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ABSTRACT OF THE DISSERTATION

Essays on Heterogeneous Preferences, Persuasion, and Planner-doer Games

By

Erya Yang

Doctor of Philosophy in Economics

University of California, Irvine, 2022

Associate Professor Igor Kopylov, Chair

This dissertation consists of three essays that study heterogeneous preferences in economic

activities and their implications for welfare. Chapter one axiomatizes the choice behavior

that implies a finite distribution of underlying quasi-linear utilities (types). The choice

alternatives are pairs of goods and their prices. Given the choice data over such choice

alternatives, this model can uniquely construct the underlying types and their distribution

and establish the existence of a quasi-linear tie-breaking rule. This identification gives a

unique social welfare aggregator consistent with the Pareto efficiency criterion.

Chapter two is on signaling games with an imperfectly informed victim and a perfectly in-

formed defendant with respect to whether the defendant is actually liable to the victim. A

two-agent game and a three-agent extension where the victim can hire a lawyer who is per-

fectly informed but pursues a selfish objective in his advice are compared. In particular, a

lawyer affects a victim’s information environment in a way that is similar to Bayesian persua-

sion (Kamenica & Gentzkow, 2011). Overall, this analysis captures some stylized empirical

patterns of the legal system such as the litigious tendency due to different parameters, and

identifies both the positive and negative welfare effects of lawyers’ advice.

Delegation is common in decision-making settings. Delegation usually comes with some

costs since the planner needs to motivate doers to make appropriate choices. Such costs

ix



can result from hidden actions such as private commitments or potential future verifications

and thus can be unobservable to outsiders. Chapter three axiomatizes the planner’s ex-ante

preferences over finite menus and derives the planner’s hidden delegation costs from such

preferences. A special case when the delegation cost is binary (0 or ∞) is studied, and an

algorithm to check whether ex-post choices conform to the delegation model with binary

costs is provided.
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Chapter 1

Random Quasi-linear Utility

In this chapter, I refine the random utility model (RUM) of Block and Marschak (1959)

to represent stochastic choice data with quasi-linear types. In my framework, choices are

observed across pairs of goods and money. The random quasi-linear utility function is iden-

tified uniquely in my model. This identification implies a unique social welfare aggregator

that is consistent with the Pareto efficiency criteria. In general, the uniqueness of the quasi-

linear tie-breaking rule is not guaranteed, but it can be obtained in a special case where the

tie-breaking is uniform. I also characterize a special case where the set of possible types is

binary.

1.1 Introduction

Stochastic choice data are common in empirical settings and can naturally arise from het-

erogeneous preferences. Such heterogeneity can be revealed by any generic group of agents

due to taste differences. Even a single agent who faces repeated choices can often vary her

responses when affected by psychological factors like perception, anchoring, framing, and so

on (see, e.g., McFadden, 2001).
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Block and Marschak (1959) model stochastic choice data via the random utility model

(RUM), where the probability distribution of the choices reflects some endogenous distri-

butions of types. In general, Block and Marschak assume that each type has a utility

representation, but they impose no other constraints. Using a constructive proof, Falmagne

(1978) shows that the sufficient condition for the rationalizability of the choice probabili-

ties is the non-negativity of Block-Marschak polynomials. In Falmagne’s construction, the

marginal distribution of the types are recovered uniquely, although the joint distribution is

not. An equivalent condition that characterizes the rationalizability of the choice proba-

bilities is the axiom of revealed stochastic preferences (ARSP) proposed by McFadden and

Richter (1990) (see also Stoye, 2019).

The general RUM provides a framework to identify heterogeneous preferences. However, the

general model can be problematic for several reasons. First, the identification of heteroge-

neous types in the general RUM is not unique, and therefore the general RUM does not

necessarily distinguish the objective distribution of types (see more discussions in Turansick,

2021 and McClellon, 2015).1 Furthermore, RUM is agnostic about ties, and each possible

type is derived as a linear (total) order over the finite domain X. For example, when applied

to the domain of lotteries where agents have expected utilities, RUM would only allow a

finite number of lotteries, and the lotteries would not have cash equivalents. Since many ap-

plications would involve infinite choice domains and weak orders on the choice alternatives,

the RUM assumptions are overly restrictive. Finally, a related problem is that the general

model does not provide a way to impose useful structures on the types.

To address these problems, the recent literature has studied various refinements of RUM.

When additional structures are imposed on the distribution of ordinal types, the identifica-

1Any general RUM with full support is nonunique (McClellon, 2015; Turansick, 2021). In particular,
Block-Marschack polynomials, q(x,A), characterize the probability weight put on orders for which the strict
upper contour set of x is exactly X \ A. One can construct a probability flow that respects observed
probabilities from Block-Marschak polynomials. However, such a construction is nonunique since the flow at
a two-in and two-out branching can go two different ways, and thus can be generated by different random
utility functions. See the detailed discussion in Turansick (2021).
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tion of types can be unique. These structures include the single-crossing property discussed

by both Apesteguia, Ballester, and Lu (2017) and Filiz-Ozbay and Masatlioglu (2020) or

the random attention restrictions discussed by Manzini and Mariotti (2014).2 Uniqueness

can also be obtained when the space of observations is enriched, for example, when choices

are observed across lotteries (Gul & Pesendorfer, 2006)3 or across state-contingent acts (Lu,

2016, 2021; McClellon, 2015), when choices are observed both ex ante and ex post (Ahn &

Sarver, 2013) or when dynamic choices are observed over time (Duraj, 2018; Frick, Iijima,

& Strzalecki, 2019; Lu & Saito, 2018).

In this chapter, I extend the line of refinements that enriches the underlying space of obser-

vations and study the random utility model with quasi-linear types. To do so, I augment

choice alternatives with prices (or equivalently, wealth). In particular, the choice domain in

my model is defined on Z×R, where Z = {0, 1, ..., n} is a finite set of goods, and R includes

the possible prices for goods in Z. The interpretation of the set, Z, is flexible. When Z

consists of different goods, the model estimates private values on different goods. When Z

consists of different quantities of the same good, the model captures the nonlinear pricing.

When Z consists of different combinations of a set of physical goods, the model captures the

bundling effect.

My analysis assumes that data are observed for price vectors in the entire real vector space of

dimension |Z|. By observing the choices at various prices, the space of available observations

is greatly expanded. In practice, variations in prices can be observed across different locations

or over time. For example, in the marketplace, commodity prices change constantly. In

auctions, there can be a large amount of bidding data that reflects demand for different

goods at different prices.

2Aguiar (2015) generalizes the random attention model to capture both the similarity effect, which extends
Manzini and Mariotti (2014) model, and the attraction effect, which violates regularity and thus do not nest
with RUM. Cattaneo, Ma, Masatlioglu, and Suleymanov (2020) discuss a large class of nonparametric random
attention rules.

3However, RUM with some classes of risk preferences still has the nonuniqueness problem; see Lin (2020).
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I restrict all types to be quasi-linear in terms of price. Quasi-linearity is natural in many

settings in mechanism design, auction theory, bargaining theory, public welfare analysis, and

so on. Many work in these fields assume quasi-linear utility (see, e.g., Border, 1991; Che,

Kim, & Mierendorff, 2013; Demange, Gale, & Sotomayor, 1986). Additionally, in empirical

demand analysis, it is common assume that prices and incomes enter the utilities linearly

(see, e.g., S. Berry, Levinsohn, & Pakes, 1995; McFadden, 1997). In my model, each quasi-

linear type has the representation U : Z × R→ R as follows:

U(i, ci) = vi − ci, (1.1.1)

where ci ∈ R is the price of the good i, and vi is the agent’s reserve value for good i.

My model captures the case when observed choices are made by a collection of quasi-linear

types. It identifies the underlying types and their distribution. Alternatively, my model can

characterizes the choice behavior of one quasi-linear agent whose type changes stochastically.

I call this model the random quasi-linear utility model (RQUM).

The added richness of primitives and the RQUM specification make the identification of

my model unique. To illustrate how RQUM gives uniqueness, we first consider a dataset

of the ordinal RUM without monetary variations. Let Z = {a, b, c, d}, and ρ(x,A) be a

stochastic choice function that represents the probability of choosing x from A for A ⊆ Z.

In RUM,

ρ(x,A) =
∑
R∈T

π(R)1x=R(A),

where T is the set of types (linear orders) on Z, R(A) is the best element in A according to

R ∈ T , and the random utility function (RUF) π ∈ ∆(T ) is the finite distribution of types.

Using this setup, we consider the example given by Fishburn (1998) (see also Turansick,

4



2021)4:

π1 =


a � b � c � d w.p. 0.5

b � a � d � c w.p. 0.5

, and π2 =


a � b � d � c w.p. 0.5

b � a � c � d w.p. 0.5

.

It is easy to verify that π1 and π2 both generate the same stochastic choice function ρ(x,A).

For example, ρ(a, {a, b, c, d}) = ρ(b, {a, b, c, d}) = 0.5 for both π1 and π2.

The money dimension in RQUM produces many more observations. Suppose the utility

function is cardinal, and each good is associated with a cost vector that can vary. Consider

the cardinal random quasi-linear utility function (RQUF) π3:

π3 =


v(a, b, c, d) = (5, 3, 2, 1) w.p. 0.5

v(a, b, c, d) = (3, 4, 1, 2) w.p. 0.5

. (1.1.2)

One can verify that π3 generates the same observations as π1 and π2 when the associated

wealth vector is (0, 0, 0, 0). However, many more observations can be produced when the

cost vector changes. Notice that when the cost vector is in the support of RQUF, i.e.,

c = (5, 3, 2, 1) or c = (3, 4, 1, 2), there is a full tie. Hence, the support of RQUF is uniquely

identified as the cost vector that induces full ties, and RQUF is uniquely constructed as the

distribution of such full ties.

Furthermore, with applications of inclusion-exclusion principle, the probability of ties on

any subset can also be identified in my model. Hence, one can study tie-breaking rules

more closely. I study the uniform tie-breaking in Theorem 1.2 as a special case. In general,

the tie-breaking rule in RUM can be hard to characterize. The ordinal RUM in Block

and Marschak (1959) and the random expected utility model (henceforth, REU) in Gul

and Pesendorfer (2006) are both restricted to the case where there are no ties. Gul and

4w.p. denotes with probability.
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Pesendorfer (2013) study the ordinal RUM with weak orders and characterize ties with

the “double total monotonicity” condition. Lu (2016) treats ties as nonmeasurable sets in

the Anscombe-Aumann framework. Piermont and Teper (2019) discuss the tie-breaking in

random expected utility models using choice capacities, which are quantities that are not

necessarily observable. Compared to those models, the identification of ties in RQUM is

much more transparent.

The uniqueness of identification in RQUM and the quasi-linearity of types are particularly

convenient for aggregating social welfare.5 Note that the ordinal types that appear in the

general RUM will always make Pareto comparisons incomplete – sometimes extremely so.

For example, if opposite types like a � b � c � d and d � c � b � a are possible, then we

cannot make Pareto comparisons on any two distinct alternatives. Pareto aggregation is still

problematic in the REU, where Pareto aggregation has many free parameters (Harsanyi,

1955). By contrast, the Pareto criterion in RQUM delivers the unique aggregate social

welfare for any choice alternative paired with costs:

W (i, ci) =
∑
v∈V

π(v)(vi − ci) =
∑
v∈V

π(v)vi − ci, (1.1.3)

where V is the set of types, and the probability, π ∈ ∆(V ), represents the proportion of

agents of each type. Hence, when a planner observes how a population votes on the choice

alternatives in Z, and she constructs the types in the population with Theorem 1.1, she can

use (1.1.3) to choose an option that maximizes the welfare of the population.6

My main result (Theorem 1.1) characterizes RQUM in terms of an observable stochastic

choice function, and it establishes the existence of a tie-breaking rule that is wealth in-

5Furthermore, the welfare prediction in utility maximization models (i.e., Marshallian models) are only
correct with quasi-linear assumptions (Willig, 1976).

6RQUM can also have applications in the measurement of marketing effectiveness. For example, an
analyst can use various framing techniques to promote certain feasible options. By constructing RQUF
with RQUM model under these different situations, the analyst can understand how a marketing technique
changes the public’s preferences.
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variant using four behavioral axioms. The most intriguing axiom in my model is axiom 3,

Alternation. Alternation guarantees the weights on types calculated from the observations

to be nonnegative. Alternation is analogous to the alternating condition in the theory of

capacities which characterizes a capacity function (Barthélemy, 2000; Grabisch, 2015; Zhou,

2013).7 As illustrated in the example with (1.1.2), RQUF in my model is the same as

the probability on full ties. To identify RQUF, we observe that by reducing the value of c

on subsets A ⊆ Z slightly, one obtains the probability that at least one element in A is a

maximizer. By the inclusion-exclusion principle, one can construct the probability that all

elements in Z are maximizers, i.e., the probability of a full tie. The construction is slightly

complicated by the tie-breaking (see the detailed discussion in Section 1.2).

To summarize, this chapter refines the RUM by restricting the types to be quasi-linear. This

specification allows the identification of both the types and the tie-breaking rule. Further-

more, the identification of the types is unique. The remainder of this chapter is organized

as follows. Section 1.2 introduces the primitives and the axioms and develops Theorem 1.1.

Additionally, Section 1.2 provides the construction of RQUF and illustrates the role of Ax-

iom 1.3 with two examples. Finally, Section 1.2 provides a sketch of proof for Theorem 1.1.

Theorem 1.1 shows that the tie-breaking rule exists and is wealth independent, but do not

further characterize it. Theorem 1.2 refines this result and characterizes the unique uni-

form tie-breaking rule for RQUM. Choices with binary types are common in situations like

household decisions or decisions made with dual cognitive systems (see more discussions

in Manzini & Mariotti, 2018). Theorem 1.3 characterizes RQUM for binary types. These

two special cases, RQUM with uniform tie-breaking and RQUM with binary types, are dis-

cussed in Section 1.3. Section 1.4 discusses the relation of RQUM to other models, including

the multinomial logit model and models for path independent choice functions. The proofs

for Theorem 1.1 are provided in Section 1.5, and the proofs for Theorems 1.2 and 1.3 are

7Capacity functions are not new in the stochastic choice literature. For example, capacity functions can
capture ties in stochastic choices (Gul & Pesendorfer, 2013; Piermont & Teper, 2019) and can be used to
measure attention on a set (Aguiar, 2015).
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provided in Section 1.6.

1.2 Main Model

To begin, let Z = {0, 1, ..., n} be a finite domain of goods, and let ∆(Z) be the simplex of

the probability distributions on Z. As money is desirable, any good should be selected with

its lowest available cost. Therefore, without loss of generality, we associate each good with

one cost.

A function, ρ : Rn+1 → ∆(Z), is called a random choice rule (RCR) on Z. One can interpret

the probability ρi(c) as the observed likelihood of good i when the cost vector is c. For any

A ⊆ Z,

ρA(c) =
∑
i∈A

ρi(c)

is the combined likelihood of all i ∈ A at cost vector c.

A utility function, U : Z × R, is called quasi-linear if

U(i, ci) = vi − ci (1.2.1)

for some vector v ∈ Rn+1. Let Rn+1
0 be the set of all vectors v ∈ Rn+1 with v0 = 0. Obviously,

the value of good 0 ∈ Z can be restricted to zero without loss of generality. Good 0 ∈ Z can

be interpreted as a default option. The private values on the choice alternatives are thus

relative and can be either positive or negative. As a result, the prices(costs) are also relative

and can be either positive or negative.

Let us say that t : Rn+1
0 × Rn+1 → ∆(Z) is a tie-breaking rule if

ti(v, c) > 0 =⇒ i ∈M(v, c),
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where M(v, c) is the set of all goods that maximizes the quasi-linear utility at the cost vector

c ∈ Rn+1,

M(v, c) = arg max
i∈Z

(vi − ci). (1.2.2)

In other words, t assigns positive probabilities only to the optimal choices in Z according to

the quasi-linear utilities. If the maximizer i is unique, then ti(v, c) = 1. Let T be the set of

all quasi-linear tie-breaking rules, such that

t(v, c) = t(v, c+ α1),∀α ∈ R, (1.2.3)

where 1 = {1, .., 1} ∈ Rn+1, and α1 is the constant vector (α, ..., α). This property is

analogous to the quasi-linear structure of utility functions.

Now, let Π be the set of all probability distributions that have finite support in Rn+1
0 . Let

us say that (π, t) ∈ Π × T is a random quasi-linear representation (RQR) for ρ if for any

c ∈ Rn+1,

ρ(c) =
∑

v∈Rn+1
0

π(v)t(v, c). (1.2.4)

The RQUF, π ∈ Π, is the probability distribution on the finite types. Since ti(v, c) > 0 only

if i is a maximizer for v, the likelihood of i at cost vector c, ρi(c), is the weighted sum of the

probabilities of types for which i is a maximizer.

To characterize representation (1.2.4), we can consider several conditions for the RCR, ρ.

First, we adapt a standard invariance property from the quasi-linear utility model.
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Axiom 1.1 (Wealth Invariance (WI)). For all c ∈ Rn+1, α ∈ R,

ρ(c) = ρ(c+ α1).

It is assumed here that the optimal choice, as well as the tie-breaking rule, is invariant of

the constant wealth variations α1.

For any A ⊆ Z, c, c′ ∈ Rn+1, we write c�A c
′ if ci > c′i for i ∈ A and cj ≤ c′j for j /∈ A.

Axiom 1.2 (Monotonic Demand (MD)). c�A c
′ =⇒ ρA(c) ≤ ρA(c′).

This condition assumes that the aggregate demand for goods in set A ⊆ Z should not

decrease if all goods in A become cheaper without reducing the costs of any other good. In the

standard theory of demand, this condition corresponds to positive price effects. This axiom

does not say anything about substitution patterns in terms of product characteristics.

For any subset A ⊆ Z, let the characteristic vector 1A ∈ Rn+1 be equal to 1 if i ∈ A or equal

to 0 if i /∈ A.

Axiom 1.3 (Alternation). For all β > α > 0,

∑
A⊆Z,|A| is odd

ρA(c− β1A) ≥
∑

A⊆Z,|A| is even

ρA(c− α1A). (1.2.5)

Axiom 1.3 is analogous to the alternating property of capacity (see, e.g., Grabisch, 2016). I

distinguish between α and β to account for tie-breaking. This point will be made more clear

in the discussion of the construction of π in Section 1.2.1. To reach some level of intuition

for Axiom 1.3, we rewrite (1.2.5) as

∑
A⊆Z,|A| is odd

∑
i∈A

[ρi(c− β1A)− ρi(c)] ≥
∑

A⊆Z,|A| is even

∑
i∈A

[ρi(c− α1A)− ρi(c)] .
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The above inequality is equivalent to (1.2.5) because ρ is an additive set function, and for

any i ∈ Z, |{A ⊆ Z : i ∈ A,A is odd}| = |{A ⊆ Z : i ∈ A,A is even}|. The quantity

ρi(c−α1A)− ρi(c), i ∈ A is the demand change for good i when it is in the set of goods that

have price discounts. Axiom 1.3 imposes restrictions on such changes. When Z = {0, 1, 2},

Axiom 1.3 requires

2∑
i=0

(ρi(ci − β, ci)− ρi(c))− (ρi(c)− ρi(ci + α, c−i)) ≥ 0. (1.2.6)

This is very similar to the convexity condition. It requires that the average demand increase

when price fall is greater than the average demand decrease when price rise.

The last axiom is technical and restricts the number of types to be finite.

Axiom 1.4 (Finite Range (FR)). For any A ⊆ Z, c ∈ Rn+1, α ∈ R, the function ρA(c+α1A)

has a finite range in [0, 1] that includes both 0 and 1.

Taken together, Axiom 1.2 and Axiom 1.4 imply that ρA(c + α1A) is a monotonic step

function, such that ρA(c + α1A) is decreasing in α. Due to tie-breaking, ρj(c + α1A) is not

necessarily increasing for j /∈ A. To see this, consider a type that has i, j, k as maximizers

at c, and the tie-breaking rule is choosing j. At (ci + α, c−i), α > 0, the type has only two

maximizers, j, k. The tie-breaking rule is to choose k. Then, ρj(ci + α, c−i) < ρj(c), ε →

0.

Regularity, which requires that the observed probability of a choice alternative increases as

the menu enlarges, follows from the maximization of RUM (Block & Marschak, 1959) and

of REU (Gul & Pesendorfer, 2006). Here, a menu is a collection of pairs of goods and their

finite cost vectors. The lack of monotonicity in ρ will cause violations of regularity in RQUM.

This is illustrated in Example 1.1 below.
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Example 1.1. Suppose Z = {0, 1, 2}, and

π =


v1 = (0, 3, 1) w.p. 1

2
,

v2 = (0, 2, 1) w.p 1
2
.

Under price c1 = (0, 2, 1), type v1 chooses physical good 1, but type v2 is indifferent across the

three options. In this case, suppose type v2 chooses the status quo. Hence ρ(c1) = (1
2
, 1

2
, 0).

Now, suppose c2 = (0, 2,∞). In effect, good 2 becomes unavailable. In this case, type v1 still

chooses physical good 1. Type v2 is indifferent between the status quo and physical good 1, and

she chooses each with equal probability. In this case, ρ(c2) = (1
4
, 3

4
, 0). These observations

satisfy Axioms 1 through 4. However, regularity is violated: ρ1(c2) < ρ1(c1). In fact, the

tie-breaking rule is not regular: t1(v1, c
1) > t1(v1, c

2). This corresponds to a type of decoy

effect: the presence of good 2 increases the choice probability for good 1.

Since Axiom 1.4 restricts changes in ρA(α, c+ α1A) to occur at finitely many points, ρj(c+

α1A) is increasing at all but finitely many points. Moreover, RCR satisfies the following

asymptotic properties:

lim
α→∞

ρA(c+ 1Aα) = lim
α→−∞

ρj(c+ 1Aα) = 0, and lim
α→−∞

ρA(c+ 1Aα) = 1 ∀A ⊆ Z, j ∈ Z \A.

My main result is as follows:

Theorem 1.1. An RCR ρ satisfies Axioms 1.1–1.4 if and only if ρ is represented by the

RQR (π, t) ∈ Π× T . Moreover, this π is unique.

Theorem 1.1 characterizes my main model in terms of the observable properties of RCR.

The representation has two components: RQUF π, the distribution of quasi-linear types

v ∈ Rn+1
0 , and the tie-breaking rule t ∈ T . π in RQUM has the desirable property of being
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unique and thus it overcomes the identification issues in the RUM model. The uniqueness

of π allows us to define a Pareto efficient utility aggregator, as shown in (1.1.3). In contrast

to both RUM and REU, the RQUM model allows ties, and one can impose more properties

on ties. (I discuss the uniform tie-breaking rule further in Section 1.3.2.)

1.2.1 Construction of π and Necessity of Axiom 1.3

To understand why the distribution π is unique and to see the necessity of Axiom 1.3, I

demonstrate the construction of π. For c ∈ Rn+1, ε > 0, I denote

Eε(c) := {v ∈ Rn+1
0 : vi − ci is within ε from max

j∈Z
vj − cj ∀i ∈ Z}, (1.2.7)

Fε,A(c) := {v ∈ Rn+1
0 : ∃ i ∈ A s.t. vi − ci is within ε from max

j∈Z
vj − cj}, A ⊆ Z,

(1.2.8)

Gε,i(c) := {v ∈ Rn+1
0 : vi − ci is within ε from max

j∈Z
vj − cj}. (1.2.9)

Hence,

Fε,A(c) = ∪i∈AGε,i(c), Eε(c) = ∩i∈ZGε,i(c).

By the inclusion-exclusion principle,

π(Eε(c)) =
∑
A⊆Z

(−1)|A|+1π(Fε,A(c)). (1.2.10)

Let β > α > 0. For all types v ∈ Fα,A(c), M(v, c − β1A) ⊆ A, where M(·, ·) is the set of

maximizers defined in (1.2.2). By the definition of the representation in (1.2.4), all types in

Fα,A(c) would choose M(v, c− β1A) ⊆ A given the cost c− β1A.8 Hence,

ρA(c− β1A) ≥ π(Fα,A(c)).

8For v ∈ Fγ,A(c) where α < γ ≤ β, M(v, c− β1) ⊆ A. Hence v choose M(v, c− β1) ⊆ A and contributes
to ρA(c− β1A) according to the representation (1.2.4).
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For any type v ∈ Fα,A(c), M(v, c − α1A) ∩ A 6= ∅. By the definition of the representation

in (1.2.4), the type v with (vi − ci) + α = maxj∈Z vj − cj for i ∈ A, j ∈ Z \A would choose

between i and j with a tie-breaking rule t with ti ∈ [0, 1] under cost c− α1A. Hence,

ρA(c− α1A) ≤ π(Fα,A(c)).

Therefore, (1.2.10) implies that for any 0 < α < β,

π(Eα(c)) ≤
∑

A⊆Z,|A| is odd

ρA(c− β1A)−
∑

A⊆Z,|A| is even

ρA(c− α1A). (1.2.11)

By definition, Eα(c) is a shrinking set when α or β decrease. WLOG let α = ε, β = 2ε.

Note a full tie, v = c, can be achieved when taking ε → 0 in Eε(c). Indeed, π(c) = π(v ∈

Rn+1
0 : v = c) = π{v ∈ Rn+1

0 : vi − ci = vj − cj ∀i, j ∈ Z} = limε→0 π{v ∈ Rn+1
0 :

vi − ci is within ε from maxj∈Z vj − cj ∀i ∈ Z} = limε→0 π(Eε(c)). Hence,

π(c) = lim
ε→0

π(Eε(c)). (1.2.12)

For any c ∈ Rn+1, π(Eε(c)) monotonically decreases in ε. Therefore, π(Eε(c)) ≥ π(c) =

limε→0 π(Eε(c)). For π(c) ≥ 0 to hold, π(Eε(c)) ≥ 0 must hold, and hence, the right-hand

side of (1.2.11) must be nonnegative. This requirement is imposed by Axiom 1.3.

Furthermore, (1.2.11) and (1.2.12) implies construction for π. By Axiom 1.4, ρA(c−ε1A), ε ∈

R has a finite range. Thus, limε→0 ρA(c − ε1A) = limε→0 ρA(c − 2ε1A). Therefore, we

have

lim
β→0

ρA(c− ε1A) = π(Fε,A(c)) = lim
β→0

ρA(c− 2ε1A). (1.2.13)

To understand (1.2.13) intuitively, notice that since there are only a finite number of ties,
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when ε is small enough, we can avoid having ties between the elements in A and Z \ A. If

there are is a tie at c between i ∈ A and j ∈ Z \ A, c − ε1A or c − 2ε1A breaks the tie in

favor of i without creating new ties. Next, we denote

ρ+
A(c) = lim

ε→0
ρA(c− ε1A) = lim

ε→0

∑
i∈A

ρi(c− ε1A), (1.2.14)

and

ρ−A(c) = lim
ε→0

ρA(c+ ε1A) = lim
ε→0

∑
i∈A

ρi(c+ ε1A). (1.2.15)

By (1.2.13), π(Fε,A(c)) = ρ+
A(c), and ρ+

A(c) is the revealed probability that at least one of

the goods in the A is optimal. Combining (1.2.10), (1.2.12) and (1.2.14), π(v = c) can be

written in terms of ρ+:

π(c) =
∑
A⊆Z

(−1)|A|+1ρ+
A(c). (1.2.16)

The set of types is

supp(π) = {c ∈ Rn+1
0 : π(c) > 0}. (1.2.17)

1.2.2 Examples for Axiom 1.3

I provide an example below to show the importance of Axiom 1.3 in RQUM. Example 1.2

demonstrates that Axiom 1.3 is independent from Axioms 1.1, 1.2, and 1.4.

Example 1.2. Let Z = {0, 1, 2}, and let us assume a uniform tie-breaking rule. Consider

the set of types {vi, i = 1, 2, 3, 4} associated with a charge measure as follows:
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0 1 2 charge

v1 0 0 0 -0.5

v2 0 -1 0 0.5

v3 0 0 -1 0.5

v4 0 1 1 0.5

Figure 1.1 illustrates the types on the plane R2, where each point on the plane represents a

vector (0,x,y) for x, y ∈ R.

y

x

45o

v4

v1v2

v3

vi
li02

li01

li12

0

2

1

Figure 1.1: Negative Charge

Each type vi, i = 1, 2, 3, 4 is associated with three half-lines starting from it: li01, li02, and li12.

These three half-lines divide R2 into three regions: 0, 1, 2. Type vi chooses k when c falls

in the region k that is associated with it, k = 0, 1, 2, and vi has a tie between j, k on the

half-line lijk, j, k = 0, 1, 2.

Observations ρ are always nonnegative. Indeed, notice that if c falls in region k for v1, then

it always falls in the same region for two other types. Hence, whenever type v1 chooses k,

two other types also choose k, and thus the RCR ρ is non-negative. It is easy to verify

that Axioms 1.1, 1.2 and 1.4 hold given that ρ is generated by the four quasi-linear types.

16



However, since π(v1) < 0, (1.2.16) implies that Axiom 1.3 is violated.

Example 1.3 shows that Axiom 1.3 separates RQUM from the logit models.

Example 1.3. Consider Z = {0, 1, 2}. Let

ρi(c) =
e−ci∑
i∈Z e

−ci
.

It is easy to verify that ρ satisfies Axioms 1.1 and 1.2. Let c = (0, 0, 0). Then, ρi(x, c−i) =

e−x

2+e−x for i = 0, 1, 2. ρi(x, c−i) is concave for x < − log 2, and is convex for x > − log 2.

However, Axiom 1.3 requires that

2∑
i=0

ρi(ci − β, ci)− 2ρi(c) + ρi(ci + α, c−i) ≥ 0. (1.2.18)

Condition (1.2.18) does not hold for some parameters α, β, for example, β = 2, α = 1.

The above discussions illustrates that Axiom 1.3 is indispensible in RQUM.

1.2.3 Sketch of Proof for Theorem 1.1

By Axiom 1.1, we can fix the cost of good 0 to be 0. When Z = {0, 1}, ρ0(0, α) can be

considered an increasing, one-variable step function by Axiom 4. I define a distribution

function F from ρ0(0, α) by changing the values of the discontinuity points of ρ0 to make

it right-continuous. The realizations of the random variable are the types. I obtain the

distribution of types that are differentiated by their values on good 1 with the idea of the

Skorokhod construction of random variables.

This construction shows that the types are quasi-linear as in (1.2.1), and a discontinuity in

ρ0(0, α) means that a type is indifferent between 0 and 1. The behaviors of the types at the

discontinuities are determined by a tie-breaking rule. Axiom 1.1 ensures that the tie-breaking
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rule is wealth invariant. Hence, Axioms 1.1, 1.2, and 1.4 impose quasi-linearity on the types.

It follows that they ensure the existence of RQUM representation when |Z| = 2:

Lemma 1. When Z = {0, 1}, an RCR ρ satisfies Axioms 1.1, 1.2, and 1.4 if and only

if ρ maximizes RQR (π, t) ∈ Π× T . Moreover, such (π, t) can be uniquely determined.

The complete proof of Lemma 1 is found in Section A.1.

For |Z| ≥ 2, when {i ∈ Z : ρi(c) > 0} = {0, i}, WLOG, it is useful to consider Z = {0, i}

– a case that relies on Axioms 1.1, 1.2, and 1.4 only. Lemma 1 guarantees that the types

are quasi-linear, and recover the marginal distribution of the quasi-linear types in this case.

For general c ∈ Rn+1
0 , (1.2.16) identifies the unique joint distribution of types. In Lemma 2,

found in Section A.1, I show that π constructed in (1.2.16) satisfies the consistency conditions

necessary for a probability measure.

Next, I show that π constructed in (1.2.16) represents ρ. To simplify the notation, define

c ∈ Rn+1 to be generic if

π(c ∈ Rn+1 : |M(v, c)| > 1) = 0. (1.2.19)

The points in Rn+1 satisfying condition (1.2.19) consists of all c ∈ Rn+1 that induces a unique

maximizer for each type. As π has finite support, the set of cost vectors c that violate (1.2.19)

– the set of nongeneric points – is dense when restricted to Rn+1
0 . Given Axiom 1.1, the set

of non-generic points is dense in the entire Rn+1. Therefore, take any two points c and c′

in Rn+1, one can always find a path on Rn+1 between them, such that |M(v, c̃)| ≤ 2 for all

v ∈ supp(π) and all c̃ on the path; and if |M(v, c̃)| = |M(v′, c̃)| = 2, M(v, c̃) = M(v′, c̃). In

words, there are at most one two-way tie at any point c̃. We also require that there are no

turns at points with a tie. I illustrate such a path when |Z| = 3 in Figure 1.2.
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O

c

c′

Figure 1.2: Path with At Most Two-way Ties

In Figure 1.2, the solid points are the cost vectors that are in the support of π. These points

induce a full tie among the three goods in Z and represent the types. A horizontal ray

starting at a solid point and extends to the right includes cost vectors with ties between

0 and 2 for the type represented by the solid point; an upward vertical ray starting at a

solid point includes cost vectors with ties between 0 and 1 for the type represented by the

solid point; and a ray starting at a solid point and pointing to the northeast includes cost

vectors with ties between 1 and 2 for the type represented the solid point. By avoiding the

solid points and crossing at most one ray at a time, the path from c to c′ consists of at

most one two-way tie at each point on the path. This picture can be generated to higher

dimensions.

