuation
analytically, but here we must perform the τ integrals of the current-current correlators
numerically for each Matsubara frequency and then numerically perform the analytic con-
tinuation and limits. The procedure we follow is discussed further in Chapter 3, and in great
detail in chapter 4.

For each transport coefficient, we get a numerical part from the procedure mentioned
above and a prefactor that contains all the dimensionful quantities, notably the dependence
on temperature. Including for now only the dimensionful quantities, we find

σ ∝ aca q
2t2

v2

(
a

vβ

)2γ−3

(2.32a)

κ ∝ act
2

v

(
a

vβ

)2γ−2

(2.32b)

S = 0 (2.32c)

Recalling that the energy scale W introduced in the Luttinger liquid density of states, equa-
tion (2.10), was W = v/a, the dependence of the transport coefficients on the material-
dependent parameters ac, a, and v in this model (equations 2.32) precisely matches what we
found in the generalized noninteracting model (equations 2.12).

In the generalized noninteracting model, we introduced a correction to the density of
states to find a nonzero thermopower. Due to the complexity of the full Luttinger liquid
model, we consider the equivalent correction here to be beyond the scope of this paper.

Lorenz number

The numerical analytic continuation has not yet been needed for the results presented above.
We would like, however, to evaluate the Lorenz number numerically as a function of the
interaction strength, γ, just as in the generalized noninteracting model. For that calculation,
the full numerics are needed.

To compute the precise transport coefficients, for each interaction strength γ we must
separately evaluate the Fourier transform of the current-current correlation functions at
a number of Matsubara frequencies, fit an analytic function to these results, analytically



CHAPTER 2. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: RESULTS 20

continue the function, and then take the limits as the frequency ω and the infinitesimal
parameter δ go to 0. (For details, see chapter 4.)

Due to the complexity of the correlation functions (for instance equation 2.30), the cal-
culation of each Fourier transform, and thus the calculation of transport coefficients for each
interaction strength γ, is very computationally expensive. We therefore evaluate the Lorenz
number for a limited number of values of the interaction strength, with a higher density
around γ = 1 to make sure that the results in the noninteracting limit are reliable. The re-
sults are shown for γ in the range 1 to 3 by the discrete data points in figure 2.1 (connected
by linear interpolation for visual clarity). An inset shows a detail of γ ∈ [1, 1.05]; from the
inset it is clear that in the noninteracting limit the Lorenz number approaches the expected
value from the Wiedemann-Franz law.

The error bars on the Luttinger liquid model data in figure 2.1 indicate the numerical
precision of the Lorenz number for each γ. We compute the numerical integral for each
Fourier transform with a relative precision of 10−10, and allowing the values of the Fourier
transforms to vary within this range and recomputing the Lorenz number gives a sharply
peaked distribution of possible values of L. The error bars in the figure show one standard
deviation of this distribution for each interaction strength γ.

Comparing the results of the full Luttinger liquid model with the corresponding results
for the generalized noninteracting model, as shown in the upper and lower curves respec-
tively in figure 2.1, we see that the full Luttinger liquid model exhibits a stronger violation
of the Wiedemann-Franz law with increasing interaction strength. We argued that in the
generalized noninteracting model the Lorenz number should scale as γ2 because the two
extra factors of energy for L(22) relative to L(11) in equation (2.8) act, in a real-space repre-
sentation, as derivatives of the Green’s function. For the full Luttinger liquid model, we can
make a similar argument that L/L0 ≈ γ4. There are indeed two derivatives acting on the
Green’s function in the expression for 〈JE(τ)JE〉, equation (2.28b), that are not present in
the expression for 〈J(τ)J〉, equation (2.28a), giving rise to the same two factors of γ as in
the generalized noninteracting model.

There are additionally two factors of γ in the prefactor in the expression for 〈JE(τ)JE〉,
which come from the [∇j]

α
x operators in the expression for the energy current operator,

equation (2.26b), and are thus missing from the generalized noninteracting model because
there the energy current operator was derived in the noninteracting limit where γ = 1. With
these two additional factors of γ included, we find that the Lorenz number should scale
approximately as L/L0 ≈ γ4.

This argument neglects the full complexity of the correlation functions, so to find more
precisely how the Lorenz number scales with γ we again introduce the function a(γ) defined
by equation (2.19), L/L0 = γa(γ). This is plotted in figure 2.3. We find that L/L0 satisfies
γ3.2 < L/L0 < γ3.7 for γ ≤ 3. This is a slightly weaker dependence than the predicted γ4,
but it is still a much stronger violation of the Wiedemann-Franz law than L/L0 ≈ γ2 from
the generalized noninteracting model.
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Figure 2.3: Exponent a in L/L0 = γa(γ) for the Luttinger liquid model. The dependence
on γ is stronger than in the generalized noninteracting model. Lines are given by linear
interpolation between adjacent data points, and error bars are omitted for clarity.

Summary of Luttinger liquid model

As in the generalized noninteracting model, it is useful to summarize those results that do
not depend on any material-dependent parameter apart from the interaction strength. For
the dependence of the conductivities on temperature, we find the same power laws as in
the generalized noninteracting model, namely σ ∝ T 2γ−3 and κ ∝ T 2γ−2. For the Lorenz
number we find a stronger violation of the Wiedemann-Franz law than in the generalized
noninteracting model. We analytically estimate that

L ≈ L0γ
4 (2.33)

and numerically observe that
L0γ

3.2 < L < L0γ
3.7 (2.34)

The precise dependence of the Lorenz number on the interaction strength is shown in figure
2.1. In the noninteracting case, γ = 1, the Lorenz number is L0, the expected value from
the Wiedemann-Franz Law.

2.5 Discussion and analysis

We have analyzed two different models for weakly coupled Luttinger liquids, finding in both
cases the electrical and thermal conductivity. In terms of the interaction parameter γ,
the conductivities scale in both models as σ ∝ T 2γ−3 and κ ∝ T 2γ−2. In both cases we
find a violation of the Wiedemann-Franz law with increasing interaction strength; for the
generalized noninteracting model L ≈ L0γ

2 as shown in figures 2.1 and 2.2, while for the
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Luttinger liquid model L ≈ L0γ
3.2 as shown in figures 2.1 and 2.3. This type of violation

of the Wiedemann-Franz law as a power of the interaction strength is similar to the result
of Kane and Fisher[54], although the precise dependence is of course different since our
models describe a different physical system. In the generalized noninteracting model we
also find a nonzero expression for the thermopower if we correct the density of states to
account for particle-hole symmetry breaking, in which case S ∝ T . This linear dependence
of thermopower on temperature, which matches the expected behavior in a Fermi liquid, was
also found by Kane and Fisher in their coupled chain model[54].

The violation of the Wiedemann-Franz law that we observe in both models is an indication
that Luttinger liquid behavior survives when 1D chains are coupled to form a two-dimensional
material. Just how large is the violation in practice? Experimental measurements[116] and
theoretical calculations[100, 26, 27, 108, 2] have found Luttinger parameters in a typical
range of about 0.2 through 1.5, corresponding to values of γ up to about 3. In both our
models, γ = 3 would lead to a large violation of the Wiedemann-Franz law by an order of
magnitude or more, an easily measurable effect that could be observed in experiments.

The results summarized here are all independent of any material-dependent parameters
apart from the Luttinger liquid interaction parameter, which makes them good candidates for
experimental testing and verification on any system with strong anisotropy that might lead to
quasi-one-dimensional behavior. One very direct application of our theory would be to highly
anisotropic crystals, as they typically have electron hopping strength along one axis which is
at least an order of magnitude stronger than the hopping along the other two axes[116]. For
temperatures between the two hopping scales, it would be reasonable to treat the system as a
collection of weakly coupled 1D chains as we have done here, and by the nature of the crystal
they form an ordered array, again matching our model. Such anisotropic crystals are known
to show strong violations of the Wiedemann-Franz law, especially in the Hall direction in a
magnetic field [119]. By comparing the measured violations of the Wiedemann-Franz law in
these systems with our predictions, it should be possible to estimate the effective Luttinger
parameter K for the constituent one-dimensional chains. Conversely, if K is independently
known then such measurements would serve as a verification of our predictions.

Applying our theory to polymer films, the original motivation of the work, requires
some additional effort since the films are partially amorphous. One approach would be to
treat the polymer film as a polycrystal, consisting of randomly oriented grains; within each
grain, the polymers form an ordered array to which our theory directly applies. The overall
transport properties of the polymer film could then be found by averaging using methods
like those discussed in reference [47]. The precise level of alignment of polymers can also
vary significantly between films[83, 18, 109], and more work is needed to properly take this
into account. One experimental result on polymer films which is clearly consistent with our
calculations is the fact that some polymers show conductivity increasing with temperature,
while others show the opposite behavior[18]. We find that σ increases with temperature if
the interaction strength is large enough, γ > 3/2, but decreases with increasing temperature
for 1 ≤ γ < 3/2.

Numerical studies of transport and other dynamical properties in quasi-one-dimensional



CHAPTER 2. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: RESULTS 23

systems have made great progress since the advent of matrix product state algorithms for
time dependence [117, 130, 99]. In the case of a single chain, it is possible to see the
characteristic power laws of Luttinger liquid behavior [44], and while coupled chains are
considerably more demanding, it has been possible to access at least some excited-state
properties [51]. Coupled-chain numerical studies could in principle provide a more precise and
tunable “numerical laboratory” to test our predictions than current polymer experiments.

There are a number of ways that our models could be extended for future work. We
have dealt only with spinless Luttinger liquids, so a spin sector could be added. Due to
the spin-charge separation in Luttinger liquids, this would be a relatively simple change and
would just result in extra additive contributions to some L(il) coefficients. The models could
also be made more complete via the addition of disorder and by going to higher order in the
perturbation theory in the interchain hopping strength. The latter two corrections would
be potentially quite difficult, though disorder could be added at a relatively late stage in
the calculation by modifying the density of states as used in equation (2.8) or the Green’s
function in equations (2.28).

To implement these or other extensions of our model, if the goal is only to find how
transport properties depend on temperature then it will apparently be sufficient to use a
noninteracting model for most of the calculation as in section 2.3; if the precise values of the
transport coefficients are needed, such as for calculating the Lorenz number, then a more
complete calculation, as in section 2.4, will be required.
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Chapter 3

Calculations for the study of weakly
coupled Luttinger liquids

In this chapter I present some of the calculations for the results in chapter 2. In particular,
I discuss the calculations of the current operators and of the current-current correlation
functions and their corresponding response functions. I also address the correspondence
between the two models used in the previous chapter, namely the generalized noninteracting
model and the model in which each polymer is explicitly treated as a Luttinger liquid.
Further details for everything covered here can be found in the following chapter.

3.1 Details of generalized noninteracting model

In the main body of the paper, we focused on the key results of our work and restricted
discussion of the calculations to the general formalism that we used. In this chapter, we
discuss key steps of the calculations, especially those in which we use one of our assumptions.
We also provide some intermediate results such as the current-current correlation functions
for the Luttinger liquid model in terms of the hypergeometric function F1. For a reader
interested in seeing more details, the full calculations are available in chapter 4.

Current operators

The computation of the particle and energy current operators, as given in equations (2.7a)
and (2.7b), from equations (2.5) involves computing the commutators [Nj, H] and [Hj, H]
respectively. In each case, the best way to proceed with the calculation is to break the
Hamiltonian into the on-chain and interchain coupling pieces, H =

∑
i hi + h′i. As the on-

chain Hamiltonian conserves the total number of electrons on the chain, it must commute
with the number operator on each chain, so that [Nj, H] =

∑
i[Nj, h

′
i]. Similarly, the on-chain
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Hamiltonians for different chains all commute so that

[Hj, H] =
∑
i

[hj, h
′
i] + [h′j, hi] + [h′j, h

′
i]. (3.1)

We also neglect the last term as it contains two powers of the interchain hopping strength
and thus is not lowest order in our perturbative calculation. The remainder of the derivation
of the current operators consists of computing the commutators and then observing that half
the terms can have their index shifted by 1 in the sum over j from equations (2.5), in which
case the limit as k → 0 gives

1− eikac
k

→ −iac. (3.2)

For further details, see chapter 4.

Finding L(il)

The first step in finding the transport coefficients is to find the time evolution of the current
operators. In imaginary time τ = it, the time evolution is given by

J(τ) = eHτJe−Hτ . (3.3)

In general this would be a very difficult calculation, but it is made much easier by the fact
that we do the calculation only to lowest order in the interchain hopping, which allows us
to drop the hopping terms entirely from the Hamiltonian used for the time evolution,

H → H0 =
∑
i

hi. (3.4)

This means that the time evolution operator acts separately on each creation and annihilation
operator in equations (2.7a) and (2.7b). The resulting time-dependent current operators are

J(τ) = iac
∑
jkk′

eτ(Ek−Ek′ )tkk′c
†
j−1,kcj,k′ − eτ(Ek′−Ek)t∗kk′c

†
j,k′cj−1,k (3.5a)

JE(τ) = iac
∑
jkk′

[(
Ek + Ek′

2

)(
eτ(Ek−Ek′ )tkk′c

†
j−1,kcj,k′ − eτ(Ek′−Ek)t∗kk′c

†
jk′cj−1,k

)]
(3.5b)

We then calculate the current-current correlators. Here we show only the calculations for
〈J(τ)J〉, as the others are quite similar. The brackets 〈·〉 indicate a thermal expectation
value defined as usual by

〈O〉 = Tr[e−βHO]/Tr[e−βH ] = Tr[e−βHO]/Z (3.6)

As with the time evolution, the lowest order result in the interchain hopping can be found
by simply dropping the interchain hopping terms from H in the thermal density matrix,
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e−βH → e−βH0 , in which case the expression for the current-current correlator can be written
in terms of expectation values on single chains,

〈J(τ)J〉 = a2
c

∑
jkk′

|tkk′ |2
(
eτ(Ek′−Ek)(1− 〈nj−1,k〉)〈nj,k′〉+ eτ(Ek−Ek′ )〈(1− 〈nj,k′〉)〈nj−1,k〉

)
,

(3.7)
where as usual the number operator is given by n = c†c. The expectation value of each
number operator is just given by the Fermi-Dirac distribution and is independent of the
chain number j so this becomes

〈J(τ)J〉 = Nca
2
c

∑
kk′

|tkk′ |2
[

eτ(Ek′−Ek)

(1 + e−βEk)
(
1 + eβEk′

) +
eτ(Ek−Ek′ )

(1 + eβEk)
(
1 + e−βEk′

)] (3.8a)

= Nca
2
c

(
L

2π

)2 ∫
kk′
|t(k, k′)|2

[
eτ(E(k′)−E(k))(

1 + e−βE(k)
) (

1 + eβE(k′)
) (3.8b)

+
eτ(E(k)−E(k′))(

1 + eβE(k)
) (

1 + e−βE(k′)
)] dk dk′

= 2Nca
2
c

(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ(E′−E)

(1 + e−βE) (1 + eβE′)
(3.8c)

+
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE′

= 4Nca
2
c

(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE′ (3.8d)

where in successive steps we have (1) rewritten the sum over k as an integral over a
continuous variable, (2) converted to an integral over energy E, with t(E,E ′) defined by
t(E(k), E(k′)) = t(k, k′) for all k and k′, also getting a factor of 2 for the two branches
of the dispersion, and (3) recognized that the two terms are the same if, as we assume,
t(E,E ′) = t(E ′, E).

In the continuum case, the hopping t(k, k′) becomes a Dirac delta function. Thus one
factor of t(E,E ′) collapses the two integrals into one, leaving t(E,E) ∝ δ(0). The appearance
of the apparently infinite quantity δ(0) is not a problem because when we do the conversion
from a sum over k to an integral, tkk′ (which we initially viewed as a sharply peaked, perhaps
Gaussian, function) becomes

tkk′ = te−(k−k′)2L2/π → t(k, k′) =
t

L
δ(k − k′) (3.9)

with δ(0) = L. (The precise form of tkk′ that we use here is discussed in section 3.3 and more
thoroughly in chapter 4.) This means that t(E,E) is actually just equal to t, a constant.
Using this form for t(E,E ′) gives

〈J(τ)J〉 =
4NcLv (act)

2

(2π)2

∫
g2(E)

(1 + eβE) (1 + e−βE)
dE. (3.10)
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The corresponding expressions for 〈JE(τ)JE〉 and 〈JE(τ)J〉 are quite similar, but with extra
factors of E in the integrand. The most noteworthy aspect of this expression from a calcu-
lational perspective is that it does not depend on the imaginary time τ at all. Then when
we calculate the Fourier transform in the equation for L(il), equation (2.4), the integral over
τ is just ∫ β

0

eiωnτdτ = β δn0, (3.11)

proportional to a Kronecker delta in the Matsubara frequency. The analytic continuation
of this function is not well-defined, so it is not immediately obvious how to convert the
Matsubara correlation function to a retarded one. This problem, however, arises only when
the interaction strength is precisely 0, since otherwise the τ dependence would not have
vanished. Thus this should be regularized by some small amount of interaction (or by disorder
or some other mechanism) in any realistic system. We thus convert to the dimensionless
variable τ ′ = τπ/β and let

A = Re

(
lim
n→0

lim
δ′→0

−i
n

[∫ π

0

e2inτ ′dτ ′
]
in→n+iδ′

)
. (3.12)

This constant corresponds to Fα(0) in equation (3) of reference [29]. Rewriting the expression
for L(il) from equation (2.4) in terms of τ ′ and then substituting both the current-current
correlator from equation (3.10) (and the corresponding results for 〈JE(τ)JE〉 and 〈JE(τ)J〉)
and the definition of A, we get equation (2.8), our final result for L(il) in the generalized
noninteracting model.

3.2 Details of Luttinger liquid model

The calculations for the Luttinger liquid model are substantially more complex. Here we
highlight some interesting features particularly of the calculation of the thermal current
operator and the correlation function 〈JE(τ)JE〉. We also present expressions for 〈JE(τ)JE〉
and 〈JE(τ)J〉 in terms of the hypergeometric function F1, and we discuss the method we
use for numerical analytic continuation to get the transport coefficients from the correlation
functions.

Thermal current operator

We calculate the current operators in the full Luttinger liquid model using the same approach
as in the generalized noninteracting model. The additional complication in the calculation
comes from the more complete Hamiltonian (equation 2.25) and in particular from the on-
chain part. As with the calculation of the thermal current operator in the previous model as
discussed in section 3.1, the commutator [Hj, H] from equation (2.5b) has only two pieces



CHAPTER 3. TRANSPORT IN COUPLED LUTT. LIQUIDS: CALCULATIONS 28

that are neither 0 nor negligible in the atomic limit,

[Hj, H]→
∑
i

[hj, h
′
i] + [h′j, hi] =

∑
i

[h′j, hi]− [h′i, hj]. (3.13)

Terms in the commutator [h′i, hj] look like [ψ†i+1,α(x)ψiβ(x′), (∇θj(x̃))2]. To compute these
kinds of terms, we need the canonical commutation relations between the bosonic field op-
erators φ and θ, which are given by[31]:

[φi(x), ∂x′θj(x
′)] = iπδijδ(x

′ − x) (3.14a)

[φi(x), θj(x
′)] = i

π

2
δijsign(x′ − x) (3.14b)

[φi(x), φj(x
′)] = [θi(x), θj(x

′)] = 0 (3.14c)

We then write out the Fermionic operators ψ and ψ† in terms of φ and θ using equations
(2.24) and use the bosonic commutators from equations (3.14) to show

[ψiα(x),∇θj(x′)] = απδijδ(x− x′)ψi(x) (3.15a)

[ψ†iα(x),∇θj(x′)] = −απδijδ(x− x′)ψ†i (x) (3.15b)

[ψiα(x),∇φj(x′)] = −πδijδ(x− x′)ψi(x) (3.15c)

[ψ†iα(x),∇φj(x′)] = πδijδ(x− x′)ψ†i (x) (3.15d)

Combining these commutators with the rule [AB,C] = A[B,C] + [A,C]B, we additionally
find that

[ψ†iα(x̃)ψi+1,β(x), (∇θj(x′))2] =

[
2π∇θj(x′) (βδ(x− x′)δi+1,j − αδ(x− x̃)δij)

+π2 (βδ(x− x′)δi+1,j − αδ(x− x̃)δij)
2

]
ψ†iα(x̃)ψi+1,β(x)

(3.16a)

[ψ†iα(x̃)ψi+1,β(x), (∇φj(x′))2] =

[ −2π∇φj(x′) (δ(x− x′)δi+1,j − δ(x− x̃)δij)

+π2 (δ(x− x′)δi+1,j − δ(x− x̃)δij)
2

]
ψ†iα(x̃)ψi+1,β(x)

(3.16b)

and hence

[ψ†iα(x̃)ψi+1,β(x), hj ] = v

[
δi+1,j

(
βK∇θj(x)− αK−1∇φj(x)

)
− δij

(
K∇θj(x̃)−K−1∇φj(x̃)

)
+π

2

(
K +K−1

)
δ(0) (δi+1,j + δij)

]
× ψ†iα(x̃)ψi+1,β(x) (3.17)

There are four terms of this type in [h′i, hj], and another four in [h′j, hi]. Adding them all and
summing over i, then using the trick of shifting the chain index j in half the terms before
taking the limit k → 0 as in equation (3.2), gives the thermal current operator, equation
(2.26b).
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Thermal current-current correlator

The thermal expectation value 〈JE(τ)JE〉 looks like P
∫
dxdx′

∑
j〈· · · 〉 where P is some

(dimensionful) prefactor, four integrals over real-space coordinates have been reduced to two
by assuming t(x − x′) ∝ δ(x − x′) (see section 3.3), and the expectation value is a sum of
terms of the form

〈[∇i]xψ
†
j(x)ψj(x)[∇i′ ]x′ψ

†
j′(x

′)ψj′(x
′)〉 (3.18)

where the [∇] operators are defined in equation (2.27). The indices satisfy j′ = j ± 1, with
i and i′ related to j and j′ in one of four possible ways; these four cases are: (1) i = i′ = j,
(2) i = i′ = j′, (3) i = j and i′ = j′, and (4) i = j′ and i′ = j. As in the generalized
noninteracting model, the fact that we work only to lowest order in the interchain hopping
allows us to drop the hopping terms from the Hamiltonian appearing in the density matrix
used in the calculation of the expectation values, e−βH → e−βH0 , and likewise for the time
evolution, so that the expectation values for each term of the type in equation (3.18) splits
up into a product of expectation values on two individual chains. Cases (1) through (4) lead
to eight different types of two-point functions on the individual chains, as follows:

(1)→ 〈[∇]ψ†[∇]ψ〉〈ψψ†〉 (3.19a)

(2)→ 〈ψ†ψ〉〈[∇]ψ[∇]ψ†〉 (3.19b)

(3)→ 〈[∇]ψ†ψ〉〈ψ[∇]ψ†〉 (3.19c)

(4)→ 〈ψ†[∇]ψ〉〈[∇]ψψ†〉 (3.19d)

Both 〈ψα(x, τ)ψ)†α(0, 0)〉 and 〈ψ†α(x, τ)ψα(0, 0)〉 can be written simply in terms of the single-
chain Green’s function, being −Gα(x, τ) and Gα(−x,−τ) respectively; these are the only two
that appear in the calculation of 〈J(τ)J〉 and therefore in the calculation of the electrical
conductivity.

The other six types of two-point functions we compute by writing them in terms of
derivatives of the Green’s function. The first step is to separate the [∇] operator into two
pieces, proportional to αφ− θ and −αφ− θ,

[∇j]
α
y = −α∇y [γ(αφj − θj) + γ̃(−αφj − θj)] (3.20)

where γ = (K + K−1)/2 as usual and γ̃ = (K − K−1)/2. This operator only appears in
expectation values with ψα and ψ†α, which according to equations (2.24) contain αφ− θ but
not −αφ − θ. Then when [∇] is split up inside an expectation value and the expectation
values of the two terms are calculated separately, all of the −αφ − θ terms vanish. (See
further discussion of this point in chapter 4.)

A factor of α∇φ−∇θ is pulled down by every derivative of ψα or ψ†α, so that for instance

〈[∇]αx,τψα(x, τ)ψ†α(x′)〉 = αγ〈ieiαkF x∇x(e
−iαkF xψα(x, τ))ψ†α(x′)〉

= −iαγeiαkF x,τ∇x

(
e−iαkF xGα(x− x′, τ)

)
. (3.21)
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The remaining five two-point functions are calculated in a similar manner. For cases (1)
through (4) we find

〈[∇]ψ†[∇]ψ〉〈ψψ†〉 = γ2
[
(αkF )2Gα(x− x′, τ) + 2iαkF∂xGα(x− x′, τ)− ∂2

xGα(x− x′, τ)
]

× G̃α(x− x′, τ) (3.22a)

〈ψ†ψ〉〈[∇]ψ[∇]ψ†〉 = γ2
[
(αkF )2G̃α(x− x′, τ)− 2iαkF∂xG̃α(x− x′, τ)− ∂2

xG̃α(x− x′, τ)
]

×Gα(x− x′, τ) (3.22b)

〈[∇]ψ†ψ〉〈ψ[∇]ψ†〉 = γ2
[
(kF − iα∂x)G̃α(x− x′, τ)

]
× [(kF + iα∂x)Gα(x− x′, τ)] (3.22c)

〈ψ†[∇]ψ〉〈[∇]ψψ†〉 = γ2
[
(kF − iα∂x)G̃α(x− x′, τ)

]
× [(kF + iα∂x)Gα(x− x′, τ)] (3.22d)

for G̃(x, τ) = −G(−x,−τ). We have omitted indices and coordinates on the left-hand side
for clarity. The last two terms are clearly the same, but the first two appear to be different.
In fact, all of these expressions are inside an integral over x and x′, so we apply integration
by parts to move derivatives in the first two terms; the result is that all four terms are equal.
These expressions, for instance in equation (3.22c), are now quite reminiscent of equation
(2.28b) for 〈JE(τ)JE〉 in the main paper.

To finish the calculation, we change variables in the integration from x and x′ to x− x′
and (x + x′)/2. The integrand does not depend on the center of mass coordinate and thus
the integral over (x + x′)/2 just provides a factor of the length of the 1D chain. The result
is equation (2.28b).

Correlator results in terms of F1

By substituting the Luttinger liquid Green’s function, equation (2.29), into the current-
current correlators, equations (2.28), and integrating over the position x from −∞ to ∞,
we find expressions for the correlators that are functions only of the imaginary time τ . In
practice we write the results in terms of the dimensionless parameter τ ′ = τπ/β because
that makes it easy to separate the dimensionful parts of the transport coefficients as given
in equations (2.32) from the purely numerical parts that we need only for finding the Lorenz
number.

The expression for 〈J(τ ′)J〉 is given in equation (4.162) in the main paper. The corre-
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sponding expressions for the remaining two correlators are

〈JE(τ ′)JE〉 = NcLγ
2

(
acvt

2π

)2
1

2a3π2

(
2πa

vβ

)2γ+1

(3.23a)

×



−4(2 + γ2 − 2 cos(4τ ′))f(γ, τ ′, 3, 3)

+ cos(2τ ′)(2 + γ2 − 2 cos(4τ ′))(f(γ, τ ′, 2, 3) + f(γ, τ ′, 4, 3))

+2(1 + γ2 − cos(4τ ′))(f(γ, τ ′, 1, 3) + f(γ, τ ′, 5, 3))

−γ2 cos(2τ ′)(f(γ, τ ′, 0, 3) + f(γ, τ ′, 6, 3))


〈JE(τ ′)JE〉 = 2vγNcL

(
act

2π

)2
1

a2π2

(
2πa

vβ

)2γ

sin(2τ ′) (3.23b)

×


−2(1 + γ

2
)f(γ, τ ′, 2, 2)

+ cos(2τ ′)(f(γ, τ ′, 1, 2) + f(γ, τ ′, 3, 2))

+γ
2
(f(γ, τ ′, 0, 2) + f(γ, τ ′, 4, 2))


The function f(γ, τ, n,m) can be written in terms of the Appell hypergeometric function F1

as in equation (2.31) in the main paper, and it also has a nice integral representation,

f(γ, τ, n,m) =

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m) dt, (3.24)

which is derived in chapter 4 from a representation of this type for F1.

Numerical Fourier transform and analytic continuation

Computing the L(il) coefficients involves evaluating the expression

lim
ω→0

lim
δ→0

1

ω

[∫ β

0

eiωnτ 〈jl(τ)ji〉 dτ
]
iωn→ω+iδ

. (3.25)

The first step is to write anything that cannot be computed analytically in terms of dimen-
sionless quantities, which we do by the transformation τ → τ ′. This results in

lim
n→0

lim
δ′→0

β2

2π2n

[∫ π

0

e2inτ ′〈jl(τ ′)ji〉 dτ ′
]
in→n+iδ′

. (3.26)

In principle we would now find a unique analytic function f(n) such that
∫
e2inτ ′〈j(τ ′)j〉dτ ′ =

f(n) for every n = 0, 1, 2, · · · , but there is no general formula for the Fourier transforms and
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the integrals must therefore be computed individually for each value of n. This provides a
limited set of points (n, f(n)) to use in fitting an analytic function.

Two standard approaches to this function-fitting problem are the maximum entropy
method[52, 36] and the Padé approximation[118, 85]. The maximum entropy method is
more robust to numerical errors, but it does depend quite strongly on an initial assumption
of the form of the function. In our case, we do not a priori have any strong assumptions
about what the function f(n) should look like, and our data comes from numerical integrals
for which we can bound the error by requiring a fixed level of precision, with no statistical
errors like those that appear in quantum Monte Carlo calculations. We therefore use the Padé
approximation and fit a rational function to the calculated Fourier transforms at Matsubara
frequencies.

If we evaluate the Fourier transform at 2N points, we can find an exact fit for a rational
function with 2N parameters, namely

f(x) =

∑N
n=1 anx

n∑N+1
n=0 bnx

n
. (3.27)

This has only 2N parameters because f(0) is just the integral of the current-current corre-
lation function so that b0 6= 0, and therefore we can assume without loss of generality that
b0 = 1. Our method for finding f from the 2N points is discussed further in chapter 4 and
is very similar to the method described in reference [85].

A major benefit of writing f(x) as a rational function is that the analytic continuation
can be accomplished simply by the replacement n → δ′ − in. We make this substitution,
divide by n (from equation 3.26), and take the imaginary part to get only the real part of
L(il); letting both n and δ′ go to 0, we find in the case that the correlation function 〈jl(τ ′)ji〉
is even about τ ′ = π/2 the very simple expression

lim
n→0

lim
δ′→0

(
Im

[
f(δ′ − in)

n

])
= a0b1 − a1 (3.28)

which is just minus the derivative of f(x) evaluated at x = 0. (Note that under some
assumptions about f , this follows from the Cauchy-Riemann equations.) If the correlation
function is odd about τ ′ = π/2, then we get 0.

It turns out that the function f(γ, τ, n,m) is even about τ ′ = π/2, which implies that
both 〈J(τ)J〉 (equation 4.162) and 〈JE(τ)JE〉 (equation 3.23a) are even, while 〈JE(τ)J〉
(equation 3.23b) is odd. This is the mathematical explanation for why the thermopower
vanishes in our calculation for the Luttinger liquid model, although of course this result was
expected due to particle-hole symmetry.

There are two complications that must be addressed. First, the form of the function
f(x) and hence the calculated value for the numerical part of L(il) depends on the number
of points used to fit the function. With a small number of points, the function is highly
underdetermined and thus the derivative at the origin is inaccurate. Conversely, finding the
parameters in f involves inverting a matrix that quickly becomes ill-conditioned as N grows,
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which for a given precision of the numerical integrals sets an upper bound on how many
data points we can use. In practice, we compute the transport coefficients for every value of
N from 1 through Nmax, confirm that the resulting numerical series converges, and use the
limit of the sequence for the value of the transport coefficient. We use Nmax = 40 because
that value empirically gives good convergence for all transport coefficients that we calculate.

The second complication is that the functions f(γ, τ, n,m) are divergent at τ = 0 and
π. We regulate the divergence by introducing a cutoff ε at both bounds of the integral in
equation (3.26), integrating from ε to π − ε instead of 0 to π. We compute the transport
coefficients for values of ε that vary over an order of magnitude (from 0.1 to 0.01) and confirm
that the results for the transport coefficients converge as ε→ 0. The numerical error grows
as ε→ 0, so all the numerical results for the Luttinger liquid model shown in figures 2.1 and
2.3 are for ε = 10−1.5, for which the results are converged and the error is guaranteed to be
small. See chapter 4 for details.

3.3 Correspondence between the two models

In the main text of the paper we have compared the results of our two models, implicitly
assuming that the results they give should match at least in the noninteracting limit. In
this section we confirm that the two models match in that limit, first by showing that
the hopping terms in the two models are equivalent and second by explicitly rewriting the
Fourier-space expression for 〈J(τ)J〉 from the generalized noninteracting model in a real-
space representation and showing that the result matches the noninteracting limit of equation
(2.28a) from the Luttinger liquid model.

Correspondence of hopping terms

The correspondence between the Fourier-space operators ck that appear in the Hamiltonian
in equation (2.1) and the real-space operators ψα(x) that appear in the Hamiltonian in
equation (2.25) is given by a Fourier transform,

ckα =
1√
L

∫
e−ikxe−iαkF xψα(x)dx (3.29a)

ψα(x) =
eiαkF x√

L

∑
k

eikxckα (3.29b)

where the chiral Fourier-space operator c†kα creates a fermion that has wave-vector k relative
to the Fermi point αkF . We can then find the correspondence between the hopping strength
tkk′ from equation (2.1) and tαβ(x−x′) from equation (2.25) by substituting equation (3.29b)
into the hopping term of the Luttinger liquid Hamiltonian and matching the result to the cor-
responding term in the noninteracting Hamiltonian. To simplify the calculation, we rewrite
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the hopping part of the Luttinger liquid with only two terms, as∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′) + h.c.

]
. (3.30)

In fact, it is sufficient to match just the first term of this to the first term in the hopping
part of the noninteracting Hamiltonian, since their Hermitian conjugates will automatically
match as well.

Making the substitution with equation (3.29b), we have:∑
αβ

∫
dx dx′ tαβ(x− x′)ψ†jα(x)ψj+1,β(x′)

=
∑
αβ

∫
dx dx′

[
tαβ(x− x′)

[
e−iαkF x√

L

∑
k

e−ikxc†jkα

][
eiβkF x

′

√
L

∑
k

eikx
′
cj+1,kβ

]]
(3.31a)

=
1

L

∑
kk′

∑
αβ

∫
dx dx′

[
tαβ(x− x′)e−ikF (αx−βx′)

[
e−ikxeik

′x′
]
c†jkαcj+1,k′β

]
(3.31b)

We can compare this with the equivalent term for the generalized noninteracting model,
which looks like ∑

kk′

tkk′c
†
j,kcj+1,k′ =

∑
kk′

∑
αβ

tkk′δαβc
†
jkαcj+1,k′β. (3.32)

For the two to be equal, we must have tαβ(x− x′) = δαβt(x− x′) and

tkk′ =
1

L

∫
dx dx′

[
t(x− x′)e−iαkF (x−x′)e−ikxeik

′x′
]
. (3.33)

The inverse relation is

t(x− x′)e−iαkF (x−x′) =
L

(2π)2

∫
dk dk′ tkk′e

ikxe−ik
′x′ . (3.34)

From these relations, we can verify the consistency of the hopping strengths that we used in
our calculations, namely t(k, k′) = (t/L)δ(k−k′) from equation (3.9) and t(x−x′) ∝ δ(x−x′).
Starting from t(k, k′) and using equation (3.34), we find

t(x− x′) =
t

2π
δ(x− x′). (3.35)

Note that the factor of L−1 in t(k, k′) is necessary to cancel the factor of L in equation (3.34),
so that the hopping strength t(x− x′) between localized sites does not depend on the chain
length; such a dependence would be unphysical.

The factor of L−1 in front of the delta function in t(k, k′) appears because the width
of the Gaussian describing tkk′ is proportional to L−1. We assume the specific form of the
hopping tkk′ given in equation (3.9) specifically to achieve the cancellation of factors of the
length of the system in t(x, x′). This ensures that both t(x−x′) and tkk′ are physically valid,
while also being compatible with each other according to equations (3.33) and (3.34).
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Real space representation of current-current correlator in
generalized noninteracting model

In the noninteracting limit, γ → 1, the results of our two models should precisely agree. We
confirm that explicitly by writing 〈J(τ)J〉 as calculated in the generalized noninteracting
model in a real-space representation. We begin from equation (3.8d), first converting back
into an integral over k to get

〈J(τ)J〉 = 2Nca
2
c

(
L

2π

)2∑
α

∫
kk′
|t(k, k′)|2

[
eτ(Eα(k)−Eα(k′))

(1 + eβEα(k)) (1 + e−βEα(k′))

]
dk dk′ (3.36)

where on each branch (α = R,L), k is measured from the Fermi point αkF . Putting in the
linear dispersion Eα(k) = αvk and substituting equation (3.33) for t(k, k′), this becomes

〈J(τ)J〉 =
2Nca

2
c

(2π)2

∑
α

∫
dx1 dx2

dx3 dx4

[
t(x1 − x2)e−iαkF (x1−x2)

] [
t(x3 − x4)∗eiαkF (x3−x4)

]
×
[∫

dk
eατ

′βvk/πe−ik(x1−x3)

1 + eαβvk

] [∫
dk′

e−ατ
′βvk′/πeik

′(x2−x4)

1 + e−αβvk′

]
(3.37)

Substituting t(x− x′) = (t/2π)δ(x− x′) and computing the integrals over k and k′ gives

〈J(τ)J〉 =
2Nca

2
ct

2

(2π)4

∑
α

∫
dx dx

[
− iπ
vβ

csch

(
π

vβ
(x′ − x− iτ)

)][
iπ

vβ
csch

(
π

vβ
(x− x′ + iτ)

)]
(3.38)

= −4NcLa
2
ct

2

(2π)4

(
π

vβ

)2 ∫
dx

[
csch

(
π

vβ
(x+ iτ)

)]2

(3.39)

This result can be compared with the noninteracting (γ = 1) limit of 〈J(τ)J〉 in the Luttinger
liquid model, as given by equation (2.28a). The noninteracting Green’s function is found by
substituting γ = 1 into equation (2.29) to get

lim
γ→1

Gα(x, τ) = −e
iαkF x

2π

 iα

vβ
π

sinh
(
x+iαvτ
vβ/π

)
 , (3.40)

and substituting this into equation (2.28a) gives

〈J(τ)J〉 = −2NcLa
2
ct

2

(2π)4

(
π

vβ

)2∑
α

∫
dx

[
csch

(
π

vβ
(x+ iατ)

)]2

(3.41)

The integral does not actually depend on α since all terms containing α are odd in x and
integrate to 0. We can therefore let α → 1 in the integrand, in which case the sum over α
becomes just a factor of 2 and the result precisely matches the real-space representation of
the correlator from the generalized noninteracting model, equation (3.39).
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Chapter 4

Calculation details for the study of
weakly coupled Luttinger liquids

In this chapter, I present the details of techniques used in the study of coupled Luttinger
liquids described in chapter 2, such as linear response theory and numerical analytic con-
tinuation, and I present many further details of the calculations for the results presented in
that chapter, beyond what was shown in chapter 3.

4.1 Kubo formalism for conductivity and

thermopower

I begin by explaining the method that we use to calculate the electrical conductivity, thermal
conductivity, and thermopower. This section includes basic information on linear response
and the Kubo formulas, but also includes details on how we perform, for instance, numerical
analytic continuation.

The linear response coefficients

To find physical response functions, such as the electrical conductivity, we first find the L(ij)

coefficients defined by the equations [70, eqs. 3.487, 3.488]

J = − 1

T
L(11)∇(µ+ eV ) + L(12)∇

(
1

T

)
(4.1)

JQ = − 1

T
L(21)∇(µ+ eV ) + L(22)∇

(
1

T

)
(4.2)

where J is the particle current, or electrical current divided by the charge per particle, and
JQ is the heat current. In the case that µ = 0, the heat current coincides with the energy
current JE. Note that L(12) = L(21). As indicated above, these equations come from the third
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edition of Gerald Mahan’s book Many-Particle Physics, reference [70]. Similar but slightly
different definitions can be found in other texts, such as the second edition of Mahan’s
book[69] or the text by Ashcroft and Mermin [7]. For consistency, I use the conventions of
Mahan’s third edition throughout this chapter.

In terms of these L(ij) coefficients, the physical response functions are given by [70, eqs.
3.505, 3.504, 3.507 respectively]

σ =
e2

T
L(11) (2.2a)

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
(2.2b)

S =
1

eT

L(12)

L(11)
(2.2c)

Kubo formulas

To actually find the L(ij) coefficients in terms of the current operators, we can use the Kubo
formulas. In particular, we have

L(il) = lim
ω→0

lim
δ→0

1

ω

[−i
Ωβ

∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉
]
iωn→ω+iδ

(2.4)

where j1 is the particle current operator J and j2 is the heat current operator JQ (or with
µ = 0, the energy current operator JE). This equation is a corrected version of (3.518) from
reference [70]. (For further details on the correction, see the next subsection, 4.1.) Note that
Ω is the total volume of the system, δ is an infinitesimal positive constant, and the imaginary
time evolution of the current operator is given by substituting τ = it into the usual time
evolution to get

J(τ) = eτHJe−τH . (4.4)

We will ultimately take only the real part of each L(ij) transport coefficient as we are inter-
ested in transport and not in dissipation. So in practice we will use

Re
[
L(il)

]
= lim

ω→0
lim
δ→0

1

ω
Im

[
1

Ωβ

∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉
]
iωn→ω+iδ

(4.5)

in place of equation (2.4).

Kubo formula corrections

Mahan gives the formula for the L(il) coefficients as [70, eq. 3.518]

L(il) = lim
ω→0

[
1

ωβ

∫ β

0

dτeiωτ 〈Tτjl(τ)ji(0)〉
]
iω→ω+iδ

(4.6)
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where the meaning of the symbols is the same as above. (Note that this is not actually
equation 3.518 reproduced verbatim; rather, we have combined that equation with some
written instructions pertaining to analytic continuation and limits that are found in the
following paragraph.) From this we can extract an expression for the electrical conductivity
using equation (2.2a) above, which gives the conductivity in terms of the coefficient L(11).
The result is

σ = e2 lim
ω→0

[
1

ω

∫ β

0

dτeiωτ 〈Tτjl(τ)ji(0)〉
]
iω→ω+iδ

(4.7)

For comparison, Mahan also gives a similar formula specifically for the electrical conductivity.
This expression is [70, eq. 3.388-3.391]

Re(σ) = e2 lim
ω→0

1

ω
Im

[
1

Ω

∫ β

0

dτeiωτ 〈Tτjl(τ)ji(0)〉
]
iω→ω+iδ

(4.8)

There are some important discrepancies between these two expressions, as follows:

1. Equation (4.7) has the factor of 1
ω

inside the analytic continuation iω → ω+iδ, whereas
(4.8) has the ω−1 outside.

2. Equation (4.8) has a factor of Ω−1 whereas (4.7) does not

3. Equation (4.8) is only the real part of σ, and the imaginary part is taken on the
right-hand side.

Based on the detailed derivation and discussion of equations 3.388-3.391, we should con-
clude that these results (and therefore equation 4.8) are the correct ones in each instance.
We will briefly explain why:

1. The results for σ given in equations 3.388 - 3.391 are first derived in a real-time for-
malism with no analytic continuation required. Mahan demonstrates ([70, sec. 3.3])
that switching to the imaginary time formalism only modifies the current-current cor-
relation function and its Fourier transform. Hence the analytic continuation should be
performed only on this part of the expression.

2. The factor of Ω−1 is required for the conductivity to be an intensive as opposed to an
extensive property, ie to get conductivity rather than conductance.

3. In the derivation of Mahan’s equation 3.388, a factor of i appears, so that we must
take the imaginary part of what is multiplied by i to get the real part of the entire
expression. Thus this factor of i must be restored to equation (4.6).

With the appropriate resolution of each of these 3 issues, we would have:

L(il) = lim
ω→0

1

ω

[−i
Ωβ

∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉
]
iωn→ω+iδ

(4.9)
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Finally, we need to add in the limit as δ → 0. The correct order for the limits in δ and ω
is discussed in section 4.1. We can then write down the correct expression for L(il) as given
above:

L(il) = lim
ω→0

lim
δ→0

1

ω

[−i
Ωβ

∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉
]
iωn→ω+iδ

(2.4)

Understanding the Kubo formula

Let’s now take a moment to review the precise calculational steps implied by the Kubo
formula given above, (2.4). The procedure is actually pretty involved; here are the steps we
follow:

1) Compute the current-current correlation function in terms of the imaginary time τ . Our
computations for the noninteracting model with the substituted density of states and for
the full Luttinger liquid model are detailed in sections 4.2 and 4.3 respectively.

2) Compute the integral ∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉 (4.10)

at each Matsubara frequency ωn = 2πn/β for n = 0, 1, 2, 3, · · · . Note that we use bosonic
Matsubara frequencies because the current operators each contain an even number of
fermion operators (two, to be precise).

3) Fit an analytic function to these points. This gives an analytic function defined on the
positive imaginary line in frequency space.

4) Analytically continue this function to cover the whole of the complex plane. Evaluate
the analytically continued function along a line offset from the positive real axis by a
small amount iδ. (This analytic continuation is the operation denoted by the shorthand
iωn → ω + iδ.)

5) Take the real part of (−i times this expression), or in other words just the imaginary part
of the expression.

6) Finally, multiply by the prefactor (including 1/ω) and let ω and δ go to 0. The order of the
two limits is important, both in terms of the calculation and the physical interpretation.
For further details, see the next subsection, 4.1.

Procedure for analytic continuation and limits

The actual implementations of the calculational steps discussed above are quite different for
the two models we consider. The steps will prove relatively simple in the noninteracting
model, although one part of the expression cannot be computed and is left as an unknown
unitless number; the calculation in the full Luttinger model is somewhat more involved and
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requires some rather careful analysis and computation. This section will primarily discuss
general methods which we will apply specifically in the case of our Luttinger model. We will
also briefly discuss the physical significance of the two limits and the order in which they
ought to be taken, and this discussion applies to both models.

Numerical integration simplifications

We will begin our discussion of general methods starting from step 2. Ideally, we would
like to compute the integral analytically, but if that is not possible then we must instead do
the computation numerically for each Matsubara frequency. In that case, we will start with
three assumptions:

(1) The integral (4.10) converges for all Matsubara frequencies ω.

(2) The correlation function 〈Tτjl(τ)ji(0)〉 is either even or odd about τ = β/2.

(3) The correlation function is real-valued at all imaginary times, τ .

The second and third assumptions will be satisfied in both our models. The first assumption
is actually violated in our Luttinger model, but we regulate the divergence as discussed in
section 4.3. (Briefly: we introduce a small cutoff and complete the numerical calculation for
progressively smaller values of that cutoff, and we find that the results converge as the cutoff
goes to 0. See section 4.1 for more details.) For now, we will take all three assumptions to
be satisfied.

We begin by simplifying the required numerical integral. One problem with the expression∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉 (4.10)

is that the integration variable and the limits of integration are unitful. To correct this, we
change variables from τ to τ ′ = τ π

β
, giving

β

π

∫ π

0

dτ ′e2inτ ′〈Tτ ′jl(τ ′)ji(0)〉 (4.11)

for n = 0, 1, 2, · · · . The integral now depends only on unitless numerical parameters, so it
can be computed numerically.

This integral can be simplified further using our second assumption, about the parity of
the correlation function. We treat the two cases of even and odd parity separately.

In the first case of interest, the correlation function is even around τ = β/2 or equivalently
around τ ′ = π/2. But if we write e2inτ ′ as cos(2nτ ′)+ i sin(2nτ ′), we see that the sine term is
odd around τ ′ = π/2 so that the integral of sin(2nτ ′) times the correlation function vanishes.
We are thus left with the simpler expression

β

π

∫ π

0

dτ ′ cos(2nτ ′)〈Tτ ′jl(τ ′)ji(0)〉 (4.12)
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Furthermore, since τ ′ is always greater than or equal to 0 in the integral, we can also drop
the time ordering operator to get

β

π

∫ π

0

dτ ′ cos(2nτ ′)〈jl(τ ′)ji(0)〉 (4.13)

In the second case, when the correlation function is odd around τ = β/2, we drop the
cosine from the expansion of e2inτ ′ , getting

i
β

π

∫ π

0

dτ ′ sin(2nτ ′)〈jl(τ ′)ji(0)〉 (4.14)

Fitting an analytic function

For the rest of this section, we will ignore the prefactor of β/π in equations (4.13) and (4.14),
as we would like to work with purely numerical values. The prefactor will of course be used
in our later calculations.

Consider the case that the correlation function is even about τ = β/2. Then suppose
that the integral ∫ π

0

dτ ′ cos(2nτ ′)〈jl(τ ′)ji(0)〉 (4.15)

has been evaluated at all Matsubara frequencies, n = 0, 1, 2, · · · . Let f(n) denote the value
of (4.15) at n. Thus we have∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉 =
β

π
f(n) (4.16)

Likewise in the case of an odd correlation function, we similarly define

f(n) =

∫ π

0

dτ ′ sin(2nτ ′)〈jl(τ ′)ji(0)〉, (4.17)

so that ∫ β

0

dτeiωnτ 〈Tτjl(τ)ji(0)〉 = i
β

π
f(n) (4.18)

The remainder of our discussion in this section will be in terms of the function f(n) and
thus applies to both cases.

Our goal is to find an analytic function that passes through all points (n, f(n)). Some
commonly used methods are the Padé approximation[118, 85] and the maximum entropy
method [52, 36]. In this case we can evaluate the values f(n) to arbitrary precision if needed
and we have no statistical errors like those that arise in Quantum Monte Carlo calculations,
so the simpler Padé approximation will be sufficient.

