
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
On the Data Complexity of Problem-Adaptive Offline Reinforcement Learning

Permalink
https://escholarship.org/uc/item/6h82p9zm

Author
Yin, Ming

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h82p9zm
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

On the Data Complexity of Problem-Adaptive Offline
Reinforcement Learning

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Ming Yin

Committee in charge:
Professor Yu-Xiang Wang, Chair
Professor William Yang Wang
Professor S. Rao Jammalamadaka

December 2023

The Dissertation of Ming Yin is approved.

Professor William Yang Wang

Professor S. Rao Jammalamadaka

Professor Yu-Xiang Wang, Committee Chair

September 2023

On the Data Complexity of Problem-Adaptive Offline Reinforcement Learning

Copyright © 2023

by

Ming Yin

iii

Acknowledgements

I would like to offer my humble and grateful acknowledgment to all the remarkable individ-
uals who have played pivotal roles in my Ph.D. journey. Their unwavering support and guidance
have been instrumental in shaping my academic and personal growth.

First and foremost, my deepest gratitude goes to my advisor, Professor Yu-Xiang Wang,
for guiding me in doing research from scratch. You supported me at my hardest time, and the
trajectory of my Ph.D. career changed completely since then. It is a privilege to work with
you, and there are countless moments when I was inspired by your passion, knowledge, and
optimism. Every time I introduce you to someone else, I use the words "Machine Learning
Encyclopaedia". Your optimism, and positive attitude toward life, have been a guiding light
whenever I encountered difficulties. I still remember when we worked together diligently on
my very first AISTATS submission in 2019 and finished it by midnight. I drove to In-and-Out to
get dinner around 1AM, full of happiness in my heart. This was the beginning of my publication
experiences and also one of my happiest moments during my Ph.D. study. Your profound impact
on me over the past few years is hard to describe using words and it will continue to influence
my life in immeasurable ways.

Next, I want to thank my committee member, Distinguished Professor S. Rao Jammala-
madaka, for your tremendous support throughout my Ph.D. journey. I met you in the initial
phase of my Ph.D., and the knowledge I gained from your PSTAT 207 course sequence has been
the building blocks for my later research in Statistical Machine Learning. Your captivating ex-
planation of the Cramer-Rao lower bound, attributed to your advisor Calyampudi Radhakrishna
Rao, left an indelible impression on me. Such a unique connection lasted and eventually grew
into the central topic of my first publication. Your counsel, wisdom, and unwavering guidance
have been a consistent source of encouragement during my most challenging moments.

I also want to thank Professor William Wang serve on my dissertation committee. By com-

iv

municating with you, I get to know the frontier of AI from the Natural Language Processing
perspective, prompting me to reflect on my research in sequential decision-making and cultivate
new ideas. Your insightful feedback has not only enhanced my research but also fortified my
long-term career aspirations.

Furthermore, I want to give special thanks to the brilliant researchers I have had the fortune
to work with throughout the years, Yu-Xiang Wang, Mengdi Wang, Yu Bai, Yaqi Duan, Dan
Qiao, Thanh Nguyen-Tang, Sunil Gupta, Svetha Venkatesh, Raman Arora, Jiachen Li, William
Yang Wang, Kaiqi Zhang, Wenjing Chen, Chong Liu, Ming Min, Wenhu Chen, Max Ku, Elaine
Wan, Xueguang Ma, Jianyu Xu, Tony Xia, Xinyi Wang, Pan Lu, Songtao Feng, Ruiquan Huang,
Jing Yang, Edwin Zhang, Yingbin Liang, Sunil Madhow and Qinxun Bai. My achievements
would have remained out of reach without your collaboration and support.

I was fortunate to spend my graduate student life in the Department of Computer Science at
UCSB. I would like to thank all my friends, including Andrea Zanette, Chong Liu, Jianyu Xu,
Yuqing Zhu, Peng Zhao, Dheeraj Baby, Esha Singh, Rachel Redberg, Dan Qiao, Erchi Wang,
Kaiqi Zhang, Xuandong Zhao, Jiachen Li, Shiyang Li, Xinlu Zhang, Kan Wu, Chengsheng
Shen, Wenhu Chen, Minshuo Chen, Yuanzhe Xu, Masatoshi Uehara, Yaodong Yu, Zhiyu Chen,
Xuezhou Zhang, Songtao Feng, Yu Bai, Tongzheng Ren, Hong Wang, Hengyu Bu, Wenhan
Xiong, Fuheng Zhao, Nikki Kuang, Lucy Liu and Min Woo Park. The journey would not have
been the same without your presence.

Finally, I want to express my deepest gratitude to my parents, for their unconditional love
and support throughout my life. I will always make you proud!

v

Curriculum Vitæ
Ming Yin

Education

2023 Ph.D. in Computer Science, University of California, Santa Barbara.
2023 Ph.D. in Statistics and Applied Probability, University of California, Santa

Barbara.
2016 B.S. in Applied Mathematics, University of Science and Technology of

China.

Publications

NeurIPS 2023 Posterior Sampling with Delayed Feedback for Reinforcement Learning
with Linear Function Approximation, Nikki Lijing Kuang*, Ming Yin*,
Mengdi Wang, Yu-Xiang Wang, Yi-An Ma. In Proceedings of the 37th
Conference on Neural Information Processing Systems, New Orleans,
LA, USA.

EMNLP 2023 TheoremQA: A Theorem-driven Question Answering dataset, Wenhu
Chen, Ming Yin, Max Ku, Elaine Wan, Xueguang Ma, Jianyu Xu, Tony
Xia, Xinyi Wang, Pan Lu. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, Singapore.

ICLR 2023 Offline Reinforcement Learning with Differentiable Function Approxi-
mation is Provably Efficient, Ming Yin, Mengdi Wang, Yu-Xiang Wang.
In Proceedings of the 10th International Conference on Learning Rep-
resentations, Kigali Rwanda, Africa.

UAI 2023 No-Regret Linear Bandits beyond Realizability, Chong Liu, Ming Yin,
Yu-Xiang Wang. In Proceedings of the 39th Conference on Uncertainty
in Artificial Intelligence, Pittsburgh, PA, USA.

ICML 2023 Non-stationary Reinforcement Learning under General Function Approx-
imation, Songtao Feng, Ming Yin, Ruiquan Huang, Yu-Xiang Wang,
Jing Yang, Yingbin Liang, In Proceedings of the 40th International Con-
ference on Machine Learning, Honolulu, HI, USA.

ICML 2023 Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators, Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang
Wang, William Yang Wang. In Proceedings of the 40th International
Conference on Machine Learning, Honolulu, HI, USA.

ICML WS 2023 Why Quantization Improves Generalization: NTK of Binary Weight Neu-
ral Networks, Kaiqi Zhang, Ming Yin, Yu-Xiang Wang, In ICML work-
shop in Neural Compression, Honolulu, HI, USA.

vi

AAAI 2023 On Instance-Dependent Bounds for Offline Reinforcement Learning with
Linear Function Approximation, Thanh Nguyen-Tang, Ming Yin, Sunil
Gupta, Svetha Venkatesh, Raman Arora. In Proceedings of Association
for the Advancement of Artificial Intelligence, Washtington, DC, USA.

NeurIPS WS 2022 Offline Policy Evaluation for Reinforcement Learning with Adaptively
Collected Data, Sunil Madhow, Dan Qiao, Ming Yin, Yu-Xiang Wang.
In NeurIPS workshop in Offline RL, New Orleans, LA, USA.

UAI 2022 Offline Stochastic Shortest Path: Learning, Evaluation and Towards Op-
timality, Ming Yin*, Wenjing Chen*, Mengdi Wang, Yu-Xiang Wang.
In Proceedings of Association for the Advancement of Artificial Intelli-
gence, Washtington, DC, USA.

ICML 2022 Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost,
Dan Qiao, Ming Yin, Ming Min, Yu-Xiang Wang. In Proceedings of the
39th International Conference on Machine Learning, Baltimore, MD,
USA.

ICLR 2022 Near-optimal Offline Reinforcement Learning with Linear Representa-
tion: Leveraging Variance Information with Pessimism, Ming Yin, Yaqi
Duan, Mengdi Wang, Yu-Xiang Wang. In Proceedings of the 10th In-
ternational Conference on Learning Representations, Virtual.

NeurIPS 2021 Towards Instance-Optimal Offline Reinforcement Learning with Pessimism,
Ming Yin, Yu-Xiang Wang. In Proceedings of the 35th Conference on
Neural Information Processing Systems, Vancouver, Canada.

NeurIPS 2021 Optimal Uniform OPE and Model-based Offline Reinforcement Learn-
ing in Time Homogeneous, Reward-Free and Task-Agnostic Settings,
Ming Yin, Yu-Xiang Wang. In Proceedings of the 35th Conference on
Neural Information Processing Systems, Vancouver, Canada.

NeurIPS 2021 Near-Optimal Offline Reinforcement Learning via Double Variance Re-
duction, Ming Yin, Yu Bai, Yu-Xiang Wang. In Proceedings of the
35th Conference on Neural Information Processing Systems, Vancouver,
Canada.

AISTATS 2021 Near-Optimal Provable Uniform Convergence in Offline Policy Evalu-
ation for Reinforcement Learning, Ming Yin, Yu Bai, Yu-Xiang Wang
(Oral presentation) In Proceedings of the 24th International Confer-
ence on Artificial Intelligence and Statistics, Virtual.

AISTATS 2020 Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforce-
ment Learning, Ming Yin, Yu-Xiang Wang. In Proceedings of the 23th
International Conference on Artificial Intelligence and Statistics, Sicily,
Italy.

vii

Academic Services

Area Chair [NeurIPS] Conference on Neural Information Processing Systems, 2023
Conf. Reviewer [ICML] International Conference on Machine Learning, 2020,2021,2022,2023

[AISTATS] International Conference on Artificial Intelligence and Statis-
tics, 2021,2022,2023, 2024
[NeurIPS] Conference on Neural Information Processing Systems, 2021,2022
[ICLR] International Conference on Learning Representations, 2022,2023,2024
[AAAI] AAAI Conference on Artificial Intelligence, 2023, 2024
[UAI] Conference on Uncertainty in Artificial Intelligence, 2023
[EMNLP] Conference on Empirical Methods in Natural Language Pro-
cessing, 2023
[COLT] Conference on Learning Theory, 2024

Journal Reviewer [AOS] Annals of Statistics
[JASA] Journal of the American Statistical Association
[JMLR] Journal of Machine Learning Research
[MACH] Machine Learning, Journal by Springer
[TMLR] Transactions on Machine Learning Research
[JDS] ACM/IMS Journal of Data Science (3-year appointment)

viii

Abstract

On the Data Complexity of Problem-Adaptive Offline Reinforcement Learning

by

Ming Yin

Offline reinforcement learning, a field dedicated to optimizing sequential decision-making
strategies using historical data, has found widespread application in real-world scenarios. Re-
cent years have witnessed a surge in research focusing on establishing the statistical founda-
tions for offline reinforcement learning, with many studies achieving near-optimal worst-case
performance bounds. However, empirical results often outperform these non-adaptive bounds
significantly. A comprehensive understanding of which decision processes and behavior poli-
cies are inherently more amenable or challenging for offline RL remains elusive. To address
this critical challenge, the first part of this thesis delves into instance-dependent offline learn-
ing within tabular Markov Decision Processes. We introduce the Adaptive Pessimistic Value
Iteration algorithm, which achieves an instance-dependent guarantee and is also near optimal.
This result subsumes a wide spectrum of previous worst-case optimal results, leading to the first
instance-dependent guarantee that characterizes the hardness for offline RL.