Take the point c ∈ Rn+1 to be such that ci → ∞ for all i ∈ Z \ {0}. Then, ρ0(c) = 1

by Axioms 1.2 and 1.4. Take any generic c′ ∈ Rn+1 and take a path between c and c′ as

described earlier. Take ρ′(c) = ρ(c). We construct ρ′ for generic points on the path according

to RQUM, and show that ρ′ agrees with the actual observation ρ. In particular, ρ′ stays

unchanged when the path passes generic points. At a point c̃ with two-way tie between i

and j where the direction of change is on the ith coordinate, the tie is broken in favor of
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good i. Therefore,

ρ′
+
i (c̃i) = ρ′

−
i (c̃i) + π(v ∈ supp(π) : M(v, c̃) = {i, j}),

lim
ε→0

ρ′j(c̃i − ε, c̃−i) = lim
ε→0

ρ′j(c̃i + ε, c̃−i)− π(v ∈ supp(π) : M(v, c̃) = {i, j}),

lim
ε→0

ρ′k(c̃i − ε, c̃−i) = lim
ε→0

ρ′k(c̃i + ε, c̃−i)

(1.2.20)

where ρ′+(c̃) and ρ′−(c̃) are defined as in (1.2.14) and (1.2.15) for ρ′(c̃).

To show that the construction ρ′(c̃) is the same as the observation ρ(c̃), we first define the

gap function for any c ∈ Rn+1, i ∈ Z, as follows:

gapi(c) = ρ+
i (c)− ρ−i (c). (1.2.21)

In RQUM, the function gapi(c) is the probability measure on the set of types for which i is

a weak maximizer at c. Hence, if i is the direction of change at c̃, ρ+
i (c̃) = ρ−i (c̃) + gapi(c̃).

Lemma 3 in Section A.1 shows that gapi(c) can be calculated as local perturbations of π(c)

for any c ∈ Rn+1. Lemma 4 in Section A.1 shows that at a non-generic point c̃ on the

path, ρ(c̃i − ε) can be obtained from ρ(c̃i + ε) in exactly the same way as in (1.2.20) given

the axioms and Lemma 3. If c̃ is a generic point on the path, gapi(c̃) = 0 for all i ∈ Z

so ρ(c̃) is unchanged in the neighborhood of c̃. Therefore, starting from the point c where

ρ0(c) = ρ′0(c) = 1, ρ′ agrees with ρ at all generic points on the path.

At nongeneric points, types may have multiple maximizers, and the set of maximizers of

different types may overlap. I show that for the π constructed with (1.2.16), the tie-breaking

rule, t ∈ T , exists for the nongeneric points. To do so, I transform the problem into a match-

ing problem that can be solved using Hall’s marriage theorem (Hall, 1935) on rationals.9 I

then use compactness to approximate any real numbers. The nodes in the matching prob-

9Hall’s marriage theorem is also discussed in Demange et al. (1986) to show the the existence of a
equilibrium assignment in a multi-unit auction.
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lems are “units” of RQUF π (a-units) and “units” of RCR ρ (p-unites), so that the number

of a-units and the number of p-units are integers. A unit is defined as follows:

Definition 1.1. A unit for π, ρ ∈ Q at c ∈ Rn+1 is 1
k
, where k ∈ N , such that

kπ(v) ∈ N ∀ v ∈ supp(π), and kρA(c) ∈ N ∀A ⊆ Z.

I show in Lemma 5 that there exists a perfect matching between a-units and p-units for

any c ∈ Rn+1. The tie-breaking rule ti(v, c) is the number of matchings between the a-units

associate with v and the p-units of i divided by the total number of all a-units associated

with v. Since the matching is not guaranteed to be unique, the tie-breaking rule is not

necessarily unique.

1.3 Special Cases

In this section, I discuss two special cases of the general RQUM: uniform tie-breaking, and

binary types.

1.3.1 Regular and Uniform Tie-Breaking

General RUM respects regularity. That is, the probability of choosing any good should not

increase when more goods are added to the menu. In general, the tie-breaking and the

RCR in RQUM does not need to be regular, as illustrated by Example 1.1 in Section 1.2.

Furthermore, the tie-breaking rule in RQUM is not guaranteed to be unique.

In actual applications, it may be desirable have a more precise tie-breaking rule that satisfies

regularity. A natural refinement is uniform tie-breaking, where an agent puts 1
M(v,c)

choice

probability on good i ∈ M(v, c). With uniform tie-breaking, I define uniform tie-breaking
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RQUM representation (U-RQUM representation) as follows:

ρi(c) =
∑

A⊆Z:i∈A

1

|A|
π(v ∈ Rn+1

0 : M(v, c)) = A). (1.3.1)

In U-RQUM, the choice probability ρi(c) is the weighted sum of the probabilities on agents

v ∈ Rn+1
0 for which i ∈M(v, c), where the weight is 1

M(v,c)
. The following axiom corresponds

to the uniform tie-breaking:

Axiom 1.5 (Uniform). For all 0 < α, i ∈ Z, and c ∈ Rn+1,

ρi(c) ≥
∑

A⊆Z,i∈A

1

|A|
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′). (1.3.2)

Theorem 1.2. An RCR ρ satisfies Axioms 1-5 if and only if ρ maximizes the U-RQUM

representation. Moreover, the representation is unique.

To see the relation between (1.3.1) and (1.3.2), notice that ρ−A(c) is the measure on v ∈ Rn+1
0

such that M(v, c) ⊆ A. Equivalently,

ρ−A(c) =
∑
A′⊆A

π({v ∈ Rn+1
0 : M(v, c) = A′}).

By Möbius transform (see, e.g., p. 41, Grabisch, 2016),

π({v ∈ Rn+1
0 : M(v, c) = A} =

∑
A′⊆A

(−1)|A\A
′|ρ−A′(c).

Furthermore, limα→0

∑
A′⊆A(−1)|A\A

′|ρA′(c+ α1A′) =
∑

A′⊆A(−1)|A\A
′|ρ−A′(c). The full proof

of Theorem 1.3.1 is found in Section A.2.1.
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1.3.2 Binary Types

There are many cases where choices are made by two types, for example, household decisions,

dual cognitive systems, and so on. (For more discussion of such cases, see Manzini and

Mariotti (2018)). Here, I consider the case where there are two quasi-linear types.

Axiom 3’ (Two steps). For any i ∈ Z, the function ρi(α, c−i) belongs to one of the

following two cases:

1. ρi(α, c−i) is a nondecreasing step function with one point of discontinuity as α in-

creases: ρi(α, c−i) = 0 before this point, and ρi(α, c−i) = 1 after this point.

2. ρi(α, c−i) is a nondecreasing step function with two points of discontinuity as α in-

creases: ρi(α, c−i) = 0 before the first point, ρi(α, c−i) = a or 1-a between the first and

second points, and ρi(α, c−i) = 1 after the second point, for some fixed a ∈ (0, 1).

If the RCR ρ satisfies Axiom 3’, then ρi(c) ∈ {0, a, 1− a, 1} for all c ∈ Rn+1, i ∈ Z. We can

construct two types with probabilities (a, 1− a).

Theorem 1.3. An RCR ρ satisfies Axioms 1.1, 1.2, and 3’, if and only if ρ is represented

by the RQR (π, t) ∈ Π×T , where π has binary support and takes value in {a, 1−a}, a ∈ (0, 1).

The binary RQR is unique.

1.4 Comparison with Other Models

1.4.1 The Luce Model and Multinomial Logit Models

The primitive in RUM (Block & Marschak, 1959) is a choice system (X, ρ), where X is the

choice domain, and ρ : 2X × X → ∆(X) is such that
∑

x∈A ρA(x) = 1 for any A ⊆ X.

RUM has two interpretations. In the first interpretation, the observations can be explained

by a collection, U , consisting of injective functions u : X → R, and a probability measure,
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π ∈ ∆(U), such that

ρA(x) = π({u ∈ U : x is best in A according to u}). (1.4.1)

In the second interpretation, there is an average utility, v : X → R, but it is perturbed by a

noise term, ε : X → R, and

ρA(x) = Prob(v(x) + ε(x) is a maximizer in A). (1.4.2)

The Luce model (Luce, 1959) is an important refinement of RUM. Given the choice system

(X, ρ), if there is a function u : X → R+ that satisfies the Luce condition

ρA(y) =
u(y)∑
x∈A u(A)

∀A ⊆ X, y ∈ A, (1.4.3)

then this choice system conforms to the Luce model. The Luce model is rationalizable by

heterogeneous preferences, as in (1.4.1) (see, e.g., Theorem 7.6 in Chambers & Echenique,

2016).

McFadden (1974, 1980) shows that the Luce model can be written as an average utility

plus a random error as in (1.4.2), where the error term follows a Gumbel distribution while

the average utility has the logistic form.10 Hence, the Luce model is also referred to as

the multinomial logit model. The multinomial logit model is the foundation of the discrete

choice literature, and it is the basis for many empirical demand estimation papers in empirical

industrial organization (see, e.g., McFadden, 1974, 1980).11

10RQUM can also be written as in (1.4.2). To see this, we simply define the mean utility u =
∑
u∈U π(u)u,

and let ε = {u− u, u ∈ U} be distributed with the same π ∈ ∆(U). However, this construction is merely a
normalization of the private values, and it lacks the statistical interpretation of the error term, as found in
the Luce model (Luce, 1959).

11In this literature, each agent only chooses one choice alternative. Given market-level data, one can
reconstruct the market share using the average utility, where the average utility is a function of the observed
and unobserved individual and product characteristics. In the estimation, one uses statistical methods to
find the coefficients for the characteristics so that the difference between the constructed market share and
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The Luce condition (1.4.3) implies the independence of irrelevant alternatives (IIA) property.

To investigate this further, let ρA(x) denote the probability that the choice alternative x is

chosen from menu A. Let {x, y} ⊆ A.

ρ{x,y}(x)

ρ{x,y}(y)
=
ρA(x)

ρA(y)
. (1.4.4)

Empirically, we see that the IIA condition is problematic.12

RQUM does not suffer from IIA. Intuitively, when a choice alternative associated with a

relatively low price level (the price can be negative, interpreted as an increase in wealth)

is added to the choice set, all agents may change their choices in favor of this new choice

alternative. For example, suppose Z = {a, b, c}, and also suppose that there are two quasi-

linear agents, with types v1 = (1, 3, 2), v2 = (1, 2, 3). When the price vector associated with

the three goods is c = (0, 0, 0), IIA is satisfied for positive choice probabilities. However, if

the price level is c = (0, 3, 3), IIA is violated in sets {b, c} and {a, b, c}.

RQUM is distinct from the Luce model with respect to some other properties, as well. As

discussed in Section 1.2 and in Example 1.1, the Luce model violates Axiom 1.3. In addition,

RQUM restricts the number of types to be finite, while the Luce model does not. In fact,

the types in the Luce model are not uniquely identified, even though their average utility

is uniquely determined. Finally, the Luce model and its extensions (e.g., Fudenberg et al.,

2015) respect stochastic transitivity due to the Luce condition (1.4.3). However, RQUM and

general RUM do not respect stochastic transitivity.

the observed market share is minimized. The quasi-linearity is necessary for calibrating the parameters in
many applications (see, e.g., S. Berry et al., 1995; S. Berry & Pakes, 2007; S. T. Berry, 1994; Nevo, 2000).

12Suppose the agent faces the choice set {bus, car}, and has 1
2 probability of choosing either transportation.

When the choice set is enlarged to be {blue bus, red bus, car}, IIA requires the agent to choose each
transportation with probability 1

3 (see, Debreu, 1960). This requirement is not reasonable since the color
of the bus need not affect the choice of means of transportation. Specifications of the Luce modelLuce
(1959), which does not suffer from the blue-bus, red-bus fallacy, has been studied by various researchers
(e.g., Fudenberg, Iijima, & Strzalecki, 2015; Gul, Natenzon, & Pesendorfer, 2014).
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1.4.2 Path Independent Choice Functions

In a multi-utility model, choices are made by a collection of types, and the choice function

ϕ : 2X → X, ϕ(A) ⊆ X consists of all maximizers of all types (see, e.g., Moulin, 1985a). In

my setting, X = Z × Rn+1, and a menu here is of the form A = {(i, ci), i ∈ Z, ci <∞}. For

a given cost c, ϕ(A) = ∪v∈supp(π){(i, ci) : i ∈ M(v, c)}. Hence, RCR ρ can be mapped onto

a multi-utility model choice function with

ϕ(A) = {(i, ci) : ρi(c) > 0, i ∈ A}. (1.4.5)

Instead of tie-breaking, ϕ consists of all maximizers without referring to the probabili-

ties.

Proposition 1.4.1. If ρ : Z × R→ R is regular, then ϕ as defined in (1.4.5) satisfies the

following properties:

1. Sen’s α: A ⊆ B, then ϕ(B) ∩ A ⊆ ϕ(A).

2. Aizerman and Malishevski (AM): ϕ(B) ⊆ A ⊆ B =⇒ ϕ(A) ⊆ ϕ(B).

Proof. Let c ∈ Rn+1 be associated with A, i.e., A = {(i, ci), i ∈ Z, ci < ∞)}, and c′ ∈ Rn+1

be associated with B, i.e., B = {(i, c′i), i ∈ Z, c′i < ∞)}. Take A ⊆ B. Hence, ci < ∞ =⇒

c′i <∞ and c′i = ci.

Show Sen’s α. Since (i, c′i) ∈ ϕ(B), ρi(c
′) > 0 and therefore c′i < ∞. If (i, c′i) ∈ A, then

ci = c′i. Hence ρi(c) ≥ ρi(c
′) > 0 by regularity, and therefore (i, ci) ∈ ϕ(A).

Show AM. ϕ(B) ⊆ A requires ρi(c
′) > 0 =⇒ c′i = ci <∞. By regularity, ρi(c) ≥ ρi(c

′) > 0.

Since
∑

i∈Z:ρi(c′)>0 ρi(c
′) = 1, then

∑
i∈Z:ρi(c′)>0 ρi(c) ≥ 1. Since ρ is a probability measure,

it follows that ρi(c) = ρi(c
′) if ρi(c

′) > 0. Therefore, ϕ(A) = ϕ(B).
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A choice function ϕ that satisfies Sen’s α and AM is path independent, and can be de-

composed into the union of choices of a finite collection of types (Aizerman & Malishevski,

1981b). From Proposition 1.4.1, we see that in the settings of this chapter, RQUM and path

independent choice models does not necessarily overlap. Any regular ρ can be mapped to a

path independent choice function; while a non-regular ρ with RQUM representation cannot

be mapped into a path independent choice function.

1.5 Conclusion

This chapter discusses the unique identification of a random quasi-linear utility model with

complete data when there is a finite distribution of underlying types. This identification can

be useful in practical settings. For example, if a marketing planner needs to know the private

values of a population to better design a campaign but only observe its consumption choices,

my model can be helpful. In practice, monetary variations are often discrete, so only a finite

number of data are available. Hence, a useful extension of this chapter is to study the model

in a finite domain. On the other hand, it is easy to characterize the existence of a general

joint distribution with some modification of Axiom 1.3 (See Theorem 1.1.6 in Durrett, 2019).

To avoid characterizing the tie-breaking rule, one can require the distribution of types to

be continuous. In this case, ties are everywhere, but all types have a probability of 0, so

any tie-breaking rule is acceptable. However, such a characterization may not be useful

empirically.
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Chapter 2

Persuasion in Signaling Games

This chapter models litigation in signaling games with an imperfectly informed victim and

a perfectly informed defendant. I compare a two-agent game and a three-agent extension

where the victim can hire a lawyer who is perfectly informed but pursues a selfish objective

in his advice. In particular, a lawyer affects a victim’s information environment in a way

that is similar to Bayesian persuasion Kamenica and Gentzkow (2011). Overall, this analysis

captures some stylized empirical patterns of the legal system, and identifies both the positive

and negative welfare effects of lawyers’ advice on the number of cases filed and litigated,

victim’s trial winning rates, and defendants’ safety costs.

2.1 Introduction

In many areas of the legal world, lawyers are associated with the practice of aggressive

solicitation of clients. The extreme of such a practice is found in personal injury cases, and the

term “ambulance chasing” describes its extent Anderson (1957). In general, overly aggressive

client solicitation is frowned upon, and the solicitation of clients by lawyers is subject to

28



regulations under lawyers’ professional ethical standards.1 However, it is important to ask

whether lawyers’ aggressive solicitation of clients to encourage litigation really is that bad.

Considering the lack of access to legal resources and the information problem faced with

many claim-holders, the answer seems to be more complicated Schwab (2010).

Admittedly, it is clear that too much litigation takes place in the U.S. today. For instance,

in 2016, there were 83 million incoming civil cases in state courts, and, surprisingly, this

number is found to be on the lower side when looking at recent history.2 Ligation also

consumes many resources. One study 3 shows that in 2016, the U.S. tort system alone cost

$429 billion, the equivalent of 2.3% of the United States’ GDP that year, although tort cases

account for only about 7% of the total civil cases in state and federal courts.

Still, claimants’ litigious tendencies differ by category. There are two main groups of potential

claimants: corporate and individual. Where corporate claimants tend to be quite litigious,

individual claimants typically only litigate a small portion of their legal problems. For

example, only 1% of job discrimination cases, 10% of tort problems, and 36% of real property

problems induce individuals to seek lawyers, and only around 14 % of people injured by

alleged medical malpractice end up filing suits Cramton (1993); Hylton (2007).4

Individual claim-holders’ under-litigation often stems from a lack of information. Claim-

1See ABA Rule 7.3 (“Solicitation of Clients”), https://www.americanbar.org/groups/

professional responsibility/publications/model rules of professional conduct/rule 7 3

direct contact with prospective clients/comment on rule 7 3/, last accessed September 11,
2019

2For more caseload statistics, see the Court Statistics Project, http://www.courtstatistics.org/, last ac-
cessed Feb 28,2020.

3U.S. Chamber of Commerce Institute for Legal Reform, “Costs and Compensation of the U.S.
Tort System”, Oct. 2018. https://www.instituteforlegalreform.com/research/2018-costs-and

-compensation-of-the-us-tort-system, last accessed Feb 28, 2020.
4The court also acknowledges individual claimants’ under-litigation problem in tort cases and uses punitive

damages and class action suits to alleviate this issue. Punitive damages augment the amount of damages
paid by a defendant after considering the probability of escaping liability. In class action suits, one member
can sue on behalf of the entire class to make up for the fact that many injured individuals are not suing.
Punitive damages and class action suits are unusual under tort laws because the function of tort laws
is compensation and restitution, rather than punishment and deterrence. However, the consideration to
alleviate under-litigation is more important than the consideration to limit the scope of the function of the
tort law Galligan Jr (2005); Lens (2014); Polinsky and Shavell (1998)
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holders may not fully aware of the extent of liability of the defendant, may fail to establish

the legal character of their problems, or may fail to understand the relevant legal resources

available to them Cramton (1993). In such situations, lawyers can supply the needed infor-

mation and thus reduce under-litigationCalvani, Langenfeld, and Shuford (1988); Cramton

(1993); Greiner and Matthews (2015).5

At the same time, lawyers’ fees constitute a large portion of the total sums involved in

litigation. Out of the total cost of $429 billion in the U.S. tort system in 2016, 57% went

to the victims while 32% went to the lawyers6; That year, lawyers made $137 billion in tort

cases alone – about 0.74% of the U.S.’s GDP Doroshow and Gottlieb (2016).

The ambiguity of lawyers’ effects on an individual claimant’s inclination to take her case to

court is the main motivation for this study. The two main objectives of this chapter are the

following:

1. To model lawyers’ effects on the amount of litigation and victim winning rate in suitable

signaling games.

2. To evaluate lawyers’ effects on social welfare.

To realize these objectives, this chapter explicitly considers how a victim’s lawyer affects an

uninformed individual victim’s decisions in a three-agent signaling game. Such analysis takes

a different perspective from mainstream game theory models in law and economics regarding

litigation choices, which focus on games between two opposing parties–the plaintiff and the

defendant Bebchuk (1984); Hubbard (2017); Reinganum and Wilde (1986).

In the current study, a victim (“she”) is injured from an interaction with a defendant (“he”).

5Lawyers are helpful to their clients because they can obtain better information (rather than because
they can supply superior oral arguments at trial) Duvall (2007). Most cases settle and never go to trial. If
a trial does occur, a case represented by legal counsel has a higher winning probability and typically better
outcome terms compared to a case without legal representationGreiner, Pattanayak, and Hennessy (2012).
However, a judge usually forms opinions on the case’s merits before a trial begins based on the information
supplied by the parties, rather than based on oral arguments at trial Duvall (2007).

6Supra footnote 2.
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There are two possible states: the defendant is either liable or non-liable for the injury to

the victim. The defendant is perfectly informed of the state. However, the victim might or

might not recognize that she is injured, and also might or might not be able to tell whether

the defendant is liable. This situation is modeled as a victim who receives a noisy signal on

the realization of the state after being injured.

In a two-agent model, if the victim gets a signal indicating that the defendant is liable,

she files a claim against him, and litigation begins; otherwise, there is no litigation. If

litigation occurs, there is first a settlement stage; however, if there is no settlement, then a

trial occurs. The settlement stage is summarized as a signaling game, where the perfectly

informed defendant offers either a positive settlement amount or offers zero to the imperfectly

informed victim. A positive amount signals the defendant is liable; where as a settlement

offer of zero signals that the defendant is not liable. The victim can either reject or accept

the defendant’s offer. If she accepts his offer, a settlement is reached; if she rejects it, the

settlement fails, and a trial begins. This process represents the general chronology of a

typical lawsuit.7.

The setup of such a game is discussed in detail in section 2.3, where the timeline and game

tree are given in Figure 2.1 and Figure 2.2. In a two-agent game where an imperfectly

informed victim is not represented by a lawyer, the victim might either (1) never recognize

the harm done to them, and thus never file a claim; or (2) be stuck in a pooling equilibrium

where they are not compensated. The two-agent baseline model in section 2.3 discusses such

situations.

Section 2.4 adds a third player: a perfectly informed, profit-driven lawyer (“he”), who can

affect the victim’s information environment and payoffs. In particular, section 2.4 discusses

a three-agent model where a victim is represented by a lawyer who is perfectly informed of

7See, e,g. United State Courts, (“About Federal Courts”, “Civil Cases”). https://www.uscourts.gov/
about-federal-courts/types-cases/civil-cases, last accessed Feb 28, 2020
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the realization of the state (liable or non-liable) and of the victim’s signal, and who collects

fees for his services. This lawyer sends a signal to the victim. The lawyer’s optimal signal

structure is described in Proposition 2.4.1. A lawyer’s degree of information disclosure is

determined by the signaling equilibrium in the settlement game between the victim and the

defendant.

Overall, in equilibrium, lawyers may (1) inform victims that defendants are liable when

the victims receive a wrong signal; (2) eliminate the pooling equilibrium where victims are

never compensated; and (3) help the victims select liable cases to go to litigation, and thus,

increase the victims’ numbers of positive settlements and the overall trial success rate. Under

appropriate settings, most victims can be compensated either through a settlement or via a

trial. However, lawyers’ fees decrease the settlement amounts and trial payoffs. Furthermore,

lawyers induce more case filings for non-liable cases. A numerical example of this situation

is given at the end of section 2.4 to illustrate such effects.

When the extent to which the defendant exercises costly caution generally in his interaction

with potential victims determines his prior probability of being liable, the presence of a profit-

driven lawyer may increase the defendant’s precaution level and thus decrease the defendant’s

prior probability of being liable by affecting the signaling equilibrium. In particular, when a

defendant’s prior probability of being liable is a function of the cost he spends in preventing

injuring others, the presence of a victim’s lawyer can induce a defendant to spend more on

safety measures under a set of realistic parameters by increasing the amount of litigation.

Detailed analysis is in Section 2.5.

This chapter also discusses several variations of the three-agent model. First, when lawyers

are imperfectly informed, they can still increase the number of case filings and the amount of

litigation, even though their solicitation efforts will be less effective. Second, if lawyers not

only have financial interests in the cases but also internalize the utility of the victims to some

degree above a threshold, they will report their true information to the victims. Here, the
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game becomes a complete information game. Finally, if trials do not reveal the true state,

and the informed defendants can manipulate the judges’ decision at trial, victims will lose

many cases in which defendants are liable. However, if a victim is represented by a perfectly

informed lawyer who can also persuade the judge, the trial becomes truth-revealing. These

situations are discussed in detail in section 2.6.

2.2 Related Literature

The Bayesian persuasion framework originally developed in Kamenica and Gentzkow (2011)

considers the setting of one sender and one receiver, where the receiver’s action determines

the payoffs for both parties. The sender can strategically conduct experiments to determine

the states, and commit to truthfully reveal the results to the receiver. The receiver uses the

signal from the sender to updates her posterior belief on the states according to Bayes’ rule.

By the choice of experiments, when the state space is small, the sender in effect can choose

any posterior belief for the receiver, as longs the expectation of the posterior beliefs induced

by a signal is same as the prior belief. The sender benefits as long as the receiver’s action is

discontinuous in beliefs.

Since Kamenica and Gentzkow (2011), there has been many applications of Bayesian per-

suasion setting and its variants. The applications include optimal experimentation by a

politician for different electoral rules Alonso and Câmara (2016), optimal grading in schools

Boleslavsky and Cotton (2015), optimal design of online ads Rayo and Segal (2010), and

optimal competitive information disclosure in costly search markets Board and Lu (2018),

to name just a few. This chapter also considers an application of a variant of Bayesian

persuasion. The setting is related to the one-sender-one-receiver situation of the depositor-

regulator case with private signals in Bergemann and Morris (2016). However, I combine

persuasion with a signaling model, which makes the analysis more comprehensive.
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Specifically, a victim (receiver) receives a private noisy signal indicating the state, and the

lawyer (sender) knows the true state and the victim’s prior belief and private signal. In

the terminology of Bergemann and Morris (2016), the lawyer is omniscient. Bergemann

and Morris (2016) also define Obedience as the condition that the receiver always follows

the sender’s advice.8 To achieve this, the receiver’s expected utility of following sender’s

advice needs to be higher than not following. This constrains the receiver’s decision rule

and the sender’s signals. In the model presented in this chapter, in equilibrium, the victim’s

decision rule is obedient. When the lawyer tells the victim that the defendant is liable, the

victim files a suit.9 A lawyer makes a victim’s decision rule obedient by choosing a signal to

cause the victim’s belief that the defendant is liable to be just above the threshold for her

to file a case; where such threshold is determined in her signaling game with a defendant. A

lawyer profits from persuasion by controlling the victim’s belief when entering the signaling

equilibrium and therefore inducing separating equilibrium where victims file suits and go to

trial often.

The current chapter contributes to the discussion in the legal literature on socially optimal

levels of litigation and settlement (e.g. Shavell (1999)) by studying such issues in a more

sophisticated signaling game setup. Additionally, this chapter contributes to the discussion

on the regulation of injurers’ precaution levels. Some of the legal literature focus on regu-

lation of tort injurers’ activities and precaution levels via different liability standards Gilles

(1992); Hylton (2002); Polinsky and Shavell (2000); Rosenberg (2007). The present chapter

adds to this discussion from a different angle, namely, how lawyers can help enforce any

predetermined liability standards by helping victims recognize liable defendants.

8See also Definition 1 in Bergemann and Morris (2019)
9In the language of Bergemann and Morris (2019), the situation that the victim always follows lawyer’s

signals, is called a “truthful mechanism”
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2.3 Baseline Model: Two-Agent Settlement Game

The models of this chapter consider a victim’s litigation decisions in a tort case after she is

injured.10 We first establish a two-agent model of a settlement game, where the players are

a victim who is injured during her interaction with a defendant, and the defendant.

We first consider a complete information situation to determine the equilibrium settlement

amounts from the defendant in the settlement game. Suppose the fair compensation to the

victim, i.e., the adjudication amount from trial, is d. Suppose the court cost for the defendant

is cd, and for the victim is cv. Therefore, a victim’s payoff from trial is d − cd, while her

settlement payoff is σ. To avoid trial, a liable defendant will have to offer a settlement

amount of σ ≥ d − cv. The equilibrium settlement amount would be σ∗ = d − cv as the

defendant maximizes his payoff, −σ. When the defendant is not liable, the fair compensation

to the victims is zero, and the victim’s payoff from litigation is −cv. Thus, the victim will not

go to trial even when offered zero settlement, and therefore the lowest non-negative payoff

that V would accept would be σ = 0.

In the settlement game considered here, the victim is uncertain whether the defendant is

liable to her or not, while the defendant is perfectly informed. In the game, the defendant

offers either zero or σ∗ to the victim. The former signals non-liable, and the latter signals

liable. Therefore, this game is a typical signaling game.

2.3.1 Primitives

The defendant (D) is either liable (l) or non-liable (nl) to the victim (V ). Thus, the state

space includes two states: Ω = { liable (ωl), non-liable (ωnl)} The realization of the state is

exogenous.

10In a tort case, the victim seeks monetary compensation (damages) from the injurer. Personal injury
cases that arise from motor vehicle accidents, slip-and-fall accidents, medical malpractice, and injuries caused
by defective products all belong to this category.
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V is imperfectly informed of the realization of the state. Her prior belief that D is liable

is p0 = p(ωl), where p(ωl) is the percentage of liable cases in the pool of all cases of the

same type.11 After the injury, V receives a noisy signal, z, whereby z = 1 indicates ωl, and

z = 0 indicates ωnl. However, a false-negative occurs with probability β0, and a false-positive

occurs with probability β1. Thus, each state generates z as follows:

P (z = 1|ωl) = 1− β0,

P (z = 0|ωl) = β0 (a false-negative, or type II error),

P (z = 1|ωnl) = β1 (a false-positive, or type I error),

P (z = 0|ωnl) = 1− β1.

(2.3.1)

.

Therefore, when z = 1, D is liable with probability

ps = P (ωl|z = 1) =
p0(1− β0)

(1− β0)p0 + β1(1− p0)
(2.3.2)

When z = 0, D is liable with probability

p′s = P (ωl|z = 0) =
β0p0

β0p0 + (1− p0)(1− β1)
< ps (2.3.3)

In this model, the defendant is perfectly informed of the realization of the state and the

victim’s signal z. The victim files a claim against the defendant if and only if z = 1.

Therefore, the probability of V filing a claim is the same as the probability that signal z = 1.

Such a probability is determined by the prior probability, p0, and the errors in the signal as

11Such prior probabilities can be obtained in survey data or from insurance contracts.
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below:

P (z = 1) = (1− β0)p0 + β1(1− p0)

After the victim files a claim, a settlement negotiation occurs between the victim and the

defendant. In the event of a settlement, the defendant offers a settlement, σ, to the victim. If

the victim accepts the settlement offer σ, the defendant transfers the agreed-upon settlement

amount σ to the victim, and the case concludes. However, if the victim disagrees with the

defendant and rejects the settlement offer σ, then the settlement breaks down, and a trial

ensues. If z = 0, the victim does not file a claim, and there is no litigation. To summarize,

the timeline of the development of a case is illustrated in Figure 2.1.

1. Nature decides the

state (ωl or ωnl)

2. V receives a signal

(z = {0, 1}) regard-

ing the state

3. D observes the real-

ization of the state,

as well as V’s signal.

time 0

1. V files a claim

against D if z = 1;

2. V does nothing if

z = 0, and the game

ends here.

time 1

If z = 1, D offers settle-

ment σ to V

time 2

V decides whether to ac-

cept or to reject σ:

1. If V accepts, D

transfers σ to V;

2. If V rejects, a trial

occurs.

time 3

Figure 2.1: Timeline of the two-agent game

2.3.2 Notation

The notation used in the settlement model of this section are listed below.