In the Padé approximation, we fit our data points to a limit of rational functions of the
form:

f(x) =

∑∞
n=1 anx

n∑∞
n=0 bnx

n
(4.19)
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where we can also assume without loss of generality that b0 = 1 since otherwise we could
divide all coefficients by b0. (It is not 0 since that would imply that f(0) diverges, contra-
dicting our first assumption above that said the integral converges for all n.) The value of a0

can also be found easily—substituting x = 0 into the expression for f , we see that a0 = f(0).
Note that f(0) is just the integral of the correlation function in the even case (equation 4.15)
and is 0 in the odd case (equation 4.17).

The existence of a unique analytic continuation is not guaranteed unless the value of the
function is known on an uncountable set of points. Here we know the function on only a
countable set (nonnegative integers) and thus the function f(x) may not be well-defined even
in principle. This means that we have to carefully choose the specific procedure we want to
follow to fit the function.

In practice, the ill-defined nature of numerical analytic continuation is only exacerbated
by the fact that each integral of the type (4.15) or (4.17) must in general be evaluated
individually (for each value of n), so that we can only use finitely many data points for
fitting the function.

The saving grace is that we are particularly interested in DC transport, which means
that we only need to know the behavior of f near to x = 0. (In fact, it turns out that we
only need to know a0, a1, and b1, as shown in the section 4.1.) We can thus choose to use
only small values of n in fitting f .

There is also the question of precisely how to use our data points (n, f(n)) to find an
approximation to f(x). We have chosen to follow the simplest possible procedure, namely
to use 2N data points to precisely fit a truncated version of f(x) which has only 2N total
nonzero coefficients in the sums appearing in the numerator and denominator. (We write
the number of points as 2N because it will be convenient for the number to be even.) To
choose which specific parameters to keep as nonzero, note that since they appear in a power
series, for small x only the coefficients of lower order terms will be significant. Furthermore,
we expect in general that the asymptotic behavior of f should be proportional to 1/x as
x → ∞, since

∫
eixtdt ∝ x−1. We thus choose to truncate the series in the numerator and

denominator of f so that the denominator has one higher power of x. We therefore truncate
f to be

f(x) =

∑N
n=1 anx

n∑N+1
n=0 bnx

n
(4.20)

(Recall that b0 = 1, so there are indeed 2N unknown parameters.) For our 2N data points,
we just use n = 0, 1, 2, · · · , 2N − 1, again since we are interested in small x.

We still need a way of actually solving for the parameters we have chosen to keep. For
that, we rearrange the definition of f to find

a0 + a1x+ · · ·+ aNx
N = f(x)

(
1 + b1x+ · · ·+ bN+1x

N+1
)

(4.21)

or, moving all the terms with b parameters to the left-hand side,

a0 + a1x+ · · ·+ aNx
N − b1xf(x) + · · ·+ bN+1x

N+1f(x) = f(x) (4.22)
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Plugging all 2N data points into this equation, we get a matrix equation:


1 0 · · · 0 0 · · · 0
1 1 · · · 1 −f(1) · · · −f(1)
1 2 · · · 2N −2f(2) · · · −2N+1f(2)
...

...
1 2N · · · (2N)N −(2N)f(2N) · · · −(2N)N+1f(2N)





a0

a1
...
aN
b1
...

bN+1


=


f(0)
f(1)
f(2)

...
f(2N)


(4.23)

Solving this matrix equation gives the parameters for the function f(x).
This method is potentially problematic since the matrix on the left very quickly becomes

poorly conditioned as N increases. In practice we solve the equation using the built-in
“LinearSolve” command in the commercial software Wolfram Mathematica, which is sub-
stantially more numerically stable than simple matrix inversion, but numerical error is still
a problem for very large values of N . We compensate by increasing the precision with which
we evaluate the integrals (4.15) and (4.17).

In practice, we choose a fixed relative precision for the integral evaluation (typically
10 significant digits, which is quite computationally intensive given the rather complicated
functions involved) and then find approximations to f for each value of N = 1, 2, 3, · · · , Nmax,
where we have (based on empirical results) chosen Nmax = 40. For each value of N , we
compute the transport coefficients using our fit f(x), and we then check that the value
converges as N increases and use the limit of that sequence as our result.

We use Nmax = 40 because, for the precision with which we compute the integrals, the
matrix is still well enough conditioned that the linear system can be solved safely at that
size while at the same time the numerical results for the transport coefficients as a function
of N are converged. (Typically, we find that N ≈ 20 is sufficient, but we use Nmax = 40 to
be safe.) In figure 4.1, we show the calculated result for one transport coefficient (or more
precisely for the quantity a0b1− a1 as in equation (4.29) below, which is proportional in this
case to the thermal conductivity for one representative set of parameters). The successively
zoomed in images show the convergence as a function of N , and the variation at high values
of N gives a sense of the (quite high) precision of the converged value.

Our method for applying the Padé approximation is similar to the one discussed in
reference [85]. In that paper, the authors provide analysis on the stability of the Padé
approximation as calculated using the poorly conditioned matrix from the left-hand side of
equation (4.23). We refer interested readers to their analysis for further discussion.

Analytic continuation

The point of expressing the function f in terms of a rational function is that we can now
perform the analytic continuation very simply, just by making the substitution iω → ω+ iδ.
In equation (4.20) we have written f as a function of the unitless variable x; in the same way
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Figure 4.1: Numerical part of thermal conductivity for a particular (arbitrary) set of physical
parameters, evaluated using a Padé approximation with different numbers of data points, N .
(a), (b), and (c) show successively zoomed in views on particular ranges of N to show the
convergence. Our final result for the conductivity is the limit of this sequence as a function
of N .

that τ ′ is a dimensionless rescaling of the imaginary time, τ , x is a rescaling of the frequency,
x = ω β

π
. Thus the analytic continuation is given by the substitution ix → x + iδ′ where δ′

is a rescaled version of δ, δ′ = δ β
π
. The analytic continuation is given by

h(ix) = f(x)→ h(x+ iδ′) =

∑∞
n=1 an(−ix+ δ′)n∑∞
n=0 bn(−ix+ δ′)n

(4.24)

where we have introduced the notation h(ix) to emphasize that our original function is
defined on the imaginary line in frequency space.

Imaginary part and limits

To complete our analysis, we need to take the real part of −i
ω
× h(x + iδ′) if the correlation

function is even in τ or the real part of 1
ω
× h(x + iδ′) if the correlation function is odd;

equivalently we take the imaginary part of h(x+iδ′)
ω

= β
π
× h(x+iδ′)

x
if the correlation function

is even and the real part if it is odd. We then take the two limits x→ 0 and δ′ → 0. While
it is not in general correct to swap the order of these operations and to thus take the limits
first and the imaginary part second, it is nevertheless the case that we may first assume
that both x and δ′ are small to simplify the expression for h before we separate the real and
imaginary parts.

In particular, we may keep terms to only first order in both the numerator and denomi-
nator of h, which gives the simplified result

h(x+ iδ′)

x
≈ 1

x
× a0 + a1(−ix+ δ′)

1 + b1(−ix+ δ′)
(4.25)
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for small x and δ′. The numerator and the denominator can be combined in the second
factor, giving (to first order)

h(x+ iδ′)

x
≈ 1

x
× (a0 + a1(−ix+ δ′))(1− b1(−ix+ δ′)) ≈ a0 + (a1 − a0b1)(−ix+ δ′)

x
(4.26)

With this simplified expression, valid in the case that both x and δ′ are small, we can
easily find the real and imaginary parts. This is where we use our third assumption from
section 4.1, that the current-current correlation function is real-valued at all (imaginary)
times τ . This implies that integrals (4.15) and (4.17) are real for each n, so all coefficients
in the rational expression (4.24) are real as well. In particular, this means that in equation
(4.26) we can assume that a0, a1, b1, x, and δ′ are all real.

In that case, the separation into real and imaginary parts becomes quite clear:

Re

[
h(x+ iδ′)

x

]
≈ a0 + (a1 − a0b1)δ′

x
(4.27)

Im

[
h(x+ iδ′)

x

]
≈ −(a1 − a0b1) (4.28)

In the case that the correlation function is even in τ , we only care about the imaginary
part. In that case we see that both x and δ′ have already dropped out of the expression, so
the limits as x and δ′ go to 0 require no extra analysis. Interestingly, our result is actually
just minus the derivative of the function f(x) evaluated at x = 0. This is a consequence of
the Cauchy-Riemann equations for the type of function f(x) that we consider.

The case where the correlation function is odd is a little less obvious, so we can examine
the real part further. In equation (4.27), there are two terms. The first is actually 0.
Recalling that a0 is the value of the integral (4.17) with n = 0 and that the correlation
function in that integral is odd in τ , we see that a0 = 0. The second term is also simplified
by the fact that a0 = 0, and so we end up with just a1

δ′

x
or equivalently a1

δ
ω

. Both parameters
ω and δ are going to 0, but here we need to know the proper order of the limits.

δ is an infinitesimally small parameter which does not appear in the physical description
of the system for which we are computing the transport coefficients. This means that we
would ideally like it to drop out of all final expressions. Meanwhile, ω is the frequency at
which we want to evaluate the response functions. Since we are interested in DC transport,
for which ω is precisely 0 and therefore seemingly less than the the (infinitesimal but) positive
parameter δ, it appears that a1

δ
ω

is actually infinite. However, as discussed in Wen’s book
[126, §2.2.6], the Kubo formulas do not behave well at the precise DC limit. Rather, we
should get the DC result by finding the AC transport coefficients and then letting ω → 0,
so that actually δ � ω. Thus when the current-current correlator is odd, we conclude that
in fact the corresponding L(ij) coefficient is 0.

Summary of analytic continuation results

To summarize our results, we consider separately the two cases of the parity of the current-
current correlation function.
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1. Even case:

If 〈jl(τ ′)ji(0)〉 is even about τ ′ = π/2, then

lim
ω→0

lim
δ→0

1

ω
Re

[
−i
∫ β

0

eiωnτ 〈jl(τ ′)ji(0)〉
]
iωn→ω+iδ

=

(
β

π

)2

(a0b1 − a1) (4.29)

where a0, a1, and b1 are defined by∫ π

0

dτ ′ cos(2nτ ′)〈jl(τ ′)ji(0)〉 = f(n) =

∑∞
m=1 amn

m∑∞
m=0 bmn

m
(4.30)

for n = 0, 1, 2, · · · .

2. Odd case:

If 〈jl(τ ′)ji(0)〉 is odd about τ ′ = π/2, then

lim
ω→0

lim
δ→0

1

ω
Re

[
−i
∫ β

0

eiωnτ 〈jl(τ ′)ji(0)〉
]
iωn→ω+iδ

= lim
ω→0

lim
δ→0

(
β

π

)2

× a1
δ

ω
= 0 (4.31)

(where a1 is defined by∫ π

0

dτ ′ sin(2nτ ′)〈jl(τ ′)ji(0)〉 = f(n) =

∑∞
m=1 amn

m∑∞
m=0 bmn

m
(4.32)

for n = 0, 1, 2, · · · .)

From these results we can directly find the L(il) coefficients using equation (2.4), which
gives the transport coefficients σ, κ, and S.

Introduction of a cutoff

As noted above, the imaginary-time integrals of the current-current correlation functions
used in equations (4.30) and (4.32) actually diverge in our full Luttinger liquid model. The
current-current correlators diverge as τ ′ approaches both 0 and π, so we regulate the diver-
gence by introducing a cutoff ε and integrating from ε to π− ε instead of 0 to π. This allows
us to get a finite result for each integral evaluation f(n) and thus for each of the a and b
coefficients as well.

This cutoff procedure gives well-defined results for the transport coefficients in the limit
ε → 0. While each individual coefficient ai and bi depends strongly on the value of ε, the
dependence cancels out in the difference a0b1 − a1. For every numerical evaluation of a
transport coefficient, we compute the result for ε = 10−1, 10−1.5, and 10−2. In general we
find that the results are nearly converged even for ε = 0.1, while the results for the two
smaller values of ε are typically indistinguishable.
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Estimation of numerical error

Numerical errors in computing the Fourier transform integrals, as in equations (4.30) and
(4.32), limit the precision of our final results for the transport coefficients. This original
source of error may be amplified in two ways:

(1) In solving the linear system of equations (4.23), a poorly conditioned matrix on the
left-hand side may lead to a larger relative error in the coefficients ai and bi than there
was in the original numerical integrals.

(2) Our final results for the transport coefficients are found by subtracting a1 from a0b1.
The two terms are of comparable magnitude, so a small relative error in each can lead
to a very large relative error in the difference.

Given the relative small number of data points we use (Nmax = 80) and the numerically
stable methods employed by Wolfram Mathematica for solving linear equations, we expect
that the error remains small after step 1. The subtraction in (2), however, can introduce
significant numerical error.

The amount of error introduced in the subtraction can be roughly approximated as a
function of the cutoff ε discussed in the previous section, 4.1. For example, the correlator
of two electrical current operators, 〈je(τ ′)je〉, scales as (τ ′)1−2γ for small τ ′ (see the end of
section 4.3) where γ ≥ 1 is a measure of electron-electron interaction strength as defined in
equation (2.11). Thus the integral of the correlation function, which is the coefficient a0,
scales as a power of the cutoff, a0 ∼ ε2−2γ. If a1 and a0b1 are of a comparable size to a0,
which we empirically find to be the case, then the two terms subtracted to get a1 − a0b1,
which is proportional to the electrical conductivity as seen from equations (4.29), (2.4), and
(2.2a), are each also of size ∼ ε2−2γ.

We compute all numerical integrals with a guaranteed relative precision of 10−10, so the
absolute error in a0 and hence in a1−a0b1 is of the order 10−10ε2−2γ. The calculated value of
a1−a0b1 for different interaction strengths γ is shown in figure 4.4 below, and we can compare
these values with those of the absolute error to find the expected numerical precision of our
final results for the transport coefficient. The worst case is when ε is small and γ is large,
since the value of a1 − a0b1 decreases with increasing γ and the absolute error (proportional
to ε2−2γ) is large for small ε and large γ. The largest value of γ we consider is γ = 3, giving
for our smallest value of ε, 10−2, an absolute error of roughly 10−10 × (10−2)−4 ∼ 10−2.
Comparing this with the calculated a1 − a0b1 ≈ 0.065, we see that the relative error is still
not too large even in this worst case.

The situation is substantially worse for the thermal conductivity. The integral of
〈JE(τ ′)JE〉 gives a0 ∝ ε−2γ rather than ε2−2γ (see the end of section 4.3) so that the absolute
error in the worst case of γ = 3, ε = 10−2 is larger by a factor of ε−2 = 104 compared with
the corresponding error in the electrical conductivity; the absolute error is on the order of
102 in total. By comparison, the calculated value of a1 − a0b1 in this case is about 0.083
so that the relative error is apparently larger than the actual result! This suggests that to
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get a reasonable guarantee of numerical precision, we need to either compute the numerical
integrals to higher precision or to use a large value of ε. Fortunately, as discussed in the
previous section, a cutoff of ε = 10−1.5 is sufficient to get converged numerical results. This
reduces the error by a factor of (101/2)6 = 103, so that the error is now apparently of
comparable size with the final result.

The above discussion is very imprecise, meant just to give an order of magnitude ap-
proximation to the relative precision of our numerical results. In fact the prefactors that we
have not included in our estimates of the error improve the relative precision by an order
of magnitude or more compared with these estimates, so we conclude that using a cutoff of
ε = 10−1.5 gives numerically reliable results. We have therefore used this cutoff value for the
final results presented in chapter 2.

We have also developed a numerical method to more quantitatively measure the total
numerical error including the effects both of solving the linear system and of the subtraction
between two large quantities. We randomly vary the values of our numerical integrals by an
amount equal to the maximum possible error of those calculations and we estimate the error
using the width of the distribution of the corresponding results for the transport coefficients.
To be precise, for each value of the cutoff ε and each value of the interaction strength γ, we
perform the following steps:

1. Directly compute the conductivity. These results are shown as the central data points
in all figures.

2. Given that the numerical integrals (4.30) have a guaranteed relative precision of 10−10,
we multiply each computed value of f(n) by either 1 + 10−10 or 1− 10−10. This set of
modified numerical integrals is one “sample.”

3. For each sample, compute the conductivity (or more precisely, the numerical part given
by a1 − a0b1).

4. Repeat for some number of samples. We used 10,000 samples for each set of parameters.

5. In the distribution of conductivities corresponding to the many samples, find the small-
est interval containing 68% (one sigma) of the samples. This defines the error bars
shown in the figures. Note that the distribution for each set of parameters has a
single-peak structure so that this is a measure of the width of the distribution.

One of the main results of our work is the numerical evaluation of the Lorenz number,
the ratio of thermal conductivity to electrical conductivity, for various values of the electron-
electron interaction strength. In that case we modify the procedure slightly, with one sample
actually being a pair: one thermal conductivity sample and one electrical conductivity sam-
ple. For each sample, we calculate the Lorenz number, and then in the final step we consider
the distribution of Lorenz numbers and again take the smallest one sigma interval to find
the error bar. In Figure 2.1, we show the Lorenz number as a function of γ calculated for
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Figure 4.2: Calculated Lorenz number and error bars for different values of the cutoff ε
defined in section 4.1: (a) ε = 10−1, (b) ε = 10−1.5, and (c) ε = 10−2. The error grows
rapidly with both γ and 1/ε. The significance of the Lorenz number in general and of these
results in particular is discussed in chapter 2 and in section 4.2.

ε = 10−1.5, with error bars computed according to this procedure. In figure 4.2 in these sup-
plementary materials, we show our results for all three values of ε for purposes of comparing
the error for different values of the cutoff.

As expected based on our rough argument above, the relative error for ε = 10−2 is
estimated to be more than 100% at the largest interaction strengths, γ ≈ 3. Despite this
supposedly large error, the directly computed values are not distinguishable from those
with ε = 101.5. The most likely explanation is that the original numerical integrals are
more precise than expected; the assumed relative precision of 10−10 is guaranteed, but the
integrals could be much more precise in practice. Additionally, we have assumed a random
distribution of errors in the numerical integration; if instead the numerical errors tended to
be all overestimation or all underestimation, the overall error in our final result would be
substantially reduced. (We find the slope of a function that passes through points given
by the integrals, so if they were all off by some constant amount the final answer would be
unaffected.)

Despite the fact that numerical results for the smallest cutoff of ε = 10−2 are apparently
correct and more precise than expected, we use ε = 10−1.5 for the results reported in chapter
2 because we can guarantee that the numerical error is small.

4.2 Noninteracting model with Luttinger density of

states

In the discussion above, we have thus far left unresolved the question of what the current-
current correlators actually look like. We consider two different models, which give different
expressions for the current operators and their correlation functions, and thus for the trans-
port coefficients as well.
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The first model is essentially a 2D lattice tight-binding model with some modifications
and assumptions to get an effective quasi-1D model with only incoherent transport between
the constituent one-dimensional chains.

To be precise, we begin with a noninteracting tight-binding model in 2D:

H = −
∑
jl

t//

(
c†jlcj,l+1 + h.c.

)
+ t⊥

(
c†jlcj+1,l + h.c.

)
(4.33)

where j and l index the sites in a two-dimensional square lattice. The hopping strengths are
labeled as t// for one direction, which we think of as “along the 1D chains” and as t⊥ for the
orthogonal direction, which we think of as “between the 1D chains” or “interchain.” Thus j
indexes 1D chains, while l indexes position along each chain.

The first modification we want to make to this model is to allow for interactions between
electrons on each chain (though not between electrons on one chain and electrons on another
chain, since we want the different chains to be connected only in an incoherent manner).
However, we do not want to specify any particular form of the interaction, so we will take
several steps:

1. Switch the description of each chain to be in terms of energy eigenstates by Fourier
transforming

2. Replace the resulting tight-binding energies by an unspecified energy for each eigenstate

3. Relax the assumption that the eigenstates on each 1D chain are precisely the same, so
that the hopping between chains does not necessarily conserve wave number.

Translating these steps into actual mathematics, we have:

H = −
∑
jl

t//

(
c†jlcj,l+1 + h.c.

)
+ t⊥

(
c†jlcj+1,l + h.c.

)
=
∑
jk

(
−2 t//cos(ka)

)
c†jkcjk −

∑
jkk′

(
t⊥δkk′

) (
c†jkcj+1,k′ + h.c.

)
→
∑
jk

Ekc
†
jkcjk −

∑
jkk′

(
t⊥δkk′

) (
c†jkcj+1,k′ + h.c.

)
→
∑
jk

Ekc
†
jkcjk −

∑
jkk′

tkk′
(
c†jkcj+1,k′ + h.c.

)
(Note that a is the lattice spacing along each chain.) This is the Hamiltonian we will be
using for our first set of calculations:

H =
∑
j,k

Ekc
†
jkcjk −

∑
jkk′

(
tkk′c

†
j,kcj+1,k′ + h.c.

)
(2.1)
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For the purposes of our calculations, we can additionally relax the assumption that the
single-particle orbitals labeled by k and k′ are extended states given precisely by Fourier
transforms of localized orbitals. Instead, we only need to assume that k and k′ label
single-particle eigenstates and that their creation and annihilation operators satisfy the usual
fermion (anti)commutation relations:

{cjk, cj′k′} = 0 (4.34a)

{c†jk, c†j′k′} = 0 (4.34b)

{c†jk, cj′k′} = δjj′δkk′ (4.34c)

In a true interacting system such as the Luttinger liquids we are modeling, such single-
particle eigenstates do not actually exist. However, we can meaningfully discuss effective
single-particle energies by using the spectral function, so in this model we will take interac-
tions into account only by assuming the single-particle energies Ek are distributed according
to that spectral function. This assumption will come in via the density of states at the end
of our calculation. (This is an uncontrolled approximation, but one purpose of completing
our calculation using multiple distinct models is to find the simplest model that correctly
captures the behavior of interest, and so we will verify whether this approximation is in fact
usable in the future.)

Finally, we must discuss our assumptions regarding the hopping integrals tkk′ . We will
assume that (1) it is a function of only |k − k′| and (2) it is sharply peaked around k = k′.
The maximum value at k = k′ we will denote by t.

Later on in the calculation we will need a more precise expression, especially when we
convert from a sum over discrete Fourier states to an integral over a continuous spectrum.
We will ultimately use

tkk′ = te−(k−k′)2L2/π (4.35)

(where L is the total length of each 1D chain) in the discrete case and

t(k, k′) =
t

L
δ(k − k′) with δ(0) = L (4.36)

in the continuum. See section 4.6 for discussion and derivation of these expressions.

Electrical current operator

The electrical current operator in a one-dimensional lattice model is given by [80]

Je = lim
k→0

q

~k
∑
j

[Nj, H]eikaj (4.37)

where j indexes lattice sites, Nj is the total fermion number operator associated with site j,
and a is the lattice constant. We can extend this one-dimensional expression to the case of
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weakly coupled chains described by a 2D model like the Hamiltonian specified above, which
has much weaker coupling in one direction (interchain) than the other (along the chains). In
that case, the current operator in each direction is given by

Jeα = lim
k→0

q

~k
∑
j

[Nj, H]eikaαjα (4.38)

where α denotes the direction, either along the chains or perpendicular to them. jα is the site
index along that direction, and aα is the lattice constant in that direction. The composite
index j indicates both the chain and the position along the chain. This could be written as
j = (jα, jα⊥), where α⊥ is the direction perpendicular to α.

We are interested in computing the current operator for transport between (perpendicular
to) the chains (ie α denotes the interchain direction). For simplicity of notation we will denote
chain index, jα, as simply j, and the site index on each chain, jα⊥ , as i. Then equation (4.38)
becomes

Je = lim
k→0

q

~k
∑
ij

[Nji, H]eikacj (4.39)

where ac is the interchain spacing (as opposed to a, which is the lattice spacing on each
chain). We can slightly rewrite this equation by noting that the index i only appears in Nij

and thus we get

Je = lim
k→0

q

~k
∑
j

[Nj, H]eikacj (4.40)

where Nj is the full number operator for chain j, Nj =
∑

iNij. Equivalently, and more
usefully for our purposes, we can also write the total number operator as Nj =

∑
kNjk

where k indexes single-particle eigenstates on chain j. In the latter formulation, Njk can be

written in terms of the fermion creation and annihilation operators as Njk = c†jkcjk.
Now we can calculate the current operator using equation (4.40), above. The first step

is to find the commutator [Nj, H] for each j. Here we can separately consider the two terms
of H (equation 2.1), and fortunately it turns out that the commutator of Nj with the first
term is 0.

To see this, note that Nj is, as above,
∑

kNjk, while the first term of H is
∑

j′k′ Ek′Nj′k′ .
Then we want to show that each commutator [Njk, Nj′k′ ] is 0. From the perspective of
physical intuition, this must be true because the only effect of a number operator is to count
the number of excitations without changing the system, so that the order in which you count
cannot matter.

Mathematically, we consider two cases. First, if j′ = j and k′ = k the commutator is
0 because the operators are the same and every operator commutes with itself. Otherwise,
we have a commutator of two bosonic operators (since a product of two fermionic operators,
such as a number operator, is bosonic) with different indices, a situation which always leads
to a vanishing commutator. More generally, the product of any two fermionic operators will
commute with any fermionic operator that has disjoint indices:

[OaOb, Oc] = Oa{Ob, Oc} − {Oa, Oc}Ob (4.41)
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which is 0 if Oa, Ob, and Oc are any three fermionic operators with δac = δbc = 0. Thus any
number operator must commute with any fermionic operator with different indices from its
own, and hence with a pair of such fermionic operators such as another number operator.
This proves that any two number operators with different indices must commute. Combined
with the first case, that the commutator vanishes when the indices are the same, we get the
desired result.

We must still find the commutator with the hopping terms,

[Nj, H] =

[∑
q

c†jqcjq,−
∑
ikk′

tkk′c
†
i,kci+1,k′ + h.c.

]
(4.42)

We only have to compute one of the terms, since

[A,B†] = [B,A†]† = [B,A]† = −[A,B]† (4.43)

if A = A†, which is true for the number operator. Then computing the commutator gives

[Nj, H] =
∑
kk′

tkk′ [c
†
j+1,kcj,k′ − c†j,kcj−1,k′ ]− h.c. (4.44)

Now we can use the useful fact that for any operator depending on site j, Oj,

lim
k→0

1

k

∑
j

(Oj+1 −Oj)e
ikaj = −ia

∑
j

Oj (4.45)

assuming that the boundary conditions are either periodic or infinite. Then for the current
operator we get

Je =
iacq

~
∑
jkk′

tkk′c
†
j−1,kcj,k′ − t∗kk′c†j,k′cj−1,k (4.46)

Thermal current operator

The expression for the energy current in a one-dimensional lattice model is given by [80]

JE = lim
k→0

1

~k
∑
j

[Hj, H]eikaj (4.47)

where j indexes lattice sites and Hj is the portion of the Hamiltonian associated with site j
(so

∑
j Hj = H). This is quite similar to the expression for the electrical current operator,

equation 4.38, but without the overall factor of the electric charge q and with Nj → Hj.
As with the electrical current operator we extend this to the case of coupled chains:

JE = lim
k→0

1

~k
∑
j

[Hj, H]eikacj (4.48)
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where now j indexes 1D chains, ac is the distance between the chains, and Hj is the portion
of the Hamiltonian associated with chain j, including both the Hamiltonian of the isolated
chain and hopping terms between chain j and its neighbors (indices j ± 1). There is some
ambiguity here, since it is unclear for instance whether hopping terms from chain j to chain
j + 1 or vice-versa should be included in Hj or in Hj+1. We have chosen to split the two
hopping terms evenly between the two sites, so that

Hj =hj + h′j (4.49a)

hj =
∑
k

Ekc
†
j,kcj,k (4.49b)

h′j = −1

2

∑
kk′

[
tkk′(c

†
j,kcj+1,k′ + c†j,kcj−1,k′) + h.c.

]
(4.49c)

To find the energy current operator, we must first find the commutator of Hj and H.
This actually simplifies quite nicely using the division into local and hopping terms given
above:

[Hj, H] =
∑
i

[Hj, Hi] =
∑
i

[hj, hi] + [hj, h
′
i] + [h′j, hi] + [h′j, h

′
i]

The first piece, [hi, hj], is 0 because each local Hamiltonian hi has an even number of fermionic
operators in each term. As shown above, any pair of fermionic operators of will commute
with a single fermionic operator with disjoint indices, such as a fermionic operator on a
different chain, and thus with two of them as in the above commutator. Alternatively, the
vanishing of this commutator follows directly from the discussion of commutators of number
operators above, since each hi can be written in terms of those.

Furthermore, the [h′j, h
′
i] term is second order in the interchain hopping strength, tkk′ ∼

t⊥, and is thus negligible in the limit of weak interchain coupling. This gives the simplified
result

[Hj, H] ≈
∑
i

[h′j, hi]− [h′i, hj]

This we actually have to compute. We can use the nice fact that [c†acb, c
†
dcd] = c†acbδbd−c†acbδad
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for any (possibly composite) indices a, b, and d. Then we get

[h′j, hi] = −1

2

∑
kk′q

Eq

[
tkk′c

†
j,kcj+1,k′ + t∗kkc

†
j+1,k′cj,k + tkk′c

†
j,kcj−1,k′ + t∗kk′c

†
j−1,k′cj,k, c

†
iqciq

]

= −1

2

∑
kk′q

Eq



tkk′c
†
j,kcj+1,k′(δj+1,iδk′q − δj,iδkq)

+t∗kk′c
†
j+1,k′cj,k(δj,iδkq − δj+1,iδk′q)

+tkk′c
†
j,kcj−1,k′(δj−1,iδk′q − δj,iδkq)

+t∗kk′c
†
j−1,k′cj,k(δj,iδkq − δj−1,iδk′q)



= −1

2

∑
kk′q

Eq


(
tkk′c

†
j,kcj+1,k′ − t∗kk′c†j+1,k′cj,k

)
(δj+1,iδk′q − δj,iδkq)

+
(
tkk′c

†
j,kcj−1,k′ − t∗kk′c†j−1,k′cj,k

)
(δj−1,iδk′q − δj,iδkq)



= −1

2

∑
q

Eq



∑
k

{(
tkqc

†
j,kcj+1,q − t∗kqc†j+1,qcj,k

)
δj+1,i

+
(
tkqc

†
j,kcj−1,q − t∗kqc†j−1,qcj,k

)
δj−1,i

}
−δji

∑
k′

{(
tqk′c

†
j,qcj+1,k′ − t∗qk′c†j+1,k′cj,q

)
+
(
tqk′c

†
j,qcj−1,k′ − t∗qk′c†j−1,k′cj,q

)}
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When we subtract [h′i, hj], the second line (with δji) will cancel. The result is

[Hj, H] ≈
∑
i

[h′j, hi]− [h′i, hj]

= −1

2

∑
ikq

Eq



tkq

(
c†j,kcj+1,q − t∗kqc†j+1,qcj,k

)
δj+1,i

+
(
tkqc

†
j,kcj−1,q − t∗kqc†j−1,qcj,k

)
δj−1,i

−
{(
tkqc

†
i,kci+1,q − t∗kqc†i+1,qci,k

)
δi+1,j

+ tkq

(
c†i,kci−1,q − t∗kqc†i−1,qci,k

)
δi−1,j

}



= −1

2

∑
kq

Eq


(
tkqc

†
j,kcj+1,q − t∗kqc†j+1,qcj,k

)
+
(
tkqc

†
j,kcj−1,q − t∗kqc†j−1,qcj,k

)
−
{(
tkqc

†
j−1,kcj,q − t∗kqc†j,qcj−1,k

)
+
(
tkqc

†
j+1,kcj,q − t∗kqc†j,qcj+1,k

)}


Using this result along with equation (4.45), we get

lim
k→0

1

k

∑
j

[Hj, H]eikacj =
iac
2

∑
jkq

Eq


(
tkqc

†
j−1,kcj,q − t∗kqc†j,qcj−1,k

)
−
(
tkqc

†
j,kcj−1,q − t∗kqc†j−1,qcj,k

)


=
iac
2

∑
jkq


Eq

(
tkqc

†
j−1,kcj,q − t∗kqc†j,qcj−1,k

)
−Ek

(
tkqc

†
j,qcj−1,k − t∗kqc†j−1,kcj,q

)


=
iac
2

∑
jkq

[
(Eq + Ek)

(
tkqc

†
j−1,kcj,q − t∗kqc†j,qcj−1,k

)]
So finally we get the energy current operator to first order in tkk′ :

JE =
iac
~
∑
jkk′

[(
Ek + Ek′

2

)(
tkk′c

†
j−1,kcjk′ − t∗kk′c†jk′cj−1,k

)]
(2.7b)

Current-current correlators

According to our procedure for finding transport coefficients as outlined in section 4.1 above,
our next step is to find the current-current correlators. We calculate three such expressions
here: 〈JeJe〉 that appears in the calculation of electrical conductivity and of thermopower,
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〈JEJE〉 that appears in the calculation of thermal conductivity, and 〈JEJe〉 that appears in
the calculation of thermopower. (Note that all three actually appear in the calculation of
thermal conductivity, but it will turn out that we need only the second. See section 4.2 for
more details.)

〈Je(τ)Je(0)〉
The first step in this calculation is to find the time evolution of the current operator. Time
evolution of an operator is typically given by

Je(t) = eitHJee
−itH (4.50)

and the imaginary time evolution that we want here is found by making the simple substi-
tution it→ τ , giving (a specific case of equation 4.4)

Je(τ) = eτHJee
−τH . (4.51)

Actually finding the time evolution is in general quite difficult, but since we are only
interested in the case of very weak interchain coupling, we can find the result only to lowest
order in tkk′ . This simplification makes explicit calculation feasible.

In the time-evolved current operator, equation (4.51), the term lowest-order in tkk′ is
given by replacing the full Hamiltonian H =

∑
j hj + h′j by H0 =

∑
j hj; that is, we drop

the hopping terms entirely from the calculation of the time evolution.
With this approximation, each term hj in H0 now commutes with any fermion operator

not on chain j, so that

eτHc†jkcj′k′e
−τH ≈ eτ

∑
i hic†jkcj′k′e

−τ∑i hi = eτ(hj+hj′ )c†jkcj′k′e
−τ(hj+hj′ ) (4.52)

and if j 6= j′ (for instance if j′ = j ± 1) then

eτ(hj+hj′ )c†jkcj′k′e
−τ(hj+hj′ ) = eτhjc†jke

−τhjeτhj′cj′k′e
−τhj′ (4.53)

Now we can calculate each of the two factors separately. We will show the first calculation
explicitly and just cite the result for the second since it is nearly the same. First, some useful
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lemmas:

Lemma 1:

[na, c
†
b] = c†acac

†
b − c†bc†aca

= δabc
†
a − c†ac†bca − c†bca†ca

= δabc
†
a + c†bc

†
aca − c†bca†ca

= δabc
†
a (4.54)

Lemma 2:

nmjkc
†
jk = nm−1

jk ([njk, c
†
jk] + c†jknjk)

= nm−1
jk (c†jk + c†jknjk)

= nm−1
jk c†jk(1 + njk)

...

= c†jk(1 + njk)
m (4.55)

Using the second lemma, equation (4.55), we have

eτhjc†jke
−τhj = eτEknjkc†jke

−τEknjk

=

[ ∞∑
m=0

(τEk)
m

m!
nmjk

]
c†jke

−τEknjk

=

[ ∞∑
m=0

(τEk)
m

m!

(
nmjkc

†
jk

)]
e−τEknjk

= c†jk

[ ∞∑
m=0

(τEk)
m

m!
(1 + njk)

m

]
e−τEknjk

= c†jke
τEk(1+njk)e−τEknjk

= eτEkc†jk

The result for the annihilation operator is similar, but the exponent is negative because

[na, cb] = [c†b, n
†
a]
† = −[na, c

†
b]
† = −(c†b)

† = −cb (4.56)

To summarize:

c†jk(τ) = eτhjc†jke
−τhj = eτEkc†jk (4.57)

cjk(τ) = eτhjcjke
−τhj = e−τEkc†jk (4.58)

Returning now to the calculation from equation (4.52), we have

eτHc†jkcj′k′e
−τH ≈ eτ(Ek−Ek′ )c†jkcj′k′ (4.59)
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With this result and the current operator already calculated above (equation 4.46), the
calculation of the time-evolved current operator becomes quite easy:

Je(τ) =
iacq

~
∑
jkk′

eτ(Ek−Ek′ )tkk′c
†
j−1,kcj,k′ − eτ(Ek′−Ek)t∗kk′c

†
j,k′cj−1,k (4.60)

Note this is not Hermitian (assuming τ ∈ R), since it is evolved in imaginary time.
Now that we have the time-evolved current operator, we can find the correlation function

relatively easily. Before doing the actual calculation, we will briefly review what the 〈 , 〉
symbols mean in this context. The average denoted by 〈O〉 for some operator O is a thermal
average, meaning it is defined by

〈O〉 = Tr[e−βHO]/Tr[e−βH ] = Tr[e−βHO]/Z (4.61)

As with the time evolution, the fact that we are interested only in the result to lowest order
in the interchain hopping strength means that in the density matrix e−βH , we can replace
H by H0 =

∑
j hj. That part of the calculation will be shown explicitly below.
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Now let’s actually do the calculation:

〈Je(τ)Je(0)〉 = −
(acq

~

)2∑
jkk′

∑
iqq′

〈 (
eτ(Ek−Ek′ )tkk′c

†
j−1,kcj,k′ − eτ(Ek′−Ek)t∗kk′c

†
j,k′cj−1,k

)
×
(
tqq′c

†
i−1,qci,q′ − t∗qq′c

†
i,q′ci−1,q

)
〉

= −
(acq

~

)2∑
jkk′

∑
iqq′

〈
eτ(Ek−Ek′ )tkk′tqq′c

†
j−1,kcj,k′c

†
i−1,qci,q′

−eτ(Ek−Ek′ )tkk′t∗qq′c
†
j−1,kcj,k′c

†
i,q′ci−1,q

−eτ(Ek′−Ek)t∗kk′tqq′c
†
j,k′cj−1,kc

†
i−1,qci,q′

+eτ(Ek′−Ek)t∗kk′t
∗
qq′c
†
j,k′cj−1,kc

†
i,q′ci−1,q

〉
=
(acq

~

)2∑
jkk′

∑
iqq′

〈
eτ(Ek′−Ek)t∗kk′tqq′c

†
j,k′cj−1,kc

†
i−1,qci,q′

+eτ(Ek−Ek′ )tkk′t∗qq′c
†
j−1,kcj,k′c

†
i,q′ci−1,q

〉

=
(acq

~

)2∑
jkk′

〈
eτ(Ek′−Ek)|tkk′ |2c†j,k′cj−1,kc

†
j−1,kcj,k′

+eτ(Ek−Ek′ )|tkk′ |2c†j−1,kcj,k′c
†
j,k′cj−1,k

〉

=
(acq

~

)2∑
jkk′

|tkk′ |2
〈
eτ(Ek′−Ek)cj−1,kc

†
j−1,kc

†
j,k′cj,k′ + eτ(Ek−Ek′ )cj,k′c

†
j,k′c

†
j−1,kcj−1,k

〉
=
(acq

~

)2∑
jkk′

|tkk′ |2
(
eτ(Ek′−Ek)〈(1− nj−1,k)nj,k′〉+ eτ(Ek−Ek′ )〈(1− nj,k′)nj−1,k〉

)

The third line follows from the fact that the expectation value is calculated using a trace,
coupled with the fact that the two dropped terms can never be diagonal. We can now
calculate each expectation value in a relatively straightforward manner. For example, let’s
find 〈(1− nj−1,k)nj,k′〉.

The first important point is that since in the Hamiltonian appearing in the density matrix
we have eliminated all terms that include operators acting on multiple different chains, the
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expectation value actually splits up into separate ones on each chain:

〈(1− nj−1,k)nj,k′〉 = Tr[e−βH0(1− nj−1,k)nj,k′ ]/Tr[e−βH0 ]

=

(∏
i 6=j,j−1 Tr[e−βhi ]

)
Tr[e−βhj−1(1− nj−1,k)]Tr[e−βhjnjk′ ]∏

i Tr[e−βhi ]

=
Tr[e−βhj−1(1− nj−1,k)]

Tr[e−βhj−1 ]
× Tr[e−βhjnjk′ ]

Tr[e−βhj ]

=

(∏
i 6=j−1 Tr[e−βhi ]

)
Tr[e−βhj−1(1− nj−1,k)]∏

i Tr[e−βhi ]

×

(∏
i 6=j Tr[e−βhi ]

)
Tr[e−βhjnjk′ ]∏

i Tr[e−βhi ]

= 〈1− nj−1,k〉〈njk′〉
= (1− 〈nj−1,k〉)〈njk′〉

So in reality we just need to calculate the expectation value of a single number operator,
〈njk〉. That calculation looks like:

〈njk〉 =
Tr[e−βhjnjk]

Tr[e−βhj ]

=
Tr[e−βEknjknjk]

Tr[e−βEknjk ]

=

∑
njk=0,1[e−βEknjknjk]∑
njk=0,1[e−βEknjk ]

=
e−βEk

1 + e−βEk

=
1

1 + eβEk

which is just the usual Fermi-Dirac distribution. Plugging this result into (1−〈nj−1,k〉)〈njk′〉,
we get:

〈(1− nj−1,k)nj,k′〉 =

(
1− 1

1 + eβEk

)
1

1 + eβEk′

=
eβEk

(1 + eβEk) (1 + eβEk′ )

=
1

(1 + e−βEk) (1 + eβEk′ )
(4.62)
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This result is independent of j, so the sum over j in the current-current correlator just gives
a factor of the total number of chains, N . Then we finally get

〈Je(τ)Je(0)〉 = N
(acq

~

)2∑
kk′

|tkk′ |2
[

eτ(Ek′−Ek)

(1 + e−βEk)
(
1 + eβEk′

) +
eτ(Ek−Ek′ )

(1 + eβEk)
(
1 + e−βEk′

)]

= N
(acq

~

)2
(
L

2π

)2 ∫
kk′
|t(k, k′)|2

[
eτ(E(k′)−E(k)(

1 + e−βE(k)
) (

1 + eβE(k′)
)

+
eτ(E(k)−E(k′))(

1 + eβE(k)
) (

1 + e−βE(k′)
)] dk dk′

= 2N
(acq

~

)2
(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ(E′−E)

(1 + e−βE) (1 + eβE′)

+
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE′

= 4N
(acq

~

)2
(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE′

where in the third line we have changed variables from k and k′ to E = E(k) and E ′ = E(k′).
This produces two factors of the density of states (or equivalently the spectral function); we
also must change t(k, k′) to t(E,E ′), which is defined such that t(E(k), E(k′)) = t(k, k′) for
all k, k′. We have also introduced a factor of 2 for the right- and left-moving excitations,
since each energy corresponds to two values of k, k ≈ kF and k ≈ −kF . The last line follows
from the fact that E and E ′ are dummy variables and therefore the two terms are actually
identical so long as |t(E,E ′)| = |t(E ′, E)|, which we assumed to be the case when we said
that tkk′ depends only on the combination |k − k′|.

We are left with a rather nice expression for the current-current correlator:

〈Je(τ)Je(0)〉 = 4N
(acq

~

)2
(
L

2π

)2∫
EE′
|t(E,E ′)|2g(E)g(E ′)

[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

(4.63)

〈JE(τ)JE(0)〉
Just as our first step in finding 〈Je(τ)Je(0)〉 was to find the time evolution of the electrical
current operator Je, our first step now is to find the time evolution of JE. Most of the work,
however, has already been done! As JE (equation 2.7b) looks just like Je (equation 4.46) but
with a factor of average energy replacing the factor of charge, the time evolution calculation
is identical. The result is

JE(τ) =
iac
~
∑
jkk′

[(
Ek + Ek′

2

)(
eτ(Ek−Ek′ )tkk′c

†
j−1,kcj,k′ − eτ(Ek′−Ek)t∗kk′c

†
jk′cj−1,k

)]
(4.64)
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Then we can find 〈JE(τ)JE(0)〉 just like we found the 〈Je(τ)Je(0)〉 above:

〈JE(τ)JE(0)〉 = −
(ac
~

)2∑
jkk′

∑
iqq′〈 (

Ek+Ek′
2

)(
eτ(Ek−Ek′ )tkk′c

†
j−1,kcjk′ − eτ(Ek′−Ek)t∗kk′c

†
jk′cj−1,k

)
×
(
Eq+Eq′

2

)(
tqq′c

†
i−1,qciq′ − t∗qq′c†iq′ci−1,q

)
〉

This looks just like the calculation with Je except that two factors of q have been replaced
with two factors of average energy in the sum. The trace forces q = k and q′ = k′, making
the two energy factors the same, so by analogy with the result for 〈Je(τ)Je(0)〉 (replacing q2

by average energy squared), we get

〈JE(τ)JE(0)〉

=
(ac
~

)2∑
jkk′

(
Ek + Ek′

2

)2

|tkk′|2
(
eτ(Ek′−Ek)〈(1− nj−1,k)nj,k′〉+ eτ(Ek−Ek′ )〈(1− nj,k′)nj−1,k〉

)
= 4N

(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)2 [
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

Again, we have a relatively nice expression for the current-current correlator,

〈JE(τ)JE(0)〉

= 4N
(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)2 [
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

(4.65)
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〈JE(τ)Je(0)〉
To calculate 〈JE(τ)Je(0)〉, we can again get the answer quickly by analogy with our results
for 〈Je(τ)Je(0)〉.

〈JE(τ)Je(0)〉 = −q
(ac
~

)2∑
jkk′

∑
iqq′〈 (

Ek+Ek′
2

)(
eτ(Ek−Ek′ )tkk′c

†
j−1,kcjk′ − eτ(Ek′−Ek)t∗kk′c

†
jk′cj−1,k

)
×
(
tqq′c

†
i−1,qciq′ − t∗qq′c†iq′ci−1,q

)
〉

= q
(ac
~

)2∑
jkk′

(
Ek + Ek′

2

)
|tkk′ |2

(
eτ(Ek′−Ek)〈(1− nj−1,k)nj,k′〉+eτ(Ek−Ek′ )〈(1− nj,k′)nj−1,k〉

)
= 4Nq

(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

This is a again a nice expression for the correlator,

〈JE(τ)Je(0)〉

= 4Nq
(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

(4.66)

Response functions

We have now calculated all the current-current correlation functions that we need in order to
calculate the desired transport coefficients. For the purposes of the remaining calculations,
it will be helpful to write all the correlators (equations 4.63, 4.65, and 4.66) in a single
expression. In particular, we have

〈jl(τ)ji(0)〉 (4.67)

= 4N
(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)nil [ eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

where j1 = Je/q, j2 = JE, and nil is (i+ l − 2).
Using this result, we want to calculate the L(il) coefficients, which can then be used to

find the physical transport coefficients via equation (2.2). Recall that the L(il) are given by
equation (2.4), reproduced here for convenience:
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L(il) = lim
ω→0

lim
δ→0

1

ω

[−iT
Ω

∫ β

0

dτeiωτ 〈Tτjl(τ)ji(0)〉
]
iω→ω+iδ

(2.4)

Fortunately we can use our expression that encapsulates all the relevant current-current
correlators, equation (4.67), to find all the L(il) at once.

Our first step is to non-dimensionalize our expressions so that the dependence on all
unitful parameters becomes explicit. We first follow the procedure from section 4.1 above
and change variables from τ to τ ′ = τ π

β
, ω to n = ω β

2π
, and δ to δ′ = δ β

2π
. This gives

L(il) = lim
n→0

lim
δ′→0

β

2πn

[−iT
Ω

(
β

π

)∫ π

0

dτ ′e2inτ ′〈Tτ ′jl(τ ′)ji(0)〉
]
iω→n+iδ′

(4.68)

Furthermore, in the expression for 〈j(τ ′)j〉, we can switch the integration variables from E
to βE, giving:

〈jl(τ ′)ji(0)〉

= 4N
(ac
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

(
E + E ′

2

)nil [ eτ
′β(E−E′)/π

(1 + eβE) (1 + e−βE′)

]
dE dE ′

(4.69)

= 4N
(ac
~

)2
(
L

2π

)2

β−(nil+2)

∫
yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

×
(
y + y′

2

)nil [ eτ
′(y−y′)/π

(1 + ey) (1 + e−y′)

]
dy dy′ (4.70)

We next have to choose whether to integrate first over the rescaled energy coordinates (y
and y′) or instead over the rescaled imaginary time τ ′. Since it is formally correct to view the
correlation function as a function only of τ and then to integrate that, we will integrate over
y and y′ first. This convention matches the procedure described above in section 4.1 and
therefore also the procedure we follow numerically in analyzing our second model (section
4.3).

