
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Second-Derivative SQP Methods for Large-Scale Nonconvex Optimization

Permalink
https://escholarship.org/uc/item/6h8247wp

Author
Runnoe, Jeb H.

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h8247wp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Second-Derivative SQP Methods for
Large-Scale Nonconvex Optimization

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Jeb H. Runnoe

Committee in charge:

Professor Philip E. Gill, Chair
Professor Robert R. Bitmead
Professor Michael J. Holst
Professor Melvin Leok
Professor Wenxin Zhou

2024

Copyright

Jeb H. Runnoe, 2024

All rights reserved.

The Dissertation of Jeb H. Runnoe is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my family.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Notation . 2
1.2 Background . 4
1.3 Overview . 7
1.4 Contributions of This Dissertation . 13

Chapter 2 Sequential Quadratic Programming . 16
2.1 Local Properties of SQP Methods . 16

2.1.1 Equality constraints . 19
2.1.2 Inequality constraints . 34

2.2 Methods for Quadratic Programming . 41
2.2.1 Primal active-set methods . 43

Chapter 3 Stabilized and Primal-Dual SQP Methods . 55
3.1 A Regularized Primal-Dual Line-Search SQP Algorithm 56
3.2 Definition of the Primal-Dual Search Direction 57

3.2.1 Definition of the new iterate . 63
3.2.2 Updating the multiplier estimate 65
3.2.3 Updating the penalty parameters 66

3.3 Solution of the Bound-Constrained Subproblem 67
3.3.1 Convexification of the bound-constrained subproblem 69

Chapter 4 Modifying Matrix Factorizations . 72
4.1 Tiling . 73

4.1.1 Two-stage factorization . 77
4.2 First-Stage Strategy . 85

4.2.1 Submatrix search . 86
4.3 Two-Stage Symmetric Indefinite factorization with Partial Cholesky De-

composition . 91

v

4.3.1 Utilizing the partial Cholesky factors 94
4.4 Full Diagonal Modification of K . 97

Chapter 5 Dynamic Convexification . 101
5.1 Dynamic Convexification of a QP in Standard Form 101

5.1.1 Non-binding active-set methods in standard form 102
5.1.2 Pre-convexification . 106
5.1.3 Concurrent convexification . 112
5.1.4 Post-convexification for constraints in standard form 115

5.2 Dynamic Convexification of Stabilized SQP Methods 121
5.2.1 The stabilized subproblem – standard form 122
5.2.2 Pre-convexification and regularization 123
5.2.3 Concurrent convexification of a stabilized QP subproblem 126
5.2.4 Stabilized post-convexification . 129

5.3 Primal-Dual SQP methods with Dynamic Convexification 137
5.3.1 Pre-convexification of the bound-constrained subproblem 138
5.3.2 Concurrent convexification of the bound-constrained QP 138
5.3.3 Post-convexification of the bound-constrained QP 143

Chapter 6 A Dynamically-Convexified Primal-Dual SQP Algorithm 153
6.1 Formal Algorithm Statement . 153
6.2 Convergence . 156
6.3 Numerical Results . 162

6.3.1 Implementation . 162
6.3.2 Performance profiles . 164

Bibliography . 176

vi

LIST OF FIGURES

Figure 6.1: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 999 problems
from the combined (ALL) CUTEst test set. The (ALL) set is the union of the
(BC), (FP), (HS), (LC), and (NC) test sets. 166

Figure 6.2: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 139 bound
constrained (BC) problems from the CUTEst test set. 167

Figure 6.3: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 262 feasible-
point (FP) problems with an artificial objective function from the CUTEst test
set. 168

Figure 6.4: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 262 feasible-
point (FP) problems with no objective function from the CUTEst test set. 169

Figure 6.5: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 126 Hock-
Shittkowski (HS) problems from the CUTEst test set. 169

Figure 6.6: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 212 linearly
constrained (LC) problems from the CUTEst test set. 170

Figure 6.7: Performance profiles comparing function evaluations, iterations, and factoriza-
tions used by the algorithms dcpdSQP and pdSQP when applied to 386 nonlinearly
constrained (NC) problems from the CUTEst test set. 170

Figure 6.8: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 999 problems from the combined (ALL) CUTEst test set. 171

Figure 6.9: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 139 bound constrained (BC) problems from the CUTEst
test set. 171

Figure 6.10: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 262 feasible-point (FP) problems from the CUTEst test
set. 172

Figure 6.11: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 126 Hock-Shittkowski (HS) problems from the CUTEst
test set. 172

vii

Figure 6.12: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 212 linearly constrained (LC) problems from the CUTEst
test set. 173

Figure 6.13: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 386 nonlinearly constrained (NC) problems from the
CUTEst test set. 173

Figure 6.14: Performance profiles comparing pre-convexification methods in dcpdSQP with
pdSQP when applied to 173 unconstrained (UC) problems from the CUTEst test
set. 174

viii

LIST OF TABLES

Table 1.1: Common notation. 3

Table 6.1: Control parameters for Algorithms pdSQP and dcpdSQP. 164
Table 6.2: Problem set (ALL) outcome counts. 175
Table 6.3: Problem set (BC) outcome counts. 175
Table 6.4: Problem set (FP) outcome counts. 175
Table 6.5: Problem set (HS) outcome counts. 175
Table 6.6: Problem set (LC) outcome counts. 175
Table 6.7: Problem set (NC) outcome counts. 175

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor and mentor,

Professor Philip Gill. The dedication and patience with which he has guided and supported me

throughout my development cannot be overstated. He has truly invested himself in helping me to

succeed, and he has played an integral role in making it possible for me to elevate my life through

my education. I feel I am very fortunate to have had the opportunity to work with him, and I will

always be grateful for all he has done for me.

I would also like to thank my doctoral committee members Professor Melvin Leok, Pro-

fessor Michael Holst, Professor Wenxin Zhou, and Professor Robert Bitmead, for their support,

feedback, and inspiration. I appreciate the time and effort spent in sharing their expertise and

guidance to help me complete this important part of the process.

I also want to acknowledge the colleagues and instructors I got to work with and learn from

along the way. Going through the challenging coursework with my classmates not only prepared

me with the knowledge needed to do this research, but also taught me how to manage my time,

how to respond to frustration, and how deal with uncertainty.

Lastly, I want to thank my family. I am grateful to my parents for their unwavering love

and support, and to my lovely wife, for being my tireless advocate and believing in me every step

of the way. I especially want to thank my sister, both for her encouragement and for the example

she set, which helped me to see that I could succeed if I truly applied myself.

x

VITA

2020 B. S. in Applied Mathematics, University of California San Diego

2022 M. S. in Applied Mathematics, University of California San Diego

2020-2024 Graduate Research and Teaching Assistant, University of Califor-
nia San Diego

2024 Ph. D. in Mathematics, University of California San Diego

xi

ABSTRACT OF THE DISSERTATION

Second-Derivative SQP Methods for

Large-Scale Nonconvex Optimization

by

Jeb H. Runnoe

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Philip E. Gill, Chair

The class of stabilized sequential quadratic programming (SQP) methods for nonlinearly

constrained optimization solve a sequence of related quadratic programming (QP) subproblems

formed from a two-norm penalized quadratic model of the Lagrangian function subject to shifted,

linearized constraints. While these methods have been shown to exhibit superlinear local con-

vergence even when the constraint Jacobian is rank deficient at the solution, they generally have

no global convergence theory. To address this issue, primal-dual SQP methods (pdSQP) employ a

certain primal-dual augmented Lagrangian merit function and solve a subproblem that involves

the minimization of a quadratic model of the merit function subject to simple bound constraints.

xii

The model of the merit function is constructed so that the resulting primal-dual subproblem is

equivalent to the stabilized SQP subproblem. When used in conjunction with a flexible line-search,

the merit function guarantees convergence from any starting point, while the connection with the

stabilized subproblem allows pdSQP to retain the superlinear local convergence that is characteristic

of stabilized SQP methods.

A new dynamic convexification framework is developed that is applicable for nonconvex

general standard form, stabilized, and primal-dual bound-constrained QP subproblems. Dynamic

convexification involves three distinct stages: pre-convexification, concurrent convexification and

post-convexification. New techniques are derived and analyzed for the implicit modification of

symmetric indefinite factorizations and for the imposition of temporary artificial constraints, both

of which are suitable for pre-convexification. Concurrent convexification works synchronously with

the active-set method used to solve the subproblem, and computes minimal modifications needed to

ensure that the QP iterates are uniformly bounded. Finally, post-convexification defines an implicit

modification that ensures the solution of the subproblem yields a descent direction for the merit

function.

A new exact second-derivative primal-dual SQP method (dcpdSQP) is formulated for large-

scale nonconvex optimization. Convergence analysis is presented that demonstrates guaranteed

global convergence. Extensive numerical testing indicates that the performance of the proposed

method is comparable or better than conventional full convexification while significantly reducing

the number of factorizations required.

xiii

Chapter 1

Introduction

The spirit of optimization is something everyone is familiar with in one way or another. It is

a fundamentally human endeavor in that most people are constantly searching for and taking actions

to increase their health, income, and happiness, while simultaneously reducing time and energy

spent. When purchasing a house, for example, one attempts to maximize some, often vaguely-

defined, measure of utility that depends on variables such as cost, location, commute, and square

footage. Some requirements may be flexible while others are not. Whether or not the individual

realizes it, many of the fundamental components that constitute an optimization problem are present

in such a task. Moreover, there are numerous problems throughout science, engineering, finance,

economics, and medicine, that can be posed as some form of optimization problem. Many areas of

optimization research originated from the need to solve problems that arise naturally in disciplines

such as these. A prime example is the soldier diet planning problem that, along with other military

applications, spurred the development of the simplex method and the study of linear programming.

In order to solve such problems, a mathematical model is constructed that seeks to capture the

1

problem’s defining characteristics while removing needless complexity. When the problem-specific

details are abstracted away, what’s left is a general form optimization problem. Because many

important and interesting problems share characteristics such as smoothness, linearity, and problem

function definitions, the solution of the abstract optimization problem is widely applicable.

Mathematical optimization is concerned with the formulation and analysis of methods for

solving abstract optimization problems. This amounts to selecting an element x∗ from a set X of

possible alternatives such that the value taken by a function of interest f(x∗) is extremal over X .

As the maximization of f(x) is mathematically equivalent to the minimization of −f(x), we will

focus our attention on minimization. With this in mind, an abstract optimization problem can be

written

minimize
x∈X

f(x). (1.1)

The power of mathematical optimization is that the methods and solutions derived by studying

(1.1) apply to a diverse set of applications, including the purchase of a house or the formulation of

diet plans for the military.

1.1 Notation

The process of modifying a matrix so that the result is positive definite will be referred

to as convexification or convexifying the matrix. Similarly, a function is convexified by modifying

its Hessian matrix to be positive definite, and convexification of an optimization problem refers to

modification of the Hessian of the objective function.

In general, the notation will be defined as it is introduced. That said, the main notation

is summarized here for reference.

2

Table 1.1: Common notation.

Notation Meaning

x The n-vector of primal variables.

f(x) The scalar-valued objective function.

g(x) The gradient ∇f(x) of the objective function.

c(x) The m-vector of general constraint functions ci(x).

J(x) The m× n Jacobian of c(x).

y The m-vector of Lagrange multipliers for the general constraints c(x) = 0.

z The n-vector of Lagrange multipliers for the bound constraints x ≥ 0.

L(x, y, z) Lagrangian function L(x, y, z) = f(x)− yTc(x)− zTx.

H(x, y) Hessian of the Lagrangian ∇2L(x, y, z) taken with respect to x.

[u]i The i-th component of a vector u.

[u]S The components of u with indices in S.

u · v Element-wise vector product [u · v]i = uivi.

αk Step length.

∥ · ∥ Euclidean vector or induced matrix norm.

i+(A) The number of positive eigenvalues of a symmetric matrix A.

i−(A) The number of negative eigenvalues of a symmetric matrix A.

i0(A) The number of zero eigenvalues of a symmetric matrix A.

In(A) The inertia of symmetric A:
(
i+(A), i−(A), i0(A)

)
.

e A column vector of ones.

ei The i-th column of the identity matrix.

u+ The positive part of u: u+ = max(u, 0) ≥ 0.

u− The negative part of u: u− = −min(u, 0) ≥ 0.

3

1.2 Background

In practice, the set of allowed values is defined in terms of constraint functions rather than

an abstract set, yielding the form

minimize
x∈Rn

f(x) subject to

ℓX

ℓS

 ≤
 x

c(x)

 ≤
uX

uS

 , (1.2)

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of lower and upper

bounds. Throughout, we assume that the number of variables is large, and that the derivatives of f

and c are sparse. The constraints involving the functions ci(x) will be called the general constraints;

the remaining constraints will be called bounds. We assume that the functions f and c are smooth

and that their first and second derivatives are available. An equality constraint corresponds to the

values ℓi = ui. Similarly, a special “infinite” value for ℓi or ui is used to indicate the absence of one

of the bounds. To relate (1.1) with (1.2), note that X is simply

X = {x ∈ Rn : ℓX ≤ x ≤ uX and ℓS ≤ c(x) ≤ uS}.

The problem format of (1.2) may be simplified by introducing slack variables and replacing

each general constraint of the form ℓi ≤ φi(x) ≤ ui by the equality constraint φi(x) − si = 0 and

range constraint ℓi ≤ si ≤ ui. This gives

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0,

ℓX

ℓS

 ≤
x

s

 ≤
uX

uS

 , (1.3)

where x and the “slack variables” s are treated as independent variables. Without loss of generality,

we assume only nonnegativity constraints and include any slack variables in the definition of x and

4

c. The problem to be solved is then

minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0, (NP)

where f and the m components of the constraint vector c are assumed to be twice continuously

differentiable for all x ∈ Rn. The methods designed to solve (NP) are easily applied to solve the

more general problem (1.3). Let g(x) denote ∇f(x), the gradient of f evaluated at x. Similarly, let

J(x) denote the m× n constraint Jacobian with rows formed from the constraint gradients ∇ci(x).

Throughout the discussion, the component yi of the m-vector y will denote the dual variable

associated with the constraint ci(x) = 0 or its linearization. Similarly, zj denotes the dual variable

associated with the bound xj ≥ 0. The dual variables y and z are also referred to as Lagrange

multipliers.

A constraint is active at x if it is satisfied with equality. For any feasible x, i.e., for any

x such that c(x) = 0 and x ≥ 0, all m equality constraints ci(x) = 0 are necessarily active. The

indices associated with the active nonnegativity constraints comprise the active set, denoted by

A(x), i.e., A(x) =
{
i : xi = 0

}
. A nonnegativity constraint that is not in the active set is said

to be inactive. The inactive set contains the indices of the inactive constraints, i.e., the so-called

“free” variables F(x) =
{
i : xi > 0

}
.

Under certain constraint regularity assumptions, an optimal solution of (NP) must satisfy

conditions that may be written in terms of the derivatives of the Lagrangian function L(x, y, z) =

f(x)− yTc(x)− zTx. The triple (x∗, y∗, z∗) is said to be a first-order KKT point for problem (NP)

5

if it satisfies the KKT conditions

c(x∗) = 0, x∗ ≥ 0,

g(x∗)− J(x∗)Ty∗ − z∗ = 0,

x∗ · z∗ = 0, z∗ ≥ 0.

(1.4)

The property of strict complementarity holds if the vectors x∗ and z∗ satisfy x∗ · z∗ = 0 with

x∗ + z∗ > 0. The vector-triple (x, y, z) is said to constitute a primal-dual estimate of the quantities

(x∗, y∗, z∗) satisfying (1.4).

The purpose of the constraint regularity assumption is to guarantee that a linearization of

the constraints describes the nonlinear constraints with sufficient accuracy that the KKT conditions

of (1.4) are necessary for local optimality. One such regularity assumption is the Mangasarian-

Fromovitz constraint qualification [54, 57], which requires that J(x∗) has rank m, and that there

exists a vector p such that J(x∗)p = 0 with pi > 0 for all i ∈ A(x∗). Another common, but slightly

more restrictive, assumption is the linear independence constraint qualification, which requires that

the matrix of free columns of J(x∗) has full row rank.

Let H(x, y) denote the Hessian of L(x, y, z) with respect to x, i.e.,

H(x, y) = ∇2
xx L(x, y, z) = ∇2f(x)−

m∑
i=1

yi∇2ci(x).

Under the linear independence constraint qualification, the second-order necessary optimality con-

ditions require that the first-order conditions (1.4) hold with the additional condition that

pTH(x∗, y∗)p ≥ 0 for all p such that J(x∗)p = 0, and pi = 0 for every i ∈ A(x∗).

6

See, e.g., Nocedal and Wright [57, Chapter 12] for more discussion of constraint assumptions and

optimality conditions.

For a feasible point x, we will denote by JF(x) the matrix comprising columns of J(x)

corresponding to indices in F(x). A point x at which [g(x)]F ∈ range(JF(x)
T) and the linear

independence constraint qualification does not hold is said to be degenerate. For example, if x is

a degenerate vertex, then more than n−m bounds must be active and JF(x) has more rows than

columns. The Mangasarian-Fromovitz constraint qualification may or may not hold at a degenerate

point. Practical NLP problems with degenerate points are very common and it is crucial that an

algorithm is able to handle JF(x) with dependent rows. Throughout our discussion of the effects

of degeneracy in SQP methods, it will be assumed that the Mangasarian-Fromovitz regularity

assumption holds.

1.3 Overview

There are two primary classes of methods available for solving (NP): interior-point meth-

ods and sequential quadratic programming (SQP) methods, defined by two alternative approaches

to handling the inequality constraints in (NP). SQP methods find an approximate solution of a

sequence of quadratic programming (QP) subproblems in which a quadratic model of the objective

function is minimized subject to the linearized constraints. Interior methods approximate a contin-

uous path that passes through a solution of (NP). In the simplest case, the path is parameterized

by a positive scalar parameter µ that may be interpreted as a perturbation for the optimality con-

ditions (1.4). Both interior methods and SQP methods have an inner/outer iteration structure,

with the work for an inner iteration being dominated by the cost of solving a large sparse system of

symmetric indefinite linear equations. In the case of SQP methods, these equations involve a subset

7

of the variables and constraints; for interior methods, the equations involve all the constraints and

variables.

SQP methods provide a relatively reliable “certificate of infeasibility” and they have the

potential of being able to capitalize on a good initial starting point. Sophisticated matrix factor-

ization updating techniques are used to exploit the fact that the linear equations change by only

a single row and column at each inner iteration. These updating techniques are often customized

for the particular QP method being used and have the benefit of providing a uniform treatment of

ill-conditioning and singularity.

On the negative side, it is difficult to implement SQP methods so that exact second deriva-

tives can be used efficiently and reliably. Some of these difficulties stem from the theoretical proper-

ties of the quadratic programming subproblem, which can be nonconvex when second derivatives are

used. Nonconvex quadratic programming is NP-hard—even for the calculation of a local minimizer

(see Contesse [14] and Forsgren, Gill and Murray [29]. The complexity of the QP subproblem has

been a major impediment to the formulation of second-derivative SQP methods (although meth-

ods based on indefinite QP have been proposed by Fletcher [23, 24]). Over the years, algorithm

developers have avoided this difficulty by eschewing second derivatives and by solving a convex QP

subproblem defined with a positive semidefinite quasi-Newton approximate Hessian (see, e.g., Gill,

Murray and Saunders [35]). There are other difficulties associated with conventional SQP methods

that are not specifically related to the use of second derivatives. An SQP algorithm is often tailored

to a particular updating technique, e.g., the matrix factors of the Jacobian in the outer iteration can

be chosen to match those of the method for the QP subproblem. Any reliance on customized linear

algebra software makes it hard to “modernize” a method to reflect new developments in software

technology (e.g., in languages that exploit new advances in computer hardware such as multicore

8

processors or GPU-based architectures). Another difficulty is that active-set methods may require

a substantial number of QP iterations when the outer iterates are far from the solution. The use

of a QP subproblem is motivated by the assumption that the QP objective and constraints provide

good “models” of the objective and constraints of the NLP (see Section 2.1). This should make it

unnecessary (and inefficient) to solve the QP to high accuracy during the preliminary iterations.

Unfortunately, the simple expedient of limiting the number of inner iterations may have a detri-

mental effect upon reliability. Moreover, some of the QP multipliers will have the wrong sign if

an active-set method is terminated before a solution is found. This may cause difficulties if the

QP multipliers are used to estimate the multipliers for the nonlinear problem. These issues would

largely disappear if a primal-dual interior method were to be used to solve the QP subproblem.

These methods have the benefit of providing a sequence of feasible (i.e., correctly signed) dual

iterates. Nevertheless, QP solvers based on conventional interior methods have had limited success

within SQP methods because they are difficult to “warm start” from a near-optimal point (see the

discussion below). This makes it difficult to capitalize on the property that, as the outer iterates

converge, the solution of one QP subproblem is a very good estimate of the solution of the next.

Broadly speaking, the advantages and disadvantages of SQP methods and interior methods

complement each other. Interior methods are most efficient when implemented with exact second

derivatives. Moreover, they can converge in few inner iterations—even for very large problems.

The inner iterates are the iterates of Newton’s method for finding an approximate solution of the

perturbed optimality conditions for a given µ. As the dimension and zero/nonzero structure of

the Newton equations remains fixed, these Newton equations may be solved efficiently using either

iterative or direct methods available in the form of advanced “off-the-shelf” linear algebra software.

In particular, any new software for multicore and parallel architectures is immediately applicable.

9

Moreover, the perturbation parameter µ plays an auxiliary role as an implicit regularization pa-

rameter of the linear equations. This implicit regularization plays a crucial role in the robustness

of interior methods on ill-conditioned and ill-posed problems.

On the negative side, although interior methods are very effective for solving “one-off”

problems, they are difficult to adapt to solving a sequence of related nonlinear programming prob-

lems. This difficulty may be explained in terms of the “path-following” interpretation of interior

methods. In the neighborhood of an optimal solution, a step along the path x(µ) of perturbed

solutions is well-defined, whereas a step onto the path from a neighboring point will be extremely

sensitive to perturbations in the problem functions (and hence difficult to compute). Another diffi-

culty with conventional interior methods is that a substantial number of iterations may be needed

when the constraints are infeasible.

Interior and SQP methods also have several similarities. One of the approaches used

by SQP methods for handling degeneracy is constraint regularization, which is the foundation of

stabilized SQP methods, discussed in detail in Chapters 2 and 3. Similar to interior methods,

stabilization can also be viewed as a perturbation of the problem, parameterized by a positive

scalar parameter µ. As a result, many the linear equations that arise in stabilized SQP and interior

methods have a common structure. Modern stabilized SQP and interior methods use a merit

function of some kind to ensure convergence from any starting point. A merit function measures

the quality of an iterate in terms of feasibility and optimality, and allows for precise quantification

of the “improvement” made from one iteration to the next. By using a line search or trust region

strategy, these methods are able to ensure a reduction in the merit function that is sufficient to

guarantee global convergence is achieved at each step. The direction toward the next iterate is

computed from a system of linear equations involving an approximation to the Hessian of the merit

10

function, which can be expressed in the form

HM =

H + 2JTD−1J JT

J D

 , (1.5)

where D is a positive-definite diagonal matrix that depends on the method being used. Unfor-

tunately, even when H, J and D are sparse and well-conditioned, HM may be dense and ill-

conditioned, so it is not generally advisable to use HM directly. Any system of equations involving

HM can be solved using the symmetric KKT matrix

K =

H JT

J −D

 (1.6)

instead, because the two matrices are related by the nonsingular transformation

UHMV = K, where U =

In −2JTD−1

0 Im

 and V =

In 0

0 −Im

 .

Interestingly, matrices of the form (1.6) arise independently in both interior and stabilized SQP

methods. In interior methods, K appears in the symmetrized Newton equations for computing a

root of a vector-valued nonlinear function whose zero is the solution of the perturbation to the

optimality conditions (1.4). In stabilized SQP, K appears in the linear equations for the optimality

conditions of the stabilized QP subproblem. In both cases, it is advantageous to use K rather than

HM because it inherits the sparsity and conditioning of the original problem.

In order to ensure existence of a step that will yield a sufficient decrease in the merit

function, it is required that HM be positive definite. However, HM may be indefinite at some

iterates when exact second derivatives are used. For this reason, some form of modification to HM

11

may be needed to ensure that the computed direction possesses the required descent properties.

Of the techniques available for computing the needed modification, the method of Wächter and

Biegler [68], is often the only suitable option for large sparse problems. The method exploits the

fact that the inertias of HM and K are related by the equation In(HM) = In(K) + (m, −m, 0),

and proceeds to modify HM implicitly by modifying K so that its inertia is (n, m, 0), which

implies that the resulting HM is positive definite. A matrix K with inertia (n, m, 0) is said to be

second-order consistent. For an increasing sequence {σj}, a symmetric indefinite factorization of

the matrix

K(σj) =

H + σjI JT

J −D

 (1.7)

is computed, and the inertia of K(σj) is checked by looking at the block diagonal Bj of the fac-

torization P T
j K(σj)Pj = LjBjL

T
j . If successful, the end result is a diagonal perturbation E and a

sparse symmetric indefinite factorization P T(K + E)P = LBLT such that K + E is second-order

consistent. The fact that the perturbation and the factors are all sparse is a major contributing

factor to the efficacy of this method for large sparse problems. Limitations of this approach include

that it is difficult to define the sequence {σj} in a way that is favorable in general. The most

obvious drawback, however, is the need to compute potentially many factorizations.

The preceding discussion illustrates that the efficient and reliable use of exact second

derivatives is a principal difficulty in SQP methods. Keeping in mind that SQP methods constitute

one of the primary classes of methods available for solving (NP), it is clear why there is considerable

interest in developing techniques for effectively using second derivatives, particularly in the large-

scale and nonconvex settings.

12

1.4 Contributions of This Dissertation

Both interior and SQP methods require the solution of large, sparse, symmetric indefinite

systems of linear equations at each inner iteration. Moreover, dealing with nonconvexity demands

modifications be made in order to guarantee well-defined equations and sufficient decrease in the

outer iteration. In the case of interior methods, a factorization of an indefinite block 2 × 2 ap-

proximate penalty-barrier merit Hessian must be modified to carry out an approximate modified

Newton method. In the case of SQP methods, a symmetric factorization of the block 2 × 2 in-

definite QP Hessian must be modified to guarantee a well-defined, bounded, local solution of the

subproblem can be found. In both cases, a factorization of a symmetric indefinite KKT system that

inherits sparsity and conditioning of the original problem is used to compute the implicit needed

modification to the generally dense and ill-conditioned approximate Hessian. In Chapter 4, new

techniques are derived and analyzed for the implicit modification of symmetric factorizations of

block 2 × 2 indefinite matrices. A two-stage split factorization is described that requires only two

factorizations to guarantee the modified Hessian is positive definite. Both of the factorizations

used can be computed using highly optimized “off-the-shelf” software, with no need to constrain

the pivot order. The two-stage factorization yields a modification that affects only the first n rows

and columns of the KKT system, which is critical to preserve the implicit relationship with the

approximate Hessian. The first stage identifies and factors a positive semidefinite submatrix that

is then paired, by symmetric permutation, with the (2, 2)-block of the original matrix to form a

leading KKT submatrix. The Schur complement of this submatrix is formed and factored allowing

for either a norm-optimal or a diagonal perturbation to be computed that achieves convexity im-

plicitly. Several methods for the first stage are offered, including partial Cholesky factorization as

well as novel submatrix search and approximate perturbation algorithms.

13

The primary focus will be on three variations of SQP methods: conventional, stabilized,

and primal-dual. These variations are the result of different approaches to handling degeneracy,

described in Section 1.2, and global convergence. Conventional SQP refers to methods that solve a

standard quadratic subproblem with a rank-enforcing active-set algorithm, and use a merit function

to guarantee convergence. Stabilized SQP avoids degeneracy by solving a perturbed subproblem

that results from constraint regularization, but has no global convergence theory. Primal-dual SQP

uses a primal-dual merit function to guarantee convergence and a specially formulated subproblem

that is equivalent to stabilized SQP, thereby addressing degeneracy.

In Chapter 5, a new dynamic convexification technique is formulated for use in the solu-

tion of nonconvex conventional, stabilized, and primal-dual quadratic programming subproblems.

Dynamic convexification involves three distinct stages: pre-convexification, concurrent convexifica-

tion, and post-convexification. Among the possible approaches to pre-convexification are two novel

techniques: (1) a method based on imposing temporary artificial bound constraints and recursive

inertia calculation, and (2) the two-stage factorization method proposed in Chapter 4. In the cases

of standard form and stabilized SQP it is shown how post-convexification can be computed so as

to preserve optimality of the primal-dual subproblem solution. This is crucial because it means

that post-convexification can be applied implicitly by shifting the multipliers, without the need to

re-solve the QP subproblem or make any matrix modifications. In the primal-dual SQP case, the

advantages and limitations of several approaches to post-convexification are considered, including

implicit convexification by shifting the multipliers in the merit function.

With respect to practical application, our attention will be restricted to the primal-dual

context. In Chapter 6, a new exact second-derivative primal-dual SQP method (dcpdSQP) is formu-

lated for large-scale nonconvex optimization. dcpdSQP is an extension of a stabilized, primal-dual

14

method (pdSQP) described in Chapter 3 that utilizes dynamic convexification. An extension of the

convergence analysis of Gill, Kungurtsev and Robinson [32, 33] is used to show that dcpdSQP ex-

hibits superlinear local convergence with guaranteed global convergence. Numerical results from a

state-of-the-art implementation indicate that the performance of dcpdSQP is comparable or better

than pdSQP while significantly reducing the number of factorizations required.

15

Chapter 2

Sequential Quadratic Programming

2.1 Local Properties of SQP Methods

In many introductory texts, “the” SQP method is defined as one in which the quadratic

programming subproblem involves the minimization of a quadratic model of the objective function

subject to a linearization of the constraints. This description, which broadly defines the original

SQP method of Wilson [69] for convex programming, is somewhat over-simplistic for modern SQP

methods. Nevertheless, we start by defining a “vanilla” or “plain” SQP method in these terms.

The basic structure of an SQP method involves inner and outer iterations. Associated

with the kth outer iteration is an approximate solution xk, together with dual variables yk and

zk for the nonlinear constraints and bounds. Given (xk, yk, zk), new primal-dual estimates are

16

computed by solving the quadratic programming subproblem

minimize
x∈Rn

f(xk) + g(xk)
T(x− xk) +

1
2 (x− xk)

TH(xk, yk)(x− xk)

subject to c(xk) + J(xk)(x− xk) = 0, x ≥ 0.

(2.1)

In our plain SQP method, this subproblem is solved by iteration using a quadratic programming

method. New estimates yk+1 and zk+1 of the Lagrange multipliers are the optimal multipliers for

the subproblem (2.1). The iterations of the QP method constitute the SQP inner iterations.

The form of the plain QP subproblem (2.1) is motivated by a certain fixed-point property

that requires the SQP method to terminate in only one (outer) iteration when started at an optimal

solution. In particular, the plain QP subproblem is defined in such a way that if (xk, yk, zk) =

(x∗, y∗, z∗), then the NLP primal-dual solution (x∗, y∗, z∗) satisfies the QP optimality conditions for

(2.1) and thereby constitutes a solution of the subproblem (see Section 2.1.2 below for a statement

of the QP optimality conditions). Under certain assumptions on the problem derivatives, this fixed-

point property implies that (xk, yk, zk)→ (x∗, y∗, z∗) when the initial point (x0, y0, z0) is sufficiently

close to (x∗, y∗, z∗). These assumptions are discussed further below.

Given our earlier statement that SQP methods “minimize a quadratic model of the objective

function”, readers unfamiliar with SQP methods might wonder why the quadratic term of the

quadratic objective of (2.1) involves the Hessian of the Lagrangian function and not the Hessian

of the objective function. However, at (xk, yk, zk) = (x∗, y∗, z∗), the objective of the subproblem

defines the second-order local variation of f on the constraint surface c(x) = 0. Suppose that x(α)

is a twice-differentiable feasible path starting at xk, parameterized by a nonnegative scalar α; i.e.,

x(0) = xk and c(x(α)) = 0. An inspection of the derivatives f ′(x(α)) and f ′′(x(α)) at α = 0

17

indicates that the function

φk(x) = f(xk) + g(xk)
T
(
x− xk

)
+ 1

2

(
x− xk

)
TH(xk, yk)

(
x− xk

)
(2.2)

defines a second-order approximation of f for all x lying on x(α), i.e., φk(x) may be regarded as a

local quadratic model of f that incorporates the curvature of the constraints c(x) = 0.