1. ω – two possible states for defendant D’s liability in a case: liable ωl, or non-liable ωnl;

2. z – V’s signal about the state: z = 1 signals ωl, z = 0 signals ωnl;

3. β0 – the probability of z = 0 when the true state is ωl;

4. β1 – the probability of z = 1 when the true state is ωnl;

5. p0 – V’s prior belief of ωl;
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6. ps – V’s belief that D is liable when z = 1;

7. p′s – V’s belief that D is liable when z = 0;

8. d – damages, which is the same as the amount of fair compensation from a liable D to

V for the injury;

9. cv – V’s litigation costs;

10. cd – D’s litigation costs;

11. σ – settlement offered by D to V;

12. x – probability of D offering σ = 0 when in state ωl;

13. r – probability of V rejecting an offer of σ = 0.

2.3.3 The Settlement Game

A settlement negotiation occurs if the victim, V , files a claim; and V files a claim only when

her signal is z = 1. Thus, in the settlement game, V’s belief that D is liable is ps, as in

equation (2.3.2). The settlement game adopts the framework of a standard signaling game

Cho and Kreps (1987). In this game, there are two types of D – liable and non-liable. V is

imperfectly informed of D’s type, and D uses the value of σ to signal his type to V. In the

separating equilibrium, with some probability, a liable D pretends to be non-liable, and send

the signal of being a non-liable type; whereas in a pooling equilibrium, both types of D send

the same signal.

In such a game, a settlement is successful if and only if V accepts σ offered by D. V’s

settlement payoff is the settlement amount σ, and D’s settlement payoff is −σ. If V rejects

D’s offer of σ, the settlement fails, and a trial occurs. Here, a trial will reveal the true state.

For the victim, the court costs are cv; whereas for the defendant, the court costs are cd.

Thus, V’s trial payoff is d− cv if D is liable, and −cv if D is not liable; and D’s trial payoff

is d + cd if he is liable, and is −cd if he is not liable. As described in the beginning of this

section, the equilibrium value of σ is binary: either 0 or σ∗, where σ∗ = d− cv.
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Note that when the victim is perfectly informed, that is, β0 = β1 = 0, V would accept

zero settlement offers from a non-liable D with probability 1, and reject zero offers from a

non-liable D with probability 1. Therefore, a liable D is better off offering σ∗. Hence, a liable

D always offers σ∗, and a non-liable D always offers zero settlement; and V would always

accept such settlement offers. Because of this situation, there would be no trial.

To summarize, when V is imperfectly informed (β0 > 0 and/or β1 > 0), the outcome of the

settlement process can be modeled by a signaling game. D’s strategy space includes offering

two kinds of settlements – a settlement offer of zero or a positive amount, this can be denoted

as σ = {σ = 0, σ = σ∗}. There are two actions available to V , accept or reject. If the victim

accepts the settlement amount, σ, the settlement is successful, and this settlement amount

is transferred from D to V. However, if V rejects settlement σ, then the settlement breaks

down, and a trial occurs.

Assumption 1. A trial will reveal D’s true type.

Admittedly, this assumption is very strong. However, the focus of this chapter is the effect

of lawyer solicitation, rather than the actual litigation process. In addition, we relax this

assumption in section 2.5.3.

The true state and their own court costs determine D’s and V’s trial payoffs. The game tree

in Figure 2.2 summarizes the settlement game.
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V

V

Nature

ωnl

1− ps
ωl

ps
D

σ∗

0

D

σ∗

0

−cd,−cv

reject

−σ∗, σ∗

accept

−cd,−cv

reject

0, 0

accept

−d− cd, d− cv

reject

0, 0

accept

−d− cd, d− cv

reject

−σ∗, σ∗

accept

Figure 2.2: Two-agent signaling game

2.3.4 Equilibrium Characterization

The strategies of D (σ = 0 or σ = σ∗) and V (accept or reject) of the signaling game in a

settlement negotiation are determined in equilibrium. The solution methods in this model

are sequential equilibria.

Assumption 2. Where there are multiple equilibria, the D1 criterion found in in Cho and

Kreps (1987) is applied to refine the results.12

Proposition 2.3.1 summarizes the equilibrium results. The detailed calculations are found in

Appendix B.1.

Proposition 2.3.1. (Equilibrium in the two-agent signaling model) When V is imperfectly

informed (β0, β1 > 0), the equilibrium in the two-agent signaling model when a trial is truth-

revealing has the following properties:

(1) When ps ≤ cv/d, there exists a pooling equilibrium where V is not compensated and there

is no litigation.

12D1 criterion eliminate the pooling equilibria where one type defects whenever the other type defects.
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(2) Litigation occurs if and only if ps > cv/d. When ps > cv/d, a non-liable D offers σ = 0.

A liable D offers σ = 0 with probability x, and σ = d − cv with probability 1 − x. A

settlement is successful when σ = d− cv, and a trial occurs when σ = 0 with probability

r. x and r are determined as follows:

x =
1− ps
ps

cv
d− cv

=
β1

1− β0

1− p0

p0

cv
d− cv

,

r =
d− cv
d+ cd

.

(3) V’s winning probability in a trial is cv/d.

Proposition 2.3.1(1) suggests that when psd < cv, V will never file a claim because V ’s

expected payoff from litigation would not justify her court costs. Such a non-compensation

pooling equilibrium can occur when ps – the proportion of liable cases in all cases filed –

is small. By equation (2.3.2), when either p0 – the prior probability that D is liable – is

very small, or when V ’s signal z is very noisy, this non-compensation pooling equilibrium

is more likely to occur. This pooling equilibrium can also occur if the damages amount is

small relative to the victim’s court costs.

Proposition 2.3.1(2) suggests that when V’s expected payoff from litigation is greater than

her court costs, litigation occurs, and there is a separating equilibrium with randomization

between a settlement and a trial. For both the two types of D, offering σ = 0 obtains a

higher payoff, and V accepts such a settlement. Therefore, a liable defendant will randomize

between the two settlements, σ = 0 and σ = d− cv. In this game, x is the probability of D

offering a settlement of zero when liable, and r is the probability of V rejecting an offer of

zero, which is equivalent to the probability of the occurrence of a trial.13

Proposition 2.3.1(3) suggests that the ratio of V’s court costs to the damages amount com-

13There is a pooling equilibrium whereby σ = pd− cv when cv
d < p < cv+cd

d . However, this equilibrium is
eliminated by the D1 criterion because whenever liable D wishes to defect, non-liable D wishes to do so as
well.

41



pletely determines V’s winning probability at trial. The intuition is that if the winning

rate is higher than cv/d, then the expected payoff from a trial would be p(win)d − cv > 0,

and V would want to try more cases in court. However, if the winning rate is low and

p(win)d− cv < 0, V would want to settle.

In fact, because a trial reveals the true state, such a winning rate is the true proportion

of liable cases among the litigated cases. That is, the ratio between the liable cases in

rejected zero settlement offers (xpsr) , and the total number of rejected zero-settlement

cases ((1− ps + xps)r):

xpsr

(1− ps + xps)r
= cv/d. (2.3.4)

2.4 Three-Agent Model

In reality, a lawyer provides information to affect a victim’s legal decision-making in all

stages of a case. Lawyers often solicit victim-clients after an accident, and most victims hire

lawyers to help them decide whether to litigate their case, which may happen either before

or after receiving a defendant’s settlement offer. In some types of disputes, lawyers even aid

victims in making a decision 100% of the time.14

In the model of this section, victims need to be represented by lawyers in the legal pro-

cess, and thus need to pay lawyers’ fees. To isolate the effects of solicitation by a profit-

driven lawyer, we assume the following are the only things that the lawyer(L) can do in the

game:

Assumption 3. In this three-agent game, L sends a signal m to V that affects V’s belief at

the beginning of the signaling game, and charges fees determined by V’s choices and the true

14See, e.g. Strickland et. al.,“Virginia Self-Represented Litigant Study,” National Center for State
Courts, 2017. https://ncsc.contentdm.oclc.org/digital/collection/accessfair/id/811/, last ac-
cessed Feb.29, 2020.
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state.

We further make the following assumptions about the lawyers.

Assumption 4 (Assumptions about L). (1) L is informed:

(a) L observes the true state;

(b) L knows the prior p0, and observes V ’s private signal, z. Therefore, L knows ps;

(2) L is entirely profit-driven, and collects the following fees:

(a) a flat fee, f0, when V files a claim against D;

(b) a flat fee, f , when the there is a court trial;

(c) (1− ξ)d, which is the contingency fee when V wins at trial.

These fees are exogenous to the game.

Admittedly, these assumptions are restrictive. However, the focus of this chapter is on study-

ing the effects of solicitation by a profit-driven lawyer on an imperfectly informed victim’s

litigation choices and welfare; and these assumptions about L are isolate such effects.15

If the victim’s own noisy signal is z = 0, indicating the state is non-liable, a lawyer can

strategically send a solicitation m = 1 to the victim, which is interpreted as a signal stating

that the defendant is liable. The lawyer’s optimal signal when z = 0 is described in section

2.4.1. We introduce new notations in section 2.4.2, and describe the signaling between

the victim and the defendant in section 2.4.3. The signaling equilibrium is described in

section 2.4.4. If the victim’s own signal is z = 1, she voluntarily hires the lawyer and enters

the signaling game if expected payoff is greater than zero. This situation is described in

section 2.4.5. Finally, we describe the lawyer’s welfare effects in section 2.4.6, and provide a

numerical illustration. The calculations and proofs this section are relegated to Appendix B.2

15We relax Assumption 4 in subsection 2.5.1, where L is imperfectly informed, and in subsection 2.5.3,
where L is altruistic.
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(for the case when z = 0) and Appendix B.3 (for the case when z = 1). Assumptions 1 to 4

are assumed in the model of this section.

2.4.1 The Structure of L’s Optimal Solicitation Signal

L is entirely motivated by service fees. When V files a claim, she pays f0 to L. When V

rejects D’s settlement offer, automatically leading to a trial, V pays f to L. When a tried

case is of the liable type, V wins and pays (1− ξ)d to L.

As discussed in section 2.3, the victim will not voluntarily file a claim when she receives

the private signal z = 0, leading to a belief of p′s as in (3). L solicits V in this situation.

Intuitively, a profit-driven L will want V to file and litigate not only all liable cases but

also non-liable cases as well. However, L can only “lie” to a certain degree without losing

credibility. In an extreme situation, in equilibrium, if V discovers during litigation that L

solicits all cases and thus does not provide her with any information, V would act according

her own signal and belief. In contrast, if his signal reflects the true state all the time, then

knowing this strategy, the victim becomes perfectly informed. There is some room in-between

these two extreme situations where lawyer solicit all liable cases as well as some non-liable

cases. Kamenica and Gentzkow (2011) describes the optimal signal in send-receiver game

that described the situation here. Such optimal signal achieves the following:

Definition 2.4.1 (Optimal Signal). After updating with the Bayesian optimal signal, V

only have two posterior beliefs: whether µs(ωl) = 0, or µs(ωl) = µt, where µt is the threshold

probability for V to file a case.

That is, after L solicitation, V either believes that D is liable with the threshold probability

that is just enough for her to file a claim, or believes D is completely non-liable. V will file

a claim in the former, and will not file a claim in the latter. By Kamenica and Gentzkow

(2011), since V’s actions are binary, under this posterior belief, V takes the sender-optimal
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action–filing a claim–with the highest probability.

Suppose L sends a signal, m = {0, 1}. m = 1 indicates the defendant is liable; m = 0

indicates the defendant is not liable. The following proposition characterizes L’s optimal

signal according to Definition 2.4.1. The proof is in Appendix B.2.1.

Proposition 2.4.1. (L’s optimal solicitation signal) Demote P (ωl) = µ0, P (ωnl) = 1− µ0.

V has the correct belief. The threshold belief for V to file a claim is µt > µ0. Then L’s

optimal signal is as follows:

P (m = 1 | ωl) = 1,

P (m = 0 | ωl) = 0,

P (m = 1 | ωnl) =
µ0

1− µ0

1− µt
µt

,

P (m = 0 | ωnl) = 1− µ0

1− µ0

1− µt
µt

.

(2.4.1)

If V’s original belief µ0 is insufficient for her to file a claim (µ0 < µt), for suitable costs,

V follows the recommendation for L under L’s optimal signal structure as described in

Proposition 2.4.1. This decision rule of V is termed Obedience in Bergemann and Morris

(2016). Analysis in section 2.3 suggests that Proposition 2.4.1 applies when µ0 = p′s < µt,

that is, when z = 0. We will discuss this situation in subsection 2.4.4. When z = 1,

µ0 = ps > µt. In this case, V hires L voluntarily without solicitation. This situation is

described in subsection 2.4.5.

2.4.2 Additional Notations

To develop the three-agent model, we first introduce some new notations. The additional

notations required for the three-agent signaling game are listed below.

1. m – the signal from L to V if z = 0. m = 1 denotes L’s solicitation;

45



2. f0 – V’s flat payment to L if V files a claim;

3. f – the flat court trial fee paid to L when V rejects D’s settlement offer and a trial

occurs;

4. ξ – the portion of d that V keeps if she wins at trial, after paying (1 − ξ)d to L as

contingency fee;

5. µs – when z = 1, V’s posterior belief after L’s signal; the specific meaning of µs depends

on the context;

6. µ′s – when z = 0, V’s posterior belief after L’s signal; the specific meaning of µ′s depends

on the context;

7. µt – the threshold P (ωl) for V to file a suit;

8. p̄ – the proportion of liable cases in settlement when z = 0 and m = 1;

9. p – the proportion of liable D in a signaling game used in the game tree.

2.4.3 The Three-Agent Signaling Game

In the model, V first gets her own signal z = {0, 1}. When z = 1, V hires L and files a claim

against D without any solicitation signal from L. If z = 0, L sends a signal m = {0, 1} to

V. V hires L and files a claim against D if m = 1; this reflects the lawyer’s solicitation. If

V files a claim, V and D enter a settlement game. The timeline of this model is shown in

Figure 2.3.
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1. Nature decides

the state (ωl or

ωnl)

2. V receives a sig-

nal (z = {0, 1}
regarding the

state

3. D and L observe

the realization of

the state, as well

as V’s signal, z.

time 0

1. L sends a signal

m = {0, 1} to V

if z = 0;

2. V hires L if m =

1 or if z = 1,

and files a claim

against D.

3. V does nothing if

z = 0 and m =

0, and the game

ends here.

time 1

If z = 1 or m = 1

(when V files a case),

D offers settlement σ

to V.

time 2

V decides whether to

accept or to reject σ:

1. If V accepts, D

transfers σ to V;

2. If V rejects,

a trial occurs

which reveals the

true state.

time 3

Figure 2.3: Timeline of the three-agent game

If z = 0, the three-agent signaling model in this section solves L’s optimal information

disclosure in the signaling equilibrium. There are two steps in the signaling game. First, L

strategically sends a signal m to V whenever V’s private signal z = 0. Thus L determines the

proportion of liable D’s in the game.16 This is V’s prior belief of ωl in this Bayesian game.

Second, the signaling between V and D are carried out. Here, Assumption 1 applies, and

therefore litigation is assumed to reveal the true state.17 If z = 1, we only need the second

step in the game.

Given L’s fee structure, L also affects V’s payoffs in the game in the second step. The settle-

ment offer σ from D changes accordingly. When interacting with a liable D, V’s settlement

payoff is σ−f0, and the trial payoff is ξd−f0−f − cv. Therefore, the lowest settlement that

V would accept is σ = ξd − f − cv. When interacting with a non-liable D, V’s settlement

payoff is σ−f0, and the trial payoff is −cv−f−f0. Thus, the lowest non-negative settlement

that V would accept is 0. We denote σ∗ = ξd− f − cv. D’s strategy is σ = {σ∗, 0}, and V’s

16Each signal realization leads to a distribution ∆(Ω) over posterior beliefs. Thus, given any signal, the
distribution of posterior belief is τ ∈ ∆(∆(Ω)). A sender can effectively choose any posterior belief µs for
the receiver, as longs the expectation of the posterior beliefs induced by a signal is same as the prior belief
µ0, i.e.

∑
supp(τ) µsτ(µs) = µ0. See Kamenica and Gentzkow (2011).

17Proposition 2.6.5 shows that Bayesian persuasion of L and D toward a judge reveals the true state in
litigation.
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strategy is to either accept or reject.

The game tree found in Figure 2.4 summarizes the game with lawyer representation. The

node L means that L affects V’s belief when entering the game. When z = 1, L does not

affect the V’s belief, and thus p = ps. When z = 0, p represents µ′s(m = 1, z = 0) in section

2.4.4.

V

V

L

ωnl

1− p
ωl

p
D

σ∗

0

D

σ∗

0

−cd,−cv − f − f0

reject

−σ∗, σ∗ − f0

accept

−cd,−cv − f0

reject

0,−f0

accept

−d− cd, ξd− cv − f0 − f

reject

0,−f0

accept

−d− cd, ξd− cv − f0 − f

reject

−σ∗, σ∗ − f0

accept

Figure 2.4: Three-agent signaling game

Notice that when z = 1, p = ps. When z = 0,m = 1, p = p̄.

2.4.3.1 Equilibrium Characterization

Given the cost of a lawyer’s representation, a victim would only hire a lawyer when the

expected payoff from litigation or the settlement would justify the lawyer’s fees. In other

words, we would have the following.

1. When z = 0, and when m = 1, V would accept L’s solicitation and file a case. She

believes that D is liable with probability µs(z = 0,m = 1), where ξdµ′s(z = 0,m =

1)−f−f0−cv ≥ 0. For 0 < µ′s(z = 0,m = 1) < 1, we must require ξd−cv−f−f0 > 0.

2. When z = 1, V believes D is liable with probability ps. V would hire L when the cost

is justified, meaning ξdps − f − f0 − cv ≥ 0.
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Next, subsection 2.4.4 discusses L’s solicitation z = 0,m = 1, and subsection 2.4.5 studies

the effect of the addition of L on the equilibrium when z = 1.

2.4.4 Lawyer’s Solicitation (m = 1) When z = 0, ξd − cv − f − f0 >

0

When the victim is unaware of the injury or the legal resources available to her (z = 0),

a lawyer’s solicitation (m = 1) provides such relevant information to her and motivates

her to file a case. The lawyer’s incentive is to encourage as many case filings and and

as much litigation as possible without losing credibility. L uses the signal as described in

proposition 2.4.1. V’s posterior belief after receiving L’s signal is as follows.

µ′s(ωl|m = 1, z = 0) =
cv + f + f0

ξd
= µt,

µ′s(ωl|m = 0, z = 0) = 0.

Since 0 < µt < 1, 0 < cv + f + f0 < ξd. The signaling equilibrium determines L’s specific

information disclosures and V’s litigation decisions.

Proposition 2.4.2. (V’s belief after L’s solicitation) When m = 1, V believes D is liable

with the threshold probability for her to file a case, which is µ′s(ωl|m = 1, z = 0) = µt = p̄ =

cv+f+f0
ξd

; when m = 0, V believes that D is completely non-liable, µ′s(ωl|m = 0, z = 0) = 0.

In this case, V files the maximum number of cases possible given the prior belief p′s.

V files a case when m = 1. Therefore among the cases filed, the probability that D is liable

is

p̄ = µ′s(ωl|m = 1, z = 0) =
cv + f + f0

ξd
. (2.4.2)

V’s decisions in the settlement game is summarized below.
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Proposition 2.4.3. (V’s and D’s strategies in a three-agent signaling equilibrium after L’s

solicitation)

(1) V hires L only when ξd− cv − f − f0 > 0.

(2) In such a case, there is only a separating equilibrium where,

(i) if non-liable, D offers zero settlement and there is no trial;

(ii) if liable, D randomizes between two offers: zero with probability

x =
1− p̄
p̄

cv + f

ξd− cv − f
=
ξd− cv − f − f0

ξd− cv − f
cv + f

cv + f + f0

.

and a positive settlement amount,

σ∗ = ξd− cv − f

with probability 1-x;

(iii) V accepts positive offer σ∗, and rejects zero offers with probability

r =
ξd− cv − f
d+ cd

Appendix B.2 provides a detailed calculation of the results for Propositions 2.4.2 and 2.4.3.
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2.4.4.1 Effect of L’s Solicitation

Because V does not file a claim without L when z = 0, the claims filed due to L’s solicitation

is a net increase of the total claims filed. L increases the total number of cases filed by

P (z = 0) ∗ (p′s + P (m = 1 | ωnl)(1− p′s)) = P (z = 0)p′s
ξd

cv + f + f0

= β0p0
ξd

cv + f + f0

.

(2.4.3)

The trial probability if the case is filed is

(1− p̄+ xp̄)r =
ξd− cv − f − f0

d+ cd

Thus, the number of trials increased is the product of the above two equations:

P (z = 0) ∗ (p′s + P (m = 1 | ωnl)(1− p′s)) ∗ (1− p̄+ xp̄)r

= β0p0
ξd

cv + f + f0

ξd− cv − f − f0

d+ cd

(2.4.4)

The probability of winning at trial here is also higher than the probability of winning in the

two-agent equilibrium without a lawyer discussed in section 2.3:

xp̄

1− p̄+ xp̄
=
cv + f

ξd
>
cv
d
. (2.4.5)

Further, there is no pooling equilibrium in this three-agent signaling game.

2.4.5 Legal Representation When z = 1 and ξdps ≥ cv + f + f0

When z = 1, V would voluntarily file a case against D; thus, solicitation from L is unnec-

essary, and V would receive no signal from L. However, if L represents V, L eliminates the

possible pooling equilibrium and also increases V’s trial winning rate. Incentive compatibility

requires that V hires L only when ξdps ≥ cv + f + f0.
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The following proposition characterizes the equilibrium.

Proposition 2.4.4. (Equilibrium in the three-agent model when z = 1)

(1) V only hires L when ξdps ≥ cv + f + f0.

(2) There is only a separating equilibrium where,

(a) if non-liable, D offers zero settlement;

(b) if liable, D randomizes between two offers: zero with probability

x =
1− ps
ps

cv + f

ξd− cv − f
=

1− p0

p0

β1

1− β0

cv + f

ξd− cv − f
,

and a positive settlement amount,

σ∗ = ξd− cv − f

with probability 1− x.

(c) V accepts positive offers σ∗, and rejects zero offers with probability

r =
ξd− cv − f
d+ cd

.

2.4.5.1 Effect of Being Represented by L

A trial occurs when V rejects D’s zero offers. The probability of a trial is:

P (z = 1) ∗ (1− ps + xps)r = (1− ps)
ξd

d+ cd
P (z = 1). (2.4.6)

52



The probability of winning at trial is

xps
1− ps + xps

=
cv + f

ξd
. (2.4.7)

2.4.6 The Welfare Effects of Lawyer’s Solicitation

Lawyer’s solicitation is more likely to be successful when the stakes of V in the case is high

relative to lawyer’s costs, and when V’s private signal is noisy in a certain way. Specifi-

cally,

Proposition 2.4.5. V is more likely to hire L under the following conditions:

(1) When the cost of hiring L is relatively low, and the damages amount, d, is relatively

high, or

(2) When V’s private signal, z, is conducive to hiring L. Specifically,

(a) when z = 0, if V is more likely to fail to recognize a liable case;

(b) when z = 1, if V’s signal is more precise.

Overall, L’s solicitation when z = 0 helps V to recognize more liable cases, and at the same

time, sends more non-liable cases into litigation. When L represents V in litigation, the cases

at trial here are more likely to be liable compared to those discussed in Section 2.3, and thus,

V’s trial winning rate becomes higher. There is no pooling equilibrium when L represents

V. However, a lawyer’s representation is costly, and it reduces the net compensation award,

from d− cv to ξd− cv − f − f0. Furthermore, many victims in non-liable cases still file cases

and some even go to trial. These victims pay lawyers fees and get no compensation.

Based on the results from the two-agent and three agent models, we propose the following

results.
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Proposition 2.4.6. (L’s welfare effect is ambiguous) L adds value in the following ways:

(1) Under appropriate conditions, L helps V recognize liable cases and help her get compen-

sated in the following ways:

(a) L claims filed in the amount of β0p0
ξd

cv+f+f0
;

(b) if V hires L, the pooling equilibrium where V is not compensated is eliminated.

(2) L increases the overall trial winning rate from cv
d

to cv+f
ξd

;

(3) However, lawyers also increase case filings and trials in non-liable cases, and this reduces

a victim’s net payoff in litigated cases after considering lawyer’s fees.

The numerical example in the next subsection illustrates such ambiguous welfare effects.

2.4.6.1 Numerical Example to Illustrate Proposition 2.4.6

We use a numerical example to illustrate Proposition 2.4.6. The calculation are based on

Propositions 2.3.1, 2.4.2, 2.4.3, and 2.4.4. The detailed calculation for this example is in

Appendix B.3.5.

Consider the situation where a collection of victims (V ) is injured when interacting with

a collection of defendants (D), and each injury leads to a medical bill of $1000. Each V

interacts with one D and wants D to compensate her for the medical expenses. However,

each V is not sure whether the particular D she faces is liable. Litigation is costly – the

court costs for V are $50, and are $100 for D.

Assume there are 1000 such injuries in total. It is common knowledge that D is liable for 100

of the injuries, and not liable for 900 of them. This suggests p0 = 0.1. When D is actually

liable, V knows with probability 0.7 (β0 = 0.3). When D is not liable, V mistakenly believes

D is liable with probability 0.1 (β1 = 0.1).
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Without lawyers, among the 100 liable cases, victims obtain a settlement of $950 in 65 of

them, and they win around 5 of them in court trials to obtain $950. There are 160 total

cases filed, and around 82 of them go trials, and V’s trial winning rate is around 6%.

Assume that lawyers (L) approach V. L gets $20 when V sues D, an additional $100 if the

case goes to trial, as well as 30% of V’s damages award if V wins at trial ($1000∗30% = $300).

When represented with lawyers, the victims obtain a settlement of $550 in around 45+5 = 50

of the 100 liable cases, and win around 12 + 13 = 25 cases in court trials to obtain $550. In

aggregate, around 75 victims receive compensation in the amount of 530 after factoring in

the lawyers initial fee of f0. In total, there are 160 + 124 = 284 cases filed, 57 + 60 = 117

court trials, and the winning rate at trial is 21%. V loses in 117− 25 = 92 cases, where they

must pay $70 to L. In 58 + 59 = 117 cases, V pays consultation fees of $20 to L.

This example show that lawyers help most victims in liable cases get compensation, and they

increase litigation. However, lawyers are costly, which reduces the net award to the victims

who obtain compensation. Lawyers increase total number of cases filed as will as the total

number of ligation. Therefore, many more victims in non-liable cases also hire lawyers and

litigate, resulting in a net payment to lawyers.

2.5 L’s Effect on D’s Endogenous Safety Costs and

Prior Liability

This section analyzes the lawyer’s effect of regulating the defendant’s precaution level. In

this setting, the defendant’s prior probability of being liable, p0, is an endogenous function

of his safety costs, y, which are the costs associated with taking precautions to avoid injury

to others. For simplicity, the following functional form is used:

p0 =
1

y + 1
(2.5.1)
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Thus, p0 is a convex, decreasing function of y. When y = 0, p0 = 1; and when y → ∞,

p → 0. This function shows that if the total safety costs are 0, the defendant is definitely

liable; increasing the safety costs decrease the defendant’s prior probability of being liable,

but the marginal effect of such a reduction decreases:

p′0 = − 1

(1 + y)2
< 0, p′′0 =

2

(1 + y)3
.

The safety costs must approach infinity to reduce the prior probability in order to be close

to 0. A defendant chooses the optimal level of safety costs y by balancing safety investments

and the expected expenditure he would incur in litigation.

When both the victim and the defendant are completely informed, a liable defendant’s payoff

from a court trial is −d− cd, so he would prefer to pay a settlement of d− cv to V. Because

V would not obtain more from a trial, she would accept such a settlement. V would not file

a claim against a non-liable D, as her payoff from a court trial would be −cv, and D would

only offer a settlement of 0 to V. Thus, there is no trial, and D offers a settlement of d− cv if

and only if he is liable. D solves the following problem to minimize his expected cost:

min
y

p(d− cv) + y

s.t.p =
1

y + 1
, y > 0, 1 > p > 0

(2.5.2)

Let p∗0 and y∗ be D’s equilibrium safety cost and prior probability of being liable, respectively.

From the first order condition, we get

y∗ =
√
d− cv − 1, p∗0 =

1√
d− cv

.

The following subsections discuss the defendant’s problem in the signaling games when a

victim only have incomplete information regarding whether a defendant is liable.
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2.5.1 Two-Agent Signaling Game

We consider the setting of the baseline two-agent signaling game discussed in section 2.3.

The defendant is perfectly informed, but the victim only obtains a noisy signal. There are

two cases: the pooling equilibrium with no litigation, and separating equilibrium with some

litigation. Denote the equilibrium safety cost y
′∗∗ in the first case, and y∗∗ in the second

case. Let p∗∗0 the D’s equilibrium prior probability of being liable.

2.5.1.1 Case 1: Pooling Equilibrium with No Litigation

In order to avoid litigation entirely, by proposition 2.3.1, the following condition must be

satisfied:

ps <
cv
d
.

We substitute in ps from equation (2.3.2), and obtain the following restriction on y:

p0(1− β0)

(1− β0)p0 + β1(1− p0)
<
cv
d

=⇒ p0 < p
′∗∗
0 , p

′∗∗
0 =

β1cv
(1− β0)(d− cv) + β1cv

=⇒ y > y
′∗∗, y

′∗∗ =
1− β0

β1

d− cv
cv

.

Such safety costs can be quite high if d� cv or when β1 → 0 – that is, when V can almost

perfectly recognize liable cases. In fact, y
′∗∗ →∞ and p0 → 0 if β1 → 0.

2.5.1.2 Case 2: Separating Equilibrium with Randomization in Litigation

Considering the safety costs, we can see from case 1 that litigation is practically inevitable

when V can recognize nearly all liable cases, as this this requires very high safety costs,

limβ1→0 y
′∗∗ = ∞. Suppose there is litigation. The defendant’s minimization problem is as

follows:
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min
y

p0(1− β0) [xr(d+ cd) + (1− x)(d− cv)] + (1− p0)β1rcd + y

s.t.p0 =
1

y + 1

0 < p0 < 1, y > 0.

(2.5.3)

We substitute in r, x from Section 2.3, proposition 2.3.1. Thus, the defendant solves the

following for 0 < p0 < 1:

min
p0

p0(1− β0)

[
β1

1− β0

1− p0

p0

cv + d− cv −
β1

1− β1

1− p0

p0

cv

]
+ (1− p0)β1

d− cv
d+ cd

cd +
1

p0

− 1

= min
p0

p0(1− β0)(d− cv) + (1− p0)β1
d− cv
d+ cd

cd +
1

p0

− 1

= min
p0

p0(d− cv)
[
1− β0 −

cd
d+ cd

β1

]
+

1

p0

− 1 +
d− cv
d+ cd

β1cd.

By first order condition, we get

p∗∗0 =
1√

(d− cv)(1− β0 − cd
d+cd

β1)
>

1√
d− cv

= p∗0

y∗∗ =

√
(d− cv)(1− β0 −

cd
d+ cd

β1)− 1 <
√
d− cv − 1 = y∗.

There is no litigation when both V and D are completely informed. However, avoiding

litigation entirely might not be possible when V is not perfectly informed. When there is

litigation, y∗∗ < y∗, and p∗∗0 > p∗. Thus, when the victim is imperfectly informed, the

defendant’s optimal safety costs will be lower, and the optimal probability of prior liability

will be higher.

2.5.2 Three-Agent Signaling Game

We denote the defendant’s equilibrium safety costs and prior probability of being liable as

y∗∗∗ and p∗∗∗0 , respectively. For litigation with lawyerly representation to occur, the following
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must hold.

ξd− cv − f − f0 > 0.

If the above is satisfied, then there is always litigation. We then apply the results found in

section 2.4 for the three-agent game for the separating equilibrium with randomization. The

defendant’s problem is as follows:

min
p0

p0 [1− β0 + β0] [xr(d+ cd) + (1− x)(ξd− cv − f)] +

+ (1− p0)

[
β1 + (1− β1)

β0

1− β1

p0

1− p0

ξd− cv − f − f0

cv + f + f0

]
xrcd +

1

p0

− 1.

Substitute in x, r,

min
p0

p0(ξd− cv − f) + (1− p0)

[
β1 + β0

p0

1− p0

ξd− cv − f − f0

cv + f + f0

]
ξd− cf − f
d+ cd

cd +
1

p0

− 1.