For this purpose, we need an expression for t(E,E ′). As discussed in section 4.6 we
assume that t(E,E ′) is sharply peaked (width proportional to L−1) about E = E ′. In
particular, we use

t(E,E ′) =
tv

L
δ(E − E ′) with δ(0) =

L

v
(4.71)

so that

t(y/β, y′/β) =
tv

L
δ

(
y − y′
β

)
=
tvβ

L
δ(y − y′) with δy(0) =

L

vβ
(4.72)

where the subscript on the last delta functions indicates that δ(0) comes from δ(y) with
y = 0.
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In our expression, we have two powers of the delta function. The first is used as a delta
function to collapse the integral over y′, setting y′ = y. The second just contributes a factor
of tvβ

L
δy(0) = t. We thus find

〈jl(τ ′)ji(0)〉

= 4N
(ac
~

)2
(
L

2π

)2

β−(nil+2)

∫
yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

×
(
y + y′

2

)nil [ eτ
′(y−y′)/π

(1 + ey) (1 + e−y′)

]
dy dy′ (4.73)

= 4N
(ac
~

)2
(
L

2π

)2

β−(nil+2)

(
t2vβ

L

)∫
yy′
g2(y/β) (y)nil

[
1

(1 + ey) (1 + e−y)

]
dy (4.74)

= 4NL

(
act

~

)2(
vβ−(nil+1)

(2π)2

)∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy (4.75)

Note that τ ′ has actually dropped out of the expression entirely! This seems worrisome,
since to find L(il) from 〈jl(τ ′)ji(0)〉 we are now supposed to Fourier transform a constant
function over a finite domain, which will give a Kronecker delta:∫ π

0

e2inτ ′dτ ′ = πδn0 (4.76)

It is not at all obvious how this ought to be analytically continued in the fashion in→ n+iδ′.
Instead of trying to justify some particular choice in this case, we will simply assert that
there must exist on physical grounds some regularization which makes the (unitless) quantity

Re

(
lim
n→0

lim
δ′→0

−i
n

[∫ π

0

e2inτ ′dτ ′
]
in→n+iδ′

)
(4.77)

into some finite number. We call this constant A. There is precedent for this approach in the
literature. In particular, in reference [29], there is an unspecified scaling function Fα(ω/T )
which, in the ω → 0 limit, corresponds to our constant A.
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Using this approach, we find

L(il) = lim
n→0

lim
δ′→0

β

2πn

[−iT
Ω

(
β

π

)∫ π

0

dτ ′e2inτ ′〈T ′τjl(τ ′)ji(0)〉
]
iω→n+iδ′

(4.78)

=
β

2π

[
T

Ω

(
β

π

)
4NL

(
act

~

)2(
vβ−(nil+1)

(2π)2

)∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy

]

× lim
n→0

lim
δ′→0

−i
n

[∫ π

0

e2inτ ′dτ ′
]
in→n+iδ′

(4.79)

Re
[
L(il)

]
= A

β

2π

[
T

Ω

(
β

π

)
4NL

(
act

~

)2(
vβ−(nil+1)

(2π)2

)∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy

]
(4.80)

=
4ANL

πΩ

(
act

~

)2
vβ−nil

(2π)3

∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy (4.81)

=
Aact

2vβ−nil

2π4~2

∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy (4.82)

Note that in the last line we have used that fact that the volume of the system is Ω = NacL.
We can also set ~ = 1 to get a nice final answer for Re

[
L(il)

]
:

Re
[
L(il)

]
=
Aact

2vβ−nil

2π4

∫
yy′

g2(y/β)ynil

(1 + ey) (1 + e−y)
dy (4.83)

We can now use equations (2.2) to get expressions for the conductivities and the ther-
mopower from L(il). The results are

σ =
e2

T
L(11) =

Aace
2t2vβ

2π4

∫
yy′

g2(y/β)

(1 + ey) (1 + e−y)
dy (4.84a)

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
=
Aact

2v

2π4

∫
yy′

y2g2(y/β)

(1 + ey) (1 + e−y)
dy −

(∫
yy′

y g2(y/β)
(1+ey)(1+e−y)

dy
)2

∫
yy′

g2(y/β)
(1+ey)(1+e−y)

dy


(4.84b)

S = − 1

eT

L(12)

L(11)
= −1

e

∫
yy′

y g2(y/β)
(1+ey)(1+e−y)

dy∫
yy′

g2(y/β)
(1+ey)(1+e−y)

dy
(4.84c)

Before inserting any precise expression for the density of states, we will simplify these
expressions in the case that the density of states is particle-hole symmetric, g(E) = g(−E).
This is the case in the Tomonaga-Luttinger model, although it is of course not precisely true
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in a typical real system. In that case, the integrand for L(12) is odd so that L(12) = 0, giving
the nicer expressions

σ =
Aace

2t2vβ

2π4

∫
yy′

g2(y/β)

(1 + ey) (1 + e−y)
dy (4.85a)

κ =
Aact

2v

2π4

∫
yy′

y2g2(y/β)

(1 + ey) (1 + e−y)
dy (4.85b)

S = 0 (4.85c)

In a system with a density of states that is not particle-hole symmetric, L(12) will have a
correction that is higher order in the inverse of the bandwidth W (or more precisely, higher
order in kT/W ). In the case of the thermal conductivity, since there is a lower order term we
can safely ignore this higher order correction. In the case of thermopower, the lower order
term vanishes so that we need to consider the next order to arrive at the experimentally
observable result. See section 4.2 for the calculation of the thermopower correction.

After we find the corrected thermopower equation, we will proceed (in section 4.2) to
substitute the single-particle density of states for a Luttinger liquid into each expression and
derive how each transport coefficient scales as a power of the temperature.

Alternate approach to analytic continuation

Above, we performed the integral over the energies first and then the Fourier transform
(integral over τ ′). We believe that approach is the correct one, but it is worth exploring
what would happen if we instead integrated first over τ ′. We will thus return to equations
(4.68) and (4.70) and rederive the transport coefficients, comparing our results at the end.

This time around, we start with the integral over τ ′:∫ π

0

e2inτ ′eτ
′(y−y′)/πdτ ′ =

e2inπ+(y−y′) − 1

2in+ (y − y′)/π =
e(y−y′) − 1

2in+ (y − y′)/π (4.86)

where the second equality follows because n is an integer so that e2inπ = 1.
Next we perform the analytic continuation, in→ n+ iδ′. This gives

e(y−y′) − 1

2in+ (y − y′)/π →
1

2
× e(y−y′) − 1

n+ (y − y′)/(2π) + iδ′
(4.87)

We now want to isolate the imaginary part. This is some quick algebra.

1

2
× e(y−y′) − 1

n+ (y − y′)/(2π) + iδ′
=

(
e(y−y′) − 1

2

)
× n+ (y − y′)/(2π)− iδ′

(n+ (y − y′)/(2π))2 + δ′2
(4.88)
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so the imaginary part is just

−δ′
(n+ (y − y′)/(2π))2 + δ′2

×
(
e(y−y′) − 1

2

)
. (4.89)

The first factor is a Lorentzian, which becomes a delta function in the limit of small δ′. This
limit gives

− δ(n+ (y − y′)/(2π))

(
e(y−y′) − 1

2

)
, (4.90)

with δ(0) = 1/δ′. (This will be used later on in the calculation. “Remembering” the
functional form that led, in approximation, to the delta function, and therefore also δ(0) as
a function of the small parameter that goes to 0, will allow us to calculate as if we knew the
full functional form even while simplifying the calculation by use of a delta function.)

Using this result with equations (4.68) and (4.70), we get

L(il) = lim
n→0

lim
δ′→0

β

2πn

[−iT
Ω

(
β

π

)∫ π

0
dτ ′e2inτ ′〈T ′τ jl(τ ′)ji(0)〉

]
iω→n+iδ′

= lim
n→0

lim
δ′→0

−iβ−(nil+1)

2π2Ωn
× 4N

(ac
~

)2
(
L

2π

)2

×
[∫

yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

(
y + y′

2

)nil [∫ π
0 e2inτ ′eτ

′(y−y′)/πdτ ′

(1 + ey) (1 + e−y′)

]
dy dy′

]
in→n+iδ′

Re[L(il)] = −β
−(nil+1)

4π2Ω
× 4N

(ac
~

)2
(
L

2π

)2

× lim
n→0

1

n

[∫
yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

(
y + y′

2

)nil [δ(n+ y−y′
2π )(ey−y

′ − 1)

(1 + ey) (1 + e−y′)

]
dy dy′

]

= −β
−(nil+1)

(2π)2Ω
× 4N

(ac
~

)2
(
L

2π

)2

× lim
n→0

1

n

[∫
yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

(
y + y′

2

)nil [δ(n+ y−y′
2π )(e−2πn − 1)

(1 + ey) (1 + e−y′)

]
dy dy′

]

=
β−(nil+1)

Ω
× 4N

(ac
~

)2
(
L

2π

)2

×
[∫

yy′
|t(y/β, y′/β)|2g(y/β)g(y′/β)

(
y + y′

2

)nil [ δ(y − y′)
(1 + ey) (1 + e−y′)

]
dy dy′

]

where the fourth line follows because the delta function allows us to replace (y−y′) by −2πn
and the last line follows from the fact that

lim
n→0

−(e−2πn − 1)

n
= 2π (4.91)
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and from δ(x/a) = a δ(x) which provides an additional factor of 2π. Also note that in going
from δ(y−y

′

2π
) to δ(y− y′), δ(0) changes from 1/δ′ to 1/(2πδ′) as can be confirmed by writing

out the delta function as a Lorentzian (equation (4.89)).
At this point it would be tempting to simply use the delta function appearing in our

expression for Re[L(il)] to collapse the two integrals into one and replace t(y/β, y′/β) by
t(y/β, y/β). Depending on the order of various limits, however, this may not be correct. In
fact, when we treat t(y/β, y′/β) carefully, we find (as discussed above and in section 4.6)
that it is also proportional to a delta function and in fact that this delta function is the one
we want to use to collapse the two energy integrals. As derived in section 4.6, the precise
expression we want to use for t(E,E ′) is

t(E,E ′) =
tv

L
δ(E − E ′) with δ(0) =

L

v
(4.71)

and hence

t(y/β, y′/β) =
tv

L
δE

(
y − y′
β

)
=
tvβ

L
δy(y − y′) with δy(0) =

L

vβ
(4.72)

If we try to evaluate our expression for Re[L(il)] with both possible choices for which
delta function to use to collapse the two integrals into one (the from t(E,E ′) or the one from
analytic continuation), it will become immediately clear based on physical interpretation of
the results which choice is correct.

The first possibility is to use the delta function from analytic continuation of the integral
over τ . If we do so, we get

Re[L(il)] =
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

|t(y/β, y/β)|2g2(y/β)

[
ynil

(1 + ey) (1 + e−y)

]
dy

(4.92a)

=
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

(
tvβ

L
δ(0)

)2

g2(y/β)

[
ynil

(1 + ey) (1 + e−y)

]
dy

(4.92b)

=
4Nβ−(nil+1)

Ω

(
act

~

)2(
L

2π

)2 ∫
y

ynilg2(y/β)

(1 + ey) (1 + e−y)
dy (4.92c)

We can simplify this result using the fact that the total area, Ω, is equal to the length of the
chains times the number of chains times the interchain spacing, or in other words Ω = NacL.
This gives (also setting ~ = 1)

Re[L(il)] =
t2acLβ

−(nil+1)

π2

∫
y

ynilg2(y/β)

(1 + ey) (1 + e−y)
dy (4.93)
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The other possibility is to instead use one of the delta functions from t(E,E ′). Then we
have instead

Re[L(il)] =
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

(
tvβ

L

)
t(y/β, y/β)

[
δ(0)ynilg2(y/β)

(1 + ey) (1 + e−y)

]
dy

(4.94a)

=
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

(
tvβ

L

)2

δ(0)

[
δ(0)ynilg2(y/β)

(1 + ey) (1 + e−y)

]
dy (4.94b)

=
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

(
t2vβ

2πLδ′

)[
ynilg2(y/β)

(1 + ey) (1 + e−y)

]
dy (4.94c)

=
4Nβ−(nil+1)

Ω

(ac
~

)2
(
L

2π

)2 ∫
y

(
t2v

Lδ

)[
ynilg2(y/β)

(1 + ey) (1 + e−y)

]
dy (4.94d)

=
Nβ−(nil+1)

π2Ω

(
act

~

)2(
Lv

δ

)∫
y

ynilg2(y/β)

(1 + ey) (1 + e−y)
dy (4.94e)

=
t2acvβ

−(nil+1)

π2δ

∫
y

ynilg2(y/β)

(1 + ey) (1 + e−y)
dy (4.94f)

These two expressions for Re[L(il)] differ by a factor of Lδ/v. (As a quick check, note
that this is indeed unitless, since δ has units of inverse time.)

Which version is more correct? On the one hand, δ is an additional parameter that ap-
peared only in the context of analytic continuation and otherwise was not part of the physical
setup of the problem, and thus its appearance in our result is potentially problematic. On
the other hand, conductivity should be an intrinsic property, independent of the system size,
so a dependence on L in L(il) is certainly a problem. We find the argument that the con-
ductivity should be intrinsic to be more convincing, since it is possible to assign a physical
significance to δ while an extrinsic conductivity does not make sense. (Namely, δ can be
introduced into the linear response formalism as an adiabatically slow rate of switching on
the perturbation that produces the linear response.[3])

Mathematically, we still need to justify using the delta function from analytic continu-
ation to replace ey−y

′
by e−2πn before sending ω → 0. Thinking of this “delta function” as

a peak of width δ′, we really have −2πn − δ′ . y − y′ . −2πn + δ′. Then −(e−2πn − 1)/n
becomes not just 2π as n→ 0 but rather 2π(1 + aδ′/n) = 2π(1 + aδ/ω) where a is a number
of order 1 which could be positive or negative. This becomes just 2π as assumed above if
δ � ω, the same order that we argued for in section 4.1 above.

We therefore use

Re[L(il)] =
t2acvβ

−(nil+1)

π2δ

∫
y

ynilg2(y/β)

(1 + ey) (1 + e−y)
dy (4.95)

As in our first approach to evaluating the analytic continuation in L(il), we can now use
equations (2.2) to get expressions for the conductivities and the thermopower. The results
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are

σ =
e2

T
L(11) =

ace
2t2v

π2δ

∫
yy′

g2(y/β)

(1 + ey) (1 + e−y)
dy (4.96a)

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
=
act

2vT

π2δ

∫
yy′

y2g2(y/β)

(1 + ey) (1 + e−y)
dy −

(∫
yy′

y g2(y/β)
(1+ey)(1+e−y)

dy
)2

∫
yy′

g2(y/β)
(1+ey)(1+e−y)

dy


(4.96b)

S = − 1

eT

L(12)

L(11)
= −1

e

∫
yy′

y g2(y/β)
(1+ey)(1+e−y)

dy∫
yy′

g2(y/β)
(1+ey)(1+e−y)

dy
(4.96c)

Assuming a particle-hole symmetric density of states, so that g(E) = g(−E), we get the
simplified expressions

σ =
ace

2t2v

π2δ

∫
yy′

g2(y/β)

(1 + ey) (1 + e−y)
dy (4.97a)

κ =
act

2vT

π2δ

∫
yy′

y2g2(y/β)

(1 + ey) (1 + e−y)
dy (4.97b)

S = 0 (4.97c)

We can compare these results with those of equations (4.85), and we see that the integrals
that appear are precisely the same, but that the prefactors are different by a factor propor-
tional to T/δ. The different approach to analytic continuation thus results in a different
power law of the transport coefficients as a function of temperature! This result is some-
what unfortunate, as it makes the results of the two approaches differ in an experimentally
measurable way.

This result, however, contains the nonphysical parameter δ, suggesting that indeed our
previous approach to analytic continuation was the correct one. (Note that although we
discussed one possible physical interpretation for δ, it is formally supposed to disappear
from all expressions. That it is better to have δ in our answer than L does not contradict
the fact that, on physical grounds, neither should appear.)

Since the two approaches affect σ and κ the same way, the Lorenz number at least will
be unaffected by our choice of how to perform analytic continuation.

Moving forward with the calculation, we will return to the more correct results of equa-
tions (4.85) and neglect those derived in this section.

Correction to get nonzero thermopower

We now want to derive a nonzero expression for the thermopower by correcting the density
of states. We will denote the usual Luttinger liquid density of states by gLL(E), and we want
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to find some physically motivated correction, gLL(E)→ g(E).
To find such a correction, we will adopt the picture that the Luttinger liquid in question

arises from adding interactions to a 1D electron gas with a typically parabolic dispersion
E = ~2k2

2m
∝ k2. In that case, the density of states is dk/dE ∝ E−1/2. For our purposes we

would like to shift the energies so that the Fermi level is labeled as E = 0, in which case the
density of states becomes

g1D(E) ∝ (EF + E)−1/2. (4.98)

The Fermi energy acts as a kind of bandwidth in that it cuts off the otherwise infinite linear
dispersion, so we label it as W , and we use this 1D density of states as a correction to the
Luttinger liquid one:

g(E) =
gLL(E)√
1 + E/W

(4.99)

This density of states is a phenomenologically reasonable model that captures the real phys-
ical behavior well enough to find a power law dependence on temperature. The most impor-
tant features are the violation of particle-hole symmetry by the introduction of a bandwidth
and the preservation of the density of states to lowest order in E/W when E is small (near
the Fermi energy).

The importance of the small E limit comes from the nature of the integrals appearing in
our transport coefficents. In particular, any function of the form

yα

(1 + ey)(1 + e−y)
(4.100)

is sharply peaked around y = 0 for any power α, and since these types of functions appear
in the integrand in our expression for L(il), in our case only E ≈ 0 will be important.

With this in mind, we can now expand our new density of states, equation 4.99, in the
small E/W limit. To first order, we get

g(E) = gLL(E)

(
1− 1

2

E

W

)
(4.101)

or equivalently

g(y/β) = gLL(y/β)

(
1− 1

2

y

Wβ

)
(4.102)

Plugging this into the integral for L(12) that vanished, we have∫
y

y g2(y/β)

(1 + ey)(1 + e−y)
dy ≈

∫
y

y g2
LL(y/β)(1− y

Wβ
)

(1 + ey)(1 + e−y)
dy

=

∫
y

yg2
LL(y/β)

(1 + ey)(1 + e−y)
dy − 1

Wβ

∫
y

y2g2
LL(y/β)

(1 + ey)(1 + e−y)
dy

The first term vanishes as before, since the integrand is odd in y, but the second term is
nonzero. That integral is, in fact, now the same one that appears in the calculation of L(22).
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With this correction to L(12), we can now give a new expression for thermopower which will
give the lowest nonzero contribution, replacing equation (4.84c) above:

S =
T

We

∫
y

y2 g2LL(y/β)

(1+ey)(1+e−y)
dy∫

y

g2LL(y/β)

(1+ey)(1+e−y)
dy

(4.103)

Should we include this same correction in the calculations of the electrical and thermal
conductivities, σ and κ? In the case of σ, the first order correction to the integrand will be
an odd term and vanish, so the first nonzero correction will have an extra factor of (y/Wβ)2

in the integral and the correction term will therefore be smaller by a factor of (kT/W )2. If
this number were not much less than 1, then the entire Luttinger liquid picture would be
inapplicable, so we can safely ignore this correction.

A similar argument shows that both the lowest order correction to the L(22) term in
κ and the lowest order contribution to the (L(12))2/L(11) term are also smaller by a factor
of (kT/W )2 compared with the lowest order part of L(22) (equation 4.85b), so again the
correction can be ignored.

Transport coefficients with unspecified Luttinger density of states

For completeness and clarity, we list here our final expressions for the three transport coef-
ficients in terms of a corrected density of states, replacing equation (4.85).

σ =
Aace

2t2vβ

2π4

∫
yy′

g2
LL(y/β)

(1 + ey) (1 + e−y)
dy (4.104a)

κ =
Aact

2v

2π4

∫
yy′

y2g2
LL(y/β)

(1 + ey) (1 + e−y)
dy (4.104b)

S =
T

We

∫
y

y2 g2LL(y/β)

(1+ey)(1+e−y)
dy∫

y

g2LL(y/β)

(1+ey)(1+e−y)
dy

(4.104c)

Lorenz number

One important quantity that can be derived from the transport coefficients is the Lorenz
number,

L =
κ

σT
. (4.105)

Looking at the Lorenz number has two very important advantages. First, the Wiedemann-
Franz law provides a benchmark value for the Lorenz number that is observed in Fermi
liquids; comparisons of the calculated Lorenz number with the Wiedemann-Franz law are
therefore very good tests of non-Fermi liquid behavior. Second, material-dependent constants
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such as the interchain spacing disappear in the ratio between the two conductivities, allowing
us to make specific numerical predictions that could be tested in an experiment.

If we calculate the Lorenz number using our results for σ and κ from equations (4.104),
we get

L =
k2
B

e2

∫
y

y2g2LL(y/β)

(1+ey)(1+e−y)
dy∫

y

g2LL(y/β)

(1+ey)(1+e−y)
dy

(4.106)

Here we have put Boltzmann’s constant kB back into the expression to get the correct units.
Note that using our density of states correction from the previous section, our expression

for the thermopower is proportional to the Lorenz number:

S =
eT

W
× L (4.107)

Power laws and numerics using the Luttinger liquid spectral function

Finally, we can substitute an expression for the Luttinger liquid density of states into our
equations for the transport coefficients that are given above in equations (4.104) and (4.106).

As described in the next section, 4.3, a Luttinger liquid is characterized by an interaction
strength parameter that we call K. (This is the same notation as used in the book by
Giamarchi[31]; the same parameter is also labeled as g or as K2 in some works.[56, 55, 54,
71]) In the case of a non-interacting system, K = 1, while for repulsive interactions it is in
the range 0 < K < 1 and for attractive interactions K > 1.

The density of states is given by a power-law of the energy with an exponent dependent
on K [17, eq 61]:

g(E) = 2
|E/W |γ−1

2πvΓ(γ)
(4.108)

where W is the bandwidth, v is a renormalized Fermi velocity, and γ is defined by

γ =
K +K−1

2
. (2.11)

Note that γ is a measure of interaction strength which is independent of whether the in-
teractions happen to be attractive or repulsive. It always satisfies γ ≥ 1, and γ = 1 if
and only if the system is noninteracting. (In that case, the density of states is constant
since the Tomonaga-Luttinger model assumes a linear dispersion before the introduction of
interactions.)

Substituting this density of states into our expressions for the transport coefficients (equa-
tions 4.104) and the Lorenz number (equation 4.106), we get expressions in terms of dimen-
sionless integrals dependent on γ that must be evaluated numerically. We will show the
derivation of this expression for σ and then give the remaining results.



CHAPTER 4. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: DETAILS 76

σ =
Aace

2t2vβ

2π4

∫
y

(πvΓ(γ))−2|y/Wβ|2(γ−1)

(1 + ey) (1 + e−y)
dy

=
Aace

2t2vβ

2π4
× (πvΓ(γ))−2

(βW )2(γ−1)

∫
y

|y|2(γ−1)

(1 + ey) (1 + e−y)
dy

=
ace

2t2

vT

(
T

W

)2(γ−1)

× A

2π6Γ(γ)2

∫
y

|y|2(γ−1)

(1 + ey) (1 + e−y)
dy

As promised, we have written σ in terms of a dimensionless integral that we can evaluate
numerically, with all of the dimensionful constants including the power law dependence on
temperature being apparent in the prefactor. When we follow a similar procedure for each
of the transport coefficients, we ultimately get the following results:

σ =
ace

2t2

vT

(
T

W

)2(γ−1)

× A

2π6Γ(γ)2

∫
y

|y|2(γ−1)

(1 + ey) (1 + e−y)
dy (2.12a)

κ =
act

2

v

(
T

W

)2(γ−1)

× A

2π6Γ(γ)2

∫
y

y2|y|2(γ−1)

(1 + ey) (1 + e−y)
dy (2.12b)

L =
k2
B

e2

∫ y2|y|2(γ−1)

(1+ey)(1+e−y)
dy∫ |y|2(γ−1)

(1+ey)(1+e−y)
dy

(4.109a)

S =
eT

W
× L (4.109b)

The most interesting results to extract here are those that do not involve specific material-
dependent parameters such as the Fermi velocity v, the interchain spacing ac, or the band-
width W . In particular, those do not appear in the temperature power laws, nor do they
appear in the Lorenz number at all! Thus we have two main results: (1) the temperature
dependence of the electrical and thermal conductivities and the thermopower, and (2) the
numerical evaluation of the Lorenz number as a function of the interaction strength γ.

(1) Here are the power laws, summarized:

σ ∝ T 2γ−3 (4.110a)

κ ∝ T 2γ−2 (4.110b)

S ∝ T (4.110c)

A couple features are worth noting.

1. In the noninteracting limit we find σ ∝ T−1 and κ ∝ T 0.

2. At low interaction strength, the electrical conductivity decreases with temperature,
consistent with a picture of coherent transport in which increasing temperature leads
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Figure 4.3: Lorenz number in the generalized noninteracting model. The Wiedemann-Franz
Law is satisfied (L = L0) in the noninteracting case γ = 1 and is strongly violated for large
interaction strength.

to increased scattering. Conversely, at larger interaction strength the conductivity
increases with temperature, corresponding to incoherent transport with thermally ac-
tivated hopping. Taken together, this shows a crossover at γ = 3/2 between a coherent
and an incoherent regime as interaction strength increases.

3. The thermopower is always proportional to the temperature, which matches the typical
behavior in a Fermi liquid.

(2) Our second main result is the numerical evaluation of the Lorenz number. This is
shown in figure 4.3, where it is plotted in units of the expected value from the Wiedemann-
Franz Law, or

L0 =
π2

3

(
kB
e

)2

. (4.111)

Our result agrees perfectly with the Wiedemann-Franz Law in the noninteracting limit of
γ = 1, but it shows a violation of the law with increasing interaction strength. The violation
turns out to be quite similar to a γ2 dependence, a fact which is not immediately apparent
from the graph but which can be explained intuitively. We discuss the physical reason for
the γ2 dependence in section 4.3.

Here we will show numerically that the Lorenz number indeed scales as approximately
γ2. If L

L0
had a precise power law dependence on γ, we could write L

L0
= γa for some constant

a. Here L
L0

follows only an approximate power law, so when we write L
L0

= γa, a is now a
function a(γ) which is approximately but not precisely constant.

To actually find this function a(γ), we can take the log of both sides of the equation, in
which case we find that

a(γ) =
log(L/L0)

log(γ)
(4.112)
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This is plotted in figure 2.2. As claimed, the exponent a is near to 2, though the value is
not precise and has some dependence on γ.

We can derive the precise value of the exponent at small γ by expanding around the
noninteracting limit of γ = 1.

To do this expansion, we write γ = 1 + ε, so that equation 4.112 becomes

a(γ) ≈ 1

ε
log

(
L

L0

)
(4.113)

We next want to expand L
L0

to lowest order in ε, giving

L

L0

=
L

π2

3

(
kB
e

)2

=
3

π2

∫ x2|x|2(γ−1)

(1+ex)(1+e−x)
dx∫ |x|2(γ−1)

(1+ex)(1+e−x)
dx

=
3

π2

∫∞
0

x2+2ε

(1+ex)(1+e−x)
dx∫∞

0
x2ε

(1+ex)(1+e−x)
dx

≈ 3

π2

∫∞
0

x2(1+2ε log(x))
(1+ex)(1+e−x)

dx∫∞
0

(1+2ε log(x))
(1+ex)(1+e−x)

dx

=

3
π2

∫∞
0

x2

(1+ex)(1+e−x)
dx+ 2ε 3

π2

∫∞
0

x2 log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx+ 2ε
∫∞

0
log(x)

(1+ex)(1+e−x)
dx

=

3
π2

∫∞
0

x2

(1+ex)(1+e−x)
dx+ 2ε 3

π2

∫∞
0

x2 log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx

(
1 + 2ε

∫∞
0

log(x)

(1+ex)(1+e−x)
dx∫∞

0
1

(1+ex)(1+e−x)
dx

)
≈

3
π2

∫∞
0

x2

(1+ex)(1+e−x)
dx+ 2ε 3

π2

∫∞
0

x2 log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx

(
1− 2ε

∫∞
0

log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx

)

≈ 1 + 2ε
3

π2

∫∞0 x2 log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx
−

(∫∞
0

x2

(1+ex)(1+e−x)
dx
)(∫∞

0
log(x)

(1+ex)(1+e−x)
dx
)

(∫∞
0

1
(1+ex)(1+e−x)

dx
)2


= 1 + 2ε

 3

π2

∫∞
0

x2 log(x)
(1+ex)(1+e−x)

dx∫∞
0

1
(1+ex)(1+e−x)

dx
−
∫∞

0
log(x)

(1+ex)(1+e−x)
dx∫∞

0
1

(1+ex)(1+e−x)
dx


= 1 + 4ε

(
3

π2

∫ ∞
0

x2 log(x)

(1 + ex) (1 + e−x)
dx−

∫ ∞
0

log(x)

(1 + ex) (1 + e−x)
dx

)
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This is of the form 1 + εA for small ε so that log(L/L0) ≈ εA and therefore dividing by ε (as
in equation 4.113) to get the exponent we find

a(γ ≈ 1) = 1− 2 log(π) +
6

π2

(
γ1
′
(

1

2

)
− γ1

′(1)

)
≈ 2.3432 (4.114)

where γ1(ν) is a generalized Stieltjes constant[13]1.
We thus conclude that in our noninteracting model,

L ≈ γ2L0 (4.115)

for large γ, while
L ≈ γ2.3L0 (4.116)

for γ ≈ 1.

4.3 Luttinger liquid model

The model we discussed above involves substantial simplifications, most notably the assump-
tion that the behavior of a Luttinger liquid compared with a noninteracting 1D system can
be largely captured in the density of states/spectral function alone.

We now want to perform an analogous computation on a more complete model to get
more rigorously correct results for the conductivities, thermopower, and Lorenz number in
the physical systems of interest. We would hope, of course, that the results turn out to look
similar so that future computations could take the relatively simpler approach detailed above.
In fact, what we find (as we will show in the remainder of these Supplementary Materials) is
that the first model does get some of the most important features right, notably the power
law dependence on temperature, but it fails to accurately predict the precise dependence of
transport on the interaction strength; for instance, in the more complete model we find that
the scaling of the Lorenz number with interaction strength, g, is closer to γ4 than to the γ2

dependence from the noninteracting model.

Luttinger liquid basics

Before we perform the actual calculation, it will be helpful to briefly review the properties of
Luttinger liquids. In the same way that any typical interacting system in three dimensions
shows the same generic behavior and is thus classified as a Fermi liquid, a typical conductive
1D system with interactions behaves as a Luttinger liquid[37, 31]. Fermi liquids look very
much like a noninteracting electron gas: the basic excitations are noninteracting fermionic

1For purposes of calculation, the generalized Stieltjes constant is implemented in the commercial software
Wolfram Mathematica as γn(ν) = StieltjesGamma[n, ν][121]
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quasiparticles, there is still a well-defined Fermi surface, and so forth. Luttinger liquids, on
the other hand, look remarkably different from a noninteracting 1D electron gas. In this
case, the interactions result in low-lying excitations that are collective and thus bosonic in
nature.

From a computational perspective, Luttinger liquids are a very attractive system to work
with because the interacting fermions in 1D become a system of noninteracting bosons,
resulting in an exactly solvable theory. Following the conventions of Giamarchi [31], the new
bosonic degrees of freedom are described using two field operators, θ and φ, that satisfy the
canonical commutation relations

[φi(x), ∂x′θj(x
′)] = iπδijδ(x

′ − x) (4.117a)

[φi(x), θj(x
′)] = i

π

2
δijsign(x′ − x) (4.117b)

[φi(x), φj(x
′)] = [θi(x), θj(x

′)] = 0 (4.117c)

where x and x′ denote position along the Luttinger liquid and i and j denote species (eg
which Luttinger liquid the operator acts on). Additionally, φ and θ have the nice property
that φ† = φ and θ† = θ.

The bosonic fields are related to the real electrons in the system by the Fermion operators

ψr(x) = Ur lim
a→0

1√
2πa

eir(kF−π/L)xe−i(rφ(x)−θ(x)) (4.118a)

ψ†r(x) = U †r lim
a→0

1√
2πa

e−ir(kF−π/L)xei(rφ(x)−θ(x)) (4.118b)

where r is 1 for right-moving fermions and −1 for left-moving fermions.
We can calculate the fermion commutation relations from the boson ones by writing out

the exponentials and doing some algebra. The results, also using the fact that the Klein
factors Ur anticommute for different species (left/right and/or different Luttinger liquids),
are just the usual Fermion anticommutation rules:

{ψα(x), ψβ(x′)} = {ψ†α(x), ψ†β(x′)} = 0

{ψ†α(x), ψβ(x′)} = Bδ(x− x′)δαβ

where B is a numerical constant that depends on our precise normalization convention. In
practice, instead of computing these from the bosonic commutators of equations (3.14), we
calculate these anticommutation relations by writing the fermion field operators as Fourier
transforms of the momentum-space operators ck. This will allow us both to easily find the
value of the constant B and to relate the hopping term in the Luttinger Hamiltonian (see
section 4.3) to the one in the noninteracting model (section 4.2).
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Fourier transform definition of field operators

Our next step, then, is to formalize the relation between the ψ and c operators. The general
form must be

ψ(r) = A
∑
k

eikxck (4.119)

and therefore also
ψ†(r) = A∗

∑
k

e−ikxc†k (4.120)

We can find the value of A by careful normalization. For the sake of concreteness, consider
a 1D chain with N sites, total length L, and periodic boundary conditions. Then k takes
the values 2π

L
n for n = 0, 1, · · · , N −1. Note that the spacing in k values is dk = 2π/L. Also

suppose that the total number of electrons is Ne.
Then we have

Ne =

∫ 〈
ψ†(x)ψ(x)

〉
dx

= |A|2
∫ 〈∑

k

e−ikxc†k
∑
q

eiqxcq

〉
dx

= |A|2
∑
kq

〈
c†kcq

〉∫
dxei(q−k)x

= |A|2
∑
kq

〈
c†kcq

〉
× 2πδ(q − k)

= |A|2
∑
k

nk × 2π
∑
q

δ(q − k)

= |A|2
∑
k

nk × L
∫
q

δ(q − k)dq

= L|A|2
∑
k

nk

= L|A|2
∑
k

nk

= L|A|2Ne

Thus |A| = 1/
√
L, and we can choose A = 1/

√
L.

With this value of A determined, we now have the relation between the real-space and
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Fourier-space creation and annihilation operators:

ψ(r) =
1√
L

∑
k

eikxck (4.121a)

ψ†(r) =
1√
L

∑
k

e−ikxc†k (4.121b)

The inverse Fourier transform relations are

ck =
1√
L

∫
e−ikxψ(x) dx (4.122a)

c†k =
1√
L

∫
eikxψ†(x) dx (4.122b)

We also want to find expressions for the creation and annihilation operators corresponding
to right- and left-moving real-space fermions, ψR and ψL. These represent fermions with
momentum “near to” the right and left Fermi points, ±kF . This is in quotation marks
because in fact we will still write ψR and ψL in the style of equations (4.121), as a sum over
all k values in the range −∞ to ∞; however, it will be “centered” at ±kF in the sense that
the Fermi wave vector will be the new k = 0 point. Working this out in the example case of
ψR, we begin with:

ψR(x) =
1√
L

∑
k≈kF

eikxck

Let k = kF + k′:

=
1√
L

∑
k′

ei(kF+k′)xckF+k′

Let ck′,R = ckF+k′ :

=
eikF x√
L

∑
k′

eik
′xck′,R

=
eikF x√
L

∑
k

eikxck,R

For left-movers, the definition is basically the same except that ck′,L = c−kF+k′ , so we use
the substitution k = −kF + k′, giving

ψL(x) =
e−ikF x√

L

∑
k

eikxck,L
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In total, then, we have the four definitions

ψR(x) =
eikF x√
L

∑
k

eikxck,R (4.123a)

ψ†R(x) =
e−ikF x√

L

∑
k

e−ikxc†k,R (4.123b)

ψL(x) =
e−ikF x√

L

∑
k

eikxck,L (4.123c)

ψ†L(x) =
eikF x√
L

∑
k

e−ikxc†k,L (4.123d)

To get the inverse relationships, we can multiply by e±ikF x on both sides and then compare
with the relationships between the centered (original) ψ(x) and ck operators. For example,

e−ikF xψR(x) =
1√
L

∑
k

eikxck,R

Compare this with equation 4.121a and notice that it looks the same but with the substi-
tutions ψ(x) → e−ikF xψR(x) and ck → ck,R. Then if we make the same substitutions in
equation 4.122a, we will find the analogous statement for the right-moving operators, which
is

ck,R =
1√
L

∫
e−ikxe−ikF xψR(x)dx

The four statements of this type are

ck,R =
1√
L

∫
e−ikxe−ikF xψR(x)dx (4.124a)

c†k,R =
1√
L

∫
eikxeikF xψ†R(x)dx (4.124b)

ck,L =
1√
L

∫
e−ikxeikF xψL(x)dx (4.124c)

c†k,L =
1√
L

∫
eikxe−ikF xψ†L(x)dx (4.124d)

For our later calculations, it will be helpful to rewrite the expressions above in terms of
α = ±1, 1 for right-movers and −1 for left-movers. We have:

ckα =
1√
L

∫
e−ikxe−iαkF xψα(x)dx (3.29a)

ψα(x) =
eiαkF x√

L

∑
k

eikxckα (3.29b)
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The fact that the ψ operators can be written as linear combinations of the c makes it
immediately clear that {ψα(x), ψβ(x′)} = {ψ†α(x), ψ†β(x′)} = 0 as claimed above. We can

also now easily and explicitly compute {ψ†α(x), ψβ(x′)}.
We begin by calculating for the full ψ operator, not just for ψR and ψL, in which case

the α and β indices can be written as j and l, labeling specific Luttinger liquids on which
the ψ operators act. Then we have:

{ψ†j(x′), ψl(x)} =
1

L

∑
kq

ei(kx−qx
′){c†j,q, cl,k}

=
1

L

∑
kq

ei(kx−qx
′)δqkδjl

=
δjl
L

∑
k

eik(x−x′)

=
δjl
2π

∫
k

eik(x−x′)dk

= δjlδ(x− x′)

We also want to do the same calculation for ψ operators for right- and left-moving excitations.
We must be a little bit careful, as there are two naive approaches, both of which are not
correct. First, we might look at just the technical definitions of ψR and ψL above (equations
4.123), which makes it clear that they are in fact both identical to each other and to ψ since
all we did is relabel indices. This would suggest that

{ψ†R(x), ψR(x′)} = {ψ†L(x), ψL(x′)} = {ψ†R(x), ψL(x′)} = {ψ†L(x), ψR(x′)} = δ(x− x′)

Alternatively, we might forget about equations (4.123) entirely, and instead make the natural-
seeming assumption that ψ(x) = ψR(x) + ψL(x) and that right- and left-movers are com-
pletely uncorrelated from each other so that {ψ†R(x), ψL(x′)} = 0. In that case we would
find:

{ψ†(x′), ψ(x)} = {ψ†R(x′) + ψ†L(x′), ψR(x) + ψL(x)}
= {ψ†R(x′), ψR(x)}+ {ψ†R(x′), ψL(x)}+ {ψ†L(x′), ψR(x)}+ {ψ†L(x′), ψL(x)}
= {ψ†R(x′), ψR(x)}+ 0 + 0 + {ψ†L(x′), ψL(x)}
= 2{ψ†R(x′), ψR(x)} = 2{ψ†L(x′), ψL(x)}

{ψ†R(x′), ψR(x)} = {ψ†L(x′), ψL(x)} =
1

2
δ(x− x′)

In practice, we will do something different from either of these options, but which captures
the spirit of both. In particular, the usual construction of the Tomonaga-Luttinger model
begins by linearizing a band structure around the Fermi points and then separating the
band into two independent linear bands with no correlation to each other. In this case,
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the equations (4.123) still apply, but ck,R and ck,L are now considered to be completely
independent. In other words, we choose to forget that ck,R = ck+2kF ,L, which we think of as
neglecting 2kF scattering between the Fermi points. In practice, this means that we assume
{c†kR, ck′L} = 0 for any k and k′, and therefore also {ψ†R(x), ψL(x′)} = 0 for any x and x′.

On the other hand, the k states in the sums in the definitions of both ψR and ψL are viewed
as a complete set (a whole band, not just half of one) and so {ψ†R(x), ψR(x′)} = δ(x − x′),
not 1

2
δ(x − x′). This can also be confirmed by direct calculation from equations (4.123).

(Actually doing this calculation, there appears to be an extra factor of e−ikF (x−x′), but it can
be dropped because it is multiplied by a delta function that forces x = x′.) Note that this
implies that it is not correct to say that ψ(x) = ψR(x) + ψL(x). Instead of each excitation
in real space having a right-moving part and a left-moving part, our picture is that the
excitation is either entirely right-moving or entirely left-moving.

Fourier transform results summary

We have found the following relations between the operators in the momentum space and
real space pictures:

ψ(r) =
1√
L

∑
k

eikxck (4.121a)

ck =
1√
L

∫
e−ikxψ(x) dx (4.122a)

ψα(x) =
eiαkF x√

L

∑
k

eikxckα (3.29b)

ckα =
1√
L

∫
e−ikxe−iαkF xψα(x)dx (3.29a)

where in the last two equations α is R or L when used as a label and is 1 or −1 respectively
when used in an expression.

From these relations, we also determined that

{ψα(x), ψβ(x′)} = 0 (4.127)

{ψ†α(x), ψ†β(x′)} = 0 (4.128)

{ψ†α(x), ψβ(x′)} = δαβδ(x− x′) (4.129)

These results for the anticommutators are correct regardless of whether the indices α and β
denote the Luttinger liquid on which the operators act, the direction of the excitations (R
or L), or some composite of these and other labels.
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Luttinger liquid Hamiltonian

The last thing that we need for computations on Luttinger liquids is the Hamiltonian itself.
When written in terms of the bosonic fields, the Hamiltonian is given by [31]

H =
~
2π

∫
dx

[
vK

~2
(∇θ)2 +

v

K
(∇φ)2

]
(4.130)

This Hamiltonian is quadratic, meaning that things like correlation functions can be calcu-
lated exactly. It is also worth making a quick note about the parameters that appear. K
is a measure of the strength of electron-electron interactions in the original fermion model.
In rewriting the theory in terms of the bosons, the interactions are now reflected simply in
numerical prefactors to existing (noninteracting) terms! K = 1 in the noninteracting limit,
and K < 1 and K > 1 correspond to repulsive and attractive interactions respectively. The
parameter v is a renormalized Fermi velocity. (v depends on K [31, eq 2.43], but that will
not be important for our purposes.)

Our model

For our computations, we are of course are studying a system described not just by a single
Luttinger liquid but rather by many coupled Luttinger liquids. The total Hamiltonian that
we use is given by

H =
∑
j

Hj =
∑
j

hj + h′j (4.131a)

hj =
~
2π

∫
dx

[
vK

~2
(∇θj)2 +

v

K
(∇φj)2

]
(4.131b)

h′j =
1

2

∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′) + tαβ(x− x′)ψ†j−1,α(x)ψjβ(x′) + h.c.

]
(4.131c)

where hj is the Luttinger liquid Hamiltonian for chain j and h′j has half of each hopping term
to and from chain j. (Note that we could have chosen to write the h′j term differently by,
for instance, only including the hopping to [but not from] chain j and removing the factor of
1/2, or only including hopping between chain j and chain j− 1 but not between j and j + 1
and again removing the 1/2. We have instead chosen to write the Hamiltonian this way in
anticipation of the calculation of the energy current operator.)

Electrical current operator

We derive an expression for the electrical current operator for this model in precisely the
same way as in the previous model:

Je = lim
k→0

q

~k
∑
j

[Nj, H]eikacj (4.40)
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where j indexes 1D chains, ac is the interchain spacing, and Nj is the total fermion number
operator associated with chain j. For the Hamiltonian, H, we use the coupled Luttinger
liquid model from equation (4.131).

As in the calculations for the previous model, we begin by calculating the commutator
[Nj, H]. There are two parts that we need to calculate, [Nj, hi] and [Nj, h

′
i]. The first is 0 for

the same reason as in the previous model: each hi only contains terms with an even number
of fermion operators and thus commutes with the number operator on a different chain.
(That [Nj, hi] = 0 is less obvious in the case of i = j. However, Nj as given in equation
(4.132) below looks like the hopping term h′j but with j−1 and j+1 both replaced by j and
with x′ → x and β → α. Making these changes in our result for [Nj, H] below, it is clear
that the commutator will vanish.) Physically, the vanishing of this commutator is because
each hi is the Hamiltonian of an isolated Luttinger liquid, on which the total fermion number
cannot change (independent of what the theory looks like, the underlying physical system it
represents must in fact have a conserved number of electrons). If hi does not connect states
with different fermion number, it must commute with the number operator.

It remains to find the commutator of the Nj with the hopping terms of H, or [Nj, h
′
i].

The number operator is given by

Nj =

∫
x

dx [ψ†j,R(x)ψj,R(x) + ψ†j,L(x)ψj,L(x)] (4.132)

Note that this expression does not contain terms like ψ†RψL. These would be expected if
ψ(x) = ψR(x) +ψL(x), since we would then integrate over ψ†ψ; however, as discussed above
it is not correct to decompose ψ in this way because we have split the model into separate
bands. In that case, a term like ψ†RψL would represent a scattering process rather than
particle enumeration.

The hopping terms from the Hamiltonian are the ones from equation (4.131), although
in this case we can simplify a bit by instead using the form

h′i =
∑

α,β=R,L

∫
dx dx′ tαβ(x− x′)[ψ†i,α(x)ψi+1,β(x′) + ψ†i+1,α(x)ψi,β(x′)] (4.133)

since this has fewer terms. In the calculation of electrical current, the Hamiltonian only
appears in the form of H =

∑
iHi, so that which Hi we put the hopping terms in clearly

cannot matter and therefore we might as well take this form that somewhat simplifies our
calculations.

Even with this simpler expression, h′i still has 8 terms in total so that each commutator
[Nj, h

′
i] has 16 terms. Fortunately, the various terms are all quite similar so we only really

need the following two rules:

[AB,CD] = ABCD − CDAB = A{B,C}D − C{D,A}B (4.134)

{ψ†a(x), ψb(x
′)} = δabδ(x− x′) (4.129)
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We then perform the actual computation of the commutator:

[Nj , H] =
∑
i

[Nj , h
′
i]

=
∑
i

∑
αβγ=R,L

∫
dx dx′ dx′′ tβγ(x′ − x′′)

× [ψ†j,α(x)ψj,α(x), (ψ†i,β(x′)ψi+1,γ(x′′) + ψ†i+1,β(x′)ψi,γ(x′′))]

=
∑
i

∑
αβγ=R,L

∫
dx dx′ dx′′ tβγ(x′ − x′′)


ψ†j,α(x){ψj,α(x), ψ†i,β(x′)}ψi+1,γ(x′′)

−ψ†i,β(x′){ψi+1,γ(x′′), ψ†j,α(x)}ψj,α(x)

+ψ†j,α(x){ψj,α(x), ψ†i+1,β(x′)}ψi,γ(x′′)

−ψ†i+1,β(x′){ψi,γ(x′′), ψ†j,α(x)}ψj,α(x)



=
∑
i

∑
αβγ=R,L

∫
dx dx′ dx′′ tβγ(x′ − x′′)


ψ†j,α(x)ψi+1,γ(x′′)δαβδjiδ(x− x′)
−ψ†i,β(x′)ψj,α(x)δαγδji+1δ(x− x′′)
+ψ†j,α(x)ψi,γ(x′′)δαβδji+1δ(x− x′)
−ψ†i+1,β(x′)ψj,α(x)δαγδjiδ(x− x′′)


=

∑
αβγ=R,L

∫
dx dx′

[
tβγ(x− x′)ψ†j,α(x)ψj+1,γ(x′)δαβ − tβγ(x′ − x)ψ†j−1,β(x′)ψj,α(x)δαγ

+tβγ(x− x′)ψ†j,α(x)ψj−1,γ(x′)δαβ − tβγ(x′ − x)ψ†j+1,β(x′)ψj,α(x)δαγ

]

=
∑

αβ=R,L

∫
dx dx′ tαβ(x− x′)

[
ψ†j,α(x)ψj+1,β(x′)− ψ†j−1,α(x)ψj,β(x′)

+ψ†j,α(x)ψj−1,β(x′)− ψ†j+1,α(x)ψj,β(x′)

]

Now we can again use the useful fact that for any operator depending on site j, Oj,

lim
k→0

1

k

∑
j

(Oj+1 −Oj)e
ikaj = −ia

∑
j

Oj (4.45)

With this, we get our final result for the current operator:

Je =
iacq

~
∑
j

∑
αβ=R,L

∫ [
tαβ(x− x′)ψ†j,α(x)ψj−1,β(x′)

− tβα(x′ − x)ψ†j−1,β(x′)ψj,α(x)

]
dx dx′ (4.135)

Thermal current operator

As in the noninteracting model, the expression for the energy current is

JE = lim
k→0

1

~k
∑
j

[Hj, H]eikacj (4.48)

where j indexes chains and Hj is the portion of the Hamiltonian associated with chain j (so∑
j Hj = H). There is some ambiguity here, since it is unclear for instance whether hopping
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terms from chain j to chain j+1 or vice-versa should be included in Hj or in Hj+1. We have
chosen to split the two hopping terms evenly between the two sites, so that Hj is given by
the expressions in equation (4.131) above.

The first step in the calculation is to find the commutator of Hj and H. This actually
simplifies quite nicely using the division into local and hopping terms, Hj = hj + h′j:

[Hj, H] =
∑
i

[Hj, Hi] =
∑
i

[hj, hi] + [hj, h
′
i] + [h′j, hi] + [h′j, h

′
i] (4.136)

The first term is 0 because each local Hamiltonian hα preserves particle number and hence
has an even number of fermion operators in each term; as discussed in section 4.2 above, this
leads to a vanishing commutator because fermion operators of two different species (say, on
two different chains) anticommute so that any pair of fermion operators of one species will
collectively commute with any fermion operator(s) of a different species.

Furthermore, the fourth term is second order in the interchain hopping strength, t, and
is thus negligible in the weak-coupling quasi-atomic limit. This gives the simplified result

[Hj, H] ≈
∑
i

[h′j, hi]− [h′i, hj]

Unfortunately, these commutators still require a substantial amount of computation. In
particular, we must compute terms like [ψ†i+1,α(x)ψiβ(x′), (∇θj(x̃))2]. After some algebra we
find the useful results:

[ψiα(x),∇θj(x′)] = απδijδ(x− x′)ψi(x) (3.15a)

[ψ†iα(x),∇θj(x′)] = −απδijδ(x− x′)ψ†i (x) (3.15b)

[ψiα(x),∇φj(x′)] = −πδijδ(x− x′)ψi(x) (3.15c)

[ψ†iα(x),∇φj(x′)] = πδijδ(x− x′)ψ†i (x) (3.15d)

where α may take the values R and L when used as an index and the values 1 and −1
respectively when used as a multiplicative factor. For the sake of completeness, we give a
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full derivation of the first of these results, equation (3.15a).

