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Abstract

Enhancing Power System Resilience through Computational Optimization

by

Georgios Patsakis

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Shmuel Oren, Chair

In this dissertation we develop models, solution techniques, and derive policy implications for a

number of important applications in improving power system resilience and flexibility: black start

allocation and power system restoration, optimal islanding, stochastic unit commitment and flexi-

ble wind dispatch. The models we employ are predominantly mixed integer programs (MIPs), i.e.

optimization problems in which some of the variables must take integer values. These problems

are NP-hard in general, so there is no guarantee that we will be able to obtain solutions within

acceptable time and accuracy as the scale of the problem increases. For that reason, we also de-

velop or utilize specialized computational techniques, which broadly fall into one of the following

categories: decomposition algorithms that exploit the problem structure (sparsity), reformulations

of the problem constraints, and customized heuristics.

We start by exploring the problem of restoring the normal operation of the power system after a

blackout. The restoration of the system builds around specific units with the ability to start au-

tonomously (black start units). We formulate a planning problem for deciding the allocation of

these units on the grid - black start allocation (BSA) - in an optimal way, while simultaneously op-

timizing over the possible restoration plans. We include, among others, considerations for thermal

limits of lines, alleviating overvoltages, and constraints to model the startup curves of generators.

Due to the size and complexity of the resulting MIP, commercial solvers are unable to tackle it

directly. We construct a randomized heuristic based on linear programming relaxations of the op-

timization problem and an understanding of the underlying physics of the power grid to aid the

solvers. The heuristic execution is parallelized and implemented on a high-performance comput-

ing environment. We are able to obtain solutions with optimality guarantees within reasonable

times for test power systems with a few hundred buses.

We proceed to extract a substructure of the feasible region from any problem in power systems that

employs reconfiguration of the physical topology (i.e. switching on/off of generators, branches,

and buses): each energized island in the power system needs to contain at least one energized gen-

erator. We explore reformulations that describe the feasible region corresponding to this require-
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ment. We employ two families of valid inequalities to strengthen the formulation, both exponential

in size, but separable in polynomial time. We study polyhedral properties of the integer hull and

the strength of some of these inequalities under simplifying assumptions. We proceed to conduct

computational experiments for two problems in which the substructure appears: the optimal is-

landing problem and a simplified version of the BSA problem. We are able to observe significant

computational benefits by using suitable reformulations for both problems. Finally, we describe

an approach to obtain solutions with an optimality guarantee for a simplified model of BSA in a

synthetic test case with 2000 nodes representative of Texas.

We extend the modeling framework of the BSA problem to accommodate for uncertainty in the

power outages. Specifically, we consider optimal allocations of the black start units over a number

of scenarios of partial or total outages. These scenarios may also include irreparable damage

caused to components of the system. The resulting stochastic mixed integer program exhibits

sparsity, so we employ a decomposition algorithm by scenario to solve instances of the problem.

We then return to the optimal islanding problem to examine it in more detail. We observe that,

despite the formulation improvements, the branch and cut algorithm is still fairly slow for an

online application of that scale, which requires to act within seconds to prevent a cascaded outage

of the system. For that reason, we propose a heuristic based on a reformulation of the optimization

into a problem in graph theory. We utilize an algorithm to obtain heuristic solutions with high

computational efficiency and good quality compared to state-of-the-art techniques.

To conclude this dissertation, we introduce a framework for evaluating the cost of priority dispatch

for wind power. Renewable generation is commonly considered a must-take resource in power

systems, despite the technical capabilities of current wind turbines to dispatch at levels lower than

their available output. The cost of that policy compared to one that instead optimizes over the

available wind output is evaluated for a reduced California system, by employing a two-stage

stochastic program for stochastic unit commitment. A scenario decomposition algorithm for the

resulting large-scale MIP, parallelized on a high-performance computing environment, enables us

to obtain near optimal solutions and calculate the difference in cost between the two policies.
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Chapter 1

Introduction

1.1 Abstract

In this dissertation we consider a number of applications in the power systems literature and

practice, related to enhancing the resilience or flexibility of the system: power system restoration

and black start allocation, optimal islanding, stochastic unit commitment. Our goal is to develop

tools to make operational or planning decisions, and in order to do so we need to utilize a number

of techniques to solve instances of these problems. In this introduction, we first briefly define

resilience, reliability, and flexibility in the context of power systems. We motivate each application,

its importance, and the modeling choices made, at the chapter we first introduce it. However, the

techniques we employ for all the applications fall into the same few general categories: customized

heuristics, reformulations, decomposition algorithms. We motivate the use of such techniques in

the introduction. The introduction is by no means a complete treatment of computational and

theoretical considerations regarding combinatorial optimization or mixed integer programming

techniques - we merely present some results that will become useful in the chapters that follow.

We conclude this chapter by giving a general outline of the dissertation. The target audience of the

presentation has a background in power systems and basic optimization knowledge at a graduate

level.



CHAPTER 1. INTRODUCTION 2

1.2 Power System Resilience, Reliability, and Flexibility

Electricity supply is such a ubiquitous commodity, that the full extent of the consequences from

a sustained electricity outage are often not fully comprehensible. These vary from the interruption

of house and public lighting, refrigeration and the internet, to the shutdown of banking and ATM

systems, the water supply, raw sewage processing, cell phone communications, and farming opera-

tions. All of the above occurred during the Northeast blackout of August 2003 [95], which affected

tens of millions of people for weeks. Such concerns are amplified due to a rapid transformation

in the power grid: The generation mixture moves away from the traditional paradigm due to the

introduction of renewables, distributed generation, electric vehicles, micro-grids, and storage. The

power system infrastructure, built to a large extent about half a century ago, is aging. The climate is

changing and extreme events (wildfires, hurricanes) are becoming more frequent. Cyber-security

threats are becoming an important concern for a power system that relies increasingly more on the

information infrastructure and automation. All of these factors have led to a widespread interest

for enhancing power system resilience.

Resilience refers to the ability of the system to withstand and reduce the magnitude or duration

of disruptive events, such as natural disasters [116, 141]. A typical example, also considered in

this thesis, is the ability of the system to restart after an extended blackout (black start). Another

example we will consider is intentional islanding, where in order to prevent a widespread system

outage after a large disturbance, the operator switches off lines in the system to create smaller

islands that can be easily controlled.

A related term to resilience is power system reliability [52], which refers to the ability of

the grid to provide uninterrupted power to the customers. One difference between resilience and

reliability in the rarity and intensity of the events considered as interruptions. For example, local

outages that get resolved within minutes, or faults in a few lines that may lead to small scale

power interruptions, lie within the realm of reliability - in fact such events are pretty common and

operators deal with them on a daily basis. On the contrary, an earthquake or hurricane that can take

out a very large part of the grid is fairly rare, but its consequences are far more serious. Such an

event will not be part of a reliability study, but falls within the realm of resilience.

In this dissertation, we will briefly address reliability concerns when we talk about stochas-

tic unit commitment. In that problem, the operator seeks for a generation dispatch a day before

operation, and considers to that end a number of possible scenarios for the day ahead. Scenarios

include renewable energy outcomes, but also possible system faults (such as faults in a few lines

or generators). Because of that, the resulting generation dispatch will be able to satisfy the load

(or at least will incur small load shed) even if a few lines or generators suffer failures (at least in

the case this scenario was included in the optimization). Examples of essential reliability services

include voltage support, operating reserves, frequency services, and reactive power support.

One more difference between resilience and reliability is that the former usually has an integral

time component to it, which is also reflected in the metrics used to measure resilience. To be more

precise, we are interested in how the system performs over time before, during, and after the large

scale disturbance. For example, in the case of restoration, we will be interested in the proportion

of the system restored over time, or in the loss of load over time.



CHAPTER 1. INTRODUCTION 3

Yet another concern for the power system is its flexibility [117]. Flexibility is a term mostly

used for the measures taken to ensure that, as the generation mix moves away from traditional

generation sources to new ones (distributed generation, renewables, microgrids, storage, electric

cars), the grid will still be able to adapt and satisfy the demand economically and reliably. Flexibil-

ity concerns include how the power system can adapt over different time scales, such as ensuring

voltage stability and frequency response in the short term, or facing a potential long term rise in

gas prices. One example of a paradigm change that can lead to increased grid flexibility, and is

considered in this dissertation, is the utilization of the advanced controls of current wind turbines

to improve the economic operation of the system. Specifically, instead of fully injecting all avail-

able wind generation to the system through priority dispatch as is the case in Europe, optimizing

the output of the wind turbines over the available range can lead to increased economic efficiency.

Optimization models have a central role in evaluating and implementing operational changes

in the grid. Many power systems applications that involve in particular enhancing the resilience,

reliability, and flexibility of the system are modeled using mixed integer programming. These ap-

plications often need to describe discontinuous phenomena, such as changes in the state of different

components. The use of binary variables is a convenient modeling tool for that purpose. Since this

dissertation heavily uses such models, the next three sections are devoted to briefly summarizing

the most important concepts necessary to understand part of the main text of the dissertation.

1.3 Mixed Integer Linear Programming

One common point between all of the applications we consider in this thesis is that they can

be formulated as large scale mixed integer linear programs (MILPs). More specifically, we only

consider optimization problems with rational coefficients that require that some of the variables

are restricted to be binary (i.e. belong to the set B = {0, 1}). A general form for these types of

problems is:
minimize

x,y
cTxx+ cTy y

subject to Ax+By ≥ b

x ∈ Bn

y ∈ Rp

(1.1)

where A ∈ Qm×n, B ∈ Qm×p, cx ∈ Qn, cy ∈ Qp, b ∈ Qm, and at least one variable is restricted

be binary (n ≥ 1). For the case where n = 0, optimization (1.1) corresponds to a linear program

(minimizing a linear objective over a polyhedron) and can be solved efficiently both in theory and

in practice. On the other hand, MILPs are NP-hard in general, so it is not (yet) known if an efficient

(polynomial in the input size) algorithm exists to solve them. There are, however, algorithms that,

under mild technical conditions, are guaranteed to yield an optimal solution of the optimization

problem if one exists, in finite time. Such algorithms are: branch and bound, the cutting plane

algorithm, and a combination of the two, branch and cut, which is the state of the art in solving

MILPs in any commercial software. These algorithms, as well as all of the concepts discussed in

sections 1.3 and 1.4, are described in any textbook on integer programming [33, 151].
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Branch and cut proceeds by updating lower bounds (LB) and upper bounds (UB) for the prob-

lem objective (i.e. values that are guaranteed to be lower and higher respectively than the optimal

objective). Termination typically comes when the bounds come sufficiently close to each other,

according to a desired accuracy. This accuracy is commonly calculated for a minimization prob-

lem as UB−LB
|UB|

, a quantity referred to as the optimality gap guarantee. The algorithm relies on the

fact that solving linear programs can be done reliably and efficiently. We especially care about the

linear program (LP) that arises from relaxing the integrality requirement. Specifically, define the

region:

S = {(x,y) ∈ [0, 1]n × Rp : Ax+By ≥ b} (1.2)

Using this notation, optimization (1.1) is expressed:

zMIP = minimize
x,y

cTxx+ cTy y

subject to (x,y) ∈ S

x ∈ Zn

(1.3)

We refer to S as a formulation for (1.3). We define the LP relaxation of (1.3) corresponding to

formulation S to be:
zLP(S) = minimize

x,y
cTxx+ cTy y

subject to (x,y) ∈ S
(1.4)

Solving the LP relaxation provides a lower bound (zLP(S) ≤ zMIP) to (1.3) (since we relaxed the

integrality constraints) and is one of the first steps in branch and cut. The algorithm, after possibly

introducing additional inequalities, proceeds to “branch” by creating two or more subproblems and

solving the LP relaxations of each. Based on this process, the lower bound is updated.

1.4 Reformulations and Valid Inequalities

Now consider a set S̃ = {(x,y) ∈ [0, 1]n × Rp : Ãx + B̃y ≥ b̃} for some rational matrices

Ã, B̃, b̃ such that S̃ ⊂ S (i.e. the set S̃ is a subset of S) and the restriction of the set to only

integer values of x yields the same region H , i.e H = {(x,y) ∈ S̃ : x ∈ Zn} = {(x,y) ∈
S : x ∈ Zn}. We refer to S̃ as a stronger formulation for H than S. It also holds from (1.4)

that zLP(S̃) ≥ zLP(S), which means that a stronger formulation yields at least as good a bound

for problem (1.3). Since continuous relaxations are solved at every step of the algorithm and

the quality of lower bounds plays a significant role to the termination of the algorithm, a strong

formulation is likely to lead to a smaller search space. On the other hand, it is often the case

that strong formulations require the solution of larger LP problems (more variables or constraints),

which may adversely influence the execution time of the algorithm - the trade-off is usually decided

based on computational experiments for every instance.

Among all strong formulations, the convex hull conv(H) of the feasible region H , which con-

sists of all convex combinations of points in H , is the strongest (it is a subset of all convex formu-

lations). It can be shown that conv(H) is also a (rational) polyhedron (Meyer 1974). The notion
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of the convex hull is important because solving a linear program over conv(H) turns out to yield

the same optimal value as the (non-convex) optimization over H .

The problem is that in most cases it is hard or impractical to find a description for conv(H).
Even if we are able to find a description, it will likely contain a very large number of constraints. In

fact, if our original optimization problem is NP-hard, the linear constraints necessary to describe

the convex hull are at least exponential in the input size, unless P = NP . On the other hand, if

we are able to describe the convex hull using linear constraints of size pollynomially bounded by

the input size, the optimization over H can be solved in polynomial time. A statement even more

general than that holds true: if we can solve the separation problem for conv(H) in polynomial

time, then the optimization over H can be solved in polynomial time (by an argument that uses

the ellipsoid method) [151]. The separation problem is the following: given a point, either verify

that it belongs to conv(H) or provide a linear inequality that separates it from conv(H), i.e. an

inequality that is satisfied by all points in conv(H) but is violated by the given point.

A linear inequality αTu ≥ β that is satisfied by all points u ∈ H (hence also by all points

in conv(H)) is called valid for H . These inequalities are important since they often help obtain a

stronger formulation for H . A set F is called a face of conv(H) if there exists a valid inequality

αTu ≥ β for conv(H) such that F = {u ∈ conv(H) : αTu = β}. That is, the valid inequality

is satisfied with equality at F . In some sense, the size of F gives an indication of how close the

inequality is to the the set conv(H) - a large set F indicates that the inequality is tightly close to

the convex hull.

To express the last statement in mathematical terms, we first need the notion of the dimension of

a polyhedron P (the relevant polyhedron in our case is conv(H)). The dimension of P , dim(P ), is

given by the largest k such that we can find k+1 affinely independent points in P . If the dimension

of the variable space is equal to the dimension of P , P is called full dimensional. A face of P is

also a polyhedron. A face F is called a facet if dim(F ) = dim(P ) − 1. The corresponding valid

inequality is called facet-defining. In some sense, a facet-defining inequality is the strongest valid

inequality we can devise.

A more general and careful treatment of strong formulations and the theory of valid inequalities

can be found in [144] and [33], as well as most textbooks on integer programming.

1.5 Heuristics

The solver obtains lower bounds of the minimization problem (1.3) by solving suitable LP

relaxations, as we mentioned. The upper bounds of the algorithm, on the other hand, correspond

to integer feasible points for the full problem (points in H) and come from two main sources:

either the LP relaxation of a node solve turns out to be integer feasible, or a heuristic algorithm

is used to obtain a feasible point. The solver maintains the best upper bound found so far and the

corresponding point (incumbent). Good upper bounds in combination with strong formulations

help with pruning: if a node relaxation yields an optimal objective that is worse than the incumbent

objective, we need not explore this node any further.
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Solvers use numerous types of heuristics to obtain good solutions. Simple rounding heuristics

try to obtain feasible points by rounding the variable values of an LP relaxation solution at a node.

Diving heuristics combine fixing some variables to global entries and reoptimizing. Local search

heuristics do a search around feasible or infeasible points (usually by changing the values for a

subset of variables) to obtain feasible points with possibly better objective.

It is generally not known in advance how effective particular heuristics will be in obtaining

good feasible points. Therefore, it is often the case that the default heuristic strategies of commer-

cial solvers will not be effective for certain problem classes or instances. That is why, in some

cases, knowing the structure of a problem can help construct specialized heuristics that will be ef-

fective to get good feasible points for the particular application. MIP solvers allow user heuristics

or user initialization points to be incorporated in the branch and cut algorithm to accommodate for

such cases.

Heuristics of course do not have to be tied to a branch and bound framework. Any algorithm

that can potentially obtain feasible points to the optimization is a heuristic. Effective heuristics

have small execution times and usually use the structure of the problem to obtain feasible points

with a good objective. However, there is typically no guarantee for the performance of a heuristic

- it is unknown how close the obtained objective is to the optimal one.

1.6 Decomposition Algorithms

Large-scale optimization problems derived from applications can often prove hard to solve

directly. For example, in the case of MILPs, a large number of variables may lead to slow LP

solves, or the poor quality of lower and upper bounds may lead to a large branch and bound

tree. Often, however, the problem exhibits structure (which is commonly caused by a specific

sparsity pattern of the constraint matrix) that can be exploited to give rise to a decomposition

algorithm. The purpose of a decomposition algorithm in general is to solve smaller optimization

problems that iteratively approximate the solution of the original optimization problem, usually

by providing lower and/or upper bounds for the original optimization problem. These smaller

problems usually come from omitting part of the variables or constraints of the problem (often

after first reformulating the problem) and using a modified objective.

There are multiple decomposition techniques used in the literature, often directed towards spe-

cific applications. The most commonly used are variations of Lagrangian relaxation, Dantzig-

Wolfe decomposition, and Benders decomposition [151]. It should be noted that most decomposi-

tion algorithms are not solution techniques solely for MIPs, but rather general techniques that may

take a specific form for MIP applications. In this dissertation, we will mainly use decomposition

techniques for stochastic programs. We introduce the relevant general framework below.

Stochastic Programming

Stochastic programming is a framework for optimization problems that involve uncertainty.

While there are many modeling approaches, in this work we only deal with problems that have



CHAPTER 1. INTRODUCTION 7

the following format. We assume we are given a finite set of scenarios S, with a corresponding

probability πs for the realization of scenario s ∈ S. We wish to make a decision x ∈ X , which will

lead to a bounded cost fs(x) if scenario s is realized. Note that the cost fs(x) may come from the

solution of a subsequent optimization problem, to which x and the scenario s are inputs. We want

to make a decision x that minimizes the expected cost over the scenarios. This can be formulated

as the following optimization problem:

minimize
x

∑

s∈S

πsfs(x)

subject to x ∈ X

(1.5)

Solving this optimization might be computationally intractable due to the number of scenarios. We

can equivalently reformulate the problem as follows, by adding variables xs:

minimize
xs,x

∑

s∈S

πsfs(xs)

subject to πsxs = πsx, s ∈ S

xs ∈ X, s ∈ S

(1.6)

We refer to the constraints πsxs = πsx as the non-anticipativaty constraints. By relaxing them, we

obtain a lower bound to the original optimization [16] for any value of the Lagrangian multiplier

w = {ws}s∈S:

g(w) = minimize
xs,x

∑

s∈S

πs

(

fs(xs) +wT
s xs

)

−
∑

s∈S

πsw
T
s x

subject to xs ∈ X, s ∈ S

(1.7)

We can decompose this optimization problem by scenario. The best possible bound comes from

maximizing over possible values of w:

maximize
w

g(w) = maximize
ws

∑

s∈S

πsgs(ws)

subject to
∑

s∈S

πsws = 0
(1.8)

where we define for every scenario s ∈ S:

gs(ws) = minimize
xs

fs(xs) +wT
s xs

subject to xs ∈ X
(1.9)

Note that the constraint
∑

s∈S πsws = 0 is explicitly imposed to ensure that the objective of the

minimization problem remains bounded (since x is unconstrained). For any feasible w, we obtain

a lower bound to our original problem (1.5) by solving |S| independent optimization problems.
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In order to improve the bound, a projected subgradient optimization algorithm can be used for

maximizing g (since it is convex but not necessarily differentiable).

We can also obtain upper bounds to (1.5) by evaluating its objective for the feasible points

xs possibly found when solving (1.9) for the different scenarios. Without further assumptions on

the structure of fs, there is no guarantee that the lower bounds and upper bounds obtained will

come sufficiently close. For certain applications where exact optimization is not necessary and the

quality of the bounds obtained is satisfactory, this might not be an issue. In chapter 6 of this thesis,

we will use for our computations a modified algorithm based on these ideas, but with a theoretical

guarantee for convergence to the optimum.

1.7 Organization of this Dissertation

This section gives an brief summary of the chapters that follow. An effort has been made so

that each chapter is self contained and can be read independently. As a result, there will be some

overlap between the chapters.

The remainder of this dissertation is organized as follows:

• Chapter 2. Large scale outages (blackouts) of the power system can be caused by equipment

failures, natural disasters, human errors, or malicious attacks. These events are rare, but

they can result in loss of human life, as well as economic losses of billions of dollars. An

important consideration in the recovery process from these events is that not all generators

of the power system can restart without already being connected to an energized grid - in

fact the operator relies on a few units (black start units) to restart the system. These units can

start autonomously and the restoration process builds around them. However, the technical

upgrades, maintenance, and testing associated with allocating these units, as well as the

fact that their use as black start units will be infrequent, impose budget constraints on the

allocation of these units across the grid. In chapter 2, we develop a model for the allocation

of black start units, subject to such a budget constraint.

Our optimization model captures successive snapshots of the restoration state of the power

system for time steps within a finite time horizon, with consideration for a number of con-

straints: generator startup curves, active power balance, reactive power balance and overvolt-

ages, and line flows. Binary variables are associated with the restoration of each component

in the system (buses, branches, generators), for a fixed time horizon. Commercial solvers

had difficulty finding feasible solutions to the optimization for the instances considered, so

we used the underlying physics of the problem to develop a randomized heuristic based on

relaxations of the problem. Specifically, we energize the system in steps, checking reac-

tive power compensation to energize transmission lines and prevent overvoltages, and active

power compensation to energize new generators. Multiple instances of the heuristic are ex-

ecuted in parallel on a high performance computing environment. While the heuristic can

be used independently to find restoration sequences, we instead feed these feasible solutions

as initialization to the branch and cut algorithm. A commercial solver is then used to obtain
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restoration sequences better than (or at least as good as) the initialization. Finally, since we

used simplified models of ac power flow in the optimization models, a verification step must

also be performed in the end to ensure that the solutions we found correspond to feasible

operational points. These ideas were used to obtain solutions for test systems with a few

hundred buses. The work presented in this chapter has been published in [115].

• Chapter 3. Equivalent reformulations of the constraints of a MIP often lead to a very dif-

ferent computational performance. Motivated by this observation, we identify a substruc-

ture that arises in two power systems applications: the optimal islanding problem and the

black start allocation problem. These problems have the common characteristic that nodes,

branches, and potentially generators can be on or off, giving rise to a number of possible

reconfigurations of the power grid. Regardless of the power system configuration, each en-

ergized island needs to have at least one energized generator, a requirement which we refer to

as the Island Energization (IE) constraint. In chapter 3, we explore different reformulations

of this constraint and how they impact the computations for our two applications.

Specifically, we define the feasible region that satisfies the IE constraints and write two fam-

ilies of valid inequalities for that region. These families are exponential in size, but both can

be separated in polynomial time. Under simplifying assumptions, we can show that some

of the inequalities we introduced define facets of the convex hull of the feasible region. We

then study the computational performance of the formulations. We first extract a formulation

of the optimal islanding problem from recent literature in power systems. Our best perform-

ing reformulation solves the problem at least one order of magnitude faster than the original

formulation for large instances of the problem. We then examine a simplified version of the

black start allocation problem. Again, we obtain a significant difference between our best

performing reformulation and the one most commonly used in the power systems literature.

Finally, we present a model and a solution approach to obtain a black start allocation for an

industrial size system of a few thousand buses. Part of the computational aspects of these

results have been published in [114]. The reformulations of the IE constraints are also used

within a general framework to solve a power system restoration problem (where the black

start units are known and fixed in advance and the goal is to restore the system to normal op-

eration) described in [9], which utilizes a more detailed modeling of the nonlinear ac power

flows described in [8].

• Chapter 4. In this chapter we extend our modeling approach for the black start allocation

problem to accommodate for stochasticity. Specifically, the black start units are chosen in a

way that optimizes their performance over a number of possible scenarios. These scenarios

include outages (partial or total blackouts) of the power system, as well as unavailability of

components (branches, buses) after the outage. We observe that, since the characteristics

of the generators (startup curves, capacities, and location) do not change across scenarios,

a unit that is a good black start candidate for one scenario will likely be a good candidate

for different scenarios. Based on this observation, we suggest the use of a decomposition

algorithm from the literature that is expected to perform well for such a setup. As a proof



CHAPTER 1. INTRODUCTION 10

of concept, we provide simulations on a small scale system. The results of this chapter have

been published in [109].

• Chapter 5. In this chapter, we dive slightly more into the details of the intentional controlled

islanding problem. We already introduced the problem in chapter 3, but there are two main

concerns with our treatment there: First, the MIP model presented assumed that the set of

coherent generators (which was an input to the optimization problem) is known. Second,

even with the improved formulation, the computational times obtained were not satisfactory

for a real time algorithm that needs to act within seconds to prevent a cascaded outage. In

this chapter, we focus on presenting a heuristic to both obtain coherent generator sets and

a line switching action, within acceptable times. In order to develop such an algorithm,

we briefly present the small signal system analysis of the power system, through which

generator coherency is evaluated. We transform the islanding problem into a normalized cut

problem. Then, we use an algorithm from the literature to obtain a heuristic solution. The

resulting approach exhibits high computational efficiency and allows for a natural integration

of further islanding requirements. The results of this chapter have been published in [112].

• Chapter 6. This chapter is devoted to a computational study with policy implications. Re-

newable energy, such as wind generation, is commonly treated as a must-take resource in

power systems (i.e. it is prioritized over other types of generation). This seems reasonable,

since wind generation comes at (almost) zero marginal cost. Furthermore, traditional wind

generation had limited controlability of its output. However, most current technologies for

wind generation offer the ability to control the output at practically any level below the max-

imum available wind generation. We want to evaluate the (expected) benefit from exploiting

this capability for the power system, as the wind integration levels increase.

In order to motivate this work, we first construct a number of small example power systems

that illustrate scenarios in which spilling wind generation leads to a lower cost operation of

the system, even though wind generation itself has zero cost. The causes of this behavior

in our toy examples are technical minima, startup costs, ramping constraints, or congestion.

We further proceed to evaluate the difference in cost between the two policies (must-take and

flexible wind generation) in a stochastic unit commitment setup for a simplified California

model. For the solution of the resulting large scale mixed integer program, we use a decom-

position algorithm based on projected subgradient descent and global cuts, parallelized in a

high performance computing environment. In the case of high wind integration, we observe

a significant cost benefit, since the additional flexibility offered by wind generation allows

more extended use of inflexible, cheap sources of energy. The results of this work have been

published in [113].

• Chapter 7. The last chapter of the dissertation is devoted to extensions and future directions

of research. Some of the work in this dissertation, and especially the models and optimiza-

tion related to black start allocation, are still at a relatively early stage in the literature. That

means there are a number of possible ways that these models can be extended or modified,
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and understanding their structure still requires a significant research effort. Other parts of the

work, such as the flexible wind dispatch study of chapter 6, were based on well established

models and solution techniques, but relaxing the model assumptions in different ways could

provide further opportunities for research.
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Chapter 2

Optimal Black Start Allocation for Power

System Restoration

2.1 Abstract

Equipment failures, operator errors, natural disasters and cyber-attacks can and have caused

extended blackouts of the electric grid. Even though such events are rare, preparedness for them is

critical because extended power outages endanger human lives, compromise national security, or

result in economic losses of billions of dollars. Since most of the generating units cannot restart

without connecting to an energized grid, the system operator relies on a few units with the ability

to start autonomously, called Black Start (BS) units, to restore the power system. Allocating and

maintaining these units is costly and can severely impact the restoration security and time. We

formulate an optimization problem to optimally allocate BS units in the grid, while simultaneously

optimizing over the restoration sequence.

In this chapter, we first present the main considerations behind black start allocation (BSA)

and power system restoration modeling and optimization. We then extend existing optimal BSA

models by including grid considerations such as active power nodal balance, transmission switch-

ing, nodal reactive power support and voltage limits. In order to aid the branch and bound tree that

solves the resulting large scale Mixed Integer Program (MIP), we propose a randomized heuristic

that is executed multiple times in parallel on a high-performance computing environment to find

feasible solutions. We proceed to solve the IEEE-39, the IEEE-118 and a simplified WECC system

with 225 nodes and 136 generators to near optimality.
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Nomenclature

Sets

N Set of buses.

E Set of branches (ordered pairs of buses).

G Set of generators.

G(i) Set of generators connected to bus i ∈ N .

T Set of consecutive integer time instances, starting from 1 ∈ T .

Variables

δti Voltage phase of bus i ∈ N at time t ∈ T .

f t
ij Network flow for energizing paths for branch (ij) ∈ E at time t ∈ T .

f t
g Network flow for energizing paths from generator g ∈ G at time t ∈ T .

ptSHi
Active power load shed at bus i ∈ N and time t ∈ T .

ptg Active power generation of generator g ∈ G at time t ∈ T .

ptij , q
t
ij Active/reactive power flow of branch (ij) ∈ E at time t ∈ T .

uBSg
Binary variable indicating generator g ∈ G is a BS generator.

ut
g, u

t
i, u

t
ij Binary variable indicating generator g ∈ G, bus i ∈ N , branch (ij) ∈ E energized at time

t ∈ T (zero indicates not energized).

vti Voltage magnitude of bus i ∈ N at time t ∈ T .

Parameters

δ, δ Lower/upper bounds for voltage phases.

ǫ Trade-off coefficient for line energization.

µ Trade-off coefficient for inertia.

B Total budget for BS generator installations.

BSHij
Shunt susceptance of branch (ij) ∈ E.

bij , gij Susceptance/conductance for branch (ij) ∈ E.
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CBSg
Cost of turning g ∈ G to a BS generator.

Ci Cost of load shed in bus i ∈ N .

cos(φDi
) Power factor of load at bus i ∈ N .

Jg Inertia of generator g ∈ G.

KRg
Ramping rate of generator g ∈ G.

PCRg
Cranking power required to be provided to generator g ∈ G to initiate its start-up.

P g, P g Minimum and maximum active power generation from generator g ∈ G after the decompo-

sition.

Pmin
g , Pmax

g Minimum and maximum active power generation from generator g ∈ G before the decom-

position.

PDi
Available load at bus i ∈ N .

p0g Initial active power of generator g ∈ G.

Q
g

Minimum reactive power generation from generator g ∈ G.

QSHi
Shunt reactor for bus i ∈ N .

Sij Maximum flow limit for branch (ij) ∈ E.

TCRg
Time between generator g ∈ G being energized until it can increase its active power from

zero.

T
CRITg

Maximum critical time for generator g ∈ G.

u0
g, u

0
i , u

0
ij Binary parameter indicating the initial state of generator g ∈ G, bus i ∈ N , branch (ij) ∈ E.

V , V Lower/upper bounds for voltage magnitude.

2.2 Introduction

On August 24, 2003 a fault of a high-voltage power line in Ohio initiated an extended blackout

that affected 50 million people for up to two days. The blackout contributed to at least 11 deaths and

its cost was estimated at $6 billion [95]. On September 8, 2011 an operator error caused an outage

in California and Arizona that deprived 2.7 million people of electricity for up to 12 hours [107].

Natural phenomena, like earthquakes and wind storms, are also usual causes of extended outages;

just in 2017 there have been multiple incidents nationwide (3.8 million customers without power

due to Hurricane Irma in Florida in September, 800, 000 customers due to a wind storm in Michigan
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in March, 500, 000 homes in California in March). Recently, cyber attacks on the grid have been

added to the concerns for a blackout, after hackers caused 225, 000 customers to lose power on

December 23, 2015, in Ukraine. The North American Electric Reliability Corporation (NERC)

and the Electricity Information Sharing and Analysis Center (E-ISAC) have worked to analyze

the attack [85] and a lot of research is currently focused on the cyber-security of the power grid.

However, in the event where counter measures fail, we need to restore the grid as fast as possible;

especially since a hostile attack will try to take advantage of the moments after an outage where

security is compromised.

The process of restoring the system back to normal operation involves crucial steps and con-

siderations [54, 89]. Most of the generating units of the grid do not have the ability to restart by

themselves, i.e. unless there is already an existing energized grid to connect to. For that reason,

the system operators rely on a few units, called Black Start (BS) units, that can start independently.

Clearly, the location and technical specifications of these units will directly affect the restoration

time and security of the power grid. However, engaging a new generator as a BS unit is costly (in

the order of millions of dollars) and is also associated with regular maintenance and testing costs

(in the order of hundreds thousands of dollars) [73]. The Electric Reliability Council of Texas

(ERCOT) has a biennial BS procurement process that typically procures 14-18 units [128]. The

California Independent System Operator (CAISO) recently (May 2017) [18] identified a need for

immediately procuring additional BS resources. So far there is no concrete optimization problem

utilized to aid the process. The optimal allocation of BS units in the grid is the primary purpose of

this chapter.

The main considerations checked by the operators during the restoration process are: restoring

critical loads as fast as possible, building paths to energize the non BS units, while maintaining

frequency stability and avoiding voltage violations. The power system restoration optimization

problem, that incorporates the aforementioned concerns to generate valid restoration sequences,

has received some attention recently. In [71, 90], the authors propose a step-wise strategy based

on achieving specific milestones in the restoration process. In [134] an optimization problem that

includes the generator active power capabilities is considered. However, the grid power flows are

neglected and reactive power compensation, which constitutes a major concern for restoration, is

not included. In [74] an aggregate reactive power constraint is utilized, but the grid flows are not.