By solving the first order condition and restricting 0 < p0 < 1, we get the following.

p∗∗∗0 =
1√

ξd− cv − f
1√

1 +
(
β0

ξd−cv−f−f0
cv+f+f0

− β1

)
cd
d+cd

>
1√

ξd− cv − f
,

y∗∗∗ =
√
ξd− cv − f

√
1 +

(
β0
ξd− cv − f − f0

cv + f + f0

− β1

)
cd

d+ cd
− 1 >

√
ξd− cv − f − 1.

L’s effects on D’s safety costs and the prior probability of being liable is ambiguous. If

V is unlikely to mistake a liable defendant for a non-liable one, the presence of a lawyer

actually increases the prior probability of D being liable, as L’s fees make a court trial less

likely. When a victim is more likely to mistake a liable case for a non-liable one, and when

the lawyers’ flat case filing fee is sufficiently low, the presence of the lawyer increases the

defendant’s precaution cost, and thus, decreases the defendant’s prior probability of being

liable.
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Proposition 2.5.1. L’s effects on D’s safety costs, and thus, the prior probability of being

liable, depend on specific parameters.

Proof. Compare the two-agent signaling game and the three-agent signaling game.

(
p∗∗0
p∗∗∗0

)2

=
ξd− cv − f
d− cv

1− β1
cd
d+cd

+ β0
ξd−cv−f−f0
cv+f+f0

cd
d+cd

1− β1
cd
d+cd
− β0

In reality, it is quite possible that d� cd and d� cv, thus

(
p∗∗0
p∗∗∗0

)2

→ ξd− f
d

1

1− β0

Therefore,

p∗∗0 > p∗∗∗0 ⇐⇒ f < (β0 − (1− ξ))d

In reality, 0.33 < 1− ξ < 0.4. 18 Suppose 1− ξ = 0.4. If 0 < β0 < 0.4, then the right-hand

side is less than 0, and thus p∗∗∗0 > p∗∗0 . That is, when the victim do not make much type

II mistake, and recognize most liable cases, the presence of the lawyer actually increases the

defendant’s prior probability of being liable. In such situation, D’s safety costs are decreased.

However, if 0.4 < β0 < 1, then p∗∗∗0 < p∗∗0 if and only if f < (β0 − (1 − ξ))d. In reality,

when a lawyer charges a contingency fee, there is usually no flat case filing fee, that is f = 0.

In such situations, when the victim makes a type II error and mistakes a liable case for a

non-liable case sufficiently often (i.e.1 ≥ β0 > 1− ξ), the presence of a lawyer increases the

precaution cost of the defendant.

Thus, the presence of a lawyer may increase D’s safety costs and decrease D’s prior probability

18Lawyer’s contingency fees are usually between 33% and 40%. For example, see “Lawyers’ Fees in Your
Personal Injury Case”, https://www.alllaw.com/articles/nolo/personal-injury/lawyers-fees.html,
last access March 1, 2020.
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of being liable, but may also do the opposite. The intuitions is that a lawyer has two

effects: (1) helps a victim recognize liable cases; (2) increases a victim’s litigation costs. The

first effect encourages litigation and thus increases D’s safety costs and reduces D’s prior

probability of being liable; and the second effect does the opposite. The lawyer’s overall

effect depends on the strength of the two opposing effects, which in turn depends on the

specific parameters.

2.6 Three Extensions

Next, we consider three extensions to the three-agent model: (1) a lawyer’s solicitation when

he is imperfectly informed, (2) a lawyer solicitation when he is altruistic, and (3) persuasion

during litigation where the defendant is able to persuade the judge.

2.6.1 Extension 1: Solicitation by an Imperfectly Informed L

This extension weakens the assumption that L is completely informed. The assumptions

regarding L’s information and signaling strategy are as follows.

(1) L is imperfectly informed before being hired:

(a) L’s prior belief that a case is liable is p0. L gets a noisy signal, s:

P (s = 1|ωl) = 1− θ0

P (s = 0|ωl) = θ0 (a false-negative, or a type II error)

P (s = 1|ωnl) = θ1 (a false-positive, or a type I error)

P (s = 0|ωnl) = 1− θ1;

(b) L observes V’s signal z;

(c) L’s signal is better than V’s signal: θ0 < β0, θ1 < β1;
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(2) L conditions his optimal signaling strategy m = {0, 1} on s:

P (ω,m | s) = P (ω | s)P (m | s)

Therefore, the state ω and L’s signal m are mutually independent, conditional on L’s

signal s. Intuitively, L can distinguish the states ωl and ωnl only as well as his signal,

s. If L’s signal is s = 1, he tells V that D is liable; and if L’s signal is s = 0, with some

probability, he tells V that L is liable.

(3) L becomes fully informed if hired. Thus, the equilibrium when z = 1 is not affected, as

V voluntarily hires L in such a situation.

The next sub-subsection presents the equilibrium of this setup. The detailed calculations

are provided in Appendix B.4.

2.6.1.1 Equilibrium Characterization

(1) L’s signaling strategy is as follows:

P (m = 1|s = 1) = 1,

P (m = 0|s = 1) = 0,

P (m = 1|s = 0) =
ξd(1− θ0)p′s − (cv + f + f0)[(1− θ0)p0 + θ1(1− p0)]

(cv + f + f0)[θ0p0 + (1− p0)(1− θ1)]− ξdθ0p′s
,

P (m = 0|s = 0) =
cv + f + f0 − ξdp′s

(cv + f + f0)[θ0p0 + (1− p0)(1− θ1)]− ξdθ0p′s
.

(2) V’s and D’s signaling equilibrium is as follows:

The signaling equilibrium in terms of V’s and D’s strategies and V’s beliefs are exactly

the same as those in section 2.4. In fact, L chooses the signal that results in the same

signaling equilibrium as that in the perfect information situation.
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2.6.1.2 The Imperfectly Informed L’s Effects

The winning rate from a trial is still cv+f
ξd

. Given the signaling equilibrium characterized in

subsection 2.4.3, the amount of claims filed increases by:

P (m = 1) ∗ P (z = 0) =
ξdp′s(1− p0)(1− θ0 − θ1)

[θ0p0 + (1− p0)(1− θ1)](cv + f + f0)− ξdθ0p′s
∗ P (z = 0),

=
ξdβ0p0(1− p0)(1− θ0 − θ1)

[θ0p0 + (1− p0)(1− θ1)](cv + f + f0)− ξdθ0p′s
.

(2.6.1)

When θ1 = θ0 = 0, the number of cases filed is ξdp′s
cv+f+f0

. This is the situation when L is

fully informed. When θ0, θ1 ∈ (0, 0.5), P (m = 1) < ξdp′s
cv+f+f0

.19 Thus, the number of cases

filed after a lawyer’s solicitation when L is imperfectly informed is fewer than that when L

is perfectly informed.

The probability of a court trial increases by:

P (z = 0)P (m = 1)(1− p̄v + xp̄v)r

= P (z = 0)P (m = 1)
ξd− cv − f − f0

d+ cd
.

(2.6.2)

Proposition 2.6.1. An imperfectly informed L can also increase litigation. The effective-

ness of L’s solicitation increases as L becomes more informed. When L becomes increasingly

more informed, the equilibrium converges to the three-agent case where L is completely in-

formed as in section 2.4.

Proof. Compare the probability of number of case filings increase by L here (in equation

(2.6.2)) to that in Section 2.4 (in equation (2.4.5))), we find that there is an additional term

19θi = 0.5, i = 0, 1 is the completely uninformed case.
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0 ≤ P (m = 1) ≤ 1 here, where

P (m = 1) =
ξdp′s(1− p0)(1− θ0 − θ1)

[θ0p0 + (1− p0)(1− θ1)](cv + f + f0)− ξdθ0p′s
> 0.

The detailed calculations are shown in Appendix B.4. Therefore, we see that L can always

increase the amount of litigation, although to a lesser extent compared to the situation

where L is perfectly informed. If L is almost perfectly informed, then θ0 = θ1 = 0, and

P (m = 1) = ξdp′s
cv+f+f0

, and the number of cases increased is the same as the perfectly informed

L setting in equation (2.4.4).

2.6.2 Extension 2: Solicitation by Altruistic Lawyers

In reality, L’s personal and professional ethics may require him to be concerned about V’s

payoff. Moreover, L may value his reputation, which depends on how much he can help V.

Therefore, L derives utility from both his profit and V’s payoff:

UL = (1− δ)πL + δπV , δ ∈ [0, 1].

Such internalization of the other party’s utility is labeled “altruism”. Altruism need not be

driven by pure emotion. The parameter δ captures the degree of L’s altruism.

Proposition 2.6.2. There is a threshold degree of altruism that determines L’s action.

If L is more altruistic than the threshold level, he will always report the truth to V, thus

eliminating a court trial. Otherwise L acts as if he is entirely profit-driven.

Proof. This Proposition easily follows the equilibrium of a three-agent game with an altruistic

lawyer, presented in the below. Detailed calculations are found in Appendix B.5. We can
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find a threshold degree of altruism,

δ∗ =
1

1 + κ
,

κ =
cv + f + f0

f0 + 1
1+

cd
d

(f + (1− ξ)cv)
,

such that

(i) when δ ≥ δ∗, L truthfully report the state to V. The signal from L to V, then, is the

following:

P (m = 1|ωl) = 1, P (m = 0|ωl) = 0,

P (m = 1|ωnl) = 0, P (m = 0|ωnl) = 1.

Thus, this game is equivalent to the two-agent perfect information game, where V

files a suit against D whenever D is liable, and D provides positive settlement σ∗ =

ξd− cv − f − f0 to V whenever V sues him. There are no court trials;

(ii) when δ < δ∗, the equilibrium is the same as that found in section 2.4.

2.6.3 Extension 3: Bayesian Persuasion in a Court Trial

In this subsection, a trial does not necessarily reveal the truth. Instead, a judge (J) makes

a binary decision, liable or non-liable, based on his belief and a certain threshold standard.

In the two-agent signaling game, where informed defendants can manipulate the judges’

decisions in trials by using the optimal signal characterized in proposition 2.4.1 to persuade

J, victims will lose many trials in cases where defendants are liable in equilibrium. However,

with the addition of a lawyer, the persuasion from L and D causes a trial to reveal the

truth.
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2.6.3.1 Two-Agent Model when Litigation Does Not Reveal the True State

In an actual trial, a judge considers information and the arguments supplied by both sides

and determines the case outcome. This subsection assumes that in a trial, J shares V’s prior,

µ0(ωl) = ps, and that D sends a signal to affect J’s belief. J makes a decision based on his

posterior belief and a decision standard. For example, if J adopts a “more likely than not”

criterion, J rules D liable if and only if he believes that D is liable with a probability higher

than 50%. However, if J is more pro-defendant, then the threshold probability becomes

higher.

2.6.3.2 J’s Decision Rule and D’s Optimal Signal in A Trial

In a trial, J derives zero utility when he makes a correct decision, and derives a negative

utility when he makes a wrong decision. Normalizing the utility from wrongfully ruling

against a non-liable D to be 1, J’s utility from ruling is:

u(V wins|ωl) = 0, u(V wins|ωnl) = −1,

u(D wins|ωl) = −γ, u(D wins|ωnl) = 0.

(2.6.3)

The persuasion setting here between D and J is analogous to that between L and V

described in proposition 2.4.1. We assume J takes a sender-optimal action when J is indif-

ferent. J’s action v̂(ps) is binary: J will rule against V if ps = µ0(ωl) ≤ 1
γ+1

, and will rule

against D if ps > µ0(ωl) <
1

γ+1
. Thus, D only benefits from persuasion when ps >

1
γ+1

.

Two new variables are introduced into the two-agent baseline model to capture the effect

of J’s decision rule on the signaling equilibrium:

1. α – V’s trial winning probability for a liable case;

2. β – V’s trial winning probability for a non-liable case (as we will see later, β = 0).
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Let µ0(ωl) be the probability of D being liable in a trial. In the two-agent model, µ0(ωl) = ps

as in section 2.3.

The following proposition summarizes the equilibrium in the entire signaling game.

Proposition 2.6.3.

1. When µ0(ωl) >
1

γ+1
,

β = 0, α =
1 + γ

d/cv + γ
;

2. When µ0(ωl) <
1

γ+1
, D always wins, and α = β = 0.

Proposition 2.6.4. The equilibrium in the two-agent model when the defendant persuades

the judge during a trial has the following properties:

(1) There is a pooling equilibrium where there is no litigation and V is not compensated

when ps <
1+γcv/d

1+γ
.

(2) Litigation occurs if and only if ps ≥ 1+γcv/d
1+γ

. When this condition is satisfied, a non-liable

D offers σ = 0. A liable D offers σ = 0 with probability x, and σ = αd−cv = 1+γ
d/cv+γ

d−cv

with probability 1 − x. A settlement is successes when σ = d − cv; and a trial occurs

when σ = 0 with probability r, where

x =
1− ps
ps

cv/d− β
α− cv/d

=
1− ps
ps

1/γ + cv/d

1− cv/d
,

r =
1− cv/αd
1 + cv/αd

=
γ(1− cv/d)

1 + γ + cd/cv + γcd/d
.

(3) J’s degree of sympathy towards V affects the signaling equilibrium: a higher γ (when J

is more sympathetic to V) works in V’s favor;
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(4) V’s winning rate at trial is cv/d.

Such results are obtained in the signaling equilibrium, as in Appendix B.6.

Comparing the two-agent signaling equilibrium in section 2.3 and this extension, we see

that ceteris paribus, if cv < d, the pooling equilibrium where V is never compensated is more

likely when D can persuade J during a trial.

We applying the result of this extension to the numerical example in subsection 2.3.6.1.

Suppose that J adopts a “more likely than not” standard, i.e., V wins if D is 50% liable.

Because 1+γcv/d
1+γ

= 0.68 > ps = 0.163, there is a pooling equilibrium with no litigation and

no compensation for V.

In the separating equilibrium, the positive settlement amount offered by D is not depen-

dent on V’s belief, ps, but is dependent on J’s degree of sympathy towards V and V’s trial

winning rate. In general, V is better off when J is more sympathetic towards her, i.e., when

γ is large. Specifically, as γ increases:

(1) A separating equilibrium is more likely because the threshold 1+γcv/d
1+γ

decreases.

(2) The trail rate (1− ps + psx)r increases.

(3) The threshold µ∗s(ωl) = 1
1+γ

for V to win decreases, and V’s trial winning rate in liable

cases α increases.

(4) D is more likely to offer σ∗ because x decreases, and the settlement amount σ∗ increases.

V is thus more likely to accept the settlement;

However, no matter whether a trial reveals the true state, V’s trial winning rate is the

same, and is equal to the ratio of V’s court costs and the damages amount; this because the

effect of the litigation process on D’s and V’s randomization strategies x and r each other

cancel out.
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2.6.3.3 Three-Agent Model Bayesian Persuasion in Litigation Reveals the True

State

When L is in the game, there are two senders, L and D, who affect J’s decision during a

trial. Suppose that during a trial, L and D both use optimal signals, as in proposition 2.4.1,

to persuade J. In such a setting, a trial reveals the truth for any decision rule p∗ and any

prior belief of J. Therefore, at trial, α = 1 and β = 0.

Proposition 2.6.5. If perfectly informed L and D both use the signaling structure in

proposition 2.4.1 to persuade J in during trial, the trial will reveal the true state.

The proof of Proposition 2.6.5is in Appendix B.7. Gentzkow and Kamenica (2017) also

suggests a similar result in their Bayesian persuasion framework. They then go on to provide

a framework of Bayesian persuasion by multiple senders where the senders also strategically

interact with one another. Such a framework provides richer information equilibria. In this

extension here, the strategic interaction between L and D is not considered.

2.7 Conclusion

This chapter examined the effect of “ambulance chasing” by lawyers. In the main model,

a profit-driven lawyer controls an imperfectly informed victim’s information to affect the

victim’s litigation decision in a signaling game with a perfectly informed defendant. The

comparison of the signaling games with and without lawyers shows that although victims’

lawyers may increase the number of victims who obtain compensation, they also induce more

litigation in the state where the defendants are not liable. In addition, lawyer’s fees reduce

the net awards to victims who receive compensation, and constitute a net cost to victims who

file cases against non-liable defendants. Furthermore, although lawyers may identify more

liable cases, their fees discourage litigation. For a range of realistic parameters, a lawyer

may help encourage more safety costs from a potential injurer when the victim on her own
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is likely to mistake a liable case for a non-liable case.

The models presented in this chapter can be applied to broader contexts. In my model,

the lawyer affects the signaling equilibrium between the victim and the defendant by con-

trolling the victim’s information environment. Although the setup of the game is a tort case

where an imperfectly informed victim interacts with a perfectly informed defendant in a sig-

naling game, such a setting can easily be adapted to other civil cases, for example, contract

or divorce cases, or even more generally, to situations in which an adviser solicits business

from an imperfectly informed client who interacts with a perfectly informed opponent. For

example, one could use the three-agent framework discussed here to analyze the effect of a

financial adviser on a client who is about to begin an investment negotiation. The current

model assumes the defendant has complete information and is purely strategic. However,

one could consider the extension where a defendant is has some behavior traits, for example,

when a defendant has some degree of trust-worthiness.
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Chapter 3

Planner-Doer Game with Hidden

Costs

Delegation is common in decision-making settings. Delegation usually comes with some

costs when the planner needs to motivate doers to make appropriate choices. In general,

delegation costs can be hidden, but they can be derived from observable choice primitives.

This chapter provides such identifications using the planner’s ex-ante preferences over finite

menus. We then characterize a special case when delegation is either costless or impossible,

that is, the delegation cost is either 0 or ∞. We also provide an algorithm to check whether

ex-post choices conform to the delegation model with binary costs. Finally, we compare our

model with related models in the literature. 1

1This chapter is based on two joint working papers with my advisor, Igor Kopylov. The two papers are
Revealed Delegation (Kopylov & Yang, 2020) and Delegation with Hidden Costs (Kopylov & Yang, 2022).
All main results in this chapter are adapted from results in these two papers.
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3.1 Introduction

Many models in the decision theory literature study endogenous constraints that cause pref-

erences over menus and choices in menus to deviate from the predictions of the standard

utility maximization assumption. These constraints can be self-control costs Gul and Pe-

sendorfer (2001), inattention Masatlioglu, Nakajima, and Ozbay (2012), limited willpower

Masatlioglu, Nakajima, and Ozdenoren (2020), hidden actions Chandrasekher (2017), and

so on. In this chapter, we study another source of constraint, delegation, which is common

in empirical settings.

Sunstein and Ulmann-Margalit (1999) distinguish between two general environments

where decisions need to be delegated. In the intrapersonal case, a doer must delegate her up-

coming choices to her future self who may succumb to spontaneous temptations and exhibit

less patience towards delayed rewards. Such conflicts can explain dynamic inconsistences

and various commitment strategies (e.g. Strotz (1956), Thaler and Shefrin (1981), Gul and

Pesendorfer (2005)). Commitments can impose physical constraints on the feasible set, but

also impose emotional or monetary penalties. For example, people may keep only healthy

foods and drinks at home, use self-exclusion from casino gambling, make promises and vows,

set deadlines, and so on. (see the review of Bryan, Karlan, and Nelson (2010)).

In the interpersonal case, planners delegate decisions to doers who do not share the same

physical identity with the planner.2 There is a vast literature (e.g., Laffont and Martimort

(2002)) on the planner-doer problem with monetary incentives. In particular, such delegation

is commonly studied in the theory of firms (Alonso & Matouschek, 2007; Halac & Yared,

2020; Holmstrom, 1980). Delegation with a non-monetary incentive is also a classic topic in

the contract design literature (e.g. Alonso and Matouschek (2008)).

We illustrate preference over menus in delegation with hidden actions with the following

2Thaler and Shefrin Thaler and Shefrin (1981) propose the terms planners and doers in their early model
of commitments and self-control. We use this terminology in interpersonal settings as well.
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story.

Example 3.1. A pharmaceutical company can use costly promotional efforts to influence

doctors’ prescription selections. Consider the following three drugs, a, b, and c. Drug a is

new and so unknown, whereas b and c are well-known. Doctor 1 prefers b over c, whereas

doctor 2 prefers c over b. Overall, doctor 1’s ranking of the drugs is b � c � a, whereas

doctor 2’s ranking is c � b � a.

Doctor 1’s preference can be changed into c � a � b, and doctor 2’s preference can be

changed into b � a � c, with a $1000 advertisement on a. However, to further modify the

doctors’ preferences to a � b � c and a � c � b, respectively, more promotion efforts are

required, which would cost $1000 more. So the total advertising cost to make a the first

choice among a, b and c for the doctors is $2000.

Suppose that the profit of the pharmaceutical company for a, b and c are $3000, $1200,

and $1500, respectively. Suppose the pharmaceutical company has the opportunity to bundle

drug a with either b, c or both. If the bundle contains drug b or c but not both, the pharma-

ceutical company will want to promote drug a for $1000 to maximize profit. On the other

hand, promoting a when the bundle includes both drugs b and c outweighs the benefit. This

limitation motivates the company’s rankings over the bundles:

{a, c} � {a, b} � {a, b, c}. (3.1.1)

Verification cost is a type of delegation cost incurred ex-post. Incomplete contract theory

considers binary verification costs: a performance is either verifiable for free or is unverifi-

able. A verifiable term is legally valid; while an unverifiable term is legally void (see, e.g.,

Bernheim and Whinston (1998)). For example, a non-compete covenant - the promise by an

employee not to compete with the employer’s business after leaving - is unverifiable in court
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in California. However, it is verifiable in all other states. Fallick, Fleischman, and Rebitzer

(2006) empirically finds that the unenforceability of non-compete covenants enhances the mo-

bility of talents between competing firms. Such mobility leads to agglomeration economies

operated in Silicon Valley. We illustrate the ex-post choice with the costly verification in the

following example.

Example 3.2. Let us imagine a manager in a technology company who wishes to assign

a new hire to an appropriate position. Given Silicon Valley’s job-hopping mentality, the

new hire could depart at any time, and the manager takes verification costs for the non-

compete agreement into account when assigning positions.3 Assume that the company can

only accommodate two generic positions, a and b, which correspond to product lines 1 and 2,

respectively. Moreover, the new hire’s competence is better suited to position a. As a result,

the manager assigns the new hire to position a.

Assume there are more specialized positions c and d in the industry for product lines 1

and 2, respectively. The entire product line associated with a specialized position will have

access to more resources and clients, making it more expensive to have a departing employee

in this product line giving up the opportunity to benefit from this insider knowledge. In other

words, a specialized position increases the verification cost for the entire product line.

The new hire is not suitable for either c or d. As a result, if the company is able to

accommodate positions a, b and c, the verification cost for a increases. The manager would

assign the new employee to position b, which involves lower verification cost. If the company

can accommodate a, b, c and d, the verification costs for both a, b increases, and the manager

3Severance payouts, which are regarded as a strategic complement to the non-compete provision, are often
intentionally structured to be unenforceable and are paid in installments Sanga (2018). Such discretion is
used to incentivize the non-compete agreement’s performance. We can regard such severance payout as the
ex-post verification cost for performing the non-compete clause.
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assigns the new hire to a. Such choices give raise to choice function

c(ab) = a, c(abc) = b, c(abd) = a, c(abcd) = a. (3.1.2)

To accommodate choice patterns (3.1.1) and (3.1.2), we have a new functional form

U(A) = max
x∈A

[u(x)− h(x,A)] (3.1.3)

for any menu A ∈ M, where u : X → R. h(x,A) : X ×M → R is a menu contingent

cost function that satisfies some special properties. In Theorem 3.1 we use four axioms

to characterize the representation (3.1.3). Theorem 3.2 is a special case where h(x,A) =

0 or ∞ for all x ∈ A,A ⊆ Z. This model is closely related to the planner-doer game

in Chandrasekher (2017), and the path-independent filter model in Lleras, Masatlioglu,

Nakajima, and Ozbay (2021). Theorem 3.3 discuses identification of delegation model with

binary costs, 0 or ∞, in ex post choice data. Finally, we compare the delegation model with

several related models.

3.1.1 Literature Review

Gul and Pesendorfer (2001) study temptation preferences with self-control costs in a lottery

setting. Their model captures commitment and self-control and identifies the utility cost

of self-control. Under such a preference, adding a tempting choice alternative to a menu

requires costly self-control and thus reduces the utility of the menu. This insight is captured

by the set betweenness (PSB) axiom:

A � B =⇒ A � A ∪B � B.

Gul and Pesendorfer (2001) also allow for overwhelming temptation. When the tempta-
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tion is too strong to resist, the decision-maker lexicographically maximizes temptation and

commitment preference. Hence, the choice is made from only the most tempting alternatives.

The willpower-constrained decision-making in Masatlioglu et al. (2020) is closely related to

Gul and Pesendorfer (2001). In the willpower model, the choice is limited to the choice

alternatives whose temptation utility is within a threshold from the most tempting choice

alternative. This model captures the compromise effect:

C(A) � C(A ∪B) � B,

where C :M→M denotes the choices from a menu. Hence, the choice from the union of

two menus is between the choices made from the two menus separately.

PSB captures one-dimensional temptation: there is one most tempting element that

affects the decision maker’s behavior. Dekel, Lipman, and Rustichini (2009) generalizes

Gul and Pesendorfer (2001) and accommodate multi-dimensional temptations. Dekel et al.

(2009) captures the case when (1) different temptations occur stochastically, (2) resisting

more temptations is harder, or (3) uncertainty of whether a temptation would strike. This

model is closely related to models that study the aggregation of state-dependent utility

functions to capture preference for flexibility (Dekel, Lipman, & Rustichini, 2001; Kreps,

1979). The starting point is the finite additive expected utility (EU) representation:

V (x) =
I∑
i=1

max
β∈x

ωi(β)−
J∑
j=1

max
β∈x

vj(β). (3.1.4)

The temptation representation is characterized when (3.1.4) additionally satisfies two more

axioms, Desire for Commitment (DFC) and Approximate Improvements are Chosen (AIC).

When an additive EU representation satisfies PSB, there is one positive state and mul-

tiple negative states. In this case, there exists a no-uncertainty representation, where I = 1

in (3.1.4). Dekel et al. (2009) shows that, given a finite additive EU representation, PSB
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fully characterizes the no-uncertainty representation. It is easy to see that a representation

that obeys PSB also obeys DFC and AIC. The no-uncertainty representation is closely re-

lated to our costly delegation model in Theorem 3.1 and can accommodate the preference

over menus in Example 3.1.1. However, our delegation model in Theorem 3.1 studies finite

settings instead of lottery settings. Furthermore, we impose structures on the delegation

costs.

Turn to the literature on ex-post choices. Under the standard assumption of utility

maximization, ex post choices in menus obey the weak axiom of revealed preferences (WARP)

(Samuelson, 1938):

x ∈ C(S), y ∈ S, thenx /∈ C(T ) =⇒ y /∈ C(T ).

WARP implies the pair-wise acyclicity of revealed preferences.

There is a large literature studying choices that violates WARP but satisfies its weakened

version, weak WARP (WWARP):

{x, y} ⊆ T ⊆ S. If x = C(x, y) = c(S), then y 6= C(T ).

WWARP is first proposed in the rational shortlist method (RSM) in Manzini and Mariotti

(2007) to explain cyclical choices observed in experimental settings (Loomes, Starmer, and

Sugden (1991); Roelofsma and Read (2000)). In RSM, two rationales P1 and P2 are applied

sequentially to make a choice. The acyclic rationale P1 determines a shortlist from which

the asymmetric rationale P2 chooses from.

Au and Kawai (2011) refine the RSM in Manzini and Mariotti (2007) and study the case

when P1 is transitive and P2 is complete and transitive. Behaviorally, transitive-RSM is a
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special case of RSM which satisfies the No-Binary Chain Cycle Axiom (NBCC):

there exists no binary chain {x1, ..., xn} such that x1 = xn.

Furthermore, RSM models have expansion property (Au & Kawai, 2011; Manzini & Mari-

otti, 2007). Manzini and Mariotti (2012) studies a variation of the RSM by restricting the

rationales P1 to be semi-orders. Other models that satisfies WWARP includes the rational-

ization model by Cherepanov, Feddersen, and Sandroni (2013) where the first state choice

is determined by the psychological constraint function

ΓCFS(S) = {y ∈ S|∃Ri such that yRix for all x ∈ S},

where Γ :M→M, Γ(A) ⊆ A.

The violation of WARP can also be explained by the limited consideration models of

Lleras, Masatlioglu, Nakajima, and Ozbay (2017) and Masatlioglu et al. (2012). Lleras

et al. (2017) studies the overwhelming choice model that represents choices according to a

linear order on a competition filter. This model accommodates the choice overload effect

and captures choice heuristics such as categorization, rationalization, narrowing down, and

so on. The competition filter Γ obeys the following property

x ∈ S ⊂ T, x ∈ Γ(T ) =⇒ x ∈ Γ(S).

Choice from a competition filter can be characterized by WARP-CO, which weakens WARP

but implies WWARP.

Masatlioglu et al. (2012) studies the choices from the attention filter where not all feasible

alternatives are considered. Attention to a choice alternative is revealed when there is choice

reversal when the item is removed, and the attention filter is characterized by the following
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property:

Γ(S) = Γ(S \ x) for x /∈ Γ(S).

This model captures heuristics such as top N, top on each criterion, and most popular

category. The identification in the attention filter model is not unique. Attention model can

violate WWARP and accommodate the attraction effect (C(xy) = x,C(axy) = y, C(abxy) =

x), cyclical choice (C{x, y, z} = x,C{x, y} = x,C{y, z} = y, C{x, z} = z), and choose

pairwise unchosen C{x, y, z} = z, C{x, y} = x,C{y, z} = y, C{x, z} = x). The revealed

preference identified in the transitive-RSM model in Au and Kawai (2011) closely related to

that in the attention filter model. When P1 is transitive, the first stage choice satisfies the

property of attention filter.

A limited consideration model that satisfies conditions of both the consideration filter

and the attention filter is path-independent (PI) (Lleras et al., 2021). Indeed, the property

of attention filter implies sen’s property α(see Moulin, 1985b):

A ⊆ B =⇒ Γ(B) ∩ A ⊆ Γ(A);

and the property of attention filter implies Aizerman and Malishevski (AM) (see Moulin,

1985b):

Γ(B) ⊆ A ⊆ B =⇒ Γ(A) ⊆ Γ(B).

Sens’ property α and AM characterize a PI filter (Aizerman & Malishevski, 1981a; Moulin,

1985b). Lleras et al. (2021) can identify both the PI filter and the underlying preference

uniquely.

Kopylov and Yang (2020) also characterize choice from a path-independent filter and

further refine the model to analyze persuasion. In the proof of Theorem 3.1, we show that

the maximization of a path-independent filter is a special case of the costly delegation model

when the cost is either 0 or ∞. This chapter discusses this issue. This proof is based on
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results in Kopylov and Yang (2022).

Chandrasekher (2017) studies a planner-doer model to model preferences over formal

commitments and informal constraints. The model is a two-stage problem. In the first

stage, the planner makes a formal commitment by committing to a menu of second-stage

choices. Then the planner takes an unobservable action (informal commitment) that exercises

some options on the menu and defines a subjective feasible set. The characterization is with

two axioms, CRW and Strong Reduction. CRW is related to AIC in Dekel et al. (2009).

CRW restricts the delegation cost to zero. Strong Reduction is a strengthening of the axiom

AM.

Theorem 1 in the hidden action model of Chandrasekher (2017) can be simplified as a

corollary to the choice from a path-independent filter, as in Theorem 3.2. Indeed, CRW and

AIC also imply Inclusion, which is the axiom Dominance in this chapter. The subjective

feasible set in Chandrasekher (2017) is a PI filter.

3.2 Main Results

Consider the standard menu framework where choices are made sequentially at ex ante and

ex post time periods.

Let Z = {x, y, z . . . } be a finite set of alternatives that may become feasible ex post.

Let M = {A,B,C . . . } be the set of all menus—non-empty finite subsets of Z. Interpret

each menu A ∈M as an action that, if taken ex ante makes the set A ⊂ Z feasible ex post.

Singletons {x} are written as x.

Let R be the set of complete and transitive relations R on Z. Such relations are called

weak orders. For any R ∈ R, let P be its asymmetric part.

A weak order R ∈ R is called total if for all x, y ∈ Z, xRyRx implies x = y. Let T ⊂ R
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be the set of all total orders on Z.

For any order R ∈ R, function u : Z → R, and menu A ∈M, let

u(A) = max
x∈A

u(x),

R(A) = {x ∈ A : xRy for all y ∈ A}.

If R is total, then for each A ∈ M, R(A) ∈ Z is a singleton. By convention, let R(∅) = ∅

and u(∅) = −∞.