[ψiα(x),∇θj(x′)] = Uα lim
a→0

1√
2πa

eiα(kF−π/L)
[
e−i(αφi(x)−θi(x)),∇θj(x′)

]
= Uα lim

a→0

1√
2πa

eiα(kF−π/L)
∞∑
n=0

(−i)n
n!

[
(αφi(x)− θi(x))n,∇θj(x′)

]
(αφi(x)− θi(x))n∇θj(x′) = (αφi(x)− θi(x))n−1∇θj(x′)(αφi(x)− θi(x))

+ (αφi(x)− θi(x))n−1[αφi(x)− θi(x),∇θj(x′)]
= (αφi(x)− θi(x))n−1∇θj(x′)(αφi(x)− θi(x))

+ αiπδ(x− x′)δij(αφi(x)− θi(x))n−1

...

= ∇θj(x′)(αφi(x)− θi(x))n + αinπδ(x− x′)δij(αφi(x)− θi(x))n−1[
(αφi(x)− θi(x))n,∇θj(x′)

]
= αinπδ(x− x′)δij(αφi(x)− θi(x))n−1

[ψiα(x),∇θj(x′)] = Uα lim
a→0

1√
2πa

eiα(kF−π/L)

×
∞∑
n=0

(−i)n
n!

[
αinπδ(x− x′)δij(αφi(x)− θi(x))n−1

]
= Uα lim

a→0

1√
2πa

eiα(kF−π/L)

×
∞∑
n=1

(−i)(n−1)(−i)
(n− 1)!

[
αiπδ(x− x′)δij(αφi(x)− θi(x))n−1

]
= Uα lim

a→0

1√
2πa

eiα(kF−π/L)e−i(αφi(x)−θi(x))απδ(x− x′)δij

= απδ(x− x′)δijψiα(x)

For equation (3.15b), the only difference in the derivation is that (−i)n becomes in, so
when the extra factor leftover from shifting the summation index is multiplied by the i from
the commutator of φ and ∇θ, we get −1 instead of 1. For the φ commutators, (3.15c) and
(3.15d), the only difference is that [αφ− θ,∇θ] is replaced by [αφ− θ,∇φ]; in the first case
we have α[φi(x),∇θj(x′)] = iαπδijδ(x−x′) whereas in the second we have −[θi(x),∇φj(x′)].
To find this commutator, we can start from the commutator of φ and θ:

[φ(x), θ(x′)] = i
π

2
sign(x′ − x)⇒ [θ(x′), φ(x)] = −iπ

2
sign(x′ − x)

⇒ [θ(x′),∇φ(x)] = iπδ(x′ − x)

⇒ −[θi(x),∇φj(x′)] = −iπδ(x′ − x)δij

This is the same result as for [φ,∇θ] but with α→ −1. Thus the results (3.15c) and (3.15d)
are found by making the subsitution α → −1 in (3.15a) and (3.15b). This completes the
confirmation of all four results given in equations (3.15).
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With some further algebra, the commutators in equations (3.15) lead to

[ψ†iα(x̃)ψi+1,β(x), (∇θj(x′))2] =

[
2π∇θj(x′) (βδ(x− x′)δi+1,j − αδ(x− x̃)δij)

+π2 (βδ(x− x′)δi+1,j − αδ(x− x̃)δij)
2

]
ψ†iα(x̃)ψi+1,β(x)

(4.138a)

[ψ†iα(x̃)ψi+1,β(x), (∇φj(x′))2] =

[ −2π∇φj(x′) (δ(x− x′)δi+1,j − δ(x− x̃)δij)

+π2 (δ(x− x′)δi+1,j − δ(x− x̃)δij)
2

]
ψ†iα(x̃)ψi+1,β(x)

(4.138b)

and using these results, we can conclude that

[ψ†iα(x̃)ψi+1,β(x), hj] = v

 δi+1,j

(
βK~∇θj(x)− α ~

K
∇φj(x)

)
−δij

(
K
~∇θj(x̃)− ~

K
∇φj(x̃)

)
+π

2

(
K
~ + ~

K

)
δ(0) (δi+1,j + δij)

ψ†iα(x̃)ψi+1,β(x) (4.139)

In total, [h′j, hi] − [h′i, hj] has eight such terms, which we must add up. We then also
perform a sum over the index i to find [Hj, H]. In the case that the index i (which labels the
various 1D chains) is either infinite or periodic, we can perform various tricks with relabeling
indices to cancel terms. When we do this, the eight terms with δ(0) end up canceling, so
that in the end we have:

[Hj , H] =
v

2

∫
tαβ(x′ − x)


[∇j+1]βxψ

†
jα(x′)ψj+1,β(x)− [∇j ]βxψ†j−1,α(x′)ψjβ(x)

+[∇j−1]βxψ
†
jα(x′)ψj−1,β(x)− [∇j ]βxψ†j−1,α(x′)ψjβ(x)

−
(

[∇j+1]αx′ψ
†
j+1,α(x′)ψjβ(x)− [∇j ]αx′ψ

†
jα(x′)ψj−1,β(x)

+[∇j−1]αx′ψ
†
j−1,α(x′)ψjβ(x)− [∇j ]αx′ψ

†
jα(x′)ψj+1,β(x)

)
 dx dx′

(4.140)

where

[∇j]
α
y = α

K

~
∇θj(y)− ~

K
∇φj(y) (4.141)

Finally, we can combine equations (4.40), (4.140), and (4.45) to calculate the current oper-
ator. The result is

JE =
iacv

2~
∑
jαβ

∫
tαβ(x′ − x)

 (
[∇j]

α
x′ + [∇j−1]βx

)
ψ†jα(x′)ψj−1,β(x)

−
(
[∇j−1]αx′ + [∇j]

β
x

)
ψ†j−1,α(x′)ψjβ(x)

 dx dx′ (2.26b)

Using the commutators given above, one can check that [ψ†jα(x), [∇j]
α
x ] = −πδ(0)

(
K
~ + ~

K

)
,

[ψjα(x), [∇j]
α
x ] = πδ(0)

(
K
~ + ~

K

)
, and hence [ψ†jα(x′)ψj−1,β(x), [∇j−1]βx′ + [∇j]

α
x ] = 0, so the

current operator is indeed Hermitian.
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Current-current correlators

As in the noninteracting model, to find the transport coefficients using the Kubo formu-
las we must first find several current-current correlation functions, namely 〈Je(τ)Je(0)〉,
〈JE(τ)JE(0)〉, and 〈JE(τ)Je(0)〉. Those calculations are somewhat more involved in this
model, but we nevertheless present full details of our work here.

〈Je(τ)Je(0)〉
The first step in our calculation is to find the time-dependence of the current operator. We
first make the same approximation as in the previous model, namely that to lowest order
in the interchain hopping we can drop the hopping terms entirely from the Hamiltonian
appearing in the time-evolution operator,

e−τH = e−τ
∑
j Hj → e−τ

∑
j hj = e−τH0 (4.142)

We will not calculate the time evolution explicitly, but rather we will just denote the time
evolution of each ψ(x) operator by ψ(x, τ). Since we use only H0 in calculating the time-
dependence, ψ(x, τ) is just the time-evolved fermion operator for a single uncoupled Luttinger
liquid.

With this approach, we can begin the calculation. First recall that we found above

Je =
iacq

~
∑
j

∑
αβ=R,L

∫ [
tαβ(x− x′)ψ†j,α(x)ψj−1,β(x′)

− tβα(x′ − x)ψ†j−1,β(x′)ψj,α(x)

]
dx dx′ (4.135)

We thus have the corresponding time-evolved expression:

Je(τ) =
iacq

~
∑
j

∑
αβ=R,L

∫ [
tαβ(x− x′)ψ†j,α(x, τ)ψj−1,β(x′, τ)

− tβα(x′ − x)ψ†j−1,β(x′, τ)ψj,α(x, τ)

]
dx dx′ (4.143)

Note that the ability to distribute the time-evolution to the individual fermion operators
does not depend on any approximation, but rather is just a result of inserting a factor of
e−τHeτH between the two operators in each term.

Next, in calculating 〈Je(τ)Je〉, the brackets indicate a thermal average just as in the
previous model, and again we drop the interchain hopping from the Hamiltonian appearing
in the density matrix,

e−βH → e−βH0 = e−β
∑
j hj =

∏
j

e−βhj , (4.144)

an approximation that, along with the equivalent approximation to the time-evolution op-
erators, allows us to split the expectation value into a product of expectation values on
separate chains.
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With the preliminaries out of the way, we can proceed to the actual calculation:

〈Je(τ)Je〉 =
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

(acq
~

)2

tαβ(x1 − x2)tγδ(x3 − x4) 〈· · · 〉

〈· · · 〉 =

〈 eτH [ψ†j−1,α(x1)ψj,β(x2)− ψ†j,α(x1)ψj−1,β(x2)]

×e−τH [ψ†i,γ(x3)ψi−1,δ(x4)− ψ†i−1,γ(x3)ψi,δ(x4)]

〉

= δij

〈
eτHψ†j−1,α(x1)ψj,β(x2)e−τHψ†j,γ(x3)ψj−1,δ(x4)

+ eτHψ†j,α(x1)ψj−1,β(x2)e−τHψ†j−1,γ(x3)ψj,δ(x4)

〉
= δij

〈
eτhj−1ψ†j−1,α(x1)e−τhj−1eτhjψj,β(x2)e−τhjψ†j,γ(x3)ψj−1,δ(x4)

+ eτhjψ†j,α(x1)e−τhjeτhj−1ψj−1,β(x2)e−τhj−1ψ†j−1,γ(x3)ψj,δ(x4)

〉
= δij

〈
ψ†j−1,α(x1, τ)ψj,β(x2, τ)ψ†j,γ(x3)ψj−1,δ(x4)

+ ψ†j,α(x1, τ)ψj−1,β(x2, τ)ψ†j−1,γ(x3)ψj,δ(x4)

〉
= δij〈ψ†j−1,α(x1, τ)ψj−1,δ(x4)〉〈ψj,β(x2, τ)ψ†j,γ(x3)〉

+ δij〈ψ†j,α(x1, τ)ψj,δ(x4)〉〈ψj−1,β(x2, τ)ψ†j−1,γ(x3)〉
= δij〈ψ†j−1,α(x1 − x4, τ)ψj−1,δ(0)〉〈ψj,β(x2 − x3, τ)ψ†j,γ(0)〉

+ δij〈ψ†j,α(x1 − x4, τ)ψj,δ(0)〉〈ψj−1,β(x2 − x3, τ)ψ†j−1,γ(0)〉
= 2δij〈ψ†j−1,α(x1 − x4, τ)ψj−1,δ(0)〉〈ψj,β(x2 − x3, τ)ψ†j,γ(0)〉
= 2δijδαδδβγ〈ψ†j−1,α(x1 − x4, τ)ψj−1,α(0)〉〈ψj,β(x2 − x3, τ)ψ†j,β(0)〉

In the third line, we eliminated two of four terms because they either move electrons to
lower j twice and never to higher j or vice versa. Either way, these terms are not diagonal
and vanish in the trace when calculating the expectation value. In the fourth line, we
used the fact that the Hamiltonian for each individual Luttinger liquid commutes with the
Fermion operators on other chains and the fact that we can ignore the hopping terms in the
Hamiltonian for purposes of time evolution if we want the conductivity to lowest order in t.
Likewise, in the sixth line I used the fact that the expectation values are taken with respect
to the t = 0 density matrix if the conductivity is to be found to the lowest order in t, so that
the expectation value of a product of operators on two different chains is the product of the
expectation values of the operators on each chain taken independently. The second-to-last
line follows from the fact that the correlation functions don’t depend on which polymer is
under consideration, and the two terms differ only in the substitution j ↔ j − 1. The last
line follows from the fact that left-and right-moving excitations are uncorrelated.

We then have a complete expression for the current-current correlator:

〈Je(τ)Je〉 = 2
∑
j

∑
αβ

∫
dx1 dx2 dx3 dx4


(
acq
~

)2
tαβ(x1 − x2)tβα(x3 − x4)

×〈ψ†j−1,α(x1 − x4, τ)ψj−1,α(0)〉
×〈ψj,β(x2 − x3, τ)ψ†j,β(0)〉

 (4.145)
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Before we put in an exact functional form for the single-particle correlation functions, we
can make two more simplifying approximations. First, we will assume that a right-mover on
one chain can only hop to a right-mover on an adjacent chain and likewise for left-movers,
or in other words tαβ(x − x′) is 0 for α 6= β. This assumption is well-justified if we view
our system as initially coming from a 2D lattice tight-binding model. In that case, if we go
to Fourier components along one direction (along chains), the momentum in that direction
will be conserved when the excitation hops in the orthogonal (inter-chain) direction, which
in particular means that right- and left-movers will not be interchanged. This assumption
simplifies tαβ(x−x′) to tRR(x−x′)δαRδβR + tLL(x−x′)δαLδβL. By symmetry, it must be the
case that tRR = tLL, so tαβ(x−x′) = t(x−x′)δαβ where t(x−x′) = tRR(x−x′) = tLL(x−x′).

Additionally, hopping should be more or less local. This implies that t(x− x′) should be
sharply peaked around x = x′. For simplicity, we will assume a precisely peaked hopping:
t(x− x′) ∝ tδ(x− x′), where on the right-hand side t is a constant that does not depend on
position. As discussed in section 4.6, the precise expression we want to use is t

2π
δ(x− x′).

Putting these two assumptions together, we get the nice simplification that

tαβ(x− x′) =
t

2π
δαβδ(x− x′) (4.146)

where t is a constant. With this simplification, our expression for the correlator becomes

〈Je(τ)Je〉 ≈ 2

(
acqt

2π~

)2∑
jα

∫
dx dx′

[
〈ψ†j−1,α(x− x′, τ)ψj−1,α(0)〉〈ψj,α(x− x′, τ)ψ†j,α(0)〉

]
(4.147)

We can do even slightly better. Since the only dependence is on x− x′, we can switch to
a coordinate system with variables x− x′ and (x+ x′)/2.

Before actually making this variable transformation, let us note a sleight of hand which
we have glossed over. In modeling a given 1D chain, we can choose either to have periodic
or open boundary conditions, although either way we ought to get the same result when we
consider the limit of chain length going to infinity. Here we have mixed the two approaches:
in assuming that tαβ = tδαβ, we argued using conservation of momentum along each chain,
but that argument if made rigorous requires periodic boundary conditions. On the other
hand, t(x − x′) = tδ(x − x′) requires open boundary conditions, since otherwise we would
have t(x− x′) = t

∑
i δ(x− x′ − iL) where L is the length of the (periodic) chain. Since the

two models coincide as L→∞, I will continue to use them interchangeably in this manner.
The following coordinate transformation uses open boundary conditions, though the same
result is of course obtained with periodic ones if L → ∞, a limit which we will take in the
calculations that follow.

With this caveat in mind, we can continue. Note that the Jacobian of the transformation
(x, x′) → (x+x′

2
, x − x′) has determinant −1, so there is no scaling factor needed for the

new integration measure that appears here. If we assume the polymer has total length L,
so that the integrals over x and x′ run from −L/2 to L/2, then we should find the limits
of integration in the new coordinates. Unfortunately, the integration region does not have
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horizontal and vertical sides in the new coordinates, so we must order the two integrals
carefully; the limits of the inner integral will depend on the value of the coordinate in the
outer integral.

In the new coordinate system the region of integration is diamond-shaped. The ends of
the diagonals are at ±L/2 along x+x′

2
and at ±L along x − x′. To be explicit, we choose

the outer integral to be over x− x′ and the inner to be over x+x′

2
, in which case the integral

over x − x′ runs from −L to L, and the integral over the average coordinate runs from
(|x− x′| −L)/2 to (L− |x− x′|)/2. Thus the integral over x+x′

2
gives a factor of L− |x− x′|

inside the x− x′ integral (because there is no explicit dependence on x+ x′). Then for any
function f(x− x′), we have the result that∫ L/2

−L/2

∫ L/2

−L/2
dx dx′ f(x− x′) =

∫ L

−L
(L− |x|)f(x) (4.148)

which in our particular case becomes

〈Je(τ)Je〉 ≈ 2L

(
acqt

2π~

)2∑
jα

∫
dx
[
〈ψ†j−1,α(x, τ)ψj−1,α(0)〉〈ψj,α(x, τ)ψ†j,α(0)〉

]
− 2

(
acqt

2π~

)2∑
jα

∫
dx
[
|x| × 〈ψ†j−1,α(x, τ)ψj−1,α(0)〉〈ψj,α(x, τ)ψ†j,α(0)〉

]
(4.149)

Fortunately, the second term can be neglected. As we will see shortly, the correlation
functions in the integrand are sharply peaked, going roughly as (cosh(πx/vβ))−γ where γ is
at least 1. Thus at any location x where the integrand is not negligible, |x| is on the order
of vβ/π. This means that as long as vβ/π � L, we can neglect the second term completely.
Since we consider the thermodynamic limit, that will be the case for all T 6= 0. Furthermore,
to make the problem computationally tractable we will let the limits of the x integral go
to ±∞; this approximation is valid if and only if the integral is exponentially small when
|x| > L, which again is when L � vβ/π. Thus the second term in equation (4.149) can
always be dropped in any case in which our calculation is valid. To ensure that we can
always drop the second term and also that we can extend the limits of the x integral to ±∞,
we will henceforth assume that vβ/π � L. We will therefore work with the expression

〈Je(τ)Je〉 ≈ 2L

(
acqt

2π~

)2∑
jα

∫
dx
[
〈ψ†j−1,α(x, τ)ψj−1,α(0)〉〈ψj,α(x, τ)ψ†j,α(0)〉

]
(4.150)

Finally we should turn to known results from the literature for the correlation functions.
−〈ψj,α(x, τ)ψ†j,α(0)〉 is the single-particle Green’s function, which is given by (see section
4.4):

Gα(x, τ) = −e
iαkF x

2πa

 −ia
vβ
π

sinh
(
x−ivτ
vβ/π

)

γ−α
2
 ia

vβ
π

sinh
(
x+ivτ
vβ/π

)

γ+α
2

(2.29)
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where α on the RHS is either +1 for right-movers or -1 for left-movers and γ is a measure
of interaction strength as defined in equation (2.11),

γ =
K +K−1

2
(2.11)

Recall that γ = 1 in the noninteracting limit and γ > 1 if there are either attractive or
repulsive interactions.

It is critical to realize that the expression in equation (2.29) is the Green’s function for
an isolated Luttinger liquid; we are able to use this expression because we dropped the
interchain hopping terms from the Hamiltonian appearing in the time evolution operator
and the thermal density matrix.

We also need an expression for 〈ψ†j,α(x, τ)ψj,α(0)〉. This will look similar to the Green’s
function, equation (2.29), but not identical. The correct expression is

Gα(−x,−τ) =
e−iαkF x

2πa

 ia

vβ
π

sinh
(
x−ivτ
vβ/π

)

γ−α
2
 −ia
vβ
π

sinh
(
x+ivτ
vβ/π

)

γ+α
2

(4.151)

For a derivation, see section 4.4. We will call this function G̃α(x, τ). To summarize, we have:

−〈ψjα(x, τ)ψ†jα(0)〉 = Gα(x, τ) (4.152a)

−〈ψ†jα(x, τ)ψjα(0)〉 = G̃α(x, τ) = −Gα(−x,−τ) (4.152b)

Substituting these into our expression for the current-current correlator, equation (4.150)
becomes

〈Je(τ)Je〉 = −2NcL

(
acqt

2π~

)2∑
α

∫
Gα(x, τ)Gα(−x,−τ) dx , (4.153)

where we have also summed over the chain index j to get a factor of Nc, the total number of
chains. We could also replace the sum over α with a factor of 2, as done in the last line above.
Physically, this is because for calculating the interchain conductivity, symmetry dictates that
left- and right-movers along each chain must contribute equally. Mathematically, however,
the fact that the integral does not depend on α is not immediately obvious, so we will leave
the sum over α in place for now so that later in the calculation we can show precisely how
α disappears.

The last step in calculating the current-current correlator is to substitute the actual
expression for the Green’s function as given in equation (2.29). (Note that this is also a
possible branching point for future work; (4.153) can serve as a starting point for adding
more features, such as disorder, to the model just by modifying the expression for the Green’s
function.)
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〈Je(τ)Je〉 = −2NcL

(
acqt

2π~

)2∑
α

∫
Gα(x, τ)Gα(−x,−τ)dx

= −2NcL

(
acqt

2π~

)2 a2γ

(2πa)2

(
π

vβ

)2γ

×
∑
α

∫
dx

[
sinh

(
x+ ivτ

vβ/π

)
sinh

(
x− ivτ
vβ/π

)]−γsinh
(
x−ivτ
vβ/π

)
sinh

(
x+ivτ
vβ/π

)
α

Now we’ll make a substitution, (x′, τ ′) = (πx/vβ, πτ/β), to get

〈Je(τ ′)Je〉 = −2NcL

(
acqt

2π~

)2 a2γ

(2πa)2

(
π

vβ

)2γ−1

×
∑
α

∫
dx′
[
sinh

(
x′ + iτ ′

)
sinh

(
x′ − iτ ′

)]−γ (sinh (x′ − iτ ′)
sinh (x′ + iτ ′)

)α
Using some trig identities, we can helpfully rewrite the integrand:

= −2NcL

(
acqt

2π~

)2 a2γ

(2πa)2

(
π

vβ

)2γ−1

×
∑
α

∫
dx′

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)− iα2 sin(2τ ′) sinh(2x′)[
cosh(2x′)−cos(2τ ′)

2

]γ+1

The only term with α now vanishes because it is odd in x′. So we see that, as predicted based on
physical grounds above, α vanishes from the expression.

= −4NcL

(
acqt

2π~

)2 a2γ2γ+1

(2πa)2

(
π

vβ

)2γ−1 ∫
dx′

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)

[cosh(2x′)− cos(2τ ′)]γ+1

We can make the integral over x look a bit nicer by writing the numerator in terms of
2τ ′ to match the denominator, which gives

〈Je(τ ′)Je〉 = 4NcL

(
acqt

2π~

)2
a2γ2γ

(2πa)2

(
π

vβ

)2γ−1 ∫
dx′

1− cos(2τ ′) cosh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+1 (4.154)

or, rearranging the prefactor a little bit to clean up the expression,

〈Je(τ ′)Je〉 = 4NcL

(
acqt

2π~

)2
2γa

(2πa)2

(
πa

vβ

)2γ−1 ∫
dx′

1− cos(2τ ′) cosh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+1 (4.155)

Note that α vanished from our expressions just as we expected it would.
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The integral over x′ can be done exactly (we have used the commercial software Wolfram
Mathematica) if the limits of integration are −∞ and∞. It is easiest to break the integrand
into two pieces with different x dependence. Both are of the form∫ ∞

−∞

cosh(nx)

(cosh(2x)− cos(2τ))γ+1dx (4.156)

with n = 0 or 2. For use both here and in the calculations for thermal conductivity and
thermopower, we will use a slightly more general result, as follows:∫ ∞

−∞

cosh(nx)

(cosh(2x)− cos(2τ))γ+mdx = 2γ+m−1
(
f(γ, τ,m− n

2
,m) + f(γ, τ,m+

n

2
,m)

)
(4.157)

as long as n > 2(γ +m), where

f(γ, τ, n,m) =
F1(γ + n; γ +m, γ +m; γ + n+ 1; e2iτ , e−2iτ )

γ + n
(4.158)

and F1(a; b1, b2; c;x, y) is the first Appell hypergeometric function[82, §16.13]. Note that the
function f also has a relatively simple and convenient integral representation, namely

f(γ, τ, n,m) =

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m) dt (4.159)

This integral representation is derived from a similar one for F1 in section 4.7.
Using equation (4.157), when we compute our two separate integrals over x, we get:∫ ∞

−∞

1

(cosh(2x)− cos(2τ))γ+1dx = 2γ+1f(γ, τ, 1, 1) (4.160a)∫ ∞
−∞

cosh(2x)

(cosh(2x)− cos(2τ))γ+1dx = 2γ (f(γ, τ, 0, 1) + f(γ, τ, 2, 1)) (4.160b)

Substituting these results into equation (4.155), we get:

〈Je(τ ′)Je〉 =4NcL

(
acqt

2π~

)2
22γa

(2πa)2

(
πa

vβ

)2γ−1

× (2f(γ, τ ′, 1, 1)− cos(2τ ′) (f(γ, τ ′, 0, 1) + f(γ, τ ′, 2, 1))) (4.161)
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Again rearranging to clean up the prefactor, we have an explicit expression for the cor-
relator in terms of the scaled imaginary time, τ ′:

〈Je(τ ′)Je〉 =4NcL

(
acqt

2π~

)2
2a

(2πa)2

(
2πa

vβ

)2γ−1

×
(

2f(γ, τ ′, 1, 1)− cos(2τ ′)
(
f(γ, τ ′, 0, 1) + f(γ, τ ′, 2, 1)

))

(4.162)

The units provide a quick check on the validity of this expression. The combination a/vβ

is unitless if ~ = 1. Likewise NcLa/a
2 is unitless, as is F1. All that remains is

(
acqt
~

)2
, which

has units of (Coulomb meters/second)2, and Coulomb meters/second is precisely the correct
unit for electrical current.

Asymptotic behavior for small τ ′:
In section 4.1 above, we discuss the origin of numerical error in our results for the trans-

port coefficients. That error comes from the numerical integration of the current-current
correlation functions, so we need to know the rough order of magnitude of the size of those
integrals. The function 〈Je(τ ′)Je〉 diverges at τ ′ = 0 and π, and these poles give the domi-
nant contribution to the integral from ε to π − ε when the cutoff ε is much less than 1. To
find the exact scaling with ε, we therefore need the asymptotic behavior of 〈Je(τ ′)Je〉 for τ ′

near 0 and π. Since the function is symmetric about τ ′ = π/2, we can in fact look at just
τ ′ ≈ 0. We now examine 〈Je(τ ′)Je〉 in that limit.

The divergence of 〈Je(τ ′)Je〉 as τ ′ → 0 comes from the divergence of the integrand in
equation (4.155) when x ≈ 0. We can thus approximate the contribution of the pole to the
current-current correlator by taking a lowest order approximation of the integrand in both
x′ and τ ′, which gives∫

dx′
1− cos(2τ ′) cosh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+1 ≈ 2−γ
∫
dx′

(τ ′)2 − (x′)2

[(x′)2 + (τ ′)2]γ+1 ∝ (τ ′)1−2γ. (4.163)

Thus we conclude that for small τ ′, 〈Je(τ ′)Je〉 ∝ (τ ′)1−2γ. Then integrating over τ ′ from ε
to π − ε, the contribution from the pole at τ ′ = 0 is proportional to ε2−2γ. This is the fact
used in our error approximation in section 4.1.

〈JE(τ)JE(0)〉
This calculation is similar to the one for 〈Je(τ)Je〉, though the more complicated expression
for JE compared with Je results in rather messier algebra. As a reminder before beginning
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the calculation, the expression we derived for the energy current is

JE =
iacv

2~
∑
jαβ

∫
tαβ(x′ − x)

 (
[∇j]

α
x′ + [∇j−1]βx

)
ψ†jα(x′)ψj−1,β(x)

−
(
[∇j−1]αx′ + [∇j]

β
x

)
ψ†j−1,α(x′)ψjβ(x)

 dx dx′ (2.26b)

Again we will not give the time dependence explicitly, so we can immediately begin the
calculation:

〈JE(τ)JE〉 =
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

(acv
2~

)2

tαβ(x1 − x2)tγδ(x3 − x4) 〈· · · 〉 (4.164)

〈· · · 〉 =

〈
eτH

[ (
[∇i]

α
x1

+ [∇i−1]βx2
)
ψ†iα(x1)ψi−1,β(x2)

−
(
[∇i−1]αx1 + [∇i]

β
x2

)
ψ†i−1,α(x1)ψiβ(x2)

]
e−τH

×
[ (

[∇j−1]γx3 + [∇j]
δ
x4

)
ψ†j−1,γ(x3)ψj,δ(x4)

−
(
[∇j]

γ
x3

+ [∇j−1]δx4
)
ψ†j,γ(x3)ψj−1,δ(x4)

]
〉

=

〈
eτH

(
[∇i]

α
x1

+ [∇i−1]βx2
)
ψ†iα(x1)ψi−1,β(x2)e−τH

×
(
[∇j−1]γx3 + [∇j]

δ
x4

)
ψ†j−1,γ(x3)ψjδ(x4)

+ eτH
(
[∇i−1]αx1 + [∇i]

β
x2

)
ψ†i−1,α(x1)ψi,β(x2)e−τH

×
(
[∇j]

γ
x3

+ [∇j−1]δx4
)
ψ†jγ(x3)ψj−1,δ(x4)

〉
Note that α = δ and β = γ in order to conserve the number of left- and right-movers
(mathematically this follows from the presence of the Klein factors, U)

= δijδαδδβγ

〈
eτH

(
[∇j]

α
x1

+ [∇j−1]βx2
)
ψ†jα(x1)ψj−1,β(x2)e−τH

×
(
[∇j−1]βx3 + [∇j]

α
x4

)
ψ†j−1,β(x3)ψjα(x4)

+ eτH
(
[∇j−1]αx1 + [∇j]

β
x2

)
ψ†j−1,α(x1)ψj,β(x2)e−τH

×
(
[∇j]

β
x3

+ [∇j−1]αx4
)
ψ†jβ(x3)ψj−1,α(x4)

〉
= 2δijδαδδβγ

〈
eτH

(
[∇j]

α
x1

+ [∇j−1]βx2
)
ψ†jα(x1)ψj−1,β(x2)e−τH

×
(
[∇j−1]βx3 + [∇j]

α
x4

)
ψ†j−1,β(x3)ψjα(x4)

〉
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because the only difference between the two terms was j ↔ j − 1

= 2δijδαδδβγ

〈 eτH [∇j]
α
x1
ψ†j,α(x1)ψj−1,β(x2)e−τH [∇j−1]βx3ψ

†
j−1,β(x3)ψjα(x4)

+ eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τH [∇j−1]βx3ψ

†
j−1,β(x3)ψjα(x4)

+ eτH [∇j]
α
x1
ψ†jα(x1)ψj−1,β(x2)e−τH [∇j]

α
x4
ψ†j−1,β(x3)ψjα(x4)

+ eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τH [∇j]

α
x4
ψ†j−1,β(x3)ψjα(x4)

〉

= 2δijδαδδβγ


〈eτH [∇j]

α
x1
ψ†j,α(x1)ψj−1,β(x2)e−τH [∇j−1]βx3ψ

†
j−1,β(x3)ψjα(x4)〉

+ 〈eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τH [∇j−1]βx3ψ

†
j−1,β(x3)ψjα(x4)〉

+ 〈eτH [∇j]
α
x1
ψ†jα(x1)ψj−1,β(x2)e−τH [∇j]

α
x4
ψ†j−1,β(x3)ψjα(x4)〉

+ 〈eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τH [∇j]

α
x4
ψ†j−1,β(x3)ψjα(x4)〉



= 2δijδαδδβγ


〈[∇j]

α
x1,τ

ψ†jα(x1, τ)ψjα(x4)〉〈ψj−1,β(x2, τ)[∇j−1]βx3ψ
†
j−1,β(x3)〉

+ 〈[∇j−1]βx2,τψj−1,β(x2, τ)[∇j−1]βx3ψ
†
j−1,β(x3)〉〈ψ†jα(x1, τ)ψjα(x4)〉

+ 〈[∇j]
α
x1,τ

ψ†jα(x1, τ)[∇j]
α
x4
ψjα(x4)〉〈ψj−1,β(x2, τ)ψ†j−1,β(x3)〉

+ 〈[∇j−1]βx2,τψj−1,β(x2, τ)ψ†j−1,β(x3)〉〈ψ†jα(x1, τ)[∇j]
α
x4
ψjα(x4)〉


(4.165)

There are eight distinct types of two-point functions that appear in the expression: 〈ψ†ψ〉,
〈[∇]ψ†ψ〉, 〈ψ†[∇]ψ〉, 〈[∇]ψ†[∇]ψ〉, 〈ψψ†〉, 〈[∇]ψψ†〉, 〈ψ[∇]ψ†〉, and 〈[∇]ψ[∇]ψ†〉. Two of
these we already know in terms of the single-chain Green’s function from our calculation of
〈Je(τ)Je〉 above,

−〈ψjα(x, τ)ψ†jα(0)〉 = Gα(x, τ) (4.152a)

−〈ψ†jα(x, τ)ψjα(0)〉 = G̃α(x, τ) = −Gα(−x,−τ) (4.152b)

The remaining two-point functions can be calculated as derivatives of the Green’s function.
To demonstrate this, we first recall the definition of [∇j]

α
x :

[∇j]
α
y = α

K

~
∇θj(y)− ~

K
∇φj(y) = ∇y

[
α
K

~
θj(y)− ~

K
φj(y)

]
(4.141)

We can split this into right- and left-moving parts, those being proportional to αφ− θ and
−αφ− θ (which one is which depends on whether α is ±1). Doing so gives

[∇j]
α
y = −α

2
∇y

[(
K

~
+

~
K

)
(αφj − θj) +

(
K

~
− ~
K

)
(−αφj − θj)

]
(4.166)

To check this, recall that α = ±1, so α2 = 1. At this point, we can drop the chain index j
because each two-point function we are evaluating contains operators for only a single chain
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and is independent of which chain that happens to be. Continuing with the calculation, we
will want two useful lemmas,

∇x(αφ(x)− θ(x))ψ†α(x) = −ie−iαkF x∇x(e
iαkF xψ†α(x)) (4.167a)

∇x(αφ(x)− θ(x))ψα(x) = ieiαkF x∇x(e
−iαkF xψα(x)) (4.167b)

These can be confirmed by writing out the expression for the fermion operators in terms of
the boson operators θ and φ.

We are now finally ready to compute the six remaining two-point function. We first
complete the computation for τ = 0 and then make an argument that the time-evolution
only has the effect of changing Gα(x, 0) to Gα(x, τ).

As a representative example, we will start by calculating 〈[∇]αxψ
†
α(x)ψα(x′)〉. Using equa-

tion (4.166), this splits into two terms,

〈[∇]αxψ
†
α(x)ψα(x′)〉 =

α

2

(
K

~
+

~
K

)
〈∇x(αφ− θ)ψ†α(x)ψα(x′)〉

− α

2

(
K

~
− ~
K

)
〈∇x(−αφ− θ)ψ†α(x)ψα(x′)〉 (4.168)

The first term features a factor 〈∇x(αφ − θ)ψ†α(x)ψα(x′)〉, with αφ − θ, while the second
contains 〈∇x(−αφ − θ)ψ†α(x)ψα(x′)〉, with −αφ − θ. We will later argue that averages of
the second type, containing (−αφ − θ), will be either 0 or higher order in vβ/L and hence
negligible. For now, we will explicitly calculate expectation values of the first type, containing
the combination (αφ− θ). The calculations rely heavily on the lemmas (4.167).

We begin with the expectation value 〈∇x(αφ− θ)ψ†α(x)ψα(x′)〉 and three others that are
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very similar to it:

〈∇x(αφ− θ)ψ†α(x)ψα(x′)〉 = 〈∇x(αφ− θ)ψ†α(x)ψα(x′)〉
= 〈−ie−iαkF x∇x(e

iαkF xψ†α(x))ψα(x′)〉
= −ie−iαkF x∇x

(
eiαkF x〈ψ†α(x)ψα(x′)〉

)
= ie−iαkF x∇x

(
eiαkF xG̃α(x− x′)

)
= −αkF G̃α(x− x′) + i∂xG̃α(x− x′)

〈ψ†α(x)∇x′(αφ− θ)ψα(x′)〉 =
〈
ψ†α(x)

(
ieiαkF x

′∇x′(e
−iαkF x′ψα(x′))

)〉
= ieiαkF x

′∇x′

(
e−iαkF x

′〈ψ†α(x)ψα(x′)〉
)

= −ieiαkF x′∇x′

(
e−iαkF x

′
G̃α(x− x′)

)
= −αkF G̃α(x− x′)− i∂x′G̃α(x− x′)
= −αkF G̃α(x− x′) + i∂xG̃α(x− x′)

〈ψα(x)∇x′(αφ− θ)ψ†α(x′)〉 =
〈
ψα(x)

(
−ie−iαkF x′∇x′(e

iαkF x
′
ψ†α(x′))

)〉
= −ie−iαkF x′∇x′

(
eiαkF x

′〈ψα(x)ψ†α(x′)〉
)

= +ie−iαkF x
′∇x′

(
eiαkF x

′
Gα(x− x′)

)
= −αkFGα(x− x′) + i∂x′Gα(x− x′)
= −αkFGα(x− x′)− i∂xGα(x− x′)

〈∇x(αφ− θ)ψα(x)ψ†α(x′)〉 =
〈(
ieiαkF x∇x(e

−iαkF xψα(x))
)
ψ†α(x′)

〉
= ieiαkF x∇x

(
e−iαkF x〈ψα(x)ψ†α(x′)〉

)
= −ieiαkF x∇x

(
e−iαkF xGα(x− x′)

)
= −αkFGα(x− x′)− i∂xGα(x− x′)

The calculations for the expectation values from the 〈[∇]ψ†[∇]ψ〉 and 〈[∇]ψ[∇]ψ†〉 expres-
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sions are similar though a little more involved:

〈∇x(αφ− θ)ψα(x)∇x′(αφ− θ)ψ†α(x′)〉
=
〈(
ieiαkF x∇x(e

−iαkF xψα(x))
) (
−ie−iαkF x′∇x′(e

iαkF x
′
ψ†α(x′))

)〉
= eiαkF (x−x′)∇x∇x′

(
eiαkF (x′−x)〈ψα(x)ψ†α(x′)〉

)
= −eiαkF (x−x′)∇x∇x′

(
eiαkF (x′−x)Gα(x− x′)

)
= −eiαkF (x−x′)∇x

[
iαkF e

iαkF (x′−x)Gα(x− x′) + eiαkF (x′−x)∂x′Gα(x− x′)
]

= −eiαkF (x−x′)
[

(αkF )2eiαkF (x′−x)Gα(x− x′) + iαkF e
iαkF (x′−x)∂xGα(x− x′)

− iakF eiαkF (x′−x)∂x′Gα(x− x′) + eiαkF (x′−x)∂x∂x′Gα(x− x′)

]
= −(αkF )2Gα(x− x′)− 2iαkF∂xGα(x− x′) + ∂2

xGα(x− x′)
〈∇x(αφ− θ)ψ†α(x)∇x′(αφ− θ)ψα(x′)〉

=
〈(
−ie−iαkF x∇x(e

iαkF xψ†α(x))
) (
ieiαkF x

′∇x′(e
−iαkF x′ψα(x′))

)〉
= eiαkF (x′−x)∇x∇x′

(
eiαkF (x−x′)〈ψ†α(x)ψα(x′)〉

)
= −eiαkF (x′−x)∇x∇x′

(
eiαkF (x−x′)G̃α(x− x′)

)
= −eiαkF (x′−x)∇x

[
−iαkF eiαkF (x−x′)G̃α(x− x′) + eiαkF (x−x′)∂x′G̃α(x− x′)

]
= −eiαkF (x′−x)

[
(αkF )2eiαkF (x−x′)G̃α(x− x′)− iαkF eiαkF (x−x′)∂xG̃α(x− x′)
+ iakF e

iαkF (x−x′)∂x′G̃α(x− x′) + eiαkF (x−x′)∂x∂x′G̃α(x− x′)

]
= −(αkF )2G̃α(x− x′) + 2iαkF∂xG̃α(x− x′) + ∂2

xG̃α(x− x′)
Here we summarize our results so far:

−
〈
ψα(x)ψ†α(x′)

〉
= Gα(x− x′) (4.169a)

−
〈
ψ†α(x)ψα(x′)

〉
= G̃α(x− x′) (4.169b)

−
〈
(α∇φ−∇θ)xψα(x)ψ†α(x′)

〉
= αkFGα(x− x′) + i∂xGα(x− x′) (4.169c)

−
〈
(α∇φ−∇θ)xψ†α(x)ψα(x′)

〉
= αkF G̃α(x− x′)− i∂xG̃α(x− x′) (4.169d)

−
〈
ψα(x)(α∇φ−∇θ)x′ψ†α(x′)

〉
= αkFGα(x− x′) + i∂xGα(x− x′) (4.169e)

−
〈
ψ†α(x)(α∇φ−∇θ)x′ψα(x′)

〉
= αkF G̃α(x− x′)− i∂xG̃α(x− x′) (4.169f)

−
〈
(α∇φ−∇θ)xψα(x)(α∇φ−∇θ)x′ψ†α(x′)

〉
= (αkF )2Gα(x− x′) + 2iαkF∂xGα(x− x′)
− ∂2

xGα(x− x′) (4.169g)

−
〈
(α∇φ−∇θ)xψ†α(x)(α∇φ−∇θ)x′ψα(x′)

〉
= (αkF )2G̃α(x− x′)− 2iαkF∂xG̃α(x− x′)
− ∂2

xG̃α(x− x′) (4.169h)

Notice the useful fact that for the two-point functions with one factor of (α∇φ − ∇θ), it
does not matter whether that acts on the first or second fermion operator.
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This completes our calculation of the expectation values containing (αφ − θ), but what
about those containing (−αφ − θ)? For the most part these terms will be 0. Look, for
instance, at

〈(−α∇xφ(x, t)−∇xθ(x, t))ψα(x, t)ψα(x′)〉 (4.170)

This can be evaluated in a path integral formalism, integrating over the two functions φ
and θ. The action breaks into two pieces, one for right-movers and one for left-movers,
S = SR +SL, or equivalently S = Sα +S−α. Sα depends on φ and θ only in the combination
αφ− θ, while S−α contains only −αφ− θ. Then the expectation value also breaks into two
separate pieces:〈

(−α∇xφ(x, t)−∇xθ(x, t))ψα(x, t)ψα(x′)
〉

= 〈(−α∇xφ(x, t)−∇xθ(x, t))〉−α
〈
ψα(x, t)ψα(x′)

〉
α

(4.171)

where 〈·〉α is evaluated with respect to the action Sα and likewise 〈·〉−α is evaluated with
respect to the action S−α. But S−α is invariant under the transformation −αφ(x)− θ(x)→
−(−αφ(x)−θ(x)), so the integrand in 〈(−α∇xφ(x, t)−∇xθ(x, t))〉−α is overall odd in −αφ−
θ and hence vanishes. This means that indeed

〈(−α∇xφ(x, t)−∇xθ(x, t))ψα(x, t)ψα(x′)〉 = 0 (4.172)

The same argument also applies to the expectation values from 〈[∇]ψ†[∇]ψ〉 and
〈[∇]ψ[∇]ψ†〉 that have (α∇φ−∇θ) acting on one fermion operator and (−α∇φ−∇θ) acting
on the other.

The only possible exception to this argument is when there are two factors of (−α∇φ−
∇θ). In general if the two factors are at different values of x, then it is still possible to perform
a transformation in the correlation function path integral where the signs are flipped at x
but not x′, and the integrand is odd under such a transformation and thus again gives 0.
However, if x = x′, this logic may not apply, so terms 〈[∇]ψ†[∇]ψ〉 with two factors of
−α∇φ −∇θ may give a contribution proportional to δ(x − x′). However, these terms may
still be ignored because the expectation value 〈(−α∇φ(x)−∇θ(x))2〉 is finite, so that the
“delta function” has finite weight at x = x′ and thus doesn’t contribute when we integrate
over x and x′. (It it a finite contribution on a set of measure 0 in the integration domain.)

We have thus far glossed over one potentially important part of our expression, namely
the (imaginary-) time dependence. What we really want to calculate is not just, for instance,
〈[∇]αxψ

†
α(x)ψα(x′)〉, but rather 〈[∇]αx,τψ

†
α(x, τ)ψα(x′)〉. First, note that [∇]αx,τ is just the time

evolution of [∇]αx , or

[∇j]
α
y,τ = α

K

~
∇θj(y, τ)− ~

K
∇φj(y, τ) = ∇y

[
α
K

~
θj(y, τ)− ~

K
φj(y, τ)

]
(4.173)

This change alters neither our calculational procedure nor the form of the results. For
example, looking at 〈[∇]αx,τψ

†
α(x, τ)ψα(x′)〉 instead of 〈[∇]αxψ

†
α(x)ψα(x′)〉, the difference is

that the left-hand side of equation (4.169c) will be replaced with

〈(α∇xφ(x, τ)−∇xθ(x, τ))ψα(x, τ)ψα(x′)〉 (4.174)
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but all that must be changed in ψ(x) ∝ ei(αφ−θ) to get ψ(x, τ) is to replace φ(x) with
φ(x, τ) and θ(x) with θ(x, τ). Then just as at τ = 0 an x derivative pulls down a factor
of (α∇xφ(x) − ∇xθ(x)), at nonzero τ you get a factor (α∇xφ(x, τ) − ∇xθ(x, τ)). In short,
in the same way that the τ = 0 results above were obtained by taking x derivatives of
the τ = 0 Green’s function, the τ -dependent results can be obtained via derivatives of the
τ -dependent Green’s function. The expressions look the same because the time evolution
operator commutes with taking a derivative with respect to x.

Thus to get the time-dependent versions of our above expressions from equation (4.169),
on the right-hand side we should just replace G(x− x′) by G(x− x′, τ).