These considerations are addressed afterwards through heuristic modifications of the resulting se-

quence, however the changes undermine the optimality of the final solution. A different modeling

approach that includes reactive power considerations is adopted in [22], aiming to motivate the use

of microgrids for the BS procedure, which is applied at a 6-bus system. A mixed integer non linear

program is formulated in [27] and is heuristically solved using Ant Colony Optimization. Instead

of the complete restoration, the sectionalization problem is solved in [146] using binary decision

diagrams. An effort to integrate wind power in restoration is made in [61]. Literature reviews of

relevant approaches are provided in [23, 157].

Even though the optimization of the restoration sequence is an interesting problem by itself,

the need for restoration is a rare event in which the operators expect to base the restoration steps

on their experience rather than software output not tested against actual restoration events. How-

ever, the allocation and contracting of BS units is a process that usually happens yearly for every
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operator, so the decisions associated with preparedness for the rare extended outages constitute an

important problem that needs to be solved on a regular basis, even if the actual outage rarely occurs.

General guidelines and methodologies for selecting BS units exist both in literature [75, 125, 133]

and in restoration manuals [118]. There is limited research, however, on formulating an opti-

mization problem to address the allocation. Recently, in [122], a minimum cost BS procurement

problem was formulated, without considering the restoration sequence. In [121] the allocation

optimization problem is enhanced by considering active power considerations of the restoration

sequence, but not thermal line limits or reactive power compensation.

In this chapter, we formulate and solve the black start allocation (BSA) problem, while also

introducing innovations to the modeling of the restoration sequence formulation. The main contri-

butions of this work are the following:

1. We introduce a new modeling approach utilizing one energization binary variable for every

time step and one BSA binary variable to capture the widely used capability curves for BS

and non BS generating units by decomposing them into two parts, which allows us to formu-

late the allocation problem in combination with the corresponding power system restoration

problem.

2. We solve a BSA problem with a more detailed modeling of the restoration process than ex-

isting BSA literature, which is achieved by including constraints on the thermal limits of

lines for the steps of the restoration sequence (by employing an approximation for the active

and reactive power flows), constraints to alleviate overvoltage (through manipulation of ac-

tive power flows, reactive power compensation or de-energization of transmission lines), and

constraints that ensure the consistency of the grid at every step (allowing de-energization of

transmission lines to alleviate overvoltages).

3. Due to the size and structure of the resulting optimization problem, commercial solvers

encounter difficulties in identifying feasible solutions to it. For that purpose, we propose

a randomized heuristic that is guided by linear programming (LP) relaxations to generate

feasible solutions to the optimization problem and aid the solvers.

The energization sequences generated by the optimization problem are checked for ac feasibil-

ity in the final step, as in [31, 74]. However, since most of the considerations have already been

integrated in the optimization, the changes necessary to achieve ac feasibility are minimal.

The rest of the chapter is organized as follows. In section 2.3, the main concerns of the Power

System Restoration Process are mentioned. In section 2.4, the proposed model constraints and ob-

jective are outlined. In section 2.5 the proposed heuristic is outlined, and in section 2.6 simulation

results for three test cases, the IEEE-39, the IEEE-118, and a simplified WECC system are pre-

sented. Finally, in section 2.7 conclusions are drawn and the topics of the subsequent two chapters

are motivated. The work of this chapter has been published in [115].



CHAPTER 2. OPTIMAL BLACK START ALLOCATION FOR POWER SYSTEM

RESTORATION 17

2.3 Power System Restoration

The restoration planning for most systems consists of constructing a plan that incorporates the

priorities of the operators to ensure a secure system revival. Usually this plan is associated with

the worst-case scenario, i.e. restoration from full blackout. In this section, we go through the basic

considerations of the restoration process. Later, we present an optimization model that integrates

most of these concerns.

System Identification and Preparation

The first step after a major outage is identifying and assessing the stability and safety of the

remaining grid (if any), mitigating equipment and rating issues (voltage and thermal limits for the

stable islands), and identifying equipment availability in order to build a restoration plan. Our abil-

ity to assess the system state can vary with the design of the protection system, SCADA penetration

on both the transmission and distribution systems, and visibility of data, because of the disturbance.

Most breakers of the transmission system are (remotely or manually) opened and the distribution

is disconnected. Usually, the renewables are also disconnected, due to their intermittency.

Setting Priorities

The strategy for system restoration, whether from a BS resource or from a surviving island, is

based on priorities that are dictated by reliability standards and are usually specific to the utility.

For example, NERC Reliability Standard EOP-005-2 has identified restoration of off-site power

to nuclear power plants as a priority of restoration. Providing power for auxiliary loads in order

to energize non BS generating plants, restoration of fast starting units, station service batteries,

control centers, major transmission lines, and restoration of stabilizing loads are all restoration

priorities to technically support voltage and frequency of the grid during restoration. The ultimate

restoration goal is to return the grid to normal operations (e.g. eliminate islands, restore inter-ties

and customer load) quickly without compromising safety and reliably.

Reactive Power and Voltage Limits

Energizing transmission lines when served load is low (common during the restoration process)

yields Ferranti rise considerations. More specifically, the capacitances of high voltage transmis-

sion lines inject reactive power into the system which leads to overvoltages in the endpoints of

the energized transmission system, since loads that could induce an opposing voltage drop are not

served. Reactive power compensation, to prevent limit violations, is achieved through shunt re-

actors or other VAR compensation connected to high voltage transmission lines, or synchronous

generators that can absorb reactive power after being energized. In addition, grid operators en-

gage in a few standard practices throughout the restoration process in order to keep voltages under

check: picking up load with lagging power factor or de-energizing transmission lines.
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Active Power and Frequency Regulation

Active power balance for all the islands is important during restoration to ensure the frequency

remains within tolerances throughout the process. Frequency stability is directly influenced by

the inertia of energized generators. In order to energize more generators, load must be picked up

to ensure the generating units can ramp up (especially when technical minima of units must be

satisfied). Loads with rotating masses, such as induction machines, may also be preferred during

the restoration process for the same reasons.

2.4 Optimization Model

As already mentioned, a BS unit has the ability to start on its own, without being connected

into the grid. After a blackout, the BS units are responsible for partly energizing the grid by

also providing cranking power to the units that do not possess BS capability. We represent the

allocation of BS units using binary decision variables uBSg
, for every generator g ∈ G. The typical

way to achieve that is to install a smaller (often diesel) unit that will provide the cranking power.

Generators that are already BS units can have a preassigned binary value of 1. If a generator

cannot be chosen as a BS unit due to technical considerations, the binary variable is a priori set to

zero. The restoration process is signified through binary variables for the various grid components

(buses, lines and generators). A value of 1 indicates an energized component. In what follows, we

describe the physical constraints and the objective for the BSA problem.

Black Start Allocation Budget Constraint

Costs are assigned for utilizing each one of the generating units as a BS resource. These costs

could be set by the system operator (for example, ISO New England offers specific tariffs based on

the ratings of generators [73]) or could be the bid of a generator after a call from the operator. The

cost reflects not only the dedicated, usually diesel, generating unit used to restart the generator, but

also the costs of testing and preserving the capability. For the purposes of modeling, we assume

that the annual payments for BS services are converted into a one time capital cost:

∑

g∈G

CBSg
uBSg

≤ B (2.1)

Bus Active Power Balance

The bus balancing constraint has the form:

∑

j:(ji)∈E

ptji +
∑

g∈G(i)

(

ptg + PCRg
(uBSg

− ut
g)
)

−
∑

j:(ij)∈E

ptij = PDi
− ptSHi

, ∀i ∈ N, ∀t ∈ T
(2.2)
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Constraint (6.6b) stipulates the active power conservation at bus i ∈ N every time instant t ∈ T . If

a generator is chosen to be BS (uBSg
= 1), then its cranking power is provided for (by an external

source), so it can be immediately energized (ut
g = 1). However, if we want a non BS generator

g to be energized, the constraint introduces a negative term −PCRg
, so the cranking power needs

to be provided for either by a different generator or by flows into the bus. In the initial phases of

the restoration, this constraint will ensure that only the generators that are assigned to be BS can

actually be energized (i.e. have ut
g = 1).

The load is modeled through a shedding variable that is equal to the total load in the case the

bus is not energized:

(1− ut
i)PDi

≤ ptSHi
≤ PDi

, ∀i ∈ N, ∀t ∈ T (2.3)

We note that it is not easy to know the maximum load PDi
of a bus. When load is picked up after an

outage, the demand is often greater than before, a phenomenon known as cold load pickup [126].

However, during restoration load is used as a controlable tool to accommodate voltage limits,

ensure stable operation of the islands, or satisfy the minimum active power requirements of gen-

erators, so its actual maximum value is not central. We are also usually capable to pick it up in

small chunks, so we assume a continuous load shedding variable, that can move between zero and

maximum value; similar to the approach in [31]. The model currently has no constraints for the

rate of load pickup. In the power system restoration literature, the problem of restoring the load is

often solved after the restoration sequence is acquired [57, 120], so that more detailed load pickup

models can be used. Frequency stability issues become important when the actual load pickup

actions are considered [87, 91].

Bus Reactive Power Constraint

Reactive power capacity is important in maintaining the voltages of the power system within

reasonable limits. Since the main concern during the restoration process is the capability of the sys-

tem to absorb the reactive power generated by the high capacitance of the lines, we only consider

a single directional constraint approximating the capability of the system units to absorb reactive

power. The following constraint is introduced at every bus:

∑

j:(ji)∈E

qtji −
∑

j:(ij)∈E

qtij +
∑

g∈G(i)

Q
g
u

max{0,t−TCRg−1}
g

+
∑

j:(ji)∈E

1

2
BSHji

ut
ij +

∑

j:(ij)∈E

1

2
BSHij

ut
ij +QSHiu

t
i

≤ (PDi
− ptSHi

) tan(φDi
), ∀i ∈ N, ∀t ∈ T

(2.4)

A line injects reactive power 1
2
BSHij

V 2ut
ij at each of the buses it connects to, if energized,

where the bus voltage V is assumed close to one for this constraint, to allow for a linear formula-

tion. The reactive power can be absorbed by either generators that have been energized at least

TCRg
+1 time units in advance, or by reactive compensation connected to the bus QSHi

, or by loads



CHAPTER 2. OPTIMAL BLACK START ALLOCATION FOR POWER SYSTEM

RESTORATION 20

with lagging power factor (tan(φDi
) > 0). The load is assumed picked up at a constant power fac-

tor, as in [31] and [22]. While not a precise approximation, the reactive power constraints ensure

that: (i) Every island formed during the restoration process has adequate reactive power absorption

capability. To see why this is true, one can add all of the equations (6.6c) for the nodes of an island

that may arise in the restoration process. The reactive flows that lead outside the island are set to

zero by (2.7). The reactive flows that are within the island cancel each other. What remains is the

constraint that the total (aggregate) reactive power absorption capacity of the island exceeds the

total reactive power injection by the lines. (ii) There is no reactive power sink (i.e. the reactive

power generated by transmission lines must be absorbed by some component of the system). The

equations may allow for fictitious reactive power generation, but this is an inferior concern for

restoration, since the system typically operates under excessive reactive power generation.

Generator Model

A typical generator startup curve is assumed, as in [74,134], see figure 2.1. The curve is decom-

posed into two parts, as shown in 2.1. The binary variable ut
g is associated with the energization

state of generator g ∈ G (i.e. it is 1 for t ≥ tstart). This variable is exogenously defined based on

the availability of active power or BS unit assignment in (6.6b). That requirement corresponds to

figure 2.1c. The modeling of the generator output in figure 2.1b will now be defined based on the

following constraints:

0 ≤ pτg ≤ P gu
t
g, ∀g ∈ G, ∀τ ∈ {t, t+ 1, . . . , t+ TCRg

+ 1},

∀t ∈ T ∪ {0} (2.5a)

ptg − pt−1
g ≤ KRg

, ∀g ∈ G, ∀t ∈ T (2.5b)

pt−1
g − ptg ≤ KRg

, ∀g ∈ G, ∀t ∈ T (2.5c)

Constraint (2.5a) makes sure that the active power can not become positive for at least TCRg
units

of time after the generator is energized, both for BS and for NBS generators. Also, the maximum

active power limit is imposed at all time instances that the generator has positive active power

production. The ramping rate capability is imposed through the constraints (2.5b) and (2.5c).

Next, the following constraint for a generator g ∈ G would ensure that the minimum active power

generation limit P g is satisfied, after the cranking time has passed and the generator has ramped

up to P g.

pτg ≥ P gu
t
g , ∀ τ ≥ (t + TCRg

+ P g/KRg
) , ∀t ∈ T (2.6)

Finally, some non BS generators have critical hot times [134], so in these cases a constraint

for unit g ∈ G can be introduced to ensure that the unit will be energized by that time, imposing

ut
g = 1 , ∀t ≥ T

CRITg
.

Line Switching

In order to model the formation of islands, a constraint that stipulates that active and reactive

flows can only go through lines that are energized needs to be enforced. For that purpose, the ideas
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tst tst + TCRg

tst + T g

Pmin
g

Pmax
g

KRg

Time−PCRg

(a) A disconnected generator g ∈ G (phase I) gets ener-

gized at time tst (i.e. ut
g becomes 1 at t = tst) and needs

to be cranked for a period of TCRg
(phase II). During the

cranking period, the generator absorbs the cranking power

PCRg
. (negative generation). The generator then starts to

ramp up to its technical minimum P g (phase III) at time

tst + T g, where T g = TCRg
+ (PCRg+Pmin

g )/KRg
. Af-

terwards, generation can freely move between Pmin
g and

Pmax
g , within the ramping capability KRg

. This model ap-

pears in other works, such as in [71] and [74]. For the

purposes of this work, we decompose the model as the

superposition of the two curves below.

tst tst + TCRg
tst + T g

P g

P g

ptg

KRg

Time

(b) The first part of the decomposed generator model. The

generation levels in the graph are defined as P g = Pmin
g +

PCRg
and P g = Pmax

g + PCRg
.

Time

−PCRg

tst

(c) The second part of the decomposed generator model.

This is essentially a negative step function to the cranking

power of the generating unit at the time of energization

(ut
g = 1). The allocation of the BS units allows for ut

g

to become 1, even if there is no external power fed to the

unit.

Figure 2.1: Typical generator active power curve and its decomposition into two parts. The parameters vary depending

on the type of generator.
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from transmission switching [66] are utilized, with a modification to accommodate for reactive

power. The same ideas have been utilized in other works on restoration and islanding as well [139].

|ptij|+ |q
t
ij| ≤ ut

ijSij, ∀(ij) ∈ E, ∀t ∈ T (2.7)

Constraint (2.7) is an approximation of the constraint
√

(ptij)
2 + (qtij)

2 ≤ ut
ijSij in the following

way: if the line is not energized, both equations set its active and reactive power flow to zero.

If the line is energized, an apparent power limit is imposed on the line. Due to the inequality
√

(ptij)
2 + (qtij)

2 ≤ |ptij| + |q
t
ij |, constraint (2.7) is tighter than the physical limit (L-1 ball instead

of the L-2 ball with the same radius). The two constraints are in disagreement mainly in the area of

simultaneously large values of both active and reactive flow, a setting that we rarely expect to occur

during the initial steps of restoration (the load is at most 10-20% restored by the end of the time

horizon we are considering). Constraint (2.7) is eventually substituted by four linear constraints to

eliminate the absolute values.

ptij = −bij(δ
t
i − δtj)u

t
ij, ∀(ij) ∈ E, ∀t ∈ T (2.8a)

qtij =
(

−bij(v
t
i − vtj)− gij(δ

t
i − δtj)

)

ut
ij, ∀(ij) ∈ E, ∀t ∈ T (2.8b)

δ ≤ δti ≤ δ, ∀i ∈ N, ∀t ∈ T (2.8c)

V ≤ vti ≤ V , ∀i ∈ N, ∀t ∈ T (2.8d)

Constraints (2.8a) and (2.8b) set the active and reactive power flow of line (ij) ∈ E to zero, if the

line is not energized (ut
ij = 0), and impose a linearized approximation of the active and reactive

power flows otherwise. Both line susceptances and conductances are considered for reactive power,

since eliminating overvoltages during the restoration process is commonly performed not only

through reactive power compensation, but also by picking up load to induce active flows. These

equations are linearized via a big-M reformulation, as in [66], which combined with (2.7), yields

the same feasible region as (2.8a) and (2.8b). For example, constraint (2.8a) yields:

bij(δ
t
i − δtj) + ptij ≤ (1− ut

ij)Mij , ∀(ij) ∈ E, ∀t ∈ T (2.9a)

bij(δ
t
i − δtj) + ptij ≥ (ut

ij − 1)Mij , ∀(ij) ∈ E, ∀t ∈ T (2.9b)

where Mij = |bij |(δ − δ).

Consistency of Energized Grid

A series of constraints need to be imposed to ensure consistency of the grid at any given time

point. More specifically, we need to enforce that all the energized buses of the grid at any time

instant are connected to an energized generator through a path of energized lines. We will later in
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this dissertation refer to this constraint as the island energization constraint.

0 ≤ f t
g ≤ ut

g, ∀g ∈ G, ∀t ∈ T (2.10a)

− ut
ij ≤ f t

ij ≤ ut
ij, ∀(ij) ∈ E, ∀t ∈ T (2.10b)

∑

j:(ji)∈E

f t
ji −

∑

j:(ij)∈E

f t
ij +

∑

g∈G(i)

f t
g =

1

N
ut
i,

∀i ∈ N, ∀t ∈ T (2.10c)

(2.10a), (2.10b) and (2.10c) impose a feasibility problem given fixed values of ut
g, u

t
ij and ut

i for

the flows f t
ij and f t

i . A bus can be energized (ut
i = 1) if there is a feasible flow from one or more

of the generators with ut
g = 1, flowing only through branches with ut

ij = 1, such that a fictitious

load on that bus of 1
N
ut
i can be satisfied. Otherwise, the state of that bus has to be ut

i = 0.

Additional constraints that ensure the consistency of the grid are also necessary. If a generator

connected to a bus is energized, then the bus is considered energized:

ut
g ≤ ut

i , ∀i ∈ N, ∀g ∈ G(i), ∀t ∈ T (2.11)

A line can get energized at a time step only if one of the buses connected to it was energized at the

previous time step:

ut
i ≤ ut−1

i + ut−1
j , ∀(ij) ∈ E, ∀t ∈ T (2.12)

Also, when a branch gets energized, both of the buses connected to it are energized:

ut
ij ≤ ut

i, u
t
ij ≤ ut

j , ∀(ij) ∈ E, ∀t ∈ T (2.13)

Finally, we assume that buses and generators are picked up only once:

ut
g ≥ ut−1

g , ∀g ∈ G, ∀t ∈ T (2.14a)

ut
i ≥ ut−1

i , ∀i ∈ N, ∀t ∈ T (2.14b)

Note the same assumption is not made for lines. The reason is that de-energizing lines is a standard

practice included in the restoration guidelines that some grid operators have developed to alleviate

overvoltages, so our modeling allows for such operating practice. Allowing line de-energization is

what makes constraints (2.10a)-(2.10c) necessary in our formulation.

Optimization Objective

The objective of the problem in general will highly depend on the priorities set by the charac-

teristics of each particular system. A generic form can be the following:

minimize
∑

t∈T





∑

i∈N

Ct
ip

t
SHi
− µ

∑

g∈G

ut
gJg − ǫ

∑

(ij)∈E

ut
ij



 (2.15)
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(4.14) penalizes the load shed (depending on the criticality of the load), incentivizes increasing the

total inertia of the energized system, and encourages the complete energization of the grid. The

final form of the objective ultimately depends on the priorities of the particular system; a vital load

will carry high cost, or energizing a generating plant or government or industrial consumer will be

considered more important.

2.5 A Heuristic

We used a commercial solver (FICO Xpress Optimizer [62]) to handle the optimization prob-

lem formulated in the previous section. We observed that the solver struggled to find feasible

solutions to the problem using its own heuristics, even when an increased number of threads was

devoted to that purpose. For that reason, we developed a custom heuristic that utilizes the time-

staging structure of the problem, is guided by LP relaxations and tries to identify feasible solutions.

Randomization is used at various parts of the heuristic, so that multiple executions can yield dif-

ferent solutions. The solutions are then fed to the solver to aid the branch and bound tree. Multiple

runs of the heuristic can be launched in parallel in a high performance computing environment to

speed up the process. The heuristic consists of two phases. In the BS Allocation Phase, the BS

units are assigned and the value of uBSg is fixed to an integer for the next phase. In the Restoration

Sequence Phase, the restoration sequence based on the BS units is fixed. Both phases use the func-

tion RANDOMRANK (given in figure 2.2), which takes a list of fractional values as input, perturbs

them by noise (by adding αX , where X is uniformly distributed in [0, 1] and α a controllable pa-

rameter that influences how much randomness will be injected in the LP relaxation solution), and

returns a ranked list. We also allow the solver to tighten the relaxation by exploiting the integral

nature of the variables.

In the BS Allocation Phase, the LP relaxation of the full problem is solved. From the solution

(uLP
BSg ∈ [0, 1]), the generators are ranked (using RANDOMRANK with α = αBS) and picked based

on the ranking, up to the available budget B. For the rest of the heuristic the BS allocation is con-

sidered fixed, i.e. the binary decision variables uBSg are fixed to integral values. The Restoration

Sequence Phase adopts the following pattern: At every step τ in the time horizon an LP relaxation

is solved. Then, based on the relaxed values obtained from the assignment variables of lines uτ,LP
ij

and generators uτ,LP
g at this time step, all binary variables for time τ are fixed to integral values for

the next steps, and the process is repeated. However, a simple randomized rounding scheme would

not work because it is very easy to construct an infeasible combination. Instead, at every step we

make intelligent fixings by tracking the islands that are formed, and labeling every bus, line and

generator by the index of the island they belong to (unlabeled if not yet energized). This phase of

the algorithm has two parts: the Line Selection part defines the topology, i.e. which lines and buses

are going to be introduced, whereas the Generator Selection part defines which generators will be

energized.

In the Line Selection part, a ranking of the lines is again formed (using RANDOMRANK with

α = αE) based on the LP relaxation values. However, only lines with positive relaxation values

uτ,LP
ij are considered in the ranking, since these are guaranteed to be lines connected to at least one



CHAPTER 2. OPTIMAL BLACK START ALLOCATION FOR POWER SYSTEM

RESTORATION 25

1: Black Start Allocation Phase

2: t← 0
3: Solve LP relaxation. Get uLP

BSg
∈ [0, 1], ∀g ∈ G

4: Pick generators in order RANDOMRANK ({uLP
BSg
}g∈G, αBS) as BS (fix uBSg

, ∀g ∈ G) up to budget B.

5: Based on fixing of BS, ramping rates and active and reactive power limitations, update active and reactive power

capabilities of the generators ∀t ∈ T .

6: Initialize islands, generator and node labels corresponding to the BS units.

7: Restoration Sequence Phase

8: for τ ∈ T do

9: Solve LP with uBSg
and ut

g, ut
ij , ut

i fixed for t ≤ (τ − 1).
10: Line Selection

11: repeat

12: Pick next line (i′, j′) ∈ E based on RANDOMRANK ({uτ,LP
ij }(ij)∈E , αE) with uτ,LP

i′j′ > 0
13: if New Reactive Power Capability in Island of (i′, j′) ≥ RQ then

14: Add line (fix uτ
i′j′ = 1) and corresponding nodes (fix uτ

i′ = 1 or uτ
j′ = 1) if necessary.

15: Update islands

16: Update node, line and generator labels.

17: end if

18: until all lines with uτ,LP
i′j′ > 0 tested

19: Generator Selection

20: repeat

21: Pick next generator g′ ∈ G based on RANDOMRANK ({uτ,LP
g }g∈G, αG) with uτ,LP

g′ > 0 and connected

to an energized node.

22: if New Active Power Capability in Island of g′ ≥ RP then

23: Add generator (fix uτ
g′ = 1).

24: Update generator labels.

25: Based on ramping rate and active and reactive power limitations, update active and reactive power

capability of g′ ∀t ∈ T .

26: end if

27: until all connected generators with uLP
g′ > 0 tested

28: end for

29:

30: function RANDOMRANK ({uk}k∈K , α)

31: rk ← uk + αXk, where Xk ∼ Unif(0, 1)
32: Rank elements of K based on rk: Let R : {1, . . . , |K|} 7→ K be a bijection s.t. i > j ⇐⇒ rR(i) ≤ rR(j)

33: return R
34: end function

Figure 2.2: Randomized heuristic for feasible point search.
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bus energized at the previous time step, due to constraint (2.12). Then, the lines are sequentially

introduced according to their ranking. Since the main concern with energizing lines is the reactive

power they inject into the system (which could cause overvoltage problems due to the Ferranti

effect), the reactive power capability of the island that would be created if the line was connected

is checked before deciding to introduce the line. At the same time, given that the constraint is

only checked at an island level, a higher threshold RQ may be used to possibly account for not

considering the local effect for that line. In the Generator Selection phase, the LP relaxation

again yields a ranking of the generators (using RANDOMRANK with α = αG). A similar test

is performed to qualify introducing the generator; in this case, the main concern is whether or

not the island possesses adequate active power capacity to provide for the cranking power of the

generator, plus some slack of RP to accommodate for only checking this constraint on an island

level. If the generator has a minimum stable operational limit P g, then the load capability of the

island to accommodate for this generation is also tested.

2.6 Experimental Results

All the simulations are performed on the Cab cluster of the Lawrence Livermore National

Laboratory. The Cab cluster consists of 1296 nodes with 20736 cores, with an Intel Xeon E5-

2670 processor at 2.6 GHz and 32 GB per node. For the simulations, Mosel 4.0.4 was used with

Xpress [62]. The heuristic simulations were parallelized at 6 nodes by utilizing Mosel, with 4 jobs

per node and 4 threads per job.

Unit PCRg
[MW] Q

g
[MVar] KRg

[MW/h] CBSg
(B = 30)

G1 6 −400 215 13.5
G2 8 −300 246 15.5
G3 7 −300 236 14.5
G4 5 0 198 12.5
G5 8 0 244 15.5
G6 6 −300 214 13.5
G7 6 0 210 13.5
G8 13 0 346 20.5
G9 15 −300 384 22.5
G10 1 −300 162 8.5

Table 2.1: Data used for the IEEE-39 system. All the cranking times are set to TCRg
= 30min, except TCR10

= 10min.
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Figure 2.3: Sampled steps of the restoration process. Generators 1 and 10 are chosen by the optimization problem as

BS units, so they get energized first. The rest of the grid is gradually restored. The time unit is 5min. Note that the

line connecting buses 2 and 30 is picked up immediately after energization, because it has no shunt capacitance in the

model. However, the generators cannot pick further transmission lines immediately, since they can not change their

reactive power setpoint up until one period after the cranking is over (i.e. after time 3 for G1). Notice also that the line

connecting buses 1 and 39 gets de-energized at time t = 9. Forcing energization of the line at this time point leads to

ac infeasibility, which means that the flexibility of de-energizing lines (enabled by the model) is utilized.

Simulation of the IEEE-39 Bus System

In order to illustrate the effectiveness of the proposed model, a small test case is initially con-

sidered. The IEEE-39 bus system consists of 39 buses, 10 generators and 34 branches [11]. The

most important parameters for the problem are given in Table 2.1; most of the cranking pow-

ers and cranking times for that system are taken from [74]. The parameters for generator 10 are

purposefully chosen in a way that favors turning it into a BS unit (i.e. small cranking power of

1MW and a small cranking time of 10 minutes). The cost of load shedding at every bus is set to

(5000+50∗ i)$/MWh, where i is the bus number of the load. Both µ and ǫ are set to comparatively

small values (equal to 100). The length of the time horizon is set to T = 40 time units, with a 5
minutes time step. The problem has 36058 constraints and 16380 variables, of which 3810 are

binary.

Xpress struggles to find feasible solutions to the problem. After 30 minutes, only one feasible

solution was found, with an optimality gap of 43.30%. Gurobi performs better for this small

problem, by finding a solution with 1% gap within 20 minutes.

As an alternative, we launch parallel heuristic executions in Xpress until 100 feasible solutions
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Figure 2.4: Voltages of three buses from the ac simulations. Bus 16 (brown triangles) is on the edges of the transmis-

sion system and suffers from overvoltages (in fact at time t = 10 we need to relax the voltage limit to 1.12p.u. for

one time step). Bus 30 (red diamonds) is a generator bus and its value is set as low as possible, to accomodate for

reactive power transfer to the transmission system. Finally, the voltage of bus 20 is depicted with blue hexagrams. The

transition from zero to nonzero values indicates the time step that a node is energized.
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Figure 2.5: Gap for 100 feasible solutions generated by the heuristic, for two different settings of the value of αBS , i.e.

αBS = 0 (plot above) and αBS = 1.5 (plot below). The values of αE and αG are set to 0.5. The heuristic solutions

were fed to the optimizer, which solved the problem within 1% tolerance. The gap for that solution is shown with

a diamond on the plots. Increased randomness (meaning the heuristic moves randomly away from the LP relaxation

solution) leads to worse feasible solutions in general, but may also get lucky and find a better feasible solution.
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are found (which takes approximately 15 minutes). The feasible solutions are then fed to Xpress

and the solver usually achieves the desired 1% gap within 15 minutes. The purpose of the heuristic

is therefore not to completely substitute the optimization solver, but to guide it.

In the optimal allocation, generators 1 and 10 (as expected) are chosen. Generator 1 was

selected due to its high reactive capability (which is important for that system that has no reactors

for compensation). Some steps of the restoration process are presented in figure 2.3.

We also check the restoration sequence for ac feasibility. For that, an ac feasible point is

sought for the grid configuration at every step and given the various unit capabilities, as in [31,74].

The islands are identified at every step and an ac optimal power flow (OPF) is performed using

the software Matpower [159]. The load is initially considered fixed at the value provided by the

optimization problem. If this does not yield an feasible point, the load is perturbed by no more

than 10% around that value. This was adequate for finding feasible points at all time instances,

apart from three in which the upper voltage limit had to be relaxed from 1.1 to 1.12; see figure 2.4.

A systematic way to perform this task is described in [120].

Finally, in figure 2.5, heuristic executions for two different settings of the parameter αBS are

shown. Note that none of the heuristic executions gets very close to the best integer solution found.

This is due to the fact that the final integer allocation assigns a generator (G1) with a very small

uBSg
value in the LP relaxation, so the heuristic is unlikely to make this assignment. Furthermore,

the heuristic by construction lacks some characteristics that the optimal solution could have, such

as the ability to de-energize lines. Such modifications are left for the local search of the solvers to

identify.

Simulation of the IEEE-118 Bus System

The IEEE-118 bus system consists of 118 buses, 186 branches and 54 generators. The data

from [148] were used for cranking powers, ramping rates and cranking times of the generating

units. The allocation costs were assumed to have two parts: 70% of the cost was assumed the same

for all units and the remaining 30% was assumed proportional to the BS unit’s cranking power.

The total budget is assumed 15% of the cost of assigning all the units as BS. For the 345kV lines,

reactive compensation equal to approximately 45% of their capacitance was assumed connected to

each of their endpoints (reactive compensation of this size appears in actual systems to alleviate

the Ferranti rise). The cost of load shed was set in the same way as for the IEEE-39 bus system. A

time resolution of 15 minutes was considered, for 20 time steps.

The optimization problem has 70704 constraints and 30028 variables, of which 7214 are binary.

When the problem is fed to the Xpress Optimizer, the solver is unable to identify a feasible solution

within a 5 hour time limit. Gurobi can only find the feasible solution corresponding to setting

all binaries to zero (i.e. making no actions to restore the power system) within the same time

limit. Executions of the heuristic identify feasible solutions, as well as eventually the optimal

solution (verified by the solver due the the termination of the branch and bound tree search), and

the performance with respect to time is depicted in Table 2.2. Six generators are assigned as BS

units (G21, G22, G25, G28, G45 and G51). In order to signify the importance of the voltage

constraints, figure 2.6 indicates the buses at which voltages are set to their maximum or minimum
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Parameters Time for M feasible points [s]

(αBS , αE , αG) M = 5 M = 50 M = 100 M = 1000
(0.8, 0.5, 0.5) 218 791 1133 10045

(0.8, 1.5, 0.5) 242 688 1263 10656

(0.8, 0.5, 1.5) 228 653 1110 10808

(0.8, 1.5, 1.5) 236 701 1193 11304

Table 2.2: Time for the heuristic to find the designated number of feasible solutions for the IEEE-118 system, de-

pending on the randomness parameters. For many executions (M = 1000), increased randomness yields higher

computational times, due to more points identified by the heuristic being infeasible; the difference is in general not

observable for fewer executions.

Figure 2.6: Snapshot of the IEEE-118 system (t = 10). The non energized part is depicted in gray, generators with

bold black line have nonzero output, whereas dotted generators are being cranked. Red dotted bus lines and red

dashed bus lines indicate buses at their maximum and minimum voltage respectively. Note that buses of generators

with reactive power support (such as 46) are usually set to the minimum voltage (in order to absorb reactive power),

whereas some buses at the edges of transmission (such as 51) are set to the maximum.

limits from the optimization. The resulting solution is also tested for ac feasibility at every time

step.