In the Second chapter of the thesis, we extend our study for tabular reinforcement learn-
ing to the function approximation regime. Specifically, within the context of linear function
approximation, we present the variance-aware pessimistic value iteration (VAPVI) algorithm,
which quantifies the uncertainty of training examples through conditional variance reweighing.
VAPVI enhances offline learning bounds compared to the best-known existing results. Cru-
cially, our learning bounds are expressed in terms of system-related quantities, offering natural
instance-dependent characterizations that previous studies lacked.

Furthermore, State-Of-The-Art algorithms usually leverage powerful function approxima-
ix

tors (e.g. neural networks) to alleviate the sample complexity hurdle for better empirical per-
formances. In the third chapter, we broaden our focus to function approximation without im-
posing specific structural constraints on the function class, except for differentiability. This
class naturally encompasses a wide range of models with nonlinear and nonconvex structures.
Importantly, we demonstrate the provable efficiency of offline RL with differentiable function
approximation through an analysis of the pessimistic fitted Q-learning (PFQL) algorithm. Our
findings provide the theoretical underpinnings for understanding various practical heuristics
relying on Fitted Q-Iteration-style design.

We conclude the thesis by summarizing our work and mentioning other exciting research
projects.

On the distinctions between [1] and this thesis. [1] is the thesis submitted in partial satis-
faction of the requirements for the Ph.D. degree in Statistics and Applied Probability, and this
thesis is submitted in partial satisfaction of the requirements for the Ph.D. degree in Computer
Science. Thesis [1] studies tabular offline policy evaluation (OPE) problem, where the target
policy is fixed and the environment has finite states and actions. [1] mostly contains the ma-
terials from [2, 3, 4] This thesis studies the offline policy learning problem, where the goal is
to find a reward-maximizing policy. The environments considered in this thesis include tabular
MDPs, linear function approximation, and the general parametric models. This thesis mostly
contains the materials from [5, 6, 7]

x

List of Frequently Used Notations

MDP Markov Decision Processes
𝜇 Logging/Behavior policy
1 max{2𝜆, 128 log(2𝑑∕𝛿), 128𝐻4 log(2𝑑∕𝛿)∕𝜅2}

2 max{ 𝜆2

𝜅 log((𝜆+𝐾)𝐻∕𝜆𝛿)
, 962𝐻12𝑑 log((𝜆 +𝐾)𝐻∕𝜆𝛿)∕𝜅5}

3 max
{

512𝐻4∕𝜅2 log
(

2𝑑
𝛿

)

, 4𝜆𝐻2∕𝜅
}

4 12
√

𝐻4𝑑 log((𝜆 +𝐾)𝐻∕𝜆𝛿)∕𝜅

𝛿 Failure probability
𝜉 sup𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎), ℎ∈[𝐻]

|

|

|

|

𝑟ℎ+𝑉 (𝑠′)−(ℎ𝑉)(𝑠,𝑎)
𝜎𝑉 (𝑠,𝑎)

|

|

|

|

𝐶𝐻,𝑑,𝜅,𝐾 36
√

𝐻4𝑑3

𝜅
log

(

(𝜆+𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 12𝜆𝐻
2
√

𝑑
𝜅

Σ𝑝ℎ(𝜃) 𝔼𝜇,ℎ
[

∇𝑓 (𝜃, 𝜙(𝑠, 𝑎)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))⊤
]

𝜅 minℎ,𝜃 𝜆min(Σ
𝑝
ℎ(𝜃))

𝜎2
𝑉 (𝑠, 𝑎) max{1,Var𝑃ℎ(𝑉)(𝑠, 𝑎)} for any 𝑉
𝐾0 max

{

512𝜅
4
1

𝜅2

(

log(2𝐻𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

𝜁 2max𝑠′∼𝑃 (⋅|𝑠,𝑎),ℎ∈[𝐻]
(ℎ𝑉 ⋆

ℎ+1)(𝑠,𝑎)−𝑟−𝑉
⋆
ℎ+1(𝑠

′)

𝜎⋆ℎ (𝑠,𝑎)

𝐶hot = 𝐶̄hot
𝜅1𝐻
√

𝜅
+ 𝜅21𝐻

3𝑑2

𝜅
+
√

𝑑3𝐻4𝜅22𝜅
2
1

𝜅3
+ 𝜅2 max(𝜅1

𝜅
, 1
√

𝜅
)𝑑2𝐻3 + 𝑑2𝐻4𝜅3+𝜆𝜅1𝐶Θ

𝜅
+ 𝐻3𝜅2𝑑2

𝜅

𝐶 ′
hot = 𝐶̄ ′

hot 𝐶hot +
𝜅1𝜅2𝐻4𝑑2

𝜅3∕2

xi

Contents

Curriculum Vitae vi

Abstract ix

List of Symbols xi

1 Introduction 1

2 On the Instance-dependent Tabular Offline Reinforcement Learning 6
2.1 Preliminaries for Offline Reinforcement Learning 6
2.2 Instrinsic Offline Reinforcement Learning Bound and Adaptive Pessimistic Value

Iteration . 10
2.3 Towards Assumption-Free Offline RL . 18
2.4 Sketch of the Analysis for APVI . 20
2.5 Conclusion . 21

3 Near-optimal Offline Reinforcement Learning with Linear Representation 22
3.1 Motivation and Related Prior Works . 23
3.2 Preliminaries for Linear Markov Decision Processes 27
3.3 Algorithm and Main Results . 30
3.4 Proof Overview . 38
3.5 Conclusion . 39

4 Provably Efficient Offline Reinforcement Learning with Differentiable Function
Approximation 41
4.1 Introduction, Related Work, and Our Contribution 42
4.2 Preliminaries . 46
4.3 Differentiable Function Approximation is Provably Efficient 49
4.4 Improved Learning via Variance Awareness 57
4.5 Conclusion . 59

5 Conclusions and Summary 61

xii

A Supplementary Material in Chapter 2 64
A.1 Proof of VPVI (Theorem 2.2.1) . 64
A.2 Proof of Assumption-Free Offline Reinforcement Learning (Theorem 2.3.1) . . 69
A.3 Proof of Theorem 2.2.2 . 83
A.4 Discussions and missing derivations in Section 2.2 84

B Supplementary Material in Chapter 3 88
B.1 Proofs in Section 3.3.2 . 88
B.2 Proof of Theorem 3.3.2 . 107
B.3 Proof of Minimax Lower bound Theorem 3.3.4 111
B.4 Some missing derivations and discussions . 119
B.5 Related Concentration Results and Decompositions 123

C Supplementary Material in Chapter 4 131
C.1 Further Illustration that Generalized Linear Model Example satisfies 4.2.3 . . . 131
C.2 On the computational complexity . 132
C.3 Some basic constructions . 132
C.4 Analyzing |ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎)| for PFQL. 134
C.5 Proof of Theorem 4.3.2 . 154
C.6 Provable Efficiency by reduction to General Function Approximation 158
C.7 With positive Bellman completeness coefficient 𝜖 > 0 166
C.8 VFQL and its analysis . 166
C.9 Proofs for VAFQL . 169
C.10 The lower bound . 187
C.11 Helpful Results . 188

D Assisting lemmas 198

Bibliography 203

xiii

Chapter 1

Introduction

Science and technology should bring better lives for the human race and provide new solutions
to some of the biggest challenges we face today — clean energy, climate change, social injustice,
changing workforce and more. In particular, sequential decision making could play an impor-
tant role in these problems as it models the long term impacts of policies. Reinforcement learn-
ing, a data-driven framework for the long horizon planing, has been one of the fastest-growing
research areas. In the past decade, RL-based applications have led to a few breakthroughs in
artificial intelligence, such as defeating human world champions in the game of Go [8] and Star-
Craft II [9]. The applicability of RL to real-life problems, however, remains limited. The crux
of the problem is that most existing RL methods require an environment for the agent to inter-
act with, but in real-life applications, it is rarely feasible to have access to such an environment
— deploying an algorithm that learns by trial-and-errors may be costly or have serious legal,
ethical and safety issues. In this thesis, we consider offline reinforcement learning, where the
goal is to develop general and efficient reinforcement learning algorithms that can learn from
offline/historical data with low (optimal) sample and computation complexity.

In offline Reinforcement Learning (offline RL [10, 11]), the objective is to identify a reward-
maximizing policy in an unknown environment Markov Decision Process (MDP) using the

1

Introduction Chapter 1

historical data. Unlike an online RL, where the agent can keep interacting with the environment
and gain new feedback by exploring unvisited state-action space, offline RL is needed when such
online interplays are expensive or even unethical. Since it has no access to interact with the MDP
model (which causes distributional mismatches), most of the literature that studies the sample
complexity / provable efficiency of offline RL (e.g. [12, 13, 14, 15, 3, 16, 17, 18, 19]) relies
on making different data-coverage assumptions for making the problem learnable, and provide
near-optimal worst-case performance bounds that depend on their data-coverage coefficients.
Those results are valuable as they do not depend on the structure of the particular problem,
therefore, remain valid even for pathological MDPs. But is this good enough?

In practice, the empirical performances of offline reinforcement learning (e.g. [20, 21, 22,
23]) are often far better than what those non-adaptive / problem-independent bounds would
indicate. Although empirical evidence can help explain why we may observe better or worse
performances on different MDPs, a systematic understanding of what types of decision pro-
cesses and what kinds of behavior policies are inherently easier or more challenging for offline
RL is lacking. Besides, despite the fact that a non-adaptive bound can learn even the patho-
logical examples within the assumption family, there is no guarantee for the instances outside
the family. However, practical offline reinforcement learning problems are usually beyond the
scope of certain data-coverage assumptions, which limits the applicability of those results.