This constrained variation of the objective is equivalent to the unconstrained variation of

a function known as the modified Lagrangian, which is given by

L(x;xk, yk) = f(x)− yT
k (c(x)− ĉk(x)), (2.3)

where ĉk(x) denotes the vector of linearized constraint functions ĉk(x) = c(xk)+J(xk)
(
x−xk

)
, and

c(x) − ĉk(x) is known as the departure from linearity (see Robinson [63] and Van der Hoek [67]).

The first and second derivatives of the modified Lagrangian are given by

∇L(x;xk, yk) = g(x)−
(
J(x)− J(xk)

)
Tyk,

∇2L(x;xk, yk) = ∇2f(x)−
m∑
i=1

[yk]i∇2ci(x).

The Hessian of the modified Lagrangian is independent of xk and coincides with the Hessian (with re-

spect to x) of the conventional Lagrangian. Also, L(x;xk, yk)|x=xk
= f(xk), and ∇L(x;xk, yk)|x=xk

=

g(xk), which implies that f̂k(x) defines a local quadratic model of L(x;xk, yk) at x = xk.

Throughout the remaining discussion, gk, ck, Jk and Hk denote g(x), c(x), J(x) and

H(x, y) evaluated at xk and yk. With this notation, the quadratic objective is φk(x) = fk+gTk (x−

xk)+
1
2 (x−xk)

THk(x−xk), with gradient ĝk(x) = gk+Hk(x−xk). A “hat” will be used to denote

18

quantities associated with the QP subproblem.

2.1.1 Equality constraints

We motivate some of the later discussion by first focusing on equality-constrained nonlinear

programming and reviewing the SQP methods available for solving the problem

minimize
x∈Rn

f(x) subject to c(x) = 0, (2.4)

which is simply (NP) with the nonnegativity constraints omitted.

Newton’s method and SQP

We begin by investigating the connection between SQP methods and Newton’s method for

solving a system of nonlinear equations, which is the basis of the method of Newton-Lagrange. In

the case of unconstrained optimization, a standard approach to the formulation of algorithms is to

use the first-order optimality conditions to define a system of nonlinear equations ∇f(x) = 0 whose

solution is a first-order optimal point x∗. In the constrained case, the relevant nonlinear equations

involve the gradient of the Lagrangian function L(x, y), which incorporates the first-order feasibility

and optimality conditions satisfied by x∗ and y∗. If the rows of the constraint Jacobian J at x∗ are

linearly independent, a primal-dual solution represented by the n+m vector (x∗, y∗) must satisfy

the n+m nonlinear equations F (x, y) = 0, where

F (x, y) ≡ ∇L(x, y) =

g(x)− J(x)Ty

−c(x)

 . (2.5)

These equations may be solved efficiently using Newton’s method.

19

Consider one iteration of Newton’s method, starting at estimates xk and yk of the primal

and dual variables. If vk denotes the iterate defined by (n+m)-vector (xk, yk), then the next iterate

vk+1 is given by

vk+1 = vk + dk, where F ′(vk)dk = −F (vk).

Differentiating (2.5) with respect to x and y gives F ′(v) ≡ F ′(x, y) as

F ′(x, y) =

H(x, y) −J(x)T

−J(x) 0

 ,

which implies that the Newton equations may be written as

 Hk −JT
k

−Jk 0

pk

qk

 = −

gk − JT
k yk

−ck

 ,

where pk and qk denote the Newton steps for the primal and dual variables. If the second block of

equations is scaled by −1 we obtain the system

Hk −JT
k

Jk 0

pk

qk

 = −

gk − JT
k yk

ck

 , (2.6)

which is an example of a saddle-point system. Finally, if the second block of variables is scaled by

−1 we obtain an equivalent symmetric system

Hk JT
k

Jk 0

 pk

−qk

 = −

gk − JT
k yk

ck

 , (2.7)

which is often referred to as the KKT system.

It may not be clear immediately how this method is related to an SQP method. The crucial

20

link follows from the observation that the KKT equations (2.7) represent the first-order optimality

conditions for the primal and dual solution (pk, qk) of the quadratic program

minimize
p∈Rn

(gk − JT
k yk)

Tp+ 1
2p

THkp

subject to ck + Jkp = 0,

which, under certain conditions on the curvature of the Lagrangian discussed below, defines the

step from xk to the point that minimizes the local quadratic model of the objective function subject

to the linearized constraints. It is now a simple matter to include the constant objective term fk

(which does not affect the optimal solution) and write the dual variables in terms of yk+1 = yk + qk

instead of qk. The equations analogous to (2.7) are then

Hk JT
k

Jk 0

 pk

−yk+1

 = −

gk

ck

 , (2.8)

which are the first-order optimality conditions for the quadratic program

minimize
p∈Rn

fk + gTk p+
1
2p

THkp subject to ck + Jkp = 0.

When written in terms of the x variables, this quadratic program is

minimize
x∈Rn

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk)

subject to ck + Jk(x− xk) = 0.

(2.9)

21

Local convergence

A standard analysis of Newton’s method (see, e.g., Moré and Sorensen [56, Theorem 2.8])

shows that if the KKT matrix is nonsingular at a solution (x∗, y∗), and (x0, y0) lies in a sufficiently

small neighborhood of (x∗, y∗) in which f and c are twice-continuously differentiable, then the SQP

iterates (xk, yk) will converge to (x∗, y∗) at a Q-superlinear rate. If, in addition, H(x, y) is locally

Lipschitz continuous, then the SQP iterates (xk, yk) are Q-quadratically convergent. As x is only a

subvector of v, with v = (x, y), the convergence rate of xk does not follow immediately. However,

as ∥xk−x∗∥ ≤ ∥vk− v∗∥, a Q-quadratic rate of convergence of (xk, yk) implies an R-quadratic rate

of convergence of xk. For more on the rate of convergence of {xk} relative to {xk, yk}, see Ortega

and Rheinboldt [58, Chapter 9].

Conditions for the nonsingularity of the KKT matrix may be determined by transforming

the KKT system into an equivalent system that reveals the rank. If Qk is an n × n nonsingular

matrix, then (2.8) is equivalent to the system

QT
k HkQk (JkQk)

T

JkQk 0

 pQ

−yk+1

 = −

QT
k gk

ck

 , with pk = QkpQ. (2.10)

Let Qk be defined so that JkQk =
(
0 Uk

)
, where Uk is m×m. The assumption that Jk has rank

m implies that Uk is nonsingular. If the n columns of Qk are partitioned into blocks Zk and Yk of

dimension n× (n−m) and n×m, then

JkQk = Jk
(
Zk Yk

)
=
(
0 Uk

)
, (2.11)

which shows that JkZk = 0 and JkYk = Uk. As Zk and Yk are sections of the nonsingular matrix

Qk, they must have independent columns, and, in particular, the columns of Zk must form a basis

22

for the null-space of Jk. If QT
k HkQk and JkQk are partitioned to conform to the Z–Y partition of

Qk, we obtain the block lower-triangular system


Uk 0 0

ZT
k HkYk ZT

k HkZk 0

Y T
k HkYk Y T

k HkZk UT
k




pY

pZ

−yk+1

 = −


ck

ZT
k gk

Y T
k gk

 , (2.12)

where the (n −m)-vector pZ and m-vector pY are the parts of pQ that conform to the columns of

Zk and Yk. It follows immediately from (2.12) that the Jacobian F ′(xk, yk) is nonsingular if Jk has

independent rows and ZT
k HkZk is nonsingular. In what follows, we use standard terminology and

refer to the vector ZT
k gk as the reduced gradient and the matrix ZT

k HkZk as the reduced Hessian.

If J(x∗) has rank m and the columns of the matrix Z∗ form a basis for the null-space of J(x∗),

then the conditions: (i) ∇L(x∗, y∗) = 0; and (ii) Z∗TH(x∗, y∗)Z∗ positive definite, are sufficient for

x∗ to be an isolated minimizer of the equality constraint problem (2.4).

Properties of the Newton step

The equations (2.12) have a geometrical interpretation that provides some insight into the

properties of the Newton direction. From (2.10), the vectors pZ and pY must satisfy

pk = QkpQ =
(
Zk Yk

)pZ

pY

 = ZkpZ + YkpY .

Using block substitution on the system (2.12) we obtain the following equations for pk and yk+1:

UkpY = −ck, pN = YkpY ,

ZT
k HkZkpZ = −ZT

k (gk +HkpN), pT = ZkpZ ,

pk = pN + pT , UT
k yk+1 = Y T

k (gk +Hkpk).

(2.13)

23

These equations involve the auxiliary vectors pN and pT such that pk = pN + pT and JkpT = 0.

We call pN and pT the normal and tangential steps associated with pk. Equations (2.13) may be

simplified further by introducing the intermediate vector xF such that xF = xk+pN . The definition

of the gradient of φk implies that gk +HkpN = ∇φk(xk + pN) = ĝk(xF), which allows us to rewrite

(2.13) in the form

UkpY = −ck, pN = YkpY ,

xF = xk + pN , ZT
k HkZkpZ = −ZT

k ĝk(xF), pT = ZkpZ ,

pk = pN + pT , xk+1 = xF + pT ,

UT
k yk+1 = Y T

k ĝk(xk+1).

(2.14)

The definition of xF implies that

ĉk(xF) = ck + Jk(xF − xk) = ck + JkpN = ck + JkYkpY = ck + UkpY = 0,

which implies that the normal component pN satisfies JkpN = −ck and constitutes the Newton step

from xk to the point xF satisfying the linearized constraints ck + Jk(x − xk) = 0. On the other

hand, the tangential step pT satisfies pT = ZkpZ , where ZT
k HkZkpZ = −ZT

k ĝk(xF). If the reduced

Hessian ZT
k HkZk is positive definite, which will be the case if xk is sufficiently close to a locally

unique (i.e., isolated) minimizer of (2.4), then pT defines the Newton step from xF to the minimizer

of the quadratic model φk(x) in the subspace orthogonal to the constraint normals (i.e., on the

surface of the linearized constraint ĉk(x) = 0). It follows that the Newton direction is the sum

of two steps: a normal step to the linearized constraint and the tangential step on the constraint

surface that minimizes the quadratic model. This property reflects the two (usually conflicting)

24

underlying processes present in all algorithms for optimization—the minimization of the objective

and the satisfaction of the constraints.

In the discussion above, the normal step pN is interpreted as a Newton direction for the

equations ĉk(x) = 0 at x = xk. However, in some situations, pN may also be interpreted as the

solution of a minimization problem. The Newton direction pk is unique, but the decomposition

pk = pT + pN depends on the choice of the matrix Qk associated with the Jacobian factorization

(2.11). If Qk is orthogonal, i.e., if QT
k Qk = I, then ZT

k Yk = 0 and the columns of Yk form a basis

for the range space of JT
k . In this case, pN and pT define the unique range-space and null-space

decomposition of pk, and pN is the unique solution with least two-norm of the least-squares problem

min
p
∥ĉk(xk) + Jkp∥2, or, equivalently, min

p
∥ck + Jkp∥2.

This interpretation is useful in the formulation of variants of Newton’s method that do not require

(xk, yk) to lie in a small neighborhood of (x∗, y∗). In particular, it suggests a way of computing the

normal step when the equations Jkp = −ck are not compatible.

For consistency with the inequality constrained case below, the primal-dual solution of the

kth QP subproblem is denoted by (x̂k, ŷk). With this notation, the first-order optimality conditions

for the QP subproblem (2.9) are given by

Jk(x̂k − xk) + ck = 0,

gk +Hk(x̂k − xk)− JT
k ŷk = 0.

(2.15)

Similarly, the Newton iterates are given by xk+1 = x̂k = xk + pk and yk+1 = ŷk = yk + qk.

25

Calculation of the Newton step

There are two broad approaches for solving the Newton equations (either in saddle-point

form (2.6) or symmetric form (2.7). The first involves solving the full n+m set of KKT equations,

the second decomposes the KKT equations into the three systems associated with the block lower-

triangular equations (2.12).

In the full-matrix approach, the matrix K may be represented by its symmetric indefinite

factorization (see, e.g., Bunch and Parlett [7], and Bunch and Kaufman [6]):

PKP T = LDLT, (2.16)

where P is a permutation matrix, L is lower triangular and D is block diagonal, with 1× 1 or 2× 2

blocks. (The latter are required to retain numerical stability.) Some prominent software packages

include MA27 (Duff and Reid [19]), MA57 (Duff [18]), MUMPS (Amestoy et al. [1]), PARDISO

(Schenk and Gärtner [65]), and SPOOLES (Ashcraft and Grimes [3]).

The decomposition approach is based on using an explicit or implicit representation of

the null-space basis matrix Zk. When Jk is dense, Zk is usually computed directly from a QR

factorization of Jk (see, e.g., Coleman and Sorensen [10], and Gill et al. [36]). When Jk is sparse,

however, known techniques for obtaining an orthogonal sparse Z may be expensive in time and

storage, although some effective algorithms have been proposed (see, e.g., Coleman and Pothen [9];

Gilbert and Heath [31]).

The representation of Zk most commonly used in sparse problems is called the variable-

reduction form of Zk, and is obtained as follows. The columns of Jk are partitioned so as to identify

explicitly an m × m nonsingular matrix B (the basis matrix). Assuming that the columns are

26

permuted so that B is at the “left” of Jk, we have

Jk =
(
B S

)
.

(In practice, the columns of B may occur anywhere.) When Jk has this form, a basis for the null

space of Jk is given by the columns of the (non-orthogonal) matrix Qk defined as

Qk =

(
Zk Yk

)
, with Zk =

 −B
−1S

In−m

 and Yk =

 Im

0

 .

This definition of Qk means that matrix-vector products ZT
k v or Zkv can be computed using a

factorization of B (typically, a sparse LU factorization; see Gill, Murray, Saunders and Wright

[37]). The matrix Zk is not stored explicitly.

For large sparse problems, the reduced Hessian ZT
k HkZk associated with the solution of

(2.14) will generally be much more dense than Hk and B. However, in many cases, n−m is small

enough to allow the storage of a dense Cholesky factor of ZT
k HkZk.

Merit function line-search methods

The convergence result discussed in Section 2.1.1 requires that (x0, y0) lies in a sufficiently

small neighborhood of (x∗, y∗) because the method of Newton-Lagrange alone is not able to guaran-

tee convergence to a local minimizer from any starting point. As was alluded to in Section 1.3, one

notable strategy for forcing convergence is to designate a merit function M whose value measures

the distance to a local minimizer. This function may be used in conjunction with a line search model

27

function to force convergence. Popular choices for M include the ℓ1 and ℓ∞ penalty functions

P1(x ;µ) = f(x) +
1

µ
∥c(x)∥1 and P∞(x ;µ) = f(x) +

1

µ
∥c(x)∥∞. (2.17)

Although these penalty functions are nonsmooth, they have the benefit of being exact in the sense

that for µ sufficiently small, x∗ is an unconstrained local minimizer of P1(x ;µ) and P∞(x ;µ).

The search direction pk = x̂− xk is computed from the solution x̂ of the subproblem

minimize
x∈Rn

fk + gTk (x− xk) +
1
2 (x− xk)

TĤk(x− xk)

subject to ck + Jk(x− xk) = 0,

(2.18)

where Ĥk is a positive-definite approximation of the Hessian of the Lagrangian Hk, and the variables

are then updated as xk+1 = xk + αkpk where αk is a positive scalar. A line search is performed to

choose a step αk such that the reduction in the merit function is at least a factor ηS of the reduction

predicted by a model function mk of the merit function. In the case of the ℓ1 penalty function, the

line search computes a step αk such that

P (xk ;µ)− P (xk + αpk ;µ) ≥ ηS(mk(xk ;µ)−mk(xk + αpk ;µ)) (2.19)

with α = αk. An appropriate model of the P1 merit function at xk is

mk(x ;µ) = fk + gTk (x− xk) +
1

µ
∥ck + Jk(x− xk)∥1,

which is simply P1(x ;µ) composed with affine models of f(x) and c(x). A critical property of this

choice of merit and model function is summarized in the following result.

28

Result 2.1.1. Let pk denote the solution and ŷk the Lagrange multipliers of the convex QP sub-

problem (2.18), where Jk has rank m and Ĥk is positive definite. Let ηS be a scalar such that

0 < ηS < 1
2 . If pk is nonzero and µ ≤ 1/∥ŷk∥∞, there exists ᾱ > 0 such that (2.19) holds for all

α ∈ (0, ᾱ).

For details and a similar result for the ℓ∞ merit function P∞(x ;µ), see Gill and Wright [44].

Methods for determining the positive-definite approximate Lagrangian Hessian Ĥk typi-

cally fall into one of two categories, depending on the order of derivatives available. If second deriva-

tives can be computed, there are several ways to compute a positive-definite matrix Ĥk ≈ Hk, such

as the modified Cholesky method or the method of Wächter and Biegler [68]. If second derivatives

are not available then a quasi-Newton approximation can be used. This approach maintains an

approximation to the Hessian of the Lagrangian function via the update formula

Ĥk+1 = Ĥk −
1

dT
k Ĥkdk

Ĥkdkd
T
k Ĥk +

1

wT
k dk

wkw
T
k ,

where dk = xk+1 − xk and wk = ∇L(xk+1, ŷ) −∇L(xk, ŷ). Besides the disadvantage of not using

second derivatives, the update formula does not preserve sparsity and so has limited utility for large

sparse problems.

The merit functions P1(x ;µ) and P∞(x ;µ) proposed so far in this section suffer from the

Maratos effect, which refers to situation in which the unit step is not accepted by the line search.

This has an adverse effect on the rate of convergence because Newton’s method requires αk = 1

for a superlinear rate of convergence. However, this issue does not apply to most smooth merit

functions. Some smooth merit functions that have been proposed include the Fletcher augmented

29

Lagrangian

M(x ;µ) = f(x)− y(x)Tc(x) +
1

2µ
∥c(x)∥2, where y(x) = (J(x)J(x)T)−1J(x)g(x),

i.e., y(x) = argmin ∥g(x)− J(x)Ty∥. Other choices include the quadratic penalty function

P2(x ;µ) = f(x) +
1

2µ
∥c(x)∥2,

and the primal-dual augmented Lagrangian

M(x, y ;µ) = f(x)− yTc(x) +
1

2µ
∥c(x)∥2.

In the case of the primal-dual merit function, a line search determines the step for both primal and

dual variables xk+1 = xk + αkpk and yk+1 = yk + αkqk, where qk = ŷk − yk.

Sequential unconstrained methods

The methods described next are different in the sense that the search direction is not

computed from the QP subproblem (2.18). Nonetheless, these methods still involve a sequence of

subproblems that can be expressed as a quadratic program. Sequential unconstrained methods

minimize a penalty function for a sequence of decreasing parameters µ > 0. The penalty functions

P1(x ;µ), P2(x ;µ), and P∞(x ;µ) can all be minimized by solving a sequence of unconstrained

subproblems. We will focus on the ℓ1 penalty function, which can be approximated by the local

30

quadratic model mk(x ;µ) ≈ P1(x ;µ) with

mk(x ;µ) = gTk (x− xk) +
1

2
(x− xk)

THk(x− xk) +
1

µ
∥ck + Jk(x− xk)∥1.

The corresponding unconstrained subproblem is therefore

minimize
p∈Rn

gTk p+
1

2
pTHkp+

1

µ
∥ck + Jkp∥1. (2.20)

A crucial property of (2.20) is that it is equivalent to the smooth constrained subproblem

minimize
p,u,v

gTk p+
1
2p

THkp+
1
µe

T(u+ v)

subject to ck + Jkp− u+ v = 0, u ≥ 0, v ≥ 0,

(2.21)

which is derived by writing ck + Jkp as the difference of two positive functions ck + Jkp = u − v

where u = (ck + Jkp)
+ and v = (ck + Jkp)

−, so that eT(u + v) = ∥ck + Jkp∥1. To ensure global

convergence, P1(x ;µ) can be minimized using a line-search or trust-region strategy. Using a line

search requires obtaining a positive-definite approximation Ĥk ≈ Hk with which to form (2.21). If

a trust-region is used then the exact Lagrangian Hessian requires no modification. Instead, a limit

on the norm of p is imposed on the subproblems (2.21), giving the additional constraint ∥p∥∞ ≤ δk,

where δk is the trust-region radius. The resulting QP subproblem is then

minimize
p,u,v

gTk p+
1
2p

THkp+
1
µe

T(u+ v)

subject to ck + Jkp− u+ v = 0,

u ≥ 0, v ≥ 0, −δke ≤ p ≤ δke.

(2.22)

31

Similar to the line-search method, the reduction achieved in P1(x ;µ) is compared with that pre-

dicted by the model mk(x ;µ), and the comparison is used to update the trust-region radius δk.

Constraint regularization

If the rows of Jk are linearly dependent then the first-order optimality condition equations

(2.8) for the equality constrained QP (2.9) are singular. One way to address this is to perturb

the problem functions f(x) and c(x) so that the nonsingularity of the resulting equations does not

depend on the rank of Jk. In order to do this, it is necessary to allow the functions to depend on

both primal and dual variables so that the rows of the perturbed constraint Jacobian are guaranteed

to be independent.

Explicitly, consider the shifted constraints c̃(x, y) = c(x) + µ(y − yk), where µ is a small

positive parameter. The resulting Jacobian is J̃(x, y) =
(
J(x) µI

)
, which has linearly independent

rows regardless of the rank of J(x). To limit the magnitude of the perturbation it is necessary to

limit the norm of y. This may be done by augmenting the objective function by a two-norm penalty

term, giving f̃(x, y) = f(x) + 1
2µ∥y∥

2. Observe that the quadratic objective based on f̃ and c̃ has

the form

φ̃k(v) = f̃(vk) +∇f̃(vk)T(v − vk) +
1
2µ(v − vk)

TH̃(v − vk),

which, after some simplification, can be written φ̃k(x, y) = φk(x) +
1
2µ∥y∥

2. Moreover, the lin-

earization of the shifted constraints is c̃(vk) + J̃(vk)(v − vk) or simply ck + Jk(x− xk) + µ(y − yk).

Thus, if an equality constrained quadratic program analogous to (2.9) is formed with the regularized

32

functions it can be expressed as

minimize
x∈Rn,y∈Rm

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk) +
1
2µ∥y∥

2

subject to ck + Jk(x− xk) + µ(y − yk) = 0.

(2.23)

The first-order KKT conditions for a solution (x̂, ŷ, π̂) of the regularized equality-constrained

problem (2.23) are given by

ck + JT
k (x̂− xk) + µ(ŷ − yk) = 0,

gk +Hk(x̂− xk)− JT
k π̂ = 0, µŷ = µπ̂.

(2.24)

Using the identity ŷ = π̂ to eliminate π̂ allows the conditions (2.24) to be expressed as a linear

system of equations Hk JT
k

Jk −µI

x̂− xk

−ŷ

 = −

gk

ck

 . (2.25)

This system is analogous to (2.8) except the nonsingular perturbation appearing in the (2, 2)-block

of the KKT matrix.

Let
(
U V

)
be an orthonormal matrix such that the columns of U form a basis for null(JT

k)

and the columns of V form a basis for range(Jk). The unique expansion ŷk = UyU + V yV allows

us to rewrite (2.25) as


Hk JT

k V

V TJk −µI

−µI




pk

−yV
−yU

 = −


gk

V Tck

0

 , (2.26)

where JT
k U = 0 from the definition of U , and UTck = 0 because ck ∈ range(Jk). The following

simple argument shows that the equations (2.26) are nonsingular, regardless of the rank of Jk.

33

First, observe that V TJk has full row rank. Otherwise, if vTV TJk = 0, it must be the case that

V v ∈ null(JT
k). But as V v ∈ range(V) and range(V) is orthogonal to null(JT

k), we conclude that

V v = 0, and the linearly independence of the columns of V gives v = 0.

Moreover, equations (2.26) imply that yU = 0 and ŷk ∈ range(Jk). If gk+1 = gk +Hpk,

then

JT
k ŷk = gk+1 and ŷk ∈ range(Jk).

These are the necessary and sufficient conditions for ŷk to be the unique least-length solution of

the compatible equations JT
k y = gk+1. This implies that the regularization gives a unique vector

of multipliers.

2.1.2 Inequality constraints

Given an approximate primal-dual solution (xk, yk) with xk ≥ 0, an outer iteration of a

typical SQP method involves solving the QP subproblem (2.1), repeated here for convenience:

minimize
x∈Rn

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk)

subject to Jk(x− xk) = −ck, x ≥ 0.

(2.27)

Assume for the moment that this QP subproblem is feasible, with primal-dual solution (x̂k, ŷk, ẑk).

The next plain SQP iterate is xk+1 = x̂k, yk+1 = ŷk and zk+1 = ẑk. The QP first-order optimality

conditions are

Jk(x̂k − xk) + ck = 0, x̂k ≥ 0;

gk +Hk(x̂k − xk)− JT
k ŷk − ẑk = 0,

x̂k · ẑk = 0, ẑk ≥ 0.

(2.28)

34

Let pk = x̂k−xk and let pF = [pk]F denote the vector of free components of pk, i.e., the components

with indices in F(x̂k). Similarly, let zF denote the free components of ẑk. The complementarity

conditions imply that zF = 0 and we may combine the first two sets of equalities in (2.28) to give

HF JT
F

JF 0

 pF

−ŷk

 = −

[gk +Hkηk]F

ck + Jkηk

 , (2.29)

where JF is the matrix of free columns of Jk, and ηk is the vector

[ηk]i =


[x̂k − xk]i if i ∈ A(x̂k);

0 if i ∈ F(x̂k).

If the active sets at x̂k and xk are the same, i.e., A(x̂k) = A(xk), then ηk = 0. If x̂k lies in a

sufficiently small neighborhood of a nondegenerate solution x∗, then A(x̂k) = A(x∗) and hence JF

has full row rank (see Robinson [64]). In this case we say that the QP identifies the correct active

set at x∗. If, in addition, (x∗, y∗) satisfies the second-order sufficient conditions for optimality, then

KKT system (2.29) is nonsingular and the plain SQP method is equivalent to Newton’s method

applied to the equality-constraint subproblem defined by fixing the variables in the active set at

their bounds.

However, at a degenerate QP solution, the rows of JF are linearly dependent and the

KKT equations (2.29) are compatible but singular. Broadly speaking, there are two approaches

to dealing with the degenerate case, where each approach is linked to the method used to solve

the QP subproblem. The first approach employs a QP method that not only finds the QP solution

x̂k, but also identifies a “working set” of variables that defines a Jacobian matrix with linearly

independent rows. The second approach solves a regularized or perturbed QP subproblem that

35

provides a perturbed version of the KKT system (2.29) that is nonsingular for any JF .

Identifying independent constraints

The first approach is based on using a QP algorithm that provides a primal-dual QP solu-

tion that satisfies a nonsingular KKT system analogous to (2.29). A class of quadratic programming

methods with this property are primal-feasible active-set methods, which form the basis of the soft-

ware packages NPSOL and SNOPT. Primal-feasible QP methods have two phases: in phase 1, a

feasible point is found by minimizing the sum of infeasibilities; in phase 2, the quadratic objective

function is minimized while feasibility is maintained. In each iteration, the variables are labeled

as being “basic” or “nonbasic”, where the nonbasic variables are temporarily fixed at their current

value. The indices of the basic and nonbasic variables are denoted by B and N respectively. A

defining property of the B–N partition is that the rows of the Jacobian appearing in the KKT

matrix are always linearly independent. Once an initial basic set is identified, all subsequent KKT

equations have a constraint block with independent rows. (See Section 2.2.1 for more details on

primal-feasible active-set methods.)

Let pk = x̂k − xk, where (x̂k, ŷk) is the QP solution found by a primal-feasible active-

set method. Let pB denote the vector of components of pk in the final basic set B, with JB the

corresponding columns of Jk. The vector (pB, ŷk) satisfies the nonsingular KKT equations

HB JT
B

JB 0

 pB

−ŷk

 = −

[gk +Hkηk]B

ck + Jkηk

 , (2.30)

36

where ηk is now defined in terms of the final QP nonbasic set, i.e.,

[ηk]i =


[x̂k − xk]i if i ∈ N ;

0 if i ̸∈ N .

(2.31)

As in (2.29), if the basic-nonbasic partition is not changed during the solution of the subproblem,

then ηk = 0. If this final QP nonbasic set is used to define the initial nonbasic set for the next

QP subproblem, it is typical for the later QP subproblems to reach optimality in a single iteration

because the solution of the first QP KKT system satisfies the QP optimality conditions immediately.

In this case, the phase-1 procedure simply performs a feasibility check that would be required in

any case.

Constraint regularization

Analogous to the equality-constrained case, constraint regularization can be used to define

KKT equations that are nonsingular regardless of the rank of JF . Consider the perturbed version

of equations (2.29) such that

HF JT
F

JF −µI

 pF

−ŷk

 = −

[gk +Hkηk]F

ck + Jkηk

 , (2.32)

where µ is a small positive constant. In addition, assume that ZT
F HFZF is positive definite, where the

columns of ZF form a basis for the null space of JF . With this assumption, the regularized system

(2.32) is nonsingular regardless of the rank of JF . In contrast, the unperturbed KKT equations

(2.29) are singular if and only if JF has linearly dependent rows.

Note also that the QP subproblem analogous to (2.27) but formed with perturbed problem

37

functions f̃(x, y) and c̃(x, y) has the form

minimize
x∈Rn,y∈Rm

fk + gTk (x− xk) +
1
2 (x− xk)

THk(x− xk) +
1
2µ∥y∥

2

subject to ck + Jk(x− xk) + µ(y − yk) = 0, x ≥ 0.

(2.33)

When formulated in terms of the free variables, the optimality conditions analogous to (2.28) for

the regularized QP yield a system identical to (2.32).

Wright [70, 71, 72] and Hager [49] show that an SQP method using the regularized equa-

tions (2.32) will converge at a superlinear rate, even in the degenerate case. In Chapter 3, QP

methods are discussed that give equations of the form (2.32) at every outer iteration, not just in

the neighborhood of the solution. These methods implicitly shift the constraints by an amount of

order µ and give QP multipliers that converge to an O(µ) estimate of the least-length multipliers.

A related regularization scheme has been proposed and analyzed by Fischer [21], who

solves a second QP to obtain the multiplier estimates. Anitescu [2] regularizes the problem by

imposing a trust-region constraint on the plain SQP subproblem (2.1) and solving the resulting

subproblem by a semidefinite programming method.

Merit function methods

Much of the theory for equality-constrained SQP can be extended to the inequality con-

strained case. In order to be consistent with the notation of Section 2.1.1 the constraints will

be written in the form c(x) ≥ 0, while keeping in mind what follows also applies to (NP). As

in the equality-constrained case, convergence can be forced by using a merit function and a lo-

cal line-search model function. The primary difference is that the constraint violation is now

given by c−(x) = −min(c(x), 0) rather than c(x). The ℓ1 norm, infinity norm, and quadratic

38

penalty functions, as well as the primal-dual augmented Lagrangian can each be adapted to serve

as a merit function in this setting. For example, the ℓ1 penalty function, which now is given by

P1(x ;µ) = f(x) + 1
µ∥c

−(x)∥1, can be used in conjunction with an appropriate line-search model

given by

mk(xk ;µ) = fk + gTk (x− xk) +
1

µ
∥
(
ck + Jk(x− xk)

)
−∥1

to ensure global convergence. The following result is analogous to Result 2.1.1 and is the foundation

of guaranteed convergence.

Result 2.1.2. Let pk denote the solution and ŷ the optimal Lagrange multipliers of the QP sub-

problem

minimize
p∈Rn

fk + gTk p+
1
2p

TĤkp

subject to ck + Jkp ≥ 0,

(2.34)

where Ĥk is positive definite. Let ηS be a scalar such that 0 < ηS < 1
2 . If pk is nonzero, then for

all µ ≤ 1/∥ŷ∥∞ there exists ᾱ > 0 such that

P1(xk ;µ)− P1(xk + αpk ;µ) ≥ ηS(mk(xk ;µ)−mk(xk + αp ;µ))

for all α ∈ (0, ᾱ).