Consider a planner 4 with a preference � over menus. Write its asymmetric and sym-

metric parts as � and ∼ respectively.

Axiom 3.1 (Order). � is complete and transitive.

Take any function u ∈ RZ that represents � on Z. Call u commitment utility.

Imagine that the planner must delegate ex-post choices to doers—her future selves or

other individuals. In general, delegations can involve various unobservable incentives. For

example, the planner can motivate her future self by mental commitments, promises, cues

etc. In the interpersonal case, doers can be stimulated by direct monetary transfers and/or

persuaded by suitable information disclosures. Again, it can be problematic to observe such

incentives directly. Therefore, we model delegation strategies with hidden costs.

Let D = {(x,A) ∈ Z ×M : x ∈ A} be the set of all pairs (x,A) where the option x is

feasible in the menu A. For any (x,A) ∈ D, interpret h(x,A) ≥ 0 as the cost that the planner

must incur to delegate x in A. Let h(x,A) = +∞ when the doer is unwilling to choose x in

A under any incentives that the planner can possibly provide. The costs h(x,A) are hidden

and hence, not taken as a primitive in our model. Instead, we use them to motivate axioms

4We model choices of both planners and doers. So the generic term decision maker would be confusing.
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and representations for observable preferences.

Let H be the set of all cost functions h : D → [0,+∞]. Say that h ∈ H is selective if for

all menus A,B ∈M and alternatives x ∈ A and y ∈ Z,

(H1) h(x, x) = 0,

(H2) h(x,A) ≤ h(x,A ∪B),

(H3) h(x,A) ≥ min{h(x, y ∪ A), h(y, y ∪ A)}.

Condition H1 normalizes delegation costs to zero in singleton menus. Monotonicity condition

H2 is plausible because the delegation of x in A can adapt the same incentives as in A ∪ B

and hence, should not cost more than h(x,A∪B). Turn to H3. Keep the delegation strategy

for x in menu y ∪ A the same as that in menu A. Since such a strategy is sufficient to

exclude any choices alternatives in A \ x in the set A, it is sufficient to exclude these choice

alternatives the the set A ∪ y in which they become even harder to delegate.

Assume that the planner evaluates any menu A by delegating a choice x ∈ A that has

an optimal combination of her commitment utility u(x) and delegation cost h(x,A). By H1

and H3, each menu A must contain some x ∈ A such that h(x,A) < +∞ and hence, the

planner can always focus only on elements with bounded delegation costs. Assume that the

aggregation of u(x) and h(x,A) is monotonic—strictly increasing in u(x) and decreasing in

h(x,A)—but not necessarily additive. This assumption motivates several axioms for �.

Axiom 3.2 (Positive Set-Betweenness (PSB)). For all A,B ∈M,

A � B =⇒ A � A ∪B.

Take any menus A,B ∈ M. Let x ∈ Z be the planner’s optimal delegation in A ∪ B.
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Suppose that x ∈ A. By H2, A � A ∪ B should hold because h(x,A) ≤ h(x,A ∪ B).

Similarly, if x ∈ B, then B � A ∪ B. PSB originally appears in Dekel et al. (2009)’s model

of cumulative temptations.

Axiom 3.3 (Dominance). For all y ∈ Z and A ∈M,

y � x for all x ∈ A ⇒ y ∪ A � A.

Take any A ∈M, and let x ∈ A be the planner’s optimal delegation in A. By H3, either

x or y can be delegated in y ∪ A at a cost that does not exceed h(x,A). If y � x, then

y ∪ A � A should hold.

For any A ∈M, an element x ∈ A is called costly in A if x � x ∪ Ax where

Ax = {y ∈ A : x � y}.

Indeed, the ranking x � x ∪Ax implies that it should be costly to delegate x in x ∪Ax and

a fortiori, in A.

This axiom implies that adding choices alternatives with higher commitment to the menu

improves the menu.

Axiom 3.4 (Reduction). For any A ∈M and x, y ∈ Z, if x and y are both costly in y ∪A,

then x is costly in A.

If y � x, then Reduction is trivial because Ax = (y∪A)x. Let x � y. Then (y∪A)x = y∪

Ax and Ay ⊂ Ax. As y is costly in y∪A, then h(y, y∪Ay) > 0 and by H2, h(y, x∪y∪Ax) > 0.

As x is costly in y∪A, then h(x, x∪ y∪Ax) > 0. By H3, h(x, x∪Ax) > 0. Thus the ranking

x � x∪Ax should hold because x cannot be delegated for free in the menu x∪Ax, and any

other feasible option y 6= x in x ∪ Ax is strictly worse than x for the planner.
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Say that U :M→ R aggregates a cost function h ∈ H if for all A ∈M,

U(A) = max
x∈A

[u(x)− h(x,A)] (3.2.1)

where u(x) = U(x) for all x ∈ Z. Say also that U is an aggregation of h, and h is aggregated

by U . If h ∈ H is selective, then the aggregation formula (3.2.1) is well-defined for any

u ∈ RZ . In this case, U(x) = u(x) because h(x, x) = 0, and each value U(A) ≥ minx∈A u(x)

is bounded because by H1 and H3, there is x ∈ A such that h(x,A) = 0.

Theorem 3.1. � satisfies Axioms 3.1–3.4 if and only if � has a utility representation

U :M→ R that aggregates some selective function h ∈ H.

The proof of Theorem 3.1 is in appendix C.1.

3.3 Informal Commitments

Due to information and resource constraints, the planner cannot make every decision on

his own. He can only decide a menu of permissible actions, and the doer chooses from

this menu. Hence, we observe decentralization of decision rights in a firm. Alonso and

Matouschek (2007); Holmstrom (1980).

The model of informal commitments proposed by Chandrasekher (2017) captures such

a situation. In the model, there is set Π ⊆ M of available commitments. The planner can

freely impose any set C ∈ Π, such that A ∩ C 6= ∅ as an informal (hidden) commitment on

the doer’s choice in a menu A. The the preference � is represented for all A ∈M by

U(A) = max
C∈Π, x∈Rd(A∩C)

u(x) (3.3.1)

for some domain Π ⊂M and weak order Rd ∈ R, interpreted as the doer’s preference.
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When the delegation cost is either 0 or ∞, this model can be obtained from the Theo-

rem 3.1. The following axiom imposes the delegation cost of a choice alternative to be either

0 or ∞.

Axiom 3.5 (Costless Verifications (CV)). For all A,B ∈M and x ∈ A,

x � A and A ⊂ B ⇒ B ∼ B \ x.

Take any A,B ∈ M and x ∈ Z such that x � A and A ⊂ B. Then x cannot maximize

the doer’s order Rd in A ∩ C for any C ∈ Π. Otherwise, x could be delegated (verified) for

free in A and A � x should hold. Thus the maximizers of Rd should be the same in B ∩ C

and in (B \ x) ∩ C. If the planner can delegate only such maximizers, then the indifference

B ∼ B \ x should hold.

Theorem 3.2. � satisfies Order, PSB, CV if and only if there is u ∈ RZ, Π ⊂ M, and

R ∈ T such that � is represented by (3.3.1).

This theorem corresponds to Chandrasekher (2017) main Theorem 1 and follows from

Theorem 3.1 in this chapter. PSB and CV are arguably more transparent than Chan-

drasekher’s counterparts.

3.4 Fitting Path Independent Model

In the proof of Theorem 3.2, we also established that (3.3.1) is equivalent to the model of

choice from a path-independent filter (see Lemma 11):

U(A) = U(∪R∈ΘR(A)) = max
R∈Θ

u(R(A)). (3.4.1)
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This is the PI filter model characterized in Lleras et al. (2021). In this section, we discuss

how to fit empirical ex-post choice data to the PI filter model.

Say that D ⊂ Z × M is a dataset if a ∈ A for every (a,A) ∈ D. Any such pair

(a,A) ∈ D means that a is observed to be chosen in A. Let M = |D| be the number of such

observations.

A ranking R0 ∈ R is called acceptable for a dataset D if there is a set Θ ⊂ R such that

a ∈ R0(Θ(A)) for all (a,A) ∈ D. (3.4.2)

Thus R0 ∈ R is acceptable if all observations in D are consistent with some delegation model

where a hypothetical planner with the ranking R0 delegates choices in menus A by selecting

doers in the set Θ ⊂ R.

Let P0 be the asymmetric component of R0. For any menu B ∈M, let

N (B) = {b ∈ B : bP0a for some (a,A) ∈ D such that A ⊂ B}

be the set of all elements b ∈ B that are revealed to be non-delegable in some A ⊂ B and

hence, in B itself.

Theorem 3.3. A ranking R0 ∈ R is acceptable for a dataset D ⊂ Z ×M if and only if for

all (a,A) ∈ D and a menu B ⊃ A,

B 6= N (B) ∪ [A \ a]. (3.4.3)

Moreover, for any R0 ∈ R, it takes polynomial time O(M3) to establish whether R0 is

acceptable for D or not.
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This result provides a criterion for acceptability of any given R0 ∈ R. This criterion can

be checked in polynomial time via an algorithm that we discuss in the proof of Theorem 3.3

in the appendix.

3.5 Comparison with Other Models

Before we discuss several examples of acceptability, it is insightful to relax the definition

(3.4.2) to adapt the models of inattention in Masatlioglu et al. (2012) and choice overload

in Lleras et al. (2017). Say that ϕ :M→M is

• a competition filter if it satisfies Sen’s α, a ∈ R0(ϕ(A)) for all (a,A) ∈ D,

• an attention filter if ϕ satisfies a strong form of Reduction5: for all A,B ∈M,

ϕ(B) ⊂ A ⊂ B ⇒ ϕ(A) = ϕ(B). (3.5.1)

Say that R0 is a-acceptable for a dataset D if there is an attention filter ϕ :M→M such

that

a ∈ R0(ϕ(A)) for all (a,A) ∈ D. (3.5.2)

Say that R0 is c-acceptable for a dataset D if (3.5.2) holds for some competition filter

ϕ :M→M.

These weaker notions of acceptability portray a decision maker with the ranking R0 who

pays attention only to elements in the filter ϕ.

5The attention property is implied by path independence.
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Let Z = {a, b, c}, and consider a standard intransitivity cycle,

D1 = {(a, {a, b}), ({b, {b, c}}), ({c, {a, c})}.

For this datasetD1, the total rankings 〈acb], 〈bac], and 〈cba] are not acceptable. In particular,

let R0 = 〈acb]. Let A = {a, b} and B = {a, b, c}. ThenN (B) = {a, c} and B = N (B)∪[A\a]

which contradicts (3.4.3).

By contrast, any ranking R0 is both a-acceptable and c-acceptable for D1. In fact, one

can show a more general claim.

Say that D is binary if for all (a,A) ∈ D, the menu A = {a, b} has size two, and

(b, A) 6∈ D. In other words, binary datasets describe observations of a single choice in some

two-elements menus.

Proposition 3.5.1. Any ranking R0 ∈ R is both a-acceptable and c-acceptable for any binary

dataset D.

Proof. For any observation (a, {a, b}) ∈ D such that bP0a, let ϕa({a, b}) = {a}. For all other

menus A, let ϕa(A) = A. Then ϕa is an attention filter, and (3.5.2) holds.

For any observation (a, {a, b}) ∈ D such that bP0a, let ϕc({a, b}) = {a}. For any

observation (a, {a, b}) ∈ D such that aR0b, let ϕc({a, b}) = {a, b}. For all other menus A,

let ϕc(A) be the set of minimizers of the commitment utility u. Then uc is a competition

filter, and (3.5.2) holds.

This proposition suggests roughly that our delegation model imposes a minimal structure

on the filter ϕ such that the representation (3.5.2) has non-vacuous implications for choices

in binary menus.
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We illustrate this point with an experimental dataset found in Apesteguia and Ballester

(2020), and which is publicly available on the both authors’ websites. The data includes

the choices of 87 individuals from all 36 binary menus for the following nine equiprobable

lotteries:

Table 3.1: Lotteries

lottery payoffs lottery payoffs lottery payoffs
l1 (17) l2 (50, 0) l3 (40, 5)
l4 (30, 10) l5 (20, 15) l6 (50, 12, 0)
l7 (40, 12, 5) l8 (30, 12, 10) l9 (20, 12, 15)

Each individual’s choices from the 36 binary menus are observed. We take the expected

value rankings of the lotteries as R0. Only 27 out of the 87 individuals conform to the

delegation model. In contrast, all 87 individuals conform to the competition filter model and

the attention filter model.

It is also surprising that the combination of competition and attention properties delivers

path independence, but the separate use of these conditions in (3.5.2) makes the model

vacuous for binary datasets.

Next, consider a more stringent intransitivity where Z = {a, b, c, d}, and

D2 = {(a, {a, b, c}), (b, {b, c, d}), (c, {c, d, a}), {d, {d, a, b}}.

For this dataset, all total orders become unacceptable. Indeed, if R0 = 〈abcd], then (3.4.3)

is violated for B = {a, b, c, d} and A = {b, c, d}.

3.6 Conclusion

This chapter studies delegation with hidden costs, discusses a special case of informal com-

mitments when the delegation costs are binary, and fits data for the delegation model with
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binary costs. We study more general issues in Kopylov and Yang (2022). To begin with, we

study the equivalent functional forms to the hidden cost representation 3.2.1. We also study

a more general version of Theorem 3.2, where informal commitments are costly. Finally,

we discuss fitting choice data for general delegation costs. In Kopylov and Yang (2020),

we study the delegation model with binary costs in a lottery setting and axiomatize the

planner’s preference over menus of lotteries when the planner can change the agents’ beliefs

about uncertain events by persuasion.
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Appendix A

Proofs for Chapter 1

A.1 Proof for Theorem 1.1

Several steps are required to prove the sufficiency of the axioms. First, I show that the types

are quasi-linear. Following this discussion, I construct the RQUM π ∈ Π and demonstrate

that it is a discrete probability measure. Next, I show that π represents ρ on generic points.

Finally, I prove the existence of tie-breaking rules in T for nongeneric points.

A.1.1 Proof for Sufficiency

A.1.1.1 Step 1: Types are quasi-linear

Essentially, Lemma 1 states that the types have quasi-linear preferences. In this subsection,

I prove Lemma 1.

(1) Sufficiency (Axioms 1.1, 1.2 and 1.4 imply quasi-linearity).

In the first step, I construct the set of types on each coordinate i. I define ci ∈ Rn+1
0

to be such that cij → ∞ for all j ∈ Z \ {0}, j 6= i. By Axioms 1.1 and 1.4, ρj(c
i) = 0 for
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all j 6= i, 0. ρi(x, c
i
−i) is piecewise constant in x and is discontinuous at finitely many points

of x ∈ R. I denote the set of discontinuity points of x to be Vi = {vi,1, ..., vi,mi
}, where

vi,1 < vi,2 < ... < vi,mi
.

ρ0(x, ci−i) = 1− ρi(x, ci−i) is a nondecreasing step function, but it is not right-continuous

as a discrete cumulative distribution function. Instead, the behavior at a discontinuity point

is determined by a tie-breaking rule. However, we can construct F i : R → [0, 1] from

ρi(x, c
i
−i) as follows:

F i(x) =


1− ρ−i (x, ci−i) for x ∈ Vi

1− ρi(x, ci−i) otherwise

=


ρ+

0 (x, ci−i) for x ∈ Vi

ρ0(x, ci−i) otherwise

.

where ρ−i (x, ci−i) = limε→0 ρi(x+ ε, ci−i), and ρ+
0 (x, ci−i) = limε→0 ρ0(x+ ε, ci−i) by Axiom 1.1.

By Axiom 1.4,

lim
x→−∞

F i(x) = lim
x→−∞

1− ρi(x, ci−i) = 0 and lim
x→∞

F i(x) = lim
x→∞

1− ρi(x, ci−i) = 1.

F i(x) is piecewise constant, nondecreasing, and right-continuous. Hence, F i is a distribution

function of the random variable Vi, where F i(x) = Prob(Vi ≤ x), and

Prob(Vi = x) = Prob(Vi ≤ x)− Prob(Fi < x) = F i(x)− lim
ε→0

F i(x− ε)

=


ρ+
i (x, ci−i)− ρi(x, ci−i) = 0 x /∈ Vi

ρ+
i (x, ci−i)− ρ−i (x, ci−i) = gapi(x) x ∈ Vi.

The realizations of the discrete random variable Vi are the set of private values on good

i. Different private values correspond to different marginal types.

Next, we want to show that the preferences of the types in Vi on the physical good-
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price pair (i, x), i ∈ Z, x ∈ R are indeed represented by quasi-linear utility functions. We

define {�i} to be a set of weak orders for the comparison between (i, x) and the status quo

(0, 0):

Prob((0, 0) �i (i, x)) = Prob(Vi ≤ x) = F i(x).

Hence F i is also the distribution of preferences in {�i}. Prob((i, x) ∼i (0, 0)) =

Prob(Vi = x) ∈ [0, 1] is the probability of the types valuing good i at x, and by con-

struction, it is positive for x ∈ Vi and is 0 for all other x ∈ R. Since Vi = {vi,1, ...., vi,mi
} is

finite, there is a finite set of rankings {�ik}
mi
k=1,

Prob((i, vi,k) ∼ik (0, 0)) = Prob(Vi = vi,k), k = 1, ...,mi.

So, from the above discussion, we understand that (i, x) �ik (0, 0) for x < vi,k, (i, x) ≺ik

(0, 0) for x > vi,k, and (i, x) ∼ik (0, 0) for x = vi,k.

Let 1 ∈ Rn+1 be such that 1 = (1, 1, ...., 1). By Axiom 1.1, for any constant vector α1

for α ∈ R,

F i(x+ α) =


1− ρ−i (x+ α1) for x ∈ Vi,

1− ρi(x+ α1) otherwise

=


1− ρ−i (x) for x ∈ Vi,

1− ρi(x) otherwise

= F i(x).

We define Prob((0, α) �i (i, x+α)) = Prob(Vi+α ≤ x+α) = F i(x+α). Therefore,

Prob((0, α) �i (i, x+ α)) = F i(x+ α) = F i(x) = Prob((0, 0) �i (i, x))
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and

Prob((i, x+ α) ∼i (0, α)) = F i(x)− lim
ε→0

F i(x− ε)

=F i(x+ α)− lim
ε→0

F i(x+ α− ε) = Prob((i, x) ∼i (0, 0)).

Hence, Prob((i, x+ α) ∼i (0, α)) = Prob((i, x) ∼i (0, 0)) > 0 when x ∈ Vi, and

(i, vi,k) ∼ik (0, 0) ⇐⇒ (i, vi,k + α) ∼ik (0, α) ⇐⇒ (i, 0) ∼ik (0,−vi,k), k = 1, ...mi

(A.1.1)

by taking α = −vi,k.

Furthermore, (i, x + α) �ik (0, α) when x < vi,k, (i, x + α) ∼ik (0, α) when x = vi,k, and

(i, x+ α) ≺ik (0, α) when x > vi,k, where α ∈ R is arbitrary. Therefore,

y < y′ ⇐⇒ (i, y) ∼ik (0,−vi,k + y) �ik (i, y′) ∼ (0,−vi,k + y′) (A.1.2)

by noticing −vi,k + y = −(vi,k + y′ − y) + y′.

Let Uk(i, x), x ∈ R represent �ik. (A.1.2) suggests

Uk(0,−vi,k + y) >i
k Uk(0,−vi,k + y′) ⇐⇒ y < y′.

This preference can be represented by Uk(0, x) = −x for x ∈ R. (A.1.1) suggest

that

Uk(i, α) = Uk(0,−vi,k + α) = vi,k − α, k = 1, ...,mi.
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Hence, for Vi = {vi,1, ..., vi,mi
} and Z = {0, i}, Uk is quasi-linear. The same argument

goes for any j ∈ Z \ {0}. The marginal distribution of the types for good i, π{0,i} ∈ ∆(Vi),

is according to the distribution function F i.

(2) Necessity. This direction is trivial and is thus omitted.

A.1.1.2 Step 2: Show π constructed in (1.2.16) is a discrete probability mea-

sure

I have shown that the types are quasi-linear on each good. Thus, it makes sense to recover

the type distribution as the distribution of private values on the goods. Next, I show that

the construction of π in (1.2.16) is a discrete probability measure on its support, denoted as

{0}×ni=1Vi. In this case, π on the set {0, i} is the marginal distribution for good i ∈ Z.

Notice that, by construction, π(∅) = 0. We can take any J ⊆ Z \ {0}, denote J =

{j1, ...., j|J |}, and VJ = Vj1 × ... × Vj|J| . Let S = {A ⊆ VJ : J ⊆ Z \ {0}} to include the

sets of private values of types on all subsets of goods. In fact, S is a finite subalgebra. For

J ⊆ J ′ ⊆ Z, we can take any v∗ ∈ VJ , {v∗} = {v ∈ VJ ′ : vi = v∗i ∀i ∈ J}. The additivity

condition on S is that for v∗ ∈ VJ ∈ S, J ⊆ J ′ ∈ Z, then

π(v∗) =
∑
v∈J ′

π(vj′ : vi = v∗i , i ∈ J), (A.1.3)

and that for v1, v2 ∈ VJ , v1 6= v2,

π({v1, v2}) = π(v1) + π(v2). (A.1.4)

It is well known that if π satisfies additivity on S, then π has an extension to σ(S), the sigma-

algebra generated by S. It is also easy to check that σ(S) = σ({0} × VZ\{0}). Furthermore,

if π({0} × VZ\{0}) = 1, then π is a probability measure on {0} × VZ\{0}. So, to show

π ∈ ∆({0} ×ni=1 Vi), one just needs to show, first that π is additive on S, and second, that
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π({0}×ni=1 Vi) = 1. The additivity condition (A.1.4) is satisfied considering the definition of

π in (1.2.12). Lemma 2 implies that the additivity condition (A.1.3) is satisfied on S.

Lemma 2. Take c ∈ Rn+1, such that ρA(c) =
∑

i∈A ρi(c) = 1 for some A ( Z. For any

j /∈ A,

π(c) =
∑
α∈Vj

π(α, c−j). (A.1.5)

Proof. For any A ⊆ Z, A = {iA1 , ..., iA|A|}, cA = (cA1 , ..., cA|A|). π(c) = limε→0Eε,A = {v ∈

VA : v = cA}, since any j ∈ Z \A is unavailable. When cj, j /∈ A is modified to be α ∈ Vj, we

have ρA∪{j}(α, c−j) = 1, and π(α, c−j) = limε→0 π(Eε,A∪{j}) = π{v ∈ VA∪{j} : v = (cA, α)}.

Therefore,

π((α, c−j)|c) =
π(α, c−j)

π(c)
=
π{v ∈ VA∪{j} : v = (cA, α)}

π{v ∈ VA : v = cA}
= π{α ∈ Vj|c−j}

= ρ+
j (α, c−j)− ρ−j (α, c−j) = gapj(α, c−j),

where gapj(α, c−j) > 0 ⇐⇒ α ∈ Vj, Vj = {α1, ..., αm}, α1 < α2 < ... < αm. Furthermore,

ρ+
j (α1, c−j) = 1, ρ−j (αm, c−j) = 0, and

ρ+
j (αk+1, c−j) = ρ−j (αk, c−j)

for k = 1, ...,m− 1. Therefore,

∑
α∈Vj

π(αk, c−k)

π(c)
= ρ+

j (α1, c−j)− ρ−j (αm, c−j) = 1.

Hence, (A.1.5) holds.
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Next, I show π({0} ×ni=1 Vi) = 1. Let V1 = {α1, ..., αm1}.

π({0} ×ni=1 Vi) =
∑
c1∈V1

...
∑
cn∈Vn

π(0, c1, ..., cn) =
∑
c1∈V1

..
∑

cn−1∈Vn−1

π(0, c1, ..., cn−1) =

= ... =
∑
c1∈V1

π(0, c1) =
∑
c1∈V1

ρ+
1 (0, c1) + ρ+

0 (0, c1)− 1

=
∑
c1∈V1

ρ+
1 (0, c1)− ρ−1 (0, c1) = ρ+

1 (0, α1)− ρ−1 (0, αm1) = 1.

Hence, π ∈ ∆({0} ×ni=1 Vi) is a probability distribution on the finite types. Next, in the

subsection below, I show that π represents RCR ρ.

A.1.1.3 Step 3: Recover ρ from π

For any c ∈ Rn+1
0 , if j ∈ M(v, c) for some v ∈ supp(π), then j /∈ M(v, (cj + ε, c−j)), and

j = M(v, (cj − ε, c−j)). This observation links the measure π on the types with ties at c to

the change in a single coordinate of ρ. I prove this intuition in Lemma 3.

I denote πA(c) to be the probability on all types v ∈ Rn+1
0 , such that its set of maximizers

M(v, c) includes A, i.e., M(v, c) ⊃ A. I also denote the set of types for which i ∈ Z is a

maximizer for c ∈ Rn+1 as follows:

Mi(c) = {v ∈ supp(π) : i ∈M(v, c)}. (A.1.6)

Using the same definition of events Fε,A(c) and modifying Eε(c) so that it is defined for

subsets A ⊆ Z:

Eε,A(c) ={v ∈ Rn+1
0 : vi − ci is within ε from max

j∈Z
vj − cj ∀i ∈ A ⊆ Z};

π(Eε,A) =
∑
A′⊆A

(−1)|A
′|+1π(Fε,A′(c)).
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By the same argument as that found in construction (1.2.16),

πA(c) = π(∩i∈AMi(c)) = lim
ε→0

π(Eε,A(c)) =
∑
A′⊆A

(−1)|A
′|+1ρ+

A′(c). (A.1.7)

Denote

π̃A(c) = π(v ∈ Rn+1
0 : M(v, c) = A).

Notice that {v ∈ Rn+1
0 : A′ ⊆ M(v, c)} = ∪A:A′⊆A⊆Z{v ∈ Rn+1

0 : M(v, c) = A}. By the

inclusion-exclusion principle (Möbius inversion),

π̃A(c) =
∑

A′⊆Z:A⊆A′
(−1)|A

′\A|πA′(c), (A.1.8)

Lemma 3. For any i ∈ Z, c ∈ Rn+1,

gapi(c) =
∑

S⊆Z−i,|S|≥1

π̃S∪{i}(c). (A.1.9)

Proof of Lemma 3. I prove Lemma 3 by demonstrating the following:

∑
S⊆Z−j ,|S|≥1

π̃S∪{j}(c)
(1)
=

∑
S⊆Z−j ,|S|≥1

(−1)|S|−1πS∪{j}(c)
(2)
= ρ+

j (c) + ρ+
Z−j

(c)− ρ+
Z(c)

(A.1.10)

= ρ+
j (c)− (1− ρ+

Z−j
(c)) = gapj(c). (A.1.11)

First, I establish (1). From (A.1.8), the sum over S ⊆ Z−j of π̃S∪{j} can be written as

the sum over πS′∪{j}, S ⊆ S ′ ⊆ Z−j. Alternatively, for any S ⊆ Z, the coefficient on πS∪{j}

will include contributions from π̃S′∪{j}(c) for all S ′ ⊆ S. Fix S ⊆ Z−j. The coefficent on
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πS∪{j} is:

|S|∑
|S′|=1

(−1)|S\S
′|

(
n
|S′|

)(
n−|S′|
|S|−|S′|

)(
n
|S|

) = (−1)|S|
|S|∑
|S′|=1

(−1)|S
′|

(
n
|S|

)( |S|
|S′|

)(
n
|S|

)
=(−1)|S|

|S|∑
|S′|=1

(−1)|S
′|
(
|S|
|S ′|

)
= (−1)|S|

 |S|∑
|S′|=0

(−1)|S
′|
(
|S|
|S ′|

)
− (−1)0


=(−1)|S|

(
(1− 1)|S| − 1

)
= (−1)|S|−1.

The term
(
n
|S′|

)
is the number of sets with cardinality |S ′|. The term

(
n−|S′|
|S|−|S′|

)
is the number

of sets with cardinality |S| containing a given set with cardinality |S ′|. The multiplication

of the two terms accounts for the total number of times that sets of cardinality |S ′| are

accounted for in the aggregate coefficient of sets of cardinality |S|. The term
(
n
|S|

)
is the

number of sets with cardinality |S| formed from the set Z−j. Thus, the fraction
( n
|S′|)(

n−|S′|
|S|−|S′|)

( n
|S|)

is the number of times that all π̃S′∪{j} with S ′ ⊆ S, |S ′| = k, k = 1, ..., |S ′| contributes to

πS∪{j} for a given S ⊆ Z when written in the form of (A.1.10).

Next, I establish (2). By substituting (A.1.7) for π,
∑

S⊆Z−j ,|S|≥1(−1)|S|−1πS∪{j}(c) can

then be written in terms of ρ+
S (c). Notice that the terms that contributes to the coefficient

on ρ+
j (c) come from πS∪{j}, |S| ≥ 1, and the coefficient on ρ+

j (c) is calculated as

(
n

1

)
−
(
n

2

)
+ ...+ (−1)n+1

(
n

n

)
= −(1− 1)n +

(
n

0

)
= 1.

(A.1.7) also requires that ρ+
S∪{j}(c) and ρ+

S (c) for 1 ≤ |S| ≤ n − 1 come from πS′∪{j} for all

S ⊆ S ′. The coefficients on ρ+
S (c) and ρ+

S∪{j}(c) are the same:

n∑
|S′|=|S|

(−1)|S|−1

(
n
|S′|

)(|S′|
|S|

)(
n
|S|

) =
n∑

|S′|=|S|

(−1)|S|−1

(
n
|S|

)(
n−|S|
|S′|−|S|

)(
n
|S|

) =
n∑

|S′|=|S|

(−1)|S|−1

(
n− |S|
|S ′| − |S|

)

=

n−|S|∑
i=0

(−1)|S|−1

(
n− |S|

i

)
= (−1)|S|−1(1− 1)n−|S| = 0.
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The term
(
n
|S′|

)
is the number of all πS′∪{j} with fixed cardinality |S ′|.

(|S′|
|S|

)
, S ⊆ S ′

is the number of sets with cardinaility |S| that can be obtained from sets with cardinaility

|S ′|. The multiplication gives the total number of ρ+
S∪{j}(c) for a fixed cardinality |S|.

(
n
|S|

)
gives the number of distinct ρ+

S∪{j}(c) for fixed cardinaility |S|. So, the term
( n
|S′|)(

|S′|
|S|)

( n
|S|)

is the

absolute value of coefficients on the term ρ+
S∪{j}(c) for each S obtained from all πS′∪{j} with

S ⊆ S ′ ⊆ Z, |S ′| fixed and is in {|S|, ..., n}.

Note that ρ+
Z−j∪{j}(c) = ρ+

Z(c) and ρ+
Z−j

(c) only come from the term (−1)n+1πZ(c). The

coefficient on ρ+
Z(c) is (−1)n−1(−1)n = −1, and the coefficient on ρ+

Z−j
(c) is (−1)n−1(−1)n−1 =

1. Hence, (2) holds.

The rest of (A.1.10) comes from the observation that ρ+
Z(c) = 1 and ρj(cj + ε, c−j) =

1− ρ+
Z−j

(c) by Axiom 1.1 and that ρ is a probability measure.

Lemma 3 shows that all ties at a nongeneric point c̃ ∈ Rn+1
0 can be broken by slightly

reducing the cost at one coordinate i. Therefore, the probability measure on all the ties is

equal to gapi(c̃) constructed as (1.2.21). By the finiteness condition required in Axiom 1.4,

there are no ties at limε→0(c̃i−ε, c̃−i). With this observation, I construct ρ′(c) at any generic

point c ∈ Rn+1
0 from π.

Lemma 4. One can construct ρ′(c) with π, such that ρ′(c) = ρ(c) for any generic c ∈ Rn+1.

Proof. Take a point c0 ∈ Rn+1, such that ρ0(c0) = 1. By Axiom 1.4, this can be achieved by

taking the ith coordinate of c0 to be very large for all i ∈ Z \ {0}. Let ρ′(c0) = ρ(c0) = 1.

Since the number of types is finite, the generic points are dense in Rn+1. We find a

grid-like path from c0 to any generic point c ∈ Rn+1, such that at any point on the path,

the direction of change is along one of the coordinates. Furthermore, for any c̃ on the path,

|M(c̃, v)| ≤ 2 for all v ∈ supp(π). If M(c̃, v) = {i, j} ⊆ Z for some v ∈ supp(π), then for
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all v′ ∈ supp(π) with |M(c̃, v′)| = 2, M(c̃, v′) = {i, j}. In other words, there is only one

two-way tie, {i, j}, at c̃. Moreover, the path does not take a turn at points with a two-way

tie. The density of generic points in Rn+1
0 allows one to construct such paths between any

two points with these specifications. An illustrate with |Z| = 3 is in Figure 1.2.