At this point we can look at the full 4 terms from the current-current correlator, equation
(4.165). For instance, the first is

〈[∇j]
α
x1,τ

ψ†jα(x1, τ)ψjα(x4)〉〈ψj−1,β(x2, τ)[∇j−1]βx3ψ
†
j−1,β(x3)〉

=− α

2

(
K

~
+

~
K

)(
αkF G̃α(x1 − x4, τ)− i∂x1G̃α(x1 − x4, τ)

)
×−β

2

(
K

~
+

~
K

)
(βkFGβ(x2 − x3, τ) + i∂x2Gβ(x2 − x3, τ))

This is a rather complicated expression, but it can be simplified substantially by making the
same assumptions on tαβ(x − x′) as made for 〈Je(τ)Je〉 above, namely that tαβ(x − x′) =
t

2π
δαβδ(x − x′). Thus we only need to consider the case where α = β, x1 = x2 = x, and



CHAPTER 4. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: DETAILS 107

x3 = x4 = x′. In that case, the four terms from equation (4.165) look like

〈[∇j ]αx,τψ†jα(x, τ)ψjα(x′)〉〈ψj−1,α(x, τ)[∇j−1]αx′ψ
†
j−1,α(x′)〉

=− α

2

(
K

~
+

~
K

)(
αkF G̃α(x− x′, τ)− i∂xG̃α(x− x′, τ)

)
×−α

2

(
K

~
+

~
K

)(
αkFGα(x− x′, τ) + i∂xGα(x− x′, τ)

)
=

1

4

(
K

~
+

~
K

)2 [
(kF − iα∂x)G̃α(x− x′, τ)

]
×
[
(kF + iα∂x)Gα(x− x′, τ)

]
〈[∇j−1]αx,τψj−1,α(x, τ)ψ†j−1,α(x′)〉〈ψ†jα(x, τ)[∇j ]αx′ψjα(x′)〉

=− α

2

(
K

~
+

~
K

)(
αkFGα(x− x′, τ) + i∂xGα(x− x′, τ)

)
×−α

2

(
K

~
+

~
K

)(
αkF G̃α(x− x′, τ)− i∂xG̃α(x− x′, τ)

)
=

1

4

(
K

~
+

~
K

)2 [
(kF + iα∂x)Gα(x− x′, τ)

]
×
[
(kF − iα∂x)G̃α(x− x′, τ)

]
〈[∇j−1]αx,τψj−1,α(x, τ)[∇j−1]αx′ψ

†
j−1,α(x′)〉〈ψ†jα(x, τ)ψjα(x′)〉

=
1

4

(
K

~
+

~
K

)2 [
(αkF )2Gα(x− x′, τ) + 2iαkF∂xGα(x− x′, τ)− ∂2

xGα(x− x′, τ)
]

× G̃α(x− x′, τ)

〈[∇j ]αx,τψ†jα(x, τ)[∇j ]αx′ψjα(x′)〉〈ψj−1,α(x, τ)ψ†j−1,α(x′)〉

=
1

4

(
K

~
+

~
K

)2 [
(αkF )2G̃α(x− x′, τ)− 2iαkF∂xG̃α(x− x′, τ)− ∂2

xG̃α(x− x′, τ)
]

×Gα(x− x′, τ)

Combining the last two of these four contributions, we get (suppressing the factor of (K/~+
~/K)2/4 for now):

〈[∇j−1]αx,τψj−1,α(x, τ)[∇j−1]αx′ψ
†
j−1,α(x′)〉〈ψ†jα(x, τ)ψjα(x′)〉

+ 〈[∇j]
α
x,τψ

†
jα(x, τ)[∇j]

α
x′ψjα(x′)〉〈ψj−1,α(x, τ)ψ†j−1,α(x′)〉

∼ 2k2
FGα(x− x′, τ)G̃α(x− x′, τ)

+ 2iαkF (∂xGα(x− x′, τ))G̃α(x− x′, τ)− 2iαkF (∂xG̃α(x− x′, τ))Gα(x− x′, τ)

− (∂2
xG̃α(x− x′, τ))Gα(x− x′, τ)− (∂2

xGα(x− x′, τ))G̃α(x− x′, τ)
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We need to remember that we are integrating this over x from −∞ to ∞, in which case we
can use integration by parts to move partial derivatives around, in particular to make the
last two terms identical:

= 2
[
k2
FGα(x− x′, τ)G̃α(x− x′, τ)

+ iαkF

(
(∂xGα(x− x′, τ))G̃α(x− x′, τ)− (∂xG̃α(x− x′, τ))Gα(x− x′, τ)

)
+(∂xG̃α(x− x′, τ))(∂xGα(x− x′, τ))

]
= 2 [(kF + iα∂x)Gα(x− x′, τ)]×

[
(kF − iα∂x)G̃α(x− x′, τ)

]
Now we can sum all four contributions (with the last two modified using integration by

parts as above), to get simply(
K

~
+

~
K

)2

[(kF + iα∂x)Gα(x− x′, τ)]×
[
(kF − iα∂x)G̃α(x− x′, τ)

]
(4.175)

Now we can recognize that, setting ~ = 1, the factor (K + K−1) is actually just 2γ (see
equation (2.11)), so we have

(2γ)2 [(kF + iα∂x)Gα(x− x′, τ)]×
[
(kF − iα∂x)G̃α(x− x′, τ)

]
(4.176)

We can substitute this rather nice result into the expression for the current-current cor-
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relator found in equation (4.164), getting

〈JE(τ)JE〉 =
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

(acv
2~

)2

tαβ(x1 − x2)tγδ(x3 − x4) 〈· · · 〉

=
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

(
acvt

4π~

)2

δαβδγδδ(x1 − x2)δ(x3 − x4) 〈· · · 〉

〈· · · 〉 = 2δijδαδδβγ


〈[∇j]

α
x1,τ

ψ†jα(x1, τ)ψjα(x4)〉〈ψj−1,β(x2, τ)[∇j−1]βx3ψ
†
j−1,β(x3)〉

+ 〈[∇j−1]βx2,τψj−1,β(x2, τ)[∇j−1]βx3ψ
†
j−1,β(x3)〉〈ψ†jα(x1, τ)ψjα(x4)〉

+ 〈[∇j]
α
x1,τ

ψ†jα(x1, τ)[∇j]
α
x4
ψjα(x4)〉〈ψj−1,β(x2, τ)ψ†j−1,β(x3)〉

+ 〈[∇j−1]βx2,τψj−1,β(x2, τ)ψ†j−1,β(x3)〉〈ψ†jα(x1, τ)[∇j]
α
x4
ψjα(x4)〉


〈JE(τ)JE〉 =

∑
j

∑
α

∫
dx dx′

(
acvt

4π~

)2

〈· · · 〉

〈· · · 〉 = 2


〈[∇j]

α
x,τψ

†
jα(x, τ)ψjα(x′)〉〈ψj−1,α(x, τ)[∇j−1]αx′ψ

†
j−1,α(x′)〉

+ 〈[∇j−1]αx,τψj−1,α(x, τ)[∇j−1]βx′ψ
†
j−1,α(x′)〉〈ψ†jα(x, τ)ψjα(x′)〉

+ 〈[∇j]
α
x,τψ

†
jα(x, τ)[∇j]

α
x′ψjα(x′)〉〈ψj−1,α(x, τ)ψ†j−1,α(x′)〉

+ 〈[∇j−1]αx,τψj−1,α(x, τ)ψ†j−1,α(x′)〉〈ψ†jα(x, τ)[∇j]
α
x′ψjα(x′)〉


= 8γ2 [(kF + iα∂x)Gα(x− x′, τ)]×

[
(kF − iα∂x)G̃α(x− x′, τ)

]
〈JE(τ)JE〉 = 2γ2

(
acvt

2π~

)2

×
∑
jα

∫
dx dx′ [(kF + iα∂x)Gα(x− x′, τ)]×

[
(kF − iα∂x)G̃α(x− x′, τ)

]
The integrand is explicitly independent of j, so that sum just gives a factor of Nc. As in the
case of 〈JeJe〉, it will also prove to be independent of α, but as in that case we will leave the
sum over α for the time being since the independence is not obvious. This gives

〈JE(τ)JE〉 = 2Ncγ
2

(
acvt

2π~

)2

(4.177)

×
∑
α

∫
dx dx′ [(kF + iα∂x)Gα(x− x′, τ)]×

[
(kF − iα∂x)G̃α(x− x′, τ)

]
(4.178)

Finally, we change coordinates from x and x′ to x − x′ and (x + x′)/2, in which case the
integral over the average coordinate gives L − |x − x′| as discussed in the calculation of
〈Je(τ)Je〉. Again as before, we approximate this as just a factor of L since the second term
is negligible, in which case our final expression for the current-current correlator in terms of
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an as-yet unspecified Green’s function is

〈JE(τ)JE〉 = 2NcLγ
2

(
acvt

2π~

)2∑
α

∫
dx
[
(kF + iα∂x)Gα(x, τ)

]
×
[
(kF − iα∂x)G̃α(x, τ)

]
(4.179)

or, substituting for G̃ using equation (4.152b),

〈JE(τ)JE〉 = −2NcLγ
2

(
acvt

2π~

)2∑
α

∫
dx
[
(kF + iα∂x)Gα(x, τ)

]
×
[
(kF − iα∂x)Gα(−x,−τ)

]
(2.28b)

To complete the calculation, we plug in the precise expression for the Luttinger liquid
Green’s function as given in equation (2.29) and integrate over x. We can achieve a significant
simplification first by writing Gα(x, τ) = eiαkF xfα(x, τ), in which case

(kF + iα∂x)Gα(x, τ) = iαeiαkF x∂xfα(x, τ)

≡ iαeiαkF xfα,x(x, τ)

and likewise

(kF − iα∂x)G̃α(x, τ) = −(kF − iα∂x)Gα(−x,−τ)

= −(−iαe−iαkF x)∂xfα(−x,−τ)

= −iαe−iαkF xfα,x(−x,−τ)

where in the last line we got an extra minus sign from the chain rule. Then the integrand
simplifies to

iαeiαkF xfα,x(x, τ)×−iαe−iαkF xfα,x(−x,−τ) = fα,x(x, τ)fα,x(−x,−τ) (4.180)

where

f(x, τ) = − 1

2πa

 −ia
vβ
π

sinh
(
x−ivτ
vβ/π

)

γ−α
2
 ia

vβ
π

sinh
(
x+ivτ
vβ/π

)

γ+α
2

(4.181)

and thus

fα,x(x, τ)fα,x(−x,−τ) = − π2γ

(4avβ)2

(
coth

(
x+ ivτ

vβ/π

)
(γ + α) + coth

(
x− ivτ
vβ/π

)
(γ − α)

)2

×
(
a

vβ

)2γ [
sinh

(
x+ ivτ

vβ/π

)
sinh

(
x− ivτ
vβ/π

)]−γsinh
(
x−ivτ
vβ/π

)
sinh

(
x+ivτ
vβ/π

)
α

=
1

16a4π2

(
aπ

vβ

)2γ+2

(
α sin

(
2τ
β/π

)
+ iγ sinh

(
2x
vβ/π

))2

[
sinh

(
x+ivτ
vβ/π

)
sinh

(
x−ivτ
vβ/π

)]γ+2

sinh
(
x−ivτ
vβ/π

)
sinh

(
x+ivτ
vβ/π

)
α
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Now we can convert to our scaled (x′, τ ′) coordinates as we did in the case of 〈JeJe〉, to get:

1

16a4π2

(
aπ

vβ

)2γ+2 (α sin (2τ ′) + iγ sinh (2x′))2

[sinh (x′ + iτ ′) sinh (x′ − iτ ′)]γ+2

(
sinh (x′ − iτ ′)
sinh (x′ + iτ ′)

)α
=

2γ+2

16a4π2

(
aπ

vβ

)2γ+2(sin2 (2τ ′)− γ2 sinh2 (2x′) + 2iα sin(2τ ′) sinh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+2

)(
sinh (x′ − iτ ′)
sinh (x′ + iτ ′)

)α
=

2γ+3

16a4π2

(
aπ

vβ

)2γ+2(sin2 (2τ ′)− γ2 sinh2 (2x′) + 2iα sin(2τ ′) sinh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+2

)
×
(

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)− iα2 sin(2τ ′) sinh(2x′)
cosh(2x′)− cos(2τ ′)

)
In multiplying the two numerators, the imaginary part will be odd in x′ and thus vanish in
the integral, so we keep only the even part:

→ 2γ+3

16a4π2

(
aπ

vβ

)2γ+2

×
((

sin2 (2τ ′)− γ2 sinh2 (2x′)
) (

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)
)

+ sin2(2τ ′) sinh2(2x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)

Note that the dependence on α has again disappeared as expected.
Thus for the full current-current correlator we find the integral expression

〈JE(τ)JE〉 = 4NcLγ
2

(
acvt

2π~

)2 2γ+3

16a4π2

(
aπ

vβ

)2γ+2(vβ
π

)
(4.182)

×
∫
dx′
((

sin2(2τ ′)− γ2 sinh2(2x′)
)(

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)
)
+ sin2(2τ ′) sinh2(2x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)

= NcLγ
2

(
acvt

2π~

)2 2γ+1

a3π2

(
πa

vβ

)2γ+1

(4.183)

×
∫
dx′
((

sin2(2τ ′)− γ2 sinh2(2x′)
)(

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′)
)
+ sin2(2τ ′) sinh2(2x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)

Assuming that each chain is infinitely long, so that we can let the limits of integration
in x go to ±∞, the integral over x can be done exactly. To do so, we split up the terms of
the numerator in the integrand by their x-dependence to get

〈JE(τ)JE〉 = NcLγ
2

(
acvt

2π~

)2 2γ+1

a3π2

(
πa

vβ

)2γ+1∫
dx′

(
a+ b cosh(2x′) + c cosh(4x′) + d cosh(6x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)
(4.184)
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where

a =
1

4
(2 cos(4τ ′)− 2− γ2) (4.185a)

b =
1

4
cos(2τ ′)(1 +

1

2
γ2 − cos(4τ ′)) (4.185b)

c =
1

4
(1 + γ2 − cos(4τ ′)) (4.185c)

d = −1

8
γ2 cos(2τ ′) (4.185d)

We thus have four integrals over x to perform. Using equation (4.157), we find the result:∫ ∞
−∞

cosh(nx)

(cosh(2x)− cos(2τ))γ+3dx = 2γ+2
(
f(γ, τ, 3− n

2
, 3) + f(γ, τ, 3 +

n

2
, 3)
)

(4.186)

so long as n < 6 + 2γ (thus guaranteed for n < 8), where as above

f(γ, τ, n,m) =
F1(γ + n; γ +m, γ +m; γ + n+ 1; e2iτ , e−2iτ )

γ + n
(4.158)

and F1(a; b1, b2; c;x, y) is the first Appell hypergeometric function.
Specializing to the actual integrals over x that appear in equation (4.184), we have:∫ ∞

−∞

1

(cosh(2x)− cos(2τ))γ+3dx = 2γ+3f(γ, τ, 3, 3) (4.187a)∫ ∞
−∞

cosh(2x)

(cosh(2x)− cos(2τ))γ+3dx = 2γ+2 (f(γ, τ, 2, 3) + f(γ, τ, 4, 3)) (4.187b)∫ ∞
−∞

cosh(4x)

(cosh(2x)− cos(2τ))γ+3dx = 2γ+2 (f(γ, τ, 1, 3) + f(γ, τ, 5, 3)) (4.187c)∫ ∞
−∞

cosh(6x)

(cosh(2x)− cos(2τ))γ+3dx = 2γ+2 (f(γ, τ, 0, 3) + f(γ, τ, 6, 3)) (4.187d)

When all of these contributions are included, the result is a rather long expression, with
7 distinct f functions. This expression is not particularly enlightening, but we include it
here for completeness.



CHAPTER 4. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: DETAILS 113

〈JE(τ ′)JE〉 = NcLγ
2

(
acvt

2π~

)2
1

2a3π2

(
2πa

vβ

)2γ+1

(3.23a)

×



−4(2 + γ2 − 2 cos(4τ ′))f(γ, τ ′, 3, 3)

+ cos(2τ ′)(2 + γ2 − 2 cos(4τ ′))(f(γ, τ ′, 2, 3) + f(γ, τ ′, 4, 3))

+2(1 + γ2 − cos(4τ ′))(f(γ, τ ′, 1, 3) + f(γ, τ ′, 5, 3))

−γ2 cos(2τ ′)(f(γ, τ ′, 0, 3) + f(γ, τ ′, 6, 3))



Asymptotic behavior for small τ ′:
As we did for 〈Je(τ ′)Je〉 above, we want to find asymptotic behavior for small τ ′ for

purposes of estimating the numerical error in our evaluation of the transport coefficients
(section 4.1 above). We examine 〈JE(τ ′)JE〉 in the limit of small τ ′ by focusing on the
x, τ ′ ≈ 0 pole of the integrand in equation (4.184). We find∫

dx′
(
a+ b cosh(2x′) + c cosh(4x′) + d cosh(6x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)
≈ (5 + γ2)

2γ+1

∫
dx′

(x′)2(τ ′)2

[(x′)2 + (τ ′)2]γ+3

∝ (τ ′)−1−2γ (4.188)

Thus we conclude that for small τ ′, 〈JE(τ ′)JE〉 ∝ (τ ′)−1−2γ. Then integrating over τ ′ from ε
to π − ε, the contribution from the pole at τ ′ = 0 is proportional to ε−2γ. This is the fact
used in our error approximation in section 4.1.

〈JE(τ)Je(0)〉
The calculation of this correlator is quite similar to the calculation for the previous two, with
a level of complexity that is between those two computations. The calculation itself follows
a similar procedure:
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〈JE(τ)J〉 =
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

v

2

( ac
2π~

)2
tαβ(x1 − x2)tγδ(x3 − x4) 〈· · · 〉

〈· · · 〉 =

〈
eτH

 (
[∇i]αx1 + [∇i−1]βx2

)
ψ†iα(x1)ψi−1,β(x2)

−
(

[∇i−1]αx1 + [∇i]βx2
)
ψ†i−1,α(x1)ψiβ(x2)

 e−τH
×
[
ψ†j−1,γ(x3)ψj,δ(x4)− ψ†j,γ(x3)ψj−1,δ(x4)

]

〉
=

〈
eτH

(
[∇i]αx1 + [∇i−1]βx2

)
ψ†iα(x1)ψi−1,β(x2)e−τHψ†j−1,γ(x3)ψjδ(x4)

+ eτH
(

[∇i−1]αx1 + [∇i]βx2
)
ψ†i−1,α(x1)ψi,β(x2)e−τHψ†jγ(x3)ψj−1,δ(x4)

〉

= δijδαδδβγ

〈
eτH

(
[∇j ]αx1 + [∇j−1]βx2

)
ψ†jα(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)

+ eτH
(

[∇j−1]αx1 + [∇j ]βx2
)
ψ†j−1,α(x1)ψj,β(x2)e−τHψ†jβ(x3)ψj−1,α(x4)

〉

Note that α = δ and β = γ because of the U operators (Klein factors)

= 2δijδαδδβγ

〈
eτH

(
[∇j ]αx1 + [∇j−1]βx2

)
ψ†jα(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)

〉
because the only difference between the two terms was j ↔ j − 1

= 2δijδαδδβγ

〈
eτH [∇j ]αx1ψ

†
j,α(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)

+ eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)

〉

= 2δijδαδδβγ

[
〈eτH [∇j ]αx1ψ

†
j,α(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)〉

+ 〈eτH [∇j−1]βx2ψ
†
jα(x1)ψj−1,β(x2)e−τHψ†j−1,β(x3)ψjα(x4)〉

]

= 2δijδαδδβγ

[
〈[∇j ]αx1,τψ

†
jα(x1, τ)ψjα(x4)〉〈ψj−1,β(x2, τ)ψ†j−1,β(x3)〉

+ 〈[∇j−1]βx2,τψj−1,β(x2, τ)ψ†j−1,β(x3)〉〈ψ†jα(x1, τ)ψjα(x4)〉

]

As before, we will assume that tαβ(x− x′) = t
2π
δαβδ(x− x′). Then we can calculate both

of these terms, letting x1 = x2 = x and x3 = x4 = x′:
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〈[∇j ]αx,τψ†jα(x, τ)ψjα(x′)〉〈ψj−1,α(x, τ)ψ†j−1,α(x′)〉

=− α

2

(
K

~
+

~
K

)(
αkF G̃α(x− x′, τ)− i∂xG̃α(x− x′, τ)

)
×Gα(x− x′, τ)

=− 1

2

(
K

~
+

~
K

)[
(kF − iα∂x)G̃α(x− x′, τ)

]
×Gα(x− x′, τ)

〈[∇j−1]αx,τψj−1,α(x, τ)ψ†j−1,α(x′)〉〈ψ†jα(x, τ)[∇j ]αx′ψjα(x′)〉

=− α

2

(
K

~
+

~
K

)(
αkFGα(x− x′, τ) + i∂xGα(x− x′, τ)

)
×G∗α(x− x′, τ)

=− 1

2

(
K

~
+

~
K

)[
(kF + iα∂x)Gα(x− x′, τ)

]
× G̃α(x− x′, τ)

The two contributions appear to be different, but recall that they are inside an integral
over x and hence we can modify them using integration by parts. This precisely converts
the two expressions into one another, so the two contributions to the correlation function
are actually the same. The sum thus gives

〈[∇j]
α
x,τψ

†
jα(x, τ)ψjα(x′)〉〈ψj−1,α(x, τ)ψ†j−1,α(x′)〉

+ 〈[∇j−1]αx,τψj−1,α(x, τ)ψ†j−1,α(x′)〉〈ψ†jα(x, τ)[∇j]
α
x′ψjα(x′)〉

= −
(
K

~
+

~
K

)
Gα(x− x′, τ)(kF − iα∂x)G̃α(x− x′, τ)

= −2γ
(
Gα(x− x′, τ)(kF − iα∂x)G̃α(x− x′, τ)

)
This expression can be substituted into our calculation of 〈JE(τ)J〉 above:

〈JE(τ)J〉 =
∑
ij

∑
αβγδ

∫
dx1 dx2 dx3 dx4

v

2

( ac
2π~

)2
tαβ(x1 − x2)tγδ(x3 − x4) 〈· · · 〉

= −2vγ

(
act

2π~

)2∑
jα

∫
dx dx′Gα(x− x′, τ)(kF − iα∂x)G̃α(x− x′, τ)

Now switch to relative and CM coordinates, again dropping the smaller second term, and perform
the sum over j to get:

= −2vγNcL

(
act

2π~

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)G̃α(x, τ)

This is our final result in terms of the as-yet unspecified Green’s function,

〈JE(τ)J〉 = −2vγNcL

(
act

2π~

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)G̃α(x, τ) (4.189)
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or equivalently

〈JE(τ)J〉 = 2vγNcL

(
act

2π~

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)Gα(−x,−τ) (2.28c)

The expression looks a little unbalanced at first glance, since the (kF − iα∂x) operator is
applied to G̃ but not to G. This is artificial, however, since the operator is Hermitian and
could just as easily be applied to G instead.

Next, as with the other two correlators we will substitute in our expression for the Green’s
function, equation (2.29). As we did in our calculation of 〈JE(τ)JE〉, we simplify the required
work by writing Gα(x, τ) = eiαkF xfα(x, τ), in which case

(kF − iα∂x)Gα(−x,−τ) = (−iαe−iαkF x)∂xfα(−x,−τ)

= iαe−iαkF xfα,x(−x,−τ)

so

Gα(x, τ)(kF−iα∂x)Gα(−x,−τ) = iαfα(x, τ)fα,x(−x,−τ)

=
π2γ−1α

8a2vβ

(
a

vβ

)2γ α sin
(

2τ
vβ/π

)
+ iγ sinh

(
2x
vβ/π

)
(

sinh
(
x−iτ
vβ/π

)
sinh

(
x+iτ
vβ/π

))γ+1

sinh
(
x−iτ
vβ/π

)
sinh

(
x+iτ
vβ/π

)
α

If we now substitute this into our expression for 〈JE(τ)JE〉, we can then convert to the
unitless coordinates x′ and τ ′ and simplify the expression:

〈JE(τ)J〉 = 2vγNcL

(
act

2π~

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)Gα(−x,−τ)

= 2vγNcL

(
act

2π~

)2
π2γ−1

8a2vβ

(
a

vβ

)2γ

×
∑
α

α

∫
dx

α sin
(

2τ
vβ/π

)
+ iγ sinh

(
2x
vβ/π

)
(

sinh
(
x−iτ
vβ/π

)
sinh

(
x+iτ
vβ/π

))γ+1

sinh
(
x−iτ
vβ/π

)
sinh

(
x+iτ
vβ/π

)
α
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〈JE(τ ′)J〉 = 2vγNcL

(
act

2π~

)2
π2γ−2

8a2

(
a

vβ

)2γ

×
∑
α

α

∫
dx′

α sin (2τ ′) + iγ sinh (2x′)

(sinh (x′ − iτ ′) sinh (x′ + iτ ′))γ+1

(
sinh (x′ − iατ ′)
sinh (x′ + iατ ′)

)
= 2vγNcL

(
act

2π~

)2
1

8a2π2

(
πa

vβ

)2γ

×
∑
α

α

∫
dx′

(α sin (2τ ′) + iγ sinh (2x′)) sinh2 (x′ − iατ ′)
(sinh (x′ − iτ ′) sinh (x′ + iτ ′))γ+2

= 2vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

×
∑
α

α

∫
dx′

(α sin (2τ ′) + iγ sinh (2x′)) sinh2 (x′ − iατ ′)
(cosh(2x′)− cos(2τ ′))γ+2

The imaginary part of the numerator is[
γ(cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′))− sin2(2τ ′)

2

]
sinh(2x) (4.190)

which vanishes in the integral over x (since this is an odd function and the denominator is
even). The remaining expression is

〈JE(τ ′)J〉 = 2vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

×
∑
α

α

∫
dx′

(α sin (2τ ′) + iγ sinh (2x′)) sinh2 (x′ − iατ ′)
(cosh(2x′)− cos(2τ ′))γ+2

= 2vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

×
∑
α

α

∫
dx′

α sin(2τ ′)
[
cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′) + γ sinh2(2x′)

2

]
(cosh(2x′)− cos(2τ ′))γ+2

= 4vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

×
∫
dx′

sin(2τ ′)
[
cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′) + γ sinh2(2x′)

2

]
(cosh(2x′)− cos(2τ ′))γ+2
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We can pull the factor of sin(2τ ′) out of the integral to get our final expression in terms of
an as-yet unevaluated integral over x. This gives

〈JE(τ ′)J〉 = 4vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

sin(2τ ′)

×
∫
dx′

cos2(τ ′) sinh2(x′)− cosh2(x′) sin2(τ ′) + γ
2

sinh2(2x′)

(cosh(2x′)− cos(2τ ′))γ+2 (4.191)

Writing this in terms of 2τ ′ gives

〈JE(τ ′)J〉 = 2vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

sin(2τ ′)

×
∫
dx′

γ
2

cosh(4x′) + cos(2τ ′) cosh(2x′)−
(
1 + γ

2

)
(cosh(2x′)− cos(2τ ′))γ+2 (4.192)

Now we perform the integral over x. We can follow a similar procedure to the one used for
〈Je(τ)Je〉 and 〈JE(τ)JE〉, where we split up the terms in the numerator by their x-dependence
and compute each one separately. These x-integrals are found in equation (4.157), though
of course we must specialize to the case of m = 2. We get:∫ ∞

−∞

1

(cosh(2x)− cos(2τ))γ+2dx = 2γ+2f(γ, τ, 2, 2) (4.193a)∫ ∞
−∞

cosh(2x)

(cosh(2x)− cos(2τ))γ+2dx = 2γ+1 (f(γ, τ, 1, 2) + f(γ, τ, 3, 2)) (4.193b)∫ ∞
−∞

cosh(4x)

(cosh(2x)− cos(2τ))γ+2dx = 2γ+1 (f(γ, τ, 0, 2) + f(γ, τ, 4, 2)) (4.193c)

Substituting these expressions into equation (4.192), we get the complete (though once
again relatively unenlightening) expression

〈JE(τ ′)JE〉 = 2vγNcL

(
act

2π~

)2
1

a2π2

(
2πa

vβ

)2γ

sin(2τ ′) (3.23b)

×


−2(1 + γ

2
)f(γ, τ ′, 2, 2)

+ cos(2τ ′)(f(γ, τ ′, 1, 2) + f(γ, τ ′, 3, 2))

+γ
2
(f(γ, τ ′, 0, 2) + f(γ, τ ′, 4, 2))


Summary of correlation functions

The key results for the various current-current correlators are somewhat lost above in a sea
of algebra, so we present them again here for clarity. In terms of an unspecified single-chain
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Green’s function we have:

〈Je(τ)Je〉 = −2NcL

(
acqt

2π~

)2∑
α

∫
Gα(x, τ)Gα(−x,−τ)dx (4.153)

〈JE(τ)JE〉 = −2NcLγ
2

(
acvt

2π~

)2∑
α

∫
dx
[
(kF + iα∂x)Gα(x, τ)

]
×
[
(kF − iα∂x)Gα(−x,−τ)

]
(2.28b)

〈JE(τ)J〉 = 2vγNcL

(
act

2π~

)2∑
α

∫
dxGα(x, τ)(kF − iα∂x)Gα(−x,−τ) (2.28c)

Once we substitute the Luttinger liquid Green’s function as given in equation (2.29) and
simplify, we have (in terms of the scaled imaginary time τ ′ = τπ/β):

〈Je(τ ′)Je〉 = 4NcL

(
acqt

2π~

)2
2γa

(2πa)2

(
πa

vβ

)2γ−1 ∫
dx′

1− cos(2τ ′) cosh(2x′)

[cosh(2x′)− cos(2τ ′)]γ+1 (4.155)

〈JE(τ ′)JE〉 = NcLγ
2

(
acvt

2π~

)2
2γ+1

a3π2

(
πa

vβ

)2γ+1

×
∫
dx′

(
a+ b cosh(2x′) + c cosh(4x′) + d cosh(6x′)

[cosh(2x′)− cos(2τ ′)]γ+3

)
(4.184)

〈JE(τ ′)J〉 = 2vγNcL

(
act

2π~

)2
2γ+2

8a2π2

(
πa

vβ

)2γ

sin(2τ ′)

×
∫
dx′

γ
2

cosh(4x′) + cos(2τ ′) cosh(2x′)−
(
1 + γ

2

)
(cosh(2x′)− cos(2τ ′))γ+2 (4.192)

where in the expression for 〈JE(τ ′)JE〉, the quantities a, b, c, and d are unitless functions of
τ ′ as given in equation (4.185).

If we further perform the integration over x′, the results are in equations (4.162), (3.23a),
and (3.23b) respectively. We have not actually reproduced the exact expressions in this
summary section since the results are relatively unenlightening. It is noteworthy, however,
that the expressions for 〈Je(τ ′)Je〉 and 〈JE(τ ′)JE〉 are even about τ ′ = π

2
, while the expression

for 〈JE(τ ′)J〉 is odd. This will lead to vanishing thermopower (see section 4.3 below).

Response functions

Recall that the response functions are given in terms of the current-current correlators by
equations (2.2) and (2.4), reproduced here for convenience. The transport coefficients of
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interest are

σ =
e2

T
L(11) (2.2a)

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
(2.2b)

S = − 1

eT

L(12)

L(11)
(2.2c)

where

L(il) = lim
ω→0

lim
δ→0

1

ω

[−iT
Ω

∫ β

0

dτeiωτ 〈Tτjl(τ)ji(0)〉
]
iω→ω+iδ

(2.4)

We first use these expressions to derive power law temperature dependence for the two
conductivities and to show that thermopower is 0, and then we calculate the Lorenz number
numerically to find its dependence on interaction strength γ and the deviation from the
Wiedemann-Franz law.

Electrical conductivity

Our first step is to convert the integral over τ to an integral over τ ′ = τ π
β
, since we have

written our results for the correlation functions in terms of that scaled time variable. Then
equation (2.4) becomes

L(il) = lim
ω→0

lim
δ→0

1

ω

[−i
πΩ

∫ π

0

dτ ′eiωβτ
′/π〈Tτjl(τ ′)ji(0)〉

]
iω→ω+iδ

(4.195)

We will want to take the limit as ω → 0, but in this case we will have neither an analytic
nor numerical result on which we can directly calculate that limit since the integrand still
depends on β. However, if the limit is well-defined, then the limit as ωβ → 0 will be the
same as the limit as ω → 0, so we can rewrite our expression in terms of ωβ. We call this
quantity 2n as a reminder that the integral will only be computed for Matsubara frequencies
ωn = 2πn/β. The result will lead to a function that can be analytically continued in n-space,
and then the limit as the unitless variable n goes to 0 can be taken along the real axis. This
gives equation (4.68), or equivalently

L(il) = lim
n→0

lim
δ→0

β

2πn

[−i
πΩ

∫ π

0

dτ ′e2inτ ′〈Tτjl(τ ′)ji(0)〉
]
in→n+iδ′

(4.196)

where δ′ = δβ/2π is still a small real number. As discussed in section 4.1 above, the value of
δ′ will never appear in our calculations, so its being scaled by β is not a problem. Specializing
to the case of the electrical conductivity, we combine equations (2.2a) and (4.196) to get

σ = lim
n→0

lim
δ→0

e2

2πnT 2

[−i
πΩ

∫ π

0

dτ ′e2inτ ′〈J(τ ′)J(0)〉
]
in→n+iδ′

(4.197)
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Figure 4.4: Numerical part of σ (second line of equation 4.199) for the Luttinger liquid
model, evaluated with cutoff ε = 10−1.5 (see section 4.1 for a definition and explanation of
the cutoff).

or in terms of the electrical current operator,

σ = lim
n→0

lim
δ→0

1

2πnT 2

[−i
πΩ

∫ π

0

dτ ′e2inτ ′〈Je(τ ′)Je(0)〉
]
in→n+iδ′

(4.198)

Finally we can substitute in our expression for the current-current correlator, equation
(4.162) to complete our calculation of the conductivity. The result is

σ =
4NcL

2πT 2Ω

(
acqt

2π~

)2
2a

(2πa)2

(
2πa

vβ

)2γ−1

(4.199)

× lim
n→0

lim
δ→0

[−i
nπ

∫ π

0

dτ ′e2inτ ′
(
2f(γ, τ ′, 1, 1)− cos(2τ ′)

(
f(γ, τ ′, 0, 1) + f(γ, τ ′, 2, 1)

))]
in→n+iδ′

This leads to an overall temperature dependence of

σ ∝ T 2γ−3 (4.200)

A plot of the numerical evaluation of the second line of equation (4.199) for various values
of γ is shown in figure 4.4, with error bars calculated as described in section 4.1. (In general
the errors are small enough that the error bars are barely visible.)

Thermal conductivity

The thermal conductivity is given in terms of the L(ij) coefficients by equation (2.2b), or

κ =
1

T 2

[
L(22) − (L(12))2

L(11)

]
(2.2b)
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Figure 4.5: Numerical part of κ (second half of equation 4.202) for the Luttinger liquid
model, evaluated with cutoff ε = 10−1.5 (see section 4.1 for a definition and explanation of
the cutoff).

As we will show in the following section, 4.3, the coefficient L(12) vanishes in our model,
so that we only need to look at the first term. In that case, we combine (2.2b) with the
Kubo formula written in terms of the scaled imaginary time τ ′, as given in equation (4.196),
which gives:

κ = lim
n→0

lim
δ→0

1

2πnT 3

[−i
πΩ

∫ π

0

dτ ′e2inτ ′〈JE(τ ′)JE(0)〉
]
in→n+iδ′

(4.201)

Finally, we substitute in the expression for the current-current correlator, equation (3.23a).
We then have:

κ =
NcLγ

2

2πT 3Ω

(
acvt

2π~

)2
1

2a3π2

(
2πa

vβ

)2γ+1

lim
n→0

lim
δ→0

[−i
nπ

∫ π

0

dτ ′e2inτ ′
(
· · ·
)]

in→n+iδ′
(4.202)

where (· · · ) is the expression in the large parentheses in equation (3.23a).
This leads to an overall temperature dependence of

κ ∝ T 2γ−2 (4.203)

The numerical evaluation of the numerical part (unitless second half of equation 4.202) is
shown with error bars in figure 4.5.

Thermopower

The thermopower is given in terms of the L(ij) coefficients by equation (2.2c), or

S = − 1

eT

L(12)

L(11)
(2.2c)
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The numerator, L(12) contains a Fourier transform of the correlation function 〈JE(τ)J〉,
and as calculated in section 4.3 above, that is given by

〈JE(τ ′)JE〉 = 2vγNcL

(
act

2π~

)2
1

a2π2

(
2πa

vβ

)2γ

sin(2τ ′) (3.23b)

×


−2(1 + γ

2
)f(γ, τ ′, 2, 2)

+ cos(2τ ′)(f(γ, τ ′, 1, 2) + f(γ, τ ′, 3, 2))

+γ
2
(f(γ, τ ′, 0, 2) + f(γ, τ ′, 4, 2))


This correlation function is odd about τ ′ = π/2, and thus as argued in section 4.1 above, we
conclude that

L(12) = 0 (4.204)

We can then additionally conclude that the thermopower is precisely 0 in our model, which
makes sense given that our Hamiltonian is particle-hole symmetric. We thus conclude that

S = 0 (4.205)

We view the equivalent of the correction to the density of states to get nonzero ther-
mopower from section 4.2 as beyond the scope of this dissertation. For a calculation of
nonzero thermopower in a model similar to ours, please see reference [98].

Lorenz number

Comparing the temperature power laws for electrical (equation 4.200) and thermal (equa-
tion 4.203) conductivities, we see that the thermal conductivity is one power higher in
temperature, which means that the Lorenz number κ

σT
will be well-defined and temperature-

independent.
Furthermore, in calculating the Lorenz number we will find that all of the material-

dependent quantities in the expressions for the thermal and electrical conductivities will
precisely cancel and thus by evaluating the integrals over the Appell functions numerically
we will be able to find precise numerical results for the Lorenz number, allowing us to
explicitly find the violation of the Wiedemann-Franz law.

We will break the calculation into two parts. First we divide the unitful prefactors,
and then we numerically evaluate the integrals (including performing numerical analytic
continuation as described in section 4.1) to get the results shown in figures 4.4 and 4.5. The
prefactor portions are:

σp =
4NcL

2πT 2Ω

(
acqt

2π~

)2
2a

(2πa)2

(
2πa

vβ

)2γ−1

κp =
NcLγ

2

2πT 3Ω

(
acvt

2π~

)2
1

2a3π2

(
2πa

vβ

)2γ+1
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Then dividing these and dividing by T we have:

Lp =
κp

σpT

=

NcLγ2

2πT 3Ω

(
acvt
2π~

)2 1
2a3π2

(
2πa
vβ

)2γ+1

4NcL
2πTΩ

(
acqt
2π~

)2 2a
(2πa)2

(
2πa
vβ

)2γ−1

=

γ2

T 2

(
acvt
2π~

)2 2/a
(2πa)2

(
2πa
vβ

)2

4
(
acqt
2π~

)2 2a
(2πa)2

=

γ2

T 2v
2(2/a)

(
2πa
vβ

)2

4q2(2a)

=

(
kB
q

)2

π2γ2

Comparing with the expected value from the Wiedemann-Franz Law, which is

L0 =
π2

3

(
kB
e

)2

, (4.206)

we see that
Lp = 3L0γ

2 (4.207)

Thus our complete result for L can be written as

L = γ2L0

×
3× lim

n→0
lim
δ→0

[−i
nπ

∫ π
0
dτ ′e2inτ ′

(
· · ·
)]
in→n+iδ′

lim
n→0

lim
δ→0

[
−i
nπ

∫ π
0
dτ ′e2inτ ′

(
2f(γ, τ ′, 1, 1)− cos(2τ ′)

(
f(γ, τ ′, 0, 1) + f(γ, τ ′, 2, 1)

))]
in→n+iδ′

(4.208)

where

(
· · ·
)

=



−4(2 + γ2 − 2 cos(4τ ′))f(γ, τ ′, 3, 3)

+ cos(2τ ′)(2 + γ2 − 2 cos(4τ ′))(f(γ, τ ′, 2, 3) + f(γ, τ ′, 4, 3))

+2(1 + γ2 − cos(4τ ′))(f(γ, τ ′, 1, 3) + f(γ, τ ′, 5, 3))

−γ2 cos(2τ ′)(f(γ, τ ′, 0, 3) + f(γ, τ ′, 6, 3))


(4.209)

The plot of L/L0 as a function of interaction strength γ is shown in figure 4.6. To find
the error bars, for each value of γ we take many samples where the numerical integrals
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Figure 4.6: (a) Numerical evaluation of the Lorenz number as a function of γ in the full
Luttinger liquid model. (b) Zooming in on small interaction strengths, the Lorenz number
approaches the expected value from the Wiedemann-Franz Law, L0, in the noninteracting
limit γ → 1. Numerical integrals are evaluated with cutoff ε = 10−1.5 (see section 4.1 for a
definition and explanation of the cutoff).

are allowed to vary randomly within their range of precision, and the Lorenz number is
recomputed using those values; the error bar indicates the smallest interval containing 68%
(one sigma) of samples in the resulting distribution of Lorenz number values. See section
4.1 for details.

We see from the graph that as expected, L/L0 goes to 1 in the noninteracting limit γ = 1,
but the Wiedemann-Franz law is violated in the presence of interactions. As in the previous
model, this appears to follow a power law in γ, and we can confirm by plotting

a(γ) =
log(L/L0)

log(γ)
(4.112)

The result (with error bars now omitted for clarity) is shown in figure 2.3. It appears from
the data that L/L0 scales as approximately γ3.65 for γ ≈ 1 and γ3.2 for larger γ. While there
is no clear intuitive explanation for this precise exponent, there is actually a fairly simple
explanation for why we should expect L/L0 to scale as approximately γ4 in this model and
γ2 in our earlier model.

Lorenz number scaling argument

Here we are interested only in the numerical value of L as a function of γ, so we consider

L ∼ κ

σ
∼ 〈JE(τ)JE〉
〈Je(τ)Je〉

(4.210)
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But if we look at our expressions for the current-current correlators,

〈Je(τ)Je〉 = −2NcL

(
acqt

2π~

)2∑
α

∫
Gα(x, τ)Gα(−x,−τ)dx (4.153)

and

〈JE(τ)JE〉 = −2NcLγ
2

(
acvt

2π~

)2∑
α

∫
dx [(kF + iα∂x)Gα(x, τ)]×[(kF − iα∂x)Gα(−x,−τ)] ,

(2.28b)

we see two main differences:

1. 〈JE(τ)JE〉 has a factor of γ2 in front, which came from splitting the [∇] operators into
parts proportional to αφ− θ and −αφ− θ as in equation (4.168). This gave one factor
of γ for each [∇] operator, or two factors in total for the current-current correlator.

2. 〈JE(τ)JE〉 has derivatives of the Green’s function instead of just the function itself.
But the Green’s function looks roughly like

G(x) ∼ f(x)−γ (4.211)

so that taking two derivatives pulls down two factors of γ.

This explains why 〈JE(τ)JE〉 (and therefore κ) has roughly a factor of γ4 that does not
appear in 〈Je(τ)Je〉 (and therefore σ), so that L ∼ γ4.

We also want to understand why the first model gives roughly L ∼ γ2. In that model, the
distinguishing feature of 〈JE(τ)JE〉 compared with 〈Je(τ)Je〉 is two extra factors of energy
in the integrand. To be precise, in equation (4.67), nil is 2 for 〈JE(τ)JE〉 and 0 for 〈Je(τ)Je〉.
The energy for a linearized spectrum like the one we consider is proportional to ±k − kF ,
and if we convert the expression to real space like in section 4.5, this precisely gives the
modified derivative kF ± i∂x. This means that the noninteracting model still incorporates
the two factors that come from derivatives of the Green’s function.

What about the two factors of γ from the [∇] operators? In the real-space version of
the noninteracting calculation as presented in section 4.5, we see that the expression for the
energy current operator is much simpler than in the full interacting calculation. Nothing
like the [∇] operators even appears. Thus these two factors of γ are missing.

Our conclusion based on these intuitive arguments is that in the noninteracting model
we would have L/L0 = γ2 and for the full Luttinger model we would have L/L0 = γ4. These
are indeed close to the numerically observed values, which in the large γ limit are γ2.05 and
γ3.2 respectively. (In the latter case there is apparently a somewhat large correction due to
the precise functional form of the Green’s function, though the qualitative result that L is a
power law in γ and with a higher power in the more complete model is consistent with the
simplified γ4 prediction.)
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4.4 Luttinger Liquid Green’s function derivation (and

G̃)

In our calculations above, we have used the following expression for the Green’s function of
an isolated Luttinger liquid:

Gα(x, τ) = −e
iαkF x

2πa

 −ia
vβ
π

sinh
(
x−ivτ
vβ/π

)

γ−α
2
 ia

vβ
π

sinh
(
x+ivτ
vβ/π

)

γ+α
2

(2.29)

where γ is related to the Luttinger interaction parameter K by γ = (K +K−1)/2.
It is surprisingly difficult to find in the literature a precise expression for the Green’s

function at finite temperature that includes all prefactors in a precise way.
One particularly clean discussion of the calculation, which we found helpful and enlight-

ening, is in reference [17]. Their equation (35), translated into the notation we use in this
work, states that for T = 0 the Green’s function is:

Gα(x, τ) = −e
iαkF x

2πa

[ −ia
x− ivτ

] γ−α
2
[

ia

x+ ivτ

] γ+α
2

(4.212)

(Note that they define the Green’s function as −〈ψ†α(x, τ)ψα(0, 0)〉, but their result is actually
consistent with −〈ψα(x, τ)ψ†(0, 0)〉 as we have defined the Green’s function here.) To go from
this expression to the equivalent one at finite temperature, we can look at various papers
that give the finite-T Green’s function but are just missing some important prefactors like
eiαkF x. One such result is equation (30) of reference [71]. Note that if we use that result,
we leave off the last factor because that arises in the semi-infinite case where the Luttinger
liquid has an endpoint, which is different from infinite-length 1D chains we consider here.

From that paper, it is apparent that the correct transformation to a finite temperature
result is given by

x± ivτ →
(
vβ

π

)
sinh

(
x± ivτ
vβ/π

)
. (4.213)

(Note that in the T → 0 limit, the right-hand side reduces to the left-hand side as ex-
pected.) This substitution transforms the 0 temperature result (equation 4.212) into the
finite temperature (equation 2.29).

We can also easily derive the correct finite-temperature result in the noninteracting case
by writing ψ in terms of Fourier-space operators according to equation (3.29b) from section
4.3.

The calculation is as follows:
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−Ga(x, τ) = 〈ψa(x, τ)ψ†α(0, 0)〉

=

〈(
eiαkF x√

L

∑
k

eikxck,α(τ)

)(
1√
L

∑
k

c†k,α

)〉

=
eiαkF x

L

∑
kk′

eikx
〈
ck,α(τ)c†k,α

〉
=
eiαkF x

L

∑
kk′

eikxe−τEkα/~
〈
ck,αc

†
k,α

〉
=
eiαkF x

L

∑
kk′

eikxe−τEkα/~ (1− nEkα) δkk′

=
eiαkF x

L

∑
k

eikxe−τEkα/~

1 + e−βEkα

Use Ekα = α~vk:

=
eiαkF x

L

∑
k

eikxe−ταvk

1 + e−βα~vk

=
eiαkF x

2π

∫
eikxe−ταvk

1 + e−βα~vk
dk

Let k′ = αk:

=
eiαkF x

2π
× α

∫ α×∞

−α×∞

eiαk
′xe−τvk

′

1 + e−β~vk′
dk

=
eiαkF x

2π

∫ ∞
−∞

eiαk
′xe−τvk

′

1 + e−β~vk′
dk

Since 0 < τ < ~β:

=
eiαkF x

2π

[
π

β~v
csc

(
τv − iαx
β~v/π

)]
using csc(a) = i csch(ia):

=
eiαkF x

2π

[
iπ

β~v
csch

(
αx+ iτv

β~v/π

)]
=
eiαkF x

2π

[
iαπ

β~v
csch

(
x+ iατv

β~v/π

)]
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Setting ~ = 1, this matches the Green’s function as given in equation (2.29) in the case
γ = 1.

We also want to write 〈ψ†a(x, τ)ψα(0, 0)〉 in terms of the Green’s function. In the case
that τ = 0, the relationship can be derived very simply, as

〈ψ†α(x)ψα(0)〉 = 〈{ψ†α(x), ψα(0)} − ψα(0)ψ†α(x)〉 = δ(x) +Gα(−x, 0) (4.214)

The δ(x) part we can neglect. To see this, we will calculate 〈ψ†a(x, τ)ψα(0, 0)〉 in the nonin-
teracting limit the same way we calculated Gα(x, τ) above:

〈ψ†a(x, τ)ψα(0, 0)〉 =

〈(
e−iαkF x√

L

∑
k

e−ikxc†k,α(τ)

)(
1√
L

∑
k

ck,α

)〉

=
e−iαkF x

L

∑
kk′

e−ikx
〈
c†k,α(τ)ck,α

〉
=
e−iαkF x

L

∑
kk′

e−ikxeτEkα/~
〈
c†k,αck,α

〉
=
e−iαkF x

L

∑
kk′

e−ikxeτEkα/~nEkαδkk′

=
e−iαkF x

L

∑
k

e−ikxeτEkα/~

1 + eβEkα

=
e−iαkF x

L

∑
k

e−ikxeταvk

1 + eβα~vk

=
e−iαkF x

2π

∫
e−ikxeταvk

1 + eβα~vk
dk

=
e−iαkF x

2π
× α

∫ α×∞

−α×∞

e−iαk
′xeτvk

′

1 + eβ~vk′
dk′

=
e−iαkF x

2π

∫ ∞
−∞

e−iαk
′xeτvk

′

1 + eβ~vk′
dk′

=
e−iαkF x

2π

[
π

β~v
csc

(
τv − iαx
β~v/π

)]
=
e−iαkF x

2π

[
iπ

β~v
csch

(
αx+ iτv

β~v/π

)]
=
e−iαkF x

2π

[
iαπ

β~v
csch

(
x+ iατv

β~v/π

)]
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From these derivations, we see that for τ = 0, equation (4.214) becomes

δ(x) = 〈ψ†α(x)ψα(0)〉+ 〈ψα(−x)ψ†(0)〉

=
e−iαkF x

2π

∫ ∞
−∞

e−iαk
′x

1 + eβ~vk′
dk′ +

e−iαkF x

2π

∫ ∞
−∞

e−iαk
′x

1 + e−β~vk′
dk′

=
e−iαkF x

2π

∫ ∞
−∞

e−iαk
′x dk′

= e−iαkF xδ(x)

= δ(x)

so that the delta function comes from integrating over the infinite set of occupied states
below the Fermi level, where (1 + eβE) is 1. If we do proper normal-ordering or if we recall
that physically there is a finite band rather than states extending to infinitely low energy,
this contribution should vanish.

We thus conclude that in the case of τ = 0, we have

G̃α(x, 0) ≡ 〈ψ†α(x, 0)ψα(0, 0)〉 = −Gα(−x, 0) (4.215)

At nonzero τ , since the Green’s function depends only on the combinations x± ivτ , we
should expect that G̃ will behave the same way, either sending x± ivτ → x∓ ivτ or keeping
x± ivτ invariant. Then we expect that equation (4.215) can be extended to τ 6= 0 either by

G̃α(x, τ) = −Gα(−x, τ) (4.216)

or by
G̃α(x, τ) = −Gα(−x,−τ) (4.217)

Our derivations for G and G̃ in the noninteracting limit γ = 1 are consistent with the latter
possibility, so we conclude that indeed

G̃α(x, τ) = −Gα(−x,−τ) (4.217)

Of course, this result can also be derived by just following the same calculation that led
to the Green’s function in the first place. We will not show that calculation here.