See Gill and Wright [44] for details. As in the equality-constraint case, Hessian convexification or

a quasi-Newton approximation can be used to define Ĥk.

As before, sequential unconstrained methods can also be used for minimizing the ℓ1 penalty

function P1(x ;µ) = f(x) + 1
µ∥c

−(x)∥1, which is approximated by the quadratic model

mk(x ;µ) = fk + gTk (x− xk) +
1

2
(x− xk)

THk(x− xk) +
1

µ
∥(ck + Jk(x− xk))

−∥1.

39

The nonsmooth unconstrained problem of minimizing mk(x ;µ) can be replaced by the equivalent

smooth constrained problem

minimize
p∈Rn,v∈Rm

gTk p+
1
2p

THkp+
1
µe

Tv

subject to ck + Jkp+ v ≥ 0, v ≥ 0.

(2.35)

This method can be globalized by using a line-search or trust-region strategy. In the line-search

case a positive-definite matrix Ĥk is required to approximate Hk, and a line-search computes αk

such that the actual reduction in P1(x ;µ) is at least fixed fraction of the reduction predicted by

the line-search model. In the trust-region case, the exact Hessian Hk can be used, but a trust-

region constraint ∥p∥∞ ≤ δk must be imposed, with the trust-region radius δk chosen so that

P1(xk + pk ;µ) < P1(xk ;µ). The resulting QP subproblem is then given by

minimize
p∈Rn,v∈Rm

gTk p+
1
2p

THkp+
1
µe

Tv

subject to ck + Jkp+ v ≥ 0, v ≥ 0, −δke ≤ p ≤ δke.

(2.36)

There are alternatives to using a merit functions, though their presentation is outside the

scope of this discussion. The class of filter methods employ a fundamentally different approach to

guarantee global convergence. For more information see, e.g., [44], [25], and [26].

40

2.2 Methods for Quadratic Programming

We consider methods for the quadratic program

minimize
x∈Rn

gT(x− xI) +
1
2 (x− xI)

TH(x− xI)

subject to Ax = AxI − b, x ≥ 0,

(2.37)

where g, H, b, A and xI are given constant quantities, with H symmetric. The QP objective is

denoted by φ(x), with gradient ĝ(x) = g+H(x−xI). In some situations, the general constraints will

be written as ĉ(x) = 0, with ĉ(x) = A(x−xI)+ b. The QP active set is denoted by A(x). A primal-

dual QP solution is denoted by (x∗, y∗, z∗). In terms of the QP defined at the kth outer iteration

of an SQP method, we have xI = xk, b = c(xk), g = g(xk), A = J(xk) and H = H(xk, yk). It is

assumed that A has rank m. No assumptions are made about H other than symmetry. Conditions

that must hold at an optimal solution of (2.37) are provided by the following result (see, e.g.,

Borwein [4], Contesse [14] and Majthay [53]).

Result 2.2.1 (QP optimality conditions).

The point x∗ is a local minimizer of the quadratic program (2.37) if and only if

(a) ĉ(x∗) = 0, x∗ ≥ 0, and there exists at least one pair of vectors y∗ and z∗ such that ĝ(x∗) −

ATy∗ − z∗ = 0, with z∗ ≥ 0, and z∗ · x∗ = 0;

(b) pTHp ≥ 0 for all nonzero p satisfying ĝ(x∗)Tp = 0, Ap = 0, and pi ≥ 0 for every i ∈ A(x∗).

Part (a) gives the first-order KKT conditions (2.28) for the QP (2.37). If H is positive semidefinite,

the first-order KKT conditions are both necessary and sufficient for (x∗, y∗, z∗) to be a local primal-

dual solution of (2.37).

41

Suppose that (x∗, y∗, z∗) satisfies condition (a) with z∗i = 0 and x∗
i = 0 for some i. If H is

positive semidefinite, then x∗ is a weak minimizer of (2.37). In this case, x∗ is a global minimizer

with a unique global minimum φ(x∗). If H has at least one negative eigenvalue, then x∗ is known

as a dead point. Verifying condition (b) at a dead point requires finding the global minimizer of

an indefinite quadratic form over a cone, which is an NP-hard problem (see, e.g., Cottle, Habetler

and Lemke [15], Pardalos and Schnitger [59], and Pardalos and Vavasis [60]). This implies that

the optimality of a candidate solution of a general quadratic program can be verified only if more

restrictive (but computationally tractable) sufficient conditions are satisfied. A dead point is a

point at which the sufficient conditions are not satisfied, but certain necessary conditions hold.

Computationally tractable necessary conditions are based on the following result.

Result 2.2.2 (Necessary conditions for optimality).

The point x∗ is a local minimizer of the QP (2.37) only if

(a) ĉ(x∗) = 0, x∗ ≥ 0, and there exists at least one pair of vectors y∗ and z∗ such that ĝ(x∗) −

ATy∗ − z∗ = 0, with z∗ ≥ 0, and z∗ · x∗ = 0;

(b) pTHp ≥ 0 for all nonzero p satisfying Ap = 0, and pi = 0 for every i ∈ A(x∗).

Suitable sufficient conditions for optimality are given by (a)–(b) with (b) replaced by the condition

that pTHp ≥ ω∥p∥2 for some ω > 0 and all p such that Ap = 0, and pi = 0 for every i ∈ A+(x),

where A+(x) is the index set A+(x) = {i ∈ A(x) : zi > 0}.

Typically, software for general quadratic programming is designed to terminate at a dead

point. Nevertheless, it is possible to define procedures that check for optimality at a dead point,

but the chance of success in a reasonable amount of computation time depends on the dimension

of the problem (see Forsgren, Gill and Murray [29]).

42

2.2.1 Primal active-set methods

We start by reviewing the properties of primal-feasible active-set methods for quadratic

programming. An important feature of these methods is that once a feasible iterate is found, all

subsequent iterates are feasible. The methods have two phases. In the first phase (called the

feasibility phase or phase one), a feasible point is found by minimizing the sum of infeasibilities. In

the second phase (the optimality phase or phase two), the quadratic objective function is minimized

while feasibility is maintained. Each phase generates a sequence of inner iterates {xj} such that xj ≥

0. The new iterate xj+1 is defined as xj+1 = xj + αjpj , where the step length αj is a nonnegative

scalar, and pj is the QP search direction. For efficiency, it is beneficial if the computations in both

phases are performed by the same underlying method. The two-phase nature of the algorithm

is reflected by changing the function being minimized from a function that reflects the degree of

infeasibility to the quadratic objective function. For this reason, it is helpful to consider methods

for the optimality phase first.

At the jth step of the optimality phase, ĉ(xj) = A(xj − xI) + b = 0 and xj ≥ 0. The

vector pj is chosen to satisfy certain properties with respect to the objective and constraints. First,

pj must be a direction of decrease for φ at xj , i.e., there must exist a positive ᾱ such that

φ(xj + αpj) < φ(xj) for all α ∈ (0, ᾱ].

In addition, xj+pj must be feasible with respect to the general constraints, and feasible with respect

to the bounds associated with a certain “working set” of variables that serves as an estimate of the

optimal active set of the QP. Using the terminology of linear programming, we call this working

set of variables the nonbasic set, denoted by N = {ν1, ν2, . . . , νnN
}. Similarly, we define the set

43

B of indices that are not in N as the basic set, with B = {β1, β2, . . . , βnB
}, where nB = n − nN .

Although B and N are strictly index sets, we will follow common practice and refer to variables

xβr
and xνs

as being “in B” and “in N ” respectively.

With these definitions, we define the columns of A indexed by N and B, the nonbasic and

basic columns of A, as AN and AB, respectively. We refrain from referring to the nonbasic and

basic sets as the “fixed” and “free” variables because some active-set methods allow some nonbasic

variables to move (the simplex method for linear programming being one prominent example). An

important attribute of the nonbasic set is that AB has rank m, i.e., the rows of AB are linearly

independent. This implies that the cardinality of the nonbasic set must satisfy 0 ≤ nN ≤ n−m. It

must be emphasized that our definition of N does not require a nonbasic variable to be active (i.e.,

at its lower bound). Also, whereas the active set is defined uniquely at each point, there are many

choices for N (including the empty set). Given any n-vector y, the vector of basic components of

y, denoted by yB, is the nB-vector whose jth component is component βj of y. Similarly, yN , the

vector nonbasic components of y, is the nN -vector whose jth component is component νj of y.

Given a basic-nonbasic partition of the variables, we introduce the definitions of station-

arity and optimality with respect to a basic set.

Definition 2.2.1 (Subspace stationary point). Let B be a basic set defined at an x̂ such that

ĉ(x̂) = 0. Then x̂ is a subspace stationary point with respect to B (or, equivalently, with respect

to AB) if there exists a vector y such that ĝB(x̂) = AT
B y. Equivalently, x̂ is a subspace stationary

point with respect to B if the reduced gradient ZT
B ĝB(x̂) is zero, where the columns of ZB form a

basis for the null-space of AB.

If x̂ is a subspace stationary point, φ is stationary on the subspace {x : A(x−x̂) = 0, xN =

x̂N}. At a subspace stationary point, it holds that g(x̂) = ATy + z, where zi = 0 for i ∈ B—i.e.,

44

zB = 0. Subspace stationary points may be classified based on the curvature of φ on the nonbasic

set.

Definition 2.2.2 (Subspace minimizer). Let x̂ be a subspace stationary point with respect to B.

Let the columns of ZB form a basis for the null-space of AB. Then x̂ is a subspace minimizer with

respect to B if the reduced Hessian ZT
B HZB is positive definite.

It should be noted here that sometimes subspace stationary points and minimizers are

defined with respect to the working set rather than the basic set. In this case, ZN is defined to be

a matrix whose columns form a basis for the null space of GN , where

G =

A

I

 , G =

AB AN

PB PN

 , and GN =

AB AN

0 InN

 ,

where we assumed the basic columns precede the nonbasic ones, and PB and PN consist of columns

of identity indexed by the corresponding set. It follows ZN must have the form

ZN =

ZB

0

 ,

where ZB is defined as in Definitions 2.2.1 and 2.2.2. In this alternative definition, a subspace

stationary point satisfies ZT
N ĝ(x̂) = 0 and a subspace minimizer gives ZT

N HZN positive definite.

Since ZT
N ĝ(x̂) = ZT

B ĝB(x̂) and ZT
N HZN = ZT

B HZB, it follows these definitions are equivalent.

If the nonbasic variables are active at x̂, then x̂ is called a standard subspace minimizer.

At a standard subspace minimizer, if zN ≥ 0 then x̂ satisfies the necessary conditions for optimality.

Otherwise, there exists an index νs ∈ N such that zνs
< 0. If some nonbasic variables are not active

at x̂, then x̂ is called a nonstandard subspace minimizer.

It is convenient sometimes to be able to characterize the curvature of φ in a form that

45

does not require the matrix ZB explicitly. The inertia of a symmetric matrix X, denoted by In(X),

is the integer triple (i+, i−, i0), where i+, i− and i0 denote the number of positive, negative and

zero eigenvalues of X. Gould [45] shows that if AB has rank m and ABZB = 0, then ZT
B HBZB is

positive definite if and only if

In(KB) = (nB,m, 0), where KB =

HB AT
B

AB 0

 (2.38)

(see Forsgren [27] for a more general discussion, including the case where AB does not have rank m).

Many algorithms for solving symmetric equations that compute an explicit matrix factorization of

KB also provide the inertia as a by-product of the calculation, see, e.g., Bunch [5], and Bunch and

Kaufman [6].

Below, we discuss two alternative formulations of an active-set method. Each generates

a feasible sequence {xj} such that xj+1 = xj + αjpj with φ(xj+1) ≤ φ(xj). Neither method

requires the QP to be convex, i.e., H need not be positive semidefinite. The direction pj is defined

as the solution of an QP subproblem with equality constraints. Broadly speaking, the nonbasic

components of pj are specified and the basic components of pj are adjusted to satisfy the general

constraints A(xj + pj) = AxI − b. If pB and pN denote the basic and nonbasic components of pj ,

then the nonbasic components are fixed by enforcing constraints of the form pN = dN , where dN

is a constant vector that characterizes the active-set method being used. The restrictions on pj

define constraints Ap = 0 and pN = dN . Any remaining degrees of freedom are used to define pj

as the direction that produces the largest reduction in φ. This gives the equality constrained QP

subproblem

minimize
p

ĝ(xj)
Tp+ 1

2p
THp subject to Ap = 0, pN = dN .

46

In the following sections we define two methods based on alternative definitions of dN . Both methods

exploit the properties of a subspace minimizer (see Definition 2.2.2) in order to simplify the linear

systems that must be solved.

Nonbinding-direction methods

We start with a method that defines a change in the basic-nonbasic partition at every

iteration. In particular, one of three changes occurs: (i) a variable is moved from the basic set to

the nonbasic set; (ii) a variable is moved from the nonbasic set to the basic set; or (ii) a variable

in the basic set is swapped with a variable in the nonbasic set. These changes result in a column

being added, deleted or swapped in the matrix AB.

In order to simplify the notation, we drop the subscript j and consider the definition of a

single iteration that starts at the primal-dual point (x, y) and defines a new iterate (x̄, ȳ) such that

x̄ = x+ αp and ȳ = y + αqy. A crucial assumption about (x, y) is that it is a subspace minimizer

with respect to the basis B. It will be shown that this assumption guarantees that the next iterate

(x̄, ȳ) (and hence each subsequent iterate) is also a subspace minimizer.

Suppose that the reduced cost associated with the sth nonbasic variable is negative, i.e.,

zνs < 0. The direction p is defined so that all the nonbasic components are fixed except for the

sth, which undergoes a unit change. This definition implies that a positive step along p increases

xνs
but leaves all the other nonbasics unchanged. The required direction is defined by the equality

constrained QP subproblem:

minimize
p

ĝ(x)Tp+ 1
2p

THp subject to Ap = 0, pN = es, (2.39)

and is said to be nonbinding with respect to the nonbasic variables. If the multipliers for the

47

constraints Ap = 0 are defined in terms of an increment qy to y, then pB and qy satisfy the

optimality conditions


HB −AT

B HD

AB 0 AN

0 0 IN




pB

qy

pN

 = −


ĝB(x)−AT

B y

0

− es

 ,

where, as above, ĝB(x) are the basic components of ĝ(x), and HB and HD are the basic rows of the

basic and nonbasic columns of H. If x is a subspace minimizer, then ĝB(x)−AT
B y = 0, so that this

system simplifies to 
HB −AT

B HD

AB 0 AN

0 0 IN




pB

qy

pN

 =


0

0

es

 , (2.40)

yielding pB and qy as the solution of the smaller system

HB −AT
B

AB 0

pB

qy

 = −

[hνs]B

aνs

 . (2.41)

The increment qN for multipliers zN are computed from pB, pN and qy as qN = (Hp − ATqy)N .

Once pB and qy are known, a nonnegative step α is computed so that x + αp is feasible and

φ(x+ αp) ≤ φ(x). The step that minimizes φ as a function of α is given by

α∗ =


−ĝ(x)Tp/pTHp if pTHp > 0,

+∞ otherwise.
(2.42)

48

The best feasible step is then α = min{α∗, αM}, where αM is the maximum feasible step:

αM = min
1≤i≤nB

{γi}, where γi =


[xB]i
−[pB]i

if [pB]i < 0,

+∞ otherwise.

(2.43)

(As pN = es and the problem contains only lower bounds, x + tp remains feasible with respect to

the nonbasic variables for all t ≥ 0.) If α = +∞ then φ decreases without limit along p and the

problem is unbounded. Otherwise, the new iterate is (x̄, ȳ) = (x+ αp, y + αqy).

It is instructive to define the step α∗ of (2.42) in terms of the identities

ĝ(x)Tp = zνs and pTHp = [qN]s, (2.44)

which follow from the equations (2.40) that define pB and pN . Then, if α∗ is bounded, we have

α∗ = −zνs/[qN]s, or, equivalently,

zνs
+ α∗[qN]s = 0.

Let z(t) denote the vector of reduced costs at any point on the ray (x + tp, y + tqy), i.e., z(t) =

ĝ(x + tp) − AT(y + tqy). It follows from the definition of p and qy of (2.40) that zB(t) = 0 for all

t, which implies that x + tp is a subspace stationary point for any step t. (Moreover, x + tp is a

subspace minimizer because the KKT matrix KB is independent of t.) This property, known as

the parallel subspace property of quadratic programming, implies that x + tp is the solution of an

equality-constraint QP in which the bound on the sth nonbasic is shifted to pass through x + tp.

The component zνs(t) is the reduced cost associated with the shifted version of the bound xνs ≥ 0.

By definition, the sth nonbasic reduced cost is negative at x, i.e., zνs
(0) < 0. Moreover, a simple

calculation shows that zνs
(t) is an increasing linear function of t with zνs

(α∗) = 0 if α∗ is bounded.

49

A zero reduced cost at t = α∗ means that the shifted bound can be removed from the equality-

constraint problem (2.39) (defined at x = x̄) without changing its minimizer. Hence, if x̄ = x+α∗p,

the index νs is moved to the basic set, which adds column aνs
to AB for the next iteration. The

shifted variable has been removed from the nonbasic set, which implies that (x̄, ȳ) is a standard

subspace minimizer.

If we take a shorter step to the boundary of the feasible region, i.e., αM < α∗, then at

least one basic variable lies on its bound at x̄ = x+αp, and one of these, xβr say, is made nonbasic.

If ĀB denotes the matrix AB with column r deleted, then ĀB is not guaranteed to have full row

rank (for example, if x is a vertex, AB is square and ĀB has more rows than columns). The linear

independence of the rows of ĀB is characterized by the so-called “singularity vector” uB given by

the solution of the equations HB −AT
B

AB 0

uB

vy

 =

er

0

 . (2.45)

The matrix ĀB has full rank if and only if uB ̸= 0. If ĀB is rank deficient, x̄ is a subspace

minimizer with respect to the basis defined by removing xνs
, i.e., xνs

is effectively replaced by xβr

in the nonbasic set. In this case, it is necessary to update the dual variables again to reflect the

change of basis (see Gill and Wong [43] for more details). The new multipliers are ȳ + σvy, where

σ = ĝ(x̄)Tp/[pB]r.

As defined above, this method requires the solution of two KKT systems at each step (i.e.,

equations (2.41) and (2.45)). However, if the solution of (2.45) is such that uB ̸= 0, then the vectors

pB and qy needed at x̄ can be updated in O(n) operations using the vectors uB and vy. Hence, it

is unnecessary to solve (2.41) when a basic variable is removed from B following a restricted step.

Given an initial standard subspace minimizer x0 and basic set B0, this procedure generates

a sequence of primal-dual iterates {(xj , yj)} and an associated sequence of basic sets {Bj}. The

50

iterates occur in groups of consecutive iterates that start and end at a standard subspace minimizer.

Each of the intermediate iterates is a nonstandard subspace minimizer at which the same nonbasic

variable may not be on its bound. At each intermediate iterate, a variable moves from B to N . At

the first (standard) subspace minimizer of the group, a nonbasic variable with a negative reduced

cost is targeted for inclusion in the basic set. In the subsequent set of iterations, this reduced cost

is nondecreasing and the number of basic variables decreases. The group of consecutive iterates

ends when the targeted reduced cost reaches zero, at which point the associated variable is made

basic.

The method outlined above is based on a method first defined for constraints in all-

inequality form by Fletcher [22], and extended to sparse QP by Gould [46]. Recent refinements,

including the technique for reducing the number of KKT solves, are given by Gill and Wong [43].

Each of these methods is an example of an inertia-controlling method. The idea of an inertia-

controlling method is to use the active-set strategy to limit the number of zero and negative eigen-

values in the KKT matrix KB so that it has inertia (nB,m, 0) (for a survey, see Gill et al. [38]).

At an arbitrary feasible point, a subspace minimizer can be defined by making sufficiently many

variables temporarily nonbasic at their current value (see, e.g., Gill, Murray and Saunders [35] for

more details).

Binding-direction methods

The next method employs a more conventional active-set strategy in which the nonbasic

variables are always active. We start by assuming that the QP is strictly convex, i.e., that H is

positive definite. Suppose that (x, y) is a feasible primal-dual pair such that xi = 0 for i ∈ N ,

where N is chosen so that AB has rank m. As in a nonbinding direction method, the primal-dual

51

direction (p, qy) is computed from an equality constrained QP subproblem. However, in this case the

constraints of the subproblem not only force Ap = 0 but also require that every nonbasic variable

remains unchanged for steps of the form x + αp. This is done by fixing the nonbasic components

of p at zero, giving the equality constraints Ap = ABpB + ANpN = 0 and pN = 0. The resulting

subproblem defines a direction that is binding, in the sense that it is “bound” or “attached” to the

constraints in the nonbasic set. The QP subproblem that gives the best improvement in φ is then

minimize
p

ĝ(x)Tp+ 1
2p

THp subject to ABpB = 0, pN = 0. (2.46)

The optimality conditions imply that pB and qy satisfy the KKT system

HB −AT
B

AB 0

pB

qy

 = −

ĝB(x)−AT
B y

0

 . (2.47)

These equations are nonsingular under our assumptions that H is positive definite and AB has rank

m. If (x, y) is a subspace stationary point, then zB = ĝB(x) − AT
B y = 0 and the solution (pB, qy)

is zero. In this case, no improvement can be made in φ along directions in the null-space of AB.

If the components of z = ĝ(x) − ATy are nonnegative then x is optimal for (2.37). Otherwise,

a nonbasic variable with a negative reduced cost is selected and moved to the basic set (with no

change to x), thereby defining (2.47) with new AB, HB and (necessarily nonzero) right-hand side.

Given a nonzero solution of (2.47), x+ p is either feasible or infeasible with respect to the bounds.

If x+ p is infeasible, N cannot be the correct nonbasic set and feasibility is maintained by limiting

the step by the maximum feasible step αM as in (2.43). At the point x̄ = x + αp, at least one of

the basic variables must reach its bound and it is moved to the nonbasic set for the next iteration.

Alternatively, if x + p is feasible, x̄ = x + p is a subspace minimizer and a nonoptimal nonbasic

52

variable is made basic as above.

The method described above defines groups of consecutive iterates that start with a vari-

able being made basic. No more variables are made basic until either an unconstrained step is taken

(i.e., α = 1), or a sequence of constrained steps results in the definition of a subspace minimizer

(e.g., at a vertex). At each constrained step, the number of basic variables decreases.

As H is positive definite in the strictly convex case, the KKT equations (2.47) remain

nonsingular as long as AB has rank m. One of the most important properties of a binding-direction

method is that once an initial nonbasic set is chosen (with the implicit requirement that the associ-

ated AB has rank m), then all subsequent AB will have rank m (and hence the solution of the KKT

system is always well defined). This result is of sufficient importance that we provide a brief proof.

If a variable becomes basic, a column is added to AB and the rank does not change. It

follows that the only possibility for AB to lose rank is when a basic variable is made nonbasic.

Assume that AB has rank m and that the first basic variable is selected to become nonbasic, i.e.,

r = 1. If ĀB denotes the matrix AB without its first column, then AB =
(
aβr ĀB

)
. If ĀB does

not have rank m then there must exist a nonzero m-vector v̄ such that ĀT
B v̄ = 0. If σ denotes the

quantity σ = −aT
βr
v̄, then the (m+ 1)-vector v = (v̄, σ) satisfies

aT
βr

1

ĀT
B 0

v̄

σ

 = 0, or equivalently,
(
AT

B er

)
v = 0.

The scalar σ must be nonzero or else AT
B v̄ = 0, which would contradict the assumption that AB

has rank m. Then

vT

AB

eTr

 pB = vT

 0

[pB]r

 = σ[pB]r = 0,

which implies that [pB]r = 0. This is a contradiction because the ratio test (2.43) will choose βr as

53

the outgoing basic variable only if [pB]r < 0. It follows that v̄ = 0, and hence ĀB must have rank

m.

If H is not positive definite, the KKT matrix KB associated with the equations (2.47)

may have fewer than nB positive eigenvalues (cf. (2.38)), i.e., the reduced Hessian ZT
B HBZB may

be singular or indefinite. In this situation, the subproblem (2.46) is unbounded and the equations

(2.47) cannot be used directly to define p. In this case we seek a direction p such that pN = 0 and

ABpB = 0, where

gTB pB < 0, and pTBHBpB ≤ 0. (2.48)

The QP objective decreases without bound along such a direction, so either the largest feasible

step αM (2.43) is infinite, or a basic variable must become nonbasic at some finite αM such that

φ(x+ αMp) ≤ φ(x). If αM = +∞, the QP problem is unbounded and the algorithm is terminated.

54

Chapter 3

Stabilized and Primal-Dual SQP

Methods

If JF does not have full rank, the equations (2.30) are singular with no unique solution. In

this case, one remedy is to use the constraint regularization techniques described in Section 2.1.2

to define a stabilized SQP method in which the QP subproblem (2.27) is replaced by

minimize
x,y

gTk (x− xk) +
1
2 (x− xk)

TĤk(x− xk) +
1
2µk∥y∥2

subject to ck + Jk(x− xk) + µk(y − yk) = 0, x ≥ 0,

(3.1)

where {µk} is a positive sequence such that µk → 0 as xk → x∗ (see, e.g., Wright [70], Hager [49],

Li and Qi [52], and Fernández and Solodov [20]). The QP (3.1) is often referred to as a stabilized

subproblem because of its calming effect on multiplier estimates for degenerate problems (see,

e.g., [49, 70]). Under certain assumptions, stabilized SQP methods exhibit fast local convergence.

55

However, there is no guarantee of convergence to a local solution for an arbitrary starting point.

Under suitable assumptions, the method proposed in this chapter is guaranteed to be globally

convergent and is equivalent to stabilized SQP in the limit.

3.1 A Regularized Primal-Dual Line-Search SQP Algorithm

This section defines a regularized SQP line-search method based on the primal-dual aug-

mented Lagrangian function

M(x, y ; yE, µ) = f(x)− c(x)TyE +
1

2µ
∥c(x)∥2 + 1

2µ
∥c(x) + µ(y − yE)∥2, (3.2)

where µ is the penalty parameter and yE is an estimate of an optimal Lagrange multiplier vector

y∗. (A trust-region-based method could also be given, but in this thesis we focus on line-search

methods.) The function (3.2), proposed by Robinson [62], and Gill and Robinson [39], may be

derived by applying the primal-dual penalty function of Forsgren and Gill [28] to a problem in

which the constraints are shifted by a constant vector (see Powell [61]). With the notation c = c(x),

g = ∇f(x), and J = J(x), the gradient of M(x, y ; yE, µ) may be written as

∇M(x, y ; yE, µ) =

g − JT
(
2(yE − 1

µc)− y
)

c+ µ(y − yE

 (3.3a)

=

g − JT
(
π + (π − y)

)
µ(y − π)

 , (3.3b)

where π = π(x ; yE, µ) denotes the vector-valued function

π(x ; yE, µ) = yE − 1

µ
c(x). (3.4)

56

Similarly, the Hessian of M(x, y ; yE, µ) may be written as

∇2M(x, y ; yE, µ) =

H
(
x, π + (π − y)

)
+ 2

µJ
TJ JT

J µI

 . (3.5)

Our approach is motivated by the following theorem, which shows that under certain

assumptions, minimizers of problem (NP) are also minimizers of the bound constrained problem

minimize
x,y

M(x, y ; yE, µ) subject to x ≥ 0. (3.6)

Theorem 3.1.1 (Robinson [62, Theorem 4.6.1]). If (x∗, y∗) satisfies second-order sufficient condi-

tions for a solution of problem (NP), then there exists a positive µ̄ such that, for all 0 < µ < µ̄ and

yE = y∗, the point (x∗, y∗) is a minimizer of problem (3.6).

The reader is referred to Robinson [62] and Gill and Robinson [39] for additional details.

In this context, Theorem 3.1.1 is used as motivation for the algorithm described below.

3.2 Definition of the Primal-Dual Search Direction

Given the kth iterate vk = (xk, yk), a Lagrange multiplier estimate yE

k , and a positive

regularization parameter µR

k, a symmetric matrix Ĥ(xk, yk) ≈ H(xk, yk) is defined such that

Ĥ(xk, yk) + (1/µR

k)J(xk)
TJ(xk) is positive definite. One may choose Ĥ(xk, yk) itself to be positive

definite, but we explore a more sophisticated strategy in Section 3.3.1 that allows for an indefinite

matrix Ĥ(xk, yk) that more faithfully approximates H(xk, yk). With this assumption on the ma-

trix Ĥ, part (i) of Lemma 3.2.1 given below may be applied with the quantities H = Ĥ(xk, yk),

57

J = J(xk), and µ = µR

k, to infer that the matrix

HM(xk, yk ;µ
R

k) =

Ĥ(xk, yk) +
2

µR

k

J(xk)
TJ(xk) J(xk)

T

J(xk) µR

kI

 (3.7)

is a positive-definite approximation to the Hessian of M . Given an appropriate matrix HM(vk ;µ
R

k) ≡

HM(xk, yk ;µ
R

k), the primal-dual search direction is given by

dk = v̂k − vk, (3.8)

where v̂k = (x̂k, ŷk) is a solution of the strictly convex bound-constrained QP subproblem:

minimize
v

φ(v) = ∇M(vk ; y
E

k , µ
R

k)
T(v − vk) +

1
2 (v − vk)

THM(vk ;µ
R

k)(v − vk)

subject to vi ≥ 0, i = 1, 2, . . . , n.

(3.9)

The following lemma provides the connections between the inertias of various matrices (part (i)

may be used to conclude that the subproblem (3.9) is strictly convex).

Lemma 3.2.1. Let µ be a positive scalar. Let H and J be matrices such that H is symmetric n×n

and J is m× n. If we define

HM =

H + 2
µJ

TJ JT

J µIm

 and K =

H JT

J −µIm

 ,

then the following properties hold.

(i) The matrix H + 1
µJ

TJ is positive definite if and only if In(HM) = (n+m, 0, 0).

(ii) The matrix H + 1
µJ

TJ is positive definite if and only if In(K) = (n,m, 0).

58

Proof. It may be verified by direct multiplication that

LTHML =

H + 1
µJ

TJ 0

0 µIm

 , where L =

 In 0

− 1
µJ Im

 .

The matrix L is nonsingular, and Sylvester’s law of inertia gives

In(HM) = In(LTHML) = In
(
H +

1

µ
JTJ

)
+ (m, 0, 0),

which implies the result of part (i).

To prove part (ii), consider the identity

STKS =

H + 1
µJ

TJ 0

0 −µIm

 , where S =

 In 0

1
µJ Im

 .

It now follows from the nonsingularity of S and Sylvester’s law of inertia that

In(K) = In(STKS) = In
(
H +

1

µ
JTJ

)
+ (0,m, 0),

from which part (ii) follows directly.

The first-order optimality conditions for any primal-dual QP solution v̂k = (x̂k, ŷk) of the

bound-constrained QP (3.9) may be written in matrix form

ĤF JT
F

JF −µR

kI

 [x̂k − xk]F

−(ŷk − yk)

 = −

 [gk + Ĥkηk − JT
k yk]F

ck + Jkηk + µR

k(yk − yE

k)

 , (3.10)

where ck, gk and Jk denote the quantities c(x), ∇f(x) and J(x) evaluated at xk, and the quantities

with suffix “F ” are defined in terms of the index set F(x̂k), i.e., ĤF is the matrix of free rows and

59

columns of Ĥk = Ĥ(xk, yk), and JF is the matrix of free columns of Jk at x̂k. The vector ηk is

nonpositive with components

[ηk]i =


−[xk]i if i ∈ A(x̂k);

0 if i ∈ F(x̂k).