At any point on the path, we know the gap function from π by Lemma 3. WLOG, I

call a point on the path c. Since at most two goods are tied on the path, we know how ρ′

changes at each point. Thus, ρ′ can be constructed along the path. I denote the following:

c−i = lim
ε→0

(ci + ε, c−i), c+
i = lim

ε→0
(ci − ε, c−i).

The construction skips nongeneric points and thus ρ′ is only defined on generic points.

Let ρ′(c) be the constructed choice function at c. If c is a generic point, then πS∪{i} = 0 for

all S ⊆ Z−i. Suppose c+
i is also on the path. Then, let

ρ′(c+
i ) = ρ′(c). (A.1.12)

If c has a two-way tie where i and j are the maximizers, then both c+
i and c−i are on

the path (or both c+
j and c−j are on the path), since there is no turn at c. c+

i , c
−
i are generic

points since the generic points are dense. WLOG, suppose ρ′(c−i ) has been constructed, and

we want to construct ρ′(c+
i ). At c, π{i,j} > 0 and πS∪{i} = 0 for all ∅ ⊆ S ⊆ Z−i, S 6= {j}.

We construct ρ′(c+) as follows:

ρ′i(c
+
i ) = ρ′i(c

−
i ) + πi,j(c), ρ′j(c

+
i ) = ρ′j(c

−
i )− πi,j(c), ρ′k(c

+
i ) = ρ′k(c

−
i ) ∀ k 6= i, j.

(A.1.13)

With constructions determined by (A.1.12) and (A.1.13), I show that if c is a generic
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point, then if ρ(c) = ρ′(c) =⇒ ρ(c−i ) = ρ′(c−i ). If i, j are the only two maximizers for c,

ρ(c−i ) = ρ′(c−i ) =⇒ ρ′(c+
i ) = ρ′(c+

i ).

Case 1: Points with no ties. By Lemma 3, gapi(c) = 0 for all i ∈ Z. Thus, ρ(c) =

ρ(c+
i ) = ρ(c−i ). Axiom 1.2 implies that if ρ(c) = ρ′(c), then ρ(c+

i ) = ρ′(c+
i ).

Case 2: Points with a two-way tie. Suppose at c there is a two-way tie between i

and j. So, π{i,j}(c) > 0, πS∪{i}(c) = 0, for all other ∅ ( S ⊆ Z−i, S 6= {j}. By (A.1.8),

π̃{i,j} = π{i,j}. By Lemma 3,

gapi(c) = gapj(c) = π{i,j}(c), gapk(c) = 0 ∀ k ∈ Z, k 6= i, j.

Therefore, by definition of the gap function, ρ+
i (c) = ρ−i (c)+gapi(c), written equivalently

as ρi(c
+
i ) = ρi(c

−
i ) + gapi(c).

Next, I show that ρk(c
+
i ) = ρk(c

−
i ). By Axiom 1.2,

ρk(ci − ε, cj − ε, c−i,j) ≤ ρk(c
+
i ) ≤ ρk(c) ≤ ρk(c

−
i ) ≤ ρk(ci + ε, cj + ε, c−i,j), (A.1.14)

for all k ∈ Z−i,j.

Suppose for contradiction that ρk(c
+
i ) < ρk(c

−
i ) for some k ∈ Z−i,j. Then ρk(c − ε, cj −

ε, c−i,j) < ρk(c+ ε, cj + ε, c−i,j), and ρ−ij(c) < ρ+
ij(c). Since there is only one two-way tie at c,

π{i,j}(c) = π{i,j,k}(c). By (A.1.7), this equality implies

ρ+
i (c) + ρ+

j (c)− ρ+
ij(c) = ρ+

i (c) + ρ+
j (c) + ρ+

k (c)− ρ+
ij(c)− ρ+

jk(c)− ρ
+
ik(c) + ρ+

ijk(c)

=⇒ ρ+
k (c)− ρ+

jk(c)− ρ
+
ik(c) + ρ+

ijk(c) = 0
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If Z = {i, j, k}, then the above equality implies

ρ+
k (c) + ρ−i (c) + ρ−j (c)− 1 = 0

So, ρ−i (c) + ρ−j (c) = 1 − ρ+
k (c) = ρ−ij(c). Notice that ρ+

k (c) = 1 − ρ−i (c) − ρ−j (c), and that

ρ+
ij(c) = 1− ρ−k (c) =⇒ ρ−k (c) = 1− ρ+

ij(c). Therefore,

gapk(c) = ρ+
k (c)− ρ−k (c) = 1− ρ−i (c)− ρ−j (c)− (1− ρ+

ij(c)) = ρ+
ij(c)− ρ−i (c)− ρ−j (c).

Since by assumption ρ−ij(c) < ρ+
ij(c), ρ

−
i (c) + ρ−j (c) < ρ+

ij(c). So gapk(c) > 0. This

contradicts the fact that gapk(c) = 0. Hence, we must have ρ−ij(c) = ρ+
ij(c).

ρ+
ij(c) = ρ−ij(c) implies that ρ+

ij(c) = ρ−ij(c) = ρij(c), and thus, ρk(ci − ε, cj − ε) = ρk(ci +

ε, cj + ε). Considering (A.1.14), we have ρk(c
−
i ) = ρk(c

+
i ) = ρk(c). Hence, ρi(c

+
i ) + ρj(c

+
i ) =

ρi(c
−
i ) + ρj(c

−
i ). Therefore,

ρj(c
+
i ) = ρi(c

−
i ) + ρj(c

−
i )− ρi(c+

i ) = ρj(c
−
i )− gapj(c).

I have shown that in the actual observation, the RCR rule ρ is:

ρi(c
+
i ) = ρi(c

−
i ) + gapi(c), ρj(c

+) = ρj(c
−
i )− gapj(c), ρk(c

+
i ) = ρk(c

−
i ) ∀ k 6= i, j.

This mirrors (A.1.13) exactly. Therefore, if ρ(c−i ) = ρ′(c−i ), then ρ(c+
i ) = ρ′(c+

i ) when c has

only a two-way tie on the set {i, j}.

I have proven that on the grid-like path starting at c0 considered here, ρ′(c) = ρ(c) for

any nongeneric point c on the path. Therefore, the Lemma is proved.
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A.1.1.4 Step 4: Existence of a tie-breaking rule

At a nongeneric point c, for some v ∈ supp(π), |M(v, c)| > 1. I show that there is t :

Rn+1
0 × Rn+1 → ∆(Z) for all v ∈ supp(π), such that

ρ(c) =
∑

v∈supp(v)

π(v)t(v, c).

Consider the case where ρA(c) ∈ Q for all A ⊆ Z. Construction (1.2.16) suggests that

if ρA(c) ∈ Q for all A ⊆ Z, c ∈ Rn+1, then π(v) ∈ Q for all v ∈ supp(π). Let 1
k
∈ N be a

unit, as defined in Definition 1.1. So, kπ(v) ∈ N for all v ∈ supp(π), and kρA(c) ∈ N for all

A ⊆ Z. Each type v ∈ supp(π) generates kπ(v) copies of a-units v′, where π(v′) = 1
k
. Let

supp(π) = {v1, ...., vk}. Then the multi-set of a-units is

Umulti = {v′1
1
...v′1

m(v′1)
, v′2

1
, ...v′2

m(v′2)
, ...., v′k

1
, ...v′k

m(v′k)
, },

where m(v′i) = kπ(vi). Each ρi(c) generates kρi(c) copies of p-units i′ with ρi′(c) = 1
k
. The

multi-set of p-units is

Pmulti = {0′1, 0′m(0′)
, 1′

1
, 1′

m(1′)
, 2′

1
, 2′

m(2′)
, ..., n′

1
, n′

m(n′)},

where m(i′) = kρi(c), i = 0, 1..., n.

For any A ⊆ Z, each a-unit v′ ∈ Umulti has edges to all p-units i′ ∈ Pmulti, such

that i ∈ M(v, c), i ∈ A. We call the edge a demand. For each a-unit v′ ∈ Umulti, let

Dv′,c = {i′ ∈ Pmulti : i ∈M(v, c)} be the set of p-units that agent v′ demands at cost c. For

a multi-set

V ′A = {v′ ∈ Umulti : v ∈ supp(π),M(v, c) ⊆ A}

of a-units, the demands/edges are all in A. If i′j ∈ Dv′,c for j ∈ {1, ...,m(i′)}, then {i′k, k =
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1, ...,m(i′)} ⊆ Dv′,c. So, we take

{i′ ∈ Pmulti : i ∈ A ⊆ Z}

when considering the demanded set.

Since |Pmulti| =
∑n

i=0 kρi(c) = k, and |Umulti| =
∑k

i=1 kπ(vi) = k, assigning the p-units

to the a-units according to the demand is analogous to a problem of one-to-one matching.

By Hall’s marriage theorem (Hall, 1935), the goal is to show that Hall’s marriage condition

is satisfied. Hall’s marriage condition requires that there are no overdemanded sets, where

a set is overdemanded if the number of a-units demanding only items in this set is greater

than the number of p-units in this set. In other words, for any A ⊆ Z, the number of p-units

determined by A is at least as big as the number of a-units |V ′A|. Hence, the necessary and

sufficient condition for the existence of one-to-one matching is:

|{i′ ∈ Pmulti : i ∈ A}| ≥ |{v′ ∈ Umulti : v ∈ supp(π),M(v, c) ⊆ A}|. (A.1.15)

It is WLOG to consider V ′A instead of its subset that includes only subsets of a-units

associated with v, since V ′A makes the right-hand side of condition (A.1.15) larger. Since

|{i′ : i ∈ A}| = kρA(c) and |{v′ : v ∈ supp(π),M(v, c) ⊆ A}| = kπ{v ∈ supp(π) : M(v, c) ⊆

A}, Lemma 5 implies that Hall’s condition (A.1.15) can be satisfied.

Lemma 5. For any nongeneric c ∈ Rn+1,

ρA(c) ≥ π{v ∈ supp(π) : M(v, c) ⊆ A}.

Proof. Fix any A ⊆ Z. Take a generic point c−A ∈ Rn+1, such that ‖c − c−A‖ < ε for
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ε > 0, ε→ 0, and c−A �A c. Then by construction,

ρA(c−A) = π(v ∈ supp(π) : M(v, c−A) ⊆ A), (A.1.16)

since π represents ρ on c−A. By Axiom 1.2,

ρA(c) ≥ ρA(c−A) = ρ−A(c). (A.1.17)

By definition, for any v ∈ supp(π), M(v, c−A) ⊆ A =⇒ M(v, c) ⊆ A. Take any v ∈ Rn+1
0

such that M(v, c) ⊆ A. So A contains the strict maximizer(s) of v at c. When ε→ 0, these

elements still strictly maximizes v at c−A. Hence, M(v, c−A) ⊆ A, and therefore,

{v ∈ supp(π) : M(v, c−A) ⊆ A} = {v ∈ supp(π) : M(v, c) ⊆ A}.

Therefore,

π({v ∈ supp(π) : M(v, c) ⊆ A}) = π({v ∈ supp(π) : M(v, c−A) ⊆ A}) = ρA(c−A) ≤ ρA(c).

Hence, there exists a one-to-one matching between the a-units and the p-units. If we

denote (v′, i′) to be a matching, then {(v′, i′)1, ..., (v′, i′)m(v′,i′)} is the multi-set of the match-

ing (v′, i′), and m(v′, i′) is the number of this type of matching. Further, m(v′, i′) ≤ kπ(v),

since m(v′) = kπ(v) and m(v′, i′) ≤ m(v′). So, for any v ∈ supp(π), the tie-breaking rule is

as follows:

ti(v, c) =
m(v′, i′)

m(v′)
=
m(v′, i′)

kπ(v)
.

t = {ti(v, c), v ∈ supp(π), c ∈ Rn+1} is a tie-breaking rule for the RCR ρ when ρ ∈ Q.

Since Dv′,c = {i′ ∈ Pmulti : i ∈ M(v, c)} = {i′ ∈ Pmulti : i ∈ M(v, c + α1)} = Dv′,c+α1,
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the matching problem at c and c + α1 are the same. Therefore, there exists quasi-linear

tie-breaking rule.

Suppose ρA(c) /∈ Q for some A ⊆ Z, c ∈ Rn+1. We construct a sequence ρj : Rn+1 →

∆(Z), j = 1, 2, ..., such that ρjA(c) ∈ Q for all A ⊆ Z, c ∈ Rn+1, ρj → ρ. (1.2.16) constructs

πj from ρj, such that πj(v) ∈ Q for all v ∈ supp(πj), where πj → π. We further require

that supp(πj) = supp(π) = V for all πj in the sequence. Such a sequence of ρj exists by the

density of R. Each (ρj, πj) is a matching problem in the rationals, and from the discussion

above, we know that there exists a tj that can solve this problem in rationals. Fix c ∈ Rn+1.

Then t ∈ (∆(Z))|V |. Since Z is finite, (∆(Z))|V | is compact. Then tj is a point in the compact

set (∆(Z))|V |. By Bolzano-Wierstrauss theorem, there is a convergent subsequence, tjk → t∗.

This arguement holds for all c ∈ Rn+1. So (ρj
k
, tj

k
)→ (ρ, t∗).

A.1.2 Proof for Necessity

Assume there exists (π, t) ∈ Π × T , such that (1.2.4) holds. Axiom 1.1 holds by (1.2.3).

Axiom 1.2 follows from (1.2.3) and the representation (1.2.4) becauseMi(c) = {v ∈ supp(π) :

vi− ci ≥ vj − cj ∀j ∈ Z} is a nonincreasing set function with ci, and therefore, by definition,

ti(v, c) and ρi(v, c) are nonincreasing with ci. The necessity of Axiom 1.3 is discussed in the

construction of π in Section 2 (see (1.2.11)).

Next, I show Axiom 1.4. We take a fixed v ∈ supp(π). Then,

tA(v, c+ α1A) =


1 maxj∈A vj − cj − α > maxk∈Z\A vk − ck

x ∈ [0, 1] maxj∈A vj − cj − α = maxk∈Z\A vk − ck

0 maxj∈A vj − cj − α < maxk∈Z\A vk − ck

So, tA(v, cα1A) takes only three values for each v ∈ supp(π), and thus, ρA(c+α1A) takes, at

most, 3× supp(π) values. When α→ −∞, tA(c, v+α1A) = 1 for all v ∈ supp(π), and thus,
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ρA(c + α1A) =
∑

v∈supp(π) π(v) = 1. When α → ∞, tA(c, v + α1A) = 0 for all v ∈ supp(π),

and therefore, ρA(c+ α1A) = 0. Hence, Axiom 1.4 holds.

A.2 Proofs for Theorems 2 and 3

A.2.1 Proof for Theorem 2

(1) Proof of necessity.

By Möbius inversion formula (Grabisch, 2016, p. 49),

π(v : M(v, c+ α1A) = A) =
∑
A′⊆A

(−1)|A\A
′|π(v ∈ Rn+1

0 : M(v, c+ α1A′) ⊆ A′).

(A.2.1)

Below, Lemma 6 shows that under uniform tie-breaking, only generic points matter in the

inclusion-exclusion formula.

Lemma 6. Fix v. If 0 < tA(v, c+ α1A) < 1, then

∑
A′⊆A

(−1)|A\A
′|tA′(c+ α1A′) = 0.

Proof. 0 < tA(v, c + α1A) < 1 implies M(v, c + α1A) = C ∪ B where B ⊆ Z \ A, C ⊆ A.

In this case, tA′(v, c + α1A′) = 0 if C 6⊂ A′, and tA′(v, c + α1A′) = |C|
|C∪B| if C ⊆ A′ ⊆ A.

Therefore, WLOG, we only consider A′ = C ∪ Ã ⊆ A. Therefore,

∑
A′⊆A

(−1)|A\A
′
tA′(c+ α1A′) =

|C|
|C|+ |B|

∑
Ã⊆(A\C)

(−1)|(A\C)\Ã|

=
|C|

|C|+ |B|

|A\C|∑
i=0

(
|A \ C|

i

)
(−1)|(A\C)\i|

 =
|C|

|C|+ |B|
(1− 1)|A\C| = 0.
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Hence,
∑

A′⊆A(−1)|A\A
′|tA′(c+α1A′) > 0 ⇐⇒ tA(v, c+α1A) = 1 ⇐⇒ M(v, c+α1A) ⊆

A, and therefore π(v ∈ Rn+1
0 : M(v, c+ α1A′) ⊆ A′) = ρA′(c+ α1A′). So,

∑
A′⊆A

(−1)|A\A
′|π(v ∈ Rn+1

0 : M(v, c+ α1A′) ⊆ A′) =
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′).

(A.2.2)

By (A.2.1) and (A.2.2),

π(v : M(v, c+ 1α) = A) =
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′)).

By definition, π(v : M(v, c+ 1α) = A) ≤ π(v : M(v, c) = A). Hence,

ρi(c) =
∑

A⊆Z:i∈A

1

|A|
π{v ∈ Rn+1

0 : M(v, c) = A} by (1.3.1)

≥
∑

A⊆Z:i∈A

1

|A|
π{v ∈ Rn+1

0 : M(v, c+ 1α) = A}

=
∑

A⊆Z:i∈A

1

|A|
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′).

Therefore, Axiom 1.5 is necessary for the U-RQUM representation.

(2) Proof for sufficiency.

By Axiom 1.5,

ρi(c) ≥
∑

A⊆Z:i∈A

1

|A|
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′). (A.2.3)
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So,

∑
i∈Z

ρi(c) ≥
∑
i∈Z

∑
A⊆Z:i∈A

1

|A|
∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′) (A.2.4)

By definition, the left-hand side of (A.2.4) is equal to 1, and

RHS =
∑
A⊆Z

∑
A′⊆A

(−1)|A\A
′|ρA′(c+ α1A′).

Notice that limα→0 ρA(c + α1A) = ρ−A(c) = π{v ∈ Rn+1
0 : M(v, c) ⊆ A} =

∑
A′⊆A π{v ∈

Rn+1
0 : M(v, c) = A′}. So, by Möbius inversion,

∑
A′⊆A

(−1)|A\A
′|ρ−A′(c) = π(v ∈ Rn+1

0 : M(v, c) = A).

Therefore,

lim
α→0

∑
A⊆Z

∑
A′⊆A

(−1)|A\A
′|ρ−A′(c) =

∑
A⊆Z

π(v ∈ Rn+1
0 : M(v, c) = A) = 1.

This implies that when α→ 0, the righ-hand side of (A.2.4) is also equal to 1. Hence when

α→ 0, equality holds in (A.2.4), and thus, equality holds in (A.2.3):

ρi(c) =
∑

A⊆Z:i∈A

1

|A|
∑
A′⊆A

(−1)|A\A
′|ρ−A′(c).

This is precisely the representation (1.3.1).

A.2.2 Proof for Theorem 3

Axiom 3’ implies Axiom 1.4. By Lemma 1, Axioms 1.1, 1.2, and 1.4 imply that each ranking

can be represented by a quasi-linear type on the goods. For i = Z\{0}, take Vi as constructed

in step 1. By Axiom 3’, |Vi| = 1 or 2 for all i ∈ Z \{0}, WLOG, let |Vi| = 2 for all i ∈ Z \{0}.
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Then, we denote Vi = {u1
i , u

2
i }, u1

i , u
2
i ∈ R, u1

i < u2
i .

Suppose 0 < a < 1, a 6= 0.5. take vi ∈ Rn+1 to be such that ρ{0,i}(v
i) = 1. WLOG,

suppose ρ−i (u1
i , v

i
−i) = a for all i ∈ A ⊆ {1, ..., n}, and ρ−i (u1

i , v
i
−i) = 1 − a for all i ∈

{1, ..., n} \ A. Then, we can construct two types, v and v′, such that vi = u1
i for all i ∈ A,

and vj = u2
j for all j ∈ {1, ..., n} \ A, while v′i = u2

i for all i ∈ A, and v′j = u1
i for all

j ∈ {1, ..., n} \ A. In this case, π(v) = 1− a, π(v′) = a.

When a = 0.5, take v1 = u1
1, v
′
1 = u2

1. If ρ0(−ε, u1
1, u

1
2,∞, ...,∞) = 0.5, then v2 = u1

2,

v′2 = u2
2. If ρ0(−ε, u1

1, u
1
2,−∞, ...,−∞) = 0, then v2 = u2

2, v
′
2 = u1

2. Suppose we have

constructed v1, ..., vk and v′1, ..., v
′
k for k ≥ 2. If ρ0(−ε, v1, ..., vk, u

1
k+1,∞, ..,∞) = 0.5, and

vk+1 = u1
k+1 and v′k+1 = u2

k+1. If ρ0(−ε, v1, ..., vk, u
1
k+1,∞, ..,∞) = 0 then vk+1 = u2

k+1,

v′k+1 = u1
k+1. In this way, v and v′ can be constructed using this process.
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Appendix B

Proofs for Chapter 2

B.1 Baseline Model – Two-Agent Signaling Game

B.1.1 Settlement and Trial Choices

• Players: {Defendant (D), Victim (V), Nature(N)}

• Histories:

(1) N decides the state to be ωl or ωnl. D observes the state realization.

(2) V receives a signal z = {0, 1} regarding the state.

(3) V files a claim against D if z = 1; thus in cases filed P (ωl) = ps in equation (2.3.2).
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(4) D offers a settlement of σ to V.

(5) V decides whether to accept or to reject σ.

– If V accepts, D transfers σ to V.

– If V rejects, a court trial occurs. D loses and transfers amount d to V if and

only if liable.

– In a trial, the two parties also incur court costs cv and cd, for V and D,

respectively.

B.1.2 Pooling Equilibrium

B.1.2.1 σ = 0 when pd ≤ cv

V always accepts σ = 0 in equilibrium because

p(d− cv) + (1− p)(−cv) = pd− cv ≤ 0.

In such a case, D’s and V’s equilibrium payoffs are both 0.

B.1.2.2 σ∗ = pd− cv when cv
d
< p < cv+cd

d
< 1

• V accepts σ∗ in equilibrium. V’s equilibrium payoff is

πV = pd− cv.
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V has no incentive to deviate because the settlement amount is the same as the expected

payoff from litigation.

• V would go to court for a trial if D deviates and offers V 0:

p(d− cv) + (1− p)(−cv) > 0.

• However, D’s payoff is lower from a trial than that from a settlement. For a non-liable

D:

pd− cv < cd

For a liable D, the expected payout from a trial would be cd + d > cd > pd− cv.

• Therefore, D would not deviate.

B.1.2.3 No pooling equilibrium when pd ≥ cv + cd

• When pd ≥ cv + cd,

cd < p(d− cv) + (1− p)(−cv) < d+ cd.

• V will only accept offers σ ≥ p(d − cv) + (1 − p)(cv); however, D in Ω = ωnl would

prefer to offer 0 and pay cd in a trial rather than offering σ.

• D in Ω = ωl would prefer to offer σ rather than to offer 0 and incur costs d + cd from

a trial.
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B.1.3 Equilibria Selection: The Pooling Equilibrium σ∗ = pd − cv

When cv
d < p < cv+cd

d Do Not Survive the D1 Criterion

• D1 criterion: According to Cho and Kreps (1987), when there is a type t′ tho wishes

to defect and send message 0 whenever type t wishes to do so, then (t,m) is pruned

from the game. Formally,

Dt =

{
ϕ ∈MBR(T (m),m) : u∗(t) <

∑
r

u(t,m, r)ϕ(r)

}
,

D0
t =

{
ϕ ∈MBR(T (m),m) : u∗(t) =

∑
r

u(t,m, r)ϕ(r).

}

• That is, if for some type t there exists a second type t′ with Dt∪D0
t ⊆ Dt′ , then (t,m)

may be pruned from the game.

• u∗ is the expected payoff in equilibrium; ϕ is the receiver’s mixed best response to m;

and
∑

r u(t,m, r)ϕ(r) is the sender’s expected deviation payoff given the best response.

• Here, consider a liable and a non-liable D. They can both offer 0 as a settlement.

Because −cv < 0 and d− cv > 0, V plays the mixed strategy of accepting or rejecting

when the type is unknown. Let ϕ = (1 − y, y) represent the probability of (accept,

reject)

• For a non-liable D, −pd+ cv < (1− y) ∗ 0− ycd =⇒ y ≤ pd−cv
cd

.

• Therefore, Dnl = [0, pd−cv
cd

); D0
nl = [0, pd−cv

cd
].

• Similarly, for a liable D, Dl = [0, pd−cv
d+cd

); D0
l = [0, pd−cv

d+cd
].
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• Dl ∪D0
l ⊆ Dnl. Therefore, a liable D is pruned for sending a settlement of 0. In other

words, (t,m) = (liable, 0) is ruled out.

• Thus, whenever V sees a settlement of 0, V believes that this is from a non-liable D,

and will accept it. Therefore, a non-liable D will defect, and the pooling equilibrium

will be eliminated.

B.1.4 Separating Equilibrium with Randomization When cv < d

and p ≥ cv
d

• D offers 0 in ωnl with probability 1. In ωl, D offers 0 with probability x, and offers

σ∗ = d− cv with probability 1− x.

• Offer σ ≥ σ∗ is accepted; any offer of σ < σ∗ is rejected with probability r.

• When offered 0, V is indifferent regarding the choice between accepting and rejecting:

(
xp

xp+ (1− p)
)(d− cv) + (1− xp

xp+ (1− p)
)(−cv) = 0

xp

xp+ (1− p)
=
cv
d

=⇒ x =
1− p
p

cv/d

1− cv/d
.

Liable D is indifferent regarding the choice between offering σ∗ and offering 0:

− (d− cv) = r(−d− cd) + (1− r)0

=⇒ r =
1− cv/d
1 + cd/d

.
(B.1.1)

• Non-liable D prefers to offer 0 over σ∗ because d− cv > rcd.
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• V’s posterior belief is as follows: µs(ωl|σ∗) = 1, µs(ω1|0) = xp
xp+(1−p)

• The expected payoff for V is the following:

πV = p(1− x)(d− cv) + (1− p+ xp)r(−cv +
xp

xp+ 1− p
d).

• The expected payout for D is the following:

πD = −p(1− x)(d− cv) + r(1− p+ px)(−cd −
xp

xp+ 1− p
d).

• The trial rate among filed cases is the following: (1− p+ xp)r.

• The restrictions on the parameters are the following:

0 ≤ x, r =⇒ 0 ≤ cv
d
≤ 1,

x ≤ 1 =⇒ p ≥ cv
d
.

B.1.5 Summary of Equilibrium in the Baseline Model

The equilibrium of the baseline model is as follows:

(1) The main case is obtained when ps >
cv
d

. In such a case, there is a separating equilibrium

where,

(i) if non-liable, D offers zero settlement

(ii) if liable, D randomizes between two offers: zero with probability

x =
1− ps
ps

cv
d− cv

=
β1

1− β0

1− p0

p0

cv
d− cv

,
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and positive settlement amount

σ∗ = d− cv

with probability 1− x;

(iii) V accepts positive offers σ∗, and rejects the zero offers with probability

r =
d− cv
d+ cd

.

(2) When ps ≤ cv
d

, there is a pooling equilibrium where D offers zero to all Vs, and all Vs

accept it. This situation is equivalent to V not filing a court case.

B.1.6 Probabilities of Going to Trial and Winning at Trial

Under the separating equilibrium (when ps >
cv
d

), a trial occurs when V rejects D’s zero

offers. Therefore, the probability of a court trial among the cases filed is

(1− ps + psx)r = (1− ps)
1

1 + cd/d

=
β1(1− p0)

β1(1− p0) + (1− β0)p0

1

1 + cd/d
.

V’s probability of winning at trial is the proportion of ωl cases among the cases that go to

trial:

xp

1− p+ xp
= cv/d.
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Because a trial reveals the true state, such a winning rate is the true proportion of liable

cases among the cases that go to trial.

B.2 Three-Agent model When z = 0

• Players: { Defendant (D), Victim (V), Lawyer (L), Nature (N)}

• Histories:

(1) N decides the state. The state is ωl with probability p0, and is ωnl with probability

1− p0. D and L observe the realization of the state.

(2) Stage 0: V receives a signal z = {0, 1} regarding the state. Both L and D observe

z as well. L sends a signal m = {0, 1} to V when z = 0. As a result, V files not

only z = 1 cases but also some z = 0 cases.

(3) D offers settlement σ to V.

(4) V decides whether to accept or reject σ according to V’s posterior belief. If V

rejects σ, a trial occurs.

B.2.1 L’ Persuasion Signal to V

Proof of Proposition 2.4.1

Proof for Proposition 2.4.1. For L to be credible we need to require that

µs(ωl) = P (m = 1)P (ωl | m = 1) + P (m = 0)P (ωl | m = 0) = µ0
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That is, V’s posterior belief after receiving L’s signal is the same as the true state (which is

also the same as her prior belief).

For V to follow L’s signal and file a case whenever m = 1, V’s posterior belief after

receiving m = 1 should be equal to or greater than µt, the threshold for filing a claim.

P (ωl | m = 1) =
P (ωl,m = 1)

P (m = 1)
≥ µt. (B.2.1)

Therefore, under L’s signaling strategy, the proportion of case filings is P (m = 1). L’s

objective is to bring about as many case filings as possible. In other words,

maxP (m = 1)

We denote L’s signal as follows.

P (m = 1 | ωl) = x, P (m = 0 | ωl) = 1− x,

P (m = 1 | ωnl) = y, P (m = 0 | ωnl) = 1− y.
(B.2.2)

Therefore,

P (m = 1) = P (m = 1 | ωl)P (ωl) + P (m = 1 | ωnl)P (ωnl) = xµ0 + y(1− µ0),

P (m = 0) = P (m = 0 | ωl)P (ωl) + P (m = 0 | ωnl)P (ωnl) = (1− x)µ0 + (1− y)(1− µ0),

P (ωl | m = 1) =
P (ωl,m = 1)

P (m = 1)
=

xµ0

xµ0 + y(1− µ0)
,

P (ωl | m = 0) =
P (ωl,m = 0)

P (m = 0)
=

(1− x)µ0

(1− x)µ0 + (1− y)(1− µ0)
,

µs(ωl) = P (ωl = 1,m = 1) + P (ωl,m = 0) = xµ0 + (1− x)µ0 = µ0.
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Thus, L must solve the following maximization problem:

max
x,y

xµ0 + y(1− µ0)

s.t.
xµ0

xµ0 + y(1− µ0)
≥ µt

Notice that as x increase, the left hand side increases. Therefore, we can set x = 1. As

y increases, the left hand side decreases. Therefore, the constraint is binding; that is,

xµ0

xµ0 + y(1− µ0)
= µt, x = 1 =⇒ y =

µ0

1− µ0

1− µt
µt

.

=⇒ P (m = 1) =
µ0

µt

Plug x, y back into (7), we obtain L’s optimal signal, which is of the form in (5). The total

number of claims filed is P (m = 1) = µ0
µt
> µ0 if µ0 < µt.

Proof of Proposition 2.4.2 V’s signal z is distributed as follows:

P (z = 1) = (1− β0)p0 + β1(1− p0),

P (z = 0) = β0p0 + (1− p0)(1− β1).

Among z = 0 cases, the probability that D is liable (ωl) is

p′s = P (ωl|z = 0) =
β0p0

β0p0 + (1− p0)(1− β1)
< ps.

Proof of Proposition 2.4.2. L’s signaling strategy: As determined in equation (2.3.3), when

z = 0, V’s prior probability that D is liable (ωl) is

p′s = P (ωl|z = 0) =
β0p0

β0p0 + (1− p0)(1− β1)
< ps
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L’s optimal signal is described in Proposition 2. In equilibrium, L solicits all liable cases

and some non-liable cases until V’s payoff from accepting the solicitation is the same as

the payoff from rejecting the solicitation, which is 0. Modifying (5) in proposition 2.4.1 by

replacing µ0 = p′s and µt = cv+f+f0
ξd

, the lawyer’s optimal signal in this game is as follows.

P (m = 1|ωl) = 1,

P (m = 0|ωl) = 0,

P (m = 1|ωnl) =
p′s

1− p′s
ξd− cv − f − f0

cv + f + f0

=
β0

1− β1

p0

1− p0

ξd− cv − f − f0

cv + f + f0

,

P (m = 0|ωnl) = 1− P (m = 1|ωnl).

As a result, V’s posterior belief after receiving L’s signal is as follows.

µ′s(ωl|m = 1, z = 0) =
cv + f + f0

ξd
>
cv
d
,

µ′s(ωl|m = 0, z = 0) = 0.