In this thesis, we derive the first line of instance-dependent bounds for offline reinforce-
ment learning that adapt to the individual instances with weak assumptions. The settings we
considered include (bt not limited to) tabular representation, linear function approximation, and
parametric differentiable models. Our contribution can be summarized as follows:

• In Chapter 2, we consider the policy learning problem for finite horizon, non-stationary,
episodic MDPs with finite states and actions. We propose and analyze the Adaptive Pes-
simistic Value Iteration algorithm, and derive the suboptimality upper bound that nearly

2

Introduction Chapter 1

matches
𝑂
⎛

⎜

⎜

⎝

𝐻
∑

ℎ=1

∑

𝑠ℎ,𝑎ℎ

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ)

√

√

√

√

Var𝑃𝑠ℎ,𝑎ℎ (𝑉
⋆
ℎ+1 + 𝑟ℎ)

𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

√

1
𝑛

⎞

⎟

⎟

⎠

. (1.1)

Here 𝜋⋆ is a optimal policy, 𝜇 is the behavior policy and 𝑑𝜇ℎ is the marginal state-action
probability. We name (1.1) the intrinsic offline reinforcement learning bound since it indi-
cates all the existing optimal results: minimax rate under uniform data-coverage assump-
tion, horizon-free setting, single policy concentrability, and the tight problem-dependent
results. We also study how learning would degrade in the assumption-free regime (where
we make no assumption on 𝜇) and obtain the assumption-free intrinsic bound.

• In Chapter 3, we present the first near-optimal result for offline reinforcement learning
with linear function approximation. We devise the variance-aware pessimistic value it-

eration (VAPVI), which adopts the conditional variance information of the value func-
tion for time-inhomogeneous episodic linear Markov decision processes (MDPs). VAPVI
provides improved guarantees over the best-known existing results. Furthermore, our re-
sults are expressed in terms of system quantities, which provide natural instance-dependent
characterizations.

• In Chapter 4, we consider offline reinforcement learning with differentiable function ap-
proximation. This function class naturally incorporates a wide range of models with non-
linear/nonconvex structures. We propose and analyze the pessimistic fitted Q-learning

(PFQL) algorithm, which provides the theoretical basis for understanding a variety of
practical heuristics that rely on Fitted Q-Iteration style design. In addition, we further
improve our guarantee with a tighter instance-dependent characterization.

• In the final Chapter 5 of the thesis, we provide a summary of my other exciting contri-
butions during my Ph.D. career, encompassing topics such as offline posterior sampling

3

Introduction Chapter 1

mechanisms, low-adaptive RL, adversarial RL, zero-sum games, Neural Tangent Kernels,
and Math Question Answering.

Potential Contributions to the Broader Scientific Regiems. This thesis primarily ex-
plores the statistical underpinnings of offline reinforcement learning. However, its findings,
including statistical guarantees, algorithms, and designs, have broad implications across nu-
merous scientific fields, underlining offline RL’s interdisciplinary impact and its significance in
broader scientific discourse.

• Automated driving: offline RL offers a promising avenue to enhance the intelligence and
safety of autonomous vehicles. By leveraging vast amounts of driving data, including
diverse situations and rare events, offline RL enables the development of more robust and
generalizable driving policies. Concretely, our uncertainty reweighting design principle
(Chapter 3) has been shown to be effective for improving the empirical performance [24,
25].

• Supply Chain and Logistics: In this domain, offline RL facilitates the formulation of
effective decision-making strategies without the expenses and risks associated with real-
time trials. For example, it aids in refining inventory management through accurate de-
mand forecasts and optimal stocking methods. In logistics, offline RL enhances route
planning and fleet management by analyzing historical delivery data to reduce costs and
improve delivery efficiency. Our research conceptualizes logistic challenges within the
framework of goal-conditioned offline RL [26], addressing policy evaluation and learn-
ing tasks. Adapting these findings to functional approximation settings could significantly
benefit real-world applications.

• Healthcare: Offline RL offers a distinct advantage in healthcare by utilizing pre-existing
data sets, circumventing the ethical and logistical issues inherent in live experiments in

4

Introduction Chapter 1

sensitive medical environments. This method allows for counterfactual analysis and ad-
dressing "what if" scenarios. Our marginalized importance sampling method [2] achieves
the statistical optimality and has potential applications in personalized medicine [27], pa-
tient trajectory prediction, and treatment optimization [28].

Each of these applications demonstrates the far-reaching influence of offline RL, not just
within artificial intelligence, but across diverse scientific disciplines, showcasing its capacity to
address complex, real-world challenges.

5

Chapter 2

On the Instance-dependent Tabular

Offline Reinforcement Learning

In this chapter, we derive the instance-dependent guarantees for tabular offline reinforcement
learning. Concretely, we design the conditional variance based uncertainty, combined with del-
icate analysis to achieve the near-optimal instance-dependent characterization which we named
intrinsic offline reinforcement learning bound. Due to its generic form, we believe the intrinsic
bound could help illuminate what makes a specific problem hard and reveal the fundamental
challenges in offline RL.

2.1 Preliminaries for Offline Reinforcement Learning

Episodic time-inhomogeneous reinforcement learning. A finite-horizon Markov Deci-

sion Process (MDP) is denoted by a tuple 𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1) [29], where  is the fi-
nite state space and  is the finite action space with 𝑆 ∶= || < ∞, 𝐴 ∶= || < ∞.
A non-stationary transition kernel 𝑃ℎ ∶  ×  ×  ↦ [0, 1] maps each state action(𝑠ℎ, 𝑎ℎ)
to a probability distribution 𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ) and 𝑃ℎ can be different across the time. Besides,

6

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

𝑟 ∶  × 𝐴 ↦ ℝ is the expected instantaneous reward function satisfying 0 ≤ 𝑟 ≤ 1. 𝑑1 is
the initial state distribution. 𝐻 is the horizon. A policy 𝜋 = (𝜋1,… , 𝜋𝐻) assigns each state
𝑠ℎ ∈  a probability distribution over actions according to the map 𝑠ℎ ↦ 𝜋ℎ(⋅|𝑠ℎ) ∀ℎ ∈ [𝐻].
An MDP together with a policy 𝜋 induce a random trajectory 𝑠1, 𝑎1, 𝑟1,… , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1

with 𝑠1 ∼ 𝑑1, 𝑎ℎ ∼ 𝜋(⋅|𝑠ℎ), 𝑠ℎ+1 ∼ 𝑃ℎ(⋅|𝑠ℎ, 𝑎),∀ℎ ∈ [𝐻] and 𝑟ℎ is a random realization given
the observed 𝑠ℎ, 𝑎ℎ.

𝑄-values, Bellman (optimality) equations. The value function 𝑉 𝜋
ℎ (⋅) ∈ ℝ𝑆 and Q-value

function𝑄𝜋
ℎ(⋅, ⋅) ∈ ℝ𝑆×𝐴 for any policy𝜋 is defined as: 𝑉 𝜋

ℎ (𝑠) = 𝔼𝜋[
∑𝐻

𝑡=ℎ 𝑟𝑡|𝑠ℎ = 𝑠], 𝑄𝜋
ℎ(𝑠, 𝑎) =

𝔼𝜋[
∑𝐻

𝑡=ℎ 𝑟𝑡|𝑠ℎ, 𝑎ℎ = 𝑠, 𝑎], ∀𝑠, 𝑎 ∈  ,, ℎ ∈ [𝐻]. The performance is defined as 𝑣𝜋 ∶=

𝔼𝑑1
[

𝑉 𝜋
1

]

= 𝔼𝜋,𝑑1
[

∑𝐻
𝑡=1 𝑟𝑡

]

, where we denote 𝑉 𝜋
ℎ , 𝑄

𝜋
ℎ as column vectors and 𝑃ℎ ∈ ℝ𝑆𝐴×𝑆

the transition matrix, then the vector form Bellman (optimality) equations follow ∀ℎ ∈ [𝐻]:
𝑄𝜋
ℎ = 𝑟ℎ + 𝑃ℎ𝑉 𝜋

ℎ+1, 𝑉 𝜋
ℎ = 𝔼𝑎∼𝜋ℎ[𝑄

𝜋
ℎ], 𝑄⋆

ℎ = 𝑟ℎ + 𝑃ℎ𝑉 ⋆
ℎ+1, 𝑉

⋆
ℎ = max𝑎𝑄⋆

ℎ (⋅, 𝑎).In addition,
we denote the per-step marginal state-action occupancy 𝑑𝜋ℎ (𝑠, 𝑎) as: 𝑑𝜋ℎ (𝑠, 𝑎) ∶= ℙ[𝑠ℎ = 𝑠|𝑠1 ∼

𝑑1, 𝜋] ⋅ 𝜋ℎ(𝑎|𝑠), which is the marginal state-action probability at time ℎ.
Offline setting and the goal. The offline RL requires the agent to find a policy 𝜋 such that

the performance 𝑣𝜋 is maximized, given only the episodic data  =
{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1

)}ℎ∈[𝐻]

𝜏∈[𝑛]

rolled out from some behavior policy 𝜇. The offline nature requires we cannot change 𝜇 and in
particular we do not assume the functional knowledge of 𝜇. That is to say, given the batch data
 and a targeted accuracy 𝜖 > 0, the offline RL seeks to find a policy 𝜋alg such that 𝑣⋆−𝑣𝜋alg ≤ 𝜖.

2.1.1 Assumptions in offline RL

We revise several types of assumptions proposed by existing studies that can yield provably
efficient results. Recall 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) is the marginal state-action probability with respect to 𝜇.

Assumption 2.1.1 (Uniform data coverage [3]). it holds that 𝑑𝑚 ∶= minℎ,𝑠ℎ,𝑎ℎ 𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) > 0.

Here the infimum is over all the states satisfying there exists certain policy so that this state can

7

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

be reached by the current MDP with this policy.

This is the strongest assumption in offline RL as it requires 𝜇 to explore each state-action
pairs with positive probability. Under 2.1.1, it mostly holds 1∕𝑑𝑚 ≥ 𝑆𝐴. This reveals offline
learning is generically harder than the generative model setting [30] in the statistical sense. On
the other hand, this is required for the uniform OPE task in [3] as it seeks to simultaneously
evaluate all the policies within the policy class and it is in general a harder task than offline
learning itself.