As Ĥk + (1/µR

k)J
T
k Jk is positive definite by construction, it follows immediately that the principal

submatrix ĤF + (1/µR

k)J
T
F JF is also positive definite. We may then apply part (ii) of Lemma 3.2.1

with values H = ĤF , J = JF , and µ = µR

k, to infer that the matrix associated with the equations

(3.10) is nonsingular. It follows that if A(x̂k) = A(xk), then ηk is zero and (x̂k, ŷk) satisfies the

perturbed Newton equations

ĤF JT
F

JF −µR

kI

 [x̂k − xk]F

−(ŷk − yk)

 = −

 [gk − JT
k yk]F

ck + µR

k(yk − yE

k)

 . (3.11)

A key property is that if µR

k = 0 and JF has full rank, then this equation is identical to the equation

for the conventional SQP step given by (2.29). This provides the motivation to use a small penalty

parameter µR

k for the step computation and a different larger penalty parameter µk for the merit

function. In this context, µR

k plays the role of a regularization parameter rather than a penalty

parameter, thereby providing an O(µR

k) estimate of the conventional SQP direction. This approach

is nonstandard because a small “penalty parameter” µR

k is used by design, whereas conventional

augmented Lagrangian-based methods attempt to keep µ as large as possible [11, 35].

The discussion above has established the relationship between the computation of the

primal-dual bound-constrained step and the solution of a regularized QP. The next result formalizes

the connection between the primal-dual step and the step associated with a stabilized SQP method.

60

Result 3.2.1. Let µR

k denote a fixed scalar such that µR

k > 0. Let vk = (xk, yk), gk = g(xk),

ck = c(xk), and Jk = J(xk). Given a matrix Ĥk = Ĥ(xk, yk) such that Ĥk + (1/µR

k)J
T
k Jk is

positive definite, consider the subproblem

minimize
x,y

gTk (x− xk) +
1
2 (x− xk)

TĤk(x− xk) +
1
2µ

R

k∥y∥2

subject to ck + Jk(x− xk) + µR

k(y − yE

k) = 0, x ≥ 0,

(3.12)

which is the stabilized SQP subproblem (3.1) defined with µk = µR

k and yk = yE

k . The following

results hold.

(i) The stabilized QP (3.12) has a unique bounded primal-dual solution v̂k = (x̂k, ŷk).

(ii) The unique solution v̂k = (x̂k, ŷk) of the stabilized QP (3.12) is also the unique solution

of (3.9).

Proof. To simplify notation, the regularization parameter µR

k will be denoted by µ. For part (i),

given the particular feasible point v0 = (xk, πk) with πk = yE

k − ck/µ, any feasible point v = (x, y)

may be written as

v = v0 +Nw for some vector w ∈ Rn, where N =

 µI

−Jk

 .

The matrix N is (n + m) × n with rank n, and its columns form a basis for the null-space of

the constraint matrix
(
Jk µI

)
. Applying this equivalent form of v to (3.12) gives the equivalent

problem

minimize
w∈Rn

µ

2
wT
(
Ĥk +

1

µ
JT
k Jk

)
w + wT

(
gk − JT

k πk

)
subject to µw ≥ −xk.

61

The matrix Ĥk + (1/µ)JT
k Jk is positive definite by assumption, and it follows that the stabilized

QP (3.12) is equivalent to a convex program with a strictly convex objective. The existence of a

unique bounded solution follows directly.

For part (ii), it is sufficient to show that the optimality conditions for the problems (3.12)

and (3.9) are equivalent. The first-order conditions for (x, y) to be a solution of the stabilized QP

(3.12) are:

ck + Jk(x− xk) + µ(y − yE

k) = 0, µy = µπ,

gk + Ĥk(x− xk)− JT
k π − z = 0, z ≥ 0,

z · x = 0, x ≥ 0,

where π and z denote the dual variables for the equality and inequality constraints of problem

(3.12), respectively. Eliminating π using the equation π = y gives

ck + Jk(x− xk) + µ(y − yE

k) = 0, (3.13a)

gk + Ĥk(x− xk)− JT
k y − z = 0, z ≥ 0, (3.13b)

z · x = 0, x ≥ 0. (3.13c)

The optimality conditions for the bound-constrained QP (3.9) are

∇M(vk; y
E

k , µ) +HM(vk ;µ)(v − vk) =

z

0

 , z ≥ 0, (3.14a)

z · x = 0, x ≥ 0. (3.14b)

62

Premultiplying the equality of (3.14a) by the nonsingular matrix T defined by

T =

In − 2
µJ

T
k

0 Im

 ,

and using the definitions (3.3) and (3.4) yields the equivalent conditions

gk + Ĥk(x− xk)− JT
k y − z = 0 and ck + Jk(x− xk) + µ(y − yE

k) = 0,

which are identical to the relevant equalities in (3.13). Thus, the solutions of (3.12) and (3.9) are

identical.

The uniqueness of the solution v = (x, y) follows from part (i) of Lemma 3.2.1, which

implies that the objective Hessian of the bound constrained QP (3.9) is positive definite, thereby

ensuring a strictly convex QP.

3.2.1 Definition of the new iterate

Once the search direction dk = v̂k− vk has been determined, a “flexible” backtracking line

search is performed on the primal-dual augmented Lagrangian. A conventional backtracking line

search defines vk+1 = vk + αkdk, where αk = 2−j and j is the smallest nonnegative integer such

that

M(vk + αkdk ; y
E

k , µk) ≤M(vk ; y
E

k , µk) + αkηSd
T
k∇M(vk ; y

E

k , µk)

for a given ηS ∈ (0, 1
2). However, this approach would suffer from the Maratos effect [55] simply

because the penalty parameter µk and the regularization parameter µR

k used to compute the trial

step have different values in general. This difficulty is avoided by using an augmented Lagrangian

63

version of the “flexible penalty function” proposed by Curtis and Nocedal [16]. This method defines

a step length of the form αk = 2−j , where j is the smallest nonnegative integer satisfying

M(vk + αkdk ; y
E

k , µ
F

k) ≤M(vk ; y
E

k , µ
F

k) + αkηSδk (3.15)

for some value µF

k ∈ [µR

k, µk], and δk such that

δk = max
(
dT
k∇M(vk ; y

E

k , µ
R

k),−ηD∥dk∥2
)
≤ 0, (3.16)

with ηD a small positive constant. The use of the second term in the definition of δk increases the

chance that a step is accepted during the early iterations when |dT
k∇M(vk ; y

E

k , µ
R

k)| is large. Once

an appropriate value for αk is found, the new primal-dual solution estimate is given by

xk+1 = xk + αk(x̂k − xk) and yk+1 = yk + αk(ŷk − yk).

In a practical algorithm, the step is reduced until the Armijo condition (3.15) is satisfied for one

of the values µF

k = µk or µF

k = µR

k (where the condition for µF

k = µk is tried first). The following

simple argument shows that the acceptance criterion (3.15) is well-defined, i.e., the sequence {2−j}

must terminate with an acceptable αk. As v = vk is feasible for the strictly convex problem (3.9),

the search direction dk = (x̂k − xk, ŷk − yk) is a feasible descent direction for M(v ; yE

k , µ
R

k) at

vk = (xk, yk). If follows from standard theory that the weakened Armijo condition (3.15) will be

satisfied for µF

k = µR

k and all αk > 0 sufficiently small.

64

3.2.2 Updating the multiplier estimate

The QP equivalence established in Result 3.2.1, together with the definition of the stabi-

lized SQP subproblem (3.1) imply that setting yE

k = yk in the definition of the subproblem (3.12)

(or, equivalently, in the bound-constrained QP (3.9)) makes the proposed trial step identical to that

of the stabilized SQP method. This motivates an update strategy that allows the definition yE

k = yk

as often as possible. The idea is to define yE

k+1 = yk+1 for the next subproblem if the line search

gives an (xk+1, yk+1) that improves at least one of two merit functions that measure the accuracy

of (xk+1, yk+1) as an estimate of (x∗, y∗). Let β denote a small positive parameter and consider the

merit functions

ϕV (x, y) = η(x) + βω(x, y), and ϕO(x, y) = βη(x) + ω(x, y), (3.17)

where η(x) and ω(x, y) are the feasibility violation and optimality measures

η(x) = ∥c(x)∥ and ω(x, y) =
∥∥min

(
x, g(x)− J(x)Ty

)∥∥ . (3.18)

These functions provide two alternative weighted measures of the accuracy of (x, y) as an approxi-

mate solution of problem (NP) rather than as an approximate minimizer of M . Both measures are

bounded below by zero, and are equal to zero if v is a first-order solution to problem (NP).

Given these definitions, the estimate yE

k is updated when any iterate vk = (xk, yk) satisfies

either ϕV (vk) ≤ 1
2ϕ

max
V or ϕO(vk) ≤ 1

2ϕ
max
O , where ϕmax

V and ϕmax
O are bounds that are updated

throughout the solution process. To ensure global convergence, an update to yE

k forces a decrease

in either ϕmax
V or ϕmax

O . The idea is to choose the parameter β of (3.18) to be relatively small, say

β = 10−5. This allows frequent updates to yE

k .

65

Finally, yE

k is also updated if an approximate first-order solution to problem (3.6) has been

found for the values yE = yE

k and µ = µR

k. The test for optimality is

∥∇yM(vk+1 ; y
E

k , µ
R

k)∥ ≤ τk and
∥∥min

(
xk+1,∇xM(vk+1 ; y

E

k , µ
R

k)
)∥∥ ≤ τk (3.19)

for some small tolerance τk > 0. This condition is rarely triggered in practice, but the test is needed

to ensure global convergence. Nonetheless, if condition (3.19) is satisfied, yE

k is updated with the

safeguarded estimate

yE

k+1 = max
(
− ymaxe, min(yk+1, ymaxe)

)
, (3.20)

for some large positive scalar constant ymax.

3.2.3 Updating the penalty parameters

The following definition is designed to decrease µR

k only in the neighborhood of an optimal

point (assuming that the problem is not locally infeasible):

µR

k+1 =


min

(
1
2µ

R

k, ∥ropt(vk+1)∥3/2
)
, if (3.19) is satisfied;

min
(

µR

k, ∥ropt(vk+1)∥3/2
)
, otherwise,

(3.21)

where ropt is the vector-valued function

ropt(v) =

 c(x)

min
(
x, g(x)− J(x)Ty

)
 . (3.22)

The update to µk is motivated by a different goal. Namely, µk should be decreased only when

the trial step indicates that the merit function defined with penalty parameter µk increases. This

66

motivates the definition

µk+1 =


µk, if M(vk+1 ; y

E

k , µk) ≤M(vk ; y
E

k , µk) + α̂kηSδk;

max
(
1
2µk, µ

R

k+1

)
, otherwise,

(3.23)

where α̂k = min(αmin, αk) for some positive αmin, and δk is defined by (3.16). The use of the scalar

αmin increases the likelihood that µk will not be decreased.

3.3 Solution of the Bound-Constrained Subproblem

In this section we consider methods for the solution of a bound-constrained QP (3.9).

The remainder of this section focuses on the solution of a single QP subproblem, and the notation

is simplified so that vk = (xk, yk) = (x, y), J = Jk, H = H(xk, yk), Ĥ = Ĥ(xk, yk), HM =

HM(xk, yk ;µ
R

k), and µ = µR

k. Similarly, JF and JA denote the columns of J associated with the

index sets F(x) and A(x) of free and fixed variables at x. Throughout this section, if S is a

symmetric matrix, then SF and SA denote the symmetric matrices with elements sij for i, j in F

and A respectively. Given these definitions, the problem to be solved is

min
v
∇MT(v − v̄) + 1

2 (v − v̄)THM(v − v̄) subject to vi ≥ 0, i = 1, 2, . . . , n, (3.24)

where v is the vector of n+m primal-dual variables v = (x, y), v̄ is the constant vector v̄ = (x̄, ȳ),

and

∇M =

g − JT
(
π + (π − ȳ)

)
c+ µ(ȳ − yE).

 , HM =

Ĥ + 2
µJ

TJ JT

J µI

 ,

where Ĥ is a symmetric approximation of the Hessian of the Lagrangian.

67

First, we assume that the matrix Ĥ is such that Ĥ + 1
µJ

TJ is positive definite. It follows

from Lemma 3.2.1 that the matrix HM is positive definite and the bound constrained problem

(3.24) is a strictly convex QP that may be solved using a conventional active-set method.

At the jth iterate vj = (xj , yj), the index sets of active and free variables are given by

Â(vj) and F̂(vj), where

Â(v) = A(x) =
{
i : xi = 0

}
and F̂(v) = {1, 2, . . . , n+m} \ Â(v).

(As the dual variables are not subject to bounds, the vector of free components of any v = (x, y)

has the form vF̂ = (xF , y) with xF defined in terms of F .) Given vj = (xj , yj), the next QP iterate

is defined as vj+1 = vj + αjdj , where the free components of the vector dj = (pj , qj) satisfy the

equations

HM

F̂ dF̂ = −[∇M +HM(vj − v̄)]F̂ , (3.25)

with dF̂ = (pF , qj). The equations (3.25) appear to be ill-conditioned for small µ because of the

O(1/µ) term in the (1, 1) block of the matrix HM . However, this ill-conditioning is superficial.

The next result shows that dF may be determined by solving an equivalent nonsingular primal-dual

system with conditioning dependent on that of the original problem.

Theorem 3.3.1. Consider the application of the active-set method to the bound constrained QP

(3.24). The free components of the QP search direction (pj , qj) satisfy the nonsingular primal-dual

system ĤF −JT
F

JF µI

pF

qj

 = −

 [g + Ĥ(xj − x̄)− JTyj]F

c+ µ(yj − yE) + J(xj − x̄)

 . (3.26)

Proof. It suffices to show that the linear systems (3.25) and (3.26) are equivalent. Consider the

68

matrix

U =

I − 2
µJ

T
F

0 Im

 ,

where the identity matrix I has dimension nF , the column dimension of JF . The matrix U is

nonsingular with nF +m rows and columns. It follows that the equations

UHM

F̂ dF̂ = −U [∇M +HM(vj − v̄)]F̂

have the same solution as those of (3.25). The primal-dual equations (3.26) follow by direct mul-

tiplication. The nonsingularity of the equations (3.26) follows from the nonsingularity of U , and

the fact that HM is positive definite (as are all symmetric submatrices formed from its rows and

columns).

3.3.1 Convexification of the bound-constrained subproblem

An important aspect of the proposed method is the definition of Ĥ(xk, yk), which is

used to ensure that the bound constrained QP subproblem (3.9) is convex. A conventional QP

subproblem defined with the Hessian of the Lagrangian is not convex, in general. To avoid solving

an indefinite subproblem, most existing methods are based on solving a convex QP based on a

positive-semidefinite approximation Ĥ(xk, yk) of the Hessian H(xk, yk). This convex subproblem

is used to either define the search direction directly, or identify the constraints for an equality-

constrained QP subproblem that uses the exact Hessian (see, e.g., [35, 8, 47]).

In Chapter 5 we describe a different approach and define a convexified QP subproblem

in terms of the exact Hessian of the Lagrangian. The convex problem is defined in such a way

that if the inner iterations do not alter the active set, then the computed direction is equivalent

69

to a second-derivative stabilized SQP direction, provided that yE

k = yk. The method is based on

the implicit computation of a symmetric matrix Ĥ(xk, yk) (not necessarily positive definite) as a

modification of H(xk, yk) that gives a bounded convex primal-dual subproblem (3.9).

Convexification is a process for defining a local convex approximation of a nonconvex

problem. This approximation may be defined on the full space of variables or just on some subset.

Many model-based optimization methods use some form of convexification. For example, line-search

methods for unconstrained and linearly-constrained optimization define a convex local quadratic

model in which the Hessian H(xk, yk) is replaced by a positive-definite matrix H(xk, yk) + Ek

(see, e.g., Greenstadt [48], Gill and Murray [34], Schnabel and Eskow [66], and Forsgren and Mur-

ray [30]). All of these methods are based on convexifying an unconstrained or equality-constrained

local model. Here we consider a method that convexifies the inequality-constrained subproblem

directly. The method extends some approaches proposed by Gill and Robinson [40, Section 4] and

Kungurtsev [51].

In the context of SQP methods, the purpose of the convexification is to find a matrix ∆Hk

such that

pTk
(
H(xk, yk) +∆Hk

)
pk ≥ λminp

T
k pk,

for a given primal-dual pair (xk, yk), where λmin is a fixed positive scalar that defines a minimum

acceptable value of the curvature of the Lagrangian.

The proposed convexification scheme can take three forms: pre-convexification, concurrent

convexification, and post-convexification. This process gives a matrix Ĥ of the form

Ĥ = H +∆+Σ + Γ, (3.27)

70

where ∆ is a symmetric positive semidefinite matrix, and Σ is a positive-semidefinite diagonal. It

must be emphasized that Ĥ itself is not necessarily positive definite. We emphasize that not all of

these modifications are necessarily needed at a given iteration. These convexification schemes will

be discussed in detail in Chapter 5.

Algorithm 1 Bound-constrained minimization.

1: Input v = (x, y) such that x ≥ 0;

2: Compute A =
{
i : xi = 0

}
and F =

{
i : xi > 0

}
; Set F̂ = F ∪

{
1, 2, . . . ,m

}
;

3: repeat

4: repeat

5: Solve HM

F̂
dF̂ = −[∇φ(v)]F̂ ; dA = 0;

6: if [v + d]F < 0 then

7: k ← argmin
i∈F, di<0

vi/(−di);

8: αmax ← vk/(−dk); [Compute the maximum feasible step]

9: αopt = −∇φ(v)Td/dTHMd;

10: α = min
{
αopt, αmax

}
;

11: A ← A∪
{
k
}
, F ← F \

{
k
}
; [fix vk on its bound]

12: v ← v + αd;

13: else

14: v ← v + d;

15: end if

16: Set F̂ = F ∪
{
1, 2, . . . ,m

}
;

17: until ∥[∇φ(v)]F̂∥ = 0

18: w ← ∇φ(v); wmin ← min
i∈A

wi; ℓ← argmin
i∈A

wi;

19: if wmin < 0 then

20: A ← A \
{
ℓ
}
; F ← F ∪

{
ℓ
}
; [free vℓ from its bound]

21: end if

22: Set F̂ = F ∪
{
1, 2, . . . ,m

}
;

23: until wmin ≥ 0

24: return (x, y) = v;

71

Chapter 4

Modifying Matrix Factorizations

As mentioned in Section 1.4, both interior and SQP methods require modification of a

(n+m)-dimensional KKT matrix of the general form

K =

H JT

J −D

 ,

where H is n × n and symmetric, J is m × n, and D is positive semidefinite and diagonal. Here

we regard these values as arbitrary constants of the correct dimension, while keeping in mind they

typically represent quantities associated with the current state of an optimization algorithm, e.g.,

H ≡ H(xk, yk), J ≡ J(xk) and, in the SQP context, D ≡ µIm (see Table 1.1 for the relevant

definitions). In the situation where D is positive definite, we are interested in K because of its

relationship with an approximate merit function Hessian, which can be written

HM =

H + 2JTD−1J JT

J D

 .

72

The link between K and HM comes from the inertial relationships

In(HM) = In(H + JTD−1J) + (m, 0, 0), (4.1)

In(K) = In(H + JTD−1J) + (0, m, 0). (4.2)

In what follows, the goal is make HM positive definite implicitly by modifying K. In particular,

only the (1, 1) or (2, 2) blocks of K can be modified. This is because the effect of perturbing J on

the inertias of K and HM is not clear in general.

4.1 Tiling

Define a 2m× 2m matrix of tiles T by

T =


T11 T T

21 . . .

T21 T22 . . .
...

...
. . .

 ,

where each tile Tij is a 2× 2 matrix of the form

Tij =

h a

b −d

 ,

and the elements h ∈ H, a, b ∈ J , and d ∈ D. Define H11 and J1 to be the submatrices of H and

J from which all the h, a, b elements appearing in tiles originate. This induces a partition of K

K =


H11 HT

21 JT
1

H21 H22 JT
2

J1 J2 −D

 .

73

Let P1 be a permutation matrix that brings a checkered pattern of tiles into the leading prin-

cipal submatrix of the KKT matrix K and let C = P T
1 KP1. Let P2 be the permutation that

symmetrically separates the submatrices H11, J1,−D within T :

P T
2 P T

1 KP1P2 = P T
2 CP2 = P T

2

T ST

S H22

P2 =


H11 JT

1 HT
21

J1 −D J2

H21 JT
2 H22

 =

T̃ S̃T

S̃ H22

 = C̃,

with S̃ =
(
H21 JT

2

)
.

Proposition 4.1.1. Let T be a nonsingular tile and

P T
2 CP2 = P T

2

T ST

S H22

P2 =

T̃ S̃T

S̃ H22

 = C̃

If the permutation P2 only permutes the first 2m columns, C/T = C̃/T̃ .

Proof. Assuming P2 only acts on the first 2m columns it must have the form

P2 =

Q2 0

0 In−m

 ,

where Q2 is also a permutation matrix. By equating blocks of C and C̃ it is evident that QT
2 TQ2 = T̃

74

and SQ2 = S̃. It now follows that

C̃/T̃ = H22 − S̃T̃−1S̃T

= H22 − SQ2(Q
T
2 TQ2)

−1QT
2 S

T

= H22 − ST−1ST

= C/T.

The D = 0 case

The previous result is useful in the case when D = 0 for showing that the Schur complement

of T is in fact the reduced Hessian.

Proposition 4.1.2. If D = 0 and T is a nonsingular tiling then the Schur complement C/T is the

reduced Hessian ZTHZ, where Z is the particular basis for null(J) given by

Z =

−J−1
1 J2

In−m

 .

Proof. Define W = T̃−1S̃T and write out the system

T̃W =

H11 JT
1

J1 0

W1

W2

 =

HT
21

J2

 = S̃T.

Carrying out the multiplication shows W1 = J−1
1 J2 and W2 = J−T

1 (HT
21 −H11J

−1
1 J2) and conse-

75

quently

C̃/T̃ = H22 − S̃T̃−1S̃T

= H22 − (H21W1 + JT
2 W2)

= H22 −H21J
−1
1 J2 − JT

2 J−T
1 HT

21 + JT
2 J−T

1 H11J
−1
1 J2

=
(
−JT

2 J−T
1 I

)H11 HT
21

H21 H22

−J−1
1 J2

I


= ZTHZ.

As C̃/T̃ = C/T , it follows C/T = ZTHZ.

To relate the inertia of K with the reduced Hessian requires that J has full rank, and the

QR factorization JT = Q
(
RT 0

)T

=
(
Y Z

)(
RT 0

)T

. Substituting this in for J and letting

U = diag(Q, Im) yields

UTKU =


Y THY Y THZ R

ZTHY ZTHZ 0

RT 0 0

 .

Define the nonsingular matrix

V =


Im 0 − 1

2Y
THY R−T

0 In−m −ZTHR−T

0 0 R−T

 ,

then direct multiplication shows

V UTKUV T =


0 0 Im

0 ZTHZ 0

Im 0 0

 ,

76

which has m positive and m negative unit eigenvalues along with the eigenvalues of ZTHZ. This

implies In(K) = (m, m, 0)+In(ZTHZ). In particular, this means there is a one-to-one correspon-

dence between negative eigenvalues of the reduced Hessian and negative eigenvalues of K exceeding

m. It follows

In(T) = In(K)− In(ZTHZ) = (n− p, m+ p, 0)− (n−m− p, p, 0) = (m, m, 0).

4.1.1 Two-stage factorization

An overall LBLT factorization of K can be computed by piecing together two related

factorizations; one of the permuted tiling T̃ and the other of a Schur complement term that remains.

Both factorizations can use state-of-the-art symmetric indefinite factorization software as is (e.g.

MA57). Suppose such a factorization of T̃ is computed:

QT
3 T̃Q3 = L11B1L

T
11.

When these factors are inserted in place of T̃ the result is

P T
2 P T

1 KP1P2 =

Q3 0

0 In−m

L11B1L
T
11 QT

3 S̃
T

S̃Q3 H22

QT
3 0

0 In−m

 .

Next, define E = S̃Q3L
−T
11 and P3 = diag(Q3, In−m) so that the triangular L11 term can be factored

out

P T
3 P T

2 P T
1 KP1P2P3 =

 L11 0

EB−1
1 In−m

B1 0

0 H22 − EB−1
1 ET

LT
11 B−1

1 ET

0 In−m

 .

77

The (2, 2) block of the block diagonal matrix is the Schur complement term to be factored next,

giving

H22 − EB−1
1 ET = Q4L22B2L

T
22Q

T
4 .

The definitions L21 = QT
4 EB−1

1 , P4 = diag(I2m, Q4), and P = P1P2P3P4 gives the complete

factorization

P TKP =

L11 0

L21 L22

B1 0

0 B2

LT
11 LT

21

0 LT
22

 = LBLT.

Factor modification

Any modification to K made indirectly by modification of B needs to only affect the H

part of K. This two-stage factorization produces B2 that can be modified safely, meaning the

resulting change to K only changes H.

Proposition 4.1.3. The two-stage factorization (2, 2) block can be modified, if needed, without

any change to the J or D blocks of K. Specifically,

∆K =

∗ 0

0 0m


Proof. Suppose a perturbation ∆B = diag(0, ∆B2) is made to B, and keep in mind that P2 and

78

P3 only permute the first 2m rows and columns. It then follows

∆K = P

0 0

0 L22∆B2L
T
22

P T

= P1

0 0

0 Q4L22∆BLT
22Q

T
4

P T
1

= P1

0 0

0 ∆H22

P T
1

=

∗ 0

0 0

 .

The final equality holds P1 was chosen to symmetrically move all elements of H22 to the trailing

(n − m) × (n − m) submatrix. Therefore, applying them in the reverse order moves the trailing

submatrix ∆H22 to the positions originally occupied by elements of H22, which could be anywhere

in the first n rows and columns.

Recall when D = 0 that In(T) = (m,m, 0), and as In(T) = In(B1) it must hold that

In(K) = In(B) = In(T) + In(B2).

If B2 is sufficiently positive definite, then In(K) = (m, m, 0)+(n−m, 0, 0) = (n, m, 0) as desired.

Otherwise, a perturbation to B2 can be made to correct the inertia with the induced perturbation

to K changing only the H22 block.

79

The D ̸= 0 case

The inertial relationships invloving the Schur complement of a nonsingular tiling with

D ̸= 0 can be derived by

In(C/T) = In(K)− In(T)

=
{
In(H + JTD−1J) + In(−D)

}
−
{
In(H11 + JT

1 D−1J1) + In(−D)
}

= In(H + JTD−1J)− In(H11 + JT
1 D−1J1).

This hints at the fact that C/T might be the Schur complement of the augmented m ×m matrix

H11 + JT
1 D−1J1 within the augmented n × n matrix H + JTD−1J , and this is true if the former

is nonsingular, which is shown next.

Proposition 4.1.4. Let D is a positive-definite diagonal matrix and let H1, J1 denote the subma-

trices of H,J from which a nonsingular tile T is formed, such that

T =

H11 JT
1

J1 −D

 and P T
2 CP2 = P T

2

T ST

S H22

P2 =

T̃ S̃T

S̃ H22

 = C̃

If H11 + JT
1 D−1J1 is nonsingular, then the Schur complement of T in C is equal to the

Schur complement of H11 + JT
1 D−1J1 in H + JTD−1J , that is,

C/T =
{
H11 + JT

1 D−1J1
}
/
{
H + JTD−1J

}
.

Proof. Following the strategy used to show C/T = ZTHZ in the case where D = 0, define W =

80

T̃−1S̃T and write out the system

H11 JT
1

J1 −D

W1

W2

 =

HT
21

J2

 .

Carrying out the multiplication yields W2 = D−1(J1W1 − J2) which can be used to eliminate W2,

giving (H11 + JT
1 D−1J1)W1 = HT

21 + JT
1 D−1J2, and therefore

W1 = (H11 + JT
1 D−1J1)

−1(HT
21 + JT

1 D−1J2).

Now the Schur complement can be computed.

C̃/T̃ = H22 − S̃T̃−1S̃T

= H22 −H21W1 − JT
2 W2

= H22 −H21W1 − JT
2 D−1(J1W1 − J2)

= H22 − (H21 + JT
2 D−1J1)W1 + JT

2 D−1J2

= H22 + JT
2 D−1J2 − (H21 + JT

2 D−1J1)(H11 + JT
1 D−1J1)

−1(H21 + JT
2 D−1J1)

T

Notice the elements appearing are from H + JTD−1J , partitioned conformably with C:

H11 HT
21

H21 H22

+

JT
1

JT
2

D−1
(
J1 J2

)
=

H11 + JT
1 D−1J1 HT

21 + JT
1 D−1J2

H21 + JT
2 D−1J1 H22 + JT

2 D−1J2

 .

Forming the Schur complement of the (1, 1) block in H + JTD−1J gives

H22 + JT
2 D−1J2 + (H21 + JT

2 D−1J1)(H11 + JT
1 D−1J1)

−1(H21 + JT
2 D−1J1)

T,

81

which agrees with what was just computed for C̃/T̃ = C/T .

Even if D is a positive-definite diagonal matrix or multiple of identity the outlined tiling

procedure need not result in the inertia of T being (m, m, 0). In order for the two-stage strategy

to work, the first stage must achieve the inertia (m, m, 0). However, if D has the form µI then

the procedure does work, provided µ > 0 is sufficiently small.

Refactoring (Wächter-Biegler)

The correct inertia for the first stage can be achieved by repeated application of diagonal

modifications to H11 and refactoring. Once a tile is selected, form

T̃ (σ) =

H11 + σI JT
1

J1 −D


for increasing values of σ until In(T) = (m, m, 0).

Once the correct inertia is achieved, the two-stage factorization continues as described. If

needed, a second perturbation would be made to H22 and the resulting overall modification would

be contained to the first n rows and columns. As the tile is potentially significantly smaller than

K, refactoring the tile could be computationally more efficient than repeated refactoring all of K.

Approximate perturbation

Another method of achieving the correct inertia is to use an approximation that is not

norm-optimal, but guaranteed to produce the right inertia in a single modification to T̃ . This

technique is based on the following result.

Proposition 4.1.5. For a general nonsingular n × n symmetric matrix M and n × k matrix W ,

82

and for s ≤ k,

i+(M +WW T) + i0(M +WW T) = i+(M) + s

if and only if −Ik −W TM−1W has exactly s nonnegative eigenvalues.

Proof. This result follows from the congruences

M 0

0 −Ik −W TM−1W

 ∼
 M W

W T −Ik

 ∼
−Ik W T

W M

 ∼
−Ik 0

0 M +WW T

 ,

which yield In(M +WW T) = In(M)− In(−Ik)− In(−Ik −W TM−1W).

If −Ik −W TM−1W has exactly s nonnegative eigenvalues then its inertia can be written

(s− l, k − s, l) and therefore

In(M +WW T) = In(M)− (0, k, 0) + (s− l, k − s, l) = (i+(M) + s− l, i−(M)− s, l).

Adding the nonnegative eigenvalues gives

i+(M +WW T) + i0(M +WW T) = (i+(M) + s− l) + l = i+(M) + s.

This result can be applied to the 2m× 2m matrix T̃ by constructing a modification only

affecting the m×m block H11, i.e.,

W =

γIm

0

 ,

The resulting perturbation to H11 is γ2I. The problem is then to find γ that minimizes ∥∆H11∥

subject to −Im−W TT̃−1W having s nonnegative eigenvalues. Define G to be the first m rows and

83

columns of T̃−1, then the constraint is equivalent to λs(−Im−γ2G) ≥ 0 for i ∈ {1, . . . , s}. Observe

that λs(−Im − γ2G) = −1 − γ2λm−s+1(G) and that it is assumed λm−s+1(G) < 0 (otherwise the

constraint is already met), therefore the requirement reduces to

γ2 ≥ 1

−λm−s+1(G)
.

As T̃ , G satisfy

T̃−1 =

G ∗

∗ ∗

 ,

Cauchy’s eigenvalue interlacing theorem implies that

λk+m(T̃−1) ≤ λk(G) ≤ λk(T̃
−1) for k ∈ {1, . . . ,m}.