L sends signal m = {0, 1} to V if z = 0. Let L’s strategy in z = 0 be

P (m = 1|ωl) = 1,

P (m = 0|ωl) = 0,

P (m = 1|ωnl) = k,

P (m = 0|ωnl) = 1− k.

This is the optimal signal in proposition 2. Therefore,

µ′s(ωl|m = 1) =
p′s

p′s + k(1− p′s)
,

µ′s(ωl|m = 0) = 0.

128



V files cases when m = 1. Denote the probability of D being liable in z = 0 cases filed as p̄.

Therefore,

p̄ = µ′s(ωl|m = 1) =
p′s

p′s + k(1− p′s)
.

The amount cases filed is:

P (z = 0) ∗ (p′s + k(1− p′s))

Such signal a is credible because

p′s = µ′s(ωl|m = 0)p(m = 0) + µ′s(ωl|m = 1)p(m = 1) = 0 + p̄ ∗ (p′s + k(1− p′s)) = p′s.

B.2.2 Pooling Equilibrium in the Three-Agent model when ξd >

cv + f + f0

Suppose ξd ≤ cv + f + f0. In such a case, by accepting, V’s payoff is less than 0. Thus,

V does not take L’s advice and does not file a case. Therefore, for a pooling equilibrium to

exist, ξd ≥ cv + f + f0.

B.2.2.1 Case 1: σ∗ = f0 when ξd > cv + f + f0 and f0 < cd

Suppose there is a pooling equilibrium where D offers ξdp̄ − cv − f to all, and V accepts

this offer. For V to accept L’s advice and file a case, V’s payoff from filing her case must be

equal to or greater than not filing her case:
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ξdp̄− cv − f − f0 ≥ 0 =⇒ ξdp̄ ≥ cv + f + f0.

V’s belief upon seeing the offer is still p̄, and thus V has no incentive to deviate. To sustain

such an equilibrium, a non-liable D must be willing to offer a settlement rather than go to

a court trial. This requires

ξdp̄− cv − f ≤ cd =⇒ ξdp̄ ≤ cd + cv + f.

Therefore, when cv + f + f0 ≤ ξdp̄ ≤ cd + cv + f , there is a pooling equilibrium where D

offers ξdp̄− cv − f to all, and V accepts this offer. This equilibrium requires f0 < cd.

L is paid f0 when V files a case. L’s payoff is

πL = f0(P (z = 0) ∗ (p′s + k(1− p′s))).

The only parameter that L controls in this equation is k. Thus, L wants to increase k. In

other words, L wants to have the lowest p̄ = p′s
p′s+k(1−p′s)

. Therefore, p̄ =
cf+f+f0

ξd
. Note that

ξdp̄ > cf + f + f0 is always satisfied. Thus,

p̄ =
p′s

p′s + k(1− p′s)
=
cv + f + f0

ξd

=⇒ k =
p′s

1− p′s
ξd− cv − f − f0

cv + f + f0

.

(B.2.3)

In equilibrium, when ξd > cv + f + f0 and f0 < cd, D offers f0 to V, and V accepts.

B.2.2.2 Case 2: No Pooling Equilibrium When ξd > cv + f + f0 and f0 > cd

Suppose ξdp̄ > cd + cv + f . This implies that f0 > cd. In such a case, a non-liable D would

prefer a court trial over offering the settlement amount of ξdp̄ − cv − f . Thus, there is no
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pooling equilibrium.

B.2.3 Equilibrium Selection: Pooling Equilibrium When f0 < cd

Can Be Eliminated by the D1 Criterion

We apply the D1 criterion the same way as in Appendix A.4.

• Consider the situation where both liable and non-liable Ds offer 0 as a settlement.

Because −cv− f < 0 and ξd− cv− f > 0, V plays a mixed strategy. Let ϕ = (1− y, y)

be the probability of (accept, reject).

• For a non-liable D, −f0 < (1− y) ∗ 0− y ∗ (cd) =⇒ y < f0
cd

.

• For a liable D, −f0 < (1− y) ∗ 0− y ∗ (cd + d) =⇒ y < f0
cD

.

• Therefore, Dnl =
[
0, f0

cd

)
, D0

nl =
[
0, f0

cd

]
; Dl =

[
0, f0

cd+d

)
, D0

l =
[
0, f0

cd+d

]
.

• Because Dl ∪D0
l ⊆ Dnl, a liable D is pruned from sending a settlement of zero by the

D1 criterion.

• Therefore, whenever V sees a settlement of zero, V believes it is from a non-liable, and

will accept it because −cv − f < 0. As a result, a non-liable D will defect and the

pooling equilibrium will be eliminated.

B.2.4 Separating Equilibrium with Randomization When ξd ≥ cv+

f + f0.
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D’s offer is:

σ∗ =


ξd− cv − f by liable D with probability 1-x

0 by non-liable D w.p. 1, by liable D w.p. x.

V’s action is:

σ∗ =


ξd− cv − f accepted by V,

0 rejected by V with probability r.

In the settlement game, for V to randomize, V must be indifferent regarding the choice

between rejecting and accepting 0:

xp̄

xp̄+ 1− p̄
(ξd− cv − f) +

1− p̄
xp̄+ 1− p̄

(−cv − f)− f0 = −f0,

=⇒ x =
1− p̄
p̄

cv + f

ξd− cv − f
.

For a liable D to randomize, the liable D must be indifferent regarding the choice between

a settlement and a trial:

ξd− cv − f = 0 + r(d+ cd) =⇒ r =
ξd− cv − f
d+ cd

For V to be willing to file a case in the first place, πV ≥ 0, this puts a restriction on

p̄:

πV = (ξd− cv − f − f0)p̄(1− x) + (−f0)(1− p̄+ xp̄)

= (ξd− cv − f)p̄(1− x)− f0 ≥ 0

=⇒ p̄ ≥ f0

(ξd− cv − f)(1− x)
.
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We then plug in x,

p̄ ≥ p̄f0

ξdp̄− cv − f

=⇒ p̄(ξdp̄− cv − f − f0) ≥ 0

=⇒ p̄ ≥ cv + f + f0

ξd
.

L’s payoff in such a game would be:

πL = P (z = 0)(p′s + k(1− p′s))(f0 + (1− p̄+ xp̄)r(f +
xp̄

1− p̄+ xp̄
(1− ξ)d))

= P (z = 0)

(
p′sf0 + (1− p′s)

(
f0 +

ξd

d+ cd

(
f +

1− ξ
ξ

(cv + f)

))
k

)
.

(B.2.4)

Because πL increases with k, L wants to increase k, which is the equivalent of decreasing p̄

from equation (2.4.4). Therefore,

p̄ =
cv + f + f0

ξd
=

p′s
p′s + k(1− p′s)

=⇒ k =
p′s

1− p′s
ξd− cv − f − f0

cv + f + f0

.

(B.2.5)

We then plug in k to obtain x:

x =
1− p̄
p̄

cv + f

ξd− cv − f

=
ξd− cv − f − f0

ξd− cv − f
cv + f

cv + f + f0

.

Thus, the probability of a trial among the cases filed because of L’s solicitation is:

P (z = 0)(p′s + k(1− p′s))(1− p̄+ xp̄)r

= P (z = 0)p′s
ξd

d+ cd

ξd− cv − f − f0

cv + f + f0

.
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The probability of winning at trial is:

xp̄

1− p̄+ xp̄
=
cv + f

ξd
.

B.2.5 Summary of Equilibrium in Three-Agent Model When Z =

0

In equilibrium, V’s belief that D liable is p̄ = cv+f+f0
ξd

in z = 1 cases. V hires L only

when ξd− cv− f − f0 > 0. There, there is a separating equilibrium with randomization. L’s

signal is as follows:

k =
p′s

1− p′s
ξd− cv − f − f0

cv + f + f0

=
β0

1− β1

p0

1− p0

ξd− cv − f − f0

cv + f + f0

.

D’s offer is as follows:

σ∗ =


ξd− cv − f by liable D with probability 1-x,

0 by non-liable D w.p. 1, by non liable D w.p. x.

V’s strategy is as follows:

σ∗ =


ξd− cv − f accepted by V,

0 rejected by V with probability r.

where

x =
ξd− cv − f − f0

ξd− cv − f
cv + f

cv + f + f0

, r =
ξd− cv − f
d+ cd

.
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B.2.6 Proof of Propositions 2.4.5 and 2.4.6

Proof of Proposition 2.4.5

Proof of Proposition 2.4.5. 1. When z = 0, V hires L only when ξd ≥ cv + f + f0. When

z = 1, V hires L only when ξdps ≥ cv + f + f0. Ceteris paribus, such conditions are

more likely to be satisfied when f, f0, 1− ξ are low and when d is high.

2. When V is more likely to make a type II error, namely, when β0 is higher, P (z = 0) =

β0p0 + (1 − p0)(1 − β1) and p′s are both higher. L corrects such a type II error when

z = 0, and increases the total number of cases by P (z = 0)p′s
ξd

cv+f+f0
. Thus, a higher β0

would mean that the lawyer’s solicitation is more likely to be successful. When z = 1,

V hires L when ξdps ≥ cv + f + f0, and thus, is more likely to hire L when ps is high,

namely, when V’s signal is more precise.

Proof of Proposition 2.4.6

Proof of Proposition 2.4.6. 1. The increase in the number of cases filed follows from equa-

tion (2.4.4). No pooling equilibrium follows from the equilibrium characterizations

found in propositions 4 and 5.

2. This conclusion follows from equilibrium trial wining rates proposition 1(3) and equa-

tions (2.4.6) and 2.5.1.

3. This conclusion follows from equilibrium characterizations in proposition 4 and 5.
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B.3 Three Agent Model When z = 1 and ξdps ≥ cv + f +

f0

When z = 1, L does not affect V’s belief. Rather, L increases the trial winning rate in cases

where D is liable. Suppose ξdps ≤ cv + f + f0. With such parameters, V’s expected payoff

for filing a case is less than 0. Therefore, V would not hire a lawyer, and this situation would

reduce to the two-agent signaling game. V only hires L when ξdps ≥ cv + f + f0.

B.3.1 Pooling Equilibrium When ξdps ≤ cv + f + cd

Suppose there is a pooling equilibrium where D offers ξdps − cv − f to all, and V accepts

this offer. To sustain such an equilibrium, a non-liable D must prefer to settle rather than

go to trial. f0 is considered a sunk cost, and thus, does not affect the offer. Thus,

ξdps − cv − f ≤ cd.

Therefore, when cv + f + f0 ≤ ξdps ≤ cv + f + cd there is a pooling equilibrium where D

offers ξdps − cv − f to all, and V accepts.

When ξdps > cv+f+f0 +cd, a non-liable D would not offer such a settlement and would

prefer to go to trial. hence, there is no pooling equilibrium.

B.3.2 Equilibrium Selection: D1 Criterion Prunes Pooling Equi-

librium

The pooling equilibrium when cv + f + f0 ≤ ξdps ≤ cv + f + f0 + cd can be pruned by the

D1 criterion as in Appendices A.4 and B.3. D1 criterion states that when there is type t′

wishes to defect and send message m whenever type t wishes to do so, then (t,m) is pruned

from the game. In our case, whenever liable D wants to send 0, then non-liable D wants to

136



send 0. Thus (liable, 0) is ruled out. Therefore, non-liable D would only offer 0. The pooling

equilibrium does not survive the D1 criterion.

B.3.3 Separating Equilibrium with Randomization

In a separating equilibrium with randomization, D and V’s strategies are as follows.

D’s offer is:

σ∗ =


ξd− cv − f by liable D with probability 1-x,

0 by non-liable D w.p. 1, by non liable D w.p. x.

V’s action is:

σ∗ =


ξd− cv − f accepted by V,

0 rejected by V with probability r.

V’s must be indifferent regarding the choice between rejecting and accepting 0:

xps
xps + 1− ps

(ξd− cv − f) +
1− ps

xps + 1− ps
(−cv − f)− f0 = −f0

=⇒ x =
1− ps
ps

cv + f

ξd− cv − f
.

For a liable D to randomize, the payoff from a settlement and from a trial would need

137



to be the same:

ξd− cv − f = 0 + r(d+ cd)

=⇒ r =
ξd− cv − f
d+ cd

.

For V to be willing to file a case, πV ≥ 0:

πV = (ξd− cv − f − f0)ps(1− x) + (−f0)(1− ps + xps)

= (ξd− cv − f)ps(1− x)− f0 ≥ 0

=⇒ ps ≥
f0

(ξd− cv − f)(1− x)
.

We then plug in x to restrict the parameters,

ps ≥
psf0

ξdps − cv − f

=⇒ ps(ξdps − cv − f − f0) ≥ 0

=⇒ ξdps ≥ cv + f + f0.

Such a condition is always satisfied in the assumption of this subsection.

The probability of a trial is

(1− ps + xps)r = (1− ps)
ξd

d+ cd
.

The probability of winning at trial is:

xps
1− ps + xps

=
cv + f

ξd
.
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B.3.4 Summary of the Three-Agent Settlement Game When z=1

• V only hires L when ξdps ≥ cv + f + f0.

• There only exists a separating equilibrium:

σ∗ =


ξd− cv − f by liable D with probability 1-x,

0 by non-liable D w.p. 1, by non liable D w.p. x.

V’s action is the following:

σ∗ =


ξd− cv − f accepted by V,

0 rejected by V with probability r,

where

x =
1− ps
ps

cv + f

ξd− cv − f
=

1− p0

p0

1− β1

β0

cv + f

ξd− cv − f

r =
ξd− cv − f
d+ cd

.

Notice that in V’s and D’s strategy spaces, V’s randomization strategy, r, and the trial

winning rate are the same as those in the scenario of the lawyer’s solicitation when z = 0

in Appendix B; while the trial probabilities and D’s randomization strategies, x, in the two

situations are different.

B.3.5 Calculation for numerical example in subsection 2.4.6.1

Without lawyers, V gets z = 1 in 100∗0.7+900∗0.1 = 160 injuries. V files claims against
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D in all 160 cases for which she thinks D is liable. Thus, ps = 0.1∗0.7
0.7∗0.1+0.1∗0.9 = 0.4375 by

(2). According to propositions 1(2), because ps = 0.4375 > cv
d

= 0.05, there is a separating

equilibrium where V files 160 cases against D. By Proposition 1(2), the randomization of V

and D are x = 1−0.4375
0.4375

50
950
≈ 0.068, and r = 950

1100
≈ 0.86. Therefore, V obtains a settlement

of $950 in 70(1 − x) ≈ 65 liable cases. There are r(160 − 65) ≈ 82 trials, and V only win

around 70− 65 = 5 of them. Thus, the trial winning rate is around 6%.

When V is represented by L, in the 160 injuries for which V gets z = 1, there are 70

liable cases. By Proposition 5(b), x = 1−0.4375
0.4375

50+100
700−50−100

≈ 0.35, and r = 700−50−100
1000+100

≈ 0.5.

Therefore, with the help of L, V gets a settlement of $550 ($700− $50− $100 = $550) from

D in 70(1− x) ≈ 45 of the 70 liable cases. Court trials occur in around r ∗ (160− 45) ≈ 57

cases, among which, about 57∗ 70−45
160−45

≈ 12 are liable. Thus, V’s trial winning rate is 12
57
≈ 21

%.

In the 840 injuries for which V gets z = 0, D is liable in 100 ∗ 0.3 = 30 of them. By

(7), L can persuade V to file around 0.3 ∗ 0.1 ∗ 700
50+100+20

∗ 1000 ≈ 124 claims against D –

among them, there are all the 30 liable cases and around 94 non-liable cases. In equilibrium,

x = 700−50−100−20
700−50−100

× 50+100
50+100+20

≈ 0.85, and r = 700−50−100
1000+100

≈ 0.5. Thus, D offers a settlement

of $(700− 50− 100) = 550 to V in about 30 ∗ (1−x) ≈ 5 liable cases, and offers $0 in all the

remaining cases. In the end, (124− 5) ∗ r ≈ 60 cases go to trial, and V wins 60 ∗ 30−5
124−5

≈ 13

of them, resulting in a winning probability rate of 21%.
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B.4 Extension 1: When L is Imperfectly Informed

L gets a noisy signal, s:

P (s = 1|ωl) = 1− θ0,

P (s = 0|ωl) = θ0 (a false negative, or type II error),

P (s = 1|ωnl) = θ1 (a false positive, or a type I error),

P (s = 0|ωnl) = 1− θ1.

Therefore, L’s posterior belief after this signal is:

µd = P (ωl | s = 1) =
p0(1− θ0)

p0(1− θ0) + (1− p0)θ1

,

µ′d = P (ωl | s = 0) =
p0θ0

p0θ + (1− p0)(1− θ1)
.

B.4.1 L’s Persuasion Signaling Strategy

L’s signaling strategy would be as follows:

P (m = 1|s = 1) = 1

P (m = 0|s = 1) = 0

P (m = 1|s = 0) = k

P (m = 0|s = 0) = 1− k

In other words, L’s strategy m = {0, 1} only depends on s:

P (ω,m | s) = P (ω | s)P (m | s)

Therefore, the state ω and L’s signal m to b are mutually independent, conditional on the

signal s. Intuitively, L distinguishes state ωl from state ωnl only as well as his signal, s. If
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L’s signal is s = 1, he tells V that D is liable; and if L’s signal is s = 0, with some probability

k, he tells V that L is liable. L’s signal has the following distribution:

P (s = 1) = P (s = 1 | ωl)P (ωl) + P (y =| ωnl)P (ωnl)

= (1− θ0)p0 + θ1(1− p0),

P (s = 0) = P (s = 0 | ωl)P (ωl) + P (y = 0 | ωnl)P (ωnl) = θ0p0 + (1− p0)(1− θ1).

Therefore, the signal m that V receives from L has the following probabilities:

P (m = 1) = P (m = 1 | s = 1)P (s = 1) + P (m = 1 | s = 0)P (s = 0)

= P (s = 1) + kP (s = 0)

= (1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)],

P (m = 0) = 1− P (m = 1)

= (1− k)[1− θ1 − p0(1− θ0 − θ1)].

Given L’s signal quality, and the fact that m and ω are mutually independent conditional

on s, we obtain the following joint probability distribution for the true state and L’s signal
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to V, m, which is conditional on L’s own signal s:

P (ωl,m = 1 | s = 1) = P (ωl | s = 1)P (m = 1 | s = 1) = µd =
p0(1− θ0)

p0(1− θ0) + (1− p0)θ1

,

P (ωl,m = 0 | s = 1) = P (ωl | s = 1)P (m = 0 | s = 1) = 0,

P (ωnl,m = 1 | s = 1) = P (ωnl | s = 1)P (m = 1 | s = 1) = 1− µd =
(1− p0)θ1

p0(1− θ0) + (1− p0)θ1

,

P (ωnl,m = 0 | s = 1) = (ωnl | s = 1)P (m = 0 | s = 1) = 0,

P (ωl,m = 1 | s = 0) = (ωl | s = 0)P (m = 1 | s = 0) = kµ′d =
kp0θ0

p0θ0 + (1− p0)(1− θ1)
,

P (ωl,m = 0 | s = 0) = (ωl | s = 0)P (m = 0 | s = 0) = (1− k)µ′d =
(1− k)p0θ0

p0θ0 + (1− p0)(1− θ1)
,

P (ωnl,m = 1 | y = 0) = (ωnl | s = 0)P (m = 1 | s = 0) = k(1− µ′d) =
k(1− p0)(1− θ1)

p0θ0 + (1− p0)(1− θ1)
,

P (ωnl,m = 0 | y = 0) = (ωnl | s = 0)P (m = 0 | s = 0) = (1− k)(1− µ′d) =
(1− k)(1− p0)(1− θ1)

p0θ0 + (1− p0)(1− θ1)
.

By Bayes rule, the conditional probabilities of the true state on L’s own signal s and L’s

signal to V, s, are as follows:

P (ωl | m = 1, s = 1) = P (ωl,m = 1 | s = 1)/P (m = 1) =
µd

P (m = 1)
,

P (ωl | m = 0, s = 1) = P (ωl,m = 0 | s = 1)/P (m = 0) = 0,

P (ωnl | m = 1, s = 1) = P (ωnl,m = 1 | s = 1)/P (m = 1) =
1− µd

P (m = 1)
,

P (ωnl | m = 0, s = 1) = P (ωnl,m = 0 | s = 1)/P (m = 0) = 0,

P (ωl | m = 1, s = 0) = P (ωl,m = 1 | s = 0)/P (m = 1) =
kµ′d

P (m = 1)
,

P (ωl | m = 0, s = 0) = P (ωl,m = 0 | s = 0)/P (m = 0) =
(1− k)µ′d
P (m = 0)

,

P (ωnl | m = 1, s = 0) = P (ωnl,m = 1 | s = 0)/P (m = 1) =
k(1− µ′d)
P (m = 1)

,

P (ωnl | m = 0, s = 0) = P (ωnl,m = 0 | s = 0)/P (m = 0) =
(1− k)(1− µ′d)
P (m = 0)

.
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Therefore, a signal m from L conveys the following information:

P (ωl | m = 1) = P (ωl | m = 1, s = 1)P (y = 1) + P (ωl | m = 1, s = 0)P (s = 0)

=
µd

P (m = 1)
P (s = 1) +

kµ′d
P (m = 1)

P (s = 0)

=
µdP (y = 1) + kµ′dP (y = 0)

P (s = 1) + kP (y = 0)

=
p0

p0(1− θ0) + (1− p0)

[
1− θ0

1 + k θ0p0+(1−p0)(1−θ1)
(1−θ0)p0+θ1(1−p0)

+
θ0

1 + 1
k

(1−θ0)p0+θ1(1−p0)
θ0p0+(1−p0)(1−θ1)

]
,

P (ωl | m = 0) = P (ωl | m = 0, s = 1)P (s = 1) + P (ωl | m = 0, s = 0)P (s = 0)

=
kµ′d

P (m = 0)
P (s = 0)

=
kµ′d

P (y = 1) + kP (s = 0)
P (s = 0)

=
kp0θ0

p0θ0 + (1− p0)(1− θ1)

θ0p0 + (1− p0)(1− θ1)

(1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)]

=
p0

p0θ0 + (1− p0)(1− θ1)

θ0

1 + 1
k

(1−θ0)p0+θ1(1−p0)
θ0p0+(1−p0)(1−θ1)

,

P (ωnl | m = 1) = 1− P (ωl | m = 1),

P (ωnl | m = 0) = 1− P (ωl | m = 0).

Thus, we can see that P (ωl | m = 1) increases with k, whereas P (ωl | m = 0) increases

with k only when θ0 > 0.5. (Denote x = k θ0p0+(1−p0)(1−θ1)
(1−θ0)p0+θ1(1−p0)

. Then d
dm

(1−θ0
1+m

+ θ0
1+1/m

) =

2θ0−1
(m+1)2

.)

144



L’s signal given his strategy and given the imperfect information, is the following:

P (m = 1 | ωl) =
P (ωl | m = 1)P (m = 1)

p0

=
µdP (s = 1) + kµ′dP (s = 0)

p0

=
(1− θ0)

p0(1− θ0) + (1− p0)θ1

[(1− θ0)p0 + θ1(1− p0)]

+
kθ0

p0θ0 + (1− p0)(1− θ1)
[θ0p0 + (1− p0)(1− θ1)]

= 1− θ0 + kθ0,

P (m = 1 | ωnl) =
P (ωnl | m = 1)P (m = 1)

1− p0

=
P (m = 1)− µdP (s = 1)− kµ′dP (s = 0)

1− p0

=
P (s = 1) + kP (s = 0)− µdP (s = 1)− kµ′dP (s = 0)

1− p0

=
P (s = 1)(1− µd)− kP (s = 0)(1− µ′d)

1− p0

=
[(1− θ0)p0 + θ1(1− p0)]

[
(1−p0)θ1

p0(1−θ0)+(1−p0)θ1

]
1− p0

−
[θ0p0 + (1− p0)(1− θ1)]

[
k(1−p0)(1−θ1)

p0θ0+(1−p0)(1−θ1)

]
1− p0

= θ1 − k(1− θ1),

P (m = 0 | ωl) = 1− P (m = 1 | ωl) = (1− k)θ0,

P (m = 0 | ωnl) = 1− P (m = 1 | ωnl) = (1 + k)(1− θ1).

From the above, we have now obtained L’s persuasion signaling strategy as a function

of his information. Next, we solve for k in the signaling game. The assumptions regarding

the parameters in the models are as follows: 0 < θ1, θ0 < 0.5, k < θ1
1−θ1 < 1.

B.4.2 L’s Solicitation When z = 0

Before receiving L’s signal, V’s prior belief that D is liable is p′s.

p′s = P (ωl|z = 0) =
β0p0

β0p0 + (1− p0)(1− β1)
.
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L can cause V’s posterior belief to be the following:

µv(ωl | m = 1) =
P (m = 1 | ωl)p′s

P (m = 1)
=

(1− θ0 + kθ0)p′s
(1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)]

,

µv(ωl | m = 0) =
P (m = 0 | ωl)p′s

P (m = 0)
=

θ0p
′
s

1− θ1 − p0(1− θ0 − θ1)
.

We want to find out how µv changes with k. Thus, we take the following derivatives:

∂µv(ωl | m = 1)

∂k
=

(1− p0)p′s(θ0 + θ1 − 1)

(...)2
< 0,

∂µv(ωl | m = 0)

∂k
= 0.

If k increase (L sends more of m = 1 when he receives s = 0), V’s posterior belief of D being

liable after receiving m = 1 decreases. However, V’s posterior belief of D being liable after

receiving m = 0 is not affected by the change of k. Comparing this situation with the result

found in Appendix B, we can see that k affects V’s posterior belief in the same way.

V files a case when m = 1. Thus, the number of cases filed is

P (m = 1) = (1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)].

The probability that D is liable in the cases filed is the following:

p̄v = µv(ωl | m = 1) =
(1− θ0 + kθ0)p′s

(1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)]

=
(1− θ0 + kθ0)

(1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)]

β0p0

β0p0 + (1− p0)(1− β1)

To solve for k, we identify the equilibrium in the game.
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B.4.2.1 Pooling Equilibrium when ξd > cv + f + f0

V will only hire L when ξd > cv + f + f0. This is because when ξd ≤ cv + f + f0, D

will offer 0 in a settlement, and the highest possible amount V would get from a trial is

ξd− cv − f − f0 < 0.

B.4.2.2 Separating Equilibrium with Randomization

When ξd > cv + f + f0, there is a separating equilibrium in V’s strategy:

p̄v =
cv + f + f0

ξd
.

Therefore, V’s and D’s randomization strategies – x and r, respectively, – are the same as

those found in section Appendix B. This also give the value of k as follows:

k =
ξd(1− θ0)p′s − (cv + f + f0)[(1− θ0)p0 + θ1(1− p0)]

(cv + f + f0)[θ0p0 + (1− p0)(1− θ1)]− ξdθ0p′s
,

1− k =
cv + f + f0 − ξdp′s

(cv + f + f0)[θ0p0 + (1− p0)(1− θ1)]− ξdθ0p′s
.

The wining rate from a trial is the same as that found in section section 3:

xp̄v
1− p̄v + xp̄v

=
cv + f

ξd
.
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The number of cases filed increases by the following:

P (m = 1) ∗ P (z = 0) = {(1− θ0)p0 + θ1(1− p0) + k[θ0p0 + (1− p0)(1− θ1)]} ∗ P (z = 0)

=
ξdp′s(1− p0)(1− θ0 − θ1)

[θ0p0 + (1− p0)(1− θ1)](cv + f + f0)− ξdθ0p′s
∗ P (z = 0)

When θ1 = θ0 = 0, the number of cases filed is ξdp′s
cv+f+f0

, which is the case when L is fully

informed. The probability of a trial increases by the following:

P (z = 0) ∗ P (m = 1) ∗ (1− p̄v + xp̄v)r

= P (z = 0) ∗ P (m = 1) ∗ ξd− cv − f − f0

d+ cd
.

Thus, when L has imperfect information, the winning rate at trial is still cv+f
ξd

. If L is

more informed than V (L’s signal s is less noisy), L can increase litigation. If L is almost

perfectly informed, the equilibrium converges to the perfectly informed L situation discussed

in section 3.

B.4.3 Equilibrium when z = 1 is not Affected

When L receives an imperfect signal, the equilibrium when z = 1 is not affected, as L does

not need to solicit V. The assumption is that after V voluntarily hires L, L becomes fully

informed during the discovery stage.

B.5 Extension 2: L’s Solicitation When Altruistic
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Consider the situation where L internalizes V’s utility:

UL = (1− δ)πL + δπV , δ ∈ [0, 1].

As before, according to Proposition 2, L’s persuasion signal to V is:

P (m = 1|ωl) = 1,

P (m = 0|ωl) = 0,

P (m = 1|ωnl) = k,

P (m = 0|ωnl = 1− k, 0 ≤ k ≤ 1.

Under such a signaling strategy, and given that V’s prior belief that D is liable is p′s, V’s

posterior belief is p̄ = p′s
p′s+k(1−p′s)

.

We consider only the case where ξd ≥ cv + f + f0, and there is only a separating

equilibrium:

1. If not liable, D offers zero settlement, and there is no litigation.

2. If liable, D randomizes between two offers: zero with probability

x =
1− p̄
p̄

cv + f

ξd− cv − f
,

and a positive settlement amount,

σ∗ = ξd− cv − f

with probability 1-x.
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3. V accepts positive offer σ∗, and rejects zero offers with probability

r =
ξd− cv − f
d+ cd

.

Therefore, pwin = xp̄
1−p̄+xp̄ .

V’s incentive compatibility requires the following:

πV = (ξd− cv − f − f0)p̄(1− x) + (−f0)(1− p̄+ xp̄)

= (ξd− cv − f)p̄(1− x)− f0 ≥ 0

=⇒ p̄ ≥ f0

(ξd− cv − f)(1− x)

=⇒ p̄ ≥ cv + f + f0

ξd
.

Under such a signaling strategy, L’s payoff in equilibrium is:

πL = (p′s + k(1− p′s))(f0 + (1− p̄+ xp̄)r(f +
xp̄

1− p̄+ xp̄
(1− ξ)d))

= p′sf0 + (1− p′s)
(
f0 +

ξd

d+ cd

(
f +

1− ξ
ξ

(cv + f)

))
k

= p′sf0 + (1− p′s)
(
f0 +

d

d+ cd
(f + (1− ξ)cv)

)
k.

V’s payoff in equilibrium for each case filed is:

πv = (ξd− cv − f − f0)p̄(1− x) + (1− p̄+ xp̄)(1− r)(−f0)+

(1− p̄+ xp̄)r

[
xp̄

1− p̄+ xp̄
(ξd− cv − f − f0) +

1− p̄
1− p̄+ xp̄

(−cv − f − f0)

]
= ξdp̄− cv − f − f0

=
p′sξd

p′s + k(1− p′s)
− cv − f − f0
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Thus, V’s expected payoff in equilibrium under L’s signaling strategy is:

πV = (p′s + k(1− p′s))πv

= p′sξd− (cv + f + f0)(p′s + k(1− p′s)).

Therefore, L’s utility is:

UL = (1− δ)πL + δπV

= (1− δ)
{
p′sf0 + (1− p′s)

(
f0 +

d

d+ cd
(f + (1− ξ)cv)

)
k

}
+ δ[p′sξd− (cv + f + f0)(p′s + k(1− p′s)].

By the first order condition,

∂UL
∂k

= (1− δ)(1− p′s)
(
f0 +

d

d+ cd
(f + (1− ξ)cv)

)
− δ(cv + f + f0)(1− p′s) > 0

=⇒ δ < δ∗ =
1

1 + κ
, κ =

cv + f + f0

f0 + 1
1+cd/d

(f + (1− ξ)cv)
.

Therefore, when δ < δ∗, L’s optimal strategy is to choose the highest k possible. Because

p̄ = p′s
p′s+k(1−p′s)

≥ cv+f+f0
ξd

, kmax = p′s
1−p′s

ξd−cv−f−f0
cv+f+f0

. This is the same choice of k in section 3,

when δ = 0.

One the other hand, when δ ≤ δ∗, L’s optimal strategy is to choose the lowest k possible,

namely, k = 0. In such a case, L always truthfully reports the state x = 0, p̄ = 1, pwin = 0.

Furthermore, πV = p′s(ξd−cv−f−f0); πL = p′sf0. This is the same as the equilibrium where

there are two perfectly informed agents, D and V. V files cases when D is liable, and D offers

a positive settlement whenever V files cases against him. Therefore there is no trial.
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B.6 Extension 3: Persuasion in Litigation

As introduced in Section 5.3, α is the probability that V wins a liable cases at trial; and β

is the probability that V wins a non-liable case at trial. J rules a case liable if and only if

µ(ωl) ≥ 1
1+γ

.