Assumption 2.1.2 (Uniform concentrability [31, 13]). 𝐶𝜇 ∶= sup𝜋,ℎ ||𝑑𝜋ℎ (⋅, ⋅)∕𝑑
𝜇
ℎ (⋅, ⋅)||∞ <∞.

This is a classical offline RL condition that is commonly assumed in the function approxima-
tion scheme (e.g. Fitted Q-Iteration). Qualitatively, this is a uniform data-coverage assumption
that is similar to Assumption 2.1.1, but quantitatively, the coefficient 𝐶𝜇 can be smaller than
1∕𝑑𝑚 due the 𝑑𝜋ℎ term in the numerator.

Assumption 2.1.3 ([32]). There exists one optimal policy 𝜋⋆, s.t. ∀𝑠ℎ, 𝑎ℎ ∈  ,, 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) >

0 if 𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) > 0. We further denote the trackable set as ℎ ∶= {(𝑠ℎ, 𝑎ℎ) ∶ 𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) > 0}.

Assumption 3.3.3 is (arguably) the weakest assumption needed for accurately learning the
optimal value 𝑣⋆ and we will use 3.3.3 for most parts of this thesis. It only requires 𝜇 to trace
the state-action space of one optimal policy and can be agnostic at other locations. [18, 19]
considers this assumption and provide analysis is based on the single concentrability coefficient
𝐶⋆ ∶= max𝑠,𝑎 𝑑𝜋

⋆(𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎). The dependence on 𝐶⋆ makes their result less adaptive since
there can be lots of locations that have the ratio 𝑑𝜋⋆(𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎) much smaller than 𝐶⋆.

In the later sections, we will also consider the situation when 3.3.3 might not be true, and
this corresponds to the assumption-free regime.

8

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

2.1.2 Related prior work

Finite sample analysis for offline reinforcement learning can be traced back to [31, 33, 34] for
the infinite horizon discounted setting via Fitted Q-Iteration (FQI) type function approximation
algorithms. [13, 12, 15, 14] follow this line of research and derive the information-theoretical
bounds. Recently, [15] considers the offline RL with only the realizability assumption, [35, 36]
considers the offline RL without sufficient coverage and [37, 38] uses the model-based approach
for addressing offline RL. Under those weak coverage assumption, their finite sample analysis
are suboptimal (e.g. in terms of the effective horizon (1 − 𝛾)−1). Recently, [3, 16, 17] study
the finite horizon case. In the linear MDP case, [39] studies the pessimistic algorithm for of-
fline policy learning under only the compliance assumption, and, concurrently, [40] proposes
the general pessimistic function approximation framework with instantiation in linear MDP and
[41] shows actor-critic style algorithm is near-optimal for linear Bellman complete model. In
addition, [42, 43] prove some exponential lower bounds under their linear function approxima-
tion assumptions.

Among them, there are a few works that achieve the sample optimality under their respective
assumptions. Under the uniform data coverage (minimal state-action probability 𝑑𝑚 > 0), [3]
first proves the optimal 𝑂̃(𝐻3∕𝑑𝑚𝜖2) complexity in the time-inhomogeneous MDP. Recently,
[16] designs the offline variance reduction algorithm to achieve the optimal 𝑂̃(𝐻2∕𝑑𝑚𝜖2) rate for
the time-homogeneous case. Under the setting where the total cumulative reward is bounded
by 1, [17] obtains the horizon-free result with 𝑂̃(1∕𝑑𝑚). More recently, [18] considers the
single concentrability coefficient 𝐶⋆ ∶= max𝑠,𝑎 𝑑𝜋

⋆(𝑠, 𝑎)∕𝑑𝜇(𝑠, 𝑎) and derives the upper bound
𝑂̃[(1−𝛾)−5𝑆𝐶⋆∕𝜖2] in the infinite horizon setting which is recently improved by the concurrent
work [19]. While those worst-case guarantees are desirable, none of them can explain the
hardness of the individual problems.1

1We do mention [41] is near-optimal in their setting, but it is unclear whether it remains optimal in the standard
setting where 𝑄𝜋 ∈ [0,𝐻], since there is an additional 𝐻 factor by rescaling.

9

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

2.2 Instrinsic Offline Reinforcement Learning Bound and Adap-

tive Pessimistic Value Iteration

As a step towards the optimal and strong adaptive offline RL bound, we analyze the vanilla

pessimistic value iteration (VPVI), a tabular counterpart of pessimistic value iteration (PEVI
initiated in [39]), to understand what is missing for achieving the fully adaptivity. In particular,
VPVI relies on the model-based construction.

Model-based Components. Given data  =
{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1

)}ℎ∈[𝐻]

𝜏∈[𝑛]
, we denote 𝑛𝑠ℎ,𝑎ℎ ∶=

∑𝑛
𝜏=1 𝟏[𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ = 𝑠ℎ, 𝑎ℎ] be the total counts that visit (𝑠ℎ, 𝑎ℎ) pair at time ℎ, then we use the

offline plug-in estimator to construct the estimators for 𝑃ℎ and 𝑟ℎ as:

𝑃ℎ(𝑠′|𝑠ℎ, 𝑎ℎ) =
∑𝑛
𝜏=1 𝟏[(𝑠

𝜏
ℎ+1, 𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠′, 𝑠ℎ, 𝑎ℎ)]

𝑛𝑠ℎ,𝑎ℎ
, 𝑟̂ℎ(𝑠ℎ, 𝑎ℎ) =

∑𝑛
𝜏=1 𝟏[(𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠ℎ, 𝑎ℎ)] ⋅ 𝑟𝜏ℎ
𝑛𝑠ℎ,𝑎ℎ

,

(2.1)
if 𝑛𝑠ℎ,𝑎ℎ > 0 and 𝑃ℎ(𝑠′|𝑠ℎ, 𝑎ℎ) = 1∕𝑆, 𝑟̂ℎ(𝑠ℎ, 𝑎ℎ) = 0 if 𝑛𝑠ℎ,𝑎ℎ = 0. In particular, we use the word
“vanilla” as it directly mirrors [39] with a pessimistic penalty of order 𝑂(𝐻∕√𝑛𝑠ℎ,𝑎ℎ).2 With
𝑃ℎ, 𝑟̂ℎ in Algorithm 4 (which we defer to Appendix), VPVI guarantees the following:

Theorem 2.2.1. Under the Assumption 3.3.3, denote 𝑑𝑚 ∶= minℎ∈[𝐻]{𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) ∶ 𝑑

𝜇
ℎ (𝑠ℎ, 𝑎ℎ) >

0}. For any 0 < 𝛿 < 1, there exists absolute constants 𝑐0, 𝐶 ′ > 0, such that when 𝑛 > 𝑐0 ⋅1∕𝑑𝑚 ⋅𝜄

(𝜄 = log(𝐻𝑆𝐴∕𝛿)), with probability 1 − 𝛿, the output policy 𝜋 of VPVI satisfies

0 ≤ 𝑣⋆ − 𝑣𝜋 ≤ 𝐶 ′𝐻
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅
√

𝜄
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

. (2.2)

The full proof can be found in Appendix A.1. Theorem 2.2.1 makes some improvements
over the existing works. First, it is more adaptive than the results with uniform data-coverage

2This is due to
√

𝜙
(

𝑠ℎ, 𝑎ℎ
)⊤ Λ−1

ℎ 𝜙
(

𝑠ℎ, 𝑎ℎ
) reduces to

√

1∕𝑛𝑠ℎ,𝑎ℎ when setting 𝜙(𝑠ℎ, 𝑎ℎ) = 𝟏(𝑠ℎ, 𝑎ℎ) and
𝜆 = 0.

10

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

Assumption 2.1.1 ([3, 17]). In addition, by straightforward calculation (2.2) can be bounded by
𝑂̃(

√

𝐻4𝑆𝐶⋆∕𝑛) which improves VI-LCB [18] by a factor of𝐻 . Besides, the analysis of VPVI
also improves the direct reduction of PEVI [39] in the tabular case by a factor 𝑆𝐴 since their
𝛽 = 𝑆𝐴𝐻 when 𝑑 = 𝑆𝐴.

However, VPVI is not optimal as the dependence on horizon is𝐻4 which does not match the
optimal worst case guarantee𝐻3 [3] in the nonstationary setting. Also, the explicit dependence
on𝐻 in (2.2) possibly hides some key features of the specific offline RL instances. For example,
no improvement can be made if the system has the deterministic transition.
Algorithm 1 Adaptive (assumption-free) Pessimistic Value Iteration or LCBVI-Bernstein

1: Input: Offline dataset  = {(𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1)}

𝑛,𝐻
𝜏,ℎ=1. Set 𝐶1 = 2, 𝐶2 = 14, failure probability 𝛿.

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0. Set 𝜄 = log(𝐻𝑆𝐴∕𝛿). (if assumption-free, set 𝑀†,𝑀† as in
Section 2.3.)

3: for time ℎ = 𝐻,𝐻 − 1,… , 1 do

4: Set 𝑄̂ℎ(⋅, ⋅) ← 𝑟̂ℎ(⋅, ⋅) + (𝑃ℎ ⋅ 𝑉ℎ+1)(⋅, ⋅) (use 𝑟̂†ℎ + (𝑃 †
ℎ ⋅ 𝑉ℎ+1) if assumption-free)

5: ∀𝑠ℎ, 𝑎ℎ, set Γℎ(𝑠ℎ, 𝑎ℎ) = 𝐶1

√

Var𝑃𝑠ℎ,𝑎ℎ
(𝑟̂ℎ+𝑉ℎ+1)⋅𝜄

𝑛𝑠ℎ,𝑎ℎ
+ 𝐶2𝐻 ⋅𝜄

𝑛𝑠ℎ,𝑎ℎ
if 𝑛𝑠ℎ,𝑎ℎ ≥ 1, o.w. set to 𝐶𝐻𝜄

1 .
6: (If assumption-free, use 𝐶1

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ 𝜄∕𝑛𝑠ℎ,𝑎ℎ +
𝐶2𝐻 ⋅𝜄
𝑛𝑠ℎ,𝑎ℎ

if 𝑛𝑠ℎ,𝑎ℎ ≥ 1, o.w. use 0.)
7: Set 𝑄̂𝑝

ℎ(⋅, ⋅) ← 𝑄̂ℎ(⋅, ⋅) − Γℎ(⋅, ⋅). Set 𝑄ℎ(⋅, ⋅) ← min{𝑄̂𝑝
ℎ(⋅, ⋅),𝐻 − ℎ + 1}+.{Pessmistic update}

8: ∀𝑠ℎ, Select 𝜋ℎ(⋅|𝑠ℎ) ← argmax𝜋ℎ⟨𝑄ℎ(𝑠ℎ, ⋅), 𝜋ℎ(⋅|𝑠ℎ)⟩. Set 𝑉ℎ(𝑠ℎ) ← ⟨𝑄ℎ(𝑠ℎ, ⋅), 𝜋ℎ(⋅|𝑠ℎ)⟩.
9: end for

10: Output: {𝜋ℎ}.