The factorization T̃ = Q3L11B1L
T
11Q

T
3 can be used to obtain an upper bound

λm−s+1(G) ≤ λm−s+1(T̃
−1)

= λm−s+1(L
−T
11 B−1

1 L−1
11)

= λm−s+1(B
−1
1)θ

for some λ2m

(
(L11L

T
11)

−1
)
≤ θ ≤ λ1

(
(L11L

T
11)

−1
)
. As L11L

T
11 is automatically positive definite, it

holds that

λ2m

(
(L11L

T
11)

−1
)
=

1

λ1(L11L
T
11)

and λ1

(
(L11L

T
11)

−1
)
=

1

λ2m(L11L
T
11)

.

Suppose T̃ doesn’t have the correct inertia, and that In(T̃) = (m − s, m + s, 0) with s > 0.

84

This means that λm−s+1(T̃) < 0 and therefore λm−s+1(B1) < 0. The eigenvalues of B−1
1 are the

reciprocals of the eigenvalues of B1, and it must hold that λm−s+1(B
−1
1) < 0 as well. This is

because taking the reciprocals only reverses the order within negatives and positives but does not

alter their sign. The goal is then to select the smallest γ for which

λm−s+1(G) ≤ λm−s+1(B
−1
1)

λ1(L11LT
11)

≤ − 1

γ2
.

Assuming L11 is computed using MA57, its entries are bounded by some constant ρ, e.g., ρ = 2.781

for the bounded Bunch-Kauffman pivoting strategy, and that

λ1(L11L
T
11) = ∥L11L

T
11∥2 ≤ ∥L11∥2F ≤ m+

ρ2

2
m(m− 1).

This implies that γ can be chosen such that

γ2 =
∥L11∥2F

−λm−s+1(B
−1
1)

or γ2 =
m(ρ2(m− 1) + 2)

−2λm−s+1(B
−1
1)

.

The latter would only be chosen to avoid computing the norm of L11. Then it must hold that

the perturbation increases the number of nonnegative eigenvalues by s and therefore In(T̃ (γ2)) =

(m, m, 0). The perturbed matrix would need to be refactored before continuing on and factoring

its Schur complement.

4.2 First-Stage Strategy

In the case when D ̸= 0, tiling may not be helpful. Perhaps the two-stage factorization

can still be used, but with a different matrix than T̃ for the first factorization. The goal here is

85

to find a way to construct a matrix K11 that can be brought to the leading principal submatrix

position within K by symmetric permutation such that In(K11) = (l, m, 0) for some l > 0, and

that

K11 =

H11 JT
1

J1 −D

 ,

with H11 ∈R [l × l].

From the inertial relationship In(K11) = In(H11 + JT
1 D−1J1) + In(−D), it would be ideal

to find submatrices for which H11+JT
1 D−1J1 is positive definite. To simplify the search, note that

λl(H11 + JT
1 D−1J1) = inf

x ̸=0

{
xT(H11 + JT

1 D−1J1)x

xTx

}

= inf
x ̸=0

xTH11x

xTx
+

∥∥D− 1
2 J1x

∥∥2
xTx


> inf

x ̸=0

{
xTH11x

xTx

}
= λl(H11),

so if H11 can be chosen positive semidefinite then In(K11) = (l, m, 0).

4.2.1 Submatrix search

Consider the following recursive algorithm for constructing H11. For simplicity, drop the

subscripts on H11 and J1 so that Hk = (H11)
(k) is the kth result of the following process, and

Hl = (H11)
(l) = H11. The idea here is that, starting with a positive scalar H0, a leading submatrix

will be built by appending a trailing border. The components of the border will be chosen so that

the submatrix can be gathered using symmetric permutations while retaining positive definiteness.

Let H0 = min{hii : hii > 0}, i.e., the smallest positive diagonal element of H. Then H0

is positive definite. Now suppose that at the kth stage of this process that Hk is positive definite

86

and

P T
k HPk =

Hk JT
k

Jk Sk

 .

Then a row bTk of Jk and the corresponding diagonal element ck of Sk are sought such that

Hk+1 =

Hk bk

bTk ck



is positive definite. As In(Hk+1) = In(Hk) + In(ck − bTk H
−1
k bk), adding such a border retains

positive definiteness if and only if ck − bTk H
−1
k bk > 0. This part of the algorithm terminates when

c ≤ bTH−1
k b for all b = eTj Jk, c = eTj Skej , with j ∈ {1, . . . , n− lk}.

The result of the process is a positive-definite matrix H11 = (H11)
(l) and a permutation

matrix Pl such that

P T
l HPl =

H11 HT
21

H21 H22,


and so the KKT matrix K can be permuted as

P T
l 0

0 I

K

Pl 0

0 I

 =

P T
l HPl P T

l JT

JPl −D

 =


H11 HT

21 JT
1

H21 H22 JT
2

J1 J2 −D

 .

By permuting this result, it is straightforward to obtain the permutation P such that

P TKP =


H11 JT

1 HT
21

J1 −D J2

H21 JT
2 H22

 =

K11 KT
21

K21 K22



with H11 positive definite and therefore In(K11) = (l, m, 0).

87

Principal inverse maintenance

Because of the relationship between Hk and Hk+1, the inverse can be maintained rather

than recomputed.

Proposition 4.2.1. For a general nonsingular symmetric matrix A, nonzero vector b, and nonzero

scalar c, define w such that Aw = b. Then, if c− bTw ̸= 0,

A b

bT c

−1

=
1

c− bTw

(c− bTw)A−1 + wwT −w

−wT 1


This result can be checked by direct multiplication.

Therefore, starting with H−1
0 = 1/H0, all that is needed to compute H−1

k+1 is to form

w = H−1
k bk and substitute into the given expression.

Refined submatrix search

It may be that requiring a positive-definite H11 is too restrictive. For example, if only a few

variables appear nonlinearly in the objective function then the largest positive-definite submatrix

could be relatively small. What is actually required to produce K11 with the inertia (l,m, 0) is that

H11 + JT
1 D−1J1 is positive definite. We now focus on the case where D = µIm, and extend the

submatrix search idea to construct K11 recursively.

The process begins with a given matrix

K =

H JT

J −µIm

 ,

88

and proceeds by recursively constructing

Ki =

Hi JT
i

Ji −µIm

 ,

where Ki = (K11)
(i), Hi = (H11)

(i), and Ji = (J1)
(i). The submatrices Hi and Ji are expanded by

Hi+1 =

 Hi bi+1

bTi+1 ci+1

 and Ji+1 =
(
Ji ai+1

)
,

where bi+1 is i × 1, ci is a scalar, and ai is m × 1. This can be thought of as inserting a “cross”

shape into the center of Ki, i.e.,

Ki+1 =


Hi bi+1 JT

i

bTi+1 ci+1 aT
i+1

Ji ai+1 −µIm

 .

As the base of recursion, a diagonal element H1 =
(
c1

)
and a column a1 of J are selected such

that c1 + aT
1 a1/µ > 0. With this choice, the inertia of K1 can be deduced from

K1 =

c1 aT
1

a1 −µI

 ∼
−µI

c1 +
1
µa

T
1 a1

 thus In(K1) = (1,m, 0).

Now suppose for some i ≥ 1 we have that Hi +
1
µJ

T
i Ji is positive definite, and consequently that

In(Ki) = (i,m, 0). Define intermediate quantities Ei = Hi +
1
µJ

T
i Ji, ui+1 = bi+1 +

1
µJ

T
i ai+1, and

di+1 = ci+1 + 1
µa

T
i+1ai+1. Choosing these values is essentially selecting a pairing of a column of

H with a column of J because the scalar ci is determined by the column chosen to define bi. The

89

critical step is choosing bi+1, ci+1 and ai+1 such that

di+1 − uT
i+1E

−1
i ui+1 > 0. (4.3)

The reason being, that

Hi+1 +
1

µ
JT
i+1Ji+1 =

 Hi +
1
µJ

T
i Ji bi+1 +

1
µJ

T
i ai+1

bTi+1 +
1
µa

T
i+1Ji ci+1 +

1
µa

T
i+1ai+1


=

 Ei ui+1

uT
i+1 di+1

 ∼
Ei

di+1 − uT
i+1E

−1
i ui+1

 .

(4.4)

Now, as Ei is positive definite by hypothesis, it follows In(Ki+1) = (i+ 1,m, 0) if and only if Ei+1

is positive definite, which is true if and only if di − uT
i E

−1
i ui > 0. As Ei+1 satisfies

Ei+1 =

 Ei ui+1

uT
i+1 di+1

 ,

the same inverse maintenance algorithm (4.2.1) can be used to compute each E−1
i .

When no pairing of the columns of H and J produces bi, ci, ai such that (4.3) holds, the

algorithm terminates and returns a permutation matrix P such that

P TKP =

K11 ST

S H22

 =


H11 JT

1 HT
21

J1 −µIm J2

H21 JT
2 H22

 ,

where In(K11) = (l,m, 0). Note that H11 need not be positive definite.

If H11 is m ×m then K11 is 2m × 2m and this method is equivalent to a tiling, because

90

then

K11 =

H11 JT
1

J1 −µI

 ∼

T11 T12 . . .

T T
12 T22 . . .
...

...
. . .

 = T.

The algorithm also affords the opportunity to decrease µ on the fly if doing so could result in

Hi + JT
i Ji/µ becoming positive definite. Whether reducing µ can achieve this depends on the null

spaces of Hi and Ji being “complementary”. This requirement is exactly stated by Debreu’s lemma,

i.e., the reduced Hessian ZT
i HiZi must be positive definite.

One practical limitation of this approach is the potential for nearly singular K11, making

the formation of the Schur complement of K11 unstable. There are essentially two nested “layers” of

Sylvester’s Law of Inertia involved here at each stage of the described process. On one hand, Ki+1

is second-order consistent if and only if Ei+1 = Hi+1 + JT
i+1Ji+1/µ is positive definite, which holds

by nonsingular symmetric transformation. On the other hand, Ei+1 is positive definite if and only

if di+1 − uT
i+1E

−1
i ui+1 > 0, which holds by another distinct nonsingular symmetric transformation

(4.4). The question of how “near to singular” Ei+1 can be so that Ki+1 is “sufficiently” nonsingular is

difficult to answer, and even if one knew, choosing a minimum tolerance for di+1−uT
i+1E

−1
i ui+1 > 0

that would achieve the needed positive definiteness of Ei+1 is equally difficult.

4.3 Two-Stage Symmetric Indefinite factorization with Par-

tial Cholesky Decomposition

A partial Cholesky decomposition can be used to determine a sequence of symmetric

permutations that will gather a positive-definite leading submatrix for the first stage. The partial

Cholesky algorithm also computes a decomposition of the leading submatrix, and it will be shown

91

how to use this decomposition as part of the multistage factorization of the KKT matrix

K =

H JT

J −D

 ,

with D positive definite and diagonal.

As H is not assumed positive definite, the classical Cholesky decomposition may not exist.

Instead, applying the partial Cholesky decomposition algorithm to H yields a permutation matrix

P0 such that

P T
0 HP0 =

H11 HT
21

H21 H22

 ,

with H11 ∈ Rl×l and positive definite. The dimension of H11 will depend on properties of H.

Extending P0 by Im yields a permutation that will permute the first n rows and columns of K.

Define Π0 to be its product with another permutation acting on the last n+m− l rows and columns

such that

ΠT
0 KΠ0 =


H11 JT

1 HT
21

J1 −D J2

H21 JT
2 H22

 =

K11 KT
21

K21 K22

 ,

with
(
J1 J2

)
= JP0. Note that H11 + JT

1 D−1J1 inherits positive definiteness from H11, so it

holds that

In(K11) = In(H11 + JT
1 D−1J1) + In(−D) = (l, m, 0).

The standard LBLT factorization of K11 is computed such that P T
1 K11P1 = L11B1L

T
11, then with

Π1 = diag(P1, I) and E = K21P1L
−T
11 one has

ΠT
1 ΠT

0 KΠ0Π1 =

 L11 0

EB−1
1 I

B1 0

0 H22 − EB−1
1 ET

LT
11 B−1

1 ET

0 I

 .

92

The next stage is to factor the Schur complement giving

H22 − EB−1
1 ET = P2L22B2L

T
22P

T
2 .

Let Π2 = diag(I, P2), Π = Π0Π1Π2 and L21 = P T
2 EB−1

1 so that

ΠTKΠ =

L11 0

L21 L22

B1 0

0 B2

LT
11 LT

21

0 LT
22

 .

It is worth emphasizing that the factors computed during the Cholesky algorithm are not

used, only the permutation that defines the positive-definite H11. The next section indicates how

the computed factors are used.

Computation details

The main computational ingredients of the split LBLT factorization with partial Cholesky

decomposition are described here in more detail.

1. The partial Cholesky decomposition of H (size: n),

2. The LBLT factorization of K11 (size: l +m),

3. Computing E = K21P1L
−T
11 (size: m× (l +m)). This can be done efficiently using

E = linsolve(L11, P T
1 KT

21, LT = true)T

as L11 is lower triangular.

4. Form the Schur complement H22 − EB−1
1 ET (size: n − l). Note that this involves inverting

93

B1 which can be done efficiently because B1 is block diagonal. Also, it involves the quantity

EB−1
1 which is needed for forming L21.

5. The LBLT factorization of H22 − EB−1
1 ET (size: n− l)

6. Solving the system ΠLBLTΠTp = b for some right-hand-side vector b. Let π = ΠTp and

β = ΠTb, then one has

L11

L21 L22

B1

B2

LT
11 LT

21

LT
22

π1

π2

 =

β1

β2

 .

This is solved by first solving Lq = β, followed by LTπ = B̄−1q. Explicitly, this can be carried

out as four calls to linsolve(); two upper-triangular and two lower-triangular:

L11q1 = β1 size: l +m

L22q2 = β2 − L21q1 size: n− l

LT
22π2 = B̄−1

2 q2 size: n− l

LT
11π1 = B−1

1 q1 − LT
21π2 size: l +m

4.3.1 Utilizing the partial Cholesky factors

The partial Cholesky algorithm applied to H produces a permutation P0, a unit lower-

triangular R11 ∈R [l × l], R21 ∈R [(n− l)× l], a positive-definite diagonal B1 such that

P T
0 HP0 =

R11 0

R21 I

B11 0

0 H22

RT
11 RT

21

0 I

 =

H11 HT
21

H21 H22

 ,

94

with H11 = R11B11R
T
11 ∈R [l × l] positive definite. This can be written simply as

P T
0 HP0 = L0B0L

T
0 where L0 =

R11 0

R21 I

 and B0 =

B11 0

0 H22

 .

Define
(
J1 J2

)
= JP0 and Π0 = diag(P0, I) to get

ΠT
0 KΠ0 =

P T
0 HP0 (JP0)

T

JP0 −D

 =


H11 HT

21 JT
1

H21 H22 JT
2

J1 J2 −D

 .

Next, the triangular factors from the Cholesky decomposition are symmetrically factored out,

L0 0

0 I

 B0 L−1
0 P T

0 JT

JP0L
−T
0 −D

LT
0 0

0 I

 .

In this case, E =
(
E1 E2

)
is defined to be E = JP0L

−T
0 with E1 = J1R

−T
11 and E2 =

−J1R−T
11 RT

21 + J2, which gives

ΠT
0 KΠ0 =


R11

R21 I

I



B11 ET

1

H22 ET
2

E1 E2 −D



RT

11 RT
21

I

I

 .

95

To get a first stage with the correct inertia, B0 needs to be paired with −D. Let Π1 be the

permutation that exchanges the middle n− l with the last m rows and columns, then

ΠT
1 ΠT

0 KΠ0Π1 = ΠT
1


R11

R21 I

I

Π1Π
T
1


B11 ET

1

H22 ET
2

E1 E2 −D

Π1Π
T
1


RT

11 RT
21

I

I

Π1

=


R11

I

R21 I



B11 ET

1

E1 −D E2

ET
2 H22



RT

11 RT
21

I

I

 .

The Schur complement of −D must be formed and factored next. Note that D + E1B
−1
11 ET

1 is

positive definite and so the (2, 2) block retains the needed m negative eigenvalues. Suppose

D + E1B
−1
11 ET

1 = P2L22B22L
T
22P

T
2 ,

with B22 diagonal and positive definite, and define Π2 = diag(Il, P2, In−l). Then ΠT
2 ΠT

1 ΠT
0 KΠ0Π1Π2

has the form


R11

P T
2 E1B

−1
11 L22

R21 I



B11

−B22 L−1
22 P

T
2 E2

ET
2 P2L

−T
22 H22



RT

11 B−1
11 ET

1 P2 RT
21

LT
22

I

 .

To reduce the notation a bit, let B1 = diag(B11, −B22), F =
(
0 ET

2 P2L
−T
22

)
, S =

(
R21 0

)
, and

L11 =

 R11

P T
2 E1B

−1
11 L22

 ,

96

so that

ΠT
2 ΠT

1 ΠT
0 KΠ0Π1Π2 =

L11

S I

B1 F T

F H22

LT
11 ST

I

 .

Lastly, form and factor the complement of H22

H22 − FB−1
1 F T = P3L22B2L

T
22P

T
3 ,

and define Π3 = diag(I, P3), and Π = Π0Π1Π2Π3. Also let L21 = P T
3 (S+FB−1

1). Then it follows

that

L11

S I

B1 F T

F H22

LT
11 ST

I


=

 L11

S + FB−1
1 I

B1

H22 − FB−1
1 F T

LT
11 ST +B−1

1 F T

I


=Π3

 L11

P T
3 (S + FB−1

1) L22

B1

B2

LT
11 (ST +B−1

1 F T)P3

LT
22

ΠT
3 ,

and therefore

ΠTKΠ =

L11

L21 L22

B1

B2

LT
11 LT

21

LT
22

 .

4.4 Full Diagonal Modification of K

Suppose the approximate Hessian HM of the merit function needs to be modified to get

a positive-definite approximation. Rather than perturbing only the (1, 1) block of HM , consider a

97

perturbation that also effects the (2, 2) block of the form

HM(σ) = HM + σT =

H + 2JTD−1J JT

J D

+ σ

M 0

0 N

 .

To derive the corresponding perturbation to the KKT matrix, the perturbed Newton equations are

premultiplied by the nonsingular matrix

U =

I −2JTD−1

0 I

 ,

which gives UHM(σ)∆v = −U∇M . After some simplification, this reduces to

H + σM −JT(I + 2σD−1N)

J D + σN

∆x

∆y

 = −

∇f − JTy

D(y − π)

 .

To symmetrize this system, let ∆̂y = −(I + 2σD−1N)∆y, then an equivalent system is

H + σM JT

J −(D + σN)(I + 2σD−1N)−1

∆x

∆̂y

 = −

∇f − JTy

D(y − π)

 .

Thus, with D(σ) = (D + σN)(I + 2σD−1N)−1, the same ∆v that solves the positive definite

approximate Newton equations HM(σ)∆v = −∇M can be obtained by solving the system involving

K(σ) =

H + σM JT

J −D(σ)

 .

This reduces exactly to the method of Wächter and Biegler [68] if N ≡ 0 and M = I.

98

The inertia relationships

In(HM(σ)) = In(H + σM + JTD(σ)−1J) + (m, 0, 0)

In(K(σ)) = In(H + σM + JTD(σ)−1J) + (0, m, 0)

hold for all positive σ, so HM(σ) is positive definite if and only if In(K(σ)) = (n, m, 0). The

question is whether or not perturbing D changes how sensitive In(K(σ)) is to changes in σ. In

the situation where N is a positive diagonal it holds that increasing σ actually decreases diagonal

elements of D(σ). Focus on a particular diagonal element of d(σ) = [D(σ)]ii, then

d(σ) = [D]ii

(
[D]ii + σ[N]ii
[D]ii + 2σ[N]ii

)
.

The portion in parentheses approaches 1
2 from above and so d(σ) is strictly decreasing in σ. This

means that for any s > 0 that the diagonal entries of D(σ + s)−1 are strictly greater than those of

D(σ)−1. To study the sensitivity of In(K(σ)) to changes in σ when D is perturbed, let’s compare

the case where N = D with the case where N = 0 and consider the difference in the eigenvalues of

H +σM +JTD−1J and H +σM +JTD(σ)−1J for increasing values of σ. Note that when N = D

one has

D(σ) =

(
1 + σ

1 + 2σ

)
D

and therefore

i+(H + σM + JTD(σ)−1J) = i+

(
H + σM + JTD−1J +

(
σ

1 + σ

)
JTD−1J

)
≥ i+(H + σM + JTD−1J)

99

Thus, when σ is increased a difference of

σ + s

1 + σ + s
JTD−1J

results in the portion responsible for positive eigenvalues of K(σ). This seems to indicate a smaller

value of σ could be used to achieve the correct inertia, but also that it may be easier to “overshoot”.

100

Chapter 5

Dynamic Convexification

5.1 Dynamic Convexification of a QP in Standard Form

Suppose we have a quadratic program in standard form

minimize
x∈Rn

φ(x) = gTk (x− xk) +
1
2 (x− xk)

THk(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0,

(5.1)

where gk, Hk, ck, Jk, and xk are constants of appropriate dimension. This could, for example,

represent a QP subproblem based at the k-th outer iteration of a SQP method, in which case xk is

the current iterate and the other constants are gk ≡ g(xk), Hk ≡ H(xk, yk), Jk ≡ J(xk) etc., i.e.,

the problem functions defined in Table 1.1 and their derivatives evaluated at (xk, yk). Nothing is

assumed about Hk other than symmetry, hence (5.1) may be a nonconvex quadratic program.

In what follows, we will use the following notational conventions. The Lagrange multipliers

101

for the equality and bound constraints of the QP (5.1) will be denoted by y ∈ Rm and z ∈ Rn

respectively. When convenient, the combined QP multipliers will be written w = (y, z). The

change in multipliers will be denoted ∆wj = (qj , rj) = (yj+1 − yj , zj+1 − zj), or equivalently,

∆wj = wj+1 − wj . Note that the active entries of w and ∆w will always obey the slight abuse of

notation

wA =

 y

zA

 and ∆wA =

 q

rA

 ,

because the equality constraints are always active. For primal-dual problems in which y is a variable,

the equality constraint multipliers will be denoted by π.

5.1.1 Non-binding active-set methods in standard form

A non-binding active-set method for quadratic programming is closely related to the sim-

plex method for linear programming in the sense that the properties of Farkas’ lemma are used to

compute a sequence of special iterates. Farkas’ lemma states that if xk is not optimal then there

exists a direction p emanating from xk that is a feasible descent direction. In the context of linear

programming, the special iterates are vertices, while in quadratic programming they are subspace

minimizers.

The active-set methods introduced in Chapter 2 consist of two phases. The first phase,

known as the feasibility phase, ignores the QP objective function while attempting to drive constraint

violations to zero. If successful, the feasibility phase produces a feasible starting point x0 along

with a corresponding linearly independent subset of the active set known as the working set. The

second phase, known as the optimality phase, takes the feasible x0 and the working set as inputs,

and retains feasibility while minimizing φ. During the optimality phase, the iterates have a special

structure that will be useful to understand. A subsequence of the QP iterates are standard subspace

102

minimizers. Between any two of them there is a sequence of nonstandard subspace minimizers. If

a non-optimal multiplier is found at a subspace minimizer, the corresponding variable is freed from

it’s bound and that constraint becomes inactive. However, the constraint is shifted implicitly so

that it remains in the working set until its associated multiplier becomes zero. This sequence of

points where the working set contains an inactive constraint constitutes a sequence of nonstandard

iterates. Once the multiplier is driven to zero, the constraint is removed from the working set and

the new point is necessarily a new standard subspace minimizer. Once a subspace minimizer with

no non-optimal multipliers are found, the QP optimality conditions are satisfied.

To each active-free index partition there corresponds a permutation matrix P =
(
PF PA

)
where the columns of PF are unit vectors ei for i ∈ F , and an analogous definition holds for PA. It

then holds that P T
F PF = InF

, P T
A PA = InA

, P T
A PF = 0, and PFP

T
F +PAP

T
A = In, where nF +nA = n.

During the optimality phase, the active set of constraints will include all of the equality constraints

and some, possibly empty, subset of the simple bounds. This means the active constraint matrix

has the form

GA =

 Jk

P T
A

 . (5.2)

The concurrent convexification scheme described in Section 5.1.3 is concerned with the part of

an active-set algorithm where a subspace stationary point has been found with a non-optimal

multiplier. Suppose xj is a subspace stationary point with respect to the current active-free partition

and wj = (yj , zj) are the relevant Lagrange multipliers. Then, by definition (2.2.1) of a subspace

stationary point,

∇φ(xj) = GT
A wA = JT

k yj + PAzA, (5.3)

where zA
△
= P T

A zj = [zj]A are the bound-constraint multipliers corresponding to the active variables.

103

Let νs ∈ {1, . . . , n} denote the index of an inequality constraint with a non-optimal multiplier, so

that [zj]νs
= [zA]s < 0. The search direction p is obtained by “moving off” the constraint with the

non-optimal multiplier and keeping all other constraints in the working set fixed. The optimal such

direction pj is the solution of the equality constrained quadratic program

minimize
p∈Rn

φ(xj + p)

subject to GAp = em+s.

(5.4)

Any direction feasible for (5.4) must satisfy Jkp = 0 and pA = es and thus for any α > 0

ck + Jk(xj + αp− xk) = 0 and P T
A (xj + αp) = αes,

which shows that, along pj , the equality constraints are satisfied and the νs-th inequality constraint

becomes inactive. This confirms that a solution of (5.4) accomplishes the objective of moving off

the targeted constraint while keeping other constraints in the working set satisfied.

The first-order necessary optimality conditions for a primal-dual solution (pj , yj+1, zj+1)

of (5.4) are given by

∇φ(xj + pj) = ∇φ(xj) +Hkpj = JT
k yj+1 + PAP

T
A zj+1,

GApj = em+s.

(5.5)

By using the notation ∆wj = (qj , rj) = (yj+1 − yj , zj+1 − zj) previously described, and by

using the subspace stationary point property (5.3), the first set of equations in (5.5) reduces to

104

Hkpj −GT
A ∆wA = 0. Combining this with the second set of equations produces the system

Hk GT
A

GA 0

 pj

−∆wA

 =

 0

em+s

 . (5.6)

In order to reduce this to a system involving just the free variables, extend the permutation P by

Im+nA
and symmetrically permute the KKT system as follows

P T

Im+nA

Hk GT
A

GA 0

P

Im+nA

 =

P THkP (GAP)T

GAP 0



=


HF HD JT

F InA

HT
D HA JT

A 0

JF JA 0 0

0 InA 0 0

 ,

(5.7)

where HF and HA are the free and fixed rows and columns of Hk, respectively, and JF and JA denote

the free and fixed columns of Jk, respectively. The quantity HD = P T
F HkPA represents the free

rows of the fixed columns of Hk. It follows that a system equivalent to (5.6) is


HF HD JT

F 0

HT
D HA JT

A InA

JF JA 0 0

0 InA 0 0




pF

pA

−qj
−rA

 =


0

0

0

es

 ,

with pF = P T
F pj , pA = P T

A pj . Note that qj and rj are not permuted. The fourth equation block

gives pA = es, which then allows the first and third blocks of equations to be written as

HFpF − JT
F qj = −HDes = −P T

F Hkeνs
= −[Hkeνs

]F and JFpF = −JAes = −Jkeνs
,

105

giving the reduced, free KKT system

HF JT
F

JF 0

 pF

−qj

 = −

[Hkeνs]F

Jkeνs

 (5.8)

from which rA = [Hkpj − JT
k qj]A can be recovered.

5.1.2 Pre-convexification

In order to start the solution of the quadratic program, a subspace minimizer must first be

located. As described in Definition 2.2.1, both stationarity and minimality must hold with respect

to the active set at an initial point xk. Pre-convexification is concerned with ensuring the latter

requirement is satisfied, i.e., that the QP reduced Hessian ZT
F HZF is positive definite, where the

columns of ZF form a basis for the null space of JF .

In what follows, it is required that the free rows of the Jacobian are linearly independent,

so that JF has full rank. Under this assumption, the convexification of the reduced Hessian can be

done indirectly by ensuring that the free KKT matrix

KF
△
=

HF JT
F

JF 0


has inertia In(KF) = (nF ,m, 0). If this holds it is said that KF is “second-order consistent” or

that F(xk) is a second-order consistent basis. The reason this can be done indirectly is that

In(KF) = In(ZTHFZ) + (m,m, 0) from which it follows that KF being second-order consistent

implies ZTHFZ is positive definite. It should be emphasized that this inertia equation only holds

when JF is full rank.

If necessary, iterations are performed to find a subspace stationary point while retain-

106

ing second-order consistency. This is done by minimizing φ while holding the active constraints

constant. At each of these iterations there are two possibilities:

(i) an unconstrained unit step is taken, or

(ii) a step is taken to a blocking constraint, which is added to the active set.

The unit step of case (i) must necessarily yield a constrained stationary point. The removal of a

free variable in case (ii) will reduce the dimension of Z. If this procedure is repeated, then enough

constraints become active to define a vertex, which is trivially a stationary point because then there

must be a subset of n independent active constraints. As there are finitely many inactive constraints

this procedure must terminate at a subspace stationary point in no more than m iterations. For

details, see Gill and Wong [41].

Pre-convexification by modifying the Hessian

Suppose that the given initial point xk defines a free KKT matrix that is not second-order

consistent. There are several procedures available for pre-convexification that are based on the

symmetric indefinite factorization of KF . These procedures each produce a positive-semidefinite

perturbation ∆ to H such that

In

HF +∆F JT
F

JF 0

 = (nF ,m, 0).

Three methods considered here are:

1. the inertia-controlling symmetric indefinite factorization of Forsgren [27];

2. the method of Wächter and Biegler [68]; and

107

3. a two-stage symmetric indefinite factorization, see Section (4.1.1).

Each of these methods is guaranteed to produce a second-order consistent modification, but each

method has its practical strengths and weaknesses. For example, the inertia-controlling factorization

produces a diagonal ∆F but can lead to significant fill-in of the factors due to the restricted pivot

order needed to control the inertia. The method of Wächter and Biegler results in a diagonal ∆ and

sparse factors but may require several factorizations. The two-stage approach uses only two sparse

“off-the-shelf” factorizations, but can result in a dense perturbation ∆. Of these methods, only the

method of Wächter and Biegler is suitable for large sparse problems, but the computational cost of

numerous factorizations can be considerable.

Temporary artificial constraints

The technique that will now be described is fundamentally different in that it obviates the

need for pre-convexification. No modification ∆ is computed and the QP Hessian is unchanged.

Instead, second-order consistency is achieved by temporarily fixing a collection of variables at their

current values.

Let X ⊂ F(xk) denote the index set of a collection of nX free variables that will be

temporarily fixed. Also, define Â(xk) and F̂(xk) to be the indices of the free and active sets after

the reassignment of variables in X from free to active, i.e.,

Â(xk) = A(xk) ∪ X and F̂(xk) = F(xk) \ X .

Similarly, the subscripts “X”, “Â ”, and “F̂ ” will refer to the entries of a variable or matrix with

indices in the corresponding set.

Temporary artificial constraints have the form [x− xk]X = 0 which are, of course, active

108

at xk by design. Assuming KF is not second-order consistent, we want to investigate the inertia of

the free KKT matrix of order nF − nX +m that results from fixing [x]X , i.e.,

KF̂ =

H
F̂

JT
F̂

J
F̂

0

 .

This matrix may be related to KF by defining a suitable permutation. If P1 is a permutation matrix

that moves indices in X to the trailing position then

P T
1 KFP1 =


H

F̂
HO JT

F̂

HT
O HX JT

X

J
F̂

JX 0

 .

Let P2 be the permutation that exchanges the trailing m rows and columns with those in positions

{nF − nX + 1, . . . , nF}. This gives

P T
2 P T

1 KFP1P2 = P T
2


H

F̂
HO JT

F̂

HT
O HX JT

X

J
F̂

JX 0

P2 =


H

F̂
JT

F̂
HO

J
F̂

0 JX

HT
O JT

X HX

 .

Combining these permutations as P = P1P2 gives the expression

P TKFP =


H

F̂
JT

F̂
HO

J
F̂

0 JX

HT
O JT

X HX .

 =

K
F̂

B

BT HX

 , with B =

HO

JX

 .

If KF̂ is nonsingular, the inertia of KF̂ can be deduced from that of KF using the relation

KF̂ B

BT HX

 =

 I 0

BTK−1
F̂

I

KF̂ 0

0 HX −BTK−1
F̂

B

I K−1
F̂

B

0 I

 .