B.6.1 Determining α and β

• J maximizes his expected utility. Thus, J will rule in favor of D when

Eu(D win) ≥ Eu(V win)

=⇒ µ(ωnl) ∗ u(D wins|ωnl) + µ(ωl) ∗ u(D wins|ωl)

≥ µ(ωnl) ∗ u(P wins|ωnl) + µ(ωl) ∗ u(P wins|ωl)

=⇒ µ(ωl) ∗ (−γ) + (1− µ(ωl)) ∗ 0 ≥ µ(ωl) ∗ 0 + (1− µ(ωl)) ∗ (−1)

=⇒ µ(ωl) ≤ 1/(γ + 1).

• When J’s prior belief µ0(ωl) > µ∗(ωl), D can send the optimal signal as in Proposition

2 to J, resulting in two beliefs: µs(ωl) = 1, µs(ωl) = µ∗(ωl).

D loses in the former case, and wins in the latter.

• To be credible ,

∑
Supp(τ)

µτ(µ) = µ0

=⇒ y ∗ 1 + (1− y) ∗ µ∗(ωl) = µ0(ωl)

=⇒ y =
µ0(ωl)− µ∗(ωl)

1− µ∗(ωl)
.

Here, y is the probability that D loses at trial. D wins at the threshold belief, and the
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number of cases that D wins (1− y) is maximized.

• Further, D loses only when liable, and D wins some of the liable cases,as well as all

non-liable cases. In other words, V loses all non-liable cases, and wins some liable

cases.

• Therefore, when µ0(ωl) > µ∗(ωl) = 1
γ+1

,

β = 0,

α =
y

µ0(ωl)
= 1− 1− µ0(ωl)

γµ0(ωl)
.

(B.6.1)

α is determined in the separating equilibrium (see subsection B.2) to be 1+γ
d/cv+γ

.

• µ0(ωl) is the probability of D being liable in a litigated case. When µ0(ωl) <
1

γ+1
, D

always wins, and α = β = 0.

B.6.2 Separating Equilibrium with Randomization

B.6.2.1 Case 1: 0 ≤ cv
d
≤ α, and p ≥ cv/d

α
; α is determined to be 1+γ

d/cv+γ

• D offers 0 in ωnl with probability 1. In ωl, D offers 0 with probability x, and offers

σ∗ = αd− cv with probability 1− x.

• Offer σ ≥ σ∗ is accepted; any offer σ < σ∗ is rejected with probability r.

• V is indifferent regarding the choice between accepting and rejecting when she is offered
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0:

(
xp

xp+ (1− p)
)(αd− cv) + (1− xp

xp+ (1− p)
)(0− cv) = 0

αxp

xp+ (1− p)
=
cv
d

=⇒ x =
1− ps
ps

cv/d

α− cv/d
.

Liable D is indifferent regarding the choice between offering σ∗ and offering 0:

− (αd− cv) = r(−αd− cd) + (1− r)0

=⇒ r =
1− cv/αd
1 + cd/αd

.
(B.6.2)

• Non-liable D prefers the offer 0 over the offer of σ∗ because:

αd− cv > rcd

• V’s posterior belief is the following: µs(ωl|σ∗) = 1, µs(ω1|0) = xp
xp+(1−p) .

• The prior µ0(ωl) is determined by the cases that go to court trials: µ0(wl) = xps
1−ps+xps

=

cv/d
α

.

• From the results of subsection F.1, α = 1− 1−µ0(ωl)
γµ0(ωl)

. Therefore, α = 1+γ
d/cv+γ

< 1.

• Further, µ0(wl) = cv/d
α

= 1+γcv/d
1+γ

> µ∗(ωl) = 1
γ+1

holds.

• The trial rate is (1− p+ xp)r, where

•

x =
1− ps
ps

1/γ + cv/d

1− cv/d
; r =

γ(1− cv/d)

1 + γ + cd/cv + γcd/d
. (B.6.3)
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• The restrictions on the parameters are the following:

0 ≤ x, r =⇒ 0 ≤ cv
d
≤ α =⇒ cv < d

x ≤ 1 =⇒ p ≥ cv/d

α
=⇒ p ≥ 1 + γcv/d

1 + γ
.

B.6.2.2 Case 2

If cv > d or p < 1+γcv/d
1+γ

, then there is no separating equilibrium. Rather, there is pooling

equilibrium where the settlement offer is 0.

B.6.3 Pooling Equilibrium

B.6.3.1 σ = 0 when α ≤ cv
d

This case is equivalent to the case of cv > d, as discussed in F 2.2.

B.6.3.2 σ = 0 when p ≤ cv/d
α

and 0 < cv
d
< α

This is equivalent to the case when cv < d and p < 1+γcv/d
1+γ

.

• V accepts the settlement offer of 0 in equilibrium because:

p(αd− cv) + (1− p)(−cv) ≤ 0.

• D’s and V’s equilibrium payoffs are both 0

• V’s belief in equilibrium is p(ωl) = p

• D has no incentive to deviate in either state, as offering 0 is the dominant strategy in

both states, ωl and ωnl.
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B.6.3.3 σ = αpd− cv when cv/d
α

< p < cv/d+cd/d
α

and 0 < cv
d
< α

• V accepts the settlement σ in equilibrium. V’s equilibrium payoff is

πV = αpd− cv.

V has no incentive to deviate, as the settlement amount would be the same as the

expected payoff from a trial.

• V would go to trial if she is offered 0:

p(αd− cv) + (1− p)(−cv) > 0.

• However, D’s payoff would be lower following a trial. For non-liable D:

αpd− cv < cd

For liable D, the expected payout in a trial would be even lower.

• Therefore, D would not deviate from offering σ.

B.6.3.4 No pooling equilibria when p ≥ cv/d+cd/d
α

and α > cv
d

• When p ≥ cv/d+cd/d
α

,

cd < p(αd− cv) + (1− p)(−cv) < αd+ cd.
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• V will only accept offers σ ≥ p(α − cv) + (1 − p)(−cv); however, D in Ω = ωnl would

prefer to offer 0 and pay cd at trial rather than offering σ.

• D in Ω = ωl would prefer to offer σ rather than to offer 0 and incur costs αd + cd at

trial.

B.6.4 Equilibria Selection: Pooling Equilibria when sigma = αpd−

cv hen cv/d
α < p < cv/d+cd/d

α and 0 < cv
d < α Do Not Survive the

D1 Criterion

The D1 creition in Cho and Kreps (1987) requires that when there is a type t′ who wishes

to defect and send message m whenever type t wishes to do so, then the t sends message m,

(t,m) is pruned from the game. Formally,

Dt =

{
ϕ ∈MBR(T (m),m) : u∗(t) <

∑
r

u(t,m, r)ϕ(r)

}
,

D0
t =

{
ϕ ∈MBR(T (m),m) : u∗(t) =

∑
r

u(t,m, r)ϕ(r).

}

If for some type t there exists a second type t′ with Dt ∪D0
t ⊆ Dt′ , then (t,m) may be

pruned from the game. Here,

• u∗ is the expected payoff in equilibrium; ϕ is the receiver’s mixed best response to m;

and
∑

r u(t,m, r)ϕ(r) is the sender’s expected deviation payoff given the best response.

• Consider the case where both liable and non-liable D can offer 0 as the settlement.

Because −cv < 0 and αd− cv > 0, V plays the mixed strategy of accepting or rejecting

when the type is unknown. Let ϕ = (1− y, y) for the probability of (accept, reject)

• For non-liable D, −αpd+ cv < (1− y) ∗ 0− ycd =⇒ y ≤ αpd−cv
cd

.
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• Therefore, Dnl = [0, αpd−cv
cd

); D0
nl = [0, αpd−cv

cd
].

• Similarly, for liable D, Dl = [0, αpd−cv
αd+cd

); D0
l = [0, αpd−cv

αd+cd
].

• Dl ∪D0
l ⊆ Dnl. Therefore, liable D is pruned for sending as settlement of 0. That is,

(liable, 0) is ruled out.

• Thus, whenever V sees a settlement of 0, V believes that this is from a non-liable D,

and she will accept it because −cv < 0. Non-liable D will defect, and the pooling

equilibrium will be eliminated.

B.6.5 Summary of Equilibrium in the Two-agent Model When D

Persuades J

As obtained earlier, V’s trial winning probability for a liable case is α, and for a non-liable

case is β, where

α =
1 + γ

d/cv + γ
; β = 0.

The equilibria of the settlement game, when a trial is not true revealing, is as fol-

lows.

1. The separating Equilibrium when ps ≥ 1+γcv/d
1+γ

:

(1) The main case is obtained when ps ≥ 1+γcv/d
1+γ

. In such a case, there is a separating

equilibrium where
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1 if not liable, D offers 0 settlement and there is no litigation;

2 if liable, D randomizes between two offers: zero with probability

x =
1− ps
ps

cv/d− β
α− cv/d

=
1− ps
ps

,
1/γ + cv/d

1− cv/d
,

and a positive settlement amount,

σ∗ = αd− cv =
1 + γ

d/cv + γ
d− cv..

with probability 1− x;

3 V accepts positive offers σ∗, and rejects zero offers with probability

r =
1− cv/αd
1 + cv/αd

=
γ(1− cv/d)

1 + γ + cd/cv + γcd/d
.

2. The pooling equilibrium when p ≤ 1+γcv/d
1+γ

:

D offers zero settlement, and there is no litigation.

3. The probabilities of having a trial and winning at trial when cv < d:

Under the separating equilibrium of the main case ps >
1+γcv/d

1+γ
, a trial occurs when V

rejects D’s zero offers. Such a condition also implies cv < d. The probability of a trial

is

(1− ps + psx)r = (1− ps)
α

α + cd/d
= (1− ps)

1 + γ

1 + γ + cd/cv + γcd/d

= (1− ps)
1

1 + cd/cv+γcd/d
1+γ

=
β1

1− β0

1− p0

p0

1

1 + cd/cv+γcd/d
1+γ

.

The probability of winning at trial is determined by the proportion of liable and non-
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liable cases among cases that go to trial:

xps
1− ps + xps

α =
cv
d
.

B.7 Proof of Proposition 2.6.5

Proof. Using the optimal signal, D first sends a signal to cause J to believe p(ωl) = 1 for

some ωl cases; and to believe p(ωl) = p∗ − ε, ε > 0 for all ωnl cases and some ωl cases.

Let N denote the total number of cases, and n′1,l, n
′
1,nl denote the number of liable and non-

liable cases in round 1 after D’s persuasion, respectively. This process satisfies the following:

p0 =
n′1,l
N

+
n′1,nl

N
(p∗ − ε).

L then sends a signal to affect J’s belief regarding p = p∗− ε cases, and causes p(ωl) = 0

for some ωnl cases, and p(ωl) = p∗+ δ (δ > 0) for the remaining mixture of ωl and ωnl cases.

Let n1,l, n1,nl denote the number of liable and non-liable cases in round 1 after L’s persuasion,

respectively. This process is described as the following: p∗ − ε = 0 +
n1,l

n′1,nl
(p∗ + δ). Then the

number of non-liable cases from the first round is n1,l from the equation, and the number of

liable cases from round 1 is n1,nl = n′1,l +n′1,l−n1,nl. J’s beliefs are p(ωl) = 1 for cases in n′1,l

(i,e., case identified as liable after the first round of D’s persuasion); p(ωl) = p∗ + δ on n1,l

cases (i.e., cases identified as liable after the first round L’s persuasion); and p(ω1 = 0) for

n′1,nl − nl cases (i.e., case identified as non-liable after the first round L’s persuasion). Such

beliefs are correct.

In the next round of persuasion, D and L persuade J on the n1,l cases where J’s correct

prior belief is p(ωl) = p∗ + δ. The process is the same as that in the first round: D sends

a signal to help J recognize some ωl cases and to have the belief of p∗ − ε in the remaining
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mixture. Then L sends a signal to help J recognize some ωnl cases and to have belief p∗ + δ

in the remaining mixture.

As the process goes on, eventually, the true states for all cases are revealed.
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Appendix C

Proofs for Chapter 3

C.1 Proof of Theorem 3.1

C.1.1 Sufficiency

Take any function U : M → R. Let u : Z → R be the restriction of U to Z. For any

(x,A) ∈ D, let M(x,A) = {B ∈M : x ∈ B ⊂ A}. Accordingly,

e(x,A) = max
B∈M(x,A)

[u(x)− U(B)] . (C.1.1)

By definition, e satisfies H1 and H2, but in general, it can violate H3.

Let E(x,A) ∈ M(x,A) be a menu that has the smallest size among all maximizers in

(C.1.1). Then

e(x,A) = u(x)− U(E(x,A)) and |E(x,A)| ≤ |B| (C.1.2)
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for all B ∈M(x,A) such that e(x,A) = u(x)− U(B).

Let � be the preference that is represented by U on M. Order is implied.

Lemma 7. If � satisfies PSB, then U aggregates e. If U aggregates some h ∈ H that

satisfies H1–H2, then � satisfies PSB, and e(x,A) ≤ h(x,A) for all (x,A) ∈ D.

Proof. Assume PSB. Take any A ∈M. Then

U(A) ≥ max
x∈A

[u(x)− e(x,A)] (C.1.3)

because for all x ∈ A, e(x,A) ≥ u(x)− U(A) by (C.1.1) with B = A. Suppose that (C.1.3)

holds strictly. Then for all x ∈ A,

U(A) > u(x)− e(x,A) = u(x)− (u(x)− U(E(x,A))) = U(E(x,A)).

By PSB, A �
⋃
x∈AE(x,A) = A. By contradiction, (C.1.3) holds as equality. Thus U

aggregates e.

Conversely, suppose that U aggregates some h ∈ H that satisfies H1–H2. Take any

A,B ∈M. As U aggregates h, then U(A ∪B) = u(z)− h(z, A ∪B) for some z ∈ A ∪B. If

z ∈ A, then by H2,

U(A) ≥ u(z)− h(z, A) ≥ u(z)− h(z, A ∪B) = U(A ∪B).

Similarly, if z ∈ B then U(B) ≥ U(A ∪ B). Thus PSB holds. Take any x ∈ A. Then for all

C ∈M(x,A),

U(C) ≥ u(x)− h(x,C) ≥ u(x)− h(x,A)
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and hence, e(x,A) ≤ h(x,A).

Lemma 7 characterizes all preferences � that can be represented by an aggregation of

some monotonic cost function h ∈ H. Moreover, the endogenous e is the minimal cost

function that allows such aggregation for the given U .

Lemma 8. If � satisfies Axioms 1–3, then for any (x,A) ∈ D and B ∈M,

Ax ⊃ E(x,A) \ x (C.1.4)

x ∈ B and Bx = Ax ⇒ e(x,A) = e(x,B) (C.1.5)

x is costly in A ⇔ e(x,A) > 0. (C.1.6)

Proof. Take any (x,A) ∈ D. Recall that Ax = {y ∈ A : x � y}.

Take any y ∈ E(x,A). Let y maximize u in E(x,A). Suppose that y 6= x. Let C =

E(x,A) \ y. As C ∈M(x,A) is smaller than E(x,A), then by (C.1.2),

u(x)− U(C) < e(x,A) = u(x)− U(E(x,A)).

Thus C � E(x,A), which violates Dominance. Therefore, y = x is the only maximizer of u

in E(x,A), that is, Ax ⊃ E(x,A) \ x.

Take any B ∈ M such that x ∈ B and Bx = Ax. By (C.1.4), E(x,B) ⊂ A and

E(x,A) ⊂ B. Thus e(x,A) = e(x,B).

Let x be costly in A, that is, x � x ∪ Ax. Then

e(x,A) ≥ u(x)− U(x ∪ Ax) > 0.
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Conversely, let e(x,A) > 0. Then x � E(x,A). By PSB,

x � E(x,A) ∪
⋃
y∈Ax

y = E(x,A) ∪ Ax.

By (C.1.4), E(x,A) ∪ Ax = x ∪ Ax. By definition, x is costly in A.

A positive function U :M→ R++ is called regular if for all x ∈ X and A ∈M,

u(x) > U(A) ⇐⇒ U(x) ≥ 2U(A).

Lemma 9. If � satisfies Axioms 1-4 and U is regular, then e ∈ H is selective and aggregated

by U .

Proof. Suppose that � satisfies Axioms 1–4, and is represented by a regular function U :

M→ <++. By definition, for all x ∈ Z and A ∈M,

x � A ⇒ U(x) ≥ 2U(A). (C.1.7)

By Lemma 7, U aggregates e. Show that e is selective. H1 and H2 follow from definition

(C.1.1). Prove H3. Take any x, y ∈ Z and A ∈ M such that x ∈ A. If e(x, y ∪ A) = 0 or

e(y, y ∪ A) = 0, then H3 is trivial.

Let e(x, y ∪A) > 0 and e(y, y ∪A) > 0. By Lemma 8, both x and y are costly in y ∪A.

By Reduction, x is costly in A. If y � x, then by (C.1.4), E(x, y ∪ A) ⊂ A. Thus

e(x,A) ≥ u(x)− U(E(x, y ∪ A)) = e(x, y ∪ A).
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Suppose that x � y. As e(x,A) > 0, then x � E(x,A) and by (C.1.7),

e(x,A) = u(x)− U(E(x,A)) ≥ 1
2
u(x). (C.1.8)

As x � y, then by (C.1.7), u(y) ≤ 1
2
u(x). Therefore,

e(y, y ∪ A) = u(y)− U(E(y, y ∪ A)) < u(y) ≤ 1
2
u(x) ≤ e(x,A).

Thus the function e satisfies H3, and hence, e is selective.

Suppose that � satisfies Axioms 1–4. As M is finite, then Order implies that � has a

utility representation V :M→ N with natural values. Let U = 2V . Then U is regular. By

Lemma 7, U aggregates e. By Lemma 9, e is selective.

C.1.2 Necessity

Suppose that � is represented for all A ∈M by

U(A) = max
x∈A

[u(x)− h(x,A)] (C.1.9)

where u ∈ RZ and h ∈ H is a selective cost function. Show Axioms 1–4. Order is obvious.

PSB follows from Lemma 7. Show Dominance. Take any A ∈ M and y ∈ Z. By (C.1.9),

U(A) = u(x)− h(x,A) for some x ∈ A. If y � x, then u(y) ≥ u(x) and by H3,

U(y ∪ A) ≥ max{u(y)− h(y, y ∪ A), u(x)− h(x, x ∪ A)} ≥ u(x)− h(x,A) = u(A).

Thus Dominance holds. Show Reduction. Take any A,B ∈M, x ∈ A, y ∈ Z such that both

x and y are costly in y∪A. If y � x, then Ax = (y∪A)x and Reduction is trivial. Let x � y.

Then (y ∪ A)x = y ∪ Ax. Assume that h(x, x ∪ Ax) = 0. By H3, either h(x, x ∪ y ∪ Ax) = 0
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or h(y, x ∪ y ∪ Ax) = 0. By H2 and (C.1.9),

h(x, x ∪ y ∪ Ax) = 0 ⇒ x ∪ y ∪ Ax � x,

h(y, x ∪ y ∪ Ax) = 0 ⇒ h(y, y ∪ Ay) = 0 ⇒ y ∪ Ay � y.

However, x � s ∪ y ∪ Ax and y � y ∪ Ay because both x and y are costly in y ∪ A, By

contradiction, h(x, x ∪ Ax) > 0. Thus u(x) > U(x ∪ Ax), and x is costly in A.

C.2 Proof of Theorem 3.2

Proof. Notice that if � satisfies CV, then it also satisfies Dominance and Reduction.

Show Dominance. If y � x for all x ∈ A, then by PSB, y � A′ for all A′ ⊆ A. Suppose

y � A′ for some A′ ⊆ A. Then CV implies that A ∪ y ∼ A. Suppose y ∼ A′ for all A′ ⊆ A.

Suppose A � y∪A. Then by assumption, y ∼ A � y∪A. By CV, y∪A ∼ A, contradiction.

So y ∪ A � A.

Show Reduction. Suppose x � y. Then (A∪ y)x = Ax ∪ y, (A∪ y)y = Ay, and Ay ⊆ Ax.

By CV, y � (A ∪ y)y = Ay implies x ∪ y ∪ Ax ∼ x ∪ Ax. So x � x ∪ (A ∪ y)x implies

x � x ∪ Ax. Suppose y � x. Then (A ∪ y)x = Ax. So if x � x ∪ (A ∪ y)x, then x � x ∪ Ax.

Therefore, by Theorem 1, if � satisfies Order, PSB, and CV, then it has utility repre-

sentation U :M→ R that aggregates some selective function h ∈ H.

Next, we show that e(x,A) = 0 for all (x,A) ∈ D, e(x,A) = 0. Consider the set

ϕ(A) = {c ∈ A : c ∪ A′ � c for all menus A′ ⊆ A}.

Lemma 10. y /∈ ϕ(A) =⇒ y � B′ ∪ y for all B′ such that B ⊆ B′ ⊆ Ay, where B ⊆ Ay.
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Proof of Lemma. Take B ⊆ A to be the minimum subset such that y � B ∪ y. Suppose

there is x ∈ B such that x � y. Then x � y � y ∪ B. By CV, y ∪ B ∼ y ∪ B \ x. Then

y � B \ x, contradict with minimality of B. So B ⊆ Ax.

Since y � z for z ∈ Ax \ B, then by PSB, y � B ∪ Z. By induction, y � B′ for all B′

such that B ⊆ B′ ⊆ Ax.

Let R− represent −u. By Lemma 10, take x = maxR−(A), then x ∈ ϕ(A). So ϕ(A) is

not empty.

Let x /∈ ϕ(A). Then x � x ∪ B for some A′ ⊆ A. By H2, u(x) > u(A′). By Lemma 10,

x � Ax ∪ x. By CV, for all B such that Ax ∪ x ⊆ B ⊆ A, U(B \ x) = U(B). Therefore,

U(A) = U(A \ x). Repeat this process, we obtain U(A) = U(ϕ(A)). Therefore, (x,A) ⊆

D ⇐⇒ x ∈ ϕ(A). For x /∈ ϕ(A), h(x,A) =∞.

Let y ∈ ϕ(A). Then u(y) ≤ U(B) for all B ∈ M(y, A). {y} ∈ M(y, A). Hence

e(y, A) = 0 where e(y, A) is defined as in (22).

Lemma 11. ϕ satisfies

1. Sen’s α: A ⊆ B =⇒ ϕ(B) ∩ A ⊆ ϕ(A);

2. Aizerman: ϕ(B) ⊆ A ⊆ B =⇒ ϕ(A) ⊆ B.

Proof of Lemma 11. Sen’s α follows from the definition of ϕ. Indeed, if x ∈ ϕ(B) ∩A, then

x ∪ A′ � x for all A′ ⊆ B. So x ∪ A′ � A′ for all A′ ⊆ A ⊆ B.

Show Aizerman. It is sufficient to show the case when A = B \ x. Suppose y /∈ ϕ(B).

Then y � y ∪By by Lemma 10. If x /∈ By, then y /∈ ϕ(B \ x). Suppose x ∈ B′. Then y � x

and thus y /∈ Bx ⊆ By. By assumption x /∈ ϕ(B); so x � Bx ∪ x by Lemma 10. By CV,

By ∪ y ∼ (By \x)∪ y. Since y � By ∪ y, y � (By \x)∪ y. Since By \x ⊆ B \x, y /∈ ϕ(B \x).
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We have proved that y /∈ ϕ(B) =⇒ y /∈ ϕ(B \ x), that is, ϕ(B \ x) ⊆ ϕ(B).

By Aizerman and Malishevski (1981) (see Theorem 5 in Moulin (1985b)), there is Θ ⊆ R

such that

ϕ(A) = ∪R∈ΘR(A).

Hence,

U(A) = u(Θ(A)) = ∪R∈ΘR(A).

The above utility representation satisfies Order and PSB by Theorem 1. Show that it

satisfies CV. Indeed, if x � A, then x /∈ R(A) for any R ∈ Θ. Thence ϕ(A) = ∪R∈ΘR(A) =

∪R∈ΘR(A \ x) = ϕ(A \ x). So CV holds.

Next we show that (21) holds. Take Rd = R− such that x � y implies yR−x. Let R+(x)

be the upper contour set

R+(x) = {z ∈ Z : zRx}.

Let Π+ = {R+(x) : R ∈ Θ, x ∈ Z} ⊆ M to be determined by Θ, where Θ is determined by

ϕ. Let Π = Π+ ∪ Z. Let

V (A) = max
C∈Π,A∩C 6=∅

u(R−(A ∩ C)).

For any R ∈ Θ, R(A) = A ∩ R+(R(A)) where R+(R(A)) ∈ Π. Then V (A) ≥ u(R(A)),

and therefore V (A) ≥ U(A). Take any C ∈ Π such that A∩C 6= ∅. As C ∈ Π, C = R+(x) for

some R ∈ Θ and x ∈ Z. So u(R−(A∩C)) ≤ u(R(A)). So V (A) ≤ maxR∈Θ u(R(A)) = U(A).

So V (A) = U(A). Hence (21) holds.
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C.3 Proof of Theorem 3.3

Proof. Show the necessity of condition (3.4.3). First we take any (a,A) ∈ D. Because R0 is

acceptable, a ∈ R0(Θ(A)), where Θ(A) = ∪R∈ΘR(A), Θ ⊆ R. WLOG we can take Θ ⊆ T .

Thus, there is R1 ∈ Θ, such that a = R1(A). If A = B, clearly, a /∈ B \ a∪N (B). We claim

that for any B ∈M such that A ( B, we have R1(B) /∈ A\a. Indeed, as A ( B, R1(B)R1a

or R1(B) = a. If R1(B) = a, then clearly R1(B) /∈ A \ a. If R1(B)R1a and R1(B) ∈ A \ a,

then aR1R1(B)R1a. This contradicts the antisymmetric property of R1 ∈ T . Next, we

show that R1(B) /∈ N (B). For the sake of contradiction, suppose R1(B) ∈ N (B). By the

definition of N (B), there is (b′, B′) ∈ D, such that {R1(B), b′} ⊆ B′ ⊆ B and R1(B)P0b
′.

This implies that R1(B) /∈ ϕ(B′). By the property α, R1(B) /∈ ϕ(B). This contradicts

ϕ(B) = Θ(B) = ∪R∈Θ(R(B)).

Show the sufficiency of condition (3.4.3). Let |D| = M, |Z| = N . We construct a set

of linear orders Θ ⊆ T and show that it makes R0 acceptable. To constitute this Θ, we

construct an Ri using Algorithm 1 for each (ai, Ai), i ∈ {1, ...,M}, and take Θ = ∪Mi=1Ri.

For each Ri, the algorithm stops at some set Si, where no menu in M is a subset of Si.

Although Si is not ranked by Ri, we can extend Ri on Si in basically any fashion, since the

data puts no restriction on the ranking of elements in Si. Although Ri ∈ T is a linear order

for all i = 1, ...,M , R0 can be a weak order R0 ∈ R. Suppose there are two observations for

one menu: (ai, Ai) and (aj, Ai). Then Ri, Rj ∈ Θ such that Ri(Ai) = ai and Rj(Ai) = aj

implies that ai, aj ∈ Θ(A), and thus ai, aj ∈ R0(Θ(A)) is possible.

We next show that Θ = ∪Mi=1Ri makes R0 acceptable. We proceed in two steps. First,

we demonstrate that for any (ai, Ai) ∈ Ri(Ai), ai = Ri(Ai). Next, we show that for any

m, i = 1, ...,M , Rm(Ai) /∈ N (Ai). This implies that aiR0Rm(Ai) for all Rm ∈ Θ,m 6= i.

Therefore ai ∈ R0(Θ(Ai)).

To show the two claims above, we introduce the following two notations for each Ri, i =
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Algorithm 1: Start from any observation (ai, Ai); find a ranking Ri ∈ T such that
ai = Ri(Ai) and Ri(Am) /∈ N (Am) for all Am ∈M.

Result: Ri

Take one observation (ai, Ai). Initialize Ri = [ ], B = Z, j = 1, a0 = [ ], a = ai,
A = Ai;

while There exists A′ ∈M such that A′ ( B do
define N (B) = {b ∈ B : bP0a

′ for some (a′, A′) ∈ D, such that A′ ⊆ B};
if B \ (N (B) ∪ A) 6= ∅;
then

take any element in B \ (N (B) ∪ A) and call it aj;
B = B \ aj;
Ri.append(aj);
j = j + 1;

end
Assign aj = a;
B = B \ aj;
Ri.append(aj);
j = j + 1;
if there exists A′ ∈M such that A′ ( B then

take any such A′, and let A = A′, a = a′;
end

end
Return(Ri = [a1a2....aj]).
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1, ...,M :

(1)Denote the elements in Z as a1
i , ..., a

N
i , where aki indicates that this element is ranked

kth by Ri.

(2)Denote Bj
i = Z \ ∪jl=1a

j
i .

Show that for any (ai, Ai) ∈ D, ai = Ri(Ai). Indeed, suppose that ai = aki . If k = 1,

then we are done. If k > 1, then by Algorithm 1, aji ∈ Z \ (N (Z) ∪ Ai) for j = 1, ..., k − 1.

Therefore aji /∈ Ai \ai, which implies Ai \ai ⊂ Bk
i . The construction of Ri implies aki �i B

k
i ,

and thus ai �i Ai \ ai. Therefore, ai ∈ Ri(Ai).

Show that for any m, i = 1, ...,M , Rm(Ai) /∈ N (Ai). Since m, i = 1, ...,M are arbitrary, if

we show that Ri(Am) /∈ N (Am) then we can conclude that Rm(Ai) /∈ N (Ai). For simplicity

in notation, we show Ri(Am) /∈ N (Am). Take (ai, Ai), i ∈ {1, ...,M}. By Algorithm 1,

Ri ranks all elements in Z \ Si. Let |Z \ Si| = r. Suppose Ri(Am) = aki . If k = 1,

then Ri(Am) = a1
i ∈ Z \ (N (Z) ∪ [Ai \ ai]). Because N (Am) ⊆ N (Z) by definition of

N (·), Ri(Am) /∈ N (Am). Suppose 2 ≤ k ≤ r. Then, a1
i , .., a

k−1
i /∈ Am, and therefore,

Am ⊆ Bk−1
i . Take B ⊇ Bk−1

i to be the smallest B in the algorithm that includes Bk−1
i .

Then, by construction, aki ∈ B \ (N (B)) ∪ [Aj \ aj]) for some j ∈ {1, ..,M}. Therefore,

aki /∈ N (B). As Am ⊆ Bk−1
i ⊆ B, by definition of N (·), N (Am) ⊆ N (Bk−1

i ) ⊆ N (B).

Therefore, aki /∈ N (Am). The case r < k ≤ N is not possible. Indeed, aki is the first element

in Am ranked by Ri. k > r means that Am is not ranked by Ri, and thus, Am ⊆ Si. This

contradicts the fact that Si has no subsets inM. We thus have proved that Ri(Am) /∈ N (Am)

for any i ∈ {1, ...,M}.

Check time complexity. Algorithm 2 checks whether condition (3.4.3) holds for all

(a,A) ∈ D and B ∈ M, such that A ⊆ B. For the finite data |D| = M , enumerate all

the elements D = {(a1, A1), ..., (aM , AM)}.
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Algorithm 2: Check if B 6= N (B) ∪ [A \ a] holds for (a,A), where A ⊆ B ⊆ Z.
M⊆ P (Z), |M| = M , |Z| = N .

Result: Yes or no
Take any B ∈M. index = 0;
for i = 1 : M do

while index = 0 do
if Ai ⊆ B;
then

if |B| = |N (B) ∪ [Ai \ ai]|;
then
index = 1

end

end

end

end
if index = 0 then

Return(Yes);
else

Return(No)
end

Notice that because A ⊆ B, N (B)∪ [A\a] ⊆ B. Thus, the equality for condition (3.4.3)

holds only when B and N (B) ∪ [A \ a] are the same size. Therefore, checking whether

the equality holds takes only O(1). Checking whether Ai ⊆ B can be achieved with time

complexity O(M +N) by using a hash table. In worst case scenario, there are be M menus,

A1, ..., AM , to check. Thus, in total, Algorithm 2 runs with time complexity O(M(M +N)).

When the number of observations, M , is much greater than N , then the time complexity of

Algorithm 2 is O(M2). The time complexity of Algorithm 2 is O(M2). To run Algorithm 2

on all M menus, the total time complexity is O(M3).
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