4.5 Confirmation via special limits and

noninteracting models

To help verify our results, we will (1) compare the results of our two models in the nonin-
teracting limit, and (2) rederive the current operators for the real-space calculation directly
in the noninteracting limit. In both cases we verify that our results are correct.
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Comparison in the noninteracting limit

For concreteness, we will compare the two models for one particular calculation, namely
of 〈JeJe〉. We will begin from the noninteracting model in k-space and transform to real
space to show agreement with our direct Luttinger liquid calculation. Our starting point is
equation (4.63), reproduced here for convenience:

〈Je(τ)Je(0)〉 = 4Nc

(acq
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E ′)|2g(E)g(E ′)

[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE ′

(4.63)
We follow the following steps:

〈Je(τ)Je(0)〉 = 4Nc

(acq
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ(E−E′)

(1 + eβE) (1 + e−βE′)

]
dE dE′

Rewrite with τ ′ = τ π
β
:

〈Je(τ ′)Je(0)〉 = 4Nc

(acq
~

)2
(
L

2π

)2 ∫
EE′
|t(E,E′)|2g(E)g(E′)

[
eτ
′β(E−E′)/π

(1 + eβE) (1 + e−βE′)

]
dE dE′

Convert to an integrals over k and k′:

= 4Nc

(acq
~

)2
(
L

2π

)2 ∫
kk′
|t(k, k′)|2

[
eτ
′β(Ek−Ek′ )/π

(1 + eβEk)
(
1 + e−βEk′

)] dk dk′
Substitute Fourier transforms for t(k, k′) using equation (4.232) from section 4.6:

= 4Nc

(acq
~

)2
(
L

2π

)2 ∫
kk′

∣∣∣∣ 1L
∫
dx dx′

[
tα(x− x′)e−iαkF (x−x′)

]
e−ikxeik

′x′
∣∣∣∣2

×
[

eτ
′β(Ek−Ek′ )/π

(1 + eβEk)
(
1 + e−βEk′

)] dk dk′
=

4Nc

(2π)2

(acq
~

)2
∫ dx1 dx2

dx3 dx4

dk dk′

[
tα(x1 − x2)e−iαkF (x1−x2)

]
e−ikx1eik

′x2
[
tα(x3 − x4)∗eiαkF (x3−x4)

]

× eikx3e−ik′x4
[

eτ
′β(Ek−Ek′ )/π

(1 + eβEk)
(
1 + e−βEk′

)]

=
4Nc

(2π)2

(acq
~

)2
∫

dx1 dx2

dx3 dx4

[
tα(x1 − x2)e−iαkF (x1−x2)

] [
tα(x3 − x4)∗eiαkF (x3−x4)

]
×
[∫

dk
eτ
′βEk/πe−ik(x1−x3)

1 + eβEk

][∫
dk′

e−τ
′βEk′/πeik

′(x2−x4)

1 + e−βEk′

]



CHAPTER 4. TRANSPORT IN COUPLED LUTTINGER LIQUIDS: DETAILS 132

Since τ ′ ∈ [0, π], both integrals over k converge. We also have to be careful here because
our starting point included both right- and left-moving branches of the band structure by
including a factor of two, so here we must pick one by specifying Ek. For left-movers,
Ek = −~vk, while for right-movers Ek = ~vk. Here we assume right-movers. Performing
the integrals, we get:

=
4Nc

(2π)2

(acq
~

)2
∫

dx1 dx2

dx3 dx4

[
tα(x1 − x2)e−iαkF (x1−x2)

] [
tα(x3 − x4)∗eiαkF (x3−x4)

]
×
[
− iπ
vβ

csch

(
π

vβ
(x3 − x1)− iτ ′

)][
iπ

vβ
csch

(
π

vβ
(x2 − x4) + iτ ′

)]
As in our real-space calculation, we use t(x, x′) = t

2π δ(x − x′), as derived in section 4.6 below, to
get:

=
4Nc

(2π)4

(
acqt

~

)2 ∫
dx1 dx3

[
− iπ
vβ

csch

(
π

vβ
(x3 − x1)− iτ ′

)][
iπ

vβ
csch

(
π

vβ
(x1 − x3) + iτ ′

)]
= − 4Nc

(2π)4

(
acqt

~

)2( π

vβ

)2 ∫
dx1 dx3

[
csch

(
π

vβ
(x1 − x3) + iτ ′

)]2

Rewrite with center of mass and relative coordinates using equation 4.148 to get:

= − 4Nc

(2π)4

(
acqt

~

)2( π

vβ

)2 ∫
dx (L− |x|)

[
csch

(
π

vβ
x+ iτ ′

)]2

≈ −4NcL

(2π)4

(
acqt

~

)2( π

vβ

)2 ∫
dx

[
csch

(
π

vβ
x+ iτ ′

)]2

Finally, we rescale x to x′ = π
vβ
x, getting:

〈Je(τ ′)Je(0)〉 = −4NcL

(2π)4

(
acqt

~

)2(
π

vβ

)∫
dx′ [csch (x′ + iτ ′)]

2

Compare this with our Luttinger model result. One intermediate step in that calculation
looked like,

〈Je(τ ′)Je〉 = −2NcL

(
acqt

2π~

)2
a2γ

(2πa)2

(
π

vβ

)2γ−1

×
∑
α

∫
dx′ [sinh (x′ + iτ ′) sinh (x′ − iτ ′)]−γ

(
sinh (x′ − iτ ′)
sinh (x′ + iτ ′)

)α
(4.218)

As we did above in choosing Ek, we will look at just the right-movers. (As shown in our
earlier calculations of the current-current correlator in this model, α actually drops out, so
this choice is purely about making the equivalence of the expressions manifest.) Thus we
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set α = 1. We also consider the noninteracting limit γ = 1 to show the equivalence of the
models in this limit. With these substitutions we have:

〈Je(τ ′)Je〉 = −4NcL

(
acqt

2π~

)2
a2

(2πa)2

(
π

vβ

)
×
∫
dx′ [sinh (x′ + iτ ′) sinh (x′ − iτ ′)]−1

(
sinh (x′ − iτ ′)
sinh (x′ + iτ ′)

)
= −4NcL

(2π)4

(
acqt

~

)2(
π

vβ

)∫
dx′ [sinh (x′ + iτ ′)]

−2

which as promised is in agreement with the direct calculation from the noninteracting model.

Noninteracting real-space calculation

The purpose of this section is primarily to confirm our expressions for the thermal conduc-
tivity in the real-space Luttinger liquid model, since that derivation is rather long and hence
is potentially prone to errors. We confirm the structure found above where we integrate over
shifted derivatives of the Green’s function of the form (kF + iα∂x)G.

Noninteracting real-space Hamiltonian

We begin by finding the Hamiltonian. We want this model to match the ones above, so we
begin with the Hamiltonian from our first model,

H =
∑
jk

Ekc
†
jkcjk −

∑
jkk′

tkk′
(
c†jkcj+1,k′ + h.c.

)
(2.1)

First, we match to the real-space Luttinger liquid model by linearizing around each Fermi
point and separating the left-moving and right-moving parts of the spectrum (near ±kF
respectively). In that case, Ek = α~vk where α = ±1 for right- and left-movers respectively
and v is the Fermi velocity. This gives

H =
∑
jkα

α~vkc†jkαcjkα −
∑
jkk′

∑
αβ

tkk′,αβ

(
c†jkαcj+1,k′β + h.c.

)
(4.219)

The conversion of the hopping term to real-space should give precisely the expression h′j
from our Luttinger liquid model above (equation 4.131). To convert the on-chain part of
this Hamiltonian, we substitute in our expressions for ckα in terms of ψα(x) as given in
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equation (3.29a). Then we compute (temporarily dropping the index j for convenience):

H =
∑
k,α

α~vkc†k,αck,α

=
∑
k,α

α~vk
(

1√
L

∫
eikxeiαkF xψ†α(x)dx

)(
1√
L

∫
e−ikx

′
e−iαkF x

′
ψα(x′)dx′

)

= ~v
∑
α

α

∫
eiαkF (x−x′)ψ†α(x)ψα(x′)

[
1

L

∑
k

keik(x−x′)
]
dx dx′

= ~v
∑
α

α

∫
eiαkF (x−x′)ψ†α(x)ψα(x′)

[
1

2π

∫
keik(x−x′)dk

]
dx dx′

= ~v
∑
α

α

∫
eiαkF (x−x′)ψ†α(x)ψα(x′)(−i∂x)

[
1

2π

∫
eik(x−x′)dk

]
dx dx′

= −i~v
∑
α

α

∫
eiαkF (x−x′)ψ†α(x)ψα(x′)(∂xδ(x− x′))dx dx′

Thus the whole Hamiltonian we will use is

H =
∑
j

Hj =
∑
j

hj + h′j

hj = −i~v
∑
α

α

∫
eiαkF (x−x′)ψ†j,α(x)ψj,α(x′)(∂xδ(x− x′))dx dx′ (4.220)

h′j = −1

2

∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′) + tαβ(x− x′)ψ†j−1,α(x)ψjβ(x′) + h.c.

]
Current operators

We now want to find the current operators, both for electrical current Je and thermal cur-
rent JE. Fortunately, the expression for the on-chain Hamiltonian never appeared in our
calculation of Je above, so our answer must be the same here as in the Luttinger liquid
model (section 4.3). For JE we do need a new calculation, though fortunately it will not be
particularly difficult.

As above, we find the energy current operator using the expression

JQ = lim
k→0

1

~k
∑
j

[Hj, H]eikacj (4.48)

To calculate the commutator, we split up the Hamiltonian into the on-chain and hopping
portions and get

[Hj, H] =
∑
i

[Hj, Hi] =
∑
i

[hj, hi]+[hj, h
′
i]+[h′j, hi]+[h′j, h

′
i] ≈

∑
i

[h′j, hi]− [h′i, hj] (4.221)
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where as above the [hj, hi] term is 0 and the [h′j, h
′
i] term is second order in the hopping and

thus can be neglected. We next find [h′j, hi]:

[h′j, hi] =
i~v
2

∑
αβγ

γ

∫
dx1 dx2 dx3 dx4 tαβ(x1 − x2)eiγkF (x3−x4)(∂x3δ(x3 − x4))

[
· · ·
]

[
· · ·
]

=

[
ψ†jα(x1)ψj+1,β(x2) + ψ†jα(x1)ψj−1,β(x2)

+ψ†j+1,α(x1)ψjβ(x2) + ψ†j−1,α(x1)ψjβ(x2)
, ψ†iγ(x3)ψiγ(x4)

]
= δβγδ(x2 − x3)

[
δi,j+1ψ

†
jα(x1)ψiγ(x4) + δi,j−1ψ

†
jα(x1)ψiγ(x4)

+ δijψ
†
j+1,α(x1)ψiγ(x4) + δijψ

†
j−1,α(x1)ψiγ(x4)

]
− δαγδ(x1 − x4)

[
δijψ

†
iγ(x3)ψj+1,β(x2) + δijψ

†
iγ(x3)ψj−1,β(x2)

+δi,j+1ψ
†
iγ(x3)ψjβ(x2) + δi,j−1ψ

†
iγ(x3)ψjβ(x2)

]
We then subtract the same expression but with i ↔ j, and then we sum over i. The terms
that have δij will all cancel in the sum since the Kronecker delta enforces i = j and thus the
terms will be the same when we swap i↔ j, and we thus have:

[h′j, H] =
i~v
2

∑
αβγ

γ

∫
dx1 dx2 dx3 dx4 tαβ(x1 − x2)eiγkF (x3−x4)(∂x3δ(x3 − x4))

[
· · ·
]

[
· · ·
]

=
∑
i

[
δβγδ(x2 − x3)

[
δi,j+1ψ

†
jα(x1)ψiγ(x4) + δi,j−1ψ

†
jα(x1)ψiγ(x4)

−δj,i+1ψ
†
iα(x1)ψjγ(x4)− δj,i−1ψ

†
iα(x1)ψjγ(x4)

]
− δαγδ(x1 − x4)

[
δi,j+1ψ

†
iγ(x3)ψjβ(x2) + δi,j−1ψ

†
iγ(x3)ψjβ(x2)

−δj,i+1ψ
†
jγ(x3)ψiβ(x2)− δj,i−1ψ

†
jγ(x3)ψiβ(x2)

]]
= δβγδ(x2 − x3)

[
ψ†jα(x1)ψj+1,γ(x4) + ψ†jα(x1)ψj−1,γ(x4)

−ψ†j−1,α(x1)ψjγ(x4)− ψ†j+1,α(x1)ψjγ(x4)

]
− δαγδ(x1 − x4)

[
ψ†j+1,γ(x3)ψjβ(x2) + ψ†j−1,γ(x3)ψjβ(x2)

−ψ†jγ(x3)ψj−1,β(x2)− ψ†jγ(x3)ψj+1,β(x2)

]
We can next use the useful fact (equation 4.45) that for any operator depending on site j,
Oj,

lim
k→0

1

k

∑
j

(Oj+1 −Oj)e
ikaj = −ia

∑
j

Oj (4.45)

This gives

JE = −iac
iv

2

∑
jαβγ

γ

∫
dx1 dx2 dx3 dx4 tαβ(x1 − x2)eiγkF (x3−x4)(∂x3δ(x3 − x4))

[
· · ·
]

[
· · ·
]

= δβγδ(x2 − x3)
[
ψ†j−1,α(x1)ψjγ(x4)− ψ†jα(x1)ψj−1,γ(x4)

]
(4.222)

+ δαγδ(x1 − x4)
[
ψ†j−1,γ(x3)ψjβ(x2)− ψ†jγ(x3)ψj−1,β(x2)

]
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Next we use the delta functions from
[
· · ·
]

to eliminate one index and one position coordi-
nate, getting

JE = −iac
iv

2

∑
jαγ

γ

∫
dx dx3 dx4 e

iγkF (x3−x4)(∂x3δ(x3 − x4))
[
· · ·
]

[
· · ·
]

= tαγ(x− x3)
[
ψ†j−1,α(x)ψjγ(x4)− ψ†jα(x)ψj−1,γ(x4)

]
+ tγα(x4 − x)

[
ψ†j−1,γ(x3)ψjα(x)− ψ†jγ(x3)ψj−1,α(x)

]
We can then perform integration by parts to move the derivative from the delta function:

JE = −iac
iv

2

∑
jαγ

γ

∫
dx dx3 dx4

[
· · ·
]

[
· · ·
]

= tαγ(x− x3)eiγkF (x3−x4)(∂x3δ(x3 − x4))
[
ψ†j−1,α(x)ψjγ(x4)− ψ†jα(x)ψj−1,γ(x4)

]
+ tγα(x4 − x)eiγkF (x3−x4)(∂x3δ(x3 − x4))

[
ψ†j−1,γ(x3)ψjα(x)− ψ†jγ(x3)ψj−1,α(x)

]
= tαγ(x− x3)eiγkF (x3−x4)(∂x3δ(x3 − x4))

[
ψ†j−1,α(x)ψjγ(x4)− ψ†jα(x)ψj−1,γ(x4)

]
− tγα(x4 − x)eiγkF (x3−x4)(∂x4δ(x3 − x4))

[
ψ†j−1,γ(x3)ψjα(x)− ψ†jγ(x3)ψj−1,α(x)

]
→ −

[
∂x3
(
tαγ(x− x3)eiγkF (x3−x4)

)]
δ(x3 − x4)

[
ψ†j−1,α(x)ψjγ(x4)− ψ†jα(x)ψj−1,γ(x4)

]
+
[
∂x4
(
tγα(x4 − x)eiγkF (x3−x4)

)]
δ(x3 − x4)

[
ψ†j−1,γ(x3)ψjα(x)− ψ†jγ(x3)ψj−1,α(x)

]
= −eiγkF (x3−x4) [(iγkF + ∂x3)tαγ(x− x3)] δ(x3 − x4)

[
ψ†j−1,α(x)ψjγ(x4)− ψ†jα(x)ψj−1,γ(x4)

]
+ eiγkF (x3−x4) [(−iγkF + ∂x4)tγα(x4 − x)] δ(x3 − x4)

[
ψ†j−1,γ(x3)ψjα(x)− ψ†jγ(x3)ψj−1,α(x)

]
So now we can use the delta function of x3 and x4 to reduce to just two coordinates, x and
x′:

JE = −iac
iv

2

∑
jαγ

γ

∫
dx dx′

[
· · ·
]

[
· · ·
]

= − [(iγkF + ∂x′)tαγ(x− x′)]
[
ψ†j−1,α(x)ψjγ(x

′)− ψ†jα(x)ψj−1,γ(x
′)
]

+ [(−iγkF + ∂x′)tγα(x′ − x)]
[
ψ†j−1,γ(x

′)ψjα(x)− ψ†jγ(x′)ψj−1,α(x)
]
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If we relabel x↔ x′ and α↔ γ in the second term of
[
· · ·
]
, this becomes

JE = −iac
iv

2

∑
jαγ

γ

∫
dx dx′

[
· · ·
]

[
· · ·
]

= − [(iγkF + ∂x′)tαγ(x− x′)]
[
ψ†j−1,α(x)ψjγ(x

′)− ψ†jα(x)ψj−1,γ(x
′)
]

+ [(−iγkF + ∂x)tαγ(x− x′)]
[
ψ†j−1,α(x)ψjγ(x

′)− ψ†jα(x)ψj−1,γ(x
′)
]

and we can easily see that the two lines of
[
· · ·
]

are actually the same! Thus we get:

JE = −acv
∑
jαγ

γ

∫
dx dx′ [(iγkF + ∂x′)tαγ(x− x′)]

[
ψ†j−1,α(x)ψjγ(x

′)− ψ†jα(x)ψj−1,γ(x
′)
]

(4.223)
or rewriting to make the expression slightly nicer,

JE = −iacv
∑
jαγ

∫
dx dx′ [(kF + iγ∂x)tαγ(x− x′)]

[
ψ†j−1,α(x)ψjγ(x

′)− ψ†jα(x)ψj−1,γ(x
′)
]

(4.224)
Note that if we assume as we have done in the calculations of the current-current correlators
for the Luttinger liquid model above that tαβ(x− x′) = t

2π
δαβδ(x− x′), this becomes

JE =
iacvt

2π

∑
jα

∫
dx
[(
k̂αψ

†
j−1,α(x)

)
ψjα(x)−

(
k̂αψ

†
jα(x)

)
ψj−1,α(x)

]
(4.225)

where k̂α ≡ kF − iα∂x.

Current-current correlators

As noted above, Je in this model is necessarily the same as in our Luttinger liquid model from
section 4.3, and thus the correlator appearing in the calculation of electrical conductivity
must also be the same.

The correlator 〈JE(τ)JE〉, however, could in principle disagree so we will calculate it here
and show that it agrees with the noninteracting limit of our earlier result. Since our earlier
result used tαβ(x− x′) = tδαβδ(x− x′), we will start with the expression for JE that already
incorporates that simplification. We thus have:
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〈JE(τ)JE〉 =

(
acvt

2π

)2∑
ijαβ

∫
dx dx′

〈
· · ·
〉

〈
· · ·
〉

=
〈(
k̂αψ

†
j−1,α(x, τ)

)
ψjα(x, τ)

(
k̂βψ

†
iβ(x′)

)
ψi−1,β(x′)

+
(
k̂αψ

†
jα(x, τ)

)
ψj−1,α(x, τ)

(
k̂βψ

†
i−1,β(x′)

)
ψiβ(x′)

〉
= δαβδij

〈(
k̂αψ

†
j−1,α(x, τ)

)
ψj−1,α(x′)

〉〈
ψjα(x, τ)

(
k̂αψ

†
jα(x′)

)〉
+ δαβδij

〈(
k̂αψ

†
jα(x, τ)

)
ψjα(x′)

〉〈
ψj−1,α(x, τ)

(
k̂βψ

†
j−1,α(x′)

)〉
Next note that each correlator now has only a single value of j, meaning that it is a property
of a single 1D chain. Since all 1D chains are assumed to be the same, the exact value j or
j− 1 is no longer important. In that case, the correlators don’t actually depend on j so that
the two terms are the same and the sum on j just gives a factor of Nc, the total number of
chains. Thus we’ll drop the j index and perform the sum. Thus overall we get a factor of
2Nc to get:

〈JE(τ)JE〉 = 2Nc

(
acvt

2π

)2∑
α

∫
dx dx′

〈(
k̂αψ

†
α(x, τ)

)
ψα(x′)

〉〈
ψα(x, τ)

(
k̂αψ

†
α(x′)

)〉
(4.226)

We can pull the derivatives out of the correlators to get

〈JE(τ)JE〉 = 2Nc

(
acvt

2π

)2

×
∑
α

∫
dx dx′

[
(kF − iα∂x)

〈
ψ†α(x, τ)ψα(x′)

〉]
×
[
(kF − iα∂x′)

〈
ψα(x, τ)ψ†α(x′)

〉]
(4.227)

We can then rewrite in terms of a single position coordinate to get

〈JE(τ)JE〉 = 2NcL

(
acvt

2π

)2

×
∑
α

∫
dx
[
(kF − iα∂x)

〈
ψ†α(x, τ)ψα(0)

〉]
×
[
(kF + iα∂x)

〈
ψα(x, τ)ψ†α(0)

〉]
(4.228)

Writing this in terms of the Green’s function we have

〈JE(τ)JE〉 = 2NcL

(
acvt

2π

)2∑
α

∫
dx
[
(kF − iα∂x) G̃α(x, τ)

]
× [(kF + iα∂x)Gα(x, τ)]

(4.229)
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If this is compared with the noninteracting limit (γ = 1) of equation (2.28b) from our
Luttinger liquid model calculation, we find that they agree. This provides a useful con-
firmation of our lengthy and therefore error-susceptible calculation in the Luttinger liquid
model.

4.6 Form of the hopping, tkk′ and t(x, x′)

Both of our models involve some sort of hopping strength, tkk′ in the noninteracting model
and t(x, x′) in the full Luttinger model. In calculating the transport coefficients, we had
to make some assumptions about these transport coefficients. In particular, we used the
following expressions:

tkk′ = te−(k−k′)2L2/π (4.230a)

t(k, k′) =
t

L
δ(k − k′) with δ(0) = L (4.230b)

t(x, x′) =
t

2π
δ(x− x′) (4.230c)

In this section, we will derive (1) the relation between tkk′ and t(x, x′) and (2) the precise
expressions given above.

To find the relation between tkk′ and t(x, x′), we begin by assuming that the Hamiltonians
we use for our two models describe the same physical system and thus can be directly related.
For convenience, we reproduce those two expressions here:

H =
∑
jk

Ekc
†
jkcjk −

∑
jkk′

tkk′
(
c†jkcj+1,k′ + h.c.

)
(2.1)

H =
∑
j

Hj =
∑
j

hj + h′j (4.131)

hj =
~
2π

∫
dx

[
vK

~2
(∇θj)2 +

v

K
(∇φj)2

]
h′j =

1

2

∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′) + tαβ(x− x′)ψ†j−1,α(x)ψjβ(x′) + h.c.

]
Our first step in equating these is to rewrite the hopping term of the latter Hamiltonian

(equation 4.131) with only two terms instead of four so that it more closely matches the
form of the noninteracting Hamiltonian. The Luttinger hopping term then becomes∑

j

∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′) + h.c.

]
(4.231)

which is just the sum over j of the expression in equation (4.133).
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We now substitute in expressions for the real-space fermion operators ψ in terms of the
Fourier space operators c and compare the two hopping terms to find the relation between
tkk′ and t(x, x′). We begin by dropping the sum over the chain index j since that appears in
both expressions. We can likewise drop the Hermitian conjugate term for our comparison,
since if the first term matches, that one will as well.

Then we have:∑
kk′

tkk′c
†
jkcj+1,k′ =

∑
αβ

∫
dx dx′

[
tαβ(x− x′)ψ†jα(x)ψj+1,β(x′)

]
=
∑
αβ

∫
dx dx′

[
tαβ(x− x′)

[
e−iαkF x√

L

∑
k

e−ikxc†jkα

][
eiβkF x

′

√
L

∑
k

eikx
′
cj+1,kβ

]]

At this point, we must deal with an inconsistency in the way we have approached our two
models. In the noninteracting model, we did not split apart the two separate bands until
switching from an integral over k to an integral over E, while in the real-space Luttinger
model we have already done so. This is why there is a sum over α and β on the right-hand
side but not on the left-hand side. To correct for this difference in approaches, we assume
as above that tαβ(x − x′) = δαβt(x − x′) and also add in a similar dependence on α and β
on the left-hand side, tkk′ → tkk′,αβ = δαβtkk′ and sum over α and β:∑

kk′

∑
α

tkk′c
†
jkαcj+1,k′α

=
∑
α

∫
dx dx′

[
t(x− x′)

[
e−iαkF x√

L

∑
k

e−ikxc†jkα

][
eiαkF x

′

√
L

∑
k

eikx
′
cj+1,kα

]]

=
1

L

∑
kk′

∑
α

∫
dx dx′

[
t(x− x′)e−iαkF (x−x′)

[
e−ikxeik

′x′
]
c†jkαcj+1,kα

]
tkk′ =

1

L

∫
dx dx′

[
t(x− x′)e−iαkF (x−x′)

[
e−ikxeik

′x′
]]

It appears that either tkk′ or t(x, x′) must still depend on α. We will assume for now that
the dependence is in t(x, x′) so our final result is

tkk′ =
1

L

∫
dx dx′

[
tα(x− x′)e−iαkF (x−x′)

]
e−ikxeik

′x′ (4.232)

We can also invert this relation to get

tα(x− x′)e−iαkF (x−x′) =
L

(2π)2

∫
dk dk′ tkk′e

ikxe−ik
′x′ (4.233)

Now we can finally put in some example expressions for these hopping strengths. We
begin with tkk′ , which we assume to be sharply peaked around k = k′. To be concrete, we
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start with the expression
tkk′ = te−(k−k′)2/k20 (4.234)

where k0 is some large momentum. This gives

tα(x− x′)e−iαkF (x−x′) =
Lt

2π
k0

√
πe−(k0x/2)2δ(x− x′) (4.235)

or equivalently (because of the delta function on the right-hand side)

t(x− x′) =
Lt

2π
k0

√
πe−(k0x/2)2δ(x− x′) (4.236)

On physical grounds, the real-space hopping should not grow with L, so we want k0 ∝ L−1.
In particular, we choose k0 = A/L where A is some unitless constant of order 1. Then we
have:

tkk′ = te−(k−k′)2/(A/L)2 (4.237)

t(x− x′) =
At
√
π

2π
e−(Ax/2L)2δ(x− x′) (4.238)

In the limit L→∞, this becomes

tkk′ = tδkk′ (4.239)

t(x− x′) =
At
√
π

2π
δ(x− x′) (4.240)

We also need the continuum version in k-space. Recalling that

δ(x) = lim
ε→0

1√
2πε

e−x
2/2ε, (4.241)

we can write

tkk′ = te−(k−k′)2/(A/L)2 = t
A
√
π

L
× L

A
√
π
e−(k−k′)2/(A/L)2 = t

A
√
π

L
δ(k − k′) (4.242)

in the limit L → ∞, with δ(0) = L
A
√
π
. Note that if we directly Fourier transform this

expression for t(k, k′) to get t(x, x′), the result is

t(x− x′) =
At
√
π

2π
δ(x− x′), (4.243)

precisely the same as what we found in the L → ∞ limit of the Fourier transform of tkk′ .
Our choice of k0 was somewhat arbitrary apart from its proportionality to L−1, so we can
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also choose the constant A to have a convenient value. We pick A = π−1/2 so that we end
up with the very nice expressions:

tkk′ = te−(k−k′)2L2/π (4.244)

t(k, k′) =
t

L
δ(k − k′) with δ(0) = L (4.245)

t(x, x′) =
t

2π
δ(x− x′) (4.246)

We can also get t(E,E ′) by a variable transformation on t(k, k′). Our linear dispersion
implies that E = ±~vk, where for a given t(E,E ′) function we are only on the right branch
or the left so that the sign of the dispersion is the same for both. This gives

t(E,E ′) =
tv

L
δ(E − E ′) with δ(0) =

L

v
(4.71)

Similarly we can also get the expression in terms of βE,

t(βE, βE ′) =
tvβ

L
δ(βE − βE ′) with δ(0) =

L

vβ
(4.247)

4.7 Definitions and identities for the F1

hypergeometric function

In our calculations for the full Luttinger liquid model, some exact integrals have provided
results in terms of the Appell hypergeometric function, F1(a; b1, b2; c;x, y). This is usually
defined in terms of an infinite series in the two variables x and y [82, §16.13][28, §5.7.1],

F1(a; b1, b2; c;x, y) =
∑
i,j

(a)i+j(b1)i(b2)j
(c)i+ji!j!

xiyj (4.248)

where the Pochammer symbol (a)n is defined by

(a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1) · · · (a+ n− 1) (4.249)

This series representation converges for |x| and |y| less than 1 and diverges otherwise
except in the case of very specific values of the a, b, and c parameters that cause the series
to truncate. (In particular, this will happen if any one of a, b1, and b2 is a negative integer.)

In our case, x and y are e±2iτ , with absolute value 1, and the parameters are such that the
series in fact fails to truncate, so that the infinite sum does not converge. In this case, when
we give expressions in terms of F1, we are implicitly referencing the integral representation
of the function [82, §16.15][28, §5.8.2],

F1(a; b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt, (4.250)
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valid when Re(c) > Re(a) > 0. In the regime where both the series definition and the
integral representation are valid, the two expressions agree and are thus interchangeable as
definitions for the Appell function. The integral expression is valid for the parameter regimes
of interest for our calculations, and in particular F1 appears in our calculations only as

f(γ, τ, n,m) =
F1(γ + n; γ +m, γ +m; γ + n+ 1; e2iτ , e−2iτ )

γ + n
, (4.158)

so that a = γ + n, b1 = b2 = γ + m, c = a + 1, x = e2iτ , and y = e−2iτ . Making these
substitutions into the integral representation for F1, equation (4.250), we find the integral
representation for the f function as cited in section 4.3, namely

f(γ, τ, n,m) =

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m) dt (4.159)

A useful identity and its derivation

Here we derive the useful identity

f(γ, τ, n,m) = f(γ, τ, n,m+1)−2 cos(2τ)f(γ, τ, n+1,m+1)+f(γ, τ, n+2,m+1) (4.251)

While this identity was never explicitly mentioned in the work presented above, in practice
we used it to get the result (4.157) and therefore also the expressions in equations (4.160),
(4.187), and (4.193). We initially did those integrals separately using the commercial software
Wolfram Mathematica, which in some cases gave the results we presented above and in others
gave an answer looking more like the right-hand side of (4.251). We used the identity (4.251)
to verify the consistency of the results and therefore to simplify all the results as much as
possible to arrive at the result given in (4.157).

Here we will provide a brief derivation of the identity. Beginning from the left-hand side
of equation (4.251), we have:

f(γ, τ, n,m) =

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m) dt

=

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m) ×
(

1− 2t cos(2τ) + t2

1− 2t cos(2τ) + t2

)
dt

=

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m+1) × (1− 2t cos(2τ) + t2) dt

=

∫ 1

0

tγ+n−1(1− 2t cos(2τ) + t2)−(γ+m+1) dt

− 2 cos(2τ)

∫ 1

0

tγ+(n+1)−1(1− 2t cos(2τ) + t2)−(γ+m+1) dt

+

∫ 1

0

tγ+(n+2)−1(1− 2t cos(2τ) + t2)−(γ+m+1) dt

=f(γ, τ, n,m+ 1)− 2 cos(2τ)f(γ, τ, n+ 1,m+ 1) + f(γ, τ, n+ 2,m+ 1)
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This is actually a special case of a more general identity for the Appell function,

F1 = F1(b1 +1, b2 +1)−(x+y)
a

c
F1(a+1, b1 +1, b2 +1, c+1)+xy

(a+ 1)a

(c+ 1)c
F1(a+2, b1 +1, b2 +1, c+2)

(4.252)

where any unspecified arguments of the F1 functions are assumed to be unchanged from
F1(a, b1, b2, c, x, y). The derivation of this more general form is quite similar, but we will
show it here for completeness.

F1 =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−(b1+1)(1− yt)−(b2+1)(1− (x+ y)t+ xyt2) dt

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−(b1+1)(1− yt)−(b2+1) dt

− (x+ y)
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

t(a+1)−1(1− t)(c+1)−(a+1)−1(1− xt)−(b1+1)(1− yt)−(b2+1) dt

+ xy
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

t(a+2)−1(1− t)(c+2)−(a+2)−1(1− xt)−(b1+1)(1− yt)−(b2+1) dt

=F1(b1 + 1, b2 + 1)− (x+ y)
Γ(c)Γ(a+ 1)

Γ(c+ 1)Γ(a)
F1(a+ 1, b1 + 1, b2 + 1, c+ 1)

+ xy
Γ(c)Γ(a+ 2)

Γ(c+ 2)Γ(a)
F1(a+ 2, b1 + 1, b2 + 1, c+ 2)

=F1(b1 + 1, b2 + 1)− (x+ y)
a

c
F1(a+ 1, b1 + 1, b2 + 1, c+ 1)

+ xy
(a+ 1)a

(c+ 1)c
F1(a+ 2, b1 + 1, b2 + 1, c+ 2)

The prefactors are much simpler in our special case because the fact that c = a+ 1 leads to
some nice simplifications.
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Part II

Study of the triangular lattice
Hubbard model using the density

matrix renormalization group
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Chapter 5

Chiral spin liquid phase of the
triangular lattice Hubbard model

In this chapter, I present my study of the triangular lattice Hubbard model using the den-
sity matrix renormalization group (DMRG) method on infinitely long cylinders with finite
circumference. This work is available on arXiv[111] and was done in collaboration with
Johannes Motruk, Michael Zaletel, and Joel Moore.

As with the study of coupled Luttinger liquids discussed in the preceding chapters, I
again use a technique developed for the study of one-dimensional systems to investigate
a two-dimensional one. In particular, DMRG is a variational method within the space of
matrix product states, which are efficient representations of one-dimensional gapped ground
states; limiting a two-dimensional triangular lattice to finite-circumference cylinders creates
effective quasi-one-dimensional systems to which DMRG can be applied.

In this chapter I present the experimental and theoretical context for the work, and I show
the results of my numerical simulations on a wide variety of cylinder geometries. In particu-
lar, I clearly demonstrate that the model has three phases as a function of electron-electron
interaction strength: a metallic phase with weak interactions, a magnetically ordered phase
with strong interactions, and a nonmagnetic insulating phase in between. Chiral ordering
from spontaneous breaking of time-reversal symmetry, a fractionally quantized spin Hall re-
sponse, and characteristic level statistics in the entanglement spectrum in the intermediate
phase provide strong evidence that the intermediate phase is in fact a chiral spin liquid.

Some details of the methods used are presented in the following chapter, and further data
to support the conclusions reached in this chapter can be found in chapter 7.

5.1 Introduction

Quantum spin liquids[8, 97, 145] have been the subject of considerable interest since the
concept was first introduced in 1973 by Anderson, who suggested that geometrical frus-
tration on the triangular lattice could lead to a resonating valence bond ground state of



CHAPTER 5. CSL PHASE OF TRIANGULAR LATTICE HUBBARD MODEL 147

the antiferromagnetic Heisenberg model[4]. Although it is now known that the Heisenberg
model on the triangular lattice in fact exhibits a three-sublattice 120◦ order in the ground
state[46, 129], antiferromagnetic models on the triangular lattice remain some of the most
promising systems to realize a phase in which spins remain disordered even down to zero
temperature. The triangular lattice has seemed particularly promising since the work of
Shimizu et al., who found that the organic crystal κ-(BEDT-TTF)2Cu2(CN)3, which is well-
described by independent 2D layers with nearly isotropic triangular lattice structure, shows
no sign of spin-ordering even down to tens of mK, indicative of a possible spin liquid ground
state[105]. Subsequent studies of this crystal have found that the heat capacity is T -linear at
low temperature[135], suggesting the presence of low-lying gapless excitations, but also that
the thermal conductivity has no such T -linear contribution[134], indicating to the contrary
that there is a gap in the energy spectrum. The true nature of spin liquid phases in this and
other triangular lattice materials such as EtMe3Sb[Pd(dmit)2]2[50, 48, 133, 49, 81, 16, 132]
remains unclear.

Substantial theoretical effort has gone into answering this question, primarily in study-
ing the antiferromagnetic Heisenberg model with additional terms, such as second-neighbor
interactions and ring exchanges, that frustrate the expected three-sublattice order[79, 102,
35, 14, 73, 57, 43, 146, 34, 93, 147, 95]. The Heisenberg model and its extensions are derived
from a perturbative expansion of a model of itinerant electrons, the Hubbard model[68]; by
studying the Hubbard model directly, we can capture additional effects that may be im-
portant in actual materials, at the cost of increased computational effort—compared with
spin-1/2 models, the size of the local Hilbert space is doubled, so the system sizes that can
be accessed by full-Hilbert-space numerical methods are only about half as large.

Although there is now a wide variety of theoretical evidence pointing to the existence
of a non-magnetic insulating phase of the triangular lattice Hubbard model[76, 79, 64, 94,
113, 138, 137, 5, 114, 65, 72, 74, 106], there is still little agreement on the precise nature
of the phase. Some candidates, suggested by results on both the Hubbard and extended
Heisenberg models, include a U(1) spin liquid with a spinon Fermi sea[79, 102, 137, 14, 57,
72], a nodal spin liquid[114, 73], a gapped chiral spin liquid[53, 10, 43, 42, 131], and a Z2

spin liquid[146, 43]. In this work, we confirm the existence of a nonmagnetic insulating phase
of the Hubbard model on the triangular lattice at half filling, provide strong evidence that
it is a gapped chiral spin liquid, and comment on possible experimental signatures.

We study the triangular lattice Hubbard model on infinite cylinders with finite circumfer-
ence using the density matrix renormalization group (DMRG) technique[128, 127, 86, 99], a
variational method to find the ground state of a Hamiltonian within the matrix product state
(MPS) ansatz. This method has previously been applied to an extended Hubbard model on
a triangular lattice two-leg ladder, providing evidence for a U(1) spin liquid phase with a
spinon Fermi surface[72]. For systems larger than the two-leg ladder, to our knowledge there
exists only one prior paper[106] that uses DMRG to study the triangular lattice Hubbard
model. The authors of that study used the finite-system DMRG to confirm the existence
of a nonmagnetic insulating phase; in our infinite-system DMRG study, we study the na-
ture of the phase by investigating the entanglement spectrum and the response to adiabatic
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spin-flux insertion through the cylinder as accomplished by twisting boundary conditions.
We study the model on a variety of cylinders with different circumferences and boundary
conditions. With some cylinder geometries we find a chiral spin liquid phase regardless of
how we twist the boundary conditions, while for the others the chiral phase exists for some
twisted boundary conditions and in particular for those for which the ground state is closest
to obeying the symmetries of the full two-dimensional lattice. Taken together, the results
for the various cylinders point to the existence of the chiral spin liquid phase in the full
two-dimensional lattice as well.

The organization of the paper is as follows: in section 5.2, we introduce the model
we study and the mixed-space representation used in the simulations. In section 5.3, we
demonstrate the existence of metallic, nonmagnetic insulating, and magnetically ordered
phases of the model, and furthermore show that the intermediate phase breaks time reversal
symmetry. We present detailed results for five different cylinder geometries. Readers wishing
to see even more complete data are encouraged to also read chapter 7; those interested
primarily in the identification of the chiral spin liquid phase can proceed to section 5.4, in
which we show that the intermediate phase is in fact a chiral spin liquid. Finally, in section
5.5, we discuss the results, placing them in the context of recent experiments and other
theoretical studies.

5.2 The model

The model we study is the standard Hubbard Hamiltonian,

H = −t
∑
〈ij〉σ

c†iσcjσ + H.c. + U
∑
i

ni↑ni↓, (5.1)

where ciσ (c†iσ) is the fermion annihilation (creation) operator for spin σ on site i and n = c†c
is the number operator; 〈·〉 indicates nearest neighbor pairs on the triangular lattice (Figure
5.1). We work at half filling with net zero spin, so that

∑
i〈ni↑〉 =

∑
i〈ni↓〉 = N/2, where N

is the total number of sites. This model has a single tunable parameter, U/t. In the limit
U = 0, the model is exactly solvable and at half filling forms a metal with a nearly circular
Fermi surface; in the limit U → ∞, double occupancy is disallowed, so to lowest order in
perturbation theory in t/U , the model reduces to the nearest-neighbor antiferromagnetic
Heisenberg model[68], whose ground state exhibits a three-sublattice spin order[46, 129].
Between these two limits of U = 0 and U →∞ there must be at least one phase transition,
from the metallic to the Mott-insulating phase; it is in the vicinity of this metal-insulator
transition that a spin liquid phase is likely to be found.

To study this model using the DMRG method, we wrap the two-dimensional triangular
lattice onto an infinitely long cylinder of finite circumference. We primarily use the so-called
YC boundary conditions (see reference [136], section 6.1), for which the triangles are oriented
such that one of the sides runs along the circumference of the cylinder. The YC4 lattice is
shown in Figure 5.1(a) as an example, with the dashed gray lines identified together with
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Figure 5.1: (a) Triangular lattice on a cylinder of circumference 4 with YC boundary condi-
tions (YC4 cylinder); the dashed lines are identified together and run along the length of the
cylinder. (b) XC4 cylinder. (c)-(g) Horizontal lines show allowed momenta in the Brillouin
zone for the YC3, XC4, YC4, YC5, and YC6 cylinders, in order of increasing circumference.
The shaded circle shows the Fermi surface for noninteracting electrons (U = 0).

periodic boundaries to form a cylinder. We also consider XC boundary conditions, for which
one triangle side runs along the length of the cylinder. We show the XC4 lattice in Figure
5.1(b); an XCn cylinder, which exists only for even n, has a physical circumference of n

√
3/2

lattice constants.
Denoting translation by one lattice constant around the cylinder by Ty, the YCn cylinder

has a discrete translation symmetry T ny = 1; we explicitly conserve the momentum quantum
numbers associated with this symmetry by rewriting the Hamiltonian in a mixed real- and
momentum-space basis with single-particle operators cx,ky ,σ, which both gives substantial
improvements in computational efficiency and allows us to separately find the ground state in
different momentum sectors.[78, 25] Similarly, for the XCn cylinders we define the translation
operator TXCy that translates between two-site unit cells around the circumference, with(
TXCy

)n/2
= 1; we can again exploit momentum conservation, but with only half as many

quantum numbers.
In this paper, we particularly focus on the YC4 and YC6 cylinders, and we also present

and discuss data for the YC3, XC4, and YC5 cylinders. For the various cylinders, the
finite circumferences and periodic boundary conditions restrict the accessible momenta in
the Brillouin zone as shown in Figures 5.1 (c) through (g).

5.3 Phase diagram

Our goal is to show that the Hubbard model on the full two-dimensional triangular lattice
has a chiral spin liquid phase; we begin by establishing the phase diagram more generally,
showing the existence of the expected metallic, nonmagnetic insulating (NMI), and magnetic
phases, and we furthermore show that the NMI phase breaks time reversal symmetry.
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Of course, we have access in our simulations not to the full two-dimensional model but
rather to a collection of finite circumference cylinders. To overcome this impediment, we
employ three methods: (1) each phase that exists in the two-dimensional model should leave
characteristic signatures when restricted to a finite circumference cylinder, and we can look
for these signatures; (2) for each cylinder we can twist the boundary conditions to scan
the allowed momentum cuts (Figure 5.1(c)-(g)) through the full two-dimensional Brillouin
zone; and (3) we can compare the results for the various cylinders and look for trends and
commonalities. The third is self-explanatory; before presenting the data, we elaborate on
(1) and (2).

We first discuss how the various possible phases of the two-dimensional model should
manifest on the infinite cylinders we study. A metallic state will be gapless, as indicated by
a nonzero value for the central charge c of the one-dimensional conformal field theory cor-
responding to the restriction of the two-dimensional model to the one-dimensional allowed
momentum cuts; in particular, if the Fermi surface intersects NF of the allowed momentum
lines in the Brillouin zone (see Figure 5.1 (c) through (g)), the central charge will be c = 2NF

(see reference [87] and section 6.3). The 120-degree magnetically ordered phase will be fully
gapped (c = 0) and symmetric on even circumference cylinders due to the integer-spin Hal-
dane gap[1] induced by the reduced dimension, but gapless on odd circumference cylinders;
the 2D spin-order should qualitatively manifest as large peaks in the spin-structure factor at
the K± points which diverge linearly with cylinder circumference. If the intermediate phase
is a U(1) spin liquid with a spinon Fermi surface, there will be a charge gap but no spin
gap, leading to cylinder central charge c = 2NF − 1 and 2kF -singularities in the structure
factors[103, 102, 72, 30]. Finally, a gapped spin liquid will have c = 0 and feature several
“topologically-degenerate” low-lying states whose energy splitting decreases exponentially
with circumference[124], along with other topological signatures we will return to in detail.
The chiral spin liquid in particular will spontaneously break time-reversal and parity sym-
metry, while retaining all others; time-reversal symmetry breaking is indicated by a nonzero
scalar chiral order parameter 〈Si · (Sj×Sk)〉, where i, j, and k label the vertices of a triangle
in the lattice[125]. In the simulations, all these properties must be assessed as a function of
the DMRG accuracy as captured by the bond-dimension χ of the MPS ansatz.

We next discuss how, for a given cylinder geometry, twisting of boundary conditions
grants access to the full two-dimensional Brillouin zone. In particular, instead of using peri-
odic boundaries cx,y=0,σ = cx,y=L,σ, we set cx,y=0,σ = eiθσ/2cx,y=L,σ, followed by the gauge
transformation cx,y,σ 7→ eiθσy/(2L)cx,y,σ. Physically, this is equivalent to inserting a flux
through the cylinder of θ/2 for spin up electrons and −θ/2 for spin down; this corresponds
to flux θ for the spin degrees of freedom. Note that because the flux insertion is opposite for
spin up and spin down, this transformation does not break time reversal symmetry.

When the original Hamiltonian with periodic boundaries is written in the mixed-space
picture, some coefficients will depend on the momentum k around the cylinder; the only effect
of the flux insertion is to transform those coefficients, with k = (2π/L)n 7→ (2π/L)(n+θσ/2).
This can be viewed as shifting the momentum cuts in the Brillouin zone, upwards for spin
up and downwards for spin down, as illustrated in Figure 5.2. Thus, by scanning θ from 0
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Spin up
 = π

Spin down
 = π

Figure 5.2: (Color online) The effect of flux insertion on the mixed-space model is to shift
the allowed momentum cuts through the Brillouin zone. They shift upwards for spin up
electrons and downwards for spin down electrons, thus preserving time-reversal symmetry.
Note that for θ = 4πn for any integer n, the cuts are again in their original positions.

to 4π, we can access the full two-dimensional Brillouin zone, giving substantial additional
evidence for the two-dimensional model despite using only a single cylinder geometry.

The only physical effect of this flux insertion is from the twisted boundary conditions, and
in the two-dimensional limit where the cylinder circumference becomes infinitely large, the
effect on local properties like order parameters and short-range correlations functions must
go to zero. Thus the variation in these quantities with flux insertion serves as an indication
of the degree of “two-dimensionality” of the cylinders we study and thus of the reliability of
our results in predicting the behavior of the full two-dimensional model.

Note that the flux insertion can be performed adiabatically by first computing the ground
state with periodic boundary conditions and then increasing θ in small increments, at each
step using the converged ground state from the previous step as the initial state for the new
simulation. Notably, this procedure allows for detection of spin pumping from a quantized
spin Hall effect, which is a hallmark of the chiral spin liquid phase.

We now present results for the various cylinder geometries we have studied.

YC4

Out of the five different cylinders we consider, our most extensive data is for YC4, which
strikes a balance between two-dimensionality (favoring larger cylinders) and ability to con-
verge the DMRG simulations (favoring smaller ones).

On the YC4 cylinder with periodic boundaries we find three phases, corresponding to
the expected metallic, nonmagnetic insulating (NMI), and spin-ordered phases of the full
two-dimensional model; the phase diagram and the evidence for it are summarized in Figure
5.3.

The transition from the NMI phase to the spin-ordered phase at U/t ≈ 10.6 is indicated
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by a peak in the correlation length; the appearance of large peaks near the K± points of the
Brillouin zone in the spin structure factor; and the vanishing of the chiral order parameter.
The spin structure factor in particular allows us to identify the high-U side of this transition
as the one-dimensional descendant of the two-dimensional magnetically ordered phase.

Because the metal is gapless, the metal to NMI transition (U/t ≈ 8) is less obvious,
but it can be observed from the destruction of the Fermi surface and from the small-k
charge density structure factor (see page 186 in section 7.1), and also from the chiral order
parameter; although a nonzero value of the order parameter indicates time-reversal symmetry
breaking in both the metallic and NMI phases for finite bond dimension, an extrapolation in
the DMRG truncation error[45] shows that the symmetry is actually unbroken in the low-U
phase (see Figure 5.3(d) and page 184 in section 7.1). A further indication of the metal to
NMI transition comes from finite entanglement scaling[112, 90, 88]. If we cut the infinite
cylinder into two semi-infinite halves, we can calculate the entanglement entropy S between
them from the eigenvalues λ2

i of the reduced density matrix of either side of the cut,

S ≡ −
∑
i

λ2
i log(λ2

i ). (5.2)

In the true ground state this is an infinite sum; however, when running DMRG simulations
the MPS bond dimension χ upper-bounds the number of non-zero λi in equation (5.2) and
thereby bounds S ≤ log(χ). In a gapless state the true S is infinite, as is the correlation
length ξ, but finite entanglement scaling predicts that the two quantities will scale with χ
such that [19]

S ≈ (c/6) log(ξ), (5.3)

which can be used to estimate the central charge c of the conformal field theory corresponding
to the gapless metallic phase. We show the central charge computed using equation (5.3) in
Figure 5.3(f).

In a gapped state S is finite [38, 6], so the DMRG estimate of S should converge as χ
is increased; however, ξ will also converge, and the two quantities may converge at different
rates so that the relative scaling between them becomes less reliable. In such a case, the
central charge can be more accurately computed by direct scaling of entanglement with bond
dimension,[112, 90, 88]

S ≈
(

1 +
√

12/c
)−1

log (χ) . (5.4)

We show the central charge computed using equation (5.4) in Figure 5.3(g).
Until U/t ≈ 8, the central charge is constant with respect to U/t and is near to the value

c = 6 that we would expect for a metallic state ([87], 6.3). For U/t & 9, it is clear from
Figure 5.3(g) that c = 0, indicating that the phases are gapped. For intermediate values
of 8 . U/t . 9, the central charge is still far from converged with bond dimension, but
it is plausible that it will extrapolate to zero; see page 190 in section 7.1. Note that the
apparently unsystematic behavior in Figure 5.3(f) near the previously identified transition
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Figure 5.3: (Color online) Results for the YC4 cylinder. Results are shown for a range of
MPS bond dimensions χ as indicated in the lower right legend. (a) A nonmagnetic insulating
(NMI) phase appears between a gapless metallic phase at low U/t and a magnetic phase at
high U/t. (b) Correlation length in the “charge neutral sector,” in other words for excitations
carrying no charge, spin, or momentum. The vertical line at U/t = 10.6 is provided as a
guide to the eye. (c) Correlations lengths at the largest bond dimension in various charge
sectors. The sector (Q,S,K) corresponds to correlations 〈O1O2〉 where O1 creates and O2

annihilates an excitation carrying charge Q, spin S, and momentum quantum number K.
(d) Spin structure factor: the curve shows the maximum value of the spin structure factor in
the Brillouin zone. The inset shows the spin structure factor in the high-U phase, with peaks
at the closest allowed momenta to the K± points, where they would be expected for 120◦

magnetic ordering. Note that spin expectation values are reported here and throughout the
paper with ~/2 = 1. (d) Chiral order parameter 〈Si · (Sj × Sk)〉, where i, j, and k label the
three vertices of a triangle in the lattice, with an additional line showing extrapolation in the
DMRG truncation error[45]; see page 184 in section 7.1 for details. (f) Central charge of the
effective one-dimensional state as calculated by the scaling of entanglement with correlation
length, equation (5.3); this is the most accurate method for gapless systems. (g) Central
charge as calculated by the scaling of entanglement with bond dimension, equation (5.4);
this is the most accurate method for gapped systems.
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Figure 5.4: (Color online) YC4 cylinder with flux insertion θ, for χ = 4000. (a) Absolute
value of chiral order parameter. The chiral phase exists for all twisted boundary conditions,
but the phase boundaries shift with θ. (b) Maximum of 〈SzSz〉 structure factor on allowed
momentum cuts in the Brillouin zone. (c) Transfer matrix estimate of the spin singlet gap;
see the text for details.

at U/t ≈ 10.6 is due to a slight shift in the location of the peak in the correlation length
with bond dimension.