Simulation of the Reduced WECC System

As a final test case, we consider a reduced model of the Western Electricity Coordinating

Council (WECC) system [156] with 225 buses, 371 lines, 130 conventional generators and 6 hydro

units. The same model is used in [105]1. The generation mix in terms of type, number of generators

and total capacity is shown in Table 2.3. The renewable energy generation is assumed disconnected

1Data available at the following link: https://drive.google.com/drive/u/2/folders/

1F3u6yq-noQhv8APZKaa45mM0q1I9_-cy.
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Type Units Capacity [MW]

Nuclear 2 4499

Gas 101 21781

Coal / Oil 3 /1 199 / 121

Dual Fuel 23 4679

Hydro 6 8613

Table 2.3: Generator mix for the WECC test system.

during the restoration, with the exception of hydro. The imports are also assumed disconnected. A

time horizon of 18 steps with 15 minute resolution was considered.

One of the crucial priorities when energizing the grid is providing power to the nuclear power

plants, due to security considerations. For this reason, a penalty was associated in the objective

with ut
g for the nuclear power plants to ensure their quick restoration. The total budget is assumed

4% of the total cost for allocating all the units. Nuclear power plants are excluded from serving as

black starts (by setting the corresponding binary allocation variable to zero).

The optimization problem has 131470 constraints and 55418 variables, of which 13597 are bi-

nary. Xpress and Gurobi were unable to find any feasible solutions within the 5 hour time limit

imposed. The heuristic is launched and finds 20 feasible solutions within 40 minutes. The opti-

mization problem is then solved within 6.7% optimality gap in Xpress, after 2 hours of execution.

The power plants allocated were three hydro plants, which is expected due to their small cranking

power and cranking time (they constitute ideal BS units), as well as one gas station at McCall. The

gas station was allocated due to its proximity to the nuclear power plant at Diablo Canyon (since

none of the hydro units are in the vicinity). The sequence was also tested for ac feasibility.

2.7 Conclusions

In this chapter, we formulated and solved the optimal BSA problem. We enhanced existing

literature on the topic with a new modeling approach and sets of constraints to accommodate for

some of the most important considerations during restoration. Based on our understanding of the

problem structure, we proposed a heuristic guided by the LP relaxation of the optimization. The

feasible solutions generated by the heuristic are then fed into commercial solvers, which can then

provide global guarantees for optimality.

In the following chapters, tighter reformulations of the constraints of the problem will be de-

veloped and the benefit from their use will be explored. Furthermore, since the initial state of the

system (i.e. the stable islands after a blackout) is a parameter to our problem, a BS allocation that

can accommodate for a number of scenarios can be achieved by solving a two-stage stochastic

program. In this case, the first stage decision will be the BS allocation, the scenarios will be a
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Figure 2.7: Snapshot of the restoration for the WECC system (restored part in red).

number of possible outages (defined by experts), and the second stage will be the restoration steps

according to the scenario.
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Chapter 3

Formulations and Valid Inequalities for

Power System Islanding and Restoration

3.1 Abstract

Reformulating the constraints of a Mixed Integer Linear Program (MILP) can lead to a better

computational performance when off-the-shelf software is used to solve the problem. The process

involves identifying subsets or substructures among the problem constraints, obtaining a strong or

more compact formulation for them, and then solving the original problem with the modifications

to observe if the computational performance has improved. This section explores a substructure

that appears in two problems within the power systems literature that involve reconfiguration of the

power system topology: Intentional Controlled Islanding (ICI) and Black Start Allocation (BSA).

A key consideration in both of these problems is that each island that appears after a reconfigu-

ration must have at least one energized generator. We examine three alternative MILP formulations

for this restriction and examine their relative strength in terms of their linear programming relax-

ation. In order to further strengthen the formulations, we introduce a family of exponentially many

valid cuts that can be separated in polynomial time. Under simplifying assumptions, we show that

the integer hull of the feasible region is a full dimensional polyhedron, and prove that some of the

constraints we introduced define facets of the integer hull. We draw a connection of this region

with the one resulting from the rooted maximum weight connected subgraph problem.

Since the time to solve MILPs can vary significantly between equivalent formulations, we

present computational experiments on various systems for the ICI and BSA problems. The ICI

problem modeling is obtained from publications in the power systems literature and the optimiza-

tion problem is reformulated to exhibit a strictly better computational performance. For the BSA

problem, a simplified model is presented with the goal to solve systems of larger scale than the

ones of the previous chapter. An implementation using lazy constraint generation through integer

callbacks for an exponential in size reformulation of the problem exhibits the best performance in

solving the problem. An approach to obtain near optimal solutions for a synthetic test case of the

Texas system (2000 buses, 3206 branches, 544 generators) is described.
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3.2 Introduction

Mixed integer programs (MIPs) and in particular mixed integer linear programs (MILPs), i.e.

optimization models with linear constraints that involve integer as well as real variables, are be-

coming ubiquitous in power systems applications (unit commitment, power system restoration, ca-

pacity expansion planning, optimal islanding). The main reasons for their popularity are that they

offer broad modeling capabilities and that specialized commercial MILP solvers have improved

significantly over the past years, making MILPs tractable for many practical applications. In these

applications, binary variables are used to represent commitment, scheduling, time dependencies,

component energization, as well as to approximate nonlinear curves with piecewise linear func-

tions. Two of the problems that have been formulated as MILPs in power systems are Intentional

Controlled Islanding (ICI) and Black Start Allocation (BSA).

ICI is a measure employed to prevent cascading power system outage by splitting the grid into

smaller, stable and easily controllable islands via switching off lines [3, 34, 38, 41, 43, 44, 50, 58,

59,81,137–139,147,152,158]. One straightforward approach to model the problem is to represent

the switching decisions with binary variables and formulate an optimization problem [38, 43, 44,

50,58,59,81,137–139,158]. The optimization objective and constraints embody the requirements

that the splitting should satisfy, such as minimum power flow disruption, size and capacity of the

resulting islands and isolating or grouping generators in coherent sets.

The BSA for Power System Restoration (PSR) problem [27, 71, 72, 74, 89, 115, 120–122, 132,

134] aims to allocate Black Start (BS) resources in the grid in an efficient way, in order to ensure

a successful restoration of the power system after an outage. The problem is often modeled as

a MIP, with binary decisions representing the BS unit allocation and the restoration of genera-

tors/branches/buses of the system [72,74,115,120–122,132,134]. The optimization objective is to

maximize the energization of the system components over a time horizon, or to minimize the load

shedding for critical loads, whereas the constraints ensure that the allocation and restoration plans

are feasible.

Both of the aforementioned problems, and possibly others, allow the switching of lines of the

power system. It is therefore often necessary to include a constraint to ensure that at all times

each island has at least one generator to set up the voltage. More abstractly, the constraint ensures

that a graph is partitioned into connected subgraphs, each of which contains a special type of

node. In the power systems context, this node is one with an energized generator or corresponding

to a set of coherent generators. We will refer to this constraint as the island energization (IE)

constraint. An example of a system state that violates this requirement is depicted in figure 3.1.

Network commodity flow formulations have been used to explicitly enforce this requirement [38,

43,44,50,58,81,115,121,122] and this is currently the most common approach for power systems

applications.

The underlying structure of the problem resembles, after a suitable tranformation, that of the

rooted maximum weight connected subgraph problem [84], with weights (positive or negative) on

edges and nodes, for an undirected graph. We will make the connection more formal subsequently

in this chapter. The directed graph version of the problem is what mostly appears in the literature,

since it can give rise to stronger formulations. In practice, this problem is most commonly studied
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in the space of either only nodes or only edges, since the connectivity requirements can be equiv-

alently reformulated with only nodes or only edge variables to obtain more compact formulations.

However, in our power systems applications, we need to utilize node, bus, and generator variables,

since they all get involved in other constraints introduced through the power systems interpretation

of the components.

A similar requirement to the IE constraint appears in other contexts as well. For instance,

in [40], the authors propose three formulations to obtain a connected subgraph that includes a set

of terminal nodes in a graph, and provide computational results to test the comparative performance

and strength of the different formulations. In their problem, they must select a single connected

subgraph that includes certain terminal nodes. In our case, we can select multiple connected sub-

graphs (islands) that must contain at least one generator. While projections of the feasible region

of the two problems can be shown to be equivalent using the appropriate network transformations,

one of their formulations restricts the connected subgraphs to be trees. Similarly, our problem dif-

fers from the Steiner Tree problem and multiple generalizations of it (such as the Prize Collecting

Steiner Tree Problem [63]), because these problems restrict their connected subgraphs to be trees,

whereas our islands can include cycles.

The motivation for studying equivalent reformulations of the same set of constraints is that, de-

spite the continuous improvements of MILP solvers, the solution times highly depend on the prob-

lem formulation employed. As a result, equivalent reformulations of the same requirement can lead

to very different solver performances. For a minimization problem, the lower bounds found by the

solvers of a MILP are based on solving successive continuous relaxations of the problem, i.e. op-

timization problems that relax the integrality requirement of some variables. Therefore, equivalent

reformulations of the problem with tighter continuous relaxations can lead to better lower bounds

and hence a smaller branch and bound (B&B) tree. Unfortunately, tighter formulations usually

come at the expense of more variables and/or constraints. As a result, there is a computational

trade-off between the use of different formulations that has to be resolved based on theoretical and

computational results for every particular problem.

The main contributions of this work are the following:

1. We present three different formulations of the IE constraint using binary variables for gen-

erators, buses and branches: a single-commodity flow formulation F1, a multi-commodity

flow formulation F2, and an exponential in size, cut-set formulation F3 and we examine their

relative strength. Formulation F3 employs an exponential number of constraints (which we

will refer to as Type I cuts), but can be separated in polynomial time. We also introduce

a new set of exponentially many valid inequalities (Type II cuts), separable in polynomial

time. We present a polyhedral analysis for the simplified case of a complete graph to show

that some of the valid inequalities we presented define facets of the integer hull. We describe

the connection of the feasible region to the one of the rooted maximum weight connected

subgraph problem.

2. We present a new formulation for the variant of the optimal ICI problem considered in [81].

Our formulation has fewer variables and constraints and exhibits a better computational per-

formance for the instances examined.
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3. We present an alternative model for BSA that is tailored for power systems of realistic size.

Modifications are introduced to, among others, the objective, the generator start-up curves,

and the power flows.

4. We demonstrate through computational experiments that: (i) For both problems (ICI and

BSA), the size of F2 makes it impractical to use in realistic applications; (ii) For the optimal

BSA problem, the use of the Type I and Type II inequalities, part of them introduced through

integer callbacks, seems to offer the best computational performance for the instances tested;

(iii) For the optimal ICI problem, Type I and Type II constraints perform no better than

F1 in the instances we tried, mainly due to the computational overhead of separating the

constraints.

The largest test system used for BSA is a synthetic Texas test case (2000 buses, 3206 branches,

544 generators), which leads to an optimization with more than a million constraints and hundreds

of thousand binary variables. An adaptation of the heuristic presented in the previous chapter

is used to obtain feasible solutions. We perform numerical experiments with different problem

formulations in order to obtain a good optimality guarantee.

The rest of this chapter is organized as follows: section 3.3 sets up the notation for the chapter;

section 3.4 gives the equivalent reformulations of the IE constraints; section 3.5 proves the for-

mulation equivalence and relative strength; section 3.6 presents a family of valid cuts; section 3.7

includes a polyhedral analysis under simplifying assumptions; section 3.8 draws the connection to

graph theory; section 3.9 describes the model for large scale BSA; sections 3.10 contains simu-

lation results, and section 3.11 concludes the chapter. The Appendix contains descriptions of the

islanding formulations used in the simulations of section 3.10.

3.3 Notation

Let (N,E) be the undirected graph derived from the physical graph of the power system, where

buses correspond to nodes (set N) and branches to undirected edges (set E). Let A be a directed

edge set corresponding to E, with the direction of each edge defined by arbitrarily picking a “From

Bus” and “To Bus” for every system branch, as is common in the power systems literature. Note

that |A| = |E|. Let G be the set of all generators, G(i) the set of generators that are connected

to bus i ∈ N , and G(S) the set of generators connected to a node i ∈ S, where S ⊆ N . For

the case where a single generator is connected to i, we will denote this generator by g(i), i.e.

G(i) = {g(i)}. Let ui denote the energization status of bus i ∈ N (where ui = 1 indicates an

energized bus, whereas ui = 0 indicates a de-energized bus), uij denote the energization status of

branch (ij) ∈ E (or (ij) ∈ A by a slight abuse of notation, since there is a bijective correspondence

between E and A), and ug the energization status of generator g ∈ G. The energization state

of the system is completely described by the binary vector u ∈ B|N |×|E|×|G|. We will denote

d = |N | × |E| × |G|.
We also use auxiliary variables f , corresponding to energization network flows (not power

flows), in the definition of the single- and multi-commodity flow formulations. Finally, if S is a
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Figure 3.1: A small power system with four buses, three branches and one generator. Red color indicates an energized

component, whereas black color indicates de-energized components. Note that nodes 1 and 2 and branch (1, 2) form

an energized island without any generator, hence this is an infeasible topology that violates the IE constraint.

subset of the nodes S ⊆ N , the undirected cut-set δ(S) is defined as the set that contains all the

edges in E with one node in S and one node in N \ S.

3.4 Formulations for the Island Energization Constraint

The power system restoration (PSR) problem, which is solved for a given allocation of BS units

in the system, aims to gradually restore a power system to an operational state after a complete or

partial outage. The optimal ICI problem deals with temporarily reconfiguring the grid, by switch-

ing lines on and off, as a measure to improve the system security. Both problems involve a series

of stepwise actions (usually switchings of lines and generators), while the system moves through

a number of different states. Each state can be captured through the status of every bus, line or

generator (on or off, i.e. energized or de-energized), as well as through other system characteristics

(power flows, generation, etc).

Every step of the process in both problems should respect the island energization (IE) con-

straint. This requirement may be obvious to the experts that actually perform the switching opera-

tions to reconfigure the grid, but when an optimization model is employed to determine a switching

plan, the IE constraint has to be imposed. If the ac power flow equations are utilized to model the

power system in the optimization model, the IE constraint is implicitly imposed (shunt elements

will force node voltage to zero). However, in order to achieve tractability or obtain optimality

guarantees, the power flow equations are often relaxed or substituted with approximations and

relaxations in the resilience literature which can violate the IE constraint. In such cases, the IE

constraint must be explicitly imposed, as in [38, 43, 44, 50, 58, 81, 115, 121, 122].

The IE constraint formulations we examine in this chapter are valid for distribution systems as

well. However, for distribution systems one can exploit the graph structure even more, due to the

mostly radial nature of the system. As a result, for these systems, there already exist specialized

constraints that impose the connectivity requirement, such as the ones used in [24, 25, 119, 136].

These formulations are specific for distribution systems and do not work for general networks.

Our formulations are tailored for general networks, aiming to allow cycles, which are common in

transmission systems.

In this section, we present three different formulations to impose the IE constraint, F1, F2, and

F3. We will denote the feasible region of the points satisfying the IE constrain by H . Constraints

(3.1) and (3.2) are included in all the formulations:
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1. If a generator g ∈ G connected to node i ∈ N is energized, then the node is considered

energized.

ug ≤ ui, g ∈ G(i), i ∈ N (3.1)

2. If a branch is energized, both the nodes at its endpoints are considered energized.

uij ≤ ui, uij ≤ uj, (ij) ∈ E (3.2)

Single-Commodity Flow Formulation

The first formulation (F1) is given by:

F1 ={u ∈ [0, 1]d : ∃fg ∀g ∈ G, fij ∀(ij) ∈ A :

(3.1), (3.2), (3.4a)-(3.4c)}
(3.3)

where:

0 ≤ fg ≤ ug, g ∈ G (3.4a)

− uij ≤ fij ≤ uij, (ij) ∈ A (3.4b)
∑

j:(ji)∈A

fji −
∑

j:(ij)∈A

fij +
∑

g∈G(i)

fg =
1

|N |
ui, i ∈ N (3.4c)

Given the definition of F1 above, we define the feasible region of the IE problem to be H = F1∩B
d.

In the definition of F1, a set of auxiliary network flow variables fg, g ∈ G and fij , (ij) ∈ A, are

employed. An energized node (i.e. ui = 1) will act as a sink of 1
|N |

amount of network flow,

captured in the right hand side of (3.4c). Network flow can only be generated from energized

generators, due to (3.4a). Finally, it can only flow through energized branches due to (3.4b). This

ensures that there will be a path from any energized node to an energized generator that uses

only energized lines (this is the path that the network flow follows to move from the energized

generator to the energized node). For example, the topology of figure 3.1 is infeasible, since node

1 would act as a sink of 1/4 amount of network flow, but network flow can only be generated at

node 4 by the energized generator g1 and cannot pass through the de-energized line (2, 4). Note

that the size of the sinks is 1
|N |

, so that the topology where a single generator (that can generate

up to 1 unit of network flow) energizes all the nodes of a (connected) power system belongs in

F1. The single-commodity flow formulation is the one most commonly used in power systems

applications [38,43,44,50,58,81,115,121,122]. The formulation has |G|+ |E| flow variables and

|N |+ |E|+ |G| constraints (excluding (3.1) and (3.2)).

Multi-Commodity Flow Formulation

An alternative formulation approach, following the same logic, would be to consider a different

type of flow corresponding to the energization of each node. This would lead to the following
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formulation
F2 ={u ∈ [0, 1]d : ∃fk

g ∀k ∈ N ∀g ∈ G,

fk
ij ∀k ∈ N ∀(ij) ∈ A : (3.1), (3.2), (3.6a)-(3.6d)}

(3.5)

where:

0 ≤ fk
g ≤ ug, k ∈ N, g ∈ G (3.6a)

− uij ≤ fk
ij ≤ uij, k ∈ N, (ij) ∈ A (3.6b)

∑

j:(ji)∈A

fk
ji −

∑

j:(ij)∈A

fk
ij +

∑

g∈G(i)

fk
g = ui,

k ∈ N, i ∈ N : i = k (3.6c)
∑

j:(ji)∈A

fk
ji −

∑

j:(ij)∈A

fk
ij +

∑

g∈G(i)

fk
g = 0,

k ∈ N, i ∈ N : i 6= k (3.6d)

The idea behind this formulation is that each node is treated separately and is associated with its

own type of network flow and constraints. If node k ∈ N is energized, then one or more of the

energized generators will need to generate the type k network flow, that needs to pass through

energized lines. The only sink for that type of network flow is node k, which means that the

network flow of type k is preserved at every other node i 6= k. In this case, the normalization of 1
|N |

is not necessary in (3.6c), since a single energized generator can generate all |N | types of network

flows to energize all the nodes. This formulation has |N | · (|G|+ |E|) network flow variables and

|N | · (|N |+ |E|+ |G|) constraints (excluding (3.1) and (3.2)).

Cut-Set Formulation

The third formulation only employs the binary variables. More specifically,

F3 = {u ∈ [0, 1]d : (3.1), (3.2), (3.8)} (3.7)

where:
∑

(ij)∈δ(S)

uij +
∑

i∈S

∑

g∈G(i)

ug ≥ un, n ∈ S, S ⊆ N (3.8)

We will refer to the family of inequalities (3.8) as Type I constraints. The idea behind this formu-

lation is that, given any subset S of the nodes, if any node in that subset is energized (i.e. if un

in the right hand side of (3.8) is equal to 1 for some n ∈ S), then an energized generator must be

providing the energizing flow. Therefore, either one generator within the set S should be energized

(i.e.
∑

i∈S

∑

g∈G(i) ug ≥ 1 in the left hand side of (3.8)), so that the energizing flow comes from

that generator, or at least one edge in the cut-set should be energized (i.e.
∑

(ij)∈δ(S) uij ≥ 1 in the

left hand side of (3.8)), so that the energizing flow comes from a generator outside the set S. For

example, the topology of figure 3.1 is infeasible, since if we pick the set S = {1, 2} and the node



CHAPTER 3. FORMULATIONS AND VALID INEQUALITIES FOR POWER SYSTEM

ISLANDING AND RESTORATION 40

n = 1 with u1 = 1, the left hand side of (3.8) is zero (since there are no generator nodes in S and

the only edge in the cut-set has u24 = 0), while the right hand side is one. Finally, for every node

n ∈ N , there are 2|N |−1 subsets S of N that contain it, so the formulation has a total of |N | · 2|N |−1

constraints (excluding (3.1) and (3.2)), which is exponential in the size of |N |.

3.5 Formulation Equivalence and Strength

Formulation Equivalence

We proceed to show that the three formulations restricted to Bd represent the same region.

Proposition 1. FormulationsF1, F2 and F3 restricted to u ∈ Bd are equivalent, i.e. H = F1∩B
d =

F2 ∩ Bd = F3 ∩ Bd.

Proof. Let H1 = F1 ∩ Bd, H2 = F2 ∩ Bd, and H3 = F3 ∩ Bd. We show that H1 ⊆ H3, H3 ⊆ H2,

and H2 ⊆ H1.

Part 1. u ∈ H1 =⇒ u ∈ H3

Assume for contradiction that u ∈ H1 but u /∈ H3. Based on (3.8), that means ∃S0 ⊆ N, ∃n0 ∈
S0 :

∑

(ij)∈δ(S0)
uij+

∑

i∈S0

∑

g∈G(i) ug < un0
. Since the right hand side is binary, and the left hand

side is integer, the only way for strict inequality to hold is if
∑

(ij)∈δ(S0)
uij+

∑

i∈S0

∑

g∈G(i) ug = 0
and un0

= 1. Since the first equality is a sum of non-negative terms equal to zero, each one of

them has to equal zero, so we obtain that:

uij = 0, (ij) ∈ δ(S0) (3.9a)

ug = 0, g ∈ G(i), i ∈ S0 (3.9b)

un0
= 1 (3.9c)

Now, since u ∈ F1, by summing over equations (3.4c) for i ∈ S0, we obtain:

∑

i∈S0





∑

j:(ji)∈A

fji −
∑

j:(ij)∈A

fij



+
∑

i∈S0

∑

g∈G(i)

fg =
1

|N |

∑

i∈S0

ui

The left hand side (LHS) can be simplified by observing that the sum of the flows inside the set S0

will cancel each other, while the flows on branches that have only one node in S0 (i.e. belong in

δ(S0)), are all zero, due to (3.4b) and (3.9a).

LHS =
∑

i∈S0





∑

j:(ji)∈A

fji −
∑

j:(ij)∈A

fij



 +
∑

i∈S0

∑

g∈G(i)

fg

=
∑

i∈S0

∑

g∈G(i)

fg ≤
∑

i∈S0

∑

g∈G(i)

ug = 0
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where the last line uses (3.4a) and (3.9b). On the other hand, the right hand side (RHS) yields:

RHS ≥
1

|N |
un0

=
1

|N |

where we used that n0 ∈ S0 and the rest of the binary variables in the summation are non negative,

together with (3.9c). Based on the inequalities for the LHS and RHS, we obtain 0 ≥ 1
|N |

, which is

a contradiction.

Part 2. u ∈ H3 =⇒ u ∈ H2

Based on u, construct a directed graph with nodes N ∪ {t}, where t is a dummy node, and

edges: for each node i ∈ N that has at least one generator (i.e. G(i) 6= ∅), add a directed edge

from t to i with capacity
∑

g∈G(i) ug, and for each directed edge (ij) ∈ A, add two directed edges,

one from i to j and one from j to i, both with capacity uij . Now pick a node k ∈ N . For T ⊆ N
and S = N \ T , the capacity of any t-k cut is given by (see figure 3.2):

C(T ∪ {t}, S) =
∑

(ij)∈δ(S)

uij +
∑

i∈S

∑

g∈G(i)

ug (3.10)

which is greater than or equal to uk, since k ∈ S and u ∈ H3. Therefore, the min-cut has capacity

v ≥ uk, which means the max-flow has capacity v. We can scale all the flows of the max-flow

by the positive quantity uk

v
, which is no greater than one, to obtain flows that retain feasibility and

inject uk amount of network flow at node k. Define fk
g based on the flow on the edge t-i, where

g ∈ G(i) (if more than one generators are connected to bus i, assign to each fk
g flow proportional

to the capacity ug). For every edge (ij) ∈ E, assign fk
ij equal to the difference of the flows on the

arcs in the graph we created, which is guaranteed to be in [−uij , uij] due to the feasibility of the

max-flows. We can repeat this process for every node k ∈ N , and hence generate feasible flows

for formulation F2, which shows that u ∈ H2.

Part 3. u ∈ H2 =⇒ u ∈ H1

Since u ∈ H2, based on the multi-commodity flows of formulation F2, let:

fg =
1

|N |

∑

k∈N

fk
g , g ∈ G

fij =
1

|N |

∑

k∈N

fk
ij , (ij) ∈ E

By summing over all k ∈ N the constraints of formulation F2, one can observe that the flows

defined above satisfy the constraints of formulation F1.

Formulation Strength

As we saw in the introduction of this dissertation, when comparing two MILP formulations

Fi and Fj , we say that Fi is (strictly) stronger than Fj if Fi is a (strict) subset of Fj . A stronger

formulation yields better bounds in the execution of B&B.

The following propositions give a result for the relative strength of the three formulations.
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Figure 3.2: Graph used in the proofs of Proposition 1, Proposition 3, and Proposition 4.

Proposition 2. F2 is strictly stronger than F1.

Proof. We first need to show that u ∈ F2 =⇒ u ∈ F1. To see that, note that the proof employed

in Part 3 of Proposition 1 did not use the integrality of the variables in u. Therefore, the same proof

can be used to show the inclusion in this case.

To see the strictness of the inclusion, consider a graph with two nodes N = {1, 2}, one

line E = {(1, 2)}, and one generator G = {g(1)} connected to node 1. Consider the point

(u1, u2, u12, ug(1)) = (1, 1, 1/2, 1). Picking fg(1) = 1, f12 = 1/2, we can see that (1, 1, 1/2, 1) ∈
F1. However, the point does not belong in F2, since for k = 2 the line capacity of 1/2 prevents the

1 unit of type 2 flow to pass from the generator to the sink in node 2.

Proposition 3. F2 and F3 are equally strong, i.e. F2 = F3.

Proof. To see that u ∈ F3 =⇒ u ∈ F2, notice that the proof in Part 2 of Proposition 1 did not use

the integrality of the variables u. Therefore the same proof can be employed to show this result as

well.

To see that u ∈ F2 =⇒ u ∈ F3, for each k ∈ N , consider the max-flow problem from t
to k in the graph of figure 3.2. Due to the constraints in F2, a feasible flow of at least uk exists.

Therefore, the maximum flow is at least uk, which means that the minimum cut is at least uk. That

implies that any other cut, whose capacity has the form (3.10), will be greater than or equal to the

minimum cut, so greater than or equal to uk. Since this holds for all k ∈ N , the constraints of F3

are satisfied.

The constraints in formulationF3 are exponentially many. Even though we cannot include all of

them in the model that is passed to commercial optimization software, we can actually efficiently

identify a violated constraint of F3, based on the following proposition. Therefore, we can use

solver callbacks to dynamically add the constraints at any point the solver reaches (fractional or

not), only if they are violated.

Proposition 4. Given a point u ∈ [0, 1]d, we can identify a violated constraint from F3 or verify

that none exists (separation problem), in polynomial time.



CHAPTER 3. FORMULATIONS AND VALID INEQUALITIES FOR POWER SYSTEM

ISLANDING AND RESTORATION 43

Proof. Given a point u ∈ [0, 1]d, for every k ∈ N , construct the graph from figure 3.2. Then find

the minimum t− k cut in this graph and compare the value to uk. Given the fact that the capacity

of a cut in that graph has the form (3.10), there are two cases for the capacity of the minimum cut

Ck
min:

1. If Ck
min < uk, for some k ∈ N , then node k and the minimum cut set Smin yield a violated

constraint in F3.

2. If Ck
min ≥ uk, for all k ∈ N , then all constraints in (F3) are satisfied.

Since the min-cut problems can be solved in polynomial time, and we only need to solve at most

|N | of them, the separation problem can be solved in polynomial time. Note that, if the point is

integral, a graph traversal to identify the islands and check if there exists one without a generator,

is enough to identify if all constraints are satisfied in linear time (if we find an island with no

generator, we can then generate a violated constraint with S corresponding to that island). Note

we assume 3.1) and (3.2 are satisfied, since we can simply check if they are violated.

3.6 A Family of Valid Cuts

We define the following function of the binary vector u and the subset S ⊆ N :

fS(u) =
∑

(ij)∈E:i,j∈S

uij +
∑

(ij)∈δ(S)

uij +
∑

g∈G(S)

ug −
∑

i∈S

ui (3.11)

Define the following inequalities, which we will refer to as Type II inequalities:

fS(u) ≥ 0, ∀S ⊆ N (3.12)

Proposition 5. Constraints (3.12) are valid for the feasible region H .

Proof. Let u be an feasible point for H (binary vector). We will show that for all S ⊆ N , con-

straints (3.12) are satisfied at u. The proof is by induction in the size of the set S. For |S| = 1, the

constraints reduce to the Type I constraints (3.8) with |S| = 1, which are valid. Now assume that

all constraints for sets with |S| = k are valid. Take an arbitrary set of cardinality k+1 and assume

it has the form Ŝ ∪ {i0}, where i0 /∈ Ŝ is an arbitrary node in that set. By the induction hypothesis

we have for the set Ŝ: fŜ(u) ≥ 0. It suffices to show that fŜ∪{i0}(u) ≥ 0.

We consider two cases. First, assume that fŜ(u) ≥ 1. Consider the difference:

fŜ∪{i0}(u)− fŜ(u) =
∑

j∈N\(Ŝ∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug − ui0 (3.13)

Due to the binary nature of the variables in equation (3.13) we have fŜ∪{i0}(u) − fŜ(u) ≥ −1.

Since fŜ(u) ≥ 1, we obtain fŜ∪{i0}(u) ≥ 0.
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Now assume that fŜ(u) = 0. If ui0 = 0, by (3.13), we obtain fŜ∪{i0}(u)− fŜ(u) ≥ 0, which

yields fŜ∪{i0}(u) ≥ 0. If ui0 = 1, define
∑

i∈Ŝ ui = k̄. Consequently, the following equality holds

using that fŜ(u) = 0:
∑

(ij)∈E:i,j∈Ŝ

uij +
∑

(ij)∈δ(Ŝ)

uij +
∑

g∈G(Ŝ)

ug = k̄ (3.14)

Denote S̄ the subset of Ŝ corresponding to energized nodes: S̄ = {i ∈ Ŝ : ui = 1}, with |S̄| = k̄.

Define the undirected graph Ḡ with node set VḠ = S̄∪{i0}∪{s}, where s is a dummy super-node

which corresponds to all generators and to nodes N \ (Ŝ ∪{i0}), and edge set EḠ. For EḠ, we add

an edge between i ∈ S̄ ∪ {i0} and j ∈ S̄ ∪ {i0} if uij = 1. Between i ∈ S̄ ∪ {i0} and s we add
∑

j∈N\(Ŝ∪{i}):(ij)∈E uij +
∑

g∈G({i}) ug edges. Note that the value of the left hand side of equation

(3.14) is exactly the number of edges of Ḡ that have at least one endpoint in the set S̄. To see that,

note that even though Ḡ contains no edges associated with generator variables or edge variables of

the nodes in Ŝ \ S̄, the corresponding variables will all be zero due to inequalities (3.1) and (3.2)

and since the nodes in Ŝ \ S̄ are de-energized.

Since the vector u is feasible, there is a path from every energized node to an energized gen-

erator in the associated energized graph. In the context of graph Ḡ, that means there exists a path

from every node in S̄ ∪ {i0} to node s. That implies that graph Ḡ is connected. The graph has

k̄ + 2 nodes, so it must have at least k̄ + 1 edges. Exactly k̄ edges have at least one endpoint in

S̄, due to (3.14). Therefore, there is at least one edge with no endpoints in S̄, i.e. there is an edge

between i0 and the dummy node s. By the construction of the edge set of the graph, this implies
∑

j∈N\(Ŝ∪{i0}):(i0j)∈E
ui0j +

∑

g∈G({i0})
ug ≥ 1, which together with (3.13) and fŜ(u) = 0 leads to

fŜ∪{i0}(u) ≥ 0. This concludes the proof by induction.

This family of cuts is neither stronger nor weaker than the family of Type I cuts we introduced

before. To see that, first consider a graph with two nodes N = {1, 2}, one branch E = {(1, 2)},
and two generators, g(1) connected to node 1 and g(2) connected to node 2. Consider the point

(u1, u2, u12, ug(1), ug(2)) = (1, 1, 1/2, 1/2, 1/2). This point satisfies all the Type I constraints.

However, it violates the Type II constraint for S = {1, 2}, i.e. ug(1) + ug(2) + u12 ≥ u1 + u2.

Conversely, consider the graph with N = {1, 2, 3}, edges E = {(1, 2), (1, 3), (2, 3)} and

one generator g(1) connected to node 1. The point with values: (u1, u2, u3, u12, u13, u23, ug(1)) =
(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 0) satisfies all constraints of Type II, but violates ug(1) ≥ u1, the Type

I constraint for S = N for node 1 ∈ S.

Proposition 6. For a given, possibly fractional, u ∈ [0, 1]d, fS(u) is a submodular function of

S ⊆ N .

Proof. Consider two sets A,B ⊆ N with A ⊆ B and i0 /∈ B. We will show that fA∪{i0}(u) −
fA(u) ≥ fB∪{i0}(u)− fB(u). Using (3.13), the above inequality reduces to:

∑

j∈N\(A∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug − ui0 ≥
∑

j∈N\(B∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug − ui0 (3.15)
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which is satisfied, since A ⊆ B =⇒ N \ (A ∪ {i0}) ⊇ N \ (B ∪ {i0}) and the variables uij are

non negative.

Corollary 1. Constraints (3.12) can be separated in polynomial time.