109

The application of Sylvester’s Law of Inertia gives In(KF) = In(KF̂) + In(HX −BTK−1
F̂

B).

If the initial free KKT matrix is not second-order consistent, then its inertia can be written

as In(KF) = (nF − s, m + s, 0) for some positive integer s. The goal is to accumulate s negative

eigenvalues in the Schur complement, so that

In(KF̂) = In(KF)− In(HX −BTK−1
F̂

B)

= (nF − s,m+ s, 0)− (nX − s, s, 0)

= (nF − nX ,m, 0),

which is the correct inertia.

For this general case it is necessary to assume that the normal eTi of the artificial constraint

is linearly independent of the rows of GA for each i ∈ X . This ensures that fixing xi increases the

rank of GA, thereby decreasing dim
(
null(GA)

)
. This ensures that if enough temporary constraints

are added then xk will become a non-degenerate vertex, which is trivially a subspace minimizer. As

the starting dimension of null(GA) is finite, this process is guaranteed to terminate at a subspace

minimizer, with the “worst case” scenario being that a temporary vertex must be defined. Once the

correct inertia is observed, the quadratic program can be solved. All the multipliers corresponding

to temporary constraints will be regarded as non-optimal, regardless of sign. Once an artificial

multiplier has been driven to optimality, the artificial constraint is permanently released.

Note that two linear independence assumptions were required in this section; first that

JF has linearly independent rows, and second, that the rows of GA are independent from those

of the temporary artificial constraint Jacobian. It will be shown in Sections 5.2.2 and 5.3.1 that

the constraint regularization employed by primal-dual SQP methods guarantees that both these

110

assumptions hold automatically.

Recursive inertia calculation

Rather than working with a Schur complement that increases in size each time a variable is

artificially fixed, we will now present a way to compute the needed inertia recursively that involves

only scalar complements. The real benefit of this approach is that it avoids having to compute the

inertia of the nX×nX Schur complement matrix HX−BTK−1
F̂

B, which may be dense and increases

in size with the temporarily fixed index set X .

To illustrate the recursive relationship we shall use a subscript N to indicate the N -th

state of this process. So, for example, FN contains the indices of the free variables after N of them

have been temporarily fixed. If we begin by fixing a single variable, we have

P TKF0
P =


HF1

JT
F1

HD1

JF1
0 JX1

HT
D1

JT
X1

HX1

 =

KF1
B1

BT
1 HX1

 ,

where KF1
is bordered by a single column. The Schur complement of KF1

is the scalar S1 =

HX1
−BT

1 K−1
F1

B1. As we have seen, we can write the inertia equation In(KF0
) = In(KF1

) + In(S1).

Note that the inertia of KF1
is independent of the border enclosing it, and can be computed in the

same way. In so doing, we get In(KF1
) = In(KF2

)+In(S2), where S2 is the scalar Schur complement

S2 = HX2
−BT

2 K−1
F2

B2. At the N -th iteration of this process we have

In(KFN
) = In(KF)−

N∑
i=1

In(Si).

The principal work required to calculate these inertia values is in computing each Schur

111

complement, which requires the solution of a system of the form KFN
u = BN . The solution

is then used to compute SN = HXN
− BT

Nu. At the start of the pre-convexification phase, an

initial symmetric indefinite factorization of KF is computed such that ΠTKFΠ = LDLT. This

factorization can be used to solve these systems efficiently, with only slight modification needed.

Note that at each stage of pre-convexification, there exists a permutation matrix P such that KFN

constitutes the first nFN
rows and columns of P TKFP , or simply ETP TKFPE, where E is the first

nFN
columns of identity. Combining this fact with the symmetric indefinite factorization implies

that

KFN
= ETP TΠLDLTΠTPE.

This expression involves matrices that are permutations of columns of the identity matrix, so to

simplify it, let L̄ be the first nFN
rows of the permuted rows of L, i.e., P TΠL, then we have the

simple form KFN
= L̄DL̄T. The solution of KFN

u = BN is computed from

L̄ξ = BN

L̄Tu = D−1ξ.

5.1.3 Concurrent convexification

In this section we assume without loss of generality that no pre-convexification is needed

so that ∆ = 0 and ∇2φ = Hk, since the following theory extends directly to the case ∇2φ = Hk+∆

with nonzero ∆. Suppose that the equations (5.8) are solved for the free components of the primal-

dual search direction, which facilitates the reconstruction of the full direction vector (pj , qj , rj).

112

By design, pj is a descent direction for the QP because

∇φ(xj)
Tpj = (GT

A wA)
Tpj = wT

A (GApj) =
(
yj zA

)T
em+s = [zA]s < 0.

If it happens that pj is not a direction positive curvature for φ then

pTj ∇2φpj = pTj Hkpj = pTj (G
T
A ∆wA) = eTm+s∆wA = eTs rA = [rA]s ≤ 0.

In this case, φ is unbounded below because

∇φ(xj + αpj)
Tpj = ∇φ(xj)

Tpj + αpTj Hkpj = [zA]s + α[rA]s < 0

for all α > 0.

To correct the curvature, some value of σ yet to be determined will be used to define the

modified Hessian Hk(σ) = Hk + σeνs
eTνs

. The reasoning for this choice is that the working set has

the form (5.2), so the s-th inequality constraint normal is (m+ s)-th row of the working set

GT
A em+s =

(
JT
k PA

) 0

es

 = PAes = eνs
.

With this choice, the corresponding multipliers can be deduced such that ∇φ(xj) = JT
k yj+PAzA(σ),

113

so that xj remains a subspace stationary point with the same y-values and modified reduced costs.

gk +
(
Hk + σeνs

eTνs

)
(xj − xk) = gk +Hk(xj − xk) + σ[xj − xk]νs

eνs

= ∇φ(xj)− σ[xk]νs
eνs

= JT
k yj + PAzA − σ[xk]νs

PAes

= JT
k yj + PA(zA − σ[xk]νses).

It follows that zA(σ) = zA − σ[xk]νs
es is the needed adjustment to the reduced costs. Notice that

only the s-th element of zA (or νs-th element of z) requires correction.

The solution of (5.6) must also reflect the change. As Hk only appears in the first block

of equations, the necessary change can be computed using the fact that GT
A em+s = eνs

as follows,

0 = Hkpj + σeνs
eTνs

pj −GT
A ∆wA(σ) (5.9)

= Hkpj −GT
A ∆wA(σ) + σGT

A em+s(e
T
s pA) (5.10)

= Hkpj −GT
A

(
∆wA(σ)− σem+s

)
. (5.11)

It follows that ∆wA = ∆wA(σ) − σem+s and therefore ∆wA(σ) = ∆wA + σem+s. In terms of the

separate change in multipliers we have qj(σ) = qj and rA(σ) = rA + σes.

The optimal step-length of the modified QP is

α∗(σ) = − [zA(σ)]s
[∆wA(σ)]s

= − [zA]s − σ[xk]νs

[∆wA]s + σ
. (5.12)

The value of σ can then be chosen so that the resulting curvature pTj Hk(σ)pj is sufficiently positive.

It is shown by Gill and Wong in [42] that the curvature pTj Hkpj is non-decreasing during

114

each sequence of nonstandard iterates. This implies that concurrent convexification need only

take place, if at all, at the beginning of each collection of iterates associated with a non-optimal

multiplier. For consistency, we define σ = 0 for each direction along which the curvature was

already sufficiently positive and no correction was made.

Let (s1, σ1), (s2, σ2), . . . denote the indices of the selected non-optimal multipliers and the

resulting value of σ determined by concurrent convexification. The rank-one corrective curvature

matrices σieνsi
eTνsi

can be accumulated to form a positive semidefinite diagonal matrix

Σ =
∑
i

σieνsi
eTνsi

(5.13)

Though the modification to Hk is implicit, the resulting sequence of iterates and computed

quantities are identical to those produced by solving the “convexified” QP

minimize
x∈Rn

gTk (x− xk) +
1
2 (x− xk)

T(Hk +Σ)(x− xk). (5.14)

Note that this does not mean that Hk +Σ is necessarily positive definite or that the QP (5.14) is

bounded. It does mean that the method finds a bounded solution of the modified subproblem.

5.1.4 Post-convexification for constraints in standard form

A standard form active-set method can be regarded as an all-inequality form method in

which the general constraints are always active. This entails working with the constraints

c̃(x) =

c(x)

x

 ≥ 0, with J̃(x) =

J(x)

In

 ,

115

and the corresponding Lagrangian function defined in terms of both the general and non-negativity

constraints

L(x, y, z) = f(x)− yTc(x)− zTx = f(x)− wTc̃(x).

The goal of a post-convexification strategy is to ensure the overall direction pk = x̂− xk obtained

by solving the QP subproblem satisfies descent direction requirements. Specifically, we must en-

force that the direction produced by the QP subproblem is a descent direction for the Lagrangian

evaluated with the optimal multipliers, i.e., that ∇L(xk, ŷ, ẑ)
Tpk < 0.

A QP subproblem that has been solved with either or both of the pre-convexification and

concurrent convexification schemes will be referred to as partially convexified. An active-set method

applied to a partially-convexified subproblem solves the closely related standard form quadratic

program

minimize
x∈Rn

gTk (x− xk) +
1
2 (x− xk)

T(Hk +∆+Σ)(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0,

(5.15)

where ∆ and Σ are symmetric positive semidefinite perturbations determined by partial convexifi-

cation. As Ĥ = Hk+∆+Σ may not be positive definite, there is no reason to expect the computed

direction to be a descent direction for the Lagrangian function.

If (x̂, ŵ) are the primal-dual solution of the convexified problem (5.15), with the active-free

index partition A(x̂) and F(x̂), then they must satisfy the second-order-consistent system

 Ĥ GT
A

GA 0

 pk

−ŵA

 = −

gk

c̃A

 . (5.16)

116

Recalling that the working set matrix has the form (5.2), this is equivalent to


Ĥ JT

k PA

Jk 0 0

P T
A 0 0




pk

−ŷ

−ẑA

 = −


gk

ck

P T
A xk

 .

Therefore, the curvature resulting from partial convexification has the following form

pTk Ĥpk = −pTk (gk − JT
k ŷ − ẑ) = −pTk∇L(xk, ŷ, ẑ).

To guarantee pk is a descent direction for the Lagrangian function, we need only ensure that this

curvature is positive.

In practice it is best to prevent the curvature from getting arbitrarily close to zero. Let

λmin be a positive preassigned scalar that controls the minimum allowable curvature. A symmetric

positive semidefinite perturbation Γ is required that achieves

pTk (Ĥ + Γ)pk ≥ λmin∥pk∥2. (5.17)

Let λ be the potentially non-positive scalar that satisfies pTk Ĥpk = λ∥pk∥2. If λ ≥ λmin

then Γ = 0 satisfies (5.17), otherwise the form of the working set matrix (5.2) and the fact that

Jkpk = −ck and P T
A pk = −P T

A xk motivates the choice of perturbation Γ = σGT
A GA for which

pTk (Ĥ + Γ)pk = λ∥pk∥2 + σ(∥ck∥2 + ∥[xk]A∥2).

117

The minimum value of σ that satisfies (5.17) is

σ = (λmin − λ)
∥pk∥2

∥ck∥2 + ∥[xk]A∥2
. (5.18)

The suggested modification Ĥ(σ) = Ĥ + σGT
A GA = Ĥ + Γ can be applied implicitly

because Ĥ(σ) GT
A

GA 0

 pk(σ)

−ŵA(σ)

 =

 Ĥ GT
A

GA 0

 pk

−ŵA

 ,

with pk(σ) = pk and ŵA(σ) = ŵ − σc̃A. In terms of the general and bound multipliers this gives

ŷ(σ) = ŷ − σck and ẑA(σ) = ẑA − σ[xk]A.

Preserving optimality

A major potential pitfall of post-convexification is that the adjustment to the nonnegativity

constraint multipliers required to achieve convexification may corrupt their optimality. A primal-

dual solution of the partially convexified QP subproblem (5.15) must satisfy necessary optimality

conditions

gk + Ĥpk = JT
k ŷ + ẑ,

ck + Jkpk = 0, x̂ ≥ 0,

x̂ · ẑ = 0, ẑ ≥ 0.

(5.19)

Recall the post-convexification adjustments derived in Section 5.1.4 were ŷ(σ) = ŷ − σck and

ẑA(σ) = ẑA − σ[xk]A. There is no requirement on the sign of the equality constraint multipliers,

so ŷ(σ) = ŷ − σck poses no problem. However, ẑ ≥ 0 is required in (5.19) and it is possible

ẑA(σ) = ẑA − σ[xk]A < 0. Assuming xk was feasible, xk ≥ 0 so for σ ≥ 0 it holds that ẑ(σ) ≤ ẑ. If

a large enough value of σ is required to achieve the convexification, the resulting multipliers may

118

no longer be optimal.

To remedy this, consider splitting the post-convexification into two parts corresponding

to the general and bound constraints. To be precise, consider a convexification of the form

Ĥ(Ω) = Ĥ +GT
A ΩGA, (5.20)

where Ω is a positive semidefinite diagonal matrix of the form diag(σJIm, σAInA). The resulting

matrix has the specific form

Ĥ(Ω) = Ĥ +
(
JT
k PA

)σJIm

σAInA

 Jk

P T
A

 = Ĥ + σJJ
T
k Jk + σAPAP

T
A .

The goal is to determine the values of σJ and σA such that (pk, ŷ(σJ), ẑ(σA)) is a primal-dual

descent direction for the Lagrangian function, while enforcing that ẑ(σA) retains nonnegativity.

Any potential values must satisfy the optimality of the post-convexified QP

gk + Ĥ(Ω)pk = JT
k ŷ(σJ) + ẑ(σA),

ck + Jkpk = 0, x̂ ≥ 0,

x̂ · ẑ(σA) = 0, ẑ(σA) ≥ 0.

(5.21)

Consider modifications ŷ(σJ) = ŷ − σJck and ẑ(σA) = ẑ + σAPA[pk]A, and observe that these forms

119

satisfy

gk + Ĥ(Ω)pk =
(
gk + Ĥpk

)
+ σJJ

T
k Jkpk + σAPAP

T
A pk

=
(
JT
k ŷ + ẑ

)
− σJJ

T
k ck + σAPAP

T
A pk

= JT
k (ŷ − σJck) + ẑ + σAPAP

T
A pk

= JT
k ŷ(σJ) + ẑ(σA),

which means that pk remains a subspace stationary point of the QP with the modified Hessian

Ĥ(Ω) and the corresponding multipliers ŷ(σJ) and ẑA(σA).

In order to ensure nonnegativity of the simple bound multipliers, it is required that [ẑ +

σApk]i ≥ 0 for each i ∈ A(x̂). If the active set at xk and at x̂ = xk+pk are the same, then [pk]i = 0

for i ∈ A(x̂) giving ẑ(σA) = ẑ ≥ 0 for any σA. Otherwise, define

σmax
A = min

{
− ẑi
pi

: i ∈ A(x̂) \ A(xk)

}
. (5.22)

This limit on σA satisfies ẑ(σA) ≥ 0 for all σ ≤ σmax
A . The desired value of σA is then given by

σA = min

{
σmax

A , (λmin − λ)
∥pk∥2

∥[pk]A∥2

}
. (5.23)

If the threshold σmax
A is not binding, then the prescribed value of σA will achieve the entire post-

convexification, leaving σJ = 0.

With the value of σA now fixed, the next step is to determine σJ that will give a descent

direction. Note that the Lagrangian with y = ŷ(σJ) and z = ẑ(σA) is a function of x with gradient

120

given by

∇L(x, ŷ(σJ), ẑ(σA))
∣∣
x=xk

= ∇f(xk)− J(xk)
Tŷ(σJ)− ẑ(σA) = gk − JT

k ŷ(σJ)− ẑ(σA). (5.24)

It follows directly from (5.21) and (5.24) that

pTk Ĥ(Ω)pk = −pTk∇L(xk, ŷ(σJ), ẑ(σA)),

so to guarantee a sufficiently negative directional derivative along pk it suffices to set

σJ =
pTk ((λmin − λ)I − σAPAP

T
A)pk

cTk ck
.

Indeed, this choice produces

pTk∇L(xk, ŷ(σJ), ẑ(σA)) = −λmin∥pk∥2.

5.2 Dynamic Convexification of Stabilized SQP Methods

The purpose of this chapter is to develop the theory of dynamic convexification for the

stabilized QP subproblem as it was introduced in Chapter 2. The methods developed here apply to

conventional stabilized SQP and do not require a merit function or any other reference to primal-dual

SQP.

121

5.2.1 The stabilized subproblem – standard form

Recall the stabilized QP subproblem, repeated here, has the following form.

minimize
x∈Rn,y∈Rm

gTk (x− xk) +
1
2 (x− xk)

THk(x− xk) +
1
2µ∥y∥

2 (5.25)

subject to ck + Jk(x− xk) + µ(y − yk) = 0, x ≥ 0. (5.26)

Define the following quantities

v = (x, y), P T
X =

(
In 0n×m

)
,

g̃ =

 gk

µyk

 , H̃ =

Hk

µIm

 ,

c̃ = ck, J̃ =
(
Jk µIm

)
,

(5.27)

and note that the stabilized QP (5.25) is equivalent to

minimize
v∈Rn+m

φ̃(v) = g̃T(v − vk) +
1
2 (v − vk)

TH̃(v − vk)

subject to c̃+ J̃(v − vk) = 0, P T
X v ≥ 0,

(5.28)

which has the same form as the conventional standard-form QP subproblem (5.1), except that

the simple bounds apply only to the original primal variables. The working-set matrix will be of

dimension (m+ nA)× (m+ n) and have the form

G̃A =

 J̃

P T
A P T

X

 =

 Jk µIm

P T
A 0nA×m

 . (5.29)

122

5.2.2 Pre-convexification and regularization

As described in Section 5.1.2, a subspace minimizer must be located prior to solving the

QP subproblem, and the first step in doing so is to convexify the reduced Hessian associated with

the free variables. If the columns of a matrix Z are to be a basis for the null space of [G̃A]F , then

the following must hold

[G̃A]FZ =

 JF µIm

0nA×nF
0nA×m

Zx

Zy

 = 0.

The most natural such basis matrix is to take Zx = InF and Zy = −JF/µ, which gives the reduced

Hessian for the standard form stabilized QP (5.28)

ZTH̃FZ =
(
InF − 1

µJ
T
F

)HF 0

0 µIm

 InF

− 1
µJF

 = HF +
1

µ
JT

F JF ,

where H̃F is the free rows and columns of H̃, which is defined in (5.27). The inertia relationship

(4.1) implies that the reduced Hessian ZTH̃FZ is positive definite if and only if

In(KF) = (nF , m, 0), with KF
△
=

HF JT
F

JF −µIm

 .

This suggests that the reduced Hessian be made positive definite implicitly by modifying KF to

be second-order consistent. Note that the key identity used here, In(KF) = In(HF + JT
F JF/µ) +

(0, m, 0), is true for any JF of appropriate dimension, regardless of rank. This is a crucial property

of regularization, which stands in contrast to the generic standard form case, in which it was required

to assume the rows of JF were linearly independent. This is because without regularization the

indirect link with the free KKT matrix relied on the equation In(KF) = In(ZTHkZ) + (m, m, 0)

123

which is only true for JF with full row rank.

Pre-convexification methods

Each of the techniques described in Section 5.1.2 for determining a second-order consistent

basis by Hessian modification extend directly to the regularized case. That is, they each compute

a symmetric positive semidefinite perturbation ∆ such that

In

HF +∆F JT
F

JF −µIm

 = (nF , m, 0),

and the relative strengths and weakness described there hold true here as well.

The alternative approach of imposing temporary constraints can also be extended for use

in stabilized SQP methods. Using the notation of Section 5.1.2, if a collection of free variables

indexed by a set X are temporarily fixed at their current values then KF can be permuted such

that

P TKFP =


HF̂ JT

F̂
HO

JF̂ −µIm JX

HT
O JT

X HX

 =

KF̂ B

BT HX

 .

Assuming KF̂ is nonsingular, the inertia of KF̂ can be deduced from In(KF) = In(KF̂) + In(HX −

BTK−1
F̂

B). Note also that the same recursive inertia calculation

In(KFN
) = In(KF)−

N∑
i=1

In(Si), where KFN
=

HFN
JT

FN

JFN
−µIm

 ,

and where Si = HXi
−BT

i K−1
Fi

Bi, can be used to determine which indices to fix. In the unregularized

scenario, it was necessary to assume that the constraint normal eTi of each temporarily fixed variable

124

xi was linearly independent from the rows of GA. Due to the regularization and the special properties

of bound constraints, for each i ∈ X ⊂ F(xk) it necessarily holds that the constraint normal eTi

is linearly independent the rows of G̃A. It is therefore guaranteed that temporarily fixing a free

variable will increase the rank of G̃A thereby decreasing the dimension of the null space. This

algorithm therefore must produce a final temporarily fixed index set X such that

In

HF̂ JT
F̂

JF̂ −µIm

 = (nF − nX ,m, 0),

which shows that F̂(xk) = F(xk) \ X is a second-order consistent basis suitable for initializing the

stabilized QP subproblem.

Updating the temporary constraints

If the temporary constraint index set from the previous iteration is used to initialize X0 for

the current iteration, it can then be expanded or contracted as needed, and the effect on the inertia

of doing so can be computed using an extension of the Schur complement method of Section 5.1.2.

Let F0 = F \ X0 and suppose KF0
is second-order consistent. It may be the case that releasing

one or more of the indices in X0 will still yield a second-order consistent basis, while reducing the

number of artificial constraints. Suppose i ∈ X0 is the candidate index considered for being freed,

and define HO = P T
F Hei and Ji = Jei so that

KF1
=


Hii HT

O JT
i

HO HF JT
F

Ji JF µI

 △
=

c bT

b KF̂

 ∼
KF̂

c− bTK−1
F̂

b

 .

125

It follows that if c − bTK−1
F̂

b > 0 then In(KF1
) = (nF0

+ 1,m, 0) and that temporary constraint

can be released, giving X1 = X0 \ {i} and F1 = F0 ∪ {i}. This process can be repeated either for

a pre-determined number of times, or until each temporarily fixed index has been considered for

removal.

If the fixed set from the previous iteration defines KF0
that is not second-order consistent,

it can be added to using the recursive inertia calculation technique described in Section 5.1.2 rather

than starting from X0 = ∅.

5.2.3 Concurrent convexification of a stabilized QP subproblem

Suppose (vj , wj) is a subspace stationary point with respect to a working set of active

constraints, where vj = (xj , yj) and wA = (πj , zA) are the multipliers πj for equality constraints

and zA ≡ [zj]A for the active bound constraints. The primal-dual direction will be obtained by

solving the QP

minimize
d∈Rn+m

φ̃(vj + d)

subject to G̃Ad = em+s.

(5.30)

The optimality conditions for (5.30) are

∇φ̃(vj + dj) = ∇φ̃(vj) + H̃dj = G̃T
A ŵA = G̃T

A (wA +∆wA) (5.31)

G̃Adj = em+s. (5.32)

The subspace stationarity property gives ∇φ̃(vj) = G̃T
A wA therefore

 H̃ G̃T
A

G̃A 0

 dj

−∆wA

 =

 0

em+s

 .

126

If the permutation matrix P that defines the active-free partition of the original primal variables is

expanded to P̃ = diag(P, Im) then

G̃AP̃ =

 JF JA µIm

0nA×nF
InA

0nA×m

 and P̃ TH̃P̃ =


HF HD

HT
D HA

µIm

 ,

where quantities with the subscripts JF , JA, HF , HD, and HA are defined as in (5.7). Applying the

expanded permutation symmetrically to the KKT system yields



HF HD 0 JT
F 0

HT
D HA 0 JT

A I

0 0 µI µI 0

JF JA µI 0 0

0 I 0 0 0





pF

pA

qj

−∆wF

−∆wA


=



0

0

0

0

es


. (5.33)

The last block of equations gives pA = es and so this reduces to the free variable stabilized system

HF JT
F

JF −µIm

 pF

−∆wF

 = −

[Hνs
]F

Jνs

 , (5.34)

from which one can recover ∆wA = [Hkpj − JT
k ∆wF]A.

Suppose at a subspace stationary point (vj , wj) with a non-optimal multiplier [zA]s <

0, that the stabilized, reduced free-variable system (5.34) is solved and the full (dj , ∆wj) are

reconstructed from the solution. The directional derivative and curvature of φ̃ along dj are given

by

∇φ̃(vj)Tdj = (G̃T
A wA)

Tdj = wT
A em+s =

(
πT
j zTA

) 0

es

 = [zA]s < 0,

127

and by

dT
j H̃dj = dT

j (G̃
T
A ∆wA) = eTm+s∆wA = [rA]s,

respectively. If the curvature is sufficiently positive then no modification is required. Otherwise,

consider the perturbation

H̃(σ) = H̃ + σeνs
eTνs

=

Hk(σ)

µI

 .

It should be emphasized here that eνs
is an (n+m)-vector now, whereas before it was an n-vector.

If H̃ is perturbed as suggested, the corresponding multipliers zA(σ) must satisfy g̃+H̃(σ)(vj−vk) =

G̃T
A wA(σ), i.e.,

gk +Hk(σ)(xj − xk)

µyj

 =

JT
k π(σ) + PAzA(σ)

µπ(σ)

 . (5.35)

The second block of equations already holds with π(σ) = πj because (vj , wj) is a subspace stationary

point and therefore πj = yj . The first block of equations can be rearranged to give

PAzA(σ) = (gk +Hk(xj − xk)− JT
k πj) + σeνs

eTνs
(xj − xk) = PAzA + σ[xj − xk]νs

PAes,

which implies that zA(σ) = zA− [xk]νses precisely as in the generic case. Similarly, just as in (5.9),

the perturbed change in dual variables has the form

∆wj(σ) = ∆wj + σem+νs ,

where em+νs
is an (m+ n)-vector. Equivalently, we could write ∆wA(σ) = ∆wA + σem+s or simply

128

q(σ) = 0 and rA(σ) = rA + σes.

5.2.4 Stabilized post-convexification

Consider the function f̃(x, y) = f(x) + 1
2µy

Ty subject to the shifted constraints c̃(x, y) =

c(x) + µ(y − yk) = 0 and x ≥ 0. Notice that these problem functions satisfy

∇f̃(xk, yk) =

 gk

µyk

 = g̃ (5.36)

c̃(xk, yk) = ck = c̃ (5.37)

∇2f̃(xk, yk)−
m∑
i=1

πi∇2c̃i(xk, yk) =

∇2f(xk)−
∑m

i=1 πi∇2ci(xk)

µI

 =

Hk

µI

 = H̃,

(5.38)

which are the quantities appearing in (5.27). If we form the Lagrangian of this problem we get

L̃(x, y, π, z) = f̃(x, y)− πTc̃(x, y)− zTx. (5.39)

Therefore, with π = π̂ and z = ẑ the gradient of the Lagrangian is

∇L̃(x, y, π̂, ẑ) =

∇f(x)− J(x)Tπ̂ − ẑ

µ(y − π̂)

 .

This shows that the stabilized QP subproblem is equivalent to minimizing a two-norm regularization

of the objective function subject to shifted constraints.

A solution dk = (pk, qk) of the partially convexified stabilized QP subproblem will be the

129

solution of a system analogous to (5.16), i.e.,


Ĥ 0 JT

k PA

0 µI µI 0

Jk µI 0 0

P T
A 0 0 0




pk

qk

−π̂

−ẑA

 = −


gk

µyk

ck

[xk]A

 ,

where Ĥ = Hk +∆+Σ is the result of partial convexification. Rearranging the first two blocks of

equations yields

Ĥ 0

0 µI

pk

qk

 = −

 gk

µyk

+

JT
k π̂ + ẑ

µπ̂

 = −∇L̃(xk, yk, π̂, ẑ)

To ensure that the primal-dual solution dk =
(
pk qk

)
is a descent direction for the regularized

Lagrangian, we require π̂(σ), ẑA(σ), and Γ such that

−∇L̃(xk, yk, π̂(σ), ẑA(σ))
Tdk = dT

k (Ȟ + Γ)dk ≥ λmin∥dk∥2,

with Ȟ = diag(Ĥ, µI). If a perturbation of the form Γ = σGT
A GA is used then

Ȟ + Γ =

Ĥ

µI

+ σ

JT
k Jk + PAP

T
A µJT

k

µJk µ2I

 .

Note that dT
k Γ dk = σ∥GAdk∥2 = ∥ck∥2 + ∥[xk]A∥2, so the value of σ that solves

dT
k (Ȟ + σGT

A GA)dk = λmin∥dk∥2,

130

with λ defined by dT
k Ȟdk = λdT

k dk, can be written as follows

σ = (λmin − λ)
∥dk∥2

∥ck∥2 + ∥[xk]A∥2
.

The convexification can be applied implicitly as well by modifying the resulting multipliers according

to  π̂(σ)

ẑA(σ)

 =

 π̂ − σck

ẑA − σ[xk]A


It should be emphasized that applying these modifications implicitly is of critical importance in the

large-scale case because each of the post-convexification modifications so far discussed involve the

matrix JT
k Jk, which does not retain the sparsity of Jk.

Preserving optimality in the stabilized setting

Suppose that pre-convexification and/or concurrent convexification have been performed

during solution of the stabilized QP subproblem (5.25) giving Ĥ = Hk +∆+Σ and

Ȟ =

Ĥ

µI

 .

The post-convexification proposed in the previous section had the general form

ŵA(σ) = ŵA + σG̃Adk.

We propose the generalization of this to

ŵA(Ω) = ŵA +ΩG̃Adk,

131

where Ω is a positive semidefinite diagonal matrix. Observe that this form solves

Ȟdk − G̃T
A ŵA = (Ȟ + G̃T

A ΩG̃A)dk − G̃T
A ŵA(Ω).

For example, letting Ω = diag(σJI, σAI) allows for separate control of the general and bound

constraint multipliers. With this choice,

ŵA(Ω) =

 π̂(σJ)

ẑA(σA)

 =

 π̂

ẑA

−
 σJck

σA[xk]A

 = ŵA +ΩG̃Adk.

It follows that if (dk, ŵ) is a solution of the partially convexified analogue of the stabilized QP

subproblem (5.25), then the same dk is a solution of the post-convexified problem with modified

Hessian Ȟ(Ω) and multipliers π̂(σJ) and ẑ(σA). Moreover, ẑ(σA) ≥ 0 and dk is a descent direction

for the Lagrangian function formed with the modified optimal multipliers.

Theorem 5.2.1 (Stabilized Post-convexification). Let ∆ and Σ be positive semidefinite pertur-

bations resulting from pre-convexification and concurrent convexification respectively, and let Ĥ =

Hk +∆+Σ. Suppose (v̂, π̂, ẑ) is a primal-dual solution of the partially convexified stabilized QP

subproblem and G̃A the working set matrix of active constraints at the solution. Define the positive

semidefinite diagonal matrix Ω = diag(σJI, σAI), where

σA = min

{
σmax

A , (λmin − λ)
∥pk∥2

∥[pk]A∥2

}
and σJ =

dT
k ((λmin − λ)I − σAPAP

T
A)dk

c̃Tc̃
,

with λmin > 0 given and λ defined by dT
k Ȟdk = λ∥dk∥2, and with

σmax
A = min

{
− [ẑ]i
[pk]i

: i ∈ A(x̂) \ A(xk)

}
.

132

Then the post-convexification defined by Ȟ(Ω) = Ȟ + G̃T
A ΩG̃A has the following properties.

1. The post-convexification can be applied implicitly via the adjustments

π̂(σJ) = π̂ − σJck and ẑA(σA) = ẑA − σA[xk]A.

2. The inequality constraint multipliers remain optimal: ẑA(σA) ≥ 0.

3. (v̂, π̂(σJ), ẑ(σA)) solves the stabilized QP with modified Hessian Ȟ(Ω)

minimize
v∈Rn+m

φ̃(v) = g̃T(v − vk) +
1
2 (v − vk)

TȞ(Ω)(v − vk)

subject to c̃+ J̃(v − vk) = 0, P T
A v ≥ 0.