Now we go deeper to understand what is the more intrinsic characterization for offline re-
inforcement learning. From the study of VPVI, penalizing the Q-function by 𝑂(𝐻∕√𝑛𝑠ℎ,𝑎ℎ) is
crude as it estimates the confidence width of 𝑄̂ℎ in Algorithm 4 too conservatively therefore
loses the accuracy (the bound is suboptimal). This motivates us to use empirical standard devi-
ation instead to create a more adaptive (and also less conservative) Bernstein-type confidence

11

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

width as the pessimistic penalty:

Γℎ(𝑠ℎ, 𝑎ℎ) = 𝑂
[

√

√

√

√

√

Var𝑃𝑠ℎ,𝑎ℎ
(𝑟̂ℎ + 𝑉ℎ+1)

𝑛𝑠ℎ,𝑎ℎ
+ 𝐻
𝑛𝑠ℎ,𝑎ℎ

]

(if 𝑛𝑠ℎ,𝑎ℎ > 0); = 𝑂(𝐻) (if 𝑛𝑠ℎ,𝑎ℎ = 0). (2.3)

and update 𝑄̂ℎ ← 𝑄̂ℎ − Γℎ. On one hand,
√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟̂ℎ + 𝑉ℎ+1)∕𝑛𝑠ℎ,𝑎ℎ is a “less pessimistic”
penalty than VPVI due to

√

Var𝑃 (𝑟̂ℎ + 𝑉ℎ+1) ≤ 𝐻 and critically this design is more data-
adaptive since it holds negative view towards the locations with high uncertainties and recom-
mends the locations that we are confident about, as opposed to the online RL (which encourages
exploration in the uncertain locations). Such principles are not reflected by the isotropic design
in VPVI. On the other hand, it carries the extremely negative view towards fully agnostic loca-
tions 𝑂(𝐻) which in turn causes the agent unlikely to choose them. We summarized the this
adaptive pessimistic value iteration (APVI) into the Algorithm 1, with 𝑃ℎ, 𝑟̂ℎ defined in (2.1).
APVI has the following guarantee. A sketch of the analysis is presented in Section 2.4 and
Appendix A.3 includes the full proof.

Theorem 2.2.2 (Intrinsic offline RL bound). Under the Assumption 3.3.3, we first denote 𝑑𝑚 ∶=

minℎ∈[𝐻]{𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) ∶ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0}. For any 0 < 𝛿 < 1, there exists absolute constants

𝑐0, 𝐶 ′ > 0, such that when 𝑛 > 𝑐0 ⋅1∕𝑑𝑚 ⋅ 𝜄 (𝜄 = log(𝐻𝑆𝐴∕𝛿)), with probability 1−𝛿, the output

policy 𝜋 of APVI (Algorithm 1) satisfies (𝑂 hides log factor and higher order terms)

0 ≤ 𝑣⋆ − 𝑣𝜋 ≤ 𝐶 ′
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

√

√

√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1) ⋅ 𝜄

𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+ 𝑂

(

𝐻3

𝑛 ⋅ 𝑑𝑚

)

(2.4)

Remark 1. APVI (Algorithm 1) can also be called LCBVI-Bernstein as it creates the offline

counterpart of UCBVI in [44]. However, to highlight that the resulting bound fully adapts to

the specific system structure, we use the word “adaptive” instead.

APVI makes significant improvements in a lot of aspects. First and foremost, the dominate
12

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

term is fully expressed by the system quantities that admits no explicit dependence on𝐻,𝑆,𝐴.
To the best of our knowledge, this is the first offline RL bound that concretely depicts the in-
terrelations within the problem when the problem instance is a tuple (𝑀,𝜋⋆, 𝜇): an MDP 𝑀
(coupled with the optimal policy 𝜋⋆) with the data rolling from an offline logging policy 𝜇.
As we will discuss later, this result indicates (nearly) all the optimal worst-case non-adaptive
bounds (and clearly also the VPVI) under their respective regimes / assumptions. Thus, (2.4)
is generic. More interestingly, Theorem 2.2.2 caters to the specific MDP structures and adap-
tively yields improved sample complexities (e.g. faster convergence in deterministic systems)
that existing works cannot imply. Such features are crucial as it helps us to understand what type
of problems are harder / easier than others, and even more, in a quantitative way. Hence, we
call the quantity ∑𝐻

ℎ=1
∑

(𝑠ℎ,𝑎ℎ)∈ℎ
𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

Var𝑃𝑠ℎ,𝑎ℎ
(𝑟ℎ+𝑉 ⋆

ℎ+1)

𝑛⋅𝑑𝜇ℎ (𝑠ℎ,𝑎ℎ)
intrinsic offline reinforcement

learning bound. In the sequel, we provide thorough discussions to explain the intrinsic bound
embraces the fundamental challenges in offline RL and the strong adaptivity.

!
!"#

$

!
%!,'!

𝑑!(
∗
𝑠! , 𝑎!

Var)#!,%! 𝑉!*#
∗ + 𝑟!

𝑑!
, 𝑠! , 𝑎!

,
1
𝑛

Intrinsic Offline Learning Bound

Uniform Visitation

!𝑶
𝑯𝟑

𝒏 % 𝒅𝒎

Single Concentrability

!𝑶
𝑯𝟑𝑺𝑪∗

𝒏

Adaptive Domain

!𝑶 #
𝒉"𝟏

𝑯
ℚ𝒉∗

𝒏 & 𝒅𝒎
+ !𝑶

𝑯𝟑

𝒏 & 𝒅𝒎

Figure 2.1: A visualization on how intrinsic learning bound subsumes existing best-known
results: uniform visitation, single concentrability (partial coverage) and adaptive domain.

13

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

2.2.1 Optimality under Uniform data-coverage assumption

Under the uniform exploration Assumption 2.1.1 with parameter 𝑑𝑚 ∶= minℎ,𝑠ℎ,𝑎ℎ 𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) >

0, [3] analyzes the model-based plug-in approach and obtains the optimal sample complexity
𝑂(𝐻3∕𝑑𝑚𝜖2) and shows Ω(𝐻3∕𝑑𝑚𝜖2) is also the lower bound. Indeed, this rate can be directly
implied by the intrinsic RL bound via Cauchy inequality and the Sum of Total Variance:3

𝐻
∑

ℎ=1
⟨𝑑𝜋

⋆

ℎ (⋅),

√

√

√

√

Var𝑃(⋅)(𝑟ℎ + 𝑉
⋆
ℎ+1)

𝑛 ⋅ 𝑑𝜇ℎ (⋅)
⟩ =

𝐻
∑

ℎ=1
⟨

√

𝑑𝜋⋆ℎ (⋅),

√

√

√

√

𝑑𝜋⋆ℎ (⋅)⊙ Var𝑃(⋅)(𝑟ℎ + 𝑉
⋆
ℎ+1)

𝑛 ⋅ 𝑑𝑚
⟩

≤
𝐻
∑

ℎ=1

‖

‖

‖

‖

√

𝑑𝜋⋆ℎ (⋅)
‖

‖

‖

‖2

‖

‖

‖

‖

‖

‖

‖

‖

√

√

√

√

𝑑𝜋⋆ℎ (⋅)⊙ Var𝑃(⋅)(𝑟ℎ + 𝑉
⋆
ℎ+1)

𝑛 ⋅ 𝑑𝑚

‖

‖

‖

‖

‖

‖

‖

‖2

≤

√

𝐻 ⋅ Var𝜋⋆(
∑𝐻
ℎ=1 𝑟ℎ)

𝑛 ⋅ 𝑑𝑚
≤

√

𝐻3

𝑛 ⋅ 𝑑𝑚

(2.5)

which translates to 𝑂(𝐻3∕𝑑𝑚𝜖2) complexity. Our result maintains the optimal worst-case guar-
antee when 𝜇 has the uniform data-coverage:

Proposition 2.2.1. Under Assumption 2.1.1 and apply Theorem 2.2.2, APVI achieves the sam-

ple complexity of minimax-rate 𝑂(𝐻3∕𝑑𝑚𝜖2) (Theorem 4.1 and Theorem G.2 in [3]).

Remark 2. We believe if the MDP is time-invariant, then by a modified construction of 𝑃 , 𝑟̂ in

(2.1) our result will imply the minimax-rate of 𝑂(𝐻2∕𝑑𝑚𝜖2) as achieved in [16].

2.2.2 Bounded sum of total rewards and the Horizon-Free case

There is another thread of studies that follow the bounded sum of total rewards assumption:
i.e. 𝑟ℎ ≥ 0, ∑𝐻

ℎ=1 𝑟ℎ ∈ [0, 1] [45, 46, 47]. Such a setting is much weaker than the uniform
bounded instantaneous reward condition, as explained in [48]. In offline RL, [17] derives the
nearly horizon-free worst case bound 𝑂(√1∕𝑛𝑑𝑚) for the time-invariant MDPs, under the As-
sumption 2.1.1. As a comparison, our Theorem 2.2.2 achieves the following guarantee for the
time-varying (non-stationary) MDPs.

3Here ⊙ denotes element-wise multiplication. Also note under 2.1.1, our 𝑑𝑚 = 𝑑𝑚.
14

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

Proposition 2.2.2. Assume 𝑟ℎ ≥ 0,
∑𝐻

ℎ=1 𝑟ℎ ≤ 1. Then in the time-varying case AVPI (Theo-

rem 2.2.2) outputs a policy 𝜋 such that the suboptimality gap 𝑣⋆−𝑣𝜋 is bounded by𝑂(
√

𝐻∕𝑛𝑑𝑚)

with high probability under the Assumption 2.1.1.

The derivation is straightforward by using Var𝜋⋆(
∑𝐻

ℎ=1 𝑟ℎ) ≤ 1 in (2.5). This proposition
is interesting since it indicates when the MDP is non-stationary, 𝑂(𝐻∕𝑑𝑚𝜖2) is required in the
worst case even under ∑𝐻

ℎ=1 𝑟ℎ ≤ 1.4 The extra 𝐻 factor resembles the challenge that we have
𝐻 transitions (𝑃1,… , 𝑃𝐻) to learn, as opposed to the bandit-type 1∕𝑑𝑚𝜖2 result due to there is
only one 𝑃 throughout (time-invariant). This reveals that one hardness in solving the MDP is in
proportion to the number of different transition kernels within the MDP. Such a finding could
help researchers understand the special settings like low switching cost in transitions [49] or
non-stationarity [50].