Proof. Given a fractional point u, minimizing fS(u) over S ⊆ N can be achieved in polynomial

time (due to submodularity). If the optimal objective is negative, the minimizer S∗ yields a violated

constraint from (3.12). If the minimizer is non-negative, (3.12) is satisfied for all S ⊆ N .

3.7 Polyhedral Analysis

For this section, we will assume for simplicity that the underlying (undirected) graph of the

power system (N,E) is complete (i.e. there exists an edge between every two nodes) and that each

node has a single generator (therefore, |N | = |G|). These assumptions are not realistic for actual

power systems, but they allow for an easier analysis, with the aim of getting some insights on the

strength of the inequalities introduced in the last two sections. We assume an arbitrary ordering of

the nodes {1, . . . , |N |} (where the corresponding generators are {g(1), . . . , g(|N |)}).

Proposition 7. The convex hull conv(H) of the feasible region H is a full dimensional polyhedron.

Proof. The convex hull is a polyhedron since the set of feasible points is finite. We will show that

its dimension is d = |N | + |E| + |G| = 2|N | + |E| by identifying d + 1 affinely independent

points. Since the point u = 0 is feasible, it suffices to find d linearly independent feasible points.

Consider the following points:

1. uai , i ∈ N : Only node i and the corresponding generator g(i) are energized (|N | points):

2. ubij , (ij) ∈ E: Only two nodes i, j, the corresponding generators, and the edge connecting

them are energized (|E| points):

3. uc1j , j ∈ N \{1}: Only node 1 with generator g(1), node j, and edge (1j) ∈ E are energized

(|N | − 1 points):

4. ud: Only node 1, node 2 with its generator, and edge (12) are energized (1 point).

We will show that the standard basis for Rd can be generated using linear combinations of

the points above. Hence, the points span Rd, and since there are d of them, they are linearly

independent. To generate a vector u with only nonzero coordinate ug = 1, for g ∈ G(i), i ∈ N :

For i = 1, we simply need to subtract ud from ub12 . For i 6= 1, we need to subtract uc1i from ub1i .

To generate a vector u with only nonzero coordinate ui = 1 for i ∈ N , we can simply subtract

the standard basis vector with only ug = 1, g ∈ G(i), generated previously, from uai . Finally, to

generate a vector with only nonzero coordinate uij = 1, (ij) ∈ E, we form ubij −uai −uaj . This

completes the proof.
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Proposition 8. Constraints (3.8) with |S| = 1, i.e.:

∑

j∈N

unj + ug(n) ≥ un, n ∈ N (3.16)

are facet defining for conv(H).

Proof. Since the convex hull of H is full dimensional, it suffices to find d affinely independent

points in H that satisfy (3.16) with equality. One of them is the zero vector, so it suffices to find

d− 1 linearly independent points in H that satisfy (3.16) with equality. These are:

1. We will first consider points that have un = 0, ug(n) = 0, and unj = 0, j ∈ N . Since

these are the only variables in (3.16), the constraint is satisfied with equality. The variables

corresponding to nodes N \ {n}, their generators, and the edges with both their endpoints

between them (we will refer to these variables collectively by uR) can be chosen freely in

a way that satisfies the IE constraints of a graph with (|N | − 1) nodes and generators and

(|E| − |N | + 1) edges. Using the arguments in the proof of proposition 7, we can find

2(|N | − 1) + (|E| − |N | + 1) = |N | + |E| − 1 feasible linearly independent points in this

reduced space, which correspond to linearly independent points in the full space (where we

have set the remaining variables equal to zero).

For the remaining points, the variables uR are set equal to 1. We then choose:

2. For j ∈ N \ {n}, set un = 1, ug(n) = 0, unj = 1, unk = 0, k ∈ N \ {n, j}. This yields

|N | − 1 points that are linearly independent from each other and from all previous points

since each one has a nonzero value at a position all previous ones did not have (i.e., unj).

3. Set un = 1, ug(n) = 1, unj = 0, j ∈ N \ {n}. This yields 1 point linearly independent from

the previous ones, since it is the only one that has ug(n) = 1.

Therefore, we generated (|N |+ |E| − 1) + (|N | − 1) + 1 = 2|N |+ |E| − 1 = d− 1 linearly

independent points in H , which concludes the proof.

Proposition 9. Constraints (3.8) with S = N , i.e.:

∑

i∈N

ug(i) ≥ un, n ∈ N (3.17)

are facet defining for conv(H).

Proof. We will prove the statement (without loss of generality) for n = 1. The zero vector satisfies

(3.17) with equality, so we only need to find d − 1 linearly independent points in H that satisfy

(3.17) with equality. We will generate d points (that are linearly dependent) and we will show they

span a d − 1 dimensional subspace - hence there exists a subset of d − 1 points that are linearly

independent. These points are:
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1. uei, i ∈ N : Generator g(1) , nodes 1, 2, . . . , i, and edges (1, 2), (2, 3), . . . , (i − 1, i) are

energized. The rest of the system is de-energized. Note that ue1 refers to the case where

only ue1
g(1) = 1,ue1

1 = 1, and the rest of the network is de-energized. (|N | points)

2. ufi, i ∈ N : All nodes and edges are energized. Only the generator g(i) (of node i) is

energized and the others are not. (|N | points)

3. uhij , (ij) ∈ E: All nodes are energized. All edges are energized, except edge (ij). Only

generator g(1) is energized and the rest are not. (|E| points)

We will show the points above span a d − 1 dimensional space by generating the columns of

the following d× (d− 1) full rank matrix:









|G| |N | − 1 |E|

uG I|G| 0 0

u1 11×|G| 0 0

uN\{1} 0 I|N |−1 0

uE 0 0 I|E|









,

where I denotes the identity matrix and 1 the matrix of all ones. More specifically: to generate a

vector with only nonzero coordinate uij = 1, for (ij) ∈ E, we form uf1−uhij . To generate a vector

with only nonzero coordinate ui = 1, i ∈ N \ {1}, we form the vector uei −uei−1 +uhi−1,i −uf1 .

Finally, we can generate a vector with only nonzero entries ug(i) = 1, u1 = 1, for some i ∈ N , by

forming: ue1 + ufi − uf1 . This completes the proof.

Proposition 10. Constraints (3.12) with S = N , i.e.:

∑

g∈G

ug +
∑

ij∈E

uij ≥
∑

i∈N

ui (3.18)

are facet defining for conv(H).

Proof. We will assume without loss of generality that when we refer to an edge (ij) ∈ E, we

have i < j. The zero vector satisfies (3.18) with equality, so we only need to find d − 1 linearly

independent points in H that satisfy (3.18) with equality. These are:

1. uai , i ∈ N : Only node i and the corresponding generator g(i) are energized (|N | points).

2. ukij , (ij) ∈ E: Only nodes i, j, edge (ij) and generator g(i) are energized (|E| points).

3. uli, i ∈ N \{1}: Only nodes 1, i, edge (1i) and generator g(i) are energized (|N |−1 points).
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We will show these points span a d − 1 dimensional subspace by showing we can use them to

generate all columns of the full rank d× (d− 1) matrix:









|G| |N | − 1 |E|

uG I|G| 0 0

u1 11×|G| −11×|N |−1 11×|E|

uN\{1} 0 I|N |−1 0

uE 0 0 I|E|









.

To generate a column with ug(i) = 1, u1 = 1, for some i ∈ N , we form: uli − uk1i + ua1 for

i 6= 1 and ua1 for i = 1. To generate a column with u1 = −1, ui = 1, for i ∈ N \ {1}, we form

uai −ua1 −uli +uk1i . Finally, to generate a column with u1 = 1, uij = 1, for some (ij) ∈ E, we

form ukij − uai − uaj + ua1 + ulj − uk1j . This concludes the proof.

3.8 Connections to the Literature

The feasible region defined by the IE constraints can be transformed into the feasible region

of the Rooted Maximum Weight Connected Subgraph Problem (RMWCS), with weights on edges

and nodes. The problem appears in [84], where a decomposition algorithm is devised to solve it.

The statement of the problem is as follows: consider an undirected graph with node set N̂ , edge set

Ê, and a given node r ∈ N̂ . Weights are associated with nodes and edges of the graph. We seek to

find a maximum weight connected subgraph that contains r. This problem is a modification of the

maximum weight connected subgraph problem.

The feasible region of the IE constraints can be transformed to the one of RMWCS. To see

that, consider the underlying undirected graph of the power system, with edges E and nodes N .

We introduce a dummy node r. We then add one edge between r and node i for every generator

in G(i). Edges connected to the root r correspond to the generator variables ug, g ∈ G. The

remaining edges correspond to the branch variables uij, ij ∈ E, and the nodes correspond to the

bus variables ui, i ∈ N . Since the root node r must be included in the subgraph, and the subgraph

needs to be connected, every energized element has to be connected to r with one edge variable

(which corresponds to the energized generator).

MIP formulations for the RMWCS have been studied in [40] for the directed graph version

of the problem. In this version, each node in the subgraph must be reachable from the root via a

directed path. The authors present a single commodity and a multi-commodity flow formulation,

similar to the ones in our work. They also present a cut-set formulation, but with the further

restriction that the subgraph forms an arborescence: for every node there exists a unique directed

path from the root node.

In [45] the authors transform the undirected, node weighted, unrooted, connected subgraph

problem to the Steiner tree problem, using the fact that the subgraph can without loss of generality

be chosen to be a tree for the case of only node weights. Using this transformation, they employ

algorithms for the Steiner tree problem to solve instances in protein–protein interaction networks.
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Note that edge weights can also be accommodated in this framework by adding a node with the

corresponding weight of every edge.

In [12] the feasible region for the unrooted, undirected version of the problem is formulated

in the space of only edges. A new set of constraints is introduced, namely the matching partition

inequalities. These inequalities define facets of the integer hull under some assumptions. A convex

hull description is given for cycles and trees. Constraints similar to (3.8) are used, with the only

difference that the in the right hand side edge variables appear instead of node variables - this

actually leads to a weaker constraint, due to (3.2), but the node variables are eliminated.

In [6] the authors formulate the RMWCS for the directed and undirected case in the space of

only nodes and present a polyhedral analysis for that polyhedron as well as a comparison of the

strength of the formulation with the edge-based formulation. They use a set of inequalities based

on node-separators. The formulation at the space of nodes can be strengthened using lifting of the

node separator inequalities [5,150] and one more family of inequalities, the in-degree inequalities,

as shown in [150], to become as strong as the edge-based formulation.

Multiple publications have dealt with the computational aspects of solving the problem in appli-

cations outside the power systems domain. In [123], reduction techniques and other computational

tools are used for exact optimization. In [21] the model appears in a forestry planning application.

In most of the aforementioned literature, the problem is formulated either exclusively in the

space of edges or in the space of nodes to reduce the number of variables. In our applications,

however, we need both nodes and edges, since both types of variables appear in constraints other

than the ones regarding connectivity. For example, the node energization variable is necessary

to also indicate if this bus can support load or not. Edges appear in the switching models of the

power flow equations, to regulate when the branches are open/closed. Edges also appear in the

reactive power equations, since they are associated with the reactive power generation from long

transmission lines.

It should also be noted that there are two ways to transfer results from the space of variables

corresponding to arcs in a directed graph to the space corresponding to the edges of the undirected

graph in the case of the RMWCS: the first one is to simply consider the undirected version of

the constraints (i.e. omit the directions and substitute the in-neighbor set and out-neighbor set of a

node with the undirected set of neighbors), if they remain valid. The second one is to consider each

undirected graph as a directed graph with two edges, (ij) and (ji) with corresponding variables

xij and xji, for every edge (ij) in the original undirected graph. Then, we set the variable of the

undirected case uij equal to uij = xij + xji. This yields a strong formulation for the undirected

graph (in fact, using the model from [6] together with this observation, we can get a stronger for-

mulation than the formulations we considered in the previous sections, but in an extended variable

space).

Formulation F3 (i.e. the Type I constraints) is a straightforward extension of the common

Steiner-tree based formulation for imposing an arborescence in directed graphs [40]. Our formula-

tion differs from the formulations that impose the requirement for a spanning tree of the subgraph

to ensure connectivity, such as in the vast literature on the prize collecting Steiner tree, in that the

edge variables are allowed to form cycles in our case. Of course, the feasible region projected in

the space of nodes is the same since connectivity of the subgraph is equivalent to the existence of
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a spanning tree. To the best of our knowledge, the Type II constraints have not appeared in the

literature for RMWCS. More importantly, identifying the connection to RMWCS for problems in

the power systems literature is, to the best of our knowledge, first done in this work, and can lead

to further explotation of this structure, potentially even for power systems applications that we did

not consider with the same underlying requirements.

3.9 A Simplified BSA Model

The goal of this section is to provide a simplified model and a solution approach to obtain a

candidate black start allocation (BSA) for large scale systems with optimality guarantees. Even

after only retaining the basic structure of the BSA problem, for a system of a few thousand buses the

resulting mixed integer program still contains millions of constraints and hundreds of thousands of

binary variables, and solving the linear programming relaxation alone can take hours. The key idea

described in what follows is to use a greedy heuristic to obtain a lower bound to the maximization

problem and then reformulate the constraints to obtain a tight upper bound.

The Model

In this section, we present a version of the BSA problem that exhibits a better computational

performance for large scale systems compared to the one presented in the previous chapter, while

retaining the basic structure of the problem. Let t denote an integer time instance (T being the set

of consecutive integer time instances starting from 0), g denote a generator in set G, i a bus (node)

in set N , and (ij) a branch (edge) in set A. We use the binary variable uBSg
to indicate, when

set to 1, the allocation of generator g ∈ G as a black start unit. The binary variables ut
g, u

t
i, u

t
ij

denote the energization (when set to 1) of generator g/bus i/branch (ij) at time t. Generator g is

also associated with the binary cranking variable uCRg
, which is 1 while the generator is cranking

and the variable wt
g which is equal to ut

g(1− uBSg
). The variables f t

g, f
t
ij denote the network flows

of the F1 formulation at time t, ptg is the active generation of generator g, ptij is the active power

flow on branch (ij), and ptSHi
is the load shed at bus i. Finally, the parameters of the problem are

the cost CBSg
of allocating generator g to be a BS unit, the total allocation budget B, the number

of allowable branch energizations per unit time Kcrew, the generator active power maximum Pmax
g ,

active power minimum Pmin
g , cranking time TCRg

(assumed to be a positive integer), cranking

power PCRg
, and minimum reactive power capability Q

g
, the bus load PDi

≥ 0, angle φDi
and

shunt reactance QSHi
, and the branch susceptance BSHij

and branch power limit S̄ij . We define
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the following optimization problem:

maximize
∑

(ij)∈A,t∈T

ut
ij +

∑

i∈N,t∈T

ut
i + λG

∑

t∈T

f(ut)

subject to
∑

g∈G

CBSg
uBSg

≤ B (3.19a)

u0
i = 0, i ∈ N, ut

g = 0, g ∈ G, t ∈ {−TCRg
, . . . ,−1} (3.19b)

ut
g ≥ ut−1

g , g ∈ G, t ∈ T \ {0} (3.19c)

ut
CRg

= ut
g − u

t−TCRg
g , g ∈ G, t ∈ T (3.19d)

ut
ij ≤ ut−1

i + ut−1
j , (ij) ∈ A, t ∈ T \ {0} (3.19e)

∑

(ij)∈A

(ut
ij − ut−1

ij )+ ≤ Kcrew, t ∈ T \ {0} (3.19f)

ut
CRg
≤ ut

i + uBSg
, g ∈ G(i), i ∈ N (3.19g)

ut
g − ut

CRg
≤ ut

i , i ∈ N, g ∈ G(i), t ∈ T (3.19h)

ut
ij ≤ ut

i, u
t
ij ≤ ut

j , (ij) ∈ A, t ∈ T (3.19i)

0 ≤ f t
g ≤ ut

g − ut
CRg

, g ∈ G, t ∈ T, (3.19j)

− ut
ij ≤ f t

ij ≤ ut
ij, (ij) ∈ A, t ∈ T, (3.19k)

∑

j:(ji)∈A

f t
ji −

∑

j:(ij)∈A

f t
ij +

∑

g∈G(i)

f t
g =

1

|N |
ut
i, i ∈ N, t ∈ T (3.19l)

wt
g + uBSg

≥ ut
g, g ∈ G, t ∈ T (3.19m)

wt
g ≤ ut

g, g ∈ G, t ∈ T (3.19n)

wt
g + uBSg

≤ 1, g ∈ G, t ∈ T (3.19o)

ptg ≥ −PCRg
wt

g + (PCRg
+ Pmin

g )w
t−TCRg
g , g ∈ G, t ∈ T (3.19p)

ptg ≤ Pmax
g (ut

g − ut
CRg

)− PCRg
(wt

g − w
t−TCRg
g ), g ∈ G, t ∈ T (3.19q)

− ut
ijS̄ij ≤ ptij ≤ S̄iju

t
ij, (ij) ∈ A, t ∈ T (3.19r)

∑

j:(ji)∈A

ptji −
∑

j:(ij)∈A

ptij +
∑

g∈G(i)

ptg = PDi
− ptSHi

, i ∈ N, t ∈ T (3.19s)

(1− ut
i)PDi

≤ ptSHi
≤ PDi

, i ∈ N, t ∈ T (3.19t)
∑

i∈N

∑

g∈G(i)

Q
g
u

max{0,t−TCRg−1}
g +

∑

(ij)∈A

BSHij
ut
ij+

∑

i∈N

QSHiu
t
i −

∑

i∈N

PDi
tan(φDi

) ≤ 0, t ∈ T (3.19u)

The objective is a measure of the energization state of the system at different time instances.
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The first two objective terms encourage energization of grid branches and buses. We define

f(ut) = min(αL

∑

i∈N PDi
,
∑

g∈G ut
gP

max
g ). This definition is motivated by the fact that we want

to energize generating units to support the power system, but since real power systems operate

with large excess generation capacity we do not need to encourage unit energization after the total

capacity of energized units exceeds a multiple αL of the total load. The parameter λG is a trade-off

coefficient.

Constraint (3.19a) imposes the black start allocation budget on the selection of black start

units. The restoration of the system will start around these units. One simplified way to visualize

the underlying optimization is as follows: We have a given budget to pick a few generators on the

system (corresponding to particular nodes). We can then expand the system energization around

these nodes in the power system graph over time. The objective metric corresponds roughly to

how much of the system we were able to energize, measured at given time instances after the start

of the process. Of course, the energization process needs to obey certain rules, such as operator

switching limits, startup curves for the generators, power constraints for every island. We include

some of these constraints in the optimization problem.

Constraint (3.19b) initializes the node and generator variables to zero (total blackout). Con-

straint (3.19c) stipulates that a generator can only be energized once. This assumption is only

introduced to simplify the model - there is no actual system requirement for that. This assumption

is not unreasonable though, since during the first steps of restoration (to which our optimization

refers to), we usually tend to energize generators to stabilize the system and support more load,

rather than turn them off. It is usually when the system returns to normal operation that costly

units that were only energized for restoration purposes will be turned off again. (3.19d) defines

the cranking variable (a generator is cranking if and only if it is currently energized but was not

energized TCRg
time units in the past).

(3.19e) and (3.19f) impose a limit on the rate for the energization. (3.19e) imposes that we can

only energize an edge, if at least one of its buses was energized at the previous time step. (3.19f)

is a physical constraint that comes from the fact that the operator has finite resources (people) to

restore the system. We assume that each branch energization takes some time to happen (time

that has to do with ensuring the feasibility of the energization as well as performing the necessary

operations to implement the switching). Kcrew indicates the number of branch energizations per

time step. De-energizations of branches are usually faster, so we don’t limit their number per time

step. Note that we use the notation (x)+ = max{0, x}.
Constraint (3.19g) stipulates that nodes corresponding to cranking generators must be on, ex-

cept if the cranking generator is a black start. (3.19h) imposes that a generator that has finished

cranking energizes the node it connects to. (3.19i) imposes that an energized branch must have

both its endpoints energized. Constraints (3.19j)-(3.19l) impose the island energization require-

ment: any energized bus must be connected to an energized generator that has completed cranking.

This constraint is slightly different than the version used in the model of the previous chapter, in the

sense that we impose the stronger requirement that a node must be connected to an energized gen-

erator that has also finished cranking to be energized. This choice was associated with an observed

improved computational performance. It imposes a change in the feasible restoration sequences

around the black start units during the first restoration steps. In terms of modeling, it corresponds
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(a) Start-up curve for a non black-start unit (uBSg
= 0)

in the simplified model. After the unit starts at time ts,

it needs to crank by absorbing active power PCRg
from

the system for time TCRg
. Following that, it can move

at any point between the minimum and maximum gener-

ation, Pmin
g and Pmax

g respectively.

(b) Start-up curve for a black-start unit (uBSg
= 1) in the

simplified model. After the unit starts at time ts, it needs

to crank for time TCRg
. However, the cranking power

does not need to be provided by the system. Following

that, generation can move at any non negative point below

the maximum generation Pmax
g .

Figure 3.3: Generator active power curve for a black-start and a non black-start unit. The curves are jointly described

by equations (3.19m)-(3.19q). The variable wt
g corresponds to the product ut

g(1− uBSg
), which is linearized.

to using the variable difference ut
g − ut

CRg
in the place of ut

g in all the IE constraints.

Constraints (3.19m)-(3.19q) define the generator model, as described in figure 3.3. Compared

to the restoration model in the previous chapter, we note that we omitted the ramping constraints.

This change comes from the fact that for this large scale system we are using a coarser time resolu-

tion interval (an hour). Most of the generating units that are used in the first steps of restoration are

capable to ramp up or down quickly enough to render the ramping constraints redundant, which

in turn allows us to use a simpler model based on step functions. We directly model the startup

curves for black start and non black start units using additional binary variables instead of using

the transformations of the previous sections.

Constraints (3.19p)-(3.19t) define a transportation model for the active power flow. This is in

fact a major simplification made for the sake of computational tractability, since the transmission

switching model used in the previous chapter is omitted. As a result, Kirchhoff’s voltage law might

not be respected by the solution. However, the set of constraints used ensures at least that every

island that appears during the restoration process satisfies active power balance (i.e. the total island

generation equals the island demand). This incorporates two important restoration considerations:

First, for every generator that gets cranked, there is sufficient active power generation in the island

to support its cranking power. Second, every generator that has finished cranking and needs to

keep its generation above the minimum generation point Pmin
g can find enough load in the island

to do that. Finally, (3.19u) imposes an aggregate reactive power constraint (the reactive power

absorbtion capability of generators, shunt reactances, and reactive load is enough to overcome the

reactive power generation induced by the branch susceptances of large transmission lines).

As a conclusion to the model discussion, we should note that the aim of this optimization is not

to generate a complete restoration sequence. Rather, the goal is to identify good positions for black

start units in the graph, while picking black start units with suitable startup characteristics, and for

that a simplified model which captures the main problem characteristics can be sufficient for a
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planning tool. Generating the actual detailed restoration sequences that respect all the constraints

needs a significant amount of more detail, which is hard to accomplish while also optimizing for the

locations of the black start units (and is even hard if these locations are known). Of course, before

an actual decision for the black starts is made, a more detailed simulation should be performed

with the positions of these units fixed. We can always exclude a unit black start allocation by using

a “No-Good-Cut” and resolving the problem (see chapter 4).

Model Transformation

The optimization problem as defined above, while direct and intuitive to present, employs a

very large number of variables, which leads to slow computations. In this section we will use

two transformations (constraint reformulations) to reduce the number of variables while mostly

maintaining or even improving the quality of upper bounds. The resulting formulations have an

exponential number of constraints, but by including only a small, carefully selected subset of them

a priori and treating the rest as lazy constraints, we can obtain a smaller optimization problem

without a significant loss in the quality of the upper bounding properties of the relaxations.

First, we can reformulate (3.19j)-(3.19l) using the observations of this chapter. Specifically, we

eliminate variables f t
g and f t

ij and use the exponential in size set of Type I constraints. As shown in

the previous section, the Type II constraints presented are also valid, so they can be used to further

strengthen the formulation.

We will next eliminate the variables ptg, p
t
ij, p

t
SHi

and the constraints they appear in, i.e. (3.19p)-

(3.19t). To that end, we define for a given t ∈ T :

P̂ t,max
g = Pmax

g (ut
g − ut

CRg
)− Pmin

g w
t−TCRg
g , g ∈ G (3.20a)

p̂tg = ptg + PCRg
wt

g − (PCRg
+ Pmin

g )w
t−TCRg
g , g ∈ G (3.20b)

P̂ t,max
SHi

= PDi
ut
i, i ∈ N (3.20c)

p̂tSHi
= ptSHi

− (1− ut
i)PDi

, i ∈ N (3.20d)

P̂ t
Di

= PDi
ut
i +

∑

g∈G(i)

(PCRg
wt

g − (PCRg
+ Pmin

g )w
t−TCRg
g ), i ∈ N (3.20e)

Note that P̂ t,max
g ≥ 0 for all feasible binary assignments, which we can see using wt

g = ut
g(1 −

uBSg
), equation (3.19d), and the fact that 0 ≤ Pmin

g ≤ Pmax
g . Also, recall that the edge set A is a

set of directed edges that correspond to the branches of the power system by arbitrarily picking a

“from” and “to” direction for each branch. We also define a (directed) edge set Ã based on the edge

set A which contains both the arcs (ji) and (ij) for every arc (ij) ∈ A. That way, every flow ptij
satisfying (3.19r) in A can be decomposed into two non negative flows in Ã with p̂tij = max(0, ptij)
and p̂tji = max(0,−ptij) (and conversely we can obtain a flow for A by setting ptij = p̂tij − p̂tji.
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Using the above definitions, equations (3.19p)-(3.19t) are equivalently expressed:

0 ≤ p̂tg ≤ P̂ t,max
g , g ∈ G (3.21a)

0 ≤ p̂tij ≤ S̄iju
t
ij, 0 ≤ p̂tji ≤ S̄iju

t
ij, (ij) ∈ Ã (3.21b)

0 ≤ p̂tSHi
≤ P̂ t,max

SHi
, i ∈ N (3.21c)

∑

j:(ji)∈Ã

p̂tji −
∑

j:(ij)∈Ã

p̂tij +
∑

g∈G(i)

p̂tg + p̂tSHi
= P̂ t

Di
, i ∈ N (3.21d)

Note the variables ptg, p
t
ij, p

t
SHi

are uniquely defined by the variables p̂tg, p̂
t
ij, p̂

t
SHi

and vice versa

based on the transformations given above. The system (3.21) is feasible for p̂tg, p̂
t
ij, p̂

t
SHi

if and

only if the following system of equations is feasible. For all S ⊆ N :

∑

i∈S

P̂ t
Di

+
∑

(ij)∈δ(S)

S̄iju
t
ij ≥ 0 (3.22a)

∑

i∈S

P̂ t,max
SHi

+
∑

g∈G(S)

P̂ t,max
g +

∑

(ij)∈δ(S)

S̄iju
t
ij ≥

∑

i∈S

P̂ t
Di

(3.22b)

where we denote with δ(S) the edges in A with exactly one endpoint in S. The equivalence is

straightforward application of Hoffman’s Circulation Theorem or the maximum flow - minimum

cut theorem. We give a proof for reasons of completeness.

Proposition 11. System (3.21) has a solution with respect to {p̂tg}g∈G , {p̂tij}ij∈A, {p̂tSHi
}i∈N if and

only if system (3.22) is satisfied.

Proof. (=⇒) Assume (3.21) has a solution with respect to {p̂tg}g∈G , {p̂tij}ij∈A, {p̂SHi
}i∈N . Given

a set S ⊆ N , by summing equations (3.21d) for i ∈ S, we obtain:

∑

(ji)∈Ã:j∈N\S,i∈S

p̂tji +
∑

g∈G(S)

p̂tg +
∑

i∈S

p̂tSHi
=

∑

i∈S

P̂ t
Di

+
∑

(ij)∈Ã:i∈S,j∈N\S

p̂tij

Due to (3.21a)-(3.21c), the left hand side of the above equation is non negative and the right

hand side is less than or equal to
∑

i∈S P̂
t
Di

+
∑

(ij)∈δ(S) S̄iju
t
ij . This yields equation (3.22a).

Furthermore, again due to (3.21a)-(3.21c), the right hand side of the above equation is greater than

or equal to
∑

i∈S P̂
t
Di

and the left hand side is less than or equal to
∑

i∈S P̂
t,max
SHi

+
∑

g∈G(S) P̂
t,max
g +

∑

(ij)∈δ(S) S̄iju
t
ij . This yields equation (3.22b).

(⇐=) In order to show the reverse implication, we construct the graph of figure 3.4. The

node set consists of the power system nodes N , a source node ns, a sink node nt, and a node

corresponding to generators nG. We define Npos = {i ∈ N : P̂ t
Di

> 0} and Nneg = {i ∈ N :

P̂ t
Di

< 0}. Note that due to (3.22a) for S = N , we have that
∑

i∈N P̂ t
Di
≥ 0.

We add the following directed capacitated edges:

1. From ns to nG, with capacity
∑

i∈N P̂ t
Di

.
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2. From ns to i ∈ Nneg, with capacity −P̂ t
Di

.

3. From j ∈ Npos to nt, with capacity P̂ t
Dj

.

4. From i ∈ N to j ∈ N if (ij) ∈ Ã, with capacity S̄iju
t
ij

5. From nG to i ∈ N with capacity P t,max
SHi

+
∑

g∈G(i) P̂
t,max
g .

We will now show that, if (3.22) holds, the minimum ns−nt cut in this graph is exactly equal to
∑

i∈Npos
P̂ t
Di

. In order to show that, we show that every cut is greater than or equal to
∑

i∈Npos
P̂ t
Di

.

Since the cut S = {ns, nG, N}, T = {nt} has exactly that capacity, it is a minimum cut.

Indeed, we have two cases: If node nG belongs to T , the capacity of the cut is:

∑

i∈N

P̂ t
Di

+
∑

ij∈δ(S)

S̄iju
t
ij +

∑

i∈Nneg∩T

(−P̂ t
Di
) +

∑

i∈Npos∩S

P̂ t
Di
,

which is greater than or equal to
∑

i∈Npos
P̂ t
Di

due to (3.22a) applied to set S. If node nG belongs

to S, the capacity of the cut is:

∑

i∈T

P t,max
SHi

+
∑

g∈G(T )

P̂ t,max
g +

∑

ij∈δ(T )

S̄iju
t
ij +

∑

i∈Nneg∩T

(−P̂ t
Di
) +

∑

i∈Npos∩S

P̂ t
Di
,

which is greater than or equal to
∑

i∈Npos
P̂ t
Di

due to (3.22b) applied to set T .

Since the minimum cut exactly equals
∑

i∈Npos
P̂ t
Di

, there exists a corresponding maximum

flow of the same value on the graph. Since the flows from i ∈ Npos to nt are non negative and

upper bounded by P̂ t
Di

, and the total flow into nt has to equal
∑

i∈Npos
P̂ t
Di

, we have that each

flow from i ∈ Npos to nt exactly equals P̂ t
Di

. Using a similar argument, since
∑

i∈Npos
P̂ t
Di

=
∑

i∈N P̂ t
Di

+
∑

i∈Nneg
(−P̂ t

Di
), the flow from ns to i ∈ Nneg is equal to (−P̂ t

Di
) and the flow from

ns to nG is equal to
∑

i∈N P̂ t
Di

. The remaining flows on the graph yield feasible values for p̂tg, p̂tij ,

and p̂tSHi
in the system (3.21). Specifically, the flow on (ij) ∈ Ã corresponds to p̂tij and the flow

on the edge from nG to i corresponds to
∑

g∈G(i) p̂
t
g + p̂tSHi

. The flow balance equation for node

i ∈ N yields (3.21d).

The constraint set (3.22) can be separated efficiently using minimum cut on the graph in figure

3.4 of the last proof. This separation can be used in a Benders-like scheme and is faster in general

than solving the linear program (3.21). To be more precise, given a point {P̂ t
Di
}i∈N , {P t,max

SHi
}i∈N ,

{ut
ij}(ij)∈E , {P̂ t,max

g }g∈G:

1. If
∑

i∈N P̂ t
Di

< 0, add cut (3.22a) for S = N .

2. If
∑

i∈N P̂ t
Di
≥ 0, create the graph of figure 3.4:
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Figure 3.4: Graph used to separate constraints (3.22).

• If the minimum ns − nt cut is less than
∑

i∈Npos
P̂ t
Di

and nG belongs to the sink set T ,

add cut (3.22a) for the set T .

• If the minimum ns − nt cut is less than
∑

i∈Npos
P̂ t
Di

and nG belongs to the source set

S, add cut (3.22b) for the source set S.

• If the minimum ns − nt cut is equal to
∑

i∈Npos
P̂ t
Di

, all the constraints (3.22) are satis-

fied.

The other advantage of having an explicit form for the reformulation (as opposed to only a cut

generation scheme) is that we can add some of the constraints a priori, if we believe that they are

going to be effective in deriving good bounds. In fact, we will exploit that in the computations of

the Texas system. Note finally that the new variables P̂ t,max
g , P̂ t,max

SHi
, P̂ t

Di
are never introduced in the

optimization - constraints (3.22) are simplified to only contain the original binary variables before

these get added to the optimization.

Customized Heuristic for Lower Bounds

A customized heuristic is used to obtain lower bounds (feasible solutions) to the problem. The

heuristic used is the same step-wise greedy heuristic that was described in the previous chapter

to obtain feasible solutions - gradually fixing binary variables up to a given time step and then

solving the LP relaxation of the problem corresponding to the future time steps, and subsequently

repeating for the next time step. There are two enhancements: First, since even the LP relaxation is

hard to solve for large systems and for the full horizon, a smaller look-ahead time was considered

in the heuristic subproblems instead (typically up to 10 time steps). Second, when using a small

enough look-ahead (of 2 − 5 time steps), we can obtain near optimal solutions for that restricted

mixed integer program instead of the LP relaxation, which we can also use in the greedy step-wise

heuristic.
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3.10 Experimental Results

All optimization problems in this section were formulated using Gurobi with Python. Each

simulation was executed at a single node of the Lawrence Livermore National Laboratory quartz

server (2 × Intel Xeon E5-2695, 36 cores, 128 GB RAM), running Red Hat Enterprise. The

simulations employ instances of the ICI and BSA problem, in which the IE constraint appears.