(5.40)

4. The resulting curvature along dk is positive. Specifically, dT
k Ȟ(Ω)dk = λmind

T
k dk > 0.

5. dk is a descent direction for the Lagrangian function evaluated at (v, π, z) = (vk, π̂(σJ), ẑ(σA)).

Proof. For (1), note that the suggest modification can be written as ŵA(σ) = ŵA+ΩG̃Adk, therefore

Ȟ(Ω)dk − G̃T
A ŵA(Ω) = (Ȟ + G̃T

A ΩG̃A)dk − G̃T
A (ŵA +ΩG̃Adk) = Ȟdk − G̃T

A ŵA.

It follows that Ȟ(Ω) G̃T
A

G̃A 0

 dk

−ŵA(Ω)

 = −

 g̃

c̃A

 . (5.41)

Therefore, computing π̂(σJ) and ẑ(σA) is equivalent to solving the KKT system with the post-

convexified Hessian.

For (2), let i ∈ A(x̂). If also i ∈ A(xk) then [pk]A = 0 and ẑ(σA) = ẑ ≥ 0. Otherwise, con-

sider indices i ∈ A(x̂)\A(xk). By definition, σmax
A ≤ ẑi/[xk]i therefore ẑi ≥ σmax

A and consequently

133

[ẑ − σmax
A xk]i ≥ 0. As σA ≤ σmax

A , it follows

ẑA(σA) = ẑA − σA[xk]A ≥ ẑA − σmax
A [xk]A ≥ 0.

Assertion (3) will be shown by demonstrating the optimality conditions for the post-

convexified QP are satisfied. These optimality conditions are

g̃ + Ȟ(Ω)dk = J̃Tπ̂(σJ) + ẑ(σA),

c̃+ J̃dk = 0, x̂ ≥ 0,

x̂ · ẑ(σA) = 0, ẑ(σA) ≥ 0.

(5.42)

The stationarity and feasibility conditions are shown to hold by (5.41) and the assumption that v̂

is feasible. Part (2) shows ẑ(σA) ≥ 0, and as x̂ · ẑ(σA) = x̂ · ẑ = 0, the optimality conditions are met.

For assertion (4), direct computation shows

dT
k Ȟ(Ω)dk = λ∥dk∥2 + dT

k G̃
T
A ΩG̃Adk

= λ∥dk∥2 + σJ c̃
Tc̃+ σAx

T
k PAP

T
A xk

= λ∥dk∥2 + dT
k ((λmin − λ)I − σAPAP

T
A)dk + σAx

T
k PAP

T
A xk

= λ∥dk∥2 + dT
k (λmin − λ)Idk = λmin∥dk∥2.

Lastly for (5), the Lagrangian function in question is

L̃(x, y, π, z) = f̃(x, y)− πTc̃(x, y)− zTx.

Therefore, again using (5.41), with π = π̂(σJ) and z = ẑ(σA) the gradient of the Lagrangian can be

134

written

∇L̃(vk, π̂(σJ), ẑ(σA)) =

gk − JT
k π̂(σJ)− ẑ(σA)

µ(yk − π̂(σJ))

 = g̃ − G̃T
A ŵ(Ω) = −Ȟ(Ω)dk.

This shows that the direction derivative along dk is

∇L̃(vk, π̂(σJ), ẑ(σA))
Tdk = −dT

k Ȟ(Ω)dk = −λmin∥dk∥2 < 0,

with the last equality being from part (4). It follows dk is a descent direction.

Relating back to stabilized SQP

It is helpful to understand how the proposed modification affects the original stabilized

QP.

Theorem 5.2.2. Define the modified quadratic objective

φ̃Ω(x, y) = gTk (x− xk) +
1
2 (x− xk)

TĤ(Ω)(x− xk) + µ(y − yk)
T
(
yk + σJJk(x− xk)

)
+ 1

2µ(1 + σJµ)∥y − yk∥2.

The post-convexified, stabilized QP

minimize
x∈Rn,y∈Rm

φ̃Ω(x, y)

subject to ck + Jk(x− xk) + µ(y − yk) = 0, x ≥ 0,

(5.43)

has the same solution as the generic standard form post-convexified QP (5.40) as described in

Theorem 5.2.1.

135

Proof. A primal dual solution (x̂, ŷ, ŵ(Ω)) must satisfy the stationarity requirement

∇φ̃Ω(x̂, ŷ) =

JT
k PA

µI 0

 π̂(σJ)

ẑA(σA)

 = G̃T
A ŵA(Ω).

Taking the gradient of the modified quadratic shows this is equivalent to the requirements

gk + Ĥ(Ω)(x̂− xk) + σJµJ
T
k (ŷ − yk) = JT

k π̂(σJ) + ẑA(σA), and

µ(1 + σJµ)(ŷ − yk) + µ(yk + σJJk(x̂− xk)) = µπ̂(σJ),

which can be expressed as a system of equations

Ĥ(Ω) σJµJ
T
k

σJµJk µ(1 + σJµ)I

pk

qk

 = −

 gk

µyk

+

JT
k PA

µI 0

 π̂(σJ)

ẑA(σA)

 . (5.44)

The feasibility requirement that (x̂, ŷ) satisfy ck+Jk(x̂−xk)+µ(ŷ−yk) = 0 along with the identity

P T
A (x̂− xk) = −[xk]A yields the complementary linear system

 Jk µI

P T
A 0

pk

qk

 = −

 ck

[xk]A

 . (5.45)

Now collect the equations (5.44) and (5.45) to obtain


Ĥ(Ω) σJµJ

T
k JT

k PA

σJµJk µ(1 + σJµ)I µI 0

Jk µI 0 0

P T
A 0 0 0




pk

qk

−π̂(σJ)

−ẑA(σA)

 = −


gk

µyk

ck

[xk]A

 ,

which is identical to the block system (5.41) representing optimality conditions for the post-

136

convexified generic QP (5.40).

5.3 Primal-Dual SQP methods with Dynamic Convexification

In Chapter 3, it was shown that the stabilized QP (5.25) and a certain bound-constrained

QP subproblem (3.9) have the same solution. This bound-constrained subproblem involves a

quadratic model of a primal-dual merit function and has the form

minimize
v∈Rn+m

∇M(vk)
T(v − vk) +

1
2 (v − vk)

THM

k (v − vk)

subject to P T
X v ≥ 0,

(5.46)

where P T
X =

(
In 0n×m

)
so that P T

X v = x. Note that as P T
X v = x ≥ 0, the dual variables are

always free. Define

ΠF =

PF 0

0 Im

 , ΠA =

PA

0

 , and Π =
(
ΠF ΠA

)
, (5.47)

where the matrices PF and PA are defined as before, taking columns of identity corresponding to

indices in the free and active sets. It follows Π is a permutation matrix of dimension n +m, and

that

ΠTv =


P T

F 0

0 I

P T
A 0


x

y

 =


P T

F x

y

P T
A x

 =


xF

y

xA

 =

vF

vA

 .

The working set matrix is therefore given by GA = ΠT
A =

(
P T

A 0
)
. We will now comment on

how the bound-constrained formulation affects pre-convexification and the observations made in

Section 5.2.2.

137

5.3.1 Pre-convexification of the bound-constrained subproblem

The free columns of GA are GAΠF = ΠT
A ΠF = 0nA×(nF+m), therefore the columns of

Z = InF+m are a basis for the null space of [GA]F . This means the matrix that must be made

convex is the reduced Hessian ZTHM
F Z = HM

F , which can be done implicitly by modifying the free

KKT matrix

KF =

HF JT
F

JF −µI

 .

This is based on the identity In(HM
F) = In(KF) + (m,−m, 0) that follows from (4.1) and is true

regardless of rank(JF). The theory developed in Section 5.2.2 applies here with only slight mod-

ification. The needed observation is that the rows of GA =
(
P T

A 0
)

are necessarily independent

from the constraint normal eTi of any free variable xi, which implies that both the method of pre-

convexification by temporary constraint imposition and the iterations to find a subspace stationary

point are guaranteed to terminate successfully regardless of the rank of the Jacobian.

5.3.2 Concurrent convexification of the bound-constrained QP

When yE = yk, the bound-constrained QP (5.46) is equivalent to the stabilized QP, which

is in standard form, so it is reasonable to expect that the same perturbation derived in those cases

should work as a concurrent convexification method for the bound-constrained problem. Next, we

clarify this relationship and derive the same perturbation starting from (5.46).

Suppose an active-set method is being applied to solve this problem, and that a active-free

partition is defined at a subspace stationary point (vj , zj). The application of Π symmetrically to

138

the KKT search direction system analogous to (5.6) yields


HF + 2

µJ
T
F JF JT

F HD + 2
µJ

T
F JA 0

JF µI JA 0

HT
D + 2

µJ
T
A JF JT

A HA + 2
µJ

T
A JA I

0 0 I 0




pF

qj

pA

−rA

 =


0

0

0

es

 .

This system reduces to the following doubly-augmented system involving only the free variables

HF + 2
µJ

T
F JF JT

F

JF µI

pF

qj

 = −


[(

Hk + 2
µJ

T
k Jk

)
νs

]
F

Jνs

 , (5.48)

from which the full directions can be recovered using the identities

pA = es and rA = P T
A

((
Hk +

2

µ
JT
k Jk

)
pj + JT

k qj

)
.

Suppose that the primal-dual direction is computed from the reduced, doubly-augmented

system (5.48), yielding (dj , rj) that satisfy

HM

k GT
A

GA 0

 dj

−rA

 =

 0

es

 ,

and that the curvature along dj is not positive

dT
j H

M

k dj = dT
j (G

T
A rA) = eTs rA = [rA]s ≤ 0.

139

Consider the perturbation HM(σ) = HM + σeνse
T
νs

and note that this is can be written as

HM

k (σ) = HM

k + σeνs
eTνs

=

Hk(σ) +
2
µJ

T
k Jk JT

k

Jk µI

 .

Therefore, the same perturbation is being applied. The next steps are to verify that this perturba-

tion produces a subspace stationary point and then compute the adjusted dual quantities

zj(σ) = zj − σ[xk]νseνs and rj(σ) = rj + σeνs .

As (vj , zj) is a subspace stationary point it holds that ∇Mk + HM

k (vj − vk) = GT
A zA,

therefore

∇Mk +HM

k (σ)(vj − vk) = ∇Mk + (HM

k + σeνs
eTνs

)(vj − vk)

=
(
∇Mk +HM

k (vj − vk)
)
+ σ[vj − vk]νs

eνs

= GT
A zA + σ[vj − vk]νs

GT
A eνs

= GT
A (zA − σ[xk]νs

es) = GT
A zA(σ),

thus vj remains a subspace stationary point for σ ≥ 0. As before,

HM

k (σ) GT
A

GA 0

 dj

−rA(σ)

 =

 0

es

 .

The modified optimal step can now be computed as

α∗(σ) = − [zA(σ)]s
[rA(σ)]s

= − [zA]s − σ[xk]νs

[rA]s + σ
.

140

It is worth noting how these modifications affect the reduced system in the free variables.

If the same symmetric permutation is applied to the system

HM

k (σ) GT
A

GA 0

 dj

−rA(σ)

 =

 0

es

 ,

only the third block of equations defining pA is affected by the convexification. This is because

ΠT
F eνs

= ΠT
F ΠAes = 0 = eTνs

ΠF ,

the perturbed, permuted system is


HF + 2

µJ
T
F JF JT

F HD + 2
µJ

T
F JA 0

JF µI JA 0

HT
D + 2

µJ
T
A JF JT

A HA + σese
T
s + 2

µJ
T
A JA I

0 0 I 0




pF

qj

pA

−rA(σ)

 =


0

0

0

es

 .

The third block of equations can be rearranged to give

rA(σ)− σes = rA,

which confirms that the value derived for rA(σ) implicitly achieves the correct perturbation. This

also shows that, if necessary, one could recover

HF(σ) = HF , HD(σ) = HD, and HA(σ) = HA + σese
T
s .

141

Selecting the convexification scale

The choice of σ during concurrent convexification must satisfy certain requirements. There

are also some preferences to consider when the requirements leave freedom in the choice of σ.

First of all, the convexification modifies the quadratic program being solved and so represents a

departure from the truth. For this reason we want σ as small as possible, provided our other criteria

are met. For the following discussion, let λmin, dmax, and τD be positive preassigned tolerances

controlling minimum curvature, maximum step norm, and dual feasibility (minimum value of an

optimal multiplier), respectively.

The modified curvature must satisfy dT
j H

M

k (σ)dj ≥ λmin. Recall that

eTνs
dj = eTs P

T
A pj = eTs [pj]A = eTs es = 1,

therefore dT
j (H

M

k + σeνs
eTνs

)dj = dT
j H

M

k dj + σ = [rA]s + σ. This provides a lower bound σmin =

λmin− [rA]s such that the resulting curvature is sufficiently positive for all σ ≥ σmin. The remaining

discussion depends critically on the sign of [xk]νs
because it essentially determines whether the

convexification increases or decreases the nonoptimal multiplier.

• Case: [xk]νs < 0. In this case the multiplier [zA(σ)]s = [zA]s − σ[xk]νs
is increasing.

Consequently, the multiplier can be made optimal by taking σ ≥ σO, where

σO =
[zA]s − τD
[xk]νs

. (5.49)

In this situation there is no need to step along pj because another multiplier can be selected

and a new direction computed.

142

• Case: [xk]νs ≥ 0. In this case the multiplier [zA(σ)]s < 0 is negative and decreasing, so

we cannot drive it to optimality by convexification alone and will have to step along pj . The

resulting change in primal variables must satisfy

∥xj+1 − xj∥ ≤ dmax, (5.50)

which is equivalent to an upper bound on the step α(σ) ≤ dmax/∥pj∥ = αmax. For all σ ≥ σmin

we have

d

dσ
α(σ) =

[zA]s + [rA]s[xk]νs

([rA]s + σ)2
< 0.

This shows the step size is decreasing so we can make σ large enough to get the step size

within tolerance, provided limσ→∞ α(σ) = [xk]νs
< αmax. The value of σ that achieves this

bound is

σD = − [zA]s + [rA]sαmax

αmax − [xk]νs

.

In summary, the choice of σ can be expressed as

σ =


max(σmin, σO), [xk]νs

< 0

max(σmin, σD), [xk]νs
≥ 0.

5.3.3 Post-convexification of the bound-constrained QP

This section will explore post-convexification of the bound-constrained QP and the lim-

itations of doing so. The way that primal-dual SQP methods deal with equality constraints by

incorporating them in the merit function results in subproblems subject only to simple bounds.

Though advantageous in other respects, this makes the optimality-preserving post-convexification

143

strategy described in (5.2.4) difficult to apply because there are no equality constraint multipliers.

The reason for the difference between this case and the stabilized derivation is that the equivalence

of the bound-constrained and stabilized QP subproblems relies on the primal “y-variables” being

identical to the equality constraint multipliers, or “π-values”. This equality comes straight out of the

stabilized QP optimality conditions. However, the optimality preserving post-convexification strat-

egy modifies π̂ 7→ π̂(σJ) but leaves ŷ unmodified, invalidating the link between bound-constrained

and stabilized QP subproblems.

We will now investigate several approaches that have been considered for deriving an

optimality-preserving strategy that can be applied implicitly, and discuss their limitations. The

approaches we will consider for post-convexification are

1. The direct derivation - This results in a shift in the inequality multipliers, which may become

negative.

2. Starting with the post-convexified stabilized QP of Theorem 5.2.2 and deriving the equivalent

bound-constrained QP using a nonsingular transformation as in [40].

3. Allowing the modification to affect yk or yE (or both) with which the the merit function is

constructed.

The direct approach

Recall that the bound-constrained SQP method is based on the augmented Lagrangian

merit function (3.2)

M(x, y ; yE, µ) = f(x)− c(x)TyE +
1

2µ
∥c(x)∥2 + 1

2µ
∥c(x) + µ(y − yE)∥2,

144

and solves the QP subproblem (3.9). A primal-dual solution dk = (pk, qk) of the partially convexified

analogue of (3.9) must satisfy

ĤM GT
A

GA 0

 dk

−ẑA

 = −

∇Mk

P T
A xk

 , (5.51)

where the working set matrix in this case has the form

GA = P T
A P T

X =
(
P T

A 0
)
.

If the merit function is regarded as an objective function subject to the equality constraint [x]A = 0,

i.e., GAv = 0, then the corresponding Lagrangian is

L(v, zA) = M(v)− zTA GAv. (5.52)

The goal is to ensure the quantity dk defines a descent direction for this Lagrangian, that is,

∇L(vk, ẑA)
Tdk < 0.

From the equations (5.51) it follows ĤMdk = −∇Mk +GT
A ẑA = −∇L(vk ; ẑA), so

dT
k Ĥ

Mdk = −∇L(vk, ẑA)
Tdk,

145

which means all that is needed to ensure a descent direction is to enforce the curvature to be

sufficiently positive, i.e.,

ĤM(σ) = ĤM + σGT
A GA =

Ĥ + σPAP
T
A + 2

µJ
T
k Jk JT

k

Jk µI

 ,

where

σ = (λmin − λ)
∥dk∥2

∥[xk]A∥2
.

Comparing the systems

ĤM + σGT
A GA GT

A

GA 0

 dk(σ)

−ẑA(σ)

 =

ĤM GT
A

GA 0

 dk

−ẑA


shows that dk(σ) = dk and ẑA(σ) = ẑA − σ[xk]A implicitly applies the convexification.

This approach is relatively straightforward and can be applied implicitly. The major

drawback is that there is no guarantee that ẑA(σ) will remain nonnegative if the active set changes

during solution of the QP subproblem.

Post-convexification via the equivalence of stabilized QP

Although post-convexifying makes it so that the primal y-variables and the dual π-values

no longer agree, breaking the direct link between the stabilized problem and the bound-constrained

problem, the identity π̂(σJ) = ŷ + σJ(Jkpk + µqk) may still be used to eliminate π̂(σJ) from the

post-convexified optimality conditions of the stabilized QP studied in Theorem 5.2.2.

146

Recall the stationarity condition for the post-convexified stabilized QP

gk + Ĥ(Ω)(x̂− xk) + σJµJ
T
k (ŷ − yk) = JT

k π̂(σJ) + ẑA(σA), and

µ(1 + σJµ)(ŷ − yk) + µ(yk + σJJk(x̂− xk)) = µπ̂(σJ),

where Ĥ(Ω) = Ĥ + σJJ
T
k Jk + σAPAP

T
A is the (1, 1)-block of Ȟ(Ω). The second equality reduces

to π̂(σJ) = ŷ + σJ(Jkpk + µqk), which can be used to eliminate π̂(σJ) in the first equality, giving

gk + Ĥ(Ω)pk + σJµJ
T
k qk = JT

k (ŷ + σJ(Jkpk + µqk)) + ẑA(σA).

Notice that σJµJ
T
k qk and σJJ

T
k Jkpk both appear on both sides of the equality, therefore

gk + (Ĥ + σAPAP
T
A)pk = JT

k ŷ + ẑA(σA).

This has reduced back down to the modified ĤM(σ) = ĤM + σGT
A GA with σ = σA, effectively

removing the ability to convexify implicitly.

Post-convexification by modifying the merit function

Rather than using the stabilized SQP method as a back-door to the bound-constrained

method, we will now explore applying convexification implicitly by modifying the merit function.

The idea is to realize the convexification by modifying the multipliers yk or yE appearing in the

merit function, instead of the change in multipliers qk. In what follows, we will assume none of

the post-convexification is done by shifting the bound constraint multipliers, and focus solely on

change yk and yE.

147

Let (v̂, ẑ) be the primal-dual solution of the partially convexified QP subproblem

minimize
v∈Rn+m

∇M(vk)
T(v − vk) +

1
2 (v − vk)

TĤM

k (v − vk)

subject to P T
A v ≥ 0,

(5.53)

where ĤM = HM + PX(∆ + Σ)P T
X is the partially convexified approximate merit Hessian. Then

(dk, ẑA) must satisfy the stationarity requirement

ĤMdk −GT
A ẑA = −∇Mk (5.54)

The merit function M(x, y) ≡M(x, y ; yE, µ) has the property that for any u ∈ Rm

∇M(x, y + u) = ∇M(x, y) + J̃Tu. (5.55)

In order to determine a value of u that will allow the convexification to be implicit, consider making

a positive semidefinite modification ĤM + Γ where Γ = σJ J̃
TJ̃ . The perturbed system is then

(ĤM + Γ)dk −GT
A ẑA = −∇M(xk, yk + u). (5.56)

Using (5.54) and (5.55) shows this system is equivalent to Γdk = −J̃Tu, and when the desired form

of Γ is substituted, it becomes

J̃T
(
σJ J̃dk + u

)
= 0,

which is satisfied by the quantity u = −σJ J̃dk. Therefore, given the solution of the system (5.54),

the solution of the perturbed system (5.56) is obtained without needing to solve it again. All that

148

is needed is to compute the shift y(σJ) = yk−σJ J̃dk and the modified merit function M(x, y(σJ)) =

M(x, y − σJ J̃dk).

As before, we want a descent direction for the augmented Lagrangian function with the

modified multipliers, which now has the form

L(x, y(σJ), ẑA) = M(x, y(σJ))− ẑTA G
T
A

 x

y(σJ)


The identity (5.56) implies that the directional derivative of along dk is

dT
k∇L(xk, yk(σJ), ẑA) = −dT

k (Ĥ
M + Γ)dk.

As Γ is positive semidefinite, σJ can be computed to achieve

dT
k (Ĥ

M + Γ)dk = λmin∥dk∥2.

It turns out that the needed shift to yk is the same as the modification to π̂ derived for the

stabilized QP in Theorems 5.2.1 and 5.2.2 given by π̂(σJ) = π̂ + σJ(Jkpk + µqk) = π̂ + σJ J̃dk. This

indicates that this approach is successful in reproducing the convexification that was developed for

stabilized SQP, but with the caveat that monotonicity of the merit function must be safeguarded.

149

Shifting yk and yE

It may also be reasonable to shift the multiplier estimate yE by the same amount as yk.

The gradient of the merit function has the property that

∇M(x, y + u ; yE + u) = ∇M(x, y)−

JTu

0

 ,

which implies that if both yk and yE are shifted then the equivalent of (5.56) is

(ĤM + Γ)dk −GT
A ẑA = −∇M(xk, yk + u ; yE + u) = −

(
∇M(xk, yk ; y

E)− PXJ
T
k u
)
. (5.57)

This suggests a perturbation of the form Γ = σJPXJ
TJP T

X , along with the corresponding shift to

the multipliers given by u = σJJkpk. These forms satisfy

(ĤM + Γ)dk −GT
A ẑA = −∇M(xk, yk + u ; yE + u).

This formulation has the added advantage that the norm of the perturbation will always be less

than if σJ J̃
TJ̃ is used. Moreover, only the first n rows and columns of ĤM are affected.

Modifying yE only

If the multiplier estimate yE is shifted by a vector u but yk is not changed, the resulting

merit function gradient satisfies

∇M(vk ; y
E + u, µ) = ∇M(vk ; y

E, µ)−

2JT

µI

u.

150

To enable a implicit post-convexification, a symmetric positive semidefinite modification Γ to ĤM

is sought such that

(ĤM + Γ)dk −GT
A ẑA = −∇M(vk ; y

E + u) = −∇M(vk) +

2JT
k

µI

u. (5.58)

It is readily verified that the quantities

Γ = σJ J̄
TJ̄ with J̄ △

=

√
µ

2

(
Jk

2
µI
)
, and u =

σJ

µ

(
Jkp+

µ

2
q
)

satisfy (5.58). As in the preceding approaches, σJ can be chosen so that dT
k (Ĥ

M + Γ)dk is positive

enough to produce a direction of sufficient decrease.

Safeguarding dynamic convexification

The primary concern when doing post-convexification by modifying the multipliers is that

it can create non-monotonicity in the merit function, interfering with the flexible line search used

to guarantee global convergence. Though preliminary numerical results suggest this is relatively

uncommon, the implicit post-convexification can only be computed if the shift to yk or yE decreases

the merit function. In the event that an increase results, we must compute a full convexification

and re-solve the QP instead.

Suppose post-convexification is required, and it produces non-monotonicity in the merit

function. If the method of pre-convexification used is one of the Hessian modification options, much

of the full convexification may already by done. This is a result of the fact that if KF is second-order

151

consistent, then for sufficiently large σA > 0 it holds that

In

Hk +∆+ σAPAP
T
A JT

k

Jk −µI

 = (n,m, 0), (5.59)

(see Gill and Robinson [40] for more details). Essentially, the convexification can be completed

simply by modifying diagonal entries of Hk with indices in the active set. However, if the method

of temporary constraints is used then ∆ = 0 and the active diagonal modification must be done

with respect to Â(xk) = A(xk) ∪ X , where X is the set of temporarily fixed indices defined in

Section 5.1.2. The reason is that F(xk) is generally not a second-order consistent basis while F̂(xk)

is, which is required for (5.59) to be applicable.

Even if the concurrent convexification modifications are taken into consideration, it may

still be that (5.59) defined with Hk+Σ+σAPAP
T
A may never be second-order consistent for any σA.

First, unless strict complementarity holds, concurrent convexification is not guaranteed to modify

all diagonal entries with indices in X . The active-set method will only drive zνs for νs ∈ X to

optimality if zνs
is nonzero, where z = gk +Hk(x − xk) − JT

k y. Though zνs
can be nonzero, it is

not required to be. Second, even if zνs is non-optimal, concurrent convexification is designed to

only consider curvature of the QP objective along the specific directions computed by the active-set

method. There may be other directions of negative curvature such that HF + 1
µJ

T
F JF is indefinite,

or equivalently, KF is not second-order consistent.

152

Chapter 6

A Dynamically-Convexified

Primal-Dual SQP Algorithm

In this section we will focus on the bound constrained primal-dual formulation of the

second-derivative SQP method with special attention given to presentation of the algorithm and

analysis of convergence.

6.1 Formal Algorithm Statement

The main algorithm Algorithm 3 will make repeated use of the active-set algorithm Algo-

rithm 2 for solving the stabilized QP subproblem (3.1) repeated here

minimize
x,y

gTk (x− xk) +
1
2 (x− xk)

TĤk(x− xk) +
1
2µk∥y∥2

subject to ck + Jk(x− xk) + µk(y − yk) = 0, x ≥ 0.

(6.1)

153

Algorithm 2 Stabilized QP subproblem with concurrent convexification.

1: Input (xk, yk); Choose (x, y) such that x ≥ 0;

2: Compute A = A(x) and F = F(x);

3: Set z = g + Ĥ(x− xk)− JTy;

4: repeat

5: Select index νs ∈ A(x) of a nonoptimal multiplier;

6: repeat

7: Solve

(
ĤF JT

F

JF −µI

)(
pF

q

)
= −

(
[ĤF]νs

Jνs

)
; pA = es;

8: rA = [Ĥp− JTq]A; λ = [r]νs
;

9: if λ < λmin then [Concurrent convexification]

10: Compute σ according to (5.3.2);

11: Ĥ ← Ĥ + σeνs
eTνs

; z ← z − σ[xk]νs
eνs

; r ← r + σeνs
;

12: end if

13: αopt = −
[z]νs

[r]νs

;

14: t = argmin
i∈F(x),pi<0

{
−xi

pi

}
; αmax = −xt

pt
;

15: α = min(αmax, αopt);

16: x← x+ αp; y ← y + αq; z ← z + αr;

17: if αopt ≥ αmax then [t becomes active]

18: A ← A∪
{
t
}
; F ← F \

{
t
}
;

19: end if

20: until [z]νs
≥ 0

21: A ← A \
{
νs
}
; F ← F ∪

{
νs
}
;

22: until min z ≥ τD

23: return (x̂, ŷ, ẑ) = (x, y, z);

154

Algorithm 3 dcpdSQP: Primal-dual SQP method with dynamic convexification.

1: Input v0 = (x0, y0); k ← 0;

2: Evaluate f , g, c, J , and H at (xk, yk);

3: while k ≤ kmax and ∥ropt(vk)∥ ≤ τP do

4: Compute ∆ such that [HM +∆]F is positive definite; [pre-convexification]

5: Solve the stabilized QP subproblem for (x̂, ŷ, ẑ) and Σ using Algorithm (2);

6: dk = (x̂− xk, ŷ − yk) = (pk, qk);

7: λ = dT
k H

M

∆Σdk/∥dk∥2;

8: if λ < λmin then [post-convexification]

9: Compute Γ such that dT
k H

M

∆ΣΓ dk ≥ λmin∥dk∥2;

10: Compute yk(σ) and yE(σ) according to (5.3.3);

11: if M(xk, yk(σ) ; y
E(σ), µ) ≤M(xk, yk ; y

E, µ) then

12: yk ← yk(σ); yE ← yE(σ);

13: else

14: Update ∆ so that HM +∆ is positive definite; Σ = 0; Γ = 0;

15: Solve the convex QP (3.9) for dk;

16: end if

17: end if

18: Execute flexible line search for αk satisfying (3.15) and (3.16);

19: Update (xk+1, yk+1) = (xk, yk) + αk(pk, qk);

20: Evaluate f , g, c, J , and H at (xk+1, yk+1);

21: (ϕmax
V , ϕmax

O , yE

k+1, τk+1) = pseudo-filter(xk+1, yk+1, ϕ
max
V , ϕmax

O , yE

k , τk);

22: Update µR

k and µk according to (3.21) and (3.23)

23: k ← k + 1;

24: end while

25: return (x∗, y∗, z∗) = (xk, yk, g(xk)− J(xk)
Tyk);

155

Algorithm 4 pseudo-filter: Pseudo-filter parameter update.

1: Input xk+1, yk+1, ϕ
max
V , ϕmax

O , yE

k , τk;

2: if ϕV (xk+1, yk+1) ≤ 1
2ϕ

max
V then [V-iterate]

3: ϕmax
V = 1

2ϕ
max
V ;

4: yE

k+1 = yk+1;

5: τk+1 = τk;

6: else if ϕO(xk+1, yk+1) ≤ 1
2ϕ

max
O then [O-iterate]

7: ϕmax
O = 1

2ϕ
max
O ;

8: yE

k+1 = yk+1;

9: τk+1 = τk;

10: else if vk+1 satisfies (3.19) then [M-iterate]

11: yE

k+1 = max(−ymaxe,min(yk+1, ymaxe));

12: τk+1 = 1
2τk;

13: else [F-iterate]

14: yE

k+1 = yE

k ;

15: τk+1 = τk;

16: end if

17: return (ϕmax
V , ϕmax

O , yE

k+1, τk+1);

6.2 Convergence

The convergence of Algorithm 3 is discussed under the following assumptions.

Assumption 6.2.1. Each Ĥk = Hk +∆+Σ + Γ is computed using dynamic convexification.

Assumption 6.2.2. The functions f and c are twice continuously differentiable.

Assumption 6.2.3. The sequence {xk}k≥0 is contained in a compact set.

In the “worst” case, i.e., when all iterates are eventually M-iterates or F-iterates, Algo-

rithm 3 emulates a primal-dual augmented Lagrangian method [12, 13, 62]. Consequently, it is

156

possible that yE

k and µR

k will remain fixed over a sequence of iterations, although this has been

uncommon in our preliminary numerical results. The following result concerns this situation.

Theorem 6.2.1. Let Assumptions 6.2.1–6.2.3 hold. If there exists an integer k̂ such that µR

k ≡

µR > 0 and k is an F-iterate for all k ≥ k̂, then the following hold for the search directions

dk = (x̂k − xk, ŷk − yk), where (x̂k, ŷk) is the solution of subproblem (3.9);

(i) {dk}k≥k̂ are uniformly bounded;

(ii) {dk}k≥k̂ are bounded away from zero; and

(iii) there exists a constant ϵ > 0 such that

∇M(vk ; y
E

k , µ
R

k)
Tdk ≤ −ϵ for all k ≥ k̂.

Proof. The assumptions of this theorem imply that

τk ≡ τ > 0, µR

k = µR, and yE

k = yE for all k ≥ k̂. (6.2)

First we prove part (i). From Assumption 6.2.1 we know concurrent convexification is used during

solution of each QP subproblem, and consequently that the change in primal variables at each inner

iteration satisfies ∥pj∥ = ∥xj+1 − xj∥ ≤ τD as shown in (5.50). The total number of QP steps per

iteration can be bounded by the same constant N , and therefore the sequence ∥pk∥ ≤ NτD so that

{pk} is a uniformly bounded sequence.