We can identify the locations of both phase transitions with more precision by studying
the entanglement spectrum, which is the list of values {− log(λi)}, for the same {λi} ap-
pearing in equation (5.2). We observe that the entire spectrum acquires an exact two-fold
degeneracy for 8.3 . U/t . 10.6 and an exact four-fold degeneracy for 10.6 . U/t (see page
192 in section 7.1), corresponding to the different projective representations of the symmetry
group carried by the entanglement spectrum[89].

We have thus far demonstrated that the YC4 cylinder with periodic boundary conditions
exhibits phases corresponding to metallic, time-reversal symmetry-breaking nonmagnetic
insulating, and magnetically ordered phases in two dimensions. We now turn to the results
of flux insertion.

We perform the flux insertion adiabatically, twisting the boundary conditions in intervals
of θ = π/12. Due to the much larger parameter space spanned by both U/t and θ, we restrict
our computations to a single bond dimension, χ = 4000. Based on the data shown in Figure
5.3, we believe this bond dimension is sufficient to capture the qualitative behavior of the
system.

In Figure 5.4 we show several quantities computed as a function of both U/t and θ,
namely the chiral order parameter, the maximum value of the 〈SzSz〉 structure factor on
the allowed momentum cuts, and the inverse of the correlation length for operators carrying
no spin or charge as computed from the MPS transfer matrix spectrum. In the infinite
bond-dimension limit, the latter quantity would be proportional to the gap to excitations
with Sz = 0; we present data only for a single finite bond dimensions and do not estimate
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the proportionality constant as a function of U and θ, but nevertheless a comparison of this
inverse correlation length across parameter space can indicate which phases are likely to have
a spin-singlet gap. Throughout the rest of the paper we will refer to this quantity as the
“transfer matrix estimate of the spin singlet gap.” All three quantities would be independent
of θ in the limit of a very wide cylinder; here we see substantial variation, but at each θ the
qualitative behavior as U/t is varied remains essentially the same.

Most notably, the chiral order parameter is nonzero in a region of roughly constant width;
furthermore, if for each θ we find the maximum value of the chiral order parameter versus U/t,
these maxima vary with θ by only about 1/3 of the maximum at θ = 0. The comparison
between the three figures also reveals behavior for all θ that is in good agreement with
what we found with periodic boundaries. In particular, the degree of short-range magnetic
ordering rapidly increases at the right edge of the chiral phase, and furthermore the chiral
phase appears to be strongly gapped, consistent with the analysis of central charge.

YC6

We next present data for the YC6 cylinder, which is the largest, and thus presumably the
least impacted by finite-size effects, of those we study; this has the potential drawback that
the MPS bond dimension required to achieve a given level of precision scales as roughly
4L, so the simulations are less converged than for smaller cylinders, but we find that the
qualitative behavior of the system is nevertheless clear.

The YC6 cylinder is notable not just because it is the widest of those we study but
also because, as we show now, it has topologically degenerate ground states in two different
momentum sectors. Because we employ a mixed real- and momentum-space basis, we can
initialize the DMRG with states in different sectors of momentum around the cylinder per
unit length[140], k, and thus separately find the ground state in each sector. On the YC4
cylinder, the ground state always lies in the k = 0 sector, but for the YC6 cylinder we observe
low-lying states in two different momentum sectors, k = 0 and k = π. The relative energy
difference between the ground states in the two sectors is shown in Figure 5.5(a). There are
three apparent regimes of behavior: at low U , the k = 0 sector is clearly the ground state;
at intermediate U , the two sectors become close in energy, and the difference is decreasing
with bond dimension; at high U , the k = π sector becomes the ground state, though again
the relative difference in energy decreases with bond dimension.

The low-U phase is expected to be metallic, with central charge c = 10 ([87],6.3). Finite
entanglement scaling indeed suggests that the phase is gapless (see page 200 in section 7.2),
though an accurate measurement of the central charge would require a bond dimension
currently inaccessible to us, on the order of 50,000. (Extremely high entanglement in the
low-U region leads to very large DMRG truncation error, on the order of 10−4, even with
χ ∼ 10, 000.) The high-U phase should be the one-dimensional descendant of the two-
dimensional 120◦ Néel ordered phase, and indeed at approximately the same value of U/t
where the k = π sector becomes the ground state, there is a rapid increase in peak height of
the spin structure factor in the k = π sector, as shown in Figure 5.5(b). In this phase, we
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Figure 5.5: (Color online) Results for the YC6 cylinder. (a) Relative energy (percent differ-
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observe the expected peaks in the structure factor at the corners of the Brillouin zone (lower
right inset) and short range spin-ordering in the real-space spin-spin correlations (upper left
inset).

The intermediate phase, for U/t ≈ 8 to U/t ≈ 10, is the region where the relative energy
difference between the two momentum sectors is small and approximately constant; the spin
structure factors are also approximately equal. We identify the transition to the right by
the onset of the afore-mentioned spin ordering. To the left, the transition can be observed
by the k = 0 sector becoming the sole ground state and from the transition in that sector to
a metallic phase; as we show in section 7.2 (page 200), the latter can be seen qualitatively
from the entanglement spectrum and finite entanglement scaling—the low-U phase appears
gapless while the intermediate phase is likely gapped.

As with the YC4 cylinder, spontaneous breaking of time-reversal symmetry leads to a
nonzero value of the chiral order parameter in the metallic and intermediate phases, as
shown for the two momentum sectors in Figure 5.5 (c) and (d), though in the metal we
would expect the symmetry to be restored at larger bond dimensions. In the k = π sector,
which is the true ground state for high U , the chiral order parameter rapidly vanishes at the
spin-ordering transition. In the k = 0 sector, the chirality does not seem to drop abruptly
to zero; however, as can be seen in Figure 5.5(c), the chirality does rapidly decrease with
increasing bond dimension for U & 10.

We can again acquire more information about the full two dimensional model by perform-
ing adiabatic flux insertion to scan the allowed momentum cuts through the full Brillouin
zone; we perform the flux insertion using the k = π ground state as the initial state with
θ = 0, and we perform all computations with χ = 8000. Although the bond dimension is
twice that used for YC4 flux insertion, the results are much less converged. Nevertheless,
some qualitative features can be captured at least qualitatively, as shown in Figure 5.6. In
particular, there is a chiral phase for all θ, which has weak local magnetic order and a sizable
spin singlet gap. The chiral region extending to higher U around θ = 2π is likely an artifact
of the finite bond dimension: all local properties at 2π flux are essentially identical to those
of the k = 0 ground state with periodic boundaries, and as noted above, the chiral order
parameter is far from converged at χ = 8000 above U & 10.

YC5

The YC4 and YC6 phase diagrams discussed above are qualitatively similar; both show a
chiral intermediate phase in the vicinity of U/t = 10, which is present regardless of the twist-
ing of the boundary conditions. The same is not true for the YC5 cylinder—with periodic
boundary conditions, θ = 0, there is no spontaneous time-reversal symmetry breaking for
any U . However, when we perform flux insertion we find that the chiral intermediate phase
does still exist, for π . θ . 3π and 8 . U/t . 10. This is shown in Figure 5.7.

To understand this data, it is important to note that, unlike for YC4 and YC6, we have
used a two-ring unit cell; this allows us to initialize the DMRG simulation with a product
state that is half-filled both for spin up and spin down, and additionally allows us to access
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the momentum sector with momentum π around the cylinder per unit length. The two ring
unit cell allows the ground state to break translation symmetry along the cylinder, which
indeed occurs. Figure 5.7(a) and (b) show the chiral order parameter on the two rings of
the unit cell. As shown in Figure 5.8(b), the degree of symmetry-breaking decreases as the
MPS bond dimension used in running DMRG is increased, though it appears that even at
infinite bond dimension the symmetry will remain broken.

The chiral phase observed for YC5 seems to be the same as that found in YC4 and
YC6 even if it does not extend through all boundary condition twists θ. This is partially
confirmed by considering the peak height of the 〈SzSz〉 structure factor and the Transfer
matrix estimate of the spin singlet gap, shown in Figures 5.7(c) and (d), respectively. As
with YC4 and YC6, the chiral phase has a degree of short-range spin ordering which is
intermediate between that of the metal and of the high-U phase and has the largest spin
singlet gap of any region of the phase diagram. We also show below, in section 5.4, that this
chiral phase shows the same signatures of the topological chiral spin liquid as do the YC4
and YC6 phases.

As evidence for the existence of the chiral phase in the full two-dimensional model, the
YC5 results are somewhat ambiguous. Neither θ = 0, for which there is no chiral phase,
nor θ = 2π, for which the phase exists, is a priori “better” or more representative of the
two-dimensional model. However, further insight can be gleaned by understanding the effect
of the twisted boundaries on the spin degrees of freedom that are the relevant ones for a spin
liquid phase. Indeed, we believe that the θ = 2π boundary conditions turn out to be the
more representative ones.

In particular, we can look at the strength of 〈SzSz〉 correlators on bonds between adjacent
sites; the results are shown for four bond dimensions up to 11314 for U/t = 10 in Figure
5.8(c) and (d). Evidently, for flux near θ = 0, there is huge anisotropy, with spin correlations
much stronger on bonds around the cylinder circumference than for diagonal ones. As flux
increases from zero, the anisotropy steadily decreases and shows only a change in slope
upon entering the chiral phase; the anisotropy is smallest precisely where the chiral order
parameter is largest. Assuming that the true intermediate phase of the two-dimensional
model does not break the model’s C3 rotation symmetry, the θ for which the YC5 cylinder
exhibits a chiral phase are precisely those in which the symmetry of the spin correlations
is most two-dimensional. We also test this explanation by explicitly adding anisotropy to
the model to weaken the bonds around the cylinder circumference; indeed, with the hopping
strength on these bonds reduced by 10%, a chiral phase appears even at zero flux (see page
208 in section 7.3).

YC3

The YC3 cylinder is the smallest, and thus presumably least representative of the two-
dimensional model, of all those we have studied; we nevertheless include our data for com-
pleteness. With periodic boundaries, θ = 0, we find much the same behavior as for YC4
and YC6, with an intermediate chiral phase between a metallic phase and a short-range
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Figure 5.7: (Color online) YC5 cylinder with flux insertion θ, for χ = 4000. (a) Absolute
value of chiral order parameter; at finite bond dimension the translation symmetry is broken
along the cylinder, and here we show the larger of the chiral order parameters between the
two distinct rings. The chiral phase exists at intermediate U when θ is approximately in
the range π to 3π. (b) Smaller of the two chiral order parameters. (c) Maximum of 〈SzSz〉
structure factor in the Brillouin zone. (d) Transfer matrix estimate of the spin singlet gap

magnetically ordered one. As partial evidence, we show the chiral order parameter versus
U/t in Figure 5.9(a), with additional data available in section 7.4. Note that as with YC5,
we use a larger unit cell (in this case four rings) and find that for finite bond dimension the
model has a only a two-ring translation symmetry; in the figure, the two curves in for each
bond dimension correspond to the chiral order parameter on the two distinct rings.

With flux insertion the behavior is quite different, and, as we show in Figure 5.9(b), the
chirality vanishes for π . θ . 3π, essentially the opposite of the behavior observed for YC5.
In Figure 5.9(c) and (d) we also show the peak height of the spin structure factor and the
transfer matrix estimate of the spin singlet gap. The relationship between these quantities
and the chirality is quite different from what we observe for all three cylinder geometries
discussed above, so it is not clear that the chiral phase observed here corresponds to the one
found for the larger cylinders.
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Figure 5.8: (Color online) Flux insertion for YC5 cylinder with U/t = 10, for a range of bond
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Figure 5.9: (Color online) Results for the YC3 cylinder. (a) Chiral order parameter on
each of two ring s (circle and triangle symbols, respectively), plotted versus U/t for a range
of bond dimensions. The behavior is qualitatively similar to that of YC4 and YC6. (b)
Chiral order parameter versus U/t and flux insertion θ, for χ = 4000. Here we show just
the smaller of the chiral order parameters on the two rings, but the qualitative behavior is
essentially identical at this bond dimension. (c) Peak height of the 〈SzSz〉 structure factor
in the Brillouin zone. (d) Transfer matrix estimate of the spin singlet gap.

XC4

Finally, we place the model on the XC4 cylinder, which is the second smallest cylinder
after YC3.1 With periodic boundaries, we find very weak time reversal symmetry-breaking
for all U/t, which decreases with bond dimension; this is shown in Figure 5.10(a). The
extrapolation to infinite bond dimension is not entirely clear, but it is likely that the true
ground state preserves the symmetry.

With flux insertion, we find that a chiral phase again appears, as shown in Figure 5.10(b).
We also show the peak height of the 〈SzSz〉 structure factor and the transfer matrix estimate

1Ideally we would also consider the XC6 cylinder, but we are unable to reach large enough bond dimension
to converge the DMRG; at our largest accessible bond dimensions, there remains a strong symmetry-breaking
effect from the orientation of the DMRG snake.



CHAPTER 5. CSL PHASE OF TRIANGULAR LATTICE HUBBARD MODEL 162

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

Spin singlet gap estimate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

Peak height of S(q)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

|〈S · (S × S)〉|

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

χ =2000

χ =4000

χ =5657

χ =8000

6 7 8 9 10 11 12
U/t

0.00

0.01

0.02

0.03

0.04
|〈S

·(
S

×
S

)〉|
a

c

b

d

Figure 5.10: (Color online) Results for XC4 cylinder. (a) Chiral order parameter versus U/t
for a range of bond dimensions, with periodic boundary conditions. This likely extrapolates
to zero. (b) Chiral order parameter with flux insertion. (c) Maximum of 〈SzSz〉 structure
factor on allowed momentum cuts in the Brillouin zone. (d) Transfer matrix estimate of the
spin singlet gap.

of the spin singlet gap, in Figures 5.10(c) and (d), respectively. As with YC3, there is no
clear relation between the three quantities that we found for YC4-6. However, like with
YC5, the chirality appears near where the nearest neighbor spin-spin correlations are most
isotropic. In the high-U , mid-flux region (with large spin singlet gap in Figure 5.10(d)), the
diagonal bonds are much stronger than the horizontal ones, whereas in the rest of the phase
diagram the opposite is true; the chirality is strongest precisely on the border between these
two regions. Furthermore, the anisotropy is much larger in the region with exactly zero
chirality than in the region where the chirality likely extrapolates to zero but is nonzero at
finite bond dimension.
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Figure 5.11: (Color online) (a) Momentum- and spin-resolved entanglement spectrum for
the YC6 cylinder in the intermediate phase, for the ground state in the k = 0 (left) and
k = π (right) sectors; these correspond to the trivial and semion sectors of a chiral spin
liquid (CSL) respectively. Insertion of 2π flux interchanges the two topological sectors,
though as discussed in the text there is a subtlety due to working with a fermion model. (b)
Momentum- and spin-resolved entanglement spectrum for the YC4 cylinder, with periodic
boundaries at U/t = 10.2 (left) and with 2π flux inserted at U/t = 11.6 (right), corresponding
to the highest chirality in each of the two topological sectors. (c) Entanglement spectrum
for YC5 with 2π flux, U/t = 10, between two-ring unit cells (left) and between the rings in
the unit cell (right), again corresponding to the two topological sectors. (d) Spin pumping
as a function of flux insertion in the intermediate phase for YC4 (U/t = 10) and (e) for YC6
(U/t = 9).

5.4 Identification as a chiral spin liquid

We have demonstrated, for both the YC4 and YC6 cylinders, the existence of an interme-
diate phase which is nonmagnetic and which breaks time-reversal symmetry; we have also
demonstrated that the phase is gapped for YC4 and likely gapped for YC6. We have fur-
thermore observed this same phase for the YC5 cylinder for a range of twisted boundary
conditions, and we have observed some similar behavior for the YC3 and XC4 cylinders. We
now show that the chiral phase observed on the YC4-6 cylinders can in fact be identified as
a chiral spin liquid (CSL)[53, 125].

A CSL is a topological phase with four degenerate ground states on the infinite cylin-
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der[123]. Each minimally entangled ground state[144] spontaneously breaks time-reversal
(T ) and parity (P ) symmetries, as indicated by a nonzero value of the chiral scalar order
parameter; the two possible chiralities account for a two-fold degeneracy in the ground state
manifold, which could be lifted by a P, T -breaking perturbation such as a magnetic field.

The remaining degeneracy is topological and is robust to such perturbations; the two
topologically degenerate sectors, called the trivial and semion sectors, are distinguished by
the respective absence or presence of a pair of semionic spinons, fractional excitations that
carry spin-1/2 but no charge, separated to the ends of the cylinder at ±∞.[123, 84] In a
pure spin system, insertion of 2π flux creates a pair of spinons and separates them to the
ends of the cylinder, thus exchanging the two ground states and also pumping a net spin of
exactly 1/2 across any cut through the cylinder; this latter property indicates that the CSL
has a spin Chern number of 1/2 and a corresponding quantized spin Hall conductance[33].

In contrast, insertion of 2π spin-flux in the Hubbard model imposes antiperiodic boundary
conditions on the cylinder, since e2πiSz = −1. The Hamiltonian is thus modified by 2π flux
insertion, so that the question of whether the two ground state sectors are exchanged under
flux insertion, as they are in a spin-model CSL, is ill-defined; instead, 2π flux insertion
converts between one sector of the original Hamiltonian (with periodic boundaries) and the
opposite sector of the Hamiltonian with antiperiodic boundaries, which should still lead to
the same quantized spin pumping as for a spin model.

Each ground state of a CSL has a chiral edge mode with a universal low-lying spectrum;
when the state is placed on an infinite cylinder, this edge spectrum appears in the entan-
glement spectrum for a cut between rings of the cylinder.[60, 66, 91] The edge modes are
described by a chiral SU(2)1 Wess-Zumino-Witten (WZW) conformal field theory[122, 20];
labeling them by spin and momentum quantum numbers (see reference [141], section 6.4), for
a given spin the number of levels at successive discrete momenta around the cylinder follows
the counting (1, 1, 2, 3, 5, · · · ).[75] The spectrum is degenerate under sz → −sz, where sz is
the spin quantum number of the entanglement level; the spin quantum numbers are integers
in the trivial sector and half-integers in the semion sector, leading to two-fold degeneracy of
the spectrum in the latter case.

We observe all of these signatures of the CSL phase. On the YC6 cylinder, we have
already identified above two nearly degenerate low-lying states, in the k = 0 and k = π
momentum sectors; within each sector, by initializing the DMRG with different product
states, we are able to converge to both chiralities (see page 201 in section 7.2), thus finding
all four degenerate ground states. The chiral order parameter in each sector, indicative
of time-reversal and parity symmetry-breaking, has already been shown above in Figures
5.5 (c) and (d) and Figure 5.6(a); note that these figures show the absolute value of the
order parameter, which is independent of the chirality to which the DMRG spontaneously
converges.

The spin- and momentum-resolved entanglement spectra for the ground states in the two
sectors are shown in Figure 5.11(a), where we have excluded levels corresponding to charge
fluctuations between rings of the cylinder in order to highlight the spin degrees of freedom.
Both spectra show the expected WZW level counting in the low-lying states, and the spin
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quantum numbers of the entanglement levels are integer for the k = 0 ground state and
half-integer for k = π, allowing us to identify the low-lying states in the two momentum
sectors with the trivial and semion topological sectors respectively.

Alternatively, 2π flux insertion should convert between the two topological sectors. We
already noted in section 5.3 above that indeed the local properties like spin-spin correlations
and the chiral order parameter look nearly identical between the k = π sector with 2π flux
and the k = 0 sector with periodic boundaries, which is consistent with this picture. (In
principle these should also be equal to the local properties of the k = π sector with periodic
boundaries, but that may not be true at finite bond dimension, and may also be violated
even in the true ground state due to the finite circumference of the cylinder.) In the SM,
we show the equivalent of Figure 5.11(a) with the k = 0 entanglement spectrum replaced by
the k = π spectrum with 2π flux, and evidently it is nearly identical.

To see the equivalent of Figure 5.11(a) for the YC4 cylinder, because we find only one
ground state sector, with k = 0, we must use the latter method. In Figure 5.11(b), we show
the spin- and momentum-resolved entanglement spectrum for YC4 in the k = 0 sector, with
periodic boundaries at U/t = 10.2 and with θ = 2π at U/t = 11.6; as shown in Figure 5.4(a),
these values of U/t are each at the peak of the chiral order for their respective amounts of
flux insertion, θ. For the YC5 cylinder, as with YC4 we find a ground state only in the k = 0
sector, although with two rings per unit cell, this includes both k = 0 and k = π per ring.
In this case, however, we cannot observe both topological sectors by looking at θ = 0 and
2π since the chiral phase exists only for π . θ . 3π. Instead, we make use of the fact that,
for any cylinder with an odd number of spin-1/2 per ring, translation along the cylinder
converts between topological sectors[142], so that we can just consider a single wavefunction
and examine its entanglement spectrum both between two-ring unit cells and between the
two rings in the unit cell; the result is shown in Figure 5.11(c).

With flux insertion, we also observe the quantized spin Hall effect, as shown for the
YC4 and YC6 cylinders at U/t = 9 and 10, respectively, in Figures 5.11 (d) and (e), with
a pumping of exactly spin 1/2 per 2π flux insertion. For YC6, for which the chiral order
is roughly constant at U/t = 10, the flux insertion proceeds at a constant rate. For YC4,
the shifting boundary of the chiral phase with flux insertion causes some deviation, but the
qualitative behavior is the same.

5.5 Discussion

By employing the DMRG method to study the triangular lattice Hubbard model on infinite
cylinders in a mixed real- and momentum-space basis, we have observed that the model
exhibits three phases: a metallic phase, a nonmagnetic insulating phase, and a magnetically
ordered phase. While the nature of the intermediate phase depends on the precise boundary
conditions used, with flux insertion through the cylinder we find that for each cylinder
geometry there is a region with spontaneous time-reversal symmetry breaking, as indicated
by a nonzero chiral order parameter. In particular, this chiral intermediate phase exists for
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all values of flux insertion for the YC4 and YC6 cylinders and for a large range of flux for
the YC5 cylinder; the YC5 chiral intermediate phase appears precisely for those amounts
of flux insertion for which spin-spin correlations are most consistent with the symmetries of
the two-dimensional lattice.

Furthermore, we have shown for the YC4, YC5, and YC6 cylinders that the chiral phase
shows the characteristic entanglement spectrum of a CSL with two topologically degenerate
ground state sectors, and for YC4 and YC6 we have demonstrated a fractionally quantized
spin Hall effect. The phase additionally appears to be gapped. Along with the nonzero chiral
order parameter, this evidence strongly suggests that the nonmagnetic insulating phase is,
in fact, a chiral spin liquid. This is, to our knowledge, the first clear demonstration of a
chiral spin liqid in a time-reversal symmetric model of itinerant fermions.

The apparent gapped nature of the spin liquid in our simulations is consistent with
the thermal conductivity measurements on κ-(BEDT-TTF)2Cu2(CN)3 reported in reference
[134]; some recent studies[81, 16] also suggest gapped thermal conductivity in
EtMe3Sb[Pd(dmit)2]2, although this is disputed[132]. On the other hand, our conclusions
do not agree with those of past studies of this model using the DMRG method: the study
on the two-leg ladder found a gapless spin liquid phase[72], while the DMRG study on a
finite XC6 cylinder found an intermediate phase that appeared gapped but with a rapidly
decaying chiral-chiral correlation function[106]. The two-leg ladder study used a modified
Hamiltonian with some longer-range interactions, so the disagreement on the nature of the
spin liquid is not surprising. The discrepancy with the XC6 finite cylinder study is more
difficult to explain. One possibility is that, as with the XC4 and YC5 cylinders in our study,
the XC6 cylinder will exhibit a chiral phase after flux insertion; we are not able to reach
high enough bond dimension to converge the XC6 cylinder, and thus are unfortunately not
able to test this possibility.

It is also useful to briefly consider other candidates for the intermediate phase. In par-
ticular, it is worth investigating the possibility of the intermediate phase being a Dirac spin
liquid (DSL), both because there has recently been evidence in support of a DSL in frustrated
spin models[39, 41] and because the CSL can be derived by gapping out the Dirac cones in
a DSL, so that one might imagine a DSL in two dimensions becoming a CSL due to finite
cylinder circumference or finite bond dimension. The first scenario is difficult to rule out,
given that the CSL would still be the true ground state up to some cylinder circumference
which could be much larger than what is accessible, but there is also no particular evidence
from our data to support this scenario. The second scenario we do rule out, by analyzing
the low-lying excitation spectrum using the MPS transfer matrix spectra; this analysis is
described in detail in chapter 7 using a technique described in chapter 6.

If the CSL is indeed the ground state in the full two-dimensional triangular lattice Hub-
bard model, in real materials well described by this model we would expect regions of both
possible chiralities to coexist, with a finite temperature phase transition to long-range chiral
order at a temperature of the same order of magnitude as the chiral domain wall tension,
possibly reduced due to entropy from the gapless edge modes located at the domain walls.
We measure this domain wall tension for the YC4 cylinder by finding an optimized compos-
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ite wave function that transitions from the ground state with one chirality to the ground
state with the other, and we find a domain wall tension of approximately 0.0065t per lattice
constant; this calculation is described on page 193 in section 7.1, below. Using estimates for
t for real materials[105], this is about 4K × kB. The corresponding phase transition may
be related to the observed feature in the heat capacity, thermal conductiviy, and magnetic
relaxation rate at about 6K in κ-(BEDT-TTF)2Cu2(CN)3[104, 135, 134].

At very low temperatures in a single-domain sample, we would observe a quantized
thermal Hall conductance, Kxy = π2kB

2T
3h

; note that this is twice the value of the Majorana-
like plateau recently reported in α-RuCl3 [58]. Above the finite temperature transition, or
at lower temperatures in the presence of time-reversal symmetry-breaking disorder, there
would be regions of both possible chiralities, with gapless edge modes between them; below
the percolation threshold, this could lead simultaneously to the observed gapless behavior in
the specific heat[122, 135] and gapped behavior seen in thermal transport measurements[134].

An applied magnetic field could in principle break the degeneracy between the two
chiralities, but this effect is extremely small at experimentally accessible field strengths.
If the magnetic flux through a triangle in the lattice is φ, perturbation theory in t/U
gives a term [24(t3/U2) sin(φ) (S · (S× S)) /~3] in the effective spin Hamiltonian; using our
measured value for the chiral order parameter and estimated parameters for κ-(BEDT-
TTF)2Cu2(CN)3[63, 105], in a 10 T field the energy splitting between ground states for
the two chiralities is about 1 µeV per lattice site, so at 1 K the favored chirality would be ex-
pected to be just 1% more prevalent. It is thus not surprising that experimental results[135]
do not see a significant effect from applied magnetic fields up to 10 T.

Further theoretical work must address the question of whether the chiral phase we find
on the cylinders we have studied indeed extrapolates to the full two-dimensional model. Our
results strongly support this conclusion: on the YC4 and YC6 cylinders the chiral phase
exists for a large range of U/t independent of the flux insertion that scans the allowed
momentum cuts through the full two-dimensional Brillouin zone, and furthermore on the
YC5 cylinder the same phase appears when the twisted boundary conditions lead to spin
correlations that approximately obey the symmetries of the full two-dimensional lattice. In
other words, the chiral spin liquid is always present in the model as a competing phase, and
it seems to be favored in those situations that best represent the two-dimensional system.
The existence of the chiral spin liquid in two dimensions could be further confirmed either
by using larger circumferences, which would be computationally expensive, or by fully 2D
methods such as projected entangled pair states (PEPS)[115, 24].
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Chapter 6

Techniques for two-dimensional
density matrix renormalization group
computations

In this chapter, I discuss a number of useful methods that my collaborators and I used in
applying DMRG to a two-dimensional model by placing it on finite cylinders. In particular,
I discuss:

1. Different possible boundary conditions for placing a two-dimensional lattice on a cylin-
der;

2. Converting the triangular lattice Hubbard model from real-space to mixed real- and
momentum-space;

3. How the central charge, a property of one-dimensional systems, should appear on the
quasi-one-dimensional cylinders;

4. How charges are associated with the entanglement spectrum of the MPS for the ground
state;

and

5. How the transfer matrix spectrum of the MPS can be used to study the excitation
spectrum of the model.

These discussions will be useful in understanding the data described in the previous chapter,
and hopefully also more generally as a partial guide to studying two-dimensional systems
with DMRG.
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Figure 6.1: (a) Lattice vectors a and b on the triangular lattice. (b) Corresponding reciprocal
lattice vectors and the first Brillouin zone.

6.1 Compactification to a cylinder

The DMRG [128, 99] is a method for finding the ground state of a one-dimensional model,
so it cannot be used to study a full two-dimensional system, such as the triangular lattice
Hubbard model, directly. Instead, we must take 1D strips of the lattice with some finite
width. In particular, we identify the two edges of the strip with each other, using periodic
boundary conditions; this eliminates edge effects, giving the best approximation to the 2D
model that we can achieve with a strip of finite width.

To pick the 1D strip that defines the cylinder, we follow these steps:

1. Pick two points of the lattice, and declare them to be equivalent.

2. The line between the two points is the width of the strip or equivalently the circum-
ference of the cylinder.

3. The line passing through the identified point (ie both points, since they are the same)
and perpendicular to the circumference is the glued edge of the cylinder.

It is important to note that choosing any cylinder of this type automatically guarantees
periodicity of the Hamiltonian along the cylinder, so we once again have a translation-
invariant system. To see this, let the lattice vectors a and b be as shown in Figure 6.1,
and a the lattice spacing. Then, noting that a2 = b2 = a2 and a · b = a2/2, if the edges
are perpendicularly separated by naa + nbb for some integers na and nb (as must be true
given the above procedure), then one can check that the vector (2nb + na)a − (2na + nb)b
is perpendicular, and both coefficients are integers. This is a vector that points along the
length of the cylinder, and it is an integer linear combination of the lattice vectors, so the
Hamiltonian is invariant under this translation. (In some cases, the actual period may be
smaller than this, eg if nb = 0 and na is even.)
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Figure 6.2: (a) Periodic boundary conditions on the cylinder are defined by identifying the
point ? with the points labeled in the figure as 1, 2 and 3, which correspond to (na, nb) =
(4, 0), (3, 1), and (2, 2) respectively. (b) Cylinder from identifying point ? with point 1,
called YC4 boundary conditions. This is the same cylinder one would get by adding sites
at the hexagon centers of a zigzag nanotube. (c) Cylinder from identifying point ? with
point 2. Note that this case has a 26-site unit cell, making it computationally intractable.
(d) Cylinder from identifying point ? with point 3, called XC4 boundary conditions. This
corresponds to adding sites at the hexagon centers of an armchair nanotube.

Allowed cylinders and the consequences of choosing one

We now have a general procedure for generating cylinders to which the 2D triangular lattice
Hubbard Hamiltonian can be restricted in a natural way, namely by picking pairs of points
on the lattice to identify with each other. If we fix the cylinder circumference (in Manhattan
distance, ie the minimum number of lattice vectors to go between equivalent points; this is
not the physical circumference in general) to be a particular integer, L, there are exactly
b(L+ 1)/2c unique cylinders of this type that can be constructed, which are given by fixing
one point in the 2D lattice and identifying it with with each of the b(L + 1)/2c points
separated by naa + nbb such that na + nb = L and na ∈ {bL/2c, bL/2c + 1, · · · , L}. The
three points for n = 4 are shown in Figure 6.2(a). All other lattice points that are equidistant
(in Manhattan distance) from the fixed point give physically equivalent cylinders by rotating
or reflecting the 2D lattice. The resulting one-dimensional strips (with a cylinder formed
by identifying the edges) are shown in Figures 6.2(b), 6.2(c), and 6.2(d); the first and third
cylinders are called YC4 and XC4, indicating that a lattice vector runs, respectively, along
the y or the x direction[136]. In general, the YCL cylinder is one with (na, nb) = (L, 0) and
is defined for any L, while the XCL cylinder can be constructed only when L is even and
corresponds to (na, nb) = (L/2, L/2).

The choice of boundary conditions has important consequences, both for the physics
of the model and for the computational efficiency of the DMRG. The first implication of
the choice of boundary conditions is that the allowed momenta in the Brillouin zone are
restricted. The allowed inequivalent momenta in the full 2D model are those in the first
Brillouin zone, which is shown for this model in Figure 6.3(a). However, if we define a
cylinder by identifying, with periodic boundary conditions, two points that are separated by
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Figure 6.3: (a) Allowed momenta in the first Brillouin zone of the full 2D triangular lattice.
(b) Allowed momenta for YC4 boundary conditions. (c) Allowed momenta for the (na, nb) =
(3, 1) boundary conditions. (d) Allowed momenta for the XC4 boundary conditions. Note
that in (b)-(d), if the hexagons are tiled, then the allowed cuts form 4, 1, and 2 distinct lines
respectively, corresponding to different numbers of conserved momenta in the Hamiltonian.

naa +nbb, then an eigenstate at momentum k = caka + cbkb (ca and cb can be arbitrary real
numbers) must satisfy ψk(x) = ψk(x + naa + nbb), or equivalently (due to Bloch’s theorem)

1 = ei(naa+nbb)·(caka+cbkb) = e2πi(naca+nbcb) (6.1)

which requires that naca + nbcb be an integer. Each integer corresponds to a particular line
through the Brillouin zone. For example, in the case of the YC4 cylinder, where na = 4 and
nb = 0, there is no restriction on cb but ca must be an integer multiple of 1/4. This leads
to the cuts through Brillouin zone shown in Figure 6.3(b). The corresponding cuts for the
other two possible choices of boundary conditions are shown in Figures 6.3(c) and 6.3(d).

A related consequence of the choice of boundary conditions is that certain types of multi-
sublattice orders may or may not be allowed. This is extremely important for the triangular
lattice Hubbard model, which in the limit U →∞ reduces to the nearest neighbor Heisenberg
model and thus should have a three-sublattice 120◦ Néel order. Notably, this order is not
allowed on the YC4 cylinder, since the four sites around the circumference cannot be assigned
to three distinct sublattices in a consistent way.

Another physical consequence of the choice of boundary condition is that the final cylinder
circumference can vary in size. In the case of YC4 boundaries, the cylinder has circumference
4a, while for XC4 boundaries it is just 2

√
3 a. This is also reflected in total length of the

allowed cuts through the Brillouin zone; these have lengths 4×(4π/a
√

3) and 2
√

3×(4π/a
√

3)
respectively. This means that with a given number of sites L in the unit cell, the YCL cylinder
may be “more two-dimensional” than the corresponding XCL cylinder, though this effect is
presumably less important than the question of which multi-sublattice orders are or are not
allowed.

Finally, an appropriate choice of boundary conditions can dramatically speed up numer-
ical computations by introducing additional conserved quantities. The YCL cylinders have
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discrete L-fold translation symmetry around the cylinder, leading to L conserved momenta.
These correspond to the cuts through the Brillouin zone. The XCL cylinders (well-defined
for even L) similarly have L/2-fold discrete translation symmetry, giving L/2 conserved
quantities. The distinct conserved momenta correspond to distinct allowed cuts through the
Brillouin zone (figure 6.3): if the BZ is tiled, then the allowed cuts actually form 4, 1, and
2 distinct lines for the three respective boundary conditions.

As noted in section 5.2, we primarily use the YC boundary conditions. There are two main
reasons: (1) by choosing different cylinder circumferences, we can try to stabilize/destabilize
different phases and in particular we can frustrate the expected high-U magnetic order to
make a spin liquid phase more robust and easier to observe; and (2) with YCL boundary
conditions we can use a mixed real- and momentum-space basis with L conserved momenta,
which both gives a dramatic improvement in computational efficiency and allows us to sep-
arately find the ground state in different momentum sectors.

6.2 Mixed-space Hamiltonian

As a reminder, the model we study is the standard Hubbard Hamiltonian,

H = −t
∑
〈ij〉σ

c†iσcjσ + H.c. + U
∑
i

ni↑ni↓, (5.1)

on the triangular lattice. However, this is written in real space, whereas we actually perform
the DMRG simulations reported in the previous chapter in a mixed real- and momentum-
space basis, a method developed in reference [78]. Here I show precisely how that transfor-
mation works, for both cases of YC and XC boundary conditions.

YC mixed-space Hamiltonian

The first step is to convert the triangular lattice model into an effective model on the square
lattice, which we do as shown in Figure 6.4(a). We then label each site by its horizontal
position x and vertical position y, giving the square lattice Hamiltonian

H = −t
∑
xyσ

[
c†xyσcx+1,y,σ + c†xyσcx,y+1,σ + c†xyσcx+1,y+1,σ + H.c.

]
+ U

∑
xy

nxy↑nxy↓. (6.2)

We convert to the mixed-space basis by Fourier transforming in the y direction. For a
cylinder with circumference L, this looks like

cxyσ =
1√
L

∑
k

ei(2π/L)kycxkσ (6.3)
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(a) (b)

Figure 6.4: The triangular lattice in Figure 6.2(b) is converted to the square lattice with
diagonal couplings shown in (a). As before, the dashed gray lines are identified with each
other to form a cylinder. In Figure 6.2(b) that line runs straight along the physical cylinder;
that same line running lengthwise for the YC4 triangular lattice now makes a helix around
the square lattice cylinder, shown as a dashed blue line. In (b), we show the effective
lattice in the mixed real- and momentum-space, with hopping that is diagonal in the vertical
coordinate, k. The arrow next to each hopping term or on-site energy indicates its strength
and phase; note that the hoppings are for the c†xcx+1 terms and that the complex conjugate
should be taken for the cc† terms. Hopping terms that are exactly 0 have been omitted
completely, but these are specific to the YC4 cylinder shown in the figure. In each vertical
column, the different momenta are mixed by the interaction term (not shown).

where k is an integer and (2π/L)k is the momentum when the lattice constant has been set
to 1. The resulting Hamiltonian is

H =− t
∑
xkσ

[
2 cos((2π/L)k)nxkσ +

((
1 + ei(2π/L)k

)
c†xkσcx+1,k,σ + H.c.

)]
+ (U/L)

∑
xkk′q

c†xkσcx,k+q,σc
†
xk′σcx,k′−q,σ (6.4)

with k + q and k − q defined mod L as usual.
To actually run the DMRG, we treat this new model as an effective square lattice on the

cylinder, with on-site energies −2t cos ((2π/L)k) and hopping only horizontally with a value
also depending on k. This is shown in Figure 6.4(b).
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(a) (b)

Figure 6.5: The triangular lattice placed on a cylinder with XC boundary conditions as in
Figure 6.2(d) is equivalent to the square lattice with alternating diagonal couplings shown
in (a), with the dashed lines identified with each other to form a cylinder. When the
Hamiltonian is rewritten in mixed real- and momentum-space, the hopping terms (equation
(6.6)) are as shown in (b), where the arrow next to each hopping term or on-site energy
indicates its strength and phase; terms that are exactly 0 have been omitted, but note that
these are specific to the XC4 cylinder shown in the figure. In each vertical column, the
different momenta are mixed by the interaction term (not shown).

XC mixed-space Hamiltonian

I now quickly repeat the same steps for a cylinder with XC boundary conditions. In this
case the lattice shown in Figure 6.2(d) becomes the effective square lattice in Figure 6.5(a).
Again labeling the horizontal coordinate of each point by x and the vertical coordinate by
y, the real-space Hamiltonian is

H =− t
∑
xσ

[(∑
y

(
c†xyσcx,y+1,σ + c†xyσcx+1,y,σ

)
+
∑
y even

c†xyσcx+1,y+1,σ +
∑
y odd

c†xyσcx+1,y+1,σ

)
+ H.c.

]
+ U

∑
xy

nxy↑nxy↓. (6.5)

The unit cell now has two sites in the y direction, so there are only half as many distinct
momenta; labeling the mixed-space unit cells by x and ky, there will again be two sites
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per unit cell. However, we do not perform the Fourier transform this way. Instead, we
apply precisely the same transformation as in the YC case, equation (6.3), with the result
that ky = (k mod 2)× 4π/L, compared with k × 2π/L for the YC cylinder. This mismatch
between the operator index k and the actual momentum appears as terms in the Hamiltonian
coupling k with k ± L/2:

H =− t
∑
xkσ

[
2 cos((2π/L)k)nxkσ + (1 + cos ((2π/L)k))

(
c†xkσcx+1,k,σ + H.c.

)
− cos ((2π/L)k)

(
c†xkσcx+1,k+L/2,σ + H.c.

)]
+ (U/L)

∑
xkk′q

c†xkσcx,k+q,σc
†
xk′σcx,k′−q,σ (6.6)

The mixed-space hopping terms for XC4 are shown in Figure 6.5(b).

6.3 Expected central charge in the metallic phase

As reported in chapter 5, we numerically observe for the YC4 cylinder a central charge c ≈ 6.
This is the expected result for the metallic phase, based on an exact tight-binding solution
for the non-interacting limit of U = 0 on the full 2D lattice. In that limit, the Hamiltonian
becomes:

H = −2t
∑
kqσ

nkqσ
(

cos(2πk) + cos(2πq) + cos(2π(k − q))
)

(6.7)

where the momentum in the Brillouin zone is given by k = kka+qkb for the reciprocal lattice
vectors ka and kb as shown in Figure 6.1(b). In the ground state, all states with negative
energy will be occupied and all with positive energy will be empty, defining a nearly circular
Fermi surface with approximate radius 4π/(3

√
3 a) [for comparison, the side length of the

hexagonal Brillouin zone is 4π/(3a)].
When the system is restricted to a finite cylinder, we can then count how many of the

allowed momentum cuts cross the Fermi surface. This is shown visually in Figure 6.6 for the
YC4 and YC6 cylinders; the number of cuts crossing the Fermi surface is 3 for YC4 and 5
for YC6.

Each distinct cut through the Fermi surface corresponds to two species of free fermion,
one for spin up and one for spin down, and each free fermion contributes a central charge of
1[87]. Thus we conclude that the expected central charges at U = 0 and therefore throughout
the metallic phase are 6 and 10 for the YC4 and YC6 cylinders, respectively.
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(a) (b)

Figure 6.6: (a) The shaded circle denotes single-particle eigenstates that are filled in the
U = 0 limit of the model on the full two-dimensional lattice. The blue lines are the allowed
momentum cuts for the YC4 cylinder; evidently, three of them cross the Fermi surface. (b)
Same for the YC6 cylinder, with 5 lines crossing the Fermi surface.

6.4 Labeling the entanglement spectrum by quantum

numbers

Recall that the entanglement spectrum is the set of values {log(λi)} where the {λi} are the
coefficients of the Schmidt decomposition

|ψ〉 =
∑
i

λi|ψLi 〉|ψRi 〉 (6.8)

for a cut between any two rings of the cylinder[66].
We use a matrix product state with all legs labeled by conserved charges, so that when

we perform the Schmidt decomposition as in equation (6.8), each Schmidt state |ψLi 〉 is an
eigenstate of three operators: total momentum around the cylinder, spin up occupation
number, and spin down occupation number. We then label the λi by the corresponding
integer eigenvalues.

However, for iDMRG the left and right Schmidt states extend to infinity, and it is not
obvious how these integer charge labels correspond to “physical” values of the charge because,
for example, the total spin up occupation is infinite in each of the two halves. Thus our charge
labels actually give the total charge relative to some point on the cylinder (arbitrarily chosen
as a result of details of the DMRG algorithm) which may be far from the cut we consider in
the Schmidt decomposition.

We can fix this ambiguity by subtracting a constant offset from all charge labels so that
the net charge on each of the two semi-infinite halves, defined by∑

i

λ2
iQλi (6.9)

where Qλi is the charge label of λi, is 0. A more rigorous treatment of this subtraction is
given in the Supplementary Material of reference [141], section II(B).
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After making this correction, each Schmidt value λi is labeled by a set of “physical
charges” including the momentum and total spin ( (n↑ − n↓)/2 ). The latter may be a half-
integer if, as in the semion sector of a chiral spin liquid (CSL), there are fractionalized
quasiparticles.

6.5 Matrix product state transfer matrix and the

excitation spectrum

As noted in section 5.3, excitation gaps in the physical system can be estimated from the
eigenvalues of the matrix product state (MPS) transfer matrix spectrum. Here we elaborate,
showing how flux insertion can be used to partially map out the two-dimensional excitation
spectrum versus kx and ky. This is similar to the method used in references [39, 41]. We use
this technique to show that our data do not clearly indicate a susceptibility towards a Dirac
spin liquid state; see sections 7.1, 7.2, and 7.3 below.

One-dimensional version

Consider a one-dimensional system, with its ground state given by an MPS. For clarity, we
suppose a one-site unit cell and a right-normalized MPS with the transfer matrix as shown in
Figure 6.7(a). If all legs of the MPS tensors are labeled by conserved charges, then transfer
matrix eigenvalues can be labeled as well. As an example, suppose the conserved charge is
Sz. Then the transfer matrix can be decomposed into independent sectors with a conserved
charge on each leg, as in Figure 6.7(a). The total charge coming in from the right is s2− s4,
while the total charge going out on the left is s1 − s3. An eigenvector of this sector of the
transfer matrix will have outgoing charge to the left of s2−s4 so that the product is nonzero,
and the outgoing charge of the product will be the left charge of the transfer matrix, or
s1 − s3; since the product is a scalar multiple of the original vector, we can conclude that
s1 − s3 = s2 − s4 in any sector of the diagonalized transfer matrix. (In other words, the
transfer matrix being diagonalizable means that all blocks with s1 − s3 6= s2 − s4 must be
identically zero.) In this way, each eigenvalue of the transfer matrix can also be labeled by
this conserved charge, s1 − s3.

We can then relate these conserved charges to physical excitations in the system. Assume
a transfer matrix eigenvector with total outgoing conserved charge s and apply an operator
S+ inside the transfer matrix as shown in Figure 6.7(b); the outgoing conserved charge of
the combined object is s+1, and it will transform according to the s+1 block of the transfer
matrix. Thus if the 1 eigenvalue corresponding to the normalization of the MPS is in the
s = 0 sector, the s = 1 sector of the transfer matrix will describe the physical evolution with
translation in x of excitations with Sz = 1.

In fact, the eigenvalues of the transfer matrix spectrum give very specific information
about the excitation spectrum in each charge sector. Letting the eigenvalues be denoted by
λ = e−ε+iφ, it is believed to be true that for each such eigenvalue there is an excitation of
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Figure 6.7: (a) The MPS transfer matrix, here shown for a right-normalized MPS with a
one site unit cell, can be decomposed into blocks labeled by a conserved charge on each
leg. s1 − s3 = s2 − s4 for every nonzero block if the transfer matrix is diagonalizable. (b)
The charge of the transfer matrix corresponds to the physical charge of an excitation, here
demonstrated via a spin-1 excitation produced by the S+ operator.

the system with energy E = vε and momentum kx = φ/a; v is a scale factor that is the same
for every excitation.[143] At finite bond dimension it will be impossible to map out the full
excitation spectrum since kx is continuous, but the transfer matrix spectrum will include
the minima of the excitation spectra versus kx. Thus by looking at the low-lying eigenvalues
in each charge sector, it is possible to observe the smallest excitation energies for different
types of excitations and the corresponding kx. For example, the low-lying s = 0 eigenvalues
give the spin singlet gap; it is similarly possible to compute the triplet gap from the s = 1
sector.

Hubbard model and the two-dimensional excitation spectrum

Now suppose that the system is the square lattice Hubbard model (lattice constant a) on a
cylinder with a circumference of L sites, in particular in mixed real- and momentum-space,
with conserved quantities (n↑, n↓, ky), so that the conserved spin is (n↑ − n↓)/2 and the
conserved charge is n↑ + n↓. Here we label the ky eigenvalues by integers from 0 through
L − 1 for a cylinder of circumference L, and they should be multiplied by 2π/a to get the
true momentum.

Then suppose that in some charge sector, for example ky = 1, n↑ = 1, n↓ = −1, the
smallest eigenvalue is at kx = π/a. This means that in that charge sector, the lowest energy
excitation has ∆kx = π/a, and that it has a ∆ky corresponding to a transition between two
of the allowed momentum cuts, at k = n and k = n + 1. This would seem to indicate that
∆ky = 2π/a, but there is an important, and very powerful, exception.

As described in section 5.3, when we perform flux insertion that twists the boundaries
oppositely for spin up and spin down electrons, we shift the momentum cuts through the
Brillouin zone in opposite directions. Compared with the charge neutral sector, the excitation
in sector (1,−1, 1) is created by some combination of the operators c†↑,k+1c↓,k and the physical
shift in ky between the annihilated electron and the created one is actually (2π/a)(1+θ/(2π)).

Using this, we can, for each θ, find the ∆kx for the lowest energy excitation in each
charge sector and its corresponding ∆ky, then scan θ from 0 to 4π to map out how both
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(a) (b)

Figure 6.8: (a) Sample tight-binding model for demonstration of excitation spectra from
MPS transfer matrix spectrum. Hopping is −t on solid bonds, +t on dashed bonds, and
interaction is zero. The red rectangle shows the unit cell. (b) Dispersion for this model,
plotted as a function of (na, nb) where k = nakx + nbky. The reciprocal lattice vectors are
kx = (π/a)x̂ and ky = (2π/a)ŷ where a is the lattice constant.

the minimum excitation energy and its corresponding ∆kx vary with ∆ky. (Note that the
particular way that momentum cuts shift will depend on the charge sector.) This provides
a one-dimensional cut through the minimum of the excitation spectrum vs kx and ky.