We experiment with the impact that reformulating the IE constraint has on these instances. We

perform two types of simulations. First, we want to evaluate the bound quality improvement due

to the difference in the strength of the formulations, for the two applications of interest. Second, we

want to compare how the difference in the formulation of the problem impacts the computational

times in practice. The second part is important, since formulation strength is not the only factor

that influences the computational time - including all constraints from a large formulation can often

be too time consuming.

As far as the quality of bound is concerned, we compare four possible implementations and

solve the relaxation of the root node in each case:

(i) Formulation F1.

(ii) Formulation F3 (Type I cuts), which is equivalent to formulation F2.

(iii) Formulation F1 with Type II cuts.

(iv) Formulation F3 (Type I cuts) with Type II cuts.

For the separation of the Type I constraints we use an implementation of the push-relabel

algorithm for the maximum flow in the python-igraph package [35]. For the separation of the

Type II constraints, we implement a cutting plane algorithm for submodular minimization based

on minimizing the Lovasz extension [10, 145], using linear programming. The separation is not

exact, due to the numerical tolerances used. Specifically, we stopped adding constraints when

the maximum violation found was less than 0.001. In some cases, this process did not terminate

within the 20000s time limit imposed. In these cases the final objective was reported - in fact in all

of these cases at least the first 5 significant digits of the objective value did not change in the last

iteration. These termination criteria are not necessarily good indicators of obtaining an accurate

optimal objective for the root node relaxation, which is why the values reported should be treated

as upper bounds for the BSA problem and lower bounds for the ICI problem of the actual root node

relaxation objective.

For the second part of simulations, we will solve for points over the same feasible region in Zb,

implemented using the following alternatives for imposing the IE constraints:

(A) Formulation F1.

(B) Formulation F2.
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ICI F1 F3 F1 & F3 & Best

Root (Type I) Type II Type II Bound

[%] [%] [%] [%]

IEEE-118K = 4 27.36 11.75 18.87 11.75 3.68
Polish K = 3 0.89 0.44 0.44 0.44 17.77
Polish K = 4 4.61 1.34 3.79 1.34 27.39
Polish K = 5 6.24 0.81 4.07 0.81 44.91

Table 3.1: Optimal ICI root node relaxation for the IEEE-118 and Polish systems, splitting the system into K islands,

employing the different formulations. The last column corresponds to the best bound found by the complete branch

and cut tree, when the problem was solved to 1% optimality. Columns 2-5 show the difference of the root node lower

bound of the respective formulation from the best lower bound found in column 5, as a percentage of the best bound.

(C) Formulation based on F3 (Type I cuts). For this implementation, we a priori included in

the constraint body passed to the solver the Type I constraints with |S| ∈ {1, |N |}. We use

integer callbacks to lazily add the remaining Type I constraints, only if they are violated for

an integer feasible point found by the solver. Since these points are integer, separation of

Type I cuts can be done simply through a graph traversal (we can find islands that violate the

IE constraints in linear time). Note that since we do not use nodal callbacks in the branch and

bound tree, we lose part of the strength of formulation F3. However, in our computational

experiments, this compromise resulted in faster solution times.

(D) Formulation based on F3 enhanced with Type II cuts. For this implementation, we a priori

included in the constraint body passed to the solver the Type I and Type II constraints with

|S| ∈ {1, |N |}. We use integer callbacks to lazily add the remaining Type I constraints,

only if they are violated for an integer feasible solution. For the islands that are identified to

violate the constraint, we also add the Type II cuts.

Unless specified otherwise, for these simulations a 2000s time limit was set to the solver and a

1% optimality gap termination was considered (i.e. a solution guaranteed to be within 1% of the

optimal is denoted as optimal) for all simulations. Some instances caused the B&B tree to run

out of memory due to the size of the problem. For these instances (indicated with ∗), we present

results using settings that limit the solver’s memory use by restricting the number of threads to 4

and using the file system as temporary storage.

Optimal Intentional Controlled Islanding

The most common practice behind ICI is that the generators of the grid can be divided into

groups of coherent generators, based on their relative angle response to a disturbance. By isolating

unstable generators or grouping together only generators that are coherent to each other, a cascaded

outage may be avoided. In [81], an optimal ICI model was devised to propose switching actions.



CHAPTER 3. FORMULATIONS AND VALID INEQUALITIES FOR POWER SYSTEM

ISLANDING AND RESTORATION 60

Optimal Gap Upper Lower Time

ICI [%] Bound Bound [s]

IEEE-118 K = 4
(A) Optimal 3.684 3.684 0.11
(C) Optimal 3.684 3.684 0.64
(D) Optimal 3.684 3.684 0.66
(R) Optimal 3.684 3.684 1.5
Polish K = 3
(A) Optimal 17.771 17.612 3
(C) Optimal 17.771 17.771 12
(D) Optimal 17.771 17.771 10
(R) Optimal 17.771 17.771 41

K = 4
(A) Optimal 27.390 27.181 19
(C) Optimal 27.425 27.248 21
(D) Optimal 27.422 27.156 13
(R) Optimal 27.390 27.390 293

K = 5
(A) Optimal 44.944 44.774 34
(C) Optimal 44.951 44.774 16
(D) Optimal 44.951 44.774 15
(R) Optimal 44.916 44.901 1312

Table 3.2: Optimal ICI for the IEEE-118 and Polish systems, splitting the system into K islands (Presolve on).

The goal was to create a partition of the grid into islands of coherent generators with minimal

power-flow disruption.

The formulation provided in [81], which we denote with F4, utilizes a mixed integer program

to identify the optimal islanding. The authors of [81] deal with the intractability of formulation

F4 by constructing a heuristic based on LP relaxations. In this chapter, we provide an equivalent

optimization problem to F4, that makes use of the IE constraint formulations F1, F2 and F3; see

Appendix 3.A for the formulation we employ.

In order to perform a computational comparison between the different formulations of the

problem, we considered two test systems: the IEEE-118 bus system (118 buses, 186 branches, 54
generators) and an instance of the Polish system (3374 buses, 4161 branches, 596 generators). Due

to the size of the resulting model and the memory limitations, formulation F2 was impractical and

was not implemented.

The results for the lower bounds to the ICI problem using the different formulations are pre-

sented in Table 3.1. Note that after the introduction of all Type I and Type II constraints, the bound

obtained is very close to the best bound found from the solution of the problem using branch and
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Optimal Gap Upper Lower Time

ICI [%] Bound Bound [s]

IEEE-118 K = 4
(A) Optimal 3.684 3.684 0.16
(C) Optimal 3.684 3.684 0.49
(D) Optimal 3.684 3.684 0.55
(R) Optimal 3.684 3.684 0.94
Polish K = 3
(A) Optimal 17.771 17.612 5
(C) Optimal 17.771 17.771 19
(D) Optimal 17.771 17.771 12
(R) Optimal 17.771 17.771 509

K = 4
(A) Optimal 27.390 27.390 12
(C) Optimal 27.390 27.390 53
(D) Optimal 27.425 27.248 26
(R) Optimal 27.390 27.390 3098

K = 5
(A) Optimal 44.915 44.915 13
(C) Optimal 44.915 44.655 68
(D) Optimal 45.073 44.689 30
(R) 1.46 44.915 44.258 20000

Table 3.3: Optimal ICI for the IEEE-118 and Polish systems, splitting the system into K islands (Presolve off).

cut (with 1% optimality guarantee) in most instances. Also note that the additional benefit from

Type II constraints is not visible in the bound after all Type I constraints are introduced.

The computational results for solving the problem to near optimality are presented in Table

3.2. In addition to the implementations discussed in the introduction of this section, we denote

with (R) the implementation of F4. Due to a significant difference in performance, we also provide

the same computations with the solver presolve turned off in table 3.3 (and using a longer time

limit of 20000s). This would not be a choice in a practical setting, but it allows to preserve the

formulations at the start of branch and cut and offers a more accurate picture of the comparison

between formulations without the solver preprocessing and strengthening. The IEEE-118 system

solves relatively quickly for all three formulations considered. For the Polish system, we observe

that (R) seems to be at least one order of magnitude slower than F1. Implementation (C) performs

slightly worse than (A) (with, in fact, more than half the simulation time spent in separating the

violated constraints). Implementation (D) behaves similarly to (C), with a slightly faster computa-

tional time, possibly due to the additional presence of the Type II cuts. In this case formulation F1

has the best performance.
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BSA F1 F3 F1 & F3 & Best

Root (Type I) Type II Type II Bound

[%] [%] [%] [%]

IEEE-39 21.75 15.59 15.35 15.35 2199.15
IEEE-118 6.57 1.89 1.41 1.23 5051.41
Illinois-200 8.45 3.37 2.43 2.43 6480.59
WECC-225 4.13∗∗ 1.48 1.47 1.47 16598.51
IEEE-300 16.19 6.47 4.85 4.81 12684.21
South Carolina-500 16.99 4.19 1.07 0.95 13778.61

Table 3.4: Optimal BSA root node relaxations for synthetic test systems, employing the different formulations. The

last column corresponds to the best bound found by the branch and cut tree in the results of table 3.5. Columns 2-5

are percentages above the best upper bound found from branch and bound (column 6). The ∗∗ indicate suboptimal

termination due to numerical errors in Gurobi.

Optimal Black Start Allocation

We performed simulations using the model described on section 3.9 for a number of test cases,

obtained from the Matpower database [159]. Reasonable initializations were used for the restora-

tion parameters. All the parameters used can be found online at [108].

The results for the quality of the root node relaxation are given in table 3.4. One first observa-

tion is that there is a significant improvement in the quality of the lower bound between using the

single commodity flow formulation F1 and the formulation with all Type I and II cuts (column F3

& Type II). A second observation is that the best bound obtained (last column) in most cases is ac-

tually fairly close to the bound obtained by including all Type I and Type II cuts. Finally, the Type

II cuts seems to only make a noticeable difference in the strength of the lower bound compared to

simply using just Type I cuts only in the larger test systems (IEEE-300 and South Carolina-500).

For the simulations to near optimality, we implement the configurations discussed in the in-

troduction of this section, i.e. implementations (A)-(D). In all of these implementations, the con-

straints (3.19p)-(3.19t) are used to impose the active power requirement. We additionally consider

the following implementation:

(E) Type I and II constraints are used to impose the IE constraint in the place of (3.19j)-(3.19l).

Specifically, Type I and II constraints for |S| ∈ {1, |N |} are added a priori. We use integer

callbacks to lazily add the remaining Type I constraints, only if they are violated for an

integer feasible point. For the islands that are identified to violate the constraint, we also

add the Type II cuts. The system (3.22) is used to impose the active power constraints. The

constraints (3.22a) and (3.22b) for |S| ∈ {1, |N |} are added a priori, and the remaining

constraints are imposed through an integer callback.

The first observation is that implementation (B), which uses formulation F2 is unable to com-
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Optimal BSA Gap [%] Upper Bound Lower Bound Time [s]

IEEE-39
(A) Optimal 2221.04 2199.15 2.6
(B) Optimal 2210.59 2199.15 10
(C) Optimal 2199.15 2199.15 3.9
(D) Optimal 2199.15 2199.15 3.2
(E) Optimal 2206.75 2199.15 1.7

IEEE-118
(A) Optimal 5066.87 5018.69 50
(B) 24.9 5101.76 4084.56 2000
(C) Optimal 5062.64 5018.16 47
(D) Optimal 5051.41 5019.56 55
(E) Optimal 5053.76 5018.56 120

Illinois-200
(A) Optimal 6480.59 6460.99 147
(B) − 6517.80 0 2000
(C) Optimal 6494.89 6460.99 53
(D) Optimal 6510.60 6446.90 42
(E) Optimal 6494.54 6460.79 44

WECC-225
(A) Optimal 16598.51 16574.62 96
(B)∗ − 16696.60 0 2000
(C) Optimal 16604.51 16444.93 58
(D) Optimal 16610.33 16516.27 71
(E) Optimal 16610.56 16510.42 53

IEEE-300
(A) 8.69 12916.52 11883.79 2000
(B)∗ − 16989.79 0 2000
(C) 3.98 12807.97 12317.66 2000
(D) 2.02 12773.35 12520.20 2000
(E) 1.18 12684.21 12536.08 2000

South Carolina-500
(A) 156.47 13987.39 5453.70 2000
(B)∗ − 19009.15 0 2000
(C) 8.55 14262.80 13138.36 2000
(D) 4.35 13778.61 13203.37 2000
(E) 5.22 13782.59 13098.70 2000

Table 3.5: Optimal BSA results for synthetic test systems.
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BSA Imple- UB after Time after UB at LB at Gap at

mentation root root [s] time limit time limit time limit

(A) 178217 3519 178217 164112 8.59%
(C) 175326 2429 173725 164112 5.85%
(D) 171850 5667 171479 164112 4.49%
(E) 171805 669 170775 164112 4.06%

Table 3.6: Simulations in Gurobi for the different implementations for the Texas system BSA. The second column

corresponds to the best upper bound found after solving the root node relaxation. Note that Gurobi presolve is on. The

third column corresponds to the time for solving the root node relaxation. The last three columns give the final upper

bound, lower bound, and gap at the time limit of 20000s.

pete with the other implementations due to its size. In fact, for the larger systems (IEEE-300 and

South Carolina-500), not even the root node relaxation can be solved within the 2000s time limit.

A second observation is that all the other implementations seem to be able to solve the four smaller

power systems fairly easily. Additionally, we observe that Formulation F1 is outperformed by

the cut-based formulations for imposing the IE constraint - it is slightly slower in the Illinois-200

system, and significantly outperformed in the IEEE-300 and South Carolina-500 systems. Type II

cuts, employed in (D) and (E), seem to help for the largest two systems in obtaining a better bound

within the time limit. Finally, for the same systems, the use of the active power cuts (3.22a) and

(3.22b) help the solver to achieve a gap better by approximately 1 percentage unit.

Solving an Industrial Size Test Case for BSA

The synthetic Texas system consists of 2 000 buses, 3 206 branches, 544 generators. This in-

stance is the largest one considered in this paper, and in order to solve it we use additional tech-

niques to the ones described in the previous subsections. It also represents the extent of the size

of models we can handle at this point using our BSA model. We devote this subsection to a more

detailed description of the solution approach for this system. The system data (buses, branches,

generators) and the power flow characteristics were obtained from the data sets of Texas A&M

University [13]. We performed reasonable or random initialization of the restoration related pa-

rameters, as described in the next paragraph.

We used a time horizon of 40 time steps, with one time step corresponding to an hour. The

trade-off coefficient in the objective was set to λG = 1 (note that the mean p.u. value of Pmax
g over

g ∈ G is 1.84) and αL = 1.2. The parameter Kcrew was set to 120 branch energizations per hour.

The resulting optimization problem has 1 830 671 constraints, 779 178 variables, of which

505 114 are continuous and 274 064 are binary, and a total of 4 977 963 nonzero elements in the

constraint matrix.

Directly passing this problem to Gurobi does not yield a feasible solution within an 20000s time

limit for (3.19). Using the heuristic strategy described in subsection 3.9, we were able to obtain a
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(a) Time step t = 3. (b) Time step t = 7.

(c) Time step t = 15. (d) Time step t = 20.

Figure 3.5: Visualization of four snapshots from the Texas system restoration in the 4.06% optimal solution found.

The energized part of the system is indicated with red and the de-energized with black. A system aggregation is used

before plotting for better visualization. A total of 9 black starts were assigned.

feasible solution with objective 164113. The next goal is to obtain an upper bound guarantee for

this solution and - if possible - a better solution.

Gurobi Optimizer version 9.0.2 was used to solve the problem with the Python interface (Guro-

bipy). For all simulations the “Method” parameter in Gurobi was set to 3. The “Heuristics” pa-

rameter was increased to 0.3 (i.e. 30% of the time is spent on heuristics to improve the lower

bound solution and potentially the upper bound by triggering integer callbacks and adding cuts).

Due to an observed better computational performance, we set the number of threads to 8 and we

introduced constraint (3.19f) as a lazy constraint, by simultaneously adding a-priori the weaker

constraint
∑

(ij)∈A(u
t
ij − ut−1

ij ) ≤ Kcrew. For (C), (D), and (E), since callbacks are used, we set the

Gurobi parameter “LazyConstraints” to 1 and “PreCrush” to 1. The remaining parameters were

kept at their default values.

Simulation results are shown on table 3.6. First, we note that unfortunately none of the im-

plementations could yield an improvement to the MIP start found by our specialized heuristic and

used as a start start point by the MIP solver. The implementation that achieves the best optimality

guarantee within the time limit is (E).
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Figure 3.6: Plot of an example metric as a function of the budget allocated to enhance the black start capability of the

simplified WECC system.

We should note that, in the case of the formulations with exponentially many constraints, these

constraints are added through integer callbacks (and not at fractional points), so the linear program-

ming relaxation does not actually reflect the full strength of the formulation. Hence, the constraints

that are reflected in the root node relaxation solution are mainly the ones that are added a priori. Of

course, since presolve is activated and may behave differently for each implementation and solver

heuristics might trigger the addition of a few additional constraints through the callbacks, the up-

per bound value and time presented on table 3.6 serves only as a checkpoint of the progress of the

solver. We should also note that, without presolve, (D) would provide at least as good a bound as

(E) after the root node, since it includes the complete formulation for power flows.

Finally, a visualization of the solution (for which a 4.06% optimality guarantee was obtained

by the best performing (E) implementation) is shown in figure 3.5. The black start generators

assigned are (generator indices): 34, 173, 185, 398, 460, 480, 487, 488, 505. It should be, of

course, reiterated that due to the random initialization of the restoration generator profiles in the

simulation, this assignment may not correspond to a realistic allocation.

Black Start Capability Upgrade Example

In this section, we provide one potential use of the model we presented for black start planning.

We will use the WECC-225 system as an example. We assume there is already one black start unit

in the system, namely generator 81. The system operator considers potential upgrades in the black

start capability of the system. The operator may be interested in different metrics - these could be

the objective of the optimization problem used for BSA, or something related that is captured in

the model. In our example, we assume one metric of interest is the average of the buses restored

over the first 10 time steps, namely
∑9

t=0

∑

i∈N ut
i. Following that, we can construct a plot of the

metric as a function of the allocated budget for black start upgrades - i.e. the optimization model
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is solved for different values of the parameter B (the unit already allocated is excluded from the

budget constraint and set to a black start). The outcome is shown in figure 3.6.

Based on that plot, we can see that by investing 2.74% of the total investment cost to convert

all units to BS (
∑

g∈G CBSg
), we can get a 157% estimated improvement on the metric of interest.

This corresponds to allocating a total of 4 new black start units. Also, based on the plot we

notice that, for this particular metric, there seems to be not much additional improvement above

investing approximately 4% of
∑

g∈G CBSg
. We should of course notice that the realization of this

improvement after allocating the black start units suggested by the model needs to be verified with

more detailed models and simulations of the restoration process. However, this test case illustrates

how the model can serve as the first step of a planning tool to enhance the restoration capability of

the power system.

3.11 Conclusions

One main takeaway of this chapter is that, while it might be easy to formulate a power sys-

tems problem as a MILP, choosing the right way to formulate the problem can make a significant

difference in the solution times. Among others, some issues to consider when selecting the right

formulation are the tightness of the formulation (i.e. how tight is the linear programming relaxation

around the integer hull) and the size of the formulation (number of constraints and variables). There

is usually a trade-off between the size and the tightness of the formulation, that can be resolved

by numerical experimentation for each problem. Also, even if a problem is intractable in practice

with one formulation, a reformulation could yield an acceptable computational performance.

For the ICI problem, even though F4 and F1 are reformulations for the same problem and are

both employing single-commodity flow to enforce connectivity, their computational performance

was very different, since F1 is more compact than F4 (fewer variables and constraints). The prob-

lem formulated using F4 solved orders of magnitude slower compared to F1. The size of F2 made

it completely intractable. Finally, the exponential size of F3 (that forced the implementations (C)

and (D) to employ lazy constraints added through callbacks) made the computational performance

of the formulation slightly worse that the weaker F1.

The situation for the optimal BSA problem was different. Formulation F2 was still impracti-

cal, due to its size. However, implementations (C) and (D) that utilized Type I and Type II cuts

outperformed F1, even though they employ an exponential number of constraints. The reasons for

that are twofold: Firstly, (C) and (D) used strong cuts. Secondly, the Type I & II constraints, other

than those for |S| ∈ {1, |N |}, are rarely violated in incumbents of the BSA problem, so candidates

found by the solver heuristics don’t often trigger the callback. The intuition on why this is the

case is that for the restoration problem we expect that the direction of the problem is such that

branches get energized (rather than de-energized). If branches are mostly getting energized around

energized generators, the situation where islands without an energized generator will show up are

actually rare, so lazily generating the cuts for F3 is faster than including the entire formulation F1

in the optimization solver.
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One choice that made a significant difference in the performance of the simulations was includ-

ing a subset of the constraints a priori, instead of waiting for them to be generated by the callback.

These constraints were the Type I and II constraints for |S| ∈ {1, |N |}. Note that these constraints

were shown to be facet defining for the integer hull under simplifying assumptions and are rela-

tively small in size. If the constraints are not included a priori, there is in fact no guarantee that

the separation algorithm will choose to include them at a later point and the performance will be

hindered. We recommend adding these constraints in the formulation whenever the IE requirement

is valid, regardless of the way it is imposed (i.e., explicitly using one of the formulations of this

paper, or implicitly as a result of other sets of constraints).

We should finally note that how much a particular reformulation will influence the performance

of the problem highly depends on the modeling of the rest of the problem. For the models we

used in this section, we were able to observe a significant computational benefit by employing

the reformulations described. Also, all the reformulations used are applicable to any model with

the IE constraint substructure. However, the performance improvements are not guaranteed for all

the problems that exhibit this substructure. In particular, based on limited simulation experiments,

when we used the black start allocation objective of chapter 2 or incorporated the more detailed

linearized version of flows presented, we did not get such significant performance improvement.
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Appendix

3.A Optimal Islanding Formulation

The optimal ICI problem we use in the text is formulated in [81], based on a previous work by

the same authors in [82]. We denote this formulation F4 and we describe it first in this appendix.

The goal is to find a minimum cost partitioning of the grid to islands given a partitioning of the

generators. More specifically, the generators are divided into |K| subsets of coherent generators

Gh, h ∈ K, i.e. of generators that will be in the same island after the reconfiguration of the grid

and in different islands from the generators of the other subsets. There is a cost dij associated with

switching off branch (ij) ∈ E and a minimum size requirement M of every bus set in the partition.

The set of nodes N is assumed to be {1, 2, . . . , |N |}.
Denote with Ã the directed set of edges that contains two edges, (ij) and (ji) for every undi-

rected edge e ∈ E with endpoints i and j (we will also slightly abuse notation and use both dij and

dji, with dij = dji). Let i ∈ N denote a bus of the system, (ij) ∈ Ã a branch, and g ∈ G a gen-

erator. We denote the node that generator g is connected by n(g). Let the binary variables xh
i /wh

ij

denote (if equal to 1) that node i/branch (ij) belongs to partition h ∈ K. Let the binary variable

zij denote that branch (ij) is switched on (i.e. it belongs to some partition). Let the variables fh
ij

denote network flows that will ensure the connectivity of partition h ∈ K. The binary variable vhi
becomes 1 for the lowest index node in partition h. The binary variable yhi is 0 for all nodes before

the lowest index node in partition h, and 1 otherwise. The binary variables yhi , vhi , wh
ij , zij can

actually be relaxed in [0, 1].

minimize
∑

(ij)∈Ã

1

2
(1− zij)dij
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subject to

xh
n(g) = 1, g ∈ Gh, h ∈ K (3.23a)

wh
ij ≤ xh

i , w
h
ij ≤ xh

j , (ij) ∈ Ã, h ∈ K (3.23b)

zij = zji (ij) ∈ Ã (3.23c)

zij =
∑

h∈K

wh
ij, (ij) ∈ Ã (3.23d)

∑

h∈K

xh
i = 1, i ∈ N (3.23e)

∑

i∈N

xh
i ≥M, h ∈ K (3.23f)

j
∑

i=1

xh
i

|N |
≤ yhj ≤

j
∑

i=1

xh
i , j ∈ N, h ∈ K (3.23g)

yhj ≥ xh
j , j ∈ N, h ∈ K (3.23h)

vhj = yhj − yhj−1, j ∈ N \ {1}, h ∈ K (3.23i)

vh1 = yh1 , h ∈ K (3.23j)
∑

j∈N

vhj = 1, h ∈ K (3.23k)

vhj
∑

i∈N

xh
i +

∑

ij:(ij)∈Ã

fh
ij −

∑

i:(ji)∈Ã

fh
ji = xh

j , j ∈ N, h ∈ K (3.23l)

0 ≤ fh
ij ≤ |N |zij , (ij) ∈ Ã, h ∈ K (3.23m)

The objective function minimizes the cost of switched off lines. Constraint (3.23a) ensures that

nodes with a coherent generator of group h will be assigned to partition h. Constraint (3.23b)

forces nodes i and j to belong to the same partition as the edge (ij). Constraint (3.23c) ensures

that both directed edges have the same status (on or off). Constraint (3.23d) defines the variables

zij as the variable indicating if (ij) belongs to some partition. Constraint (3.23e) imposes that

each node must belong to a partition. Constraint (3.23f) forces a lower bound to the size of every

partition. Constraints (3.23g) and (3.23h) force yhj to be zero before the first node (in terms of

index) belonging to partition h and 1 elsewhere. Constraints (3.23i) and (3.23j) define the variables

indicating the lowest index node in the partition. Constraint (3.23k) stipulates that every partition

has exactly one minimum index node. Constraint (3.23l) enforces that every node that belongs

to partition h, i.e. has xh
i = 1, acts as a source of 1 unit of network flow.

∑

i∈N xh
i units on

network flow are generated at the lowest index node of the partition. Note this constraint has a

nonlinear term (product), which are linearized using McCormick envelopes. Finally, constraint

(3.23m) forces that a line that is not energized can not bear any flow.

Note that a single-commodity flow formulation approach is essentially used in the above model.

Network flow can be generated from the node of least index within every partition and equals

exactly the number of nodes. In our single commodity flow formulation for the same problem,
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we instead make use of the fact that the generators in each coherent group are forced to belong to

the corresponding partition, so one of them can be used as the source of the network flow. Note

that we also don’t duplicate the edges, since we allow bidirectional flows in our formulation. We

proceed to describe our formulation.

Let i ∈ N denote a bus of the system, (ij) ∈ E a branch, and g ∈ G a generator. Also, for each

set Gh, denote one of the generators (assumed to be the isochronous one, even though the specific

choice is not important) with G
(0)
h ∈ Gh. We denote the node that generator g is connected by

n(g). Let the binary variables uh
i /uh

ij/u
h
g denote (if equal to 1) that node i/branch (ij)/generator g

belongs to partition h ∈ K. Let the binary variable zij denote that branch (ij) is switched on (i.e.

it belongs to some partition). Let the variables fh
ij, f

h
g denote the network flows that will ensure the

connectivity of partition h ∈ K. Finally, there is a cost dij associated with switching off branch

(ij) and a minimum size requirement M of every bus set in the partition.

minimize
∑

(ij)∈E

dij(1− zij)

subject to

zij =
∑

h∈K

uh
ij, (ij) ∈ E (3.24a)

∑

h∈K

uh
i = 1, i ∈ N (3.24b)

∑

i∈N

uh
i ≥M,h ∈ K (3.24c)

uh
ij ≤ uh

i , u
h
ij ≤ uh

j , (ij) ∈ E, h ∈ K (3.24d)

uh
g ≤ uh

i , g ∈ G(i) (3.24e)

0 ≤ fh
g ≤ uh

g , g ∈ G, h ∈ K, (3.24f)

− uh
ij ≤ fh

ij ≤ uh
ij, (ij) ∈ E, h ∈ K, (3.24g)

∑

j:(ji)∈E

fh
ji −

∑

j:(ij)∈E

fh
ij +

∑

g∈G(i)

fh
g =

1

|N |
uh
i ,

i ∈ N, h ∈ K (3.24h)

uh
g =

{

1, if g = G
(0)
h

0, otherwise
, h ∈ K (3.24i)

uh
n(g) = 1, g ∈ Gh, h ∈ K (3.24j)

The objective of the problem minimizes the weighted cost of switching off edges. Constraint

(3.24a) imposes that a bus is switched on if it belongs in one of the partitions. Constraint (3.24b)

ensures that each bus is assigned to exactly one partition, constraint (3.24c) ensures that each

partition has at least M buses, constraints (3.24d) require that if a branch belongs to a partition,

both its endpoints belong to it, constraint (3.24e) ensures that if a generator belongs to partition h,
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the node it is connected to will belong to the same partition. Constraints (3.24f)-(3.24h), together

with (3.24d) and (3.24e), are the IE constraints of formulation F1 imposed for every partition h.

These constraints can be equivalently substituted with the constraints of F2 or F3, as we have shown

in this chapter. Finally, (3.24i) allows only the generator G
(0)
h to generate the network flow that

ensures the connectivity of each partition h and (3.24j) forces each node of the coherent generators

to belong to the corresponding partition.

One last note is that, even though the second formulation has a strictly better performance than

the first one, it is not necessarily the strongest or most compact formulation one can devise for

this particular problem. After all, one underlying structure of this application is the graph parti-

tioning problem and an extensive body of MIP literature is devoted to reformulations, strength-

ening, and dedicated branching schemes. For example, one further modification could be to set

fh
g = 1

|N |

∑

i∈N uh
i for g = G

(0)
h and 0 otherwise. The formulation above, however, is sufficient

to illustrate a significant difference in computational performance for the instances considered and

utilizes the substructure that this section focused on.
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Chapter 4

A Stochastic Program for Black Start

Allocation

4.1 Abstract

This chapter extends the ideas of the black start allocation model developed previously in one

important fashion: accommodating for stochasticity in the possible power outages. More specif-

ically, the case of a complete blackout, as examined in the previous chapters, is only one of the

possible outage scenarios. Partial outages of the power system are also (if not more) likely. In such

cases, one or more islands of the power system have survived the blackout, so the restoration of the

system can depend not only on the black start units, but also on these energized islands. In addition,

the outage might leave parts of the power system inoperable, such as lines or branches that have

suffered irreparable damage and can not be used in the restoration process. We extend our model

for black start allocation to incorporate these considerations when deciding on an allocation.

We formulate a two-stage stochastic program that optimizes the allocation of BS resources over

a number of outage scenarios. We use a scenario decomposition algorithm to solve the resulting

optimization problem to near-optimality on a high performance computing environment. The main

idea behind the use of this algorithm is that the characteristics of the generators pertinent to the

black start capability remain the same across all scenarios, so a good candidate black start unit for

one scenario is very likely to perform well if chosen as a black start in many other scenarios. We

conduct numerical experiments using the proposed model and decomposition method on the IEEE-

39 test system. To ensure this chapter is self contained, some of the modeling choices made in our

previous treatment of the black start allocation problem are repeated, with slight modifications to

accommodate for the additional scenario-dependent considerations.
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Nomenclature

Sets

E Set of branches (ordered pair of buses).

G Set of generators.

G(i) Set of generators connected to bus i ∈ N .

N Set of buses.

S Set of scenarios.

T Set of consecutive integer time instances, starting from 1.

Variables

pt,sSHi
Active power load shed at bus i ∈ N , time t ∈ T and scenario s ∈ S.

qt,ssys System-wide reactive power capability at time t ∈ T for scenario s ∈ S.

δt,si Voltage phase of bus i ∈ N at time t ∈ T for scenario s ∈ S.

f t,s
g Network flow for energizing paths from generator g ∈ G at time t ∈ T for scenario s ∈ S.

f t,s
ij Network flow for energizing paths for branch (ij) ∈ E at time t ∈ T for scenario s ∈ S.

pt,sg Active power generation of generator g ∈ G at time t ∈ T ∪ {0} for scenario s ∈ S.

pt,sij Active power flow of branch (ij) ∈ E at time t ∈ T for scenario s ∈ S.

ut,s
g Binary variable indicating generator g ∈ G energized at time t ∈ T for scenario s ∈ S.

ut,s
i Binary variable indicating node i ∈ N energized at time t ∈ T for scenario s ∈ S.

uBSg
Binary variable indicating generator g ∈ G is BS generator.

ut,s
ij Binary variable indicating branch (ij) ∈ E energized at time t ∈ T for scenario s ∈ S.

Parameters
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cos(φDi
) Power factor of load at node i ∈ N .

ǫ Decomposition algorithm termination gap.

λ Trade-off coefficient for reactive capability.

µ Trade-off coefficient for inertia.

Sij Maximum flow limit for branch (ij) ∈ E.

πs Weight assigned to scenario s ∈ S.

δ, δ Lower and upper bounds for voltage phases.

Q
g

Minimum reactive power generation from generator g ∈ G.

Q
SHi

Shunt reactor for bus i ∈ N .

V , V Lower and upper bounds for voltage magnitude.

B Total budget for BS generator installations.

bij Susceptance for branch (ij) ∈ E.

BSHij
Shunt susceptance of branch (ij) ∈ E.

Cg Operational cost of generator g ∈ G.

CBSg
Cost of turning g ∈ G to a BS generator.