2.2.3 Optimality with Single Concentrability

In the finite horizon discounted setting, [18] proposes the single policy concentrability as-
sumption which is defined as 𝐶⋆ ∶= maxℎ,𝑠,𝑎

𝑑𝜋⋆ℎ (𝑠,𝑎)

𝑑𝜇ℎ (𝑠,𝑎)
<∞ in the current episodic non-stationary

MDP setting. Their lower bound translates to Ω(
√

𝐻3𝑆𝐶⋆

𝑛
) and their VI-LCB algorithm yields

𝑂(
√

𝐻5𝑆𝐶⋆

𝑛
) suboptimality gap in𝐻-horizon case. Since single policy concentrability is strictly

weaker than its uniform version (Assumption 2.1.2), we only discuss this set up. In particular,
we have the following implication from our Theorem 2.2.2 (whose derivation can be found in
Appendix A.4):

Proposition 2.2.3. Let 𝜋⋆ be a deterministic policy such that𝐶⋆ ∶= maxℎ,𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠,𝑎)

𝑑𝜇ℎ (𝑠,𝑎)
< ∞. Then

by Theorem 2.2.2, with high probability the output policy of APVI satisfies the suboptimality

gap 𝑂(
√

𝐻3𝑆𝐶⋆

𝑛
) in the time-varying (non-stationary) MDPs.

4Suppose in this case we can achieve 𝑂(1∕𝑑𝑚𝜖2) just like [17], then by a rescaling we obtain the 𝑂(𝐻2∕𝑑𝑚𝜖2)under the usual 0 ≤ 𝑟ℎ ≤ 1 assumption which violates the Ω(𝐻3∕𝑑𝑚𝜖2) lower bound.
15

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

This can computed similar to (2.5) except we use 𝑑𝜋⋆ℎ (𝑠,𝑎)

𝑑𝜇ℎ (𝑠,𝑎)
≤ 𝐶⋆. Our implication improves

the VI-LCB by the factor 𝐻2 (in terms of sample complexity) and is optimal (recover the con-
current [19]). Qualitatively, single concentrability is the same as Assumption 3.3.3, but the use
of 𝐶⋆ makes the bound highly problem independent and limits the adaptivity. Problem depen-
dent bound is a more interesting domain as it tailors to each MDP separately. We discuss it
now.

2.2.4 Problem dependent domain

We define the pre-step environmental norm (the finite horizon counterpart of [51]) as: ℚ⋆
ℎ =

max𝑠ℎ,𝑎ℎ Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1) for all ℎ ∈ [𝐻], and relax the total sum of rewards to be bounded

by any arbitrary value  (i.e.
∑𝐻

ℎ=1 𝑟ℎ ≤ ), then Theorem 2.2.2 implies:

Proposition 2.2.4. Under Assumption 2.1.1, with high probability, subopmality of AVPI is

bounded by

min

⎧

⎪

⎨

⎪

⎩

𝑂
(

𝐻
∑

ℎ=1

√

ℚ⋆
ℎ

𝑛𝑑𝑚

)

, 𝑂
(

√

𝐻 ⋅ 2

𝑛𝑑𝑚

)

⎫

⎪

⎬

⎪

⎭

+ 𝑂(𝐻
3

𝑛𝑑𝑚
).

Such a result mirrors the online version of the tight problem-dependent bound [52] but with
a more general pre-step environmental norm for the non-stationary MDPs.5 For the problem
instances with either small  or small ℚ⋆

ℎ , our result yields much better performances, as dis-
cussed in the following.

Deterministic systems. For many practical applications of interest, the systems are equipped
with low stochasticity, e.g. robotics, or even deterministic dynamics, e.g. the game of GO. In
those scenarios, the agent needs less experience for each state-action therefore the learning
procedure could be much faster. In particular, when the system is fully deterministic (in both
transitions and rewards) then ℚ⋆

ℎ = 0 for all ℎ. This enables a faster convergence rate of order
5[52] uses the maximal version by maximizing over ℎ.

16

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

𝐻3

𝑛𝑑𝑚
and significantly improves over the existing non-adaptive results that have order 1

√

𝑛
. The

convergence rate 1
𝑛

matches [53] by translating their constant (in 𝑇) regret into the PAC bound.
Partially deterministic systems. Practical worlds are complicated and we could sometimes

have a mixture model which contains both deterministic and stochastic steps. In those scenarios,
the main complexity is decided by the number of stochastic stages: suppose there are 𝑡 stochastic
𝑃ℎ, 𝑟ℎ’s and 𝐻 − 𝑡 deterministic 𝑃ℎ′ , 𝑟ℎ′’s, then completing the offline learning guarantees 𝑡 ⋅
√

max𝑄⋆
ℎ∕𝑛𝑑𝑚 suboptimality gap, which could be much smaller than 𝐻 ⋅

√

max𝑄⋆
ℎ∕𝑛𝑑𝑚 when

𝑡 ≪ 𝐻 .
Fast mixing domains. Consider a class of highly mixing non-stationary MDPs (a variant

of [54]) that satisfies the transition 𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ) ∶= 𝜈ℎ(⋅) depends on neither the state 𝑠ℎ nor the
action 𝑎ℎ. Define 𝑠̄𝑡 ∶= argmax𝑉 ⋆

𝑡 (𝑠) and 𝑠𝑡 ∶= argmax𝑉 ⋆
𝑡 (𝑠). Also, denote rng𝑉 ⋆

ℎ to be the
range of 𝑉 ⋆

ℎ . In such cases, Bellman optimality equations have the form

𝑉 ⋆
ℎ

(

𝑠̄ℎ
)

= max
𝑎

(

𝑟ℎ
(

𝑠̄ℎ, 𝑎
)

+ 𝜈⊤ℎ𝑉
⋆
ℎ+1

)

, 𝑉 ⋆
ℎ

(

𝑠ℎ
)

= max
𝑎

(

𝑟ℎ
(

𝑠ℎ, 𝑎
)

+ 𝜈⊤ℎ𝑉
⋆
ℎ+1

)

,

which yields rng𝑉 ⋆
ℎ = 𝑉 ⋆

ℎ

(

𝑠̄ℎ
)

− 𝑉 ⋆
ℎ

(

𝑠ℎ
)

= max𝑎 𝑟ℎ
(

𝑠̄ℎ, 𝑎
)

− min𝑎 𝑟ℎ
(

𝑠ℎ, 𝑎
)

≤ 1, and
this in turn gives ℚ⋆

ℎ ≤ 1 + (rng𝑉 ⋆
ℎ)

2 = 2. As a result, the suboptimality is bounded by
𝑂(

√

𝐻2∕𝑛𝑑𝑚) in the worst case. This result reveals, although this is a family of stochastic non-
stationary MDPs, but it is only as hard as the family of stationary MDPs in the minimax sense
(Ω(𝐻2∕𝑑𝑚𝜖2)).

Tabular contextual bandits. Our result also implies 𝑂(∑𝑥1,𝑎1
𝑑𝜋⋆1 (𝑥1, 𝑎1)

√

Var(𝑟1)
𝑛⋅𝑑𝜇1 (𝑥1,𝑎1)

) gap
for the offline tabular contextual bandit problem and improves to 𝑂(1∕𝑛𝑑𝑚) when the reward is
deterministic. In either cases, the result is optimal and this is due to: when 𝑟1 is deterministic,
the agent only needs one sample at every location (see [55] for a survey).

17

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

2.3 Towards Assumption-Free Offline RL

While assumption 3.3.3 is (arguably) the weakest assumption for correctly learning the op-
timal value, for the real-world applications even this might not be guaranteed. Can we still
learn something meaningful? In this section, we consider this most general setting where the
behavior policy 𝜇 can be arbitrary. In this case, 𝜇 might not cover any optimal policy 𝜋⋆ (i.e.

there might be high reward location (𝑠, 𝑎) that 𝜇 can never visit, e.g. in the extreme case where
a clumsy doctor only uses one treatment all the time), and, irrelevant to the number of episode
𝑛, a constant suboptimality gap needs to be suffered. To tackle this problem, we create a ficti-
tious augmented MDP𝑀† that can help characterize the discrepancy of the values between the
original MDP 𝑀 and the estimated MDP 𝑀†. In particular, 𝑀† is negative towards agnostic
state-actions 𝑠ℎ, 𝑎ℎ by setting 𝑟†ℎ = 0 and transitions to an absorbing state 𝑠†ℎ+1.

Pessimistic augmented MDP.𝑀† is defined with one extra state 𝑠†ℎ for all ℎ ∈ {2,… ,𝐻+

1} with the augmented state space † =  ∪ {𝑠†ℎ}. The transition and the reward are defined as
follows:

𝑃 †
ℎ (⋅ ∣ 𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑃ℎ(⋅ ∣ 𝑠ℎ, 𝑎ℎ), 𝑛𝑠ℎ,𝑎ℎ > 0,

𝛿𝑠†ℎ+1
, 𝑠ℎ = 𝑠†ℎ or 𝑛𝑠ℎ,𝑎ℎ = 0.

𝑟†(𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑟(𝑠ℎ, 𝑎ℎ), 𝑛𝑠ℎ,𝑎ℎ > 0,

0, 𝑠ℎ = 𝑠†ℎ or 𝑛𝑠ℎ,𝑎ℎ = 0.

here 𝛿𝑠 is the Dirac measure and we denote 𝑉 †𝜋
ℎ and 𝑣†𝜋 to be the values under 𝑀†. 𝑀† is the

empirical counterpart of 𝑀† with 𝑃 , 𝑟̂ (the same as (2.1)) replacing 𝑃 , 𝑟. By Algorithm 1, we
have

Theorem 2.3.1 (Assumption-free offline reinforcement learning). Let us make no assumption

for 𝜇 and still denote 𝑑𝑚 ∶= minℎ∈[𝐻]{𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) ∶ 𝑑

𝜇
ℎ (𝑠ℎ, 𝑎ℎ) > 0}. For any 0 < 𝛿 < 1, there

exists absolute constants 𝑐0, 𝐶 ′ > 0, such that when 𝑛 > 𝑐0 ⋅ 1∕𝑑𝑚 ⋅ 𝜄 (𝜄 = log(𝐻𝑆𝐴∕𝛿)), with

18

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

probability 1−𝛿, the output policy 𝜋 of APVI satisfies (recall ℎ ∶= {(𝑠ℎ, 𝑎ℎ) ∶ 𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ) > 0})

𝑣⋆ − 𝑣𝜋 ≤
𝐻+1
∑

ℎ=2
𝑑†𝜋

⋆

ℎ (𝑠†ℎ) +𝐶
′
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑†𝜋
⋆

ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) ⋅ 𝜄

𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+𝑂

(

𝐻3

𝑛𝑑𝑚

)

, (2.6)

where 𝑑†𝜋⋆
ℎ (𝑠ℎ, 𝑎ℎ) ≤ 𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ), 𝑉

†𝜋⋆
ℎ (𝑠ℎ) ≤ 𝑉 ⋆

ℎ (𝑠ℎ) for all 𝑠ℎ, 𝑎ℎ ∈ ×, and for all ℎ ∈ [𝐻],

𝑑†𝜋⋆
ℎ (𝑠†ℎ) =

∑ℎ−1
𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡
𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡). The proof is in Appendix A.2.