1

To demonstrate the technique, consider the noninteracting model shown in Figure 6.8(a),
with hopping −t on solid bonds and +t on dashed bonds; this is just the U = 0 Hubbard
model on a distorted triangular lattice with staggered π flux. The exact solution is given by

E(na, nb) = ±
(

4 cos2(2πnb) +
∣∣ei2πnb + e−i2πna + e−i2π(na+nb) − 1

∣∣2) (6.10)

= ±
(
4 cos2(2πnb) + 2(2− cos(2πna) + cos(2πna + 4πnb))

)
(6.11)

where na and nb give the momentum as k = nakx + nbky. This dispersion is shown in
Figure 6.8(b) and evidently has Dirac cones at (na, nb) = (0,±1/4). In Figure 6.9 we show
in the left two columns the following quantities for a circumference 4 cylinder: the allowed
momentum cuts through the Brillouin zone at θ = 0; the allowed cuts at θ = 2π; the low-
lying transfer matrix spectrum versus θ in the spin 0 and spin 1 sectors, with eigenvalues
colored by momentum quantum number; the low-lying transfer matrix spectrum for all theta
versus na in the spin 0 and spin 1 sectors; and the low-lying spectrum for all theta versus nb
in the spin 0 and spin 1 sectors. In the right two columns we show the same for L = 5.

The Sz = 0 spectra in Figure 6.9 are discrete with respect to both momenta na and nb, a
fact which we briefly explain. These excitations correspond to applying either a c†↑ followed

by c↑ or c†↓ followed by c↓. For nb, at zero flux each creation and annihilation operator

must lie on one of the allowed momentum cuts, and the difference in the momenta of c† and

1One caveat to this technique: the scale factor v relating the excitation energies to the transfer matrix
eigenvalues may not be constant with flux insertion. However, this does not appear to be a problem in
existing results in the literature.[39, 41].
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Figure 6.9: Transfer matrix spectra for the ground state of the model shown in Figure
6.8(a), computed using DMRG with a bond dimension of 4000. Left two columns, top
row: allowed momentum cuts for a square lattice on a circumference 4 cylinder at (left)
zero flux and (right) π flux. Black dots indicate the locations of the Dirac cones. Second
row: low-lying transfer matrix spectrum versus flux θ in the Sz = 0 (left) and Sz = 1 (right)
sectors. Colors indicate the momentum quantum number of each eigenvalue, as given by the
legend in the third row. Notes: (1) we omit the eigenvalue of the transfer matrix that equals
1, which just gives the normalization of the state; (2) the bottoms of the Dirac cones are at
nonzero energy due to finite bond dimension; and (3) some data points may be hidden, e.g.
k = 0 behind k = 2. Third row: transfer matrix spectrum for spin 0 and spin 1 versus na.
Fourth row: spectrum versus nb. Note that part of the Sz = 0 spectrum is near the right
edge. Right two columns: same data for a cylinder with circumference L = 5.
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Figure 6.10: Conversion from momentum space on the square lattice representation of the
triangular lattice back to momentum space for the original lattice. (a) The original tri-
angular lattice is shown in the top right, with a one ring unit cell. For running DMRG
with YC boundary conditions, we convert to the square lattice shown at top left. Using the
MPS transfer matrix from the computed ground state, we find the excitation spectrum as
a function of k in the Brillouin zone for the square lattice, bottom left; the momentum is
given in terms of na and nb, fractions of the reciprocal lattice vectors ka and kb. The cor-
responding momenta in the Brillouin zone for the original triangular lattice, bottom right,
can be computed by using the corrected ka and kb while keeping na and nb the same; this is
demonstrated by the point na = nb = 1/4 at the intersection of the dashed gray lines. (b)
Same but for the YC boundary conditions with a two-ring unit cell. At bottom right, we
show how the reduced Brillouin zone with two rings fits into the one-ring Brillouin zone. (c)
Same but for the XC boundary conditions.

c is discretized to one of the L allowed transitions between cuts. As flux is inserted, the
momentum cuts shift, but they shift together for c†σ and cσ so that the momentum transfer
remains discretized. (This does not happen for Sz = 1 because the cuts for c†σ and c−σ shift
oppositely.) This discretization in nb will be present for any spinful fermion model in the
Sz = 0 sector. The discretization in na, on the other hand, is specific to this model. In
particular, for this model the local minima of the excitation spectrum with respect to na
at fixed nb remain at the same na when the initial and final momenta in the ky direction
(separated by the momentum of the excitation, nb) are varied. Recalling from above that
the transfer matrix spectrum eigenvalues generally give the local minima in the excitation
spectra, this leads to discretization in na. In more complicated models, the Sz = 0 will
not be exactly discretized, though it may still have a tendency to cluster around lines of
discretized momentum.

To confirm that the transfer matrix really gives the two-dimensional excitation spectrum
as claimed, we point out several features of the spectra. (1) For spin 0 excitations, where
the momenta of c† and c move together, ∆ky is quantized, and the Dirac cones appear in
the k = 0 sector whenever an allowed momentum cut hits one. For L = 4, they also appear
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Figure 6.11: (a) Low-lying part of the transfer matrix spectrum for the noninteracting model
of Figure 6.8(a), vs kx in the Brillouin zone of the original triangular lattice. (The lattice
constant is set to 1.) Note that transitions between the Dirac cones appear at ∆kx = 0,
±π/
√

3 as expected. (b) Same, versus ky, with transitions between Dirac cones appearing
as expected at ∆kx = 0, ±π.

simultaneously for k = 2 because the separation between the cones is twice the separation
between allowed cuts. (2) For spin 1 excitations, the Dirac cones appear for L = 5 in the
∆k = 2 sector at θ = π corresponding to a transition from the lower cone with ky = 4 for
spin down to the upper one with ky = 1 for spin up and at θ = 3π in the ∆k = 1 sector
corresponding to a transition from the upper cone with ky = 2 for spin down to the lower one
with ky = 3 for spin up. (3) Dirac cones appear at ∆ky = 0 for L=5 in the spin 0 sector but
not in the spin 1 sector, since cuts for spin up and spin down can never both pass through
the same Dirac cone at the same time given their spacing.

On the triangular lattice

Finally, we describe how this approach can be applied to the triangular lattice. To ac-
tually perform our DMRG simulations, we convert the triangular lattice into a distorted
square lattice, as shown for YC and XC boundary conditions in Figure 6.10. Following the
method above will give the excitation spectrum as a function of kx and ky in the effective
square/rectangular Brillouin zone.

We then write the overall momentum as k = nakx + nbky as above, and simply keep na
and nb constant while replacing kx and kb by the corresponding reciprocal lattice vectors of
the triangular lattice, as shown in Figure 6.10. As an example, we can place the staggered-π
flux hopping model above onto the original triangular lattice; in terms of the new kx and ky,
the L = 4, spin 1 spectrum versus kx and ky from Figure 6.9 will be as shown in Figure 6.11.



183

Chapter 7

Chiral spin liquid phase of the
triangular lattice Hubbard model:
additional data

In this chapter I present a large amount of additional data from my study of the triangular
lattice Hubbard model whose results were presented in chapter 5 above. The data is organized
here by cylinder geometry, in the order YC4, YC6, YC5, YC3, and finally XC4. Perhaps of
particular interest will be the data on transfer matrix spectra for the YC4, YC6, and YC5
cylinders.

7.1 YC4 additional data and analysis

Correlation lengths in different charge sectors

As described in chapter 6, the MPS transfer matrix can be decomposed into blocks in different
conserved charge sectors, and this allows the computation of a correlation length ξ in each
sector. In Figure 5.3(b), we show the correlation length as a function of U/t for a range of
bond dimensions in the (Q,Sz, K) = (0, 0, 0) sector, in other words the correlation length
for operators carrying no charge, spin, or momentum around the cylinder. In Figure 3(c),
we show for the highest bond dimension the correlation length in all four charge sectors that
have the largest ξ for some U/t. Here we show the comparison between correlation lengths
in different sectors in slightly more detail.

In Figures 7.1 and 7.2 we show the correlation lengths for the (Q,Sz) = (0, 0), (1, 1/2),
(0, 1), (2, 0), and (2, 1) sectors with K = 0 and 1; in the first figure the correlation lengths
are separated by K and in the second by (Q,Sz). There are several notable features: (1)
The large peak at U/t ≈ 10.6 appears only in the (0, 0, 0) sector. (2) The longest correlation
length is in the K = 1 sector for large U , and in the K = 0 sector elsewhere. (3) Below
U/t ≈ 8, the longest correlation lengths correspond to charge fluctuations. Where the
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Figure 7.1: Correlation lengths computed from the MPS transfer matrix (χ = 11314) for
operators with (a) K = 0 and (b) K = 1. Each line corresponds to a charge sector (Q,Sz),
see legend in panel (b).

(Q,Sz) = (1, 1/2) fluctuations have the longest correlation length, this is consistent with a
metallic state. Above this, charge fluctuations are gapped and the spin correlations are the
largest. (4) At lower U the (Q,Sz) = (2, 0) fluctuations have the largest correlation length,
potentially indicating a susceptibility to superconductivity. However, this is far from the
chiral phase in which we are interested, so we have not investigated this possibility.

Chiral order parameter and extrapolation

In Figure 5.3(e), we show the chiral order parameter 〈Si · (Sj × Sk)〉, where i, j, and k
label three lattice sites at the vertices of a triangle, as a function of U/t at different bond
dimensions. We additionally show an extrapolation in the DMRG truncation error; here we
explain the details of the extrapolation method.

At each value of U/t, we have values of the order parameter for five different bond dimen-
sions, namely 2000, 4000, 5657 ≈ 4000

√
2, 8000, and 11314 ≈ 8000

√
2, and corresponding

DMRG truncation errors, p. The error in the energy of a state should scale linearly with
the truncation error, E = Elim +A× p,[45] but the error in other observables may scale in a
more complicated manner. For the chiral order parameter, we assume a scaling of the form

〈Si · (Sj × Sk)〉 = 〈Si · (Sj × Sk)〉lim + A× pB (7.1)

used in reference [45], Figure 8. The data and best fit curves for several specific values of
U/t are shown in Figure 7.3; in particular, we show U/t = 8 at the upper end of the metallic
phase, U/t = 10 where the chiral order parameter is near its peak, and U/t = 11 in the
high-U phase. (The optimize.curve_fit function from Python’s scipy library fails to find
the best fit of this form for U/t & 11.5, beyond which we use instead a linear extrapolation
from the few highest bond dimensions.)

We also show in Figure 7.4 the best fit results if we do a simple linear extrapolation from
the three highest bond dimensions; we show the best fit line with the data for U/t = 8 and



CHAPTER 7. TRIANGULAR LATTICE HUBBARD: ADDITIONAL DATA 185

6 8 10 12
U/t

0.0

0.5

1.0

1.5

C
or

re
la

ti
on

le
n

gt
h

(Q,Sz) = (0, 0)

(a)

6 8 10 12
U/t

0.0

0.5

1.0

1.5

C
or

re
la

ti
on

le
n

gt
h

(Q,Sz) = (0, 1)

(b)

6 8 10 12
U/t

0.0

0.5

1.0

1.5

2.0

C
or

re
la

ti
on

le
n

gt
h

(Q,Sz) = (1, 1/2)

(c)

6 8 10 12
U/t

0.00

0.25

0.50

0.75

1.00

C
or

re
la

ti
on

le
n

gt
h

(Q,Sz) = (2, 1)

(d)

0

1

2

6 8 10 12
U/t

0

1

2

C
or

re
la

ti
on

le
n

gt
h

(Q,Sz) = (2, 0)

(e)

Figure 7.2: Correlation lengths for operators with (Q,Sz) = (a) (0,0), (b) (0, 1), (c) (1, 1/2),
(d) (2, 0), and (e) (2, 1). Each line corresponds to a charge sector K, see legend in panel
(e).
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Figure 7.3: Chiral order parameter versus DMRG truncation error, for (a) U/t = 8 in the
low-U phase, (b) U/t = 10 in the intermediate phase, and (c) U/t = 11 in the high-U phase.
Gray lines show best fit curves of the form C + A × pB, allowing for extrapolation to the
limit of no truncation error/infinite bond dimension.
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Figure 7.4: In (a) and (b), we show the same data as in Figures 7.3(a) and 7.3(b) respectively,
but with linear best fit lines computed using the points with the three lowest truncation errors
in each case. The result is essentially unchanged in the intermediate phase. In (c), we show
the extrapolation as a function of U/t using this linear fit method. The actual data is the
same as in Figure 5.3(e).

U/t = 10, as well as the equivalent of Figure 5.3(e) with the extrapolation line determined
using this linear fit. (The best linear fit at U/t = 11 is simply a flat line at 0.) This
method makes it seem that some time-reversal symmetry breaking may survive in the low-U
phase, but comparing the fitted curves for U/t = 8 using the two methods, it appears that
the nonlinear fit is significantly better, and that one predicts the expected vanishing of the
chiral order parameter in the low-U phase.

Despite the disagreement at low U , in intermediate phase the two extrapolation methods
give essentially similar results, as seen in Figures 7.3(b) and 7.4(b); the chiral order clearly
remains nonzero in the limit of infinite bond dimension/zero truncation error.

Metal-insulator transition

Singularity at the Fermi surface

One sign of a metallic, or Fermi liquid, state is the presence of a singularity at the Fermi
surface in the occupation 〈nk〉. We do not observe a singularity at any finite MPS bond
dimension, but by measuring 〈nk〉 as a function of U/t and bond dimension we can observe
the approximate location where the singularity would appear. We perform this computation
for the YC4 cylinder.

We compute the correlators 〈c†0,ky ,↑cx,ky ,↑〉 for x in the range −50 to 50, then compute the
occupation for spin up by

〈nkx,ky ,↑〉 =
50∑

x=−50

eikxx〈c†0,ky ,↑cx,ky ,↑〉. (7.2)

The range of 50 is about an order of magnitude larger than the correlation length, and the



CHAPTER 7. TRIANGULAR LATTICE HUBBARD: ADDITIONAL DATA 187

0.0

0.5

1.0

(a)

0.0

0.5

1.0

(b)

0.0

0.5

1.0

(c)

0.0

0.5

1.0

(d)

Figure 7.5: Spin up occupation in the Brillouin zone, 〈nk↑〉, for (a) U/t = 0 (exact result),
(b) U/t = 6 in the metallic phase, (c) U/t = 9 in the spin liquid phase, and (d) U/t = 12
in the high-U phase.
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Figure 7.6: (a) Maximum gradient of the occupation, as a function of U/t and bond dimen-
sion, showing a transition between U/t ≈ 8 and U/t = 10. (b) Height of the peak at the
Fermi surface found by including a factor of |x| in the Fourier transform in equation 7.2.
The vertical line at U/t = 8.5 appears to be the approximate location of the transition.

results are converged in the sense that when 〈nk↑〉 is plotted, the curves from using 40 vs 50
points are essentially indistinguishable.

In Figure 7.5 we show the spin up occupation in the Brillouin zone (computed with bond
dimension χ = 4000) for U/t = 6 in the metallic phase, U/t = 9 in the spin liquid phase,
and U/t = 12 in the high-U phase, as well as the exact tight-binding result for U = 0 as a
comparison. The behavior is clearly qualitatively different at high U compared with low U .

To make the transition more evident, we also show the maximum gradient of the occupa-
tion vs U/t for several bond dimensions in Figure 7.6(a). If there is indeed a singularity in
the limit of infinite bond dimension, the maximum gradient should extrapolate to infinity,
which appears to be the case at U/t = 6. If, on the other hand, there is no singularity,
then the gradient should converge as the bond dimension increases, which is clearly the
case for U/t & 10. The exact location of the transition remains unclear, however, since for
8 . U/t . 10, it is not clear whether the gradient will diverge or not.
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Another possibility for observing the transition is to add a factor of |x| in the Fourier
transform in equation (7.2), which converts the singularity at the Fermi surface into a peak.
We can then plot the peak height, which is shown in Figure 7.6(b). This allows for a
somewhat more precise determination of the transition location, at U/t ≈ 8.5.

Density structure factor

The metal-insulator transition can also be observed in the density structure factor,

S(q) = 〈δn(q)δn(−q)〉 =
1

L2

∑
x,y

e−iq·(x−y)〈δn(x)δn(y)〉 (7.3)

where δn(x) = n(x) − 〈n(x)〉 = n(x) − 1. Near q = 0, the structure factor should satisfy
S(q) ∝ q2 if the state has a charge gap and S(q) ∝ q if it does not. Both behaviors can be
captured by the functional form

S(q) ∝
√
q2 +m2 −m, (7.4)

for an “effective mass” m that goes to 0 when the state is gapless.
To distinguish between the gapped and gapless behavior, it is sufficient to consider a

one-dimensional cut through S(q), namely S(qx, qy = 0), and this has the benefit of being
quite efficient to compute in our mixed-space MPS. Our local sites are labeled by (x, ky),

and in terms of the operators n̂x,ky = c†x,kycx,ky the qy = 0 structure factor is

S(qx) ∝
∑
xkk′

eiqxx
(
〈n̂0kn̂xk′〉 − 〈n̂0k〉〈n̂xk′〉

)
. (7.5)

We compute the 〈n̂n̂〉 correlations out to a distance of 200 rings of the cylinder; even at the
largest bond dimension (11314) and the smallest U (with the slowest decay of the correla-
tions), we find that numerical error is larger than the actual correlations beyond 125 rings,
so this range is more than enough for accurate results.

In Figure 7.7 we show S(qx, qy = 0) for a range of bond dimensions, with the structure
factor for U/t = 7, 10, and 12, in the metallic, intermediate, and ordered phases, respectively;
for each U , S(qx) is normalized so that the maximum is 1 for the highest bond dimension.
Qualitatively, it is clear that the dispersion at U/t = 7 looks linear whereas at the two
higher values of U it appears quadratic, which confirms that the metal-insulator transition is
between 7 and 10. To get a clearer picture of the transition, we fit the part of the structure
factor with |qx| ≤ π/12 to a curve of the form (7.4) and extrapolate the mass m as a power
law in the DMRG truncation error. In Figure 7.8, we show the mass computed for each U
and χ, as well as two different extrapolations to infinite bond dimension. The metal-insulator
transition appears to occur at U/t ≈ 8, roughly consistent with the rest of our analysis.
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Figure 7.7: (a) S(qx) at U/t = 7, normalized so the maximum value for the highest bond
dimension is 1. The dependence on qx is approximately linear near the origin. (b) U/t = 10.
The dependence on qx is quadratic. (c) U/t = 10. The dependence on qx is again quadratic.
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Figure 7.8: Best fit curvature, measured by the mass m of equation (7.4), near qx = 0,
for a range of bond dimension and extrapolated as a power law in the DMRG truncation
error. Vertical lines indicate the phase transitions as argued for in chapter 5 and in section
7.1 below. Evidently this measure of the metal-insulator transition lines up well with the
onset of the chiral phase. Note that at low U the extrapolation is much farther from the
data than at high U , so the apparently slightly negative mass is likely still a finite bond
dimension effect; if the highest bond dimension is not used, the extrapolation appears even
more negative, supporting this view.
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Finite entanglement scaling

In chapter 5, we show in Figure 5.3(f) and (g) the central charge, a characteristic property
of the conformal field theory describing a gapless one dimensional system, computed as a
function of U/t using the scaling relations[19]

S ≈ (c/6) log(ξ). (7.6)

and [112, 90, 88]

S ≈
(

1 +
√

12/c
)−1

log (χ) , (7.7)

respectively.
Both approaches clearly show a finite central charge at low U , with a value of approx-

imately c = 6, which is exactly what we expect for a metallic state on this cylinder as
discussed in section 6.3 above. At high U the latter approach clearly shows c = 0 while the
former requires some extrapolation of the finite bond dimension results. In the intermediate
phase the second approach gives c = 0 at least for U/t & 9, but the behavior between about
U/t = 8 and 9 is unclear. To provide some further clarification, we discuss here the precise
way that we compute the central charge and discuss the extrapolation to the true, infinite
bond dimension ground state.

We first explain further how we calculate the central charge. At each U/t and each
bond dimension, we can calculate the total entanglement entropy S for a cut between two
rings of the cylinder, and also the correlation length (Figure 5.3(b)). As both become large,
they should scale according to equation (7.6), but the relation will be inaccurate when both
quantities are small because non-universal offsets will be comparatively large. The coefficient
is thus best approximated by the derivative, c/6 ≈ d log(ξ)/dS, and we calculate discrete
approximations to this derivative from the values of S and ξ at successive bond dimensions;
the lines in Figure 5.3(f) and (g) are labeled by the larger of the two bond dimensions used
in calculating the discretized derivative. So for example the yellow (most accurate) line in
the figure is computed using the ground state wave functions for bond dimensions 8000 and
11314.

In Figure 7.9, we show the central charge estimates using equation (7.6) at U/t = 9 and
at U/t = 13 versus 1/χ, where the χ used is the geometric mean of the two bond dimensions
used to calculate the derivative. In the high-U phase we show a linear extrapolation to
infinite bond dimension; although it appears to show a small but nonzero central charge,
that is not really a reliable result. For example, the use of the geometric mean of the
two bond dimensions used in computing the derivative is an arbitrary choice, particularly
because the error may be determined mostly by the smaller bond dimension, and using that
bond dimension for the horizontal axis would shift the graph to the right. At U/t = 9, it
is essentially impossible to extrapolate the central charge at all as the shape of the curve is
completely unclear.

In fact, in both phases, and particularly in the high-U phase, the entanglement appears
to be converging with increasing bond dimension, as shown in Figure 7.10, which is indicative
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Figure 7.9: Central charge vs 1/χ for (a) U/t = 9 and (b) U/t = 13. Both seem to
extrapolate to finite values, but this is misleading, as discussed in the text.

χ = 2000

χ = 4000

χ = 5657

χ = 8000

χ = 11314

6 8 10 12
U/t

3

4

S
b

et
w

ee
n

ri
n

gs

(a)

8.4 8.6 8.8 9.0 9.2
log(χ)

2.31

2.32

2.33

2.34

2.35

S
b

et
w

ee
n

ri
n

gs

(b)

Figure 7.10: (a) Entanglement between rings of the cylinder as a function of U/t for different
bond dimensions. It is nearly converged in the intermediate and high-U phases, indicating
that they are gapped. (b) A close-up slice at U/t = 13. Note that the vertical scale is only
about 2% of the value of S.

of a gapped phase that should have c = 0. The apparent nonzero central charge comes from
the fact that both the entanglement and the correlation length are still growing very slightly
at the accessible bond dimensions.

Another option, then, is to compute the central charge directly from the scaling of en-
tanglement with bond dimension, using equation (7.7). In the gapless low-U phase, this is
less accurate than the computation of c from scaling with ξ, but at higher U it is indeed
more converged. Slices at U/t = 9 and 10 in the intermediate phase and U/t = 13 in the
high-U phase are shown in Figure 7.11. It is still not completely clear that system is gapped
at U/t = 9, but that is likely a finite bond dimension effect, as the later point in the same
phase, at U/t = 10, clearly shows c = 0.
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Figure 7.11: Central charge vs 1/χ, calculated by scaling with bond dimension, for (a)
U/t = 9, (b) U/t = 10, and (c) U/t = 13. The latter two clearly extrapolate to 0,
suggesting that both the intermediate and high-U phases are gapped. The extrapolation at
U/t = 9 still appears to go to a nonzero value (approximately 1/2), but this is likely still a
finite bond dimension effect.

Entanglement spectrum degeneracy

As reported in chapter 5, the entanglement spectrum of the ground state on the YC4 cylinder
acquires an exact two-fold degeneracy when entering the intermediate phase, at U/t ≈ 8.3,
a fact that we demonstrate here. Figure 7.12 shows the low-lying levels in the entanglement
spectrum in the ground state as a function of U/t.

The two lowest-lying levels appear to come together somewhere in the vicinity of U/t = 8,
and then pairs of levels come together at U/t = 10.6. This onset of four-fold degeneracy
from two-fold degeneracy at U/t = 10.6 is visually obvious in the figure: each pair of
lines that come together at that point do so at a sharp angle, so that the slope of the
entanglement spectrum lines appears discontinuous at that point. The precise location of
the first transition, from a nondegenerate entanglement spectrum to two-fold degeneracy, is
not clearly visible in the same way.

To more precisely find where the two-fold degeneracy onsets, we take all of the entan-
glement levels for a given value of U/t and a given bond dimension, and group them into
adjacent pairs, with the lowest two levels together, the third and fourth together, and so
forth. We then find the separation within each pair, and average the separation over the
lowest N pairs, for some large N . (We do not average over all pairs because the highest
ones will be inaccurate for any finite bond dimension.) The logarithm of this average can be
plotted vs U/t for each bond dimension, which is shown for N = 1000 in Figure 7.13(a)(a).
The curves for different bond dimensions all sit roughly on top of one another until around
U/t = 8, where they start to deviate. For each bond dimension the separation drops towards
0 before flattening off at some finite average separation; as bond dimension increases, this
flattening out happens at successively smaller separations. It is still difficult to identify the
exact onset of degeneracy in the infinite bond dimension limit, but it appears to be some-
where within the region highlighted by the vertical gray bar, from U/t = 8.1 to 8.6. The
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Figure 7.12: Entanglement spectrum in the ground state of the YC4 cylinder, as calculated
for bond dimension χ = 8000.

value of U/t ≈ 8.3 used in Figure 5.3 is approximately the center of this region.
For confirmation that this is indeed what a finite bond dimension approximation to an ex-

act degeneracy should look like, we have also followed the same procedure with entanglement
levels divided into groups of four, plotting the average separation between the highest and
lowest levels in each group, which should go to 0 at the onset of four-fold degeneracy. This
is shown in Figure 7.13(b). This indeed shows essentially the same behavior at U/t = 10.6
as does the average pair splitting at U/t ≈ 8.3, so we believe this is a valid and relatively
rigorous way to locate the onset of degeneracy.

Chiral Domain Wall

As there is a two-fold degeneracy arising from the two possible chiralities, at nonzero temper-
ature there will be regions of each chirality with domain walls between them. We characterize
these domain walls by considering a finite cylinder segment, assuming an infinitely repeat-
ing MPS on each end; these half-infinite MPSs are taken from the ground states previously
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Figure 7.13: (a) Log of the average separation within pairs of entanglement levels, with
1000 pairs included in the average. The gray bar shows the regions U/t ∈ [8.1, 8.6]; onset
of 2-fold degeneracy is somewhere in this region, though the precise location is still difficult
to determine. (b) Log of the average separation between the top and bottom entanglement
levels when grouped into fours, with the lowest 500 groups included (the same total number
of entanglement levels). The vertical line at U/t = 10.6 is the onset of 4-fold degeneracy.

found for each of the two chiralities, with opposite chiralities at the two ends. Within the
finite cylinder, we optimize the MPS tensors to minimize the energy as usual, resulting in
the minimal energy configuration that interpolates between the two chiralities. This is the
same method used in reference [141].

Here we show results for the YC4 cylinder at U/t = 10, deep in the chiral phase. The
shape of the domain wall can be observed by calculating the chiral order parameter 〈S·(S×S)〉
on successive triangles proceeding along the finite segment. On each ring of the cylinder,
there are two inequivalent triangles, one which points left, and one which points right (see
Figure 5.1), and we calculate the order parameter on both. Note that all triangles in a
particular ring with a given orientation are necessarily equivalent in our mixed real- and
momentum-space basis. Figure 7.14(a) shows the evolution of the chiral order parameter
across a finite segment of length 24 rings, with both triangle orientations; note that at
each end the chiral order parameters for the two triangle orientations converge to a single
constant value, the same one shown in Figure 5.3(e). Figure 7.14(b) shows the dependence of
the domain wall shape on the MPS bond dimension; although the behavior is quite different
comparing the low bond dimension of 2000 with the higher ones, it appears to be essentially
converged by χ = 4000.

We can additionally calculate the energy cost of creating the domain wall by comparing,
for each bond dimension, the minimized energy with the domain wall present with the
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Figure 7.14: Shape of the domain wall between regions of the two different chiralities, as
measured by the chiral order parameter for local triangles on each ring of a finite cylinder
segment: (a) computed for χ = 5657 for both triangle orientations, and (b) for the left-
pointing triangles at three different bond dimensions, showing convergence by χ ≈ 4000.

minimized energy at the same bond dimension with just a single domain. The total energy
cost of the domain wall on the YC4 cylinder, which is nearly converged for χ & 4000, is
approximately 0.026t, giving a domain wall tension of 0.0065t/a. Using estimated values
from the literature[63, 105], this gives for the organic crystal κ-(BEDT-TTF)2Cu2(CN)3 a
tension of about (4K)× kB.

Flux insertion data

In chapter 5, we show in Figure 5.4 the evolution of several quantities with flux insertion,
including the chiral order parameter, the peak height of the spin structure factor, and a
qualitative estimate of the spin singlet gap from the MPS transfer matrix spectrum. We also
show the spin Hall effect in the chiral spin liquid (CSL) phase via spin pumping with flux
insertion in Figure 11(d) and the spin- and momentum-resolved entanglement spectrum in
the two topological sectors of the CSL in Figure 11(b). Here we provide some additional data
on the evolution of the system with flux insertion, including fidelity, transfer matrix spec-
trum estimates of gaps to other types of excitations, and the evolution of the entanglement
spectrum with flux insertion.

In Figure 7.15 we show a variety of quantities versus U/t and flux insertion θ. In particu-
lar, we show (a) the transfer matrix estimate of the spin triplet gap, showing the distinction
between the two high-U phases; (b) the transfer matrix estimate of the charge gap, showing
the metal-insulator transition; (c) the fidelity with flux insertion, showing some phase tran-
sitions clearly; (d) the entanglement between rings; and (e) the truncation error in the last
sweep of the DMRG simulation, showing that the accuracy of the simulation is essentially
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Figure 7.15: Various quantities for the YC4 cylinder vs U/t and flux insertion θ, with
χ = 4000. (a) Transfer matrix estimate of the spin triplet gap. (b) Transfer matrix
estimate of the charge gap. (d) Fidelity of the flux insertion—in particular, we show
1−|〈ψ(θ)|ψ(θ + π/12)〉|2, so that a very large value would indicate a loss of adiabaticity. We
see phase boundaries but no such non-adiabatic evolution. (d) Entanglement between two
rings of the cylinder. (e) Log base 10 of the truncation error at the last step of the DMRG
simulation.

constant with flux insertion within each phase. All quantities clearly delineate the chiral
phase.

We can also further examine the spin pumping from flux insertion at U/t = 10 shown
in Figure 5.11(d). Compared with the spin pumping for YC6 (Figure 4(b)), there is sub-
stantially more deviation from a straight line, which arises because of the large shifts in the
phase boundaries with flux insertion. In particular, the spin is pumped more quickly when
the chiral order parameter is larger, and less quickly when it is smaller. This phenomenology
can be seen clearly by looking at spin pumping at smaller and larger values of U which
clearly cross phase boundaries; in Figure 7.16 we show the spin pumping for U/t = 9.2 and



CHAPTER 7. TRIANGULAR LATTICE HUBBARD: ADDITIONAL DATA 197

0 π 2π 3π 4π
Flux

0.0

0.5

1.0

S
p

in
p

u
m

p
ed

(a)

0 π 2π 3π 4π
Flux

0.0

0.5

1.0

S
p

in
p

u
m

p
ed

(b)

Figure 7.16: YC4 spin pumping: (a) U/t = 9.2 and (b) U/t = 11.0.

U/t = 11. At U/t = 9.2, the system is in the chiral phase until shortly before 2π flux, where
it enters the left-most nonchiral region seen in Figure 5.4(a), at which point the pumped
spin plateaus at exactly 1/2. The spin pumping continues upon reentering the chiral phase.
(Note that for smaller U , since the sign of the chirality is randomly opposite upon reentering
that phase, the spin pumps back down to 0 at 4π flux instead of up to 1.) At U/t = 11,
there is initially no spin pumping, but it begins after entering the chiral phase; the pumping
stops again once the system once more enters the nonchiral phase after 3π flux.

Transfer matrix and the two-dimensional excitation spectrum

In section 6.5 above, we discuss how the MPS transfer matrix spectrum gives the excitation
spectrum of the system. In particular, for a given U , flux insertion allows us to trace out a cut
through the minimum of the excitation spectrum as a function of kx and ky. In Figure 7.17
we show the transfer matrix spectrum for spin 1 excitations at U/t = 10 versus flux insertion,
kx, and ky, at bond dimensions 2000, 4000, and 8000. Note that for this data, flux insertion
was not performed adiabatically, but rather the DMRG was performed independently for
each θ; however, adiabatic flux insertion at χ = 4000 gives a nearly identical result.

This data is somewhat difficult to interpret due to the shifting of phase boundaries with
flux insertion. Another possibility is to, for each flux θ, take the transfer matrix spectrum
corresponding to the U/t with the greatest chirality in order to find the transfer matrix
within a single phase. This is shown (for χ = 4000) in Figure 7.18.

Comparison with Dirac spin liquid

One purpose of this analysis is to check whether the Dirac spin liquid (DSL) is another
candidate state for the two-dimensional model, which seems plausible given that the DSL
can become a chiral spin liquid when the Dirac cones are gapped out. A DSL on the triangular
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Figure 7.17: Low-lying part of the Sz = 1 part of the transfer matrix spectrum for U/t = 10
on the YC4 cylinder at χ = 2000 (left column), 4000 (middle column), and 8000 (right
column), plotted versus flux inserted (top row), kx (middle row), and ky (bottom row). (The
lattice constant is set to 1.) Color corresponds to the momentum quantum number of the
excitation as given in the panel in the upper left. Vertical lines correspond to momentum
transfers between possible Dirac cone locations in the Dirac spin liquid; they do not clearly
correspond to features observed in our data.
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Figure 7.18: Low-lying transfer matrix spectrum where, for each amount of flux inserted,
θ, we use the U/t with the largest chiral order parameter to “track” the chiral phase. (a)
Spectrum plotted versus kx. (b) Spectrum plotted versus ky. (c) Location of the maximum
U/t used for each θ.

lattice can be constructed with fermionic partons with staggered π flux. There are several
valid gauge choices, one of which is the model shown in Figure 6.8(a) above; the three
inequivalent gauge choices give Dirac cone pairs at (kx, ky) = ±(π/

√
3, 0), ±(π/2

√
(3), π/4),

and ±(π/2
√

(3),−π/4). The momenta of the corresponding transitions are indicated by
vertical lines in Figures 7.17 and 7.18.

When plotted at constant U/t = 10, the minima in the spectrum do not appear to
line up with the transitions between expected locations of the Dirac cones. When plotted
instead at the approximate center of the chiral phase, the minima are in fact at (∆kx,∆ky) =
±(2π/

√
3, 0), which corresponds to one of the Dirac cone pairs. However, this result is at a

single bond dimension, and these minima do not extend far below the rest of the spectrum,
so it is difficult to reach a clear conclusion.
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Figure 7.19: Evidence for metal to spin liquid transition in the k = 0 sector for the YC6
cylinder: (a) At U/t ≈ 8.5, there is a qualitative change in the behavior of the finite
entanglement scaling. To the left the scaling of entanglement with bond dimension appears
chaotic, which is not surprising for a gapless system when the bond dimension is very small
compared with the size of the Hilbert space; to the right the behavior becomes systematic,
because the DMRG converges much more accurately even at low bond dimensions when the
system is gapped. (b) The same transition is also visible in the entanglement spectrum,
plotted here for χ = 8000. The dense levels in the upper left are characteristic of a metallic
state. At U/t ≈ 7.5 there is a large increase in the separation between the lowest levels,
and the low-lying levels become much more sparse in general, showing a transition into a
non-metallic state. (Note that the coloring indicates degeneracy of the levels: yellow is
non-degenerate and blue is 3x degenerate).

7.2 YC6 additional data and analysis

Metal to CSL transition in k = 0 sector of YC6 cylinder

For the YC4 cylinder, we used finite entanglement scaling to show that the metallic phase
is gapless with c = 6 and that the intermediate and high-U phases on that cylinder are
gapped. For the YC6 cylinder, much larger bond dimensions (about 16× larger) are needed
to achieve the same accuracy, so we cannot estimate the central charge accurately. However,
if we plot the central charge as estimated using equation (7.7) for pairs of bond dimensions
(as described in section 7.1) as a function of U/t, we can still observe a qualitative change in
the behavior of the system at one particular point, as shown in Figure 7.19(a). This behavior
is consistent with a gapless metallic phase at low U and a gapped phase at intermediate U .

The transition can also be observed in the entanglement spectrum. Metallic phases
charactistically have very densely spaced levels, which as shown in Figure 7.19(b) is true for
the YC6 cylinder when U/t . 8 but is no longer true beyond that point. Just to the left
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of that same point, there is a corresponding rapid increase in the separation of the lowest
levels; on its own, that feature would not be sharp enough to identify a transition, but in
combination with everything else, it provides some additional evidence for the location of
the transition.

The two indicators of a transition are slightly displaced from each other, but both are
in the vicinity of U/t ≈ 8, so we identify that region as the approximate location of the
transition.

Four-fold ground state degeneracy

As shown in Figure 5.5(a), for the YC6 cylinder we find low-lying states in two different
sectors of momentum around the cylinder per ring. In addition to this near-degeneracy,
which as explained in chapter 5 is between the trivial and semion topological sectors, we also
observe an additional two-fold degeneracy between the two different possible chiralities.

When finding the ground state using the DMRG method, one begins with some initial
matrix product state; if the ground state is not degenerate and the algorithm does not get
stuck in a metastable state, the final wave function should be approximately independent
of the initial state. If, on the other hand, there are multiple degenerate ground states, the
algorithm will converge to one or another of them depending on the initial state used. (It
will also tend to converge to minimally entangled states within the ground state manifold
and not superpositions of them.[141])

In our case, over a wide range of U/t for a bond dimension χ = 8000, we initialized the
DMRG with ten different random product states. In the center of the CSL phase, the energies
of the final states within each momentum sector varied by up to about 0.01%, meaning that
none of the final states were metastable. Although none of the states were numerically
identical, they can be separated into two groups within which they are essentially the same,
with an overlap per ring of about 0.99998; the overlap between states in opposite groups
is about 0.22 per ring. That these two groups correspond to the two possible chiralities
of the time-reversal symmetry-breaking phase can be seen from the momentum-resolved
entanglement spectra, shown in Figure 7.20 for representative final states in each of the
two groups for each topological sector for U/t = 9: the spectra are almost precisely related
by k → −k. (Note that parts (a) and (c) are essentially the same as the left and right
respectively of Figure 5.11(a).)

Flux insertion data

In Figure 5.6, we show the chiral order parameter, peak height of the spin structure factor,
and transfer matrix estimate of the spin singlet gap. As for the YC4 cylinder in section 7.1
above, we show here in Figure 7.21 a number of additional quantities versus U/t and inserted
flux, θ, with bond dimension χ = 8000. The relative behavior of the various quantities is
consistent with what we found for YC4.
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Figure 7.20: Spin- and momentum-resolved entanglement spectra for the four degenerate
ground states of the YC6 cylinder with U/t = 9. (a) and (b) show the two chiralities for
the k = 0 (trivial) sector, and (c) and (d) show the k = π (semion) sector.

Unlike for YC4, here we actually observe a failure of the adiabatic flux insertion, for
U/t = 7 and 7.2; this is visible in all quantities and is especially clear from the measurement
of the overlap between the ground states with successive values of θ, Figure 7.21(c). The
overlaps in this case are much smaller than those corresponding to phase boundaries, as
seen at higher U ; this is quite useful because it confirms that those phase boundaries do not
indicate a loss of adiabaticity. The fact that the chiral phase gives way to a (lower energy)
non-chiral phase near 2π flux might be concerning, but in fact the drop in energy is already
much smaller for U/t = 7.2 than for U/t = 7, and it is likely that this is just the right-most
edge of the metallic phase. So this could correspond to the nonchiral region extending to
about U/t = 10 for YC4, and it is simply easier to maintain adiabaticity with flux insertion
for YC6 at χ = 8000 than YC4 with χ = 4000 even with the much larger θ step, so that
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Figure 7.21: Various quantities for the YC6 cylinder vs U/t and flux insertion θ. (a) Transfer
matrix estimate of the spin triplet gap. (b) Transfer matrix estimate of the charge gap. (c)
Fidelity of the flux insertion, measued by 1 − |〈ψ(θ)|ψ(θ + π/3)〉|2. For the two smallest
values of U there is a loss of adiabaticity. (d) Fidelity with the left two columns removed to
more clearly show the results in the rest of the phase diagram. (e) Entanglement between
two rings of the cylinder. (f) Log base 10 of the truncation error at the last step of the
DMRG simulation. The error is quite large even at high U , indicating that these are the
least converged of our results; this is why the chiral phase appears to extend to high U near
2π flux.
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Figure 7.22: The transformation of the YC6 spin- and momentum-resolved entanglement
spectrum with flux insertion for U/t = 9, beginning in the semion sector (as shown in Figure
7.20(c)): (a) 2π flux converts the system to the trivial sector (compare with Figure 7.20(a))
and (b) an additional 2π flux, or 4π total, returns to the initial state.

the transition into this phase happens later than it ought to. (Additionally, at 4π flux the
nonchiral phase is much higher in energy than the chiral one, again supporting the fact that
adiabatic evolution is easier to achieve here.)

We also briefly discuss the evolution of the entanglement spectrum. In Figure 5.11(a),
we show the spin- and momentum-resolved entanglement spectrum in the trivial and semion
sectors; these two sectors are the respective ground states at U/t = 9 in the k = 0 and k = π
momentum sectors. Alternatively, we can observe both sectors using flux insertion, as we
did for the YC4 cylinder (Figure 5.11(b)). Beginning with the ground state with periodic
boundaries in the k = π sector, with entanglement spectrum given in Figure 7.20(c), and
adiabatically inserting 2π flux indeed produces an entanglement spectrum consistent with
the trivial sector of the CSL, as shown in Figure 7.22(a). An additional 2π flux converts
back to the semion sector, as shown in Figure 7.22(b). The spin multiplets in the spectrum
are slightly less well converged after the flux insertion, but the qualitative behavior is exactly
the same as at 0 flux.

Transfer matrix and the two-dimensional excitation spectrum

As with YC4, we compute the transfer matrix spectrum for spin 1 excitations versus flux
θ, kx, and ky. In particular, we show in Figure 7.23 the spectrum for U/t = 9, deep
in the chiral phase, at bond dimension 8000. The relatively low bond dimension given
the circumference makes it difficult to reach any meaningful conclusions as to whether the
observed state is consistent with a chiral spin liquid formed by gapping out a Dirac spin
liquid. Note however that the observed minima at this bond dimension are not consistent
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Figure 7.23: Sz = 1 part of the transfer matrix spectrum for the YC6 cylinder with U/t = 9,
with χ = 8000. Color indicates the momentum quantum number of each transfer matrix
eigenvalue. Vertical lines correspond to possible locations of Dirac cones for a Dirac spin
liquid. (a) Plotted versus flux inserted, θ. (b) Plotted versus kx. (c) Plotted versus ky.

with the expected momenta of transitions between Dirac cones, though there are local minima
at (kx, ky) = ±(2π/

√
3, 0).



CHAPTER 7. TRIANGULAR LATTICE HUBBARD: ADDITIONAL DATA 206

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

Spin triplet gap estimate

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(a)

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

Charge gap estimate

1.0

1.5

2.0

2.5

3.0

(b)

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

1-(fidelity vs theta)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(c)

8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

1-(fidelity vs theta)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(d)

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

Entanglement (min)

2.0

2.5

3.0

3.5

4.0

4.5

(e)

6 8 10 12
U/t

0

π

2π

3π

4π

F
lu

x
θ

log10(trunc. err.)

−5.2

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

−3.8

(f)

Figure 7.24: Various quantities for the YC5 cylinder vs U/t and flux insertion θ. (a) Transfer
matrix estimate of the spin triplet gap. (b) Transfer matrix estimate of the charge gap. (c)
Fidelity of the flux insertion, measued by 1 − |〈ψ(θ)|ψ(θ + π/12)〉|2. At small U there is a
loss of adiabaticity between 3π and 4π flux. (d) Fidelity with the leftmost columns removed
to more clearly show the results in the rest of the phase diagram. (e) Entanglement between
two rings of the cylinder. There is symmetry-breaking between the two rings of the unit
cell; here we show the smaller of the two entanglements—between the two rings in the unit
cell and between unit cells. (f) Log base 10 of the truncation error at the last step of the
DMRG simulation.

7.3 YC5 additional data and analysis

Flux insertion data

In Figure 5.7, we show the chiral order parameter, peak height of the spin structure factor,
and transfer matrix estimate of the spin singlet gap. Here we show in Figure 7.24 a number
of additional quantities versus U/t and inserted flux, θ, with bond dimension χ = 8000. In
the chiral phase, the relative behavior of the various quantities is consistent with what we
found for YC4 and YC6.

As with YC6, adiabatic flux insertion leads to metastable states at low U , as seen by
the assymetry around 2π flux at low U ; there is a sudden jump back to the ground state
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Figure 7.25: Low-lying part of the Sz = 1 part of the transfer matrix spectrum for U/t = 10
on the YC5 cylinder at χ = 2000 (left column), 4000 (second column), 8000 (third column),
and 11314 (right column), plotted versus flux inserted (top row), kx (middle row), and ky
(bottom row). (The lattice constant is set to 1.) Color corresponds to the momentum
quantum number of the excitation as given in the panel in the upper left. Vertical lines
correspond to possible Dirac cone locations in the Dirac spin liquid; they do not clearly
correspond to features observed in our data.

between 3π and 4π flux as seen by the line of low fidelity in Figure 7.24(c).

Transfer matrix and the two-dimensional excitation spectrum

We again compute the transfer matrix spectrum for spin 1 excitations versus flux θ, kx, and
ky. In particular, we show in Figure 7.25 the spectrum for U/t = 10 at bond dimensions
2000, 4000, 8000, and 11314.

As with YC4 and YC6, above, we investigate how the transfer matrix spectrum does or
does not correspond to a possible Dirac spin liquid (DSL). In this case, our particular goal
is to check the possibility that the non-chiral state found near 0 flux could be a DSL, which
becomes gapped out near 2π flux, thus becoming a chiral spin liquid instead. We see no
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Figure 7.26: Chiral order parameter versus U/t at zero flux for χ = 4000. (a) With isotropic
hopping in the Hubbard model, there scalar chiral order parameter is zero. It appears
nonzero at low U , but this is not systematic and is likely a finite bond dimension effect.
(b) When hopping on bonds around the cylinder is weakened by 10%, the chirality becomes
large, of the same order as that observed for YC4.

evidence for this conclusion.
There are minima in the excitation spectrum at the values of θ where the transition

between chiral and non-chiral states occurs, and these points will plausibly become gapless
in the infinite bond dimension limit; however, the momenta corresponding to these gapless
points are completely different from the transitions between expected locations of Dirac cones
for the DSL, indicated by the vertical lines in Figure 7.25 (also at the edges of the plotted
region in kx).

Instead of a transition between DSL and CSL, the most plausible explanation is that
there is simply a gap closing at a second-order transition between the chiral spin liquid and
a bond-ordered state (see chapter 5).

Appearance of chirality with hopping anisotropy

In chapter 5 we argue that the nonchiral state at intermediate U near zero flux may be pre-
vented from becoming the chiral spin liquid due to a large degree of anisotropy in the spin
interactions. To test this, we explicitly introduce a hopping anisotropy in the model, weak-
ening the bonds around the cylinder by 10%, thus producing more isotropic spin interactions
that are therefore more consistent with the symmetries of the two-dimensional model. This
indeed gives rise to nonzero scalar chirality at zero flux, as shown in Figure 7.26.
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Figure 7.27: Various quantities for the YC3 cylinder vs U/t and flux insertion θ. (a) Transfer
matrix estimate of the spin triplet gap. (b) Transfer matrix estimate of the charge gap. (c)
Fidelity of the flux insertion, measued by 1 − |〈ψ(θ)|ψ(θ + π/12)〉|2. (d) Entanglement
between two rings of the cylinder. The unit cell is four rings, and here we show the smallest
entanglement across any of the four distinct cuts. (e) Here we show just the largest of the
four entanglements; it is nearly identical to the smallest. (f) Log base 10 of the truncation
error at the last step of the DMRG simulation.

7.4 YC3 additional data and analysis

Flux insertion data

In Figure 5.9, we show the chiral order parameter, peak height of the spin structure factor,
and transfer matrix estimate of the spin singlet gap. Here we show in Figure 7.27 a number
of additional quantities versus U/t and inserted flux, θ, with bond dimension χ = 4000. The
relative behaviors of the various quantities do not match what we observed for the larger
cylinders, so it is unclear whether the region with nonzero chirality corresponds to a chiral
spin liquid.
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Figure 7.28: Various quantities for the XC4 cylinder vs U/t and flux insertion θ. (a) Transfer
matrix estimate of the spin triplet gap. (b) Transfer matrix estimate of the charge gap. (c)
Fidelity of the flux insertion, measued by 1 − |〈ψ(θ)|ψ(θ + π/12)〉|2. (d) Fidelity with the
rightmost columns removed to more clearly show the results in the rest of the phase diagram.
(e) Entanglement between two rings of the cylinder. (f) Log base 10 of the truncation error
at the last step of the DMRG simulation.

7.5 XC4 additional data and analysis

Flux insertion data

In Figure 5.10, we show the chiral order parameter, peak height of the spin structure factor,
and transfer matrix estimate of the spin singlet gap. Here we show in Figure 7.27 a number
of additional quantities versus U/t and inserted flux, θ, with bond dimension χ = 4000.
Again the relative behaviors of the various quantities do not match what we observed for the
larger cylinders, and also the chirality at zero flux likely goes to zero with increasing bond
dimension (as shown in Figure 5.10(a)), so it is unclear whether the region with nonzero
chirality corresponds to a chiral spin liquid.

Note that as with YC6 and YC5, there is some nonadiabaticity in the flux insertion, in
this case at U/t = 11.8 and 12. The state at near zero flux is metastable, about 1% higher
in energy than the state near 4π flux.
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