Ci Cost of load shed in node i ∈ N after the blackout.

Jg Inertia of generator g ∈ G.

KRg
Ramp rate of generator g ∈ G.

Pmax
g Maximum active power generation from generator g ∈ G.

PCRg
Cranking power required to be provided to generator g ∈ G to initiate its start-up.

PDi
Available load at bus i ∈ N .

TCRg
Time between generator g ∈ G being energized until it can increase its active power from

zero.

u0,s
g Binary parameter indicating state of generator g ∈ G at time t ∈ T for scenario s ∈ S.

uavail,s
g Binary parameter indicating the availability of generator g ∈ G for scenario s ∈ S.

u0,s
i Binary parameter indicating state of node i ∈ N at time t ∈ T for scenario s ∈ S.
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uavail,s
i Binary parameter indicating the availability of node i ∈ N for scenario s ∈ S.

uavail,s
ij Binary parameter indicating the availability of branch (ij) ∈ E for scenario s ∈ S.

4.2 Introduction

Despite ongoing efforts to increase the reliability of power systems, natural events, human or

equipment faults, attacks or other possible causes can still result in large-scale outages [95]. Power

System Restoration (PSR), i.e. restoring the grid to normal operation after an outage, is considered

a primary objective within the scope of achieving grid resiliency. One of the main challenges is that

most of the generators are unable to start without receiving an initial amount of power (cranking

power, corresponding to ancillary equipment and initial energy needs) from the power systemfor

a certain amount of time (cranking time). The restoration process relies, then, on selected units

(called black start units) that have the capability to start on their own. This capability can be

achieved through technical upgrades, such as installing a small diesel generator that can provide

the initial cranking power to the unit. System operators are often responsible for compensating

these units for the black start (BS) service availability, as well as for regular testing of the technical

requirements.

For most systems, detailed procedures exist and regular training of the personnel is in place

to ensure a quick and efficient response to a possible blackout. These procedures are specific to

each power system and they describe the order in which to energize branches and crank generators,

aiming to that critical loads will be energized as soon as possible and that the grid will be restored in

a secure way. Critical loads include the auxiliary equipment of nuclear power plants, critical natural

gas infrastructure, critical communication equipment, or command and control facilities [118]. The

restoration process plan is usually devised for the case of a complete blackout but, with the same

priorities in mind, other plans can be constructed for cases of partial blackouts.

A number of approaches have been suggested in literature to construct a restoration plan given

the location of the BS units. In [71, 90], the authors develop a tool that suggests the next step in

a restoration sequence. In [74, 134] the authors consider instead a mixed integer program (MIP)

where binary decision variables correspond to energization steps. A different modeling approach

including reactive power considerations is adopted in [22], aiming to motivate the use of microgrids

for PSR. A mixed integer non-linear program is formulated in [27] and feasible solutions are

found using ant colony optimization. The sectionalization problem is solved in [146] using binary

decision diagrams. Including wind power in restoration is discussed in [61]. Literature reviews of

relevant approaches are provided in [23, 157].

The effectiveness of a restoration plan highly depends on the choice of the black start units in

the grid. Some units are inherently more suitable for the role of black start compared to others. For

example, pumped-storage hydro-power plants are ideal to act as black starts, due to the negligible

amount of cranking power and cranking time they require and their high ramping capabilities. On

the other hand, some units may be better placed within the power grid, i.e. closer to the critical

loads. The problem of allocating black start capabilities has also been discussed in the litera-
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ture. General guidelines to heuristically select black start units are available [75, 118, 125, 133].

In [121, 122], a minimum procurement cost BS allocation problem is formulated. In [115], the

BS allocation problem is formulated including an increased detail of the resulting restoration pro-

cess and solved to near optimality through a heuristic that proposes candidate feasible restoration

sequences. All of the aforementioned studies examine the case of a total blackout for the BS

allocation problem.

Solving the BS allocation problem based on the scenario of a total blackout, while useful, is

not necessarily representative of reality. We rarely expect a complete system outage, rather smaller

outages that leave a number of stable islands with functional generators, from where restoration

actions can start as well. Also, some parts of the grid may be more prone to outages than others,

due to abnormal weather conditions, unpredictable demand or even the local grid configuration.

Furthermore, after an outage, we can not expect that all system components will be in their pre-

outage condition. Some generators, lines or buses may have suffered faults or permanent damage,

which will make them unavailable for the purposes of restoration.

In this work we seek to address the aforementioned challenges by proposing a stochastic pro-

gram for BS allocation. A number of scenarios is considered, that corresponds to possible partial

system outages, as well as possible unavailability of some lines, generators or buses. The black

start allocation is optimized over the scenarios (first stage variables), while a different restoration

sequence for each scenario is calculated (second stage variables). The resulting MIP can become

very large as the number of scenarios increases. In order to achieve tractability, we observe that,

since the critical loads and the characteristics of the generators are the same for all scenarios, the

allocation found by considering a scenario in isolation could perform well for the other scenarios.

A scenario decomposition technique devised to exploit this observation [4, 124] is employed to

solve the stochastic program. The computational performance of the decomposition technique is

illustrated using the IEEE-39 test power system.

The remainder of this chapter is organized as follows. Section 4.3 presents the problem for-

mulation, section 4.4 describes the decomposition algorithm, section 4.5 the simulation results and

section 4.6 concludes the chapter. The work of this chapter was published in [109].

4.3 Optimization Model

In this section we describe the optimization model employed for the BS allocation problem. A

two-stage stochastic program describes decisions that happen before uncertainty is revealed, i.e.

first stage decisions, and after uncertainty realized, i.e. second stage decisions. For our problem,

the first stage decision is the allocation of the black start capabilities to units. This decision is the

same for all the scenarios considered, since we make this decision before the occurrence of any

outage. Each scenario corresponds to possible partial or total outages of the power grid, as well

as the possible unavailability of grid components (lines, generators or buses). Finally, the second

stage decisions are the restoration steps that need to be implemented given the scenario that has

occurred and based on the BS allocation of the first stage.
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First Stage

A binary variable uBSg
is associated with the allocation of each unit g ∈ G as a BS generator

(a value of 1 indicates that a unit is allocated). Units can be excluded from being allocated by

explicitly setting the variable equal to 0 in the optimization problem. Furthermore, a unit that is

already a black start can have its corresponding binary variable preset to 1 (and this variable can

be excluded from the budget constraint). The allocation of a unit translates, for our model, to the

installation of a diesel generator that will provide the initial cranking power needed by the unit to

start.

Budget Constraint

Allocating a black start unit is associated with a number of costs [73]. These may include com-

pensation to the utility owner for the service, costs for technical upgrades and costs to regularly test

and maintain the equipment. The cost highly depends on the type of the unit and the commitment

approach for black starts that the operator adopts. For our model, we assume that all the costs are

reduced to a lump sum payment CBSg
for unit g ∈ G. Therefore, the following budget constraint

is imposed at the first stage. Note that, there might be a black start allocation that achieves a fea-

sible (worse) restoration plan and uses up a smaller installation budget, but in this work we do not

address this trade-off.

∑

g∈G

CBSg
uBSg

≤ B . (4.1)

Second Stage

While the first stage variables (black start allocation variables) are the same for all scenarios,

the second stage variables are optimized for every scenario independently, i.e. they are chosen

given a known uncertainty realization, which is why there exists a copy of these variables for

every scenario (i.e. they are all indexed by scenario s ∈ S). The scenarios of the model represent

different outage cases and possible unavailability of components. Second stage variables are the

decisions to be made in order to restore normal operation of the system for each scenario, for a

finite time horizon T . Among these, there are binary variables that correspond to the energization

of buses ut,s
i , lines ut,s

ij and generators ut,s
g , which become 1 at the time step t ∈ T if the component

is energized.

Scenarios

After the blackout, the operator needs to identify the surviving parts of the grid. These are usu-

ally stable islands with generation supporting them. The identification process will also determine

which components of the grid are inoperable after the outage (due to a severe fault or malfunction),

which cannot be used during the restoration process. In our model, the binary parameters u0,s
g and

u0,s
i determine the initially energized grid for scenario s ∈ S (1 if energized). The parameters
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uavail,s
i , uavail,s

ij and uavail,s
g are set to 0 if the corresponding bus, line or generator is unavailable in

scenario s ∈ S. Note that in this model, unavailability is constant across all time steps for each

scenario. However, a straightforward extension would be to index the parameter by time in order to

indicate that a component is available after some reparation/replacement time. This modification

also allows to model switches that require manual operation (i.e. they can not be operated using

remote control systems, but instead manned units need to be dispatched on-site to operate them),

which need a certain amount of time before operation becomes possible. Finally, the scenario

generation process for our purposes is synthetic because the computations employ artificially con-

structed IEEE test systems. In a real setup, however, the scenarios can be constructed by system

experts or historical outage data, based on the individual characteristics of a power system.

Node Active Power Balance

The node balancing constraint at every time instant is:

∑

g∈G(i)

(

pt,sg + PCRg
(uavail,s

g uBSg
− ut,s

g )
)

+
∑

j:(ji)∈E

pt,sji

−
∑

j:(ij)∈E

pt,sij = PDi
− pt,sSHi

, ∀i ∈ N, ∀t ∈ T, ∀s ∈ S.
(4.2)

Constraint (4.2) stipulates the active power conservation at node i ∈ N for every time instant

t ∈ T . Note the following: if a generator is chosen to be BS (uBSg
= 1), then its cranking

power is provided for (by an external source), so it can be immediately energized (u1,s
g = 1).

On the other hand, if we want a non-BS generator g ∈ G to get energized, the constraint above

introduces a negative term −PCRg
, so the cranking power needs to be provided for either by a

different generator in the same node or by incoming power flows. In the initial phases of the

restoration, this constraint will ensure that only the generators that are assigned to be BS or are

already connected to an energized island can be energized.

Usually, when a load is picked up after an extended outage, the demand is greater than before

the outage. This phenomenon is referred to as cold load pickup. Some of the factors that affect the

magnitude and duration of cold load are outage duration, type of load, time of day and load level.

One reason for this phenomenon is that, while some loads are usually diverse and cycle, after the

re-energization they tend to all draw current at the same time for several minutes [55]. Despite the

uncertainty in the load when closing the switches, the operators usually have the ability to pick load

in small enough chunks. Even more, load is used as a tool to alleviate overvoltages and increase

the system stability (by allowing more generation to be committed as well). For these reasons,

load behaves more like a decision variable for restoration purposes. Therefore, in our model, a

continuous load shed variable is employed, that satisfies:

(1− ut,s
i )PDi

≤ pt,sSHi
≤ PDi

,

∀i ∈ N, ∀t ∈ T, ∀s ∈ S.
(4.3)
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(a) Generator power output. A generator that gets

energized at time tst needs to be cranked for TCR

periods before it can inject power to the grid. TCR+1
periods after energized, the generator can ramp up its

active power production with a maximum rate ofKR,

until its maximum generation limit Pmax is reached.

(b) Cranking power of generator unit. As soon as the

generator is energized (ut,s
g = 1), it needs to absorb

power PCR. This power is either provided by other

generators (if the unit does not have BS capability),

or by a dedicated diesel BS unit or battery (if the unit

has BS capabilities).

Figure 4.1: Typical generator curve. The parameters TCR, PCR, TCR, Pmax vary depending on the type of generator.

Reactive Power

Reactive power capability is important in maintaining the voltages of the power system within

security limits. For this model, we introduce a system-wide reactive power capability variable qt,ssyst.

∑

i∈N

∑

g∈G(i)

Q
g
u

max{0,t−TCRg−1},s
g +

∑

(ij)∈E

BSHij
ut,s
ij

+
∑

i∈N

QSHiu
t,s
i −

∑

i∈N

(PDi
− pt,sSHi

) tan(φDi
) = qt,ssyst,

∀t ∈ T, ∀s ∈ S.

(4.4)

A line injects reactive power 1
2
BSHij

V 2ut
ij at each of the buses it connects to, if energized, where

the bus voltage V is assumed close to 1.0pu for this constraint, in order to allow for a linear

formulation. The reactive power can be absorbed by either generators that have been energized

at least TCRg
+ 1 time units in advance, by reactive compensation connected to the bus QSHi

, or

by loads with lagging power factor (tan(φDi
) > 0). The load is assumed picked up at a constant

power factor, as in [31] and [22]. The modeling of the system-wide reactive power follows the

ideas in [74]. This assumption may not hold during the startup of many loads, it is however more

restrictive than assuming that the load reactive power can be controlled independently of its active

power.

Generator Model

A typical generator startup model is assumed, following similar assumptions as in [115, 134].

Figure 4.1 depicts these assumptions. The binary variable us,t
g is associated with the energization
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status of generator g ∈ G. This variable is exogenously defined based on the availability of active

power or BS unit assignment in constraint (4.2). The cranking power requirement corresponds to

figure 4.1b. The equations that describe figure 4.1a are:

0 ≤ pτ,sg ≤ Pmax
g ut,s

g , ∀g ∈ G,

∀τ ∈ {t, t+ 1, . . . , t+ TCRg
+ 1}, ∀t ∈ T ∪ {0}, ∀s ∈ S, (4.5a)

pt,sg − pt−1,s
g ≤ KRg

, ∀g ∈ G, ∀t ∈ T, ∀s ∈ S, (4.5b)

pt−1,s
g − pt,sg ≤ KRg

, ∀g ∈ G, ∀t ∈ T, ∀s ∈ S. (4.5c)

Constraint (4.5a) makes sure that the active power cannot be positive for at least TCRg
units of

time after the generator is energized, both for BS and for non BS generators. Also, the maximum

active power limit is imposed at all time instances that the generator has positive active power

production. The ramping rate capability is imposed through constraints (4.5b) and (4.5c).

Line Switching

A constraint that a line can have nonzero flow only if it has been switched on by the restoration

process needs to be imposed. For that purpose, the transmission switching modeling with the dc

approximation is utilized [66]. The constraints that impose this requirement are:

− Siju
s,t
ij ≤ pt,sij ≤ ut,s

ij Sij , ∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S, (4.6a)

δ ≤ δt,si ≤ δ, ∀i ∈ N, ∀t ∈ T, ∀s ∈ S. (4.6b)

Constraint (4.6a) is linearized using the big-M reformulation:

bij(δ
t,s
i − δt,sj )− pt,sij + (1− ut,s

ij )Mij ≥ 0,

∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S, (4.7a)

bij(δ
t,s
i − δt,sj )− pt,sij − (1− ut,s

ij )Mij ≤ 0,

∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S, (4.7b)

where Mij ≥ |bij |(δ − δ). Let us note here that the dc approximation of the power flow equations

together with the aggregate reactive power constraint are not an accurate representation of the

system. However, for the purposes of the BS allocation problem, this simplified approach that still

retains the main characteristics of a complete model is adopted in order to achieve tractability.An

increased accuracy can be obtained (especially for the cases where the optimization problem is

aiming to identify a restoration sequence) by using the ac power flow equations or dedicated ac

approximations of the power flow equations, such as the one in [8].

Consistency of Energized Grid

A series of constraints that ensure the consistency of the grid are imposed. By consistency,

we mean that any island of the grid needs to have at least one energized generator to support it.
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Equivalently, we need to ensure that for any energized component of the grid (line or bus), there

exists a path of energized lines that lead to a node with an energized generator. One compact way

to impose that is the following set of constraints, that make use of network flow variables:

0 ≤ f t,s
g ≤ ut,s

g , ∀g ∈ G, ∀t ∈ T, ∀s ∈ S, (4.8a)

− ut,s
ij ≤ f t,s

ij ≤ ut,s
ij , ∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S, (4.8b)

∑

j:(ji)∈E

f t,s
ji −

∑

j:(ij)∈E

f t,s
ij +

∑

g∈G(i)

f t,s
g =

1

|N |
ut,s
i ,

∀i ∈ N, ∀t ∈ T, ∀s ∈ S. (4.8c)

Constraints (4.8a), (4.8b) and (4.8c) impose a feasibility problem given fixed values of ut,s
g , ut,s

ij

and ut,s
i for the flows f t,s

ij and f t,s
i . A node can be energized (ut,s

i = 1) if there is a feasible flow

from one or more of the generators with ut,s
g = 1, flowing only through branches with ut,s

ij = 1,

such that the load of that node 1
|N |

ut,s
i can be satisfied. Otherwise, the state of that node has to be

ut,s
i = 0. We also impose the following constraints:

ut,s
ij ≤ ut,s

i , ut,s
ij ≤ ut,s

j , ∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S, (4.9)

i.e. a branch cannot be energized unless both of the nodes connected to it are energized. Also, if

any generator connected to a node is energized, then the node is considered energized:

ut,s
g ≤ ut,s

i , ∀i ∈ N, ∀g ∈ G(i), ∀t ∈ T, ∀s ∈ S. (4.10)

We include a time staging constraint which imposes that a line can only be energized at time t if

one of its nodes was energized at time t− 1.

ut,s
ij ≤ ut−1,s

i + ut−1,s
j , ∀(ij) ∈ E, ∀t ∈ T, ∀s ∈ S. (4.11)

Finally, we assume that buses and generators, once energized, must remain energized until the end

of the horizon:

ut,s
g ≥ ut−1,s

g , ∀g ∈ G, ∀t ∈ T, ∀s ∈ S, (4.12a)

ut,s
i ≥ ut−1,s

i , ∀i ∈ N, ∀t ∈ T, ∀s ∈ S. (4.12b)

Component Unavailability

We model the possible unavailability of components in a scenario using the parameters uavail,s
g

for generators, uavail,s
i for nodes, and uavail,s

ij for lines, which are equal to 1 if the corresponding

component is available and 0 otherwise. The following constraints are added to the formulation

to ensure that an unavailable component will not be used or energized throughout the restoration

process:

ut,s
g ≤ uavail,s

g , ∀g ∈ G, ∀t ∈ T, ∀s ∈ S, (4.13a)

ut,s
i ≤ uavail,s

i , ∀i ∈ N, ∀t ∈ T, ∀s ∈ S, (4.13b)

ut,s
ij ≤ uavail,s

ij , ∀i ∈ N, ∀t ∈ T, ∀s ∈ S. (4.13c)
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Objective Function

The objective of the problem highly depends on the specific power system we are interested in.

A generic form of objective, that is also used in this work, can be stated as follows:

minimize
∑

s∈S

πs(
∑

t∈T

∑

i∈N

Ct
ip

t,s
SHi

+ λ
∑

t∈T

qt,ssys − µ
∑

t∈T

∑

g∈G

ut,s
g Jg)

The objective penalizes: (i) the load shed (depending on how critical the load that is being shed

is at various time instances after the blackout), (ii) the reactive power capacity (a negative reactive

power capacity ensures that the reactive power injected by the high voltage transmission lines

during the low load operating points of restoration can be absorbed), and (iii) the additive inverse

of the total inertia of the system (higher inertia leads to higher system stability).

4.4 Scenario Decomposition Approach

The size of the stochastic program grows linearly with the number of scenarios, since a copy

of the second stage variables is added for every scenario, along with the corresponding constraints.

Even though there are techniques to reduce the number of scenarios [67] or carefully select them,

the number of scenarios necessary for the needs of a problem can be large, especially when the

underlying uncertainty is characterized by low-probability high-impact events (such as component

unavailability). For this reason, special purpose algorithms have been developed to decompose the

problem by scenario. These algorithms aim to solve smaller optimization problems correspond-

ing to one or more scenarios (which may be easier to solve) and then combine the information to

approach the solution of the complete stochastic program. In this section, we describe the decom-

position algorithm of [4, 124] in the context of our problem.

Let uBS ∈ B|G| be the vector of the first stage BS allocation, and ys be a vector that contains

all the second stage variables for scenario s ∈ S. Let X be the feasibility set imposed by the

constraints involving only first stage variables:

X =

{

uBS ∈ B|G| :
∑

g∈G

CBSg
uBSg

≤ B

}

. (4.15)

Let Ys(uBS) be the set to which ys must belong, enforced by the rest of the constraints (including

the integrality of the energization variables), for scenario s ∈ S, if the first stage variables are fixed

at a value of uBS:

Ys(uBS) = {ys : (4.2)− (5), (7)− (13)} , ∀s ∈ S. (4.16)

Finally, define the functions fs, for s ∈ S, that return the optimal value of the second stage opti-

mization problem for scenario s given the BS allocation uBS:
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Initialization Phase

k ← 0, UB ←∞, LB ← −∞, W ← ∅
Main Body

repeat

k← k + 1
Lower Bounding Phase

Solve scenario subproblems:

for s ∈ S do

uk
BS,s ∈ argmin

uBS∈X\W

fs(uBS)

end for

Update Lower Bound:

LB←
∑

s∈S πsfs(u
k
BS,s)

Upper Bounding Phase

for s ∈ S do

Check termination criterion:

if UB−LB
UB

≤ ǫ then Break

end if

Evaluate scenario solutions:

UBs ←
∑

i∈S πifi(u
k
BS,s)

Update Upper Bound:

UB← min{UB,UBs}
end for

Cut Phase

Exclude points already tested:

for s ∈ S do

W ←W ∪ {uk
BS,s}

end for

until UB−LB
UB

≤ ǫ

Figure 4.1: Decomposition scheme from [4] applied to the BS Allocation Problem. The Lower Bounding Phase in-

volves solving smaller optimization problems than the original, since the scenario is fixed, whereas the Upper Bound-

ing Phase involves smaller problems since both the first stage and the scenario are fixed (just evaluations of the function

fs).

fs(uBS) = minimize
ys∈Ys(uBS)

∑

t∈T

∑

i∈N

Ct
ip

t,s
SHi

+ lambda
∑

t∈T

qt,ssys −µ
∑

t∈T

∑

g∈G

ut,s
g Jg

(4.17)

Based on these definitions, the stochastic BS allocation problem can be rewritten as:

minimize
∑

s∈S

πsfs(uBS) (4.18)

The main body of the algorithm is divided into three phases, the Lower Bounding Phase, the

Upper Bounding Phase and the Cut Phase. In the Lower Bounding Phase, we fix every scenario
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s ∈ S and solve for the optimal first stage decision given that scenario, over a space X \W . This

yields |S| scenario specific solutions for the first stage variables uBS at iteration t. In the first

iteration, the set W is empty, so we are essentially solving |S| scenario subproblems without any

interaction, i.e. we are solving the initial problem after relaxing the non-anticipativaty constraints.

Since we are solving a relaxation, at least for the first iteration, we are guaranteed to get a lower

bound on the optimal solution to (4.18). For the next iterations, we get lower bounds for (4.18)

solved over the restricted space of first stage variables X \W .

In the Upper Bounding Phase of the algorithm, the |S| scenario specific solutions for the first

stage variables found during the previous phase are tested into the full problem. If feasible, each

one of them yields an upper bound to (4.18). That way, we can possibly update the upper bound

and the first stage solution that yields it.

Finally, in the Cut Phase, we add the points {uk
BS,s}s∈S in the set W . Our objective func-

tion value has already been calculated for all of these points during the previous phase, so we can

exclude them from any further consideration. This is achieved by adding a global cut in the opti-

mization problems solved in the first phase, for every point in W . The following “No-Good-Cut”

is employed to cut off the point uk
BS,s:

uT
BS(1− uk

BS,s) + (1− uBS)
Tuk

BS,s ≥ 1. (4.19)

The algorithm will terminate once the desired optimality guarantee ǫ is achieved. Due to the con-

struction of the algorithm, it is guaranteed to terminate in a finite number of steps (since there

are only a finite number of binary points in the space of the first stage variables and each step

eliminates at least one). Of course, for suitable problems, the algorithm is expected to terminate

much earlier in practice. A setup where this would occur is when the solutions obtained by solv-

ing for individual scenarios are close to each other. If the first stage solution for a scenario in the

first phase of the algorithm yields a reasonable allocation for other scenarios as well, that implies

that a tight upper bound will be obtained in the second phase of the algorithm. Even more, if the

individual scenario first stage solutions are only slightly different from each other, by eliminating

them from future consideration in the next iteration of the algorithm, we may end up with individ-

ual scenario solutions that are the same for all scenarios. The black start allocation problem is a

suitable candidate, since the main driving forces of the allocation of BS units are the location of

the critical loads and the characteristics of each generator (a small cranking time and high ramping

rate usually make for an ideal BS unit), all of which are the same across scenarios. The differ-

entiation caused by the scenario specific initial stable islands and component unavailability might

lead to slightly different allocations for the individual scenarios, which can be eliminated using the

“No-Good-Cuts”.

4.5 Experimental Results

All the computations are performed using the Cab cluster of the Lawrence Livermore National

Laboratory. Each node of the Cab cluster has two Intel Xeon E5-2670 processors at 2.6GHz and

32GB of RAM memory. We formulate the mathematical programs using Mosel 4.0.4 and use
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1: for g ∈ G, s ∈ S do

2: if Random() > pG then

3: u0,s
g = 1

4: NODERECURSION(N(g), s)

5: else

6: u0,s
g = 0

7: end if

8: end for

9:

10: function NODERECURSION (n ∈ N, s ∈ S)

11: if u0,s
n = 1 then

12: return

13: else if Random() > pN then

14: return

15: else

16: for i ∈ Neigbor(n) do

17: NODERECURSION(i, s)

18: end for

19: end if

20: end function

Figure 4.1: Code that generates the initial islands for every scenario in a way that each island contains (at least) one

energized (isochronous) generator. Note that N(g) is the node to which generator g ∈ G is connected, Neighbor(i) is

the set of neighboring nodes to node i ∈ N and Random is a (different for every call) uniformly distributed random

variable in [0, 1]. As far as the component unavailability is concerned, every initially de-energized component in a

scenario was considered unavailable for the whole process with probability 0.001.

Xpress 8.5.0 for solving them [62]. The decomposition algorithm was parallelized in 6 nodes with

2 jobs per node (i.e. solving up to 12 mathematical programs in parallel) and 8 threads per job

(i.e. setting Xpress to use 8 threads for traversing the branch-and-bound tree). A simple recursive

function in Python, described in figure 4.1, was used to generate the synthetic scenarios. We use

Matlab to manage and visualize the results.

Simulation of the IEEE-39 Bus System

In order to illustrate the effectiveness of the proposed model, a small test case is initially con-

sidered. The IEEE-39 bus system consists of 39 buses, 10 generators and 34 branches [11]. The

parameters used can be found in [115]. The parameters for generator 10 are purposefully chosen in

a way that favors turning it into a BS unit (i.e. small cranking power of 1MW and a small cranking

time of 10 minutes). The length of the time horizon is set to T = 40 time units, with a 5 minutes

time step, whereas 20 equally probable scenarios are used in the stochastic program. Some of the

scenarios are depicted in figure 4.2. The problem has 596541 constraints and 229010 variables,

of which 76010 are binary. Without the decomposition algorithm, Xpress is unable to even find

a feasible point after 10 hours of execution in a node of the Cab cluster utilizing 16 threads (and

default settings).
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Number of scenarios 20

Variables per scenario 11450

Constraints per scenario 29437

Binaries per Scenario 3202

Lower Bounding Phase

Mean Time [s]

292

Upper Bounding Phase

Mean Time [s]

118

Mean Time for solution

evaluation [s]

126

Total Algorithm Time [s] 6700

Table 4.1: Computational performance of the decomposition algorithm. Note that not all solution evaluations need to

happen at the second stage, since some of the solutions found by the subproblems of the Lower Bounding Phase are

repeated and the evaluations in the Upper Bounding Phase for the repeated points happen only once.

Figure 4.2: A few of the different scenarios considered in the simulations. Components in black indicate de-energized

parts of the system, components in blue indicate the initial stable islands and components in red indicate unavailability.

Initial line variables are not employed in our model, but we assume that initially a line between two energized nodes is

energized. The top left scenario is the case of a total blackout. The top right and bottom left scenarios have one initial

energized island each, but the bottom left scenario has one line that is unavailable for the whole restoration process.

The bottom right scenario has two initial islands, each one with a functional generator.
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Figure 4.3: Convergence behavior of the decomposition algorithm in figure 4.1, for the IEEE-39 bus system. The UB

(red line) is decreasing and the LB (blue line) increasing. Note that, since during the LB evaluation feasible solutions

are chopped off by the No-Good-Cuts, the LB is not necessarily a lower bound of the stochastic problem. However,

when LB becomes higher than the running UB, we have a guarantee that a near optimal solution (within the precision

that the upper bounding phase subproblems are solved) is found (corresponding to the current UB).
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Figure 4.4: Initial restoration steps for the IEEE-39 bus system in a scenario where generators 4, 5 and 10 are initially

energized (pictured in blue in the upper left figure). Generator 6 is a BS unit, so it can start at time step 1. Generator 10

is also a BS unit, but it was not influenced by the blackout, so it did not have to restart. The restoration steps (around

the initial stable islands and the BS unit) can be seen in red.
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Figure 4.5: Plot of total system load (red line) with the total generation for the scenario of total blackout (green line)

and a scenario with two initially energized generators (blue line) for the 39 bus system. Note that in the case of a total

blackout, the generation power starts from zero and ramps up, while in the other scenario the total generation starts

from a positive value, since not all of the grid is out of service.

The convergence behavior of the algorithm can be seen in figure 4.3. A computational study

of the scenario decomposition algorithm is presented in Table 4.1. The algorithm terminates after

5 iterations. The solution yields the allocation of two black start units, at generators 6 and 10.

The initial restoration steps are depicted in figure 4.4. The total generation and total load for two

scenarios are shown in figure 4.5.

4.6 Conclusions

We presented a model for the problem of optimal BS allocation for power system restoration

in the form of a two-stage stochastic program. The model also captures the basic characteristics of

the restoration process. Different scenarios corresponding to different initial states of the grid fail-

ure and different component availability for the restoration process are considered and a scenario

decomposition algorithm is tested. Simulations verify the effectiveness of the proposed approach

for a test system.
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Chapter 5

An Algorithm for Large-Scale Power

System Islanding

5.1 Abstract

Intentional Controlled Islanding (ICI) is an online measure employed to prevent cascaded sys-

tem outage after a disturbance in the power system. By switching off select lines, the system

operator can create smaller, easier to control islands. An algorithm for ICI should be fast to im-

plement in real time, as well as capable of integrating islanding requirements such as coherency of

the generators in an island and minimum disruption of the power balance caused by the switching

of lines.

In chapter 3, we referred to the problem of optimal islanding in the context of a Mixed Integer

Programming (MIP) formulation. In that chapter, we assumed the generator coherency sets are

known in advance. In this chapter, we provide more details on how these coherency sets (generator

partitioning) can be determined. Additionally, since the optimal islanding is essentially a large

scale graph partitioning problem, the computational performance of MIP algorithms tends to be

fairly slow for the needs of an online decision system that has to act within seconds to prevent a

cascaded failure of the system. In this chapter, we instead approximate the solution to a common

ICI formulation by utilizing a known combinatorial approximation scheme of the normalized cut.

This approach is easily implementable and numerically robust, exhibits high computational effi-

ciency and allows for a natural integration of islanding requirements (such as generator minimum

load and inflexible lines) into the problem solution. Experimental results on systems with up to

3000 buses verify the effectiveness of our approach.
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5.2 Introduction

Mitigating the impacts of an extended outage is among the main characteristics of a resilient

grid. Intentional Controlled Islanding (ICI) is a well studied technique employed to prevent

widespread blackout after a large scale grid disturbance. The idea is that, by disconnecting branches

of the power system, the operator can create small islands that are stable or easily controllable. That

way, a cascaded outage can be avoided. Since time is of the essence after a power disturbance, any

algorithm employed for intentional islanding needs to be robust and executable in real time, while

also resulting in an effective islanding scheme.

A common objective for the islanding is to split the power grid into islands that only contain

coherent generators. Coherent generators are generators whose phase angle difference does not

change much after a disturbance, i.e. generators that swing together. The goal is to eliminate inter-

area oscillations, which are a common cause of blackouts. More specifically, interarea oscillations

occur when two incoherent generators (or groups of generators) swing against each other after a

disturbance, at frequencies of 1Hz or less, leading to large power variations in the tie-line [102].

If the system also suffers from insufficient oscillation damping, this power variation can lead to an

extended blackout. Hence, by disconnecting these two groups of generators from each other, the

operator may prevent a cascaded outage.

The idea that generator coherency with respect to the slowest modes (which are the ones re-

sponsible for interarea oscillations) can be used for determining an islanding scheme appeared in

some of the seminal works in the field [28, 155]. Generator coherency with respect to the slow-

est modes has been associated with weak coupling between the state variables of the generators

belonging to incoherent sets [29, 80]. This gives rise to a generator islanding scheme based on

minimizing the coupling between generators in different islands. In [41], bipartitioning of the

generators into two coherent groups is formulated as a normalized cut problem [129] and approx-

imated through solving a generalized eigenvector problem and a clustering problem based on the

second eigenvector. Similar approaches are used in [42, 48, 79].

Following the generator grouping, the specific set of lines to switch off in order to create islands

that contain the corresponding generator groups needs to be defined. To that end, the set of lines

is commonly chosen to minimize the total power imbalance (i.e absolute value of algebraic sum of

power flows of the switched lines) or the power flow disruption (i.e. sum of absolute values of the

power flows of the switched lines). This can be achieved through variations of constrained spectral

clustering [41, 48], through mixed integer programing [81], or through graph cuts [155]. Often,

grid simplification and aggregation steps are required to ensure computational efficiency [152].

While the aforementioned schemes are the most dominant in literature, there are also many

approaches that utilize different techniques and include further islanding considerations. Among

them, a submodular optimization problem is formulated in [92], an efficient multilevel graph

partitioning algorithm is used in [86], and multiple mixed integer programming models have been

proposed [58, 137, 138, 158].