Take-aways of Theorem 2.3.1. In 𝑀†, there is no agnostic location any more since the
original unknown spaces now all have known deterministic transitions to 𝑠† in 𝑀†. At a price,
the algorithm has to suffer the constant suboptimality ∑𝐻+1

ℎ=2 𝑑
†𝜋⋆
ℎ (𝑠†ℎ) due to no data in the re-

gion. The quantity ∑𝐻+1
ℎ=2 𝑑

†𝜋⋆
ℎ (𝑠†ℎ) helps characterize the hardness when nothing is assumed

about 𝜇: it is always less than 𝐻 (cannot suffer more than 𝐻 suboptimality); under Assump-
tion 2.1.1, it is 0 since 𝑀† = 𝑀 with high probability (by Chernoff bound) and this causes
 × ∖ℎ = ∅; under Assumption 3.3.3, it is also 0 and 2.3.1 reduces to Theorem 2.2.2 (see
Appendix A.3).

2.3.1 Assumption Free vs Without Great Coverage (Partial Coverage)

Recently there is a surge of studies that aim at weakening the assumptions of provable offline
/ batch RL. Those learning bounds are derived (mostly) under the insufficient data coverage
assumptions. One type of works consider the assumption without great coverage (or partial
coverage): [36, 38] assume max𝑠,𝑎 𝑑𝜋𝑒(𝑠, 𝑎)∕𝜇(𝑠, 𝑎) <∞ where 𝜋𝑒 is either an expert policy or a
policy of great quality and they further compete against with this policy 𝜋𝑒. Those assumptions
are similar to 3.3.3 and therefore are stronger than the assumption-free RL we considered in
2.3.1.

In addition, there are other studies that apply to the case where 𝜇 can be arbitrary: [35]
considers the behavior policy with insufficient coverage probability 𝜖𝜁 (see their Definition 1),

19

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

and they end up with the constant suboptimality gap 𝑉max𝜖𝜁
1−𝛾

(their Theorem 1), when the insuf-
ficient coverage probability 𝜖𝜁 > 0, this gap has order (1 − 𝛾)−2, which is larger in order than
the biggest possible suboptimality gap (1 − 𝛾)−1 therefore unable to characterize the essential
statistical gap over the region that can never be visited by the behavior policy (and this hap-
pens similarly in [37], see their Theorem 1); [39] derive the nice assumption-free result via
regularization and their bound can incur 𝑂(𝐻2) constant gap when there is at least one (𝑠ℎ, 𝑎ℎ)
cannot be obtained by 𝜇 for all ℎ ∈ [𝐻] (i.e. replacing 𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) by 1 in (2.2)). The con-
current work [40] provides a better characterization (and they call it off-support error) with
roughly 1

1−𝛾

∑

(𝑠,𝑎)∈×
(

𝑑𝜋∖𝜈
)

(𝑠, 𝑎)
[

Δ𝑓𝜋(𝑠, 𝑎) −
(

 𝜋Δ𝑓𝜋
)

(𝑠, 𝑎)
], however, in the worst case

Δ𝑓𝜋(𝑠, 𝑎) −
(

 𝜋Δ𝑓𝜋
)

(𝑠, 𝑎) might be large (which depends on the quality (assumption) of the
function approximation class).

In contrast, our ∑𝐻+1
ℎ=2 𝑑

†𝜋⋆
ℎ (𝑠†ℎ) quantity (with 𝑑†𝜋⋆

ℎ (𝑠†ℎ) =
∑ℎ−1

𝑡=1
∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡
𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡) ≤

1) describes the “must-suffer” gap in a more precise way by absorbing all the agnostic proba-
bilities into 𝑠† and it is always bounded between 0 and 𝐻 . It reduces to 0 when 𝜋⋆ is covered.
The gap is always of order 𝐻 (as opposed to 𝑂(𝐻2)).

2.4 Sketch of the Analysis for APVI

We sketch the key proving ideas in Section 2.2. Our analysis of the intrinsic learning bound
in Section 2.2 leverage the key design feature of APVI that 𝑉ℎ+1 only depends on the transition
data from time ℎ+1 to𝐻 while 𝑃ℎ only uses transition pairs at time ℎ. This enables concentra-
tion inequalities due the conditional independence. To cater for the data-adaptive bonus (2.3),
we use Empirical Bernstein inequality to get (𝑃ℎ − 𝑃ℎ)𝑉ℎ+1 ≲

√

Var𝑃 (𝑉ℎ+1)∕𝑛𝑠ℎ,𝑎ℎ . Especially,
to recover the

√

Var𝑃 (𝑉 ⋆
ℎ+1) structure to we use a self-bounding reduction as follows. First,

√

Var𝑃 (𝑉ℎ+1) −
√

Var𝑃 (𝑉ℎ+1) ≲ 𝐻∕
√

𝑛𝑑𝑚 and
√

Var𝑃 (𝑉ℎ+1) −
√

Var𝑃 (𝑉 ⋆
ℎ+1) ≤ ||𝑉ℎ+1 − 𝑉 ⋆

ℎ+1||∞.
Next, we use (2.2) as the intermediate step to crude bounding ||𝑉ℎ+1 − 𝑉 ⋆

ℎ+1||∞ ≲ 𝐻2∕
√

𝑛𝑑𝑚

20

On the Instance-dependent Tabular Offline Reinforcement Learning Chapter 2

(where “the use of (2.2)” is the more intricate self-bounding Lemma A.2.6 in the actual proof)
and this yields the desired structure of

√

Var𝑃 (𝑉 ⋆
ℎ+1) +𝐻

2∕
√

𝑛𝑑𝑚. Lastly, we can combine this
with the extended value difference lemma in [56] to bound 𝑉 ⋆

1 −𝑉1 and leverage the pessimistic
design for bounding 𝑉1 − 𝑉 𝜋

1 .

2.5 Conclusion

This work studies the offline reinforcement learning problem and contributes the intrinsic
offline learning bound which is a near-optimal and strong adaptive bound that subsumes existing
worst-case bounds under various assumptions. The adaptive characterization of the intrinsic
bound abandons the explicit dependence on 𝐻,𝑆,𝐴, 𝐶⋆, 𝑑𝑚 and helps reveal the fundamental
hardness of each individual instances. In this sense, it draws a clearer picture of what offline
reinforcement learning looks like and serves as a step towards instance optimality in offline RL.

Nevertheless, it is still unclear whether (2.4) is optimal over all the instances. For example,
for fully deterministic systems, our bound provides a faster convergence𝐻3∕𝑛𝑑𝑚, however,𝐻3

might be very suboptimal comparing to algorithms that are designed specifically for determin-
istic MDPs, since the agent only need to experience each location (𝑠, 𝑎) once to fully acquire
the dynamic 𝑃 (⋅|𝑠, 𝑎) and 𝑟(𝑠, 𝑎). Recently, [57] goes beyond the minimax (worst case) opti-
mality and studies the instance optimality behavior for the simplified batch bandit setting. One
of their findings is: for “easy enough” tasks, different type of algorithms can be equally good,
provably. This seems to suggest instance optimality only matters for problems that are hard to
learn. How to formally define the instance optimality metric for different problems remains an
open problem and how to design a single algorithm that can achieve optimality for all instances
could be challenging (or even infeasible). We leave those as the future works.

21

Chapter 3

Near-optimal Offline Reinforcement

Learning with Linear Representation

In this Chapter of the thesis, we consider offline reinforcement learning with function approx-
imation. Due to the advantage that appropriate function approximators can help mitigate the
sample complexity burden in modern reinforcement learning problems, existing endeavors usu-
ally enforce powerful function representation models (e.g. neural networks) to learn the optimal
policies. However, a precise understanding of the statistical limits with function representa-
tions, remains elusive, even when such a representation is linear.

Towards this goal, we study the statistical limits of offline reinforcement learning with linear
model representations. To derive the tight offline learning bound, we design the variance-aware

pessimistic value iteration (VAPVI), which adopts the conditional variance information of the
value function for time-inhomogeneous episodic linear Markov decision processes (MDPs).
VAPVI leverages estimated variances of the value functions to reweight the Bellman residuals
in the least-square pessimistic value iteration and provides improved offline learning bounds
over the best-known existing results (whereas the Bellman residuals are equally weighted by
design). More importantly, our learning bounds are expressed in terms of system quantities,

22

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

which provide natural instance-dependent characterizations that previous results are short of.
We hope our results draw a clearer picture of what offline learning should look like when linear
representations are provided.

3.1 Motivation and Related Prior Works

Offline reinforcement learning (offline RL or batch RL [11, 10]) is the framework for learn-
ing a reward-maximizing policy in an unknown environment (Markov Decision Process or
MDP)1 using the logged data coming from some behavior policy 𝜇. Function approximations,
on the other hand, are well-known for generalization in the standard supervised learning. Of-
fline RL with function representation/approximation, as a result, provides generalization across
large state-action spaces for the challenging sequential decision-making problems when no it-
eration is allowed (as opposed to online learning). This paradigm is crucial to the success of
modern RL problems as many deep RL algorithms find their prototypes in the literature of of-
fline RL. For example, [14] provides a view that Fitted Q-Iteration [58, 59] can be considered
as the theoretical prototype of the deep Q-networks algorithm (DQN) [60] with neural networks
being the function representors. On the empirical side, there are a huge body of deep RL-based
algorithms [60, 8, 61, 62, 63, 37, 64, 65, 23, 66, 67] that utilize function approximations to
achieve respective successes in the offline regime. However, it is also realized that practical
function approximation schemes can be quite sample inefficient (e.g. millions of samples are
needed for deep Q-network to solve certain Atari games [60]).