The change in multipliers qj is computed from the system (5.34), repeated here

(H +∆+Σj)F JT
F

JF −µR

kIm

 pF

−qj

 = −

[Hνs]F

Jνs

 ,

157

where Σj is the partial sum of (5.13) for i ≤ j, therefore

qj =
1

µR

k

(JFpF − Jνs
).

Uniform boundedness of {qk}k≥k̂ now follows from (6.2), Assumptions 6.2.2 and 6.2.3, and the

boundedness of {pk}. This completes the proof of part (i).

Part (ii) is established by showing that {∥dk∥}k≥k̂ is bounded away from zero. If this were

not the case, there would exist a subsequence S1 ⊆ {k : k ≥ k̂} such that limk∈S1
dk = 0, where

dk = (x̂k − xk, ŷk − yk) and (x̂k, ŷk) is a solution of problem (3.9). From Assumptions 6.2.1-6.2.3

we have

HM

∆Σ =

Hk +∆+Σ + 2
µR
k

JT
k Jk JT

k

Jk µR

kI

 ,

and that {(HM

∆Σ)k}k∈S1
is uniformly bounded. It follows that dk satisfies

ẑk

0

 = HM

∆Σdk +∇M(vk ; y
E, µR) and 0 = min(x̂k, ẑk),

for all k ∈ S1. It may then be inferred from Assumptions 6.2.1–6.2.3, and the definitions (6.2)

of τk, µR

k and yE

k that for k ∈ S1 sufficiently large, the iterate vk satisfies the definition (3.19) of

an M-iterate, and as a consequence, µR

k will be decreased. This contradicts the assumption that

µR

k ≡ µR for all k ≥ k̂. It follows that {∥dk∥}k≥k̂ is bounded away from zero and part (ii) holds.

The proof of part (iii) is immediate when post-convexification is used, in which case we

have

−∇M(xk, yk + w ; yE + w, µR)Tdk = dT
k Ĥ

Mdk ≥ λmin∥dk∥2.

As {dk}k≥k̂ is bounded away from zero by part (ii), part (iii) follows. Otherwise, assume that there

158

exists a subsequence S2 of {k : k ≥ k̂} such that

lim
k∈S2

∇M(vk ; y
E, µR)Tdk = 0, (6.3)

where we have used (6.2) and dk is defined as above. As the vector vk = (xk, yk) is feasible for the

convex problem (3.9), and (x̂k, ŷk) is the solution of problem (3.9) in Algorithm 3, it must hold

that

−∇M(vk ; y
E, µR)Tdk ≥ 1

2d
T
k B(vk ;µ

R)dk

= 1
2d

T
k L

−T
k LT

k B(vk ;µ
R)LkL

−1
k dk

= 1
2d

T
k L

−T
k

Ĥk + 1

µR
JT
k Jk 0

0 νµR

L−1
k dk,

where Lk denotes the nonsingular matrix

Lk =

 I 0

− 1

µR
Jk I

 , with L−1
k dk =

 pk

qk + 1

µR
Jkpk

 ,

with pk = x̂k − xk and qk = ŷk − yk. Assumption 6.2.1 yields

−∇M(vk ; y
E, µR)Tdk ≥ 1

2p
T
k

(
Ĥk +

1

µR
JT
k Jk

)
pk + 1

2νµ
R∥qk + (1/µR)Jkpk∥2

≥ λmin∥pk∥2 + 1
2νµ

R∥qk + (1/µR)Jkpk∥2,

159

for some λmin > 0. Combining this inequality with (6.3) gives the limit

lim
k∈S2

pk = lim
k∈S2

(
qk +

1

µR
Jkpk

)
= 0,

in which case limk∈S2 qk = 0 follows from Assumptions 6.2.2 and 6.2.3. This contradicts the result

of part (ii) and so part (iii) must hold.

The following theorem states the main convergence result for Algorithm 3.

Theorem 6.2.2. Let Assumptions 6.2.1–6.2.3 hold. If vk denotes the kth iterate generated by

Algorithm 3, then either:

(i) Algorithm 3 terminates with an approximate primal-dual first-order solution vk satisfying

∥ropt(vk)∥ ≤ τopt, where ropt is defined by (3.22); or

(ii) there exists a subsequence S such that limk∈S µR

k = 0, {yE

k}k∈S is bounded, limk∈S τk = 0,

and for each k ∈ S the vector vk+1 is an approximate first-order solution of (3.6) with the

choice yE = yE

k and µ = µR

k that satisfies (3.19).

Proof. If there exists a subsequence of {∥ropt(vk)∥}k≥0 that converges to zero, then clearly case (i)

holds. Therefore, for the remainder of the proof, it is assumed that the sequence {∥ropt(vk)∥}k≥0

is bounded away from zero.

From the definitions of a V-iterate and O-iterate, the functions ϕV and ϕO, and the update

strategies for ϕmax
V and ϕmax

O , we conclude that the number of V-iterates and O-iterates must be

finite. We claim that there must be an infinite number of M-iterates. To prove this, assume to the

contrary that the number of M-iterates is finite, so that all iterates are F-iterates for k sufficiently

large. It follows from the form of the update to µR

k (3.21) and the assumption made in this case,

160

that eventually µR

k remains constant. In this case, the update to µk given by (3.23) implies that

eventually, µk also remains constant. These arguments imply the existence of an integer k̂ such

that

µR

k ≡ µR ≤ µ ≡ µk, yE

k ≡ yE, τk ≡ τ > 0, and k is an F-iterate for all k ≥ k̂.

It follows from (3.23) that

M(vk+1 ; y
E, µ) ≤M(vk ; y

E, µ) + min(αmin, αk)ηSδk for all k ≥ k̂, (6.4)

where δk is defined by (3.16). Moreover, parts (ii) and (iii) of Theorem 6.2.1 ensure that {δk}k≥k̂

is a negative sequence bounded away from zero. In addition, it must hold that {αk}k≥k̂ is bounded

away from zero. To see this, note that parts (i) and (iii) of Theorem 6.2.1 and Assumption 6.2.2

ensure that {αk}k≥k̂ is bounded away from zero if a conventional Armijo line search is used, i.e.,

if µF

k = µR and δk = dT
k∇M(vk ; y

E, µR) in (3.15). However, the computed value of αk can be no

smaller because the definition of δk is less restrictive, and the use of a flexible line search makes the

acceptance of a step more likely. Combining these results with (6.4), yields

M(vk+1 ; y
E, µ) ≤M(vk ; y

E, µ)− κ for all k ≥ k̂ and some κ > 0,

so that limk→∞ M(vk ; y
E, µ) = −∞. However, Assumptions 6.2.2 and 6.2.3 ensure that this is not

possible. This contradiction implies that there must exist infinitely many M-iterations, and every

iterate is an M-iterate or F-iterate for k sufficiently large. Part (ii) now follows from (3.21) and the

properties of the updates to τk and yE

k used for M-iterates and F-iterates in Algorithm 3.

161

6.3 Numerical Results

Results were obtained in order to measure the relative performance of pdSQP and dcpdSQP

on a collection of optimization problems from the CUTEst benchmarking suite. The runs were

done using Matlab version R2023b on an iMac Pro with a 3.0 GHz Intel Xeon W processor and

128 GB of 800 MHz DDR4 RAM running macOS, version 14.4.1 (64 bit). Results were obtained

for six subsets of problems from the CUTEst test collection. The subsets consisted of 139 bound

constrained (BC) problems with a general nonlinear objective and upper and lower bounds on

the variables; 262 feasible-point (FP) problems with no objective, general linear and nonlinear

constraints and bounds on the variables; 126 problems formulated by Hock and Schittkowski ([50])

(HS); 212 linearly constrained (LC) problems with a general nonlinear objective, general linear

constraints and bounds on the variables; 386 nonlinearly constrained (NC) problems with a general

nonlinear objective, general linear and nonlinear constraints and bounds on the variables; and 173

unconstrained (UC) problems with a general nonlinear objective and no constraints. In total, these

subsets contain 1172 test problems.

The BC, FP, HS, LC, NC and UC subsets were selected based on the number of variables

and general constraints. In particular, a problem was chosen if the associated KKT system was of

the order of 3000 or less. The same criterion was used to set the dimension of those problems for

which the problem size can be specified. Exact second derivatives were used for all the runs.

6.3.1 Implementation

Both pdSQP and dcpdSQP were implemented in Matlab version R2023b. The difference

between the two is in the convexification strategy. The base algorithm pdSQP does a full convexi-

fication using the method of Wächter and Biegler [68], while the dynamically convexified dcpdSQP

162

uses Algorithms 3 and 2. Both Matlab implementations were initialized with identical parameter

values that were chosen based on the empirical performance on the entire collection of problems.

A summary of the values is given in Table 6.1. The initial primal-dual estimate (x0, y0) was based

on the default initial values supplied by CUTEst.

There are three scenarios that are considered to represent the successful solution of a prob-

lem. The first two of these scenarios correspond to the two outcomes presented in Theorem 6.2.2,

while the third is the recognition of an unbounded problem. The first scenario is convergence to a

first-order solution of (NP), characterized by

∥ropt(x, y)∥ ≤ τopt where ropt(x, y) =

 c(x)

min(x, g(x)− J(x)Ty)

 . (6.5)

The second is convergence to an infeasible stationary point (x, y), where

(x, y) satisfies (3.19), and

∥rinf(x, y)∥ ≤ τinf where rinf(x, y) = min(x, max(0, J(x)Tc(x))).

(6.6)

Lastly, the problem (NP) is declared unbounded if

f(x) ≤ funb, and

∥rP (x)∥∞ ≤ τP where rP (x) =

 c(x)

min(0, x)

 .

(6.7)

The iterates were terminated at the first point satisfying either (6.5), (6.6), or (6.7).

163

Table 6.1: Control parameters for Algorithms pdSQP and dcpdSQP.

Parameter Description Value

ymax Maximum allowed yE (3.20) 1.0e+6

µR
0 Initial regularization parameter for Algorithm (3) 1.0e-6

µL
0 Initial flexible line-search penalty parameter for Algorithm (3) 1.0

µL

min Minimum allowed µL 1.0e-14

µR

min Minimum allowed µR 1.0e-14

dmax Maximum allowed ∥d∥ (5.50) 1.0e+2

τopt Optimality tolerance (6.5) 1.0e-4

τinf Infeasible stationary point tolerance (6.6) 1.0e-5

τP Primal feasibility tolerance (6.7) 1.0e-4

τD Dual feasibility tolerance (5.49) 1.0e-6

λmin Minimum allowed positive eigenvalue 1.0e-8

ηS Line-search backtracking sufficient decrease (3.15) 1.0e-3

ηD Line-search factor in backtracking acceptance test (3.16) 1.0e-3

γC Line-search backtracking contraction factor 0.5

funb Unbounded objective (6.7) -1.0e+9

kmax Iteration limit for Algorithm (3) 750

6.3.2 Performance profiles

The relative performance of the solvers is summarized using performance profiles (in log2

scale), which were proposed by Dolan and Moré [17]. Let P denote a set of problems used for a

given numerical experiment. For each method s we define the function ρs : [0, rM] 7→ R+ such that

ρs(τ) =
1

nP

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

where nP is the number of problems in the test set and rp,s denotes the ratio of the performance

metric (for example, the total number of function evaluations) needed to solve problem p with

164

method s and the least value of the performance metric needed to solve problem p. If method s

failed for problem p, then rp,s is set to be twice of the maximal ratio. The parameter rM is the

maximum value of log2(rp,s).

Note that for Figures 6.1–6.7 and Tables 6.2–6.7 dcpdSQP uses the method of Wächter and

Biegler [68] for pre-convexification. In Figures 6.8–6.14, the different pre-convexification schemes

are compared, in which case dcpdSQP is labeled dcpdSQP-WB to emphasize the pre-convexification

method used. The method labeled dcpdSQP-ic uses the inertia-controlling symmetric indefinite

factorization of Forsgren [27], and dcpdSQP-2stage does the two-stage factorization presented in

Section 4.1.1. As always, pdSQP performs a full convexification. It should also be noted that the

performance of pdSQP and dcpdSQP are identical on unconstrained problems because all variables

are free and therefore pre-convexification is equivalent to full convexification. This is the reason

that the UC set is not included in the combined ALL set, and that there are no figures or profiles

comparing pdSQP and dcpdSQP on the UC problem set. However, the different methods of pre-

convexification do differ on unconstrained problems, which can be seen in Figure 6.14, where it is

also confirmed that pdSQP and dcpdSQP perform identically.

It is important to keep in mind that the purpose of dynamic convexification is to improve

computation efficiency of convexification in a way that is scalable to large-scale, sparse problems.

As pdSQP and dcpdSQP are based on the same primal-dual merit function SQP algorithm, the

hope is that dynamic convexification will not adversely affect the performance while significantly

reducing the cost associated with computing convex approximations. It is for this reason the

chosen performance metrics are function evaluations, iterations, and factorizations. In particular,

function evaluations and iterations measure the performance of a given method while the number

of factorizations required is a measure of efficiency directly related to the convexification method

165

used.

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 2 4
τ

Iterations

dcpdSQP

pdSQP

0 2 4 6

Factorizations

dcpdSQP

pdSQP

Figure 6.1: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 999 problems from the combined (ALL)
CUTEst test set. The (ALL) set is the union of the (BC), (FP), (HS), (LC), and (NC) test sets.

It is apparent from Figure 6.1 that, overall, the performance of dcpdSQP is comparable to

pdSQP in terms of function evaluations and iterations. Profiles for these metrics on the FP, NC,

and HS sets are nearly indistinguishable (Figures 6.3, 6.7, and 6.5), while a modest advantage from

dynamic convexification is shown on the BC and LC sets (Figures 6.2 and 6.6). This advantage

may be due to the fact that dynamic convexification usually computes a smaller norm perturbation

compared to a full convexification, so that the Hessian used approximates the true Hessian of the

Lagrangian function more faithfully. The most striking feature of these numerical results, however,

is seen in the factorization profiles. The near-horizontal curve for dcpdSQP indicates that the

proportion of problems for which dcpdSQP used the fewest factorizations is nearly the same as the

total number of problems solved. In other words dcpdSQP used fewer factorizations on almost every

problem it solved successfully. Together, these profiles demonstrate that dynamic convexification

166

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 2 4
τ

Iterations

dcpdSQP

pdSQP

0 2 4

Factorizations

dcpdSQP

pdSQP

Figure 6.2: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 139 bound constrained (BC) problems from
the CUTEst test set.

achieves its intended purpose of dramatically reducing the computational cost of convexification

while matching or improving overall performance.

For the feasible-point problems, which have no objective function, it is generally beneficial

to use an artificial objective function f(x) = 1
2∥x∥

2. This objective regularizes the problem in the

sense that most feasible-point problems have infinitely many solutions, and the inclusion of f(x)

targets a specific one. The profiles in Figure 6.4 are made with no objective function, while the

profiles in Figure 6.3, as well as the data in Table 6.4, were generated using the suggested artificial

objective function.

Tables 6.2–6.7 give details of the outcomes for pdSQP and dcpdSQP on each problem set.

The UC set is not included because the methods perform identically on an unconstrained function.

Also note that although almost all the problems in the HS set are included in the NC set, these

problems are not duplicated in the combined ALL problem set. Each sub-table lists, for both solvers,

167

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 1 2
τ

Iterations

dcpdSQP

pdSQP

0 1 2

Factorizations

dcpdSQP

pdSQP

Figure 6.3: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 262 feasible-point (FP) problems with an
artificial objective function from the CUTEst test set.

the number of problems in the given problem set for which each outcome was achieved. Of the runs

that fail, dcpdSQP is unable to convexify the QP problems more often, and pdSQP terminates more

often with the iteration limit exceeded and line-search failure. Of the runs that succeed, dcpdSQP

finds more local minimizers and pdSQP finds more infeasible stationary points. Overall, Table 6.2

supports the claim that the performance with dynamic convexification is comparable to or better

than that of the base algorithm.

168

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0.0 0.5 1.0
τ

Iterations

dcpdSQP

pdSQP

0 1 2

Factorizations

dcpdSQP

pdSQP

Figure 6.4: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 262 feasible-point (FP) problems with no
objective function from the CUTEst test set.

0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 2 4
τ

Iterations

dcpdSQP

pdSQP

0 2 4

Factorizations

dcpdSQP

pdSQP

Figure 6.5: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 126 Hock-Shittkowski (HS) problems from
the CUTEst test set.

169

0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 2 4
τ

Iterations

dcpdSQP

pdSQP

0 2 4 6

Factorizations

dcpdSQP

pdSQP

Figure 6.6: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 212 linearly constrained (LC) problems from
the CUTEst test set.

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP

pdSQP

0 2 4 6
τ

Iterations

dcpdSQP

pdSQP

0 2 4 6

Factorizations

dcpdSQP

pdSQP

Figure 6.7: Performance profiles comparing function evaluations, iterations, and factorizations used
by the algorithms dcpdSQP and pdSQP when applied to 386 nonlinearly constrained (NC) problems
from the CUTEst test set.

170

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 5 10 15

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.8: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 999 problems from the combined (ALL) CUTEst test set.

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 5 10 15

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.9: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 139 bound constrained (BC) problems from the CUTEst test set.

171

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.10: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 262 feasible-point (FP) problems from the CUTEst test set.

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 1 2 3
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.11: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 126 Hock-Shittkowski (HS) problems from the CUTEst test set.

172

0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0.0 2.5 5.0 7.5

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.12: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 212 linearly constrained (LC) problems from the CUTEst test set.

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.13: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 386 nonlinearly constrained (NC) problems from the CUTEst test set.

173

0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

ρ
s(
τ

)

Function evaluations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0 2 4 6
τ

Iterations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

0.0 2.5 5.0 7.5

Factorizations

dcpdSQP-WB

dcpdSQP-2stage

dcpdSQP-ic

pdSQP

Figure 6.14: Performance profiles comparing pre-convexification methods in dcpdSQP with pdSQP
when applied to 173 unconstrained (UC) problems from the CUTEst test set.

174

Table 6.2: Problem set (ALL) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 784 792

Infeasible stationary point 126 115

Near optimal 10 13

Iteration limit 56 58

Line-search failure 15 5

QP convexification failure 3 10

Unbounded problem 5 6

Table 6.3: Problem set (BC) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 136 135

Infeasible stationary point - -

Near optimal 1 1

Iteration limit 2 2

Line-search failure - -

QP convexification failure - 1

Unbounded problem - -

Table 6.4: Problem set (FP) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 113 113

Infeasible stationary point 104 102

Near optimal 4 3

Iteration limit 30 38

Line-search failure 10 4

QP convexification failure 1 2

Unbounded problem - -

Table 6.5: Problem set (HS) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 122 122

Infeasible stationary point 1 1

Near optimal 1 1

Iteration limit 1 1

Line-search failure 1 1

QP convexification failure - -

Unbounded problem - -

Table 6.6: Problem set (LC) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 207 207

Infeasible stationary point 4 2

Near optimal - -

Iteration limit - -

Line-search failure - -

QP convexification failure - 2

Unbounded problem 1 1

Table 6.7: Problem set (NC) outcome counts.
Outcome pdSQP dcpdSQP

Optimal 328 337

Infeasible stationary point 18 11

Near optimal 5 9

Iteration limit 24 17

Line-search failure 5 1

QP convexification failure 2 6

Unbounded problem 4 5

175

Bibliography

[1] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.
Appl., 23(1):15–41 (electronic), 2001.

[2] Mihai Anitescu. A superlinearly convergent sequential quadratically constrained quadratic
programming algorithm for degenerate nonlinear programming. SIAM J. Optim., 12(4):949–
978, 2002.

[3] Cleve Ashcraft and Roger Grimes. SPOOLES: an object-oriented sparse matrix library. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing
1999 (San Antonio, TX), page 10, Philadelphia, PA, 1999. SIAM.

[4] Jonathan M. Borwein. Necessary and sufficient conditions for quadratic minimality. Numer.
Funct. Anal. and Optimiz., 5:127–140, 1982.

[5] James R. Bunch. Partial pivoting strategies for symmetric matrices. SIAM J. Numer. Anal.,
11:521–528, 1974.

[6] James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia and solving
symmetric linear systems. Math. Comp., 31:163–179, 1977.

[7] James R. Bunch and Beresford N. Parlett. Direct methods for solving symmetric indefinite
systems of linear equations. SIAM J. Numer. Anal., 8:639–655, 1971.

[8] Richard Byrd, Jorge Nocedal, Richard Waltz, and Yuchen Wu. On the use of piecewise linear
models in nonlinear programming. Math. Program., pages 1–36, 2010. 10.1007/s10107-011-
0492-9.

[9] Thomas F. Coleman and Alex Pothen. The null space problem I. Complexity. SIAM J. on
Algebraic and Discrete Methods, 7:527–537, 1986.

[10] Thomas F. Coleman and Danny C. Sorensen. A note on the computation of an orthogonal
basis for the null space of a matrix. Math. Program., 29:234–242, 1984.

[11] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Global convergence of a
class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal.,
25:433–460, 1988.

176

[12] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A comprehensive description of
LANCELOT. Technical Report 91/10, Département de Mathématique, Facultés Universitaires
de Namur, 1991.

[13] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A globally convergent aug-
mented Lagrangian algorithm for optimization with general constraints and simple bounds.
SIAM J. Numer. Anal., 28:545–572, 1991.

[14] Luis B. Contesse. Une caractérisation complète des minima locaux en programmation quadra-
tique. Numer. Math., 34:315–332, 1980.

[15] Richard W. Cottle, G. J. Habetler, and C. E. Lemke. On classes of copositive matrices. Linear
Algebra Appl., 3:295–310, 1970.

[16] Frank E. Curtis and Jorge Nocedal. Flexible penalty functions for nonlinear constrained opti-
mization. IMA J. Numer. Anal., 28(4):749–769, 2008.

[17] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[18] Iain S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software, 30(2):118–144, 2004.

[19] Iain S. Duff and John K. Reid. MA27: a set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Technical Report R-10533, Computer Science and Systems Division,
AERE Harwell, Oxford, England, 1982.

[20] Damián Fernández and Mikhail Solodov. Stabilized sequential quadratic programming for
optimization and a stabilized Newton-type method for variational problems. Math. Program.
Ser. A, 125:47–73, 2010.

[21] Andreas Fischer. Modified Wilson’s method for nonlinear programs with nonunique multipliers.
Math. Oper. Res., 24(3):699–727, 1999.

[22] Roger Fletcher. A general quadratic programming algorithm. J. Inst. Math. Applics., 7:76–91,
1971.

[23] Roger Fletcher. An ℓ1 penalty method for nonlinear constraints. In Paul T. Boggs, Richard H.
Byrd, and Robert B. Schnabel, editors, Numerical Optimization 1984, pages 26–40, Philadel-
phia, 1985. SIAM.

[24] Roger Fletcher and Sven Leyffer. User manual for filterSQP. Technical Report NA/181, Dept.
of Mathematics, University of Dundee, Scotland, 1998.

[25] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Math.
Program., 91(2, Ser. A):239–269, 2002.

[26] Roger Fletcher, Sven Leyffer, and Philippe L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM J. Optim., 13(1):44–59 (electronic), 2002.

[27] Anders Forsgren. Inertia-controlling factorizations for optimization algorithms. Appl. Numer.
Math., 43:91–107, 2002.

177

[28] Anders Forsgren and Philip E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM J. Optim., 8:1132–1152, 1998.

[29] Anders Forsgren, Philip E. Gill, and Walter Murray. On the identification of local minimizers in
inertia-controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl., 12:730–
746, 1991.

[30] Anders Forsgren and Walter Murray. Newton methods for large-scale linear equality-
constrained minimization. SIAM J. Matrix Anal. Appl., 14:560–587, 1993.

[31] John R. Gilbert and Michael T. Heath. Computing a sparse basis for the null space. Report
TR86-730, Department of Computer Science, Cornell University, 1986.

[32] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A stabilized SQP method:
Global convergence. IMA J. Numer. Anal., 37(1):407–443, 05 2017.

[33] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A stabilized SQP method:
superlinear convergence. Mathematical Programming, 163(1):369–410, 2017.

[34] Philip E. Gill and Walter Murray. Newton-type methods for unconstrained and linearly con-
strained optimization. Math. Program., 7:311–350, 1974.

[35] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Rev., 47:99–131, 2005.

[36] Philip E. Gill, Walter Murray, Michael A. Saunders, Gilbert (Pete) W. Stewart, and Mar-
garet H. Wright. Properties of a representation of a basis for the null space. Math. Program-
ming, 33(2):172–186, 1985.

[37] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. Shifted barrier
methods for linear programming. Report SOL 87-9, Department of Operations Research,
Stanford University, Stanford, CA, 1987.

[38] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. Inertia-
controlling methods for general quadratic programming. SIAM Rev., 33(1):1–36, 1991.

[39] Philip E. Gill and Daniel P. Robinson. A primal-dual augmented Lagrangian. Comput. Optim.
Appl., 51:1–25, Jan 2012.

[40] Philip E. Gill and Daniel P. Robinson. A globally convergent stabilized SQP method. SIAM
J. Optim., 23(4):1983–2010, 2013.

[41] Philip E. Gill and Elizabeth Wong. Sequential quadratic programming methods. In Jon Lee
and Sven Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of The IMA
Volumes in Mathematics and its Applications, pages 147–224. Springer New York, 2012.

[42] Philip E. Gill and Elizabeth Wong. Methods for convex and general quadratic program-
ming. Center for Computational Mathematics Report CCoM 13-1, University of California,
San Diego, La Jolla, CA, 2013.

[43] Philip E. Gill and Elizabeth Wong. Methods for convex and general quadratic programming.
Math. Program. Comput., 7:71–112, 2015.

178

[44] Philip E. Gill and Margaret H. Wright. Computational Optimization: Nonlinear Programming.
Cambridge University Press, New York, NY, USA, 2024. To be published in 2024.

[45] Nicholas I. M. Gould. On practical conditions for the existence and uniqueness of solutions to
the general equality quadratic programming problem. Math. Program., 32:90–99, 1985.

[46] Nicholas I. M. Gould. An algorithm for large-scale quadratic programming. IMA J. Numer.
Anal., 11(3):299–324, 1991.

[47] Nicholas I. M. Gould and Daniel P. Robinson. A second derivative SQP method: Global
convergence. SIAM J. Optim., 20(4):2023–2048, 2010.

[48] John Greenstadt. On the relative efficiencies of gradient methods. Math. Comput., 21:360–367,
1967.

[49] William W. Hager. Stabilized sequential quadratic programming. Comput. Optim. Appl.,
12(1-3):253–273, 1999. Computational optimization—a tribute to Olvi Mangasarian, Part I.

[50] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Lecture
Notes in Econom. Math. Syst. 187. Springer-Verlag, Berlin, 1981.

[51] Vyacheslav Kungurtsev. Second-Derivative Sequential Quadratic Programming Methods for
Nonlinear Optimization. PhD thesis, Department of Mathematics, University of California
San Diego, La Jolla, CA, 2013.

[52] Dong-Hui Li and Liqun Qi. A stabilized SQP method via linear equations. Technical Report
AMR00/5, School of Mathematics, University of New South Wales, Sydney, 2000.

[53] Antal Majthay. Optimality conditions for quadratic programming. Math. Programming, 1:359–
365, 1971.

[54] Olvi L. Mangasarian and Stanley Fromovitz. The Fritz John necessary optimality conditions
in the presence of equality and inequality constraints. J. Math. Anal. Appl., 17:37–47, 1967.

[55] Nicholas Maratos. Exact Penalty Function Algorithms for Finite-Dimensional and Control
Optimization Problems. PhD thesis, Department of Computing and Control, Imperial College,
University of London, 1978.

[56] Jorge J. Moré and Danny C. Sorensen. Newton’s method. In Gene H. Golub, editor, Studies
in Mathematics, Volume 24. MAA Studies in Numerical Analysis, pages 29–82. Math. Assoc.
America, Washington, DC, 1984.

[57] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

[58] James M. Ortega and Werner C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
Reprint of the 1970 original.

[59] Panos M. Pardalos and Georg Schnitger. Checking local optimality in constrained quadratic
programming is NP-hard. Oper. Res. Lett., 7(1):33–35, 1988.

179

[60] Panos M. Pardalos and Stephen A. Vavasis. Quadratic programming with one negative eigen-
value is NP-hard. J. Global Optim., 1(1):15–22, 1991.

[61] Michael J. D. Powell. A method for nonlinear constraints in minimization problems. In Roger
Fletcher, editor, Optimization, pages 283–298, London and New York, 1969. Academic Press.

[62] Daniel P. Robinson. Primal-Dual Methods for Nonlinear Optimization. PhD thesis, Department
of Mathematics, University of California San Diego, La Jolla, CA, 2007.

[63] Stephen M. Robinson. A quadratically-convergent algorithm for general nonlinear program-
ming problems. Math. Program., 3:145–156, 1972.

[64] Stephen M. Robinson. Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms. Math. Program., 7:1–16, 1974.

[65] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equations with
PARDISO. In Computational Science—ICCS 2002, Part II (Amsterdam), volume 2330 of
Lecture Notes in Comput. Sci., pages 355–363. Springer, Berlin, 2002.

[66] Robert B. Schnabel and Elizabeth Eskow. A new modified Cholesky factorization. SIAM J.
Sci. and Statist. Comput., 11:1136–1158, 1990.

[67] Gerard Van der Hoek. Asymptotic properties of reduction methods applying linearly equality
constrained reduced problems. Math. Program., 16:162–189, 1982.

[68] Andreas Wächter, Lorenz T. Biegler, Yi-Dong Lang, and Arvind Raghunathan. IPOPT:
An interior point algorithm for large-scale nonlinear optimization. https://projects.coin-
or.org/Ipopt, 2002.

[69] Robert B. Wilson. A Simplicial Method for Convex Programming. PhD thesis, Harvard Uni-
versity, 1963.

[70] Stephen J. Wright. Superlinear convergence of a stabilized SQP method to a degenerate
solution. Comput. Optim. Appl., 11(3):253–275, 1998.

[71] Stephen J. Wright. Modifying SQP for degenerate problems. SIAM J. Optim., 13(2):470–497,
2002.

[72] Stephen J. Wright. An algorithm for degenerate nonlinear programming with rapid local
convergence. SIAM J. Optim., 15(3):673–696, 2005.

180

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Notation
	Background
	Overview
	Contributions of This Dissertation

	Sequential Quadratic Programming
	Local Properties of SQP Methods
	Equality constraints
	Inequality constraints

	Methods for Quadratic Programming
	Primal active-set methods

	Stabilized and Primal-Dual SQP Methods
	A Regularized Primal-Dual Line-Search SQP Algorithm
	Definition of the Primal-Dual Search Direction
	Definition of the new iterate
	Updating the multiplier estimate
	Updating the penalty parameters

	Solution of the Bound-Constrained Subproblem
	Convexification of the bound-constrained subproblem

	Modifying Matrix Factorizations
	Tiling
	Two-stage factorization

	First-Stage Strategy
	Submatrix search

	Two-Stage Symmetric Indefinite factorization with Partial Cholesky Decomposition
	Utilizing the partial Cholesky factors

	Full Diagonal Modification of K

	Dynamic Convexification
	Dynamic Convexification of a QP in Standard Form
	Non-binding active-set methods in standard form
	Pre-convexification
	Concurrent convexification
	Post-convexification for constraints in standard form

	Dynamic Convexification of Stabilized SQP Methods
	The stabilized subproblem – standard form
	Pre-convexification and regularization
	Concurrent convexification of a stabilized QP subproblem
	Stabilized post-convexification

	Primal-Dual SQP methods with Dynamic Convexification
	Pre-convexification of the bound-constrained subproblem
	Concurrent convexification of the bound-constrained QP
	Post-convexification of the bound-constrained QP

	A Dynamically-Convexified Primal-Dual SQP Algorithm
	Formal Algorithm Statement
	Convergence
	Numerical Results
	Implementation
	Performance profiles

	Bibliography