In this work, a normalized cut problem that combines generator coherency and minimum power

flow disruption is formulated. The formulation can allow for the integration of further island-

ing constraints, such as inflexible lines, minimum generator limits, or forcing components of the
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jX
′

g

vi|eg| < δg

ig

eg

Figure 5.1: Classical transient generator model. The internal generator node, of voltage eg, is connected to the

terminal (power system) node i ∈ N , of voltage vi, through a transient reactance X
′

g. The transient internal voltage

eg is calculated based on the steady state operation using the transient reactance. Following that, the magnitude |eg|

is assumed constant and the angle δg is initialized based on the steady state value δ̂g and then follows the dynamics of

the differential equations (5.5).

system to belong to the same island. An adaptation of the approximation algorithm proposed

in [68, 70] is employed. The resulting scheme runs at the complexity of a minimum cut, which

is generally faster and more numerically robust than eigenvector computations. The efficiency of

the approach allows it to run fast even for large scale systems, obviating the need for grid simpli-

fication. The performance in terms of the two objectives of the islanding problem (coherency and

power flow disruption) is better or comparable to the spectral clustering approach performance.

The rest of this chapter is organized as follows: section 5.3 presents the background to setup

the problem, section 5.4I presents the problem formulation and the algorithm employed, section

5.5 shows experimental results, and section 5.6 draws conclusions. This work has been published

in [112].

5.3 Controlled Islanding Objectives

In this section we review the necessary background for the problem formulation, i.e. the logic

behind the two main objectives considered in this work (generator coherency and minimal power

flow disruption).

Generator Coherency

We briefly describe a typical model for small signal system analysis to motivate the discussion

on coherent generator sets. The analysis examines two instances of the system: the pre-disturbance

system and the post-disturbance system. The pre-disturbance system is assumed in steady state.

Its state is calculated through the power flow equations and is used for initializing the transient

phenomena. After the disturbance, the transient dynamics are captured through the second order

differential equations of the generators (swing equations), as well as the power flow equations.

The generators are represented using a classical model, as shown in figure 5.1. Each generator

g in the set of generators G is modeled through an internal node with complex transient voltage eg,

that is connected to the power system bus (terminal generator node) through a transient reactance
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X
′

g. The magnitudes |eg| of internal voltages eg are constant throughout the transient phenomenon,

based on the assumption of constant flux linkage in the machine. The phase angles δg of the

internal voltages, on the contrary, are the state variables of our system. The coupling between the

phase angle responses from different generators will eventually be the criterion used for grouping

generators in coherent sets.

A number of approaches can be used for load modeling [100], but a typical one for stability

studies is to represent the load as a constant impedance. For a given node, if the pre-disturbance

load active and reactive power PD, QD and the load bus voltage VD are known, the impedance is

calculated by:

YD =
PD − jQD

|VD|2
(5.1)

and is assumed constant in the post-disturbance system.

We can now form a generalized (|G|+ |N |)× (|G|+ |N |) admittance matrix Y , that considers

the buses (set N) as well as the internal generator nodes (therefore takes into account the load

impedances, the generator transient reactances, and the rest of the system). The following equality

holds:
[

iG
iN

]

= Y

[

eG

vN

]

=

[

YGG YGN

YNG YNN

] [

eG

vN

]

(5.2)

where eG, iG are the |G|-dimensional complex vectors of voltage and current injections in the

internal generator nodes and vN , iN the |N |-dimensional vectors of voltage and current injections

in the buses of the power system. Note that, due to the fact that loads are modeled through con-

stant impedances (included in the matrix Y ) and generators are modeled through additional nodes

connected to the buses through constant reactances, the current injections for all the buses of the

power system are zero iN = 0. Following that, by using Kron reduction [46], we eliminate the

variables vN and obtain the |G| × |G| effective admittance matrix Y
′

= YGG − YGNY
+
NNYNG

(where Y +
NN the Moore-Penrose inverse), which satisfies iG = Y

′

eG. The imaginary part of this

matrix is usually dominating the real part in terms of order of magnitude, so a common assumption

is to neglect it and consider: Y
′

≈ −jB
′

, where the effective transient susceptance matrix B
′

is

assumed real symmetric with its off diagonal entries non negative.

Restricting ourselves to the reduced network that only contains the internal generator nodes,

notice that for g, g′ ∈ G, the nodes g and g′ are connected through a branch of reactance 1/B
′

gg′ ,

therefore the active power transfer from g to g′ is:

Pgg′ = |eg||eg′|B
′

gg′ sin (δg − δg′) (5.3)

and the total active power that a generator g sends to the grid is equal to

P e
g =

∑

g′∈G,g′ 6=g

Pgg′ (5.4)

If for a generator g this power is not equal to the mechanical input of the generator, Pm
g , the

imbalance will cause a change in the internal voltage phase angle according to the swing equation

for that generator (with inertia constant Hg, angular frequency ω0, damping neglected):



CHAPTER 5. AN ALGORITHM FOR LARGE-SCALE POWER SYSTEM ISLANDING 94

2Hg

ω0

δ̈g = Pm
g − P e

g (5.5)

Substituting (5.3) and (5.4) into (5.5), we get a set of |G| second order equations for the |G| di-

mensional vector of internal generator angles δ (state variables). By linearizing the system around

the pre-disturbance operating point δ̂ we obtain:

Mδ̈ = Kδ (5.6)

where the g, g′ entry of the |G| × |G| matrix K for g 6= g′ equals:

Kgg′ = −
∂Pgg′

∂δg′

∣

∣

∣ δg=δ̂g

δg′=δ̂g′

= |eg||eg′|B
′

gg′ cos
(

δ̂g − δ̂g′
)

(5.7)

and for g = g′ equals Kgg = −
∑

g′′∈G,g′′ 6=g Kgg′′ . The |G| × |G| matrix M is diagonal with

Mgg = 2Hg

ω0
for all g ∈ G. Note for the linearization that the internal voltage magnitudes |eg| are

constants (equal to their pre-disturbance value) and so is the mechanical input of each generator

Pm
g (equal to the electrical output of the generator before the disturbance, where the system was at

steady state).

Two generators are characterized as “coherent” if their internal voltage angle difference (which

is a function of time) does not change much after a disturbance. Therefore, coherent generators

swing together and can be aggregated in transient system simulations. While there are many for-

mal definitions of coherency, one that has particularly nice structural properties characterizes two

generators as coherent with respect to a subset of the modes of the system of differential equations

(5.6), if none of these modes are observable from the voltage angle difference. In [80], coherency

with respect to the slowest modes is related to small values of a scalar quantity ζ that depends

on the off-diagonal entries of the matrix K. More specifically, for the case of partitioning the

generator set G into two sets of coherent generators VG and V̄G = G \ VG, we have:

ζ(VG) =

∑

(gg′)∈δ(VG)Kgg′

∑

g∈VG
Mgg

+

∑

(gg′)∈δ(VG)Kgg′

∑

g∈V̄G
Mgg

(5.8)

where δ(·) is the undirected cutset of a set and its complement, i.e. δ(VG) contains all pairs

(g, g′) with one generator in VG and one in V̄G.

It has been verified that splitting the post-disturbance grid based on groups of coherent gener-

ators leads to stable islands and prevents fault propagation [149, 153]. Furthermore, an objective

similar to (5.8) has been recognized as a normalized graph cut [129] for the bipartition of the

generator set in [41]. Since solving the minimum normalized graph cut problem is NP-hard, a

spectral clustering approximation algorithm based on a generalized eigenvalue problem was ob-

tained in [41]. Partitioning of the grid into more than two islands can be accomplished, if necessary,

by repeating the same procedure for the resulting islands.
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Minimal Power Flow Disruption

A common objective when identifying a set of lines to switch off in order to isolate coherent

generator groups is that of minimal power imbalance. If the set of buses N is partitioned into the

sets S and S̄ = N \ S, the power imbalance is calculated by:

∑

(i,j)∈δ(S)

|Pij | (5.9)

where Pij the active power on the transmission lines between buses i and j (algebraic sum for the

case of multiple lines or flow directions). The idea behind this penalty is that we seek to remove

lines in a way that causes minimum change from the pre-disturbance power flows within the re-

sulting islands. The advantages and disadvantages of using this objective have been extensively

examined in literature [41].

5.4 A Combinatorial Algorithm for Optimal Islanding

Problem Formulation

We formulate an optimal islanding problem that incorporates both generator coherency and

power imbalance with a trade-off, i.e. the problem of interest is:

minimize
S⊆N

∑

(ij)∈δ(S) Wij
∑

i∈S Qii

+

∑

(ij)∈δ(S) Wij
∑

i∈S̄ Qii

(5.10)

In the equation above, the weights are defined for nodes i, j ∈ N , i 6= j:

Wij =
∑

(g,g′)∈(G(i)×G(j))

Kgg′ + λ |Pij| IE{(ij)} (5.11)

where G(i) denotes the set of generators connected to node i, λ a trade-off coefficient (which

is the only tuning parameter of the optimization problem), and IE is the indicator function of the

set of undirected branches E. Note that the weight Wij can be nonzero only if both buses i and

j have a connected generator or if there is a branch in the power system connecting i and j. The

balancing weights for a node i ∈ N are given below (zero if G(i) = ∅).

Qii =
∑

g∈G(i)

Mgg (5.12)

The output of the optimization problem (5.10) is an optimal partitioning of the nodes S. All the

lines in the cutset δ(S) will be switched off to create (at least) two islands. If further partitioning

of the grid is required, the optimization can be formulated for each of the remaining islands. Note

that lines that are inflexible (cannot be remotely switched off) can be assigned a large weight Wij ,

which will ensure that they will not belong to the cutset.
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Another critical concern for stable islands is that a generator operates in a more stable fashion

if its generation exceeds a minimum, which means that one or more load nodes should belong to

the same island as this generator. We can easily force the generator to belong to the same island

as a load node by assigning large weights to the edges in one or more paths between them. These

paths and load nodes can be efficiently found by graph search algorithms (such as Breadth First

Search) around the generators.

The alternative, two step approach to formulate the problem, common in literature, would be

to pick the partition of the generators in the first step and in the second step the optimal set of lines

to switch off to minimize power flow disruption in a way that respects the generator grouping. The

techniques described in what follows can be used in this two-step setting as well. However, the

same result can be simulated using the single step optimization problem (5.10) by picking a small

trade-off coefficient for the power flow disruption: The optimal generator grouping will be selected

based only on generator coherency (dominant terms), and then (since there can be multiple ways

to select lines to switch off and achieve the same generator grouping), the solution among them

that minimizes power imbalance will be chosen.

Theoretical Justification for the Algorithm

The problem in (5.10) can be recognized as a normalized cut problem on a graph with |N |
nodes and at most |G|+ |E| edges. Since the problem is NP-hard in general, we use an algorithm

from [70] to solve a relaxation of the problem. This algorithm has been used, among others,

in neuroscience [131] and nuclear material identification [154]. In this section, we adapt some

results from [70] to our problem and illustrate the main idea behind the algorithm. First, define the

problem:

minimize
S⊆N,b∈R+

(1 + b)2
∑

(ij)∈δ(S) Wij
∑

i∈S Qii + b2
∑

i∈S̄ Qii

(5.13a)

subject to G(S) 6= ∅, G(S̄) 6= ∅ (5.13b)

b =

∑

i∈S Qii
∑

i∈S̄ Qii

(5.13c)

where G(S), G(S̄) the set of generators connected to nodes of S and to the complement of S
respectively. The problem (5.13) is equivalent to (5.10). To see that, first note that in (5.10) neither

of G(S), G(S̄) can be empty for a finite objective value. The equivalence of the objectives can

be seen by substituting b =
∑

i∈S Qii∑
i∈S̄ Qii

into the objective of (5.13). The algorithm developed in [70]

solves (5.13) with constraint (5.13c) relaxed. For the different values of the parameter β, define

the following problem:

P (β) = minimize
S⊆N :G(S),G(S̄)6=∅

∑

(ij)∈δ(S)

Wij + β
∑

i∈S

Qii (5.14)
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Claim 1: Any optimal solution (partition S, S̄) of problem (5.13) with constraint (5.13c) re-

laxed is an optimal solution to problem P (β), for some value of the parameter β. The proof of the

claim is provided in the Appendix.

Based on the previous claim, instead of solving the relaxation of (5.13), we will solve problem

(5.14) for all values of the parameter β. To that end, first note that (5.14) only allows partitions

in which both sets S and S̄ must contain at least one generator. For two generators g, g′ ∈ G,

with g 6= g′, let P gg′(β) denote the optimization problem P (β) with the additional constraint that

n(g) ∈ S, n(g′) ∈ S̄, where n(g) ∈ N denotes the node to which generator g is connected. Then,

the problem P (β) can be solved as:

P (β) = minimize
g,g′∈G,g 6=g′

P gg′(β) (5.15)

Therefore, by solving at most O(|G|2) problems of the type P gg′(β), we can solve P (β). However,

in order to reduce the real time computational burden, we will instead heuristically pick two gen-

erators g, g′ and force them to belong to different sets. The generators g and g′ can be picked based

on a heuristic, such as weakest coupling Kgg′ , or empirical knowledge of the particular power

system. Even though this approach yields a worse objective, it is reasonable for cases in which we

may want to force separation between two generators.

Finally, for a given pair g, g′, the problem P gg′(β) can be solved efficiently using the graphs

of figure 5.1. To see that, note first that the capacity of an s − t cut in the graph for β ≥ 0
is exactly the objective from (5.14). The big-M capacity arcs from s to n(g) and from n(g′)
to t ensure that n(g) ∈ S and n(g′) ∈ T . Therefore, the minimum-cut problem on the graph

solves P gg′(β). For β < 0, the capacity of the cut is
∑

(ij)∈δ(S) Wij + (−β)
∑

i∈T Qii =
∑

(ij)∈δ(S) Wij + β
∑

i∈T Qii − β
∑

i∈N Qii, which again solves P gg′(β) since the last term in

the summation is a constant. In both problems, the parameter |β| appears on strictly increasing

functions of capacities only from the source/only to the sink. This ensures we can solve for all

values of β efficiently at the complexity of a maximum flow problem (parametric cut) [69]. By the

same theory, we know there will be at most |N | different partitions generated from the parametric

cut solution, for all the parameters β. Therefore, we can efficiently calculate the objective of

interest for all of them and pick the best.

The Algorithm

Based on the analysis and theoretical justification presented in the previous sections, the pro-

posed algorithm for optimal islanding following an extended grid disturbance is presented a step-

wise fashion below.

Step 1: Identify the surviving power system, the operational generators, buses and edges.

Based on the last known pre-disturbance measurements and the analysis presented in subsection

5.3, calculate the matrices Kgg′ , Mgg for the surviving generators. Note that if these calculations

are periodically performed online for the power system in steady state, the matrices for the sur-

viving system can be updated more efficiently (but we will not focus on that aspect in this work).

Calculate the weights Wij and Qii based on equations (5.11) and (5.12) and any other requirements
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Figure 5.1: Directed graphs to solve P gg′

(β) for the different values of β, following the construction in [70]. The

graph has all the nodes in N, plus two dummy (source and sink) nodes s,t. The partition is S, T = S̄. The weights

Wij ,Qii refer to the objective of (5.14). M is a large number. For every pair i, j with non zero weight Wij , two

directed edges are added. For every generator node i (i.e. G(i) 6= ∅), one directed edge of weight βQii is added.

that we want to impose on the system (such as inflexible lines or minimum load requirements, as

described in subsection 5.4).

Step 2: Formulate the graphs from figure 5.1 and solve the parametric minimum cut problem

on both of them. The output of the algorithm for each graph will be at most |N | different partitions

of N , each one corresponding to a value of β [69]. Calculate the objective value of (5.10) for each

one of them and pick the partition with the best objective. On a technical note, the calculation of

the objective for each partition can be done in O(|N |) by using the optimal parametric cut objective

that yielded this partition. Note that if an implementation of the parametric cut is not available,

one can simply pick some values of β instead and solve the problem only for them, as a heuristic.

Step 3: Repeat the process from Step 2 for each of the partition sets to further split the grid

into smaller islands.

5.5 Experimental Results

We simulated the algorithm on the IEEE-9, IEEE-39, IEEE-300 and Polish test systems. The

results are reported below. More specifically, the graph structure (nodes, edges, generators and the

underlying connections) were used. Lines between two nodes with multiplicity higher than one

were merged and their power flows were added. Based on [100], we assumed that the transient

reactance of the generators is X
′

g = max{0.1, 92.8(Pmax
g )−1.3}, where X

′

g is expressed in p.u. with

respect to the system basis Sbase = 100MVA and Pmax
g is the nominal power of generator g is

MW. We also assumed that Hg = 0.04Pmax
g , where Hg is in p.u. with respect to the system basis.

Matpower [160] was used to calculate the pre-disturbance ac power flow.

The algorithm from [41], which is conceptually close to our approach and uses a well estab-

lished partitioning technique based on spectral clustering, was also simulated. We implemented
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Node Generator Power

Alg. Partition Partition Disruption ζ Time

(|S|, |S̄|) (|VG|, |V̄G|) MW [s]

IEEE-9
ICI1 (2,7) (1,2) 71.7 68.44 0.055

ICI2 (1,8) (1,2) 163.0 67.82 0.081

IEEE-39
ICI1 (3,36) (1,9) 85.4 57.97 0.068

ICI2 (8,31) (5,5) 4611.8 31.94 0.462

IEEE-300
ICI1 (4,296) (1,68) 140.1 2.33 0.067

ICI2 (83,217) (1,68) 33434.5 2.33 2.030

3375-bus Polish system

ICI1 (52,3322) (1,440) 554.5 582.13 0.960

ICI2 (478,2896) (1,440) 81495.5 9918.4 277

Table 5.1: Optimal bipartition based on the algorithm of this chapter (ICI1) and the algorithm from [41] (ICI2) for

IEEE test cases and the Polish system. The metrics compared are the quantity ζ from (5.8), the power flow disruption,

and the algorithm execution time.

the two algorithms in Matlab. For our implementation, since the Matlab graph environment does

not support parametric maximum flow, we simply solved problem (5.14) for 20 values of β evenly

spaced between −1 to 1 and the solution with the best objective was chosen. The trade-off was set

to λ = 1, however the optimal solution in the instances solved was often not sensitive to changes

in the value of λ, which is an indication that both objectives are solved to optimality. We focus on

bipartitions in the results. Multiple applications of the algorithm can break the system into smaller

islands if necessary.

Table 5.1 shows the main computational results. Note that, both the power disruption values

and the normalized generator cut ζ values are comparable or lower for our approach. The time

of execution is also significantly better using the proposed approach. Compared to the spectral

clustering approximation, our approach tends to lead to smaller islands, but it turns out that these

solutions still have better objectives. If the problem changes, by introducing further islanding

constraints, larger islands can be obtained. An example of introducing islanding constraints is

shown in figure 5.1.

5.6 Conclusions

In this chapter, we examined an efficient approach for controlled islanding based on a combi-

natorial approximation of the normalized cut. The algorithm allows integration of further require-

ments through the use of large arc weights, a practice that will not influence the computational

efficiency due to the strongly polynomial nature of the algorithms for minimum cut. Experimental

results showed that the computations are fast even for large systems, hence no grid simplification
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Figure 5.1: The optimal bipartition for the IEEE-39 bus system is shown with red dashed line. The purple solid line

indicates the partitioning when the generator in bus 36 is required to be connected to load in node 16. This is imposed

by using large weights for the path leading to the bus, in this case for branches (36, 23), (23, 24), (24, 16).

is required. Future research directions include an efficient implementation of the parametric mini-

mum cut procedure, an algorithmic description and implementation of the generator-load mapping

for every island, possible generalizations to multicut partitioning, and additional simulations to

verify the effectiveness of the approach.
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Appendix

5.A Proof of Claim 1

The proof is based on ideas in [68]. Let S∗, b∗ be an optimal solution to (5.13) with constraint

(5.13c) relaxed and let the value of the objective be z∗, i.e.:

z∗ =
(1 + b∗)2

∑

(ij)∈δ(S∗)Wij
∑

i∈S∗ Qii + (b∗)2
∑

i∈S̄∗ Qii

(5.16)

We will show that S∗ is an optimal solution to the optimization problem P (β̂), as defined in (5.14),

with β̂ = z∗ b∗−1
b∗+1

. By the optimality of S∗, b∗, we have that for any S ⊆ N : G(S), G(S̄) 6= ∅:

(1 + b∗)2
∑

(ij)∈δ(S) Wij
∑

i∈S Qii + (b∗)2
∑

i∈S̄ Qii

≥ z∗ (5.17)

which can be equivalently written, after a few algebraic manipulations and substituting
∑

i∈S̄ Qii

=
∑

i∈N Qii −
∑

i∈S Qii, as follows:

∑

(ij)∈δ(S)

Wij + z∗
b∗ − 1

b∗ + 1

∑

i∈S

Qii ≥ z∗b∗
∑

i∈N

Qii,

∀ S ⊆ N : G(S), G(S̄) 6= ∅

(5.18)

Note that the left hand side is the objective of P (β̂), the right hand side is a constant, and the

inequality holds for all feasible S in P (β̂). Now, for the particular choice S = S∗, we can see from

(5.16) that (5.18) holds with equality. Therefore, S∗ is an optimal solution for P (β̂) and the proof

is complete.
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Chapter 6

The Hidden Cost of Priority Dispatch for

Wind Power

6.1 Abstract

Renewable generation, such as wind power, is commonly considered a must-take resource in

power systems. The goal of this chapter is to illustrate that, given the technical capabilities of

current wind turbines, this approach could lead to major economic inefficiency as wind integration

levels in power systems increase. We initially provide intuition for cases in which the optimal

operating point involves shedding renewable generation, even though no cost is associated with it in

the optimization objective, illustrated in small power systems. We then explore the expected benefit

from dispatching wind resources at a lower level than their available output in a Stochastic Unit

Commitment (SUC) framework. The modeling and evaluation approach adopted are described. A

decomposition technique that utilizes global cuts and Lagrangian penalties to achieve convergence

is used to solve the resulting large scale mixed integer optimization problem, in a high performance

computing environment. A reduced California system is examined as a test case.
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6.2 Introduction

The worldwide drive towards a cleaner and sustainable electricity generation mix has lead to

increased renewable integration goals for the coming years. California, for example, is on track

for achieving its 2020 goal of 33% of energy needs satisfied by renewable resources and now aims

for 50% by 2030 [1]. Renewable resources have been traditionally treated - and are still treated by

many system operators - as must-take resources (negative load), i.e. they are fully integrated in the

electricity network regardless of their level or variability. Renewable curtailments only occur in

cases where operational feasibility is at risk. The increased renewable integration, however, grad-

ually brings about new operating conditions, such as steeper power ramps, overgeneration and de-

creased frequency response capabilities. Conventional generation by itself is unable or extremely

costly to deal with these new conditions and a paradigm shift is necessary, in which renewable

generation is called upon to contribute to ancillary services and grid flexibility by systematically

dispatching at levels defined by operational and cost considerations. The need for such policies is

already becoming apparent in regions with increased renewable integration; the California Inde-

pendent System Operator (CAISO) curtailed about 1% of the total potential renewable generation

during the first quarter of 2017, with solar curtailment reaching up to 30% at specific times, while

it has already adopted market based curtailment mechanisms [2]. In Europe, on the other hand,

directive 2009/28/EC is currently in force and stipulates by law that “Member States shall ensure

that when dispatching electricity generating installations, transmission system operators shall give

priority to generating installations using renewable energy sources in so far as the secure oper-

ation of the national electricity system permits and based on transparent and non-discriminatory

criteria” [49]. As of November 2016, however, there is an initiative to review the directive and an

active debate of whether to include renewable curtailments; in fact, the latest version of the pro-

posal (February 2017) to revise the legislation does not include prioritizing renewable generation.

We focus on mobilizing the flexibility of wind dispatch. Current wind generators and power

plants have advanced controls [110] that allow them to operate practically at any point below

their (maximum) available output [98, 99, 111]. However, their available output itself depends

on the weather conditions, i.e. the availability of wind. Consequently, they are considered semi-

dispatchable (in contrast to conventional resources for which complete control over the output point

is possible). These technical capabilities, however, enable us to consider the optimization of the

wind generation setpoint, instead of integrating all of the available wind generation into the system.

The benefits from curtailing wind production have been examined from various perspectives. In

[53] and [14], NREL provides a series of cases of wind curtailment in systems in the US or abroad.

In [88] and [94] CAISO uses the software PLEXOS to simulate a rolling unit commitment problem

in the presence of wind curtailment for high wind penetration. In [130] it is shown that allowing

for renewable curtailment enables significant reduction of the required system storage size, in [17]

the benefits are motivated mainly through solving a Security Constrained Optimal Power Flow

(SCOPF) problem, in [101] through a market coupling and a nodal pricing model of part of the

European system, in [39, 47] through a Security Constraint Unit Commitment (SCUC) Problem

and in [143] a dynamic interaction of wind curtailment with storage is examined when the ramping

rates of power plants are considered. An overview of the motivation behind wind curtailment is
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given in [60], whereas in [76] wind curtailment is employed for active network management. A

flexible wind dispatch margin for the joint energy and reserves market and offline policies to obtain

it are examined in [65] and [64].

We decided to motivate flexible wind dispatch in the context of the Stochastic Unit Commit-

ment (SUC) problem instead. The Unit Commitment problem is a widely studied mixed integer

program [20,36,51] that determines the set of generators, among all the available ones, that will be

committed to satisfy the load during the following day. The two stage Stochastic Unit Commitment

problem (SUC) formulates the same decision in the presence of uncertainty (renewable genera-

tion, faults, load), captured by a finite set of possible realizations (scenarios) [19,37,104,135,140].

While wind curtailment is a usual assumption when formulating the SUC problem, in this work we

explicitly focus on calculating the expected benefit from optimizing the wind output setpoint ver-

sus an approach that treats wind as a priority resource. A similar approach appears in [77], where

coordination with storage is considered to illustrate the benefits from dispatchable wind. The size

of the optimization problem scales linearly with the number of scenarios and for that purpose a

large amount of research has been devoted to decomposition techniques to iteratively approximate

the solution of the problem. Among these, in [26], the Progressive Hedging (PH) algorithm is

adapted to successfully solve the SUC problem. In [78] a cutting plane algorithmic approach is

used. In [106] a parallel implementation of Lagrangian relaxation in a high performance comput-

ing environment is employed. In [7] an asynchronous parallelized algorithm based on stochastic

subgradient is utilized to efficiently solve the problem.

In this chapter, we provide a complete framework to understand and evaluate the expected

benefit from flexible wind dispatch in a SUC setting, while also introducing innovations in the

implementation of the various components of the model. To begin with, since wind generation is

not associated with any fuel costs in the objective, it is not self evident why we could be better

off curtailing it and using costly conventional generation in its place. For this reason, we present

small motivating examples to offer intuition regarding the most common setups where such benefit

may occur: operation during oversupply, ramping requirements, technical minima of generators

and congestion. We then proceed to describe the complete evaluation framework, by introducing

its basic components: the Uncertainty and Optimization Modules.

The Uncertainty Module is responsible for generating sample scenarios that capture the under-

lying uncertainty for renewables and system faults. It is based on existing wind speed modeling

techniques, which we extend by using a non parametric modeling methodology for the aggregate

power curve, i.e. the mapping of wind speed to wind generation, utlizing local polynomial re-

gression [30]. The Optimization module, on the other hand, is responsible for solving the SUC

problem given a set of scenarios. It specializes an algorithm presented in [4] for general two stage

stochastic programs with binary first stage variables. The intuition behind the algorithm is that,

if the different scenarios of a stochastic program are similar, then it is possible that a good (first

stage) solution to the full problem will come from solving the significantly smaller subproblems

that only look at scenarios in isolation. By solving the scenarios in isolation in the first phase of

the algorithm, we obtain lower bounds to the SUC optimal objective. Then, by testing the various

first stage solutions we got from the individual scenario subproblems to the full problem, we get

feasible solutions to the full problem (upper bounds) in the second phase of the algorithm. We
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proceed to eliminate these solutions from consideration in the next iterations, when we resolve the

individual scenario subproblems. The algorithm is executed until the desired optimality guarantee

is obtained.

In the experimental results of [4, 124], the algorithm is tested without implementing dual up-

dates (just employing cuts to eliminate solutions already tested). Even though SUC satisfies the

technical requirements of the algorithm, the cuts employed fail to efficiently reduce the gap for the

SUC problem on their own. To remedy that, we combine the use of cuts with Lagrangian penalties

in the objective of the individual scenario subproblem to convey information from other scenar-

ios, so as to obtain scenario specific solutions that perform well in the full problem. The exact

penalties we use are the same as the Progressive Hedging Lower Bounds [56], in a way that the

lower bounding property of the first phase of the algorithm is preserved, and lead to a projected

subgradient descent optimization scheme at every iteration (an update that lies within the general

framework of the algorithm in [4]). One advantage of the algorithm from [4] is that termination

of the algorithm with any desired optimality gap is (at least in theory) guaranteed, in contrast to a

simple subgradient optimization scheme for the dual where the achievable accuracy is limited by

the duality gap between the primal and dual problems at best.

We test our framework on a reduced model of the Western Electricity Coordinating Council

(WECC) system from 2010 [156], consisting of 130 thermal generators, 225 nodes and 371 lines

for three wind penetration scenarios (low, medium and high). After the SUC problem is solved,

we utilize its optimal solutions to compare the cost of policies that treat wind as a must-take

resource versus ones that allow flexible wind dispatch. Regarding the value of wind flexibility,

our results indicate negligible cost benefit in the low and medium integration case, but a 15%

cost improvement in the high integration case, supporting the argument that flexible wind dispatch

should be directly integrated in the operation of the power market.

The chapter is structured as follows: In section 5.3, the motivating examples are provided, in

section 5.4, the general modeling is described, in section 5.5 experimental results are shown, and in

section 5.6 we conclude and discuss policy implications of the work. This work has been published

in [113].

6.3 Motivating Examples

In order to motivate the discussion and provide some intuition on the cost benefits from al-

lowing wind generation to deviate from the available wind power output, four stylized examples

are examined. These examples try to illustrate that, even though wind generation is not associated

with any cost in the objective, it can still be beneficial to spill wind resources for a cost efficient

allocation of conventional generation. Figure 6.1 outlines the parameters for these examples.

Technical Minima

In example 1, if the 40MW of wind power are treated as a must-take resource, the total residual

load that needs to be satisfied by conventional generation would be 20MW. Due to the technical
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(a) Example 1. The generator specifications in this case

are minimum and maximum generation limits (Pmin,

Pmax) and marginal costs Cg . The available (maximum)

wind power generation is Pw and the load is PD.

(b) Example 2. The generator specifications are the min-

imum generation limit (Pmin), the startup cost Sg and

the operating cost C(P ) as a function of the generation

level P . The available (maximum) wind power gener-

ation Pwt and load PDt are given for three consecutive

time periods, t = 1, 2, 3. G1 is assumed turned off at the

beginning.

(c) Example 3. The generator specifications are mini-

mum and maximum generation limits (Pmin, Pmax), the

startup cost Sg, the operating cost C(P ) as a function

of the generation level P and the ramping rate RR. The

available (maximum) wind power generation is Pw and

the load is PD . The generators are initially assumed

turned off and we are only interested in the first time

period.

C1
g = 4 [k$/h]

Fmax
12

= 10 [pu]
B12 = 20 [pu]

G1 G2

Fmax
23

= 10 [pu]
B23 = 20 [pu]

B13 = 50 [pu]
Fmax
13

= 30 [pu]

Pw = 10 [pu]

PD = 40 [pu]

C2
g = 6 [k$/h]

1 2 3

(d) Example 4. The system consists of three buses and

three branches with susceptances B and capacities Fmax

as provided in the figure. The generator specifications

are the marginal costs Cg , the maximum available wind

production is Pw and the load is PD.

Figure 6.1: Small examples to illustrate potential benefits of wind power spilling.
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minimum 40MW of generator G2, we need to use the expensive G1, resulting in a 1100 $/h cost of

operation. If instead the output of the wind generator is adjusted at 20MW, G1 can be used and the

cost drops to 1000 $/h.

Startup Costs

In example 2, if wind power is a must-take resource, it can fully satisfy demand for time period

2. A residual load of 20MW should be satisfied by conventional generation in periods 1 and 3.

That, however, means that generator G1 must restart at period 3 and the startup costs are incurred

twice, leading to a total cost of 11000$ for the three periods. If, instead, 20MW of wind are

spilled during the second time period, G1 can stay on and the total cost is now 8500$. Note that

this intuition could be extended for more time periods or for instances with more conventional

generators.

Ramping Constraints

In example 3, the goal is to satisfy N − 1 security. More specifically, if any of the generators

fail, we should be able to recover the lost generation within the next time unit (an hour is used here,

but a smaller time resolution could be considered). Generators G1 and G2 are identical and have a

lower startup cost than generator G3, however their ramping rates are limited to 60MW/h, whereas

G3 has a ramping rate of 100MW/h. In the case where no wind spill is allowed, utilizing only the

cheap generators does not yield a feasible solution, since assuming they share the residual load of

130MW by generating 65MW each, the ramping capabilities of G1 are not sufficient in case G2

fails (in case they share the load unevenly, the same problem arises if the highest generating unit

fails). So the costly generator G3 needs to be utilized, leading to a total cost of $12900. Now,

if instead we dispatch the wind unit at 40MW, by spilling 10MW of wind power, we can satisfy

the residual load of 140MW by evenly sharing between G1 and G2, i.e. 70MW each. In case

G2 suffers a fault, we can cover 60MW of its generation by G1 and the remaining 10MW we can

obtain by ramping up the wind generation to its available output. For that, we exploit the fact that

wind turbine controls allow for very fast ramping. The second dispatch amounts to a lower cost of

$11200.

Congestion

Finally, in example 4, a DC optimal power flow problem is solved to illustrate how allowing

for flexible wind dispatch may lead to a more economical allocation by alleviating congestion. In

the case where the 10pu of wind power are treated as a must-take resource, in the optimum they all

pass through branch 2− 3 to satisfy the load of bus 3, binding the phase angle difference between

buses 2 and 3 as well. That means the flow of branch 2− 3 is at its capacity, so the flow on the line

1−2 must be zero. Because of that, the phase of bus 1 has to equal that of bus 2 and that constrains

the flow on line 1 − 3 to 25pu. We observe that both line 1 − 2 and line 1 − 3 are not utilized

close to their full capacity, whereas line 2−3 is congested. Also, 5pu of the load is satisfied by the
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expensive generator G2, leading to a total cost of $130000/h. If we instead dispatch wind at 8pu,

we can satisfy the load without using the expensive generator, by generating 32pu with G1 and the

remaining 8pu through wind, leading to a lower total cost of $128000/h. The flows are in this case

P12 = 2pu, P23 = 10pu and P13 = 30pu, which also corresponds to a better utilization of the line

capacities.

6.4 Model Outline

The examples of the previous section constitute favorable scenarios in which introducing flex-

ible wind dispatch allows for a lower cost of operation, due to technical minima of conventional

generation, efficient scheduling, ramping requirements or congestion. In order to make an argu-

ment for a more general case, however, we need to consider a large set of scenarios, generated

based on a model of the underlying uncertainty of an actual system. For that purpose, the proce-

dure depicted in figure 6.1 is adopted. The developed model comprises of two basic components,

the Uncertainty Module and the the Optimization Module. The Uncertainty Module tries to cap-

ture the underlying uncertainty of the system, which in our case is assumed to come from wind

generation and line or generator faults. The module is trained based on a data set and then used

to generate scenarios whenever these are necessary. The Optimization Module, on the other hand,

takes as input a set of scenarios and solves a stochastic unit commitment problem, providing in its

output a commitment schedule of the slow generators for the next day. The Optimization Module

can be treated as a black box that a system operator uses to make the day ahead scheduling based

on a set of available scenarios. Furthermore, it has two settings; in the first setting the optimization

treats wind generation as a must-take resource, whereas in the second setting wind generation is

allowed to dispatch at lower levels.

Based on these modules, the testing process is the following: Initially, the Uncertainty Module

generates a set of scenarios. These scenarios are treated as the uncertainty information the system

operator utilizes to make the scheduling decision. Based on this information, the Optimization

Module makes one scheduling decision for each of two cases: the one in which wind is a must-

take resource, and the one that it is not. In the final step, we wish to evaluate the difference

between the costs associated with each case. To that end, we generate a new set of scenarios from

the Uncertainty Module, representing possible actual realizations of the uncertainty the next day,

and compare the expected costs of each of the two cases (Test Optimal Commitment Block).

Uncertainty Module

The underlying uncertainty of the problem considered consists of three main components: the

wind model, the power curve model and the reliability model. The purpose of the wind model

is to generate synthetic wind speed time series with hourly resolution, representative of the wind

sites under consideration. Subsequently, the power curve model takes as input the wind speed

time series and outputs a wind power generation series for every wind site. Finally, the reliability

model is a discrete (Bernoulli) distribution from where faults of lines and generators are drawn, as
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Figure 6.1: General model outline. The Uncertainty Module generates scenarios to be used as input for the Opti-

mization Module, which defines an optimal commitment. It also generates a new set of scenarios to test this optimal

commitment.

in [104]. Note the uncertainty model could be extended in a straightforward way to include load

uncertainty as well, but in this work we do not consider it. This simplification is not unreasonable

since the variability of load around its forecasted value is not as high as the variability of wind

generation.

Wind Speed Model

This section describes the creation of a model that captures the characteristics of wind speed

from multiple wind sites. The approach follows most basic steps from [83], which builds upon

[103] and [96]. The input data used to train the model are wind speed measurements ξtrain
gk , where

g ∈ GW indicates the different wind sites and k ∈ {1, 2, ... Ttrain} indicates the Ttrain hourly

measurements that are available at every wind location. The goal is to train a model based on these

measurements and then use it to generate artificial wind series. The output of the process is a wind

time series ξsample
gts with g ∈ GW (for the various wind sites), t ∈ T (for the desired time steps of

the SUC problem), and s ∈ S (different scenarios/samples used to capture the stochastic nature

of the problem). The steps employed are divided in two phases; in the first one (Learning Phase)

the model is trained using the time series data, whereas in the second one (Time Series Generation

Phase) randomly generated wind time series to be used in a Monte Carlo simulation are created

based on the model.

Learning Phase The learning phase aims to (approximately) transform the measurement data

from the various locations to a set of independent Gaussian time series, whose characteristics will

be captured using basic Auto-Regressive Moving Average (ARMA) models [15]. The following

steps are employed.
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Step 1: Since the data wind time series is not necessarily stationary, we initially remove diurnal

and seasonal effects to get a new (approximately) stationary time series ξ̃train
gk .

ξ̃train
gk =

ξtrain
gk − µgmd

σgmd

, (6.1)

where µgmd and σgmd are the mean and standard deviation respectively of the time series created

by the samples ξtrain
gk that correspond to epoch m and hour of day d ∈ {1, 2, ... 24} for wind site

g ∈ GW .

Step 2: The stationary time series samples of the previous step do not necessarily follow a

Gaussian distribution. Through a bijective mapping that employs the estimated non parametric

Cumulative Distribution Function (CDF) F̂g of the time series from Step 1 in site g ∈ GW and the

inverse standard normal CDF Φ, the random samples ξ̃train
gk are mapped to samples ξ̂train

gk drawn from

the standard normal distribution, according to:

ξ̂train
gk = Φ−1(F̂g(ξ̃

train
gk )) (6.2)

Step 3: The data ξ̂train
gk are now assumed Gaussian stationary time series, but the time series

between the different locations can still be correlated. For that reason, based on the ideas discussed

in [83], the diagonalization of the symmetric |GW | × |GW | matrix Σ, where Σij = σ2
ij are the

sample covariances between the time series in two different locations i and j

σ2
ij =

1

Ttrain

Ttrain
∑

k=1

ξ̂train
ik ξ̂train

jk , (6.3)

is employed Σ = UDUT , where D diagonal and U orthogonal. The linear transformation

induced by the matrix UT will map the |GW | correlated Gaussian time series for every location

to Γ uncorrelated ones (in our case |GW | = Γ, however in the case of a large number of wind

sites we may choose to only keep the Γ < |GW | most important eigenvalues and corresponding

eigenvectors). Let {Ξ̂}gk = ξ̂train
gk be the matrix whose rows correspond to the correlated time

series, then the rows of {Ω}γk = ωtrain
γk , for γ ∈ {1, . . . ,Γ} and k ∈ {1, . . . , Ttrain}.

Ω = UT
Ξ̂ (6.4)

will comprise of Γ time series that will be assumed independent.

Step 4: For any fixed γ, the time series ωtrain
γk is modeled using a univariate ARMA(p,q) model,

utilizing the Box–Jenkins method [15].

Time Series Generation Phase At this point the model for wind speed time series has been

trained. The goal of the Time Series Generation Phase is to generate scenarios of synthetic wind

time series ξsample
gts based on this model. Each scenario s ∈ S consists of TH time samples t ∈ T for

every wind site g ∈ GW . The following procedure is employed:
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Step 1: The first step of the process is to generate Γ time series ωsample
γts for every scenario

s ∈ S, based on the ARMA model of Step 4 of the Learning Phase.

Step 2: The inverse transformation of (6.4), for every scenario s ∈ S, yields a time series

ξ̂sample
gts with t ∈ T , corresponding to each wind location g ∈ GW .

Step 3: The inverse transformation of (6.2) then yields a time series ξ̃sample
gts for every scenario

and every wind site.

Step 4: Finally based on the epoch and the time of day we want to simulate, the diurnal and

seasonal effects are added back in, using the inverse of (6.1), to yield the final wind speed time

series ξsample
gts with t ∈ T , s ∈ S and g ∈ GW .

Power Curve Model

For every site of wind generation an aggregate power curve that will provide an estimate of

the wind power generation given the wind speed needs to be constructed. For that purpose, wind

data and the corresponding wind power generations are used to train a power curve model. The

power generation data points come from an aggregation of multiple wind turbines in each site, with

potentially different individual power curves and characteristics. Therefore, the use of the standard

parametric power curve model of a single wind turbine to describe the wind speed and power

relationship [93] would not be a satisfactory approximation and a data driven non-parametric fit

is more suitable. The model should also be able to capture the nonlinear behavior of the power

curves, that is dependent on the wind speed operating point. For the aforementioned reasons, a

local polynomial regression scheme is proposed.

More specifically, for every fixed g ∈ GW the wind speed and wind power measurement data
(

ξtrain
gk , P train

gk

)

, k ∈ {1, . . . , Ttrain} are sorted (based on the lexicographical ordering) in Lg wind

speed intervals [agi, bgi], where i ∈ {1, 2, ...Lg}, with approximately equal number of measure-

ments, represented by a central wind speed point cgi.We locally approximate the power curve

mapping for this site with a polynomial of degree p, i.e. mgi(x) ≈ βgi0 + βgi1(x− cgi) + βgi2(x−
cgi)

2 + ... + βgip(x − cgi)
p. The coefficients βgi0, . . . , βgip are trained for each interval based on a

weighted least squares problem, where the weights are kernel functions of the distance of a point

from the center of its interval. After an initial fit is obtained, the procedure in [30] is adopted to

ensure the fit is robust to outliers.

Following that process, we feed the wind speed samples ξsample
gts , obtained by the wind speed

model, to the trained power curve model, to obtain available wind power samples PWgts, for g ∈
GW , t ∈ T , s ∈ S:

PWgts =

Lg
∑

i=1

mgi(ξ
sample
gts )I[agi,bgi](ξ

sample
gts ) (6.5)
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Optimization Module

Stochastic Unit Commitment

The generating units available to the system operator are divided into slow and fast, based on

how long prior to operation a commitment decision for that unit has to be made. The output of the

SUC problem is the commitment of slow generating units. The challenge is that the commitment

decision for slow units has to be made a day before operation, when the underlying uncertainty

is still unknown, i.e. the commitment decisions (binary variables) for these units have to be the

same across all scenarios (first stage variables). On the other hand, the other variables of the

problem, such as the commitment of fast generating units and the generation levels, are allowed

to vary depending on which scenario of nature was realized (the decision for them is made with

knowledge of the uncertainty), hence their value can be different for every scenario (second stage

variables).

Our formulation is that of [104], adapted to explicitly model the flexibility of wind resources.

The same methodology could be applied to determine the value of other types of renewable re-

sources, such as solar, but the focus here is wind generation, so the model is built around that. The

objective of the SUC problem is minimizing the expected, over the different scenarios, operational

costs (startup, minimum load and fuel costs), as well as the highly penalized load shed variables.

Wind generation is not associated with any fuel costs in the objective. The only modification of

our formulation, compared to the one in [104], is that wind will be treated as a must-take resource

when an additional parameter iallin is set to 1. This is imposed through the (additional) constraints:

pgts + pWSgts
= PWgts, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S, (6.6a)

pWSgts
≥ 0, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S, (6.6b)

pWSgts
≤ (1− iallin)PWgts, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S, (6.6c)

where the wind spill pWSgts
is set to zero if iallin = 1 (forcing the wind generation pgts to equal

the available generation PWgts), or optimized to a value between zero and the maximum available

wind production PWgts, if iallin = 0. Note, however, that the policy adopted by the operators when

prioritizing wind generation is that they may still impose curtailments of wind generation, if the

system feasibility is compromised. This corresponds to introducing constraint (6.6c) with a big-M

penalty in the objective instead (which will lead to positive wind spill only in case enforcing (6.6c)

as a hard constraint would cause infeasibility). The impact of the penalty is in that case subtracted

from the objective cost reported, since the big-M has no physical meaning for the problem costs.

Note that the UC modeling standard in industry has slightly evolved from the model used in

this work, so as to be able to cope with large scale systems. More specifically, tighter formulations

of some constraints (such as ramping constraints [36]) are utilized, a modified set of variables

has been offering improved computational performance by handling efficiently generator technical

minima [97], whereas the shift factor formulation enhanced with lazy constraint evaluation has

been noted to offer greater computational benefits (since the operators know which constraints are

usually tight and need to be introduced) [142]. However, the qualitative and computational ideas

conveyed in this work do not depend on the exact formulation.
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Initialization Phase

t← 0, UB ←∞, LB ← −∞ , wt
s ← 0, ∀s ∈ S, W ← ∅

Main Body

repeat

t← t+ 1,

Lower Bounding and Lagrangian Update Phase

Solve scenario subproblems:

for s ∈ S do

xt
s ∈ argmin

x∈X\W

{fs(x) + xTwt−1
s }

end for

Update Lower Bound:

LB←
∑

s∈S πsfs(x
t
s)

Update objective weights:

for s ∈ S do

x̂t ←
∑

s∈S πsx
t
s

wt
s ← wt−1

s + ρt (x
t
s − x̂t)

end for

Upper Bounding and Cut Phase

Evaluate scenario solutions for Upper Bounds:

for s ∈ S do

UBs ←
∑

i∈S πifi(x
t
s)

end for

Update Upper Bound:

UB← min{UB, {UBs}s∈S}
Exclude points tested:

for s ∈ S do

W ←W ∪ {xt
s}

end for

until UB−LB
UB

≤ eps

Figure 6.2: Decomposition scheme proposed in [4], adapted to solve the SUC problem. The Lower Bounding Phase

involves solving smaller optimization problems than the original, since the scenario is fixed, whereas the Upper Bound-

ing Phase involves smaller problems since the first stage and the scenario are fixed. As discussed in subsection 6.4,

not both phases are necessarily executed at every iteration.

Scenario Decomposition Algorithm

Let fs, for s ∈ S, be the set of (well defined) functions that, given the first stage variables,

yield the optimal cost for the second stage. That is, each evaluation of fs(x) accounts for solving

an optimization problem for scenario s ∈ S and for first stage variable x. Then, the SUC can be

reformulated:

minimize
∑

s∈S

πsfs(x) (6.7)

The main body of the algorithm is divided into two phases, the Lower Bounding and Lagrangian

Update Phase and the Upper Bounding Phase and Cut Phase. In the Lower Bounding Phase, we fix
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every scenario s ∈ S and solve for the optimal first stage decision given that scenario, over a space

X \W . This yields |S| scenario specific solutions for the first stage variables xt
s at iteration t. In

the first iteration, the set W is empty and the penalty coefficients wt
s are zero, so we are essentially

solving |S| scenario subproblems without any interaction, i.e. we are solving the initial problem

after relaxing the non anticipativaty constraints. Since we are solving a relaxation, at least for the

first iteration, we are guaranteed to get a lower bound on the optimal solution to (6.7). For the

next iterations, it is still straightforward [56] to show we get lower bounds for (6.7) solved in the

restrained space of first stage variables X \W .

Following that, the objective value penalties ws for every scenario s ∈ S are updated. These

penalties aim to drive the scenario solutions together. Intuitively this is achieved in the following

way: say that x is just an one dimensional x and for some iteration t we have that the mean of

the scenario specific solutions is x̂t. If for some scenario s ∈ S, the scenario specific solution xt
s

is away from the mean of the scenarios x̂t (say xt
s = 0 and x̂t = 0.9), we would like to penalize

this deviation in the objective of the scenario subproblem the next time we iterate, at time t + 1.

So, at iteration t + 1 a term (xt
s − x̂t)x will appear in the objective of scenario s, so that the

new solution x of the scenario will be driven towards the mean of the scenarios (in the arithmetic

example, the penalty in the objective would be (0 − 0.9)x = −0.9x which will drive x to be 1 in

the minimization, i.e. closer to the mean of the scenarios at the previous iteration).

In the Upper Bounding Phase of the algorithm, the |S| scenario specific solutions for the first

stage variables found during the previous phase are tested into the full problem. If feasible, each

one of them yields an upper bound to (6.7). That way, we can possibly update the upper bound and

the first stage solution that yields it. We then add the points {xt
s}s∈S in the set W . Our objective

function value has already been calculated for all of these points, so we can exclude them from

further consideration, except for the one that has yielded the best upper bound so far. That is, the

execution of the Lower Bounding Phase for the next iteration should only consider points not in

W . In practice, this is achieved by adding a global cut in the optimization problems solved in the

first phase, for every point in W so as to cut off this particular point. More specifically, a “No-

Good-Cut” is employed, i.e. a constraint of the form xT (1− xt
s) + (1− x)Txt

s ≥ 1 , in order to

cut off the point xt
s. The algorithm iterates until the Lower Bound (LB) and Upper Bound (UB)

come close enough to satisfy the desired optimality guarantee (eps).

To get some technical intuition for the algorithm, let us note that the Lower Bounding phase is

essentially a step in a projected subgradient ascend scheme for the dual of (6.7) in the reduced space

X \W , if the non-anticipativaty constraints are dualized. For a suitable choice of ρt as a function

of time, repeated evaluations of that phase would converge to the dual optimum. However, the

dual optimum could be quite smaller than the primal optimum, due to the existence of a non zero

duality gap, so we may never reach our desired optimality guarantee. This is where the existence

of the second phase of the algorithm becomes important: by expanding the set W , the duality gap

between the primal in the space X \W and its dual becomes smaller and, due to the finiteness

of X , we are guaranteed to eventually reach any predefined optimality guarantee threshold. In

practice, the objective penalties of the first phase are more useful at the beginning of the algorithm,

since they lead the scenario specific solutions towards the same point x, while the global cuts are

more useful after the first iterations, to reduce the optimality gap by cutting out points when the



CHAPTER 6. THE HIDDEN COST OF PRIORITY DISPATCH FOR WIND POWER 115

Type Units Capacity [MW]

Nuclear 2 4499

Gas 101 21781

Coal / Oil 3 /1 199 / 121

Dual Fuel 23 4679

Import 5 9931

Biomass 3 502

Geothermal 2 1073

Hydro 6 8613

Wind Low / Medium / High 5 1414 / 2121 / 2828

Table 6.1: Generator mix for the test system from [103, 106].

Wind Cost with/without Wind

Integration load shed Integration

Level [$M] [%]

Must Take Wind Spill Must Take Wind Spill

Low 8.23/8.23 8.23/8.23 13.2 13.0

Medium 6.98/6.98 6.95/6.95 19.8 18.9

High 16.09/7.27 6.11/6.11 26.3 23.4

Table 6.2: SUC solution evaluated on the test set: Mean cost of operation (without accounting for load shed) and wind

penetration (percentage of mean, over the scenarios, wind energy over mean total generated energy).

scenario solutions are similar to each other and the Lagrangian penalties do not offer significant

improvements any more. So , the first phase of the algorithm is executed multiple times until a

convergence indication is obtained. Following that, the second phase is executed and this process

is repeated a few times.

6.5 Experimental Results

We consider a reduced model of the Western Electricity Coordinating Council (WECC) sys-

tem [156] with 225 buses, 371 lines and 130 conventional generators. The same model is used

in [103] and [106]. A typical winter weekday is simulated for three different integration cases:

high, medium and low. High integration corresponds to 26% wind energy penetration, the medium

integration corresponds to 19% penetration and the low integration to 13%. The average load is

28056MW, with a minimum of 21438MW and a maximum of 32300MW. The capacity of ther-

mal generation is 31281MW and the total generating capacity, not including wind resources, is

51402MW. The cost of load shedding is assumed $5000/MW-h and twice this value is assigned to

the big-M relaxation of (6.6c). The generation mix is shown in Table 6.1.

The uncertainty model is trained based on data taken from [104]. These correspond to yearly
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Wind Wind Load

Integration Spill Shed

Level [%] [%]

Must Take Wind Spill Must Take Wind Spill

Low 0 1.06 0 0

Medium 0 4.48 0 0

High 0.3 11.1 0.26 0

Table 6.3: SUC solution evaluated on the test set: Percentage of mean (over scenarios) wind spill over mean available

generation and percentage of mean loadshed over the total load.

Figure 6.1: Map of the reduced 225 bus WECC system [156].

time series of wind speeds and wind power generations with hourly resolution for five aggregate

wind sites. The initial source was 2006 wind production data from the National Renewable Energy

Laboratory database. A discrete distribution is assumed for the reliability model, as in [103]. More

specifically, a probability of generator failure of 1% and a probability of transmission line failure

of 0.1% is assumed, independently.

All the computations are performed on the Cab cluster of the Lawrence Livermore National

Laboratory. For the computations, Mosel 4.0.4 was used with Xpress [62]. Each excecution was

parallelized in 10 nodes of the Cab cluster by utilizing the dedicated features of Mosel [32], al-

lowing 4 threads per job and 4 jobs per node. The typical values used for ρt for the decomposition

algorithm were ρt ∈ [0.001, 0.01], where the objective costs were normalized in $M. A 2% opti-

mality guarantee was set as a stopping criterion for the algorithm.

A total of 160 scenarios was generated and used as an input to the SUC problem. These scenar-

ios represent the model available to the operator in the day ahead, based on which the optimization

problem that defines the first stage variables is solved. A new set of 160 scenarios is generated,

representing the actual realization of the uncertainty the day ahead. We explore two alternative
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Figure 6.2: Breakdown of total energy generation from conventional sources for the two policies examined in the high

integration case. Note that the increased flexibility introduced by the wind allows for a higher utilization of the cheap

generation from nuclear power plants.

policies; one that allows for wind spill and one that assumes wind is a must-take resource, for the

three integration cases. The evaluation of the two policies, each one yielding a different first stage

solution, is based on how they perform with the unseen scenarios.

The typical computational performance of the algorithm was as follows. The Lower Bounding

phase would be executed until the LB would not improve more than 0.05% for two iterations.

Note that, since the dual function is non-differentiable, there is no guarantee that the subgradient

will yield a descent direction, so this stopping criterion is merely a heuristic. Typically, the lower

bounding phase would terminate within at most 10-15 iterations. After that, the upper bounding

phase would start by evaluating the function for the points that correspond to the best LB obtained.

This process would be repeated typically 2−3 times to obtain the desired optimality guarantee. It is

important to note that, while the algorithm offers guaranteed convergence to any required precision

(as oposed to subgradient optimization schemes), it has a significant disadvantage for applications

that prioritize speed instead of accuracy. The Lower Bounding phase essentially has to solve

multiple subgradient optimization problems and the Upper Bounding phase needs to evaluate the

objective for |S| points (which can be decomposed to solving |S|2 smaller mixed integer programs).

The typical execution time was in the order of 1−2 hours, which is above the state-of-the art times

reported in literature [7].

Tables 6.2 and 6.3 show the policy testing results. The fuel cost without load shedding is also

provided. We observe that in the case of low and medium wind integration, wind spilling does

not result in a significant benefit. However, for high wind integration, the cost of operation is

significantly lower when wind spill is allowed and load shed does not happen, whereas demanding

the wind energy to be fully integrated leads to both an inefficient dispatch (high fuel costs) and an

increased load shedding.

In figure 6.2, the reason of the more economical dispatch can be seen: the extra flexibility

enabled by optimizing the wind output allows for a higher utilization of the cheap nuclear plants.
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Figure 6.3: Histogram for the scenarios of stochastic unit commitment for the two policies in the high integration case.

The variance of the scenario costs remains approximately the same (approximately equal to 6) for both policies, but

the scenarios are spread around a lower mean for the wind spill case.
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Figure 6.4: Comparison of the total cost, startup cost, no load cost and fuel cost for the two policies in the high

integration case. Note that the bulk savings are obtained from the lower fuel costs due to the higher nuclear utilization.

Figure 6.3 shows the empirical distribution of the costs for the different scenarios of the stochastic

unit commitment in the high integration case for the two policies. Finally, figure 6.4 shows the

cost breakdown in the high integration case.

6.6 Conclusions

The main objective of this work is to convey that wind resources, and renewables in general,

should be treated, to the extent possible, as any other resource for the unit commitment problem.

Renewable integration is vital to achieve environmental goals, but it often competes with ensuring

the secure and reliable operation of the grid due to the variability and stochasticity of the available
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wind power. However, current wind turbines are capable to control their output power setpoint

within the limits allowed by wind availability. By exploiting this capability a safer and more

economic grid operation can be ensured.

In order to explicitly exploit the extent of controllability of wind generation, a stochastic unit

commitment approach is employed to determine the dispatch of wind generation for a number of

possible scenarios. Two cases, one in which wind is treated as a must-take resource and one that the

wind output setpoint is also optimized, are considered for three integration scenarios in a reduced

California test case. A clear benefit for the second strategy is obtained only in the high integration

case.

At this point it is important to repeat with a critical view some of the assumptions of the

current study, to initiate discussion and motivate a set of questions for future research. Firstly, the

unit commitment problem as we formulated it did not include an objective term for the reduction

of emissions. Including such a term would of course reduce the wind spilling benefits. However,

the weight of such a term is at this point not as objective and universal as the operational costs of

conventional generators and its value is still a source of debate, so for that reason it was omitted.

Various study cases could of course extend our current results for the existence of such a term.

Secondly, the results are based on a reduced system developed based on an earlier version of the

WECC system. For that reason, we cannot claim that the results could generalize in a similar

fashion for the full system as is, however the system used still provides a useful test case and

most of the logic that was described could carry on. Thirdly, a major contributing factor in wind

shedding is congestion. One could argue that if renewable generation integration increases, then

the transmission system will also be enhanced to accommodate for it. However, changing the

existing transmission system is accompanied by extra costs and the benefit from that could only be

to accommodate some rare instances for which spilling some wind generation could also relieve

the stress for the system. Since the focus at this point is not planning and investment on the

transmission system, enhancements to it are not considered.

Finally, one could question the usefulness of solving the SUC problem at high precision. After

all, the number of necessary scenarios to solve is not specified, and the error in capturing uncer-

tainty could very well be higher than the precision level of the solution. However, at this point

the plain UC problem is solved with very high precision every day since there are economic im-

plications of these solutions. For example, NYISO eventually solves the UC problem at $200
precision, and even though the solution they get is not necessarily the optimal for the problem they

are solving, the heuristics and refinements they use (such as gradually fixing binary variables) are

standardized to provide a high precision approximation. This kind of precision is necessary since

commitment of small gas units, for example, depends on it and perturbations could lead to very

different commitments. So, if the way to generate scenarios is precisely modeled and standardized,

these levels of precision are indeed necessary in solving the SUC problem as well.

Regarding policy implications of adopting the proposed strategy, active wind spilling based on

market operations can allow for a more efficient allocation (increased total welfare for the society),

which could translate to benefits for the customers (in the form of reduced bills). The conventional

generators will also be benefited, since they will not be the ones to fully carry the burden from

renewable integration. In the current form of the SUC objective, clean energy generation will
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be diminished. However, introducing a price for carbon in the objective that reflects economic

welfare would resolve the problem; until such a price is set any economic comparison of the

tradeoffs between clean energy and economic dispatch is by default hard anyway. Furthermore,

since wind generation will be decreased, investments on wind resources may be discouraged. If

this is found to be the case, an initial lump transfer investment incentive could be a preferred way

to deal with it than actively introducing frequent economic inefficiencies in the day ahead markets

or than compensating the wind generators for their spilled energy (unless this is committed as a

reserve).
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Chapter 7

Future Research Directions

7.1 Abstract

Throughout the completion of this dissertation, there were many times where future research

directions opened up but were not explored, either because they were out of the scope of the

ongoing research, or not within the interests of the funding source, or simply due to a shortage of

time. We devote this short chapter to briefly state such directions.

7.2 Black Start Allocation

Ac Power Flows

During the restoration of the power system, the system operates under extreme conditions, out-

side the normal region of operation. Considerations such as reactive power compensation and the

Ferranti effect become important. On top of that, common convex relaxations are often unsuitable,

since they lead to fictitious reactive power compensation [8], when reactive power is exactly one

of the most important modeling concerns. For the restoration problem around known black starts,

we made an effort to handle the complexity of the ac problem with a detailed approximation of the

ac power flows in [9].

When the problem is the black start allocation (BSA) on the grid instead, the characteristics

of the generators and the positions of them in the underlying graph of the system become more

important, which is why simplified power models can give satisfactory allocation results (even if

the resulting restoration sequences found by the optimization need some modifications to become

ac feasible). For example, as described in chapter 2, using the simplified model presented, we were

still able to extract ac feasible restoration sequences by slightly modifying the optimization output.

Of course, the ideal scenario would be to incorporate a detailed power formulation within the BSA

framework. Since switching variables are also associated with the branches, an ac transmission

switching model is necessary.
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Ideas from [9] can be used in the BSA case as well, but the fact that the positions of black start

generators are not fixed will lead to an additional number of cuts since the restoration now can

potentially expand around any node with a generator. Another practical approach would be to find

a black start allocation using a simplified model and then fix the black start units to solve a simpler

restoration problem. If the resulting restoration plan is not acceptable, we can resolve the original

simplified problem excluding the allocation obtained (for example, by using a “No-Good-Cut” as

in chapter 4). In any case, a successful approach will most likely utilize a number of computational

techniques to reach an acceptable solution and would be an interesting research direction.

Heuristics

It has been relatively clear to us after working with black start models that (at least using our

formulations of the problem) commercial solvers are struggling to find feasible solutions to them.

This is also described in chapter 2. Even using the heuristics developed, the resulting solutions

obtained are often not very close to optimality (at least, that was observed for the smaller systems

which we can actually solve to 1% optimality). On the contrary, after applying the strengthening

described in chapter 3, fairly good relaxation bounds are usually obtained for these problems.

This essentially hints that in order to further improve the computational behavior of the problem,

the bulk of further work should focus on heuristics, especially for cases where the solver can

not improve on the feasible MIP starts (such as for the case of the 2000 bus Texas system of

chapter 3). In this dissertation we mainly use heuristics to obtain MIP starts and initialize the

optimization. However, system aware local heuristics, or rounding heuristics after solving the

linear programming relaxation of a node can also be implemented and used to potentially improve

the performance.

Towards Scalable Stochastic Black Start Allocation

Chapter 4 introduced a model for stochastic black start allocation. Uncertainty in this model

was due to the different possible outages or due to possible unavailability of components. There

are multiple extensions to this model. Uncertainty due to renewable sources can be included, even

though the current practice at least in California is to disconnect renewables after a blackout. Fur-

thermore, the partial outage scenarios were randomly generated. A more elaborate study could

generate scenarios based on historical outages, earthquake or fire data, or some other causes of

blackouts. Finally, our model was simplified and implemented only for a small scale system as a

proof of concept - the resulting optimization was still intractable without the decomposition em-

ployed. Large scale systems will require additional work for solving the subproblems - specifically,

heuristics should to be used to obtain feasible black start allocation solutions for the case where the

initial outage state is treated as an input. This can lead to an extension of the heuristic described in

chapter 2.
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Formulation Improvements

The improved formulations used for BSA in chapter 3 seemed to already provide fairly tight

bounds, so we decided not to attempt further formulation improvements at that point. However,

the connection to the rooted maximum weight independent subgraph problem from the literature

discussed in chapter 3 might yield additional formulation and computational improvements. We

discovered this connection relatively late during this particular project, so we did not fully utilize

the breadth of existing work in graph theory. The theoretical and computational research for this

and a few related problems is presented in section 3.9. A few constraints from the literature may

be adaptable to our problem and yield bound improvements, such as the inequalities of [12].

In addition, the formulations used in chapter 3 include only simplified versions of the active

and reactive power requirement. These simplifications are made in papers that attempt to solve a

centralized black start allocation problem over a restoration time horizon in the literature, in or-

der to obtain tractable models (as discussed in chapter 3). Using a more detailed model (such as

the one we considered in chapter 2) may give rise to further formulation improvements we have

not explored. We should also note that, even though the comparative strength of the formulations

holds in every case, the actual performance of different formulations in practice also depends on

the objective used - so in a power system where different restoration priorities impose a differ-

ent objective than the one we considered in chapter 3, the comparative behavior of the different

formulations may change and different sets of valid inequalities may become important.

Microgrids

One final future direction we would still wish to pursue is to see if we can extend our al-

gorithmic approaches to provide grid resiliency services by microgrids, as in [127]. This would

include allocating microgrids or hybrid (renewable and storage) systems as black start resources.

The current guidance (at least in California) is that microgrids or hybrid installations are not used

for restoration. However, as increasingly many such systems with significant capacity and often

storage capabilities get introduced into the power grid, using them could provide a partial, cost

efficient restoration solution.

7.3 Flexible Wind Dispatch

Carbon Impact

While we observed an economic benefit from curtailing wind generation in the computations

of chapter 6, the study of that chapter did not take into account the carbon footprint that this cur-

tailment implies. Of course, the actual dollar value of that quantity is not something the scientific

community unanimously agrees on. However, estimates for the environmental cost of carbon do

exist and an additional analysis on how much the results change when a carbon penalty is included

in the objective would be interesting.
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Test Systems

The computations of chapter 6 can also be extended in two important ways, as far as the test

systems are concerned. First, policy decisions must be evaluated on the actual system they will

be applied to. The benefits from wind curtailment will highly depend on the generation mix, the

existing grid flexibility, the positions of renewable generation, and the graph structure. Therefore,

a different conclusion may be drawn for a different system. Secondly, the system used may vary

with different renewable integration scenarios as well as with the policy used (must take vs flexible

wind integration). More precisely, high renewable integration scenarios may also be combined

with grid enhancements (such as upgrades of line capacities) to alleviate congestion. These grid

enhancements may not be as drastic if wind curtailment policies are in place. Since grid enhance-

ment is also associated with costs, a combined study could be performed to evaluate the benefit

from allowing wind curtailment.
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