To understand this phenomenon, there are numerous studies consider how to achieve sample
efficiency with function approximation from the theoretical side, as researchers find sample
efficient algorithms are possible with particular model representations, in either online RL (e.g.

1The environment could have other forms as well, e.g. partially-observed MDP (POMDP) or non-markovian
decision process (NMDP).

23

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

[68, 69, 70, 71, 72, 46, 73, 74, 75, 76, 77, 78]) or offline RL (e.g. [79, 13, 14, 80, 40, 81, 82,
83, 41]).

Among them, the linear MDP model [69, 71], where the transition is represented as a lin-
ear combinations of the given 𝑑-dimensional feature, is (arguably) the most studied setting in
function approximation and there are plenty of extensions based upon it (e.g. generalized linear
model [84], reward-free RL [85], gap-dependent analysis [86] or generative adversarial learn-
ing [87]). Given its prosperity, however, there are still unknowns for understanding function
representations in RL, especially in the offline case.

• While there are surging researches in showing provable sample efficiency (polynomial
sample complexity is possible) under a variety of function approximation schemes, how
to improve the sample efficiency for a given class of function representations remains
understudied. For instance, given a neural network approximation class, an algorithm
that learns the optimal policy with complexity 𝑂(𝐻10) is far worse than the one that can
learn in 𝑂(𝐻3) sample complexity, despite that both algorithms are considered sample
efficient. Therefore, how to achieve the optimal/tight sample complexity when function
approximation is provided is a valuable question to consider. On the other hand, it is
known that tight sample complexity, due to the limit of the existing statistical analysis
tools, can be very tough to establish when function representation has a very complicated
form. However, does this mean tight analysis is not hopeful even when the representation
is linear?

• Second, in the existing analysis of offline RL (with function approximation or simply the
tabular MDPs), the learning bounds depend either explicitly on the data-coverage quanti-
ties (e.g. uniform concentrability coefficients [13, 14], uniform visitation measure [3, 4]
and single concentrability [18, 19]) or the horizon length𝐻 [80, 38]. While those results
are valuable as they do not depend on the structure of the particular problem (therefore,

24

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

remain valid even for pathological MDPs), in practice, the empirical performances of of-
fline reinforcement learning are often far better than those non-adaptive bounds would
indicate. Can the learning bounds reflect the nature of individual MDP instances when
the MDP model has a certain function representation?

Those observation motivates us to consider the following question in offline RL: Can we

achieve the statistical limits for offline RL when models have linear representations?

3.1.1 Related works

Offline RL with general function representations. The finite sample analysis of offline
RL with function approximation is initially conducted by Fitted Q-Iteration (FQI) type algo-
rithms and can be dated back to [79, 31, 33, 34]. Later, [13, 12, 14] follow this line of re-
search and derive the improved learning results. However, owing to the aim for tackling general
function approximation, those learning bounds are expressed in terms of the stringent concen-

trability coefficients (therefore, are less adaptive to individual instances) and are usually only
information-theoretical, due to the computational intractability of the optimization procedure
over the general function classes. Other works impose weaker assumptions (e.g. partial cover-
age [35, 37, 38]), and their finite sample analysis are generally suboptimal in terms of 𝐻 or the
effective horizon (1 − 𝛾)−1.

Offline RL with tabular models. For tabular MDPs, tight learning bounds can be achieved
under several data-coverage assumptions. For the class of problems with uniform data-visitation
measure 𝑑𝑚, the near-optimal sample complexity bound has the rate 𝑂(𝐻3∕𝑑𝑚𝜖2) for time-
inhomogeneous MDPs [3] and 𝑂(𝐻2∕𝑑𝑚𝜖) for time-homogeneous MDPs [4, 17]. Under the
single concentrability assumption, the tight rate 𝑂(𝐻3𝑆𝐶⋆∕𝜖2) is obtained by [19]. In particu-
lar, the recent study [5] introduces the intrinsic offline learning bound that is not only instance-
dependent but also subsumes previous optimal results. More recently, [88] uses the model-free

25

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

approaches to achieve the minimax rate with a [0,𝐻−1] 𝜖-range.
Offline RL with linear model representations. Recently, there is more focus on studying

the provable efficient offline RL under the linear model representations. [80] first shows offline
RL with linear MDP is provably efficient by the pessimistic value iteration. Their analysis
deviates from their lower bound by a factor of 𝑑 ⋅𝐻 (check their Theorem 4.4 and 4.6). Later,
[40] considers function approximation under the Bellman-consistent assumptions, and, when
realized to linear MDP setting, improves the sample complexity guarantee of [80] by an order
𝑂(𝑑) (Theorem 3.2).2 However, their improvement only holds for finite action space (due to
the dependence log ||) and by the direct reduction (from Theorem 3.1) their result does not
imply a computationally tractable algorithm with the same guarantee.

Concurrently, [41] considers the Linear Bellman Complete model and designs the actor-

critic style algorithm that achieves tight result under the assumption that the value function
is bounded by 1. While their algorithm is efficient (which is based on solving a sequence of
second-order cone programs), the resulting learning bound requires the action space to be fi-
nite due to the mirror descent updates in the Actor procedure [89]. Besides, assuming the value
function to be less than 1 simplifies the challenges in dealing with horizon𝐻 since when rescal-
ing their result to [0,𝐻], there is a 𝐻 factor blow-up, which makes no horizon improvement
comparing to [80]. As a result, none of the existing algorithms can achieve the statistical limit
for the well-structured linear MDP model with the general (infinite or continuous) state-action
spaces. On the other hand, [90, 91] study the statistical hardness of offline RL with linear rep-
resentations by proving the exponential lower bounds. Recently, [92] shows realizability and
concentrability are not sufficient for offline learning when state space is arbitrary large.

Variance-aware studies. [93] first incorporates the variance structure in online tabular
MDPs and [52] tightens the result. For linear MDPs, [76] first uses variance structure to achieve
near-optimal result and the Weighted OFUL incorporates the variance structure explicitly in the

2This comparison is based on translating their infinite horizon discounted setting to the finite-horizon case.
26

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

regret bound. Recently, Variance-awareness is also considered in [94] for horizon-free setting
and for OPE problem [82]. In particular, We point out that [82] is the first work that uses
variance reweighting for policy evaluation in offline RL, which inspires our study for policy
optimization problem. The guarantee of [82] strictly improves over [95] for OPE problem.

Our contribution. We design the variance-aware pessimistic value iteration (VAPVI, Al-
gorithm 2) which incorporates the conditional variance information of the value function and,
by the variance structure, Theorem 3.3.1 is able to improve over the aforementioned state-of-
the-art guarantees. In addition, we further improve the state-action guarantee by designing an
even tighter bonus (3.4). VAPVI-Improved (Theorem 3.3.2) is near-minimax optimal as indi-
cated by our lower bound (Theorem 3.3.4). Importantly, the resulting learning bounds from
VAPVI/VAPVI-Improved are able to characterize the adaptive nature of individual instances
and yield different convergence rates for different problems. Algorithmically, our design builds
upon the nice [82] with pessimism as we use the estimated variances to reweight the Bellman
residual learning objective so that the (training) samples with high uncertainty get less attention.
This is the key to obtaining instance-adaptive guarantees.

3.2 Preliminaries for Linear Markov Decision Processes

Episodic time-homogeneous linear Markov decision process. A finite-horizon Markov

Decision Process (MDP) is denoted as 𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1) [29], where  is the arbitrary
state space and  is the arbitrary action space which can be infinite or even continuous. A
time-inhomogeneous transition kernel 𝑃ℎ ∶  × ↦ Δ (Δ represents a probability simplex)
maps each state action(𝑠ℎ, 𝑎ℎ) to a probability distribution 𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ) and 𝑃ℎ can be different
across time. In addition, 𝑟 ∶  × 𝐴 ↦ ℝ is the mean reward function satisfying 0 ≤ 𝑟 ≤ 1. 𝑑1
is the initial state distribution. 𝐻 is the horizon. A policy 𝜋 = (𝜋1,… , 𝜋𝐻) assigns each state
𝑠ℎ ∈  a probability distribution over actions according to the map 𝑠ℎ ↦ 𝜋ℎ(⋅|𝑠ℎ) ∀ℎ ∈ [𝐻] and

27

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

induces a random trajectory 𝑠1, 𝑎1, 𝑟1,… , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1 with 𝑠1 ∼ 𝑑1, 𝑎ℎ ∼ 𝜋(⋅|𝑠ℎ), 𝑠ℎ+1 ∼

𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ),∀ℎ ∈ [𝐻]. In particular, we adopts the linear MDP protocol from [71, 80], meaning
that the transition kernel and the mean reward function admit linear structures in the feature
map.3

Definition 3.2.1 (Linear MDPs). 4 An episodic MDP ( ,,𝐻, 𝑃 , 𝑟) is called a linear MDP

with a known (unsigned) feature map 𝜙 ∶  ×  → ℝ𝑑 if there exist 𝑑 unknown (unsigned)

measures 𝜈ℎ = (𝜈(1)ℎ ,… , 𝜈(𝑑)ℎ) over  and an unknown vector 𝜃ℎ ∈ ℝ𝑑 such that

𝑃ℎ
(

𝑠′ ∣ 𝑠, 𝑎
)

=
⟨

𝜙(𝑠, 𝑎), 𝜈ℎ
(

𝑠′
)⟩

, 𝑟ℎ (𝑠, 𝑎) = ⟨𝜙(𝑥, 𝑎), 𝜃ℎ⟩ , ∀𝑠′, 𝑠 ∈  , 𝑎 ∈ , ℎ ∈ [𝐻].

where ‖

‖

𝜈ℎ()‖‖2 ≤
√

𝑑 and max(‖𝜙(𝑠, 𝑎)‖2 , ‖‖𝜃ℎ‖‖2) ≤ 1 for all ℎ ∈ [𝐻] and ∀𝑠, 𝑎 ∈  × .

‖

‖

𝜇ℎ()‖‖ = ∫ ‖‖𝜇ℎ(𝑠)‖‖ 𝑑𝑠.

𝑉 -values and 𝑄-values. For any policy 𝜋, the 𝑉 -value functions 𝑉 𝜋
ℎ (⋅) ∈ ℝ𝑆 and Q-

value functions 𝑄𝜋
ℎ(⋅, ⋅) ∈ ℝ𝑆×𝐴 are defined as: 𝑉 𝜋

ℎ (𝑠) = 𝔼𝜋[
∑𝐻
𝑡=ℎ 𝑟𝑡|𝑠ℎ = 𝑠], 𝑄𝜋

ℎ(𝑠, 𝑎) =

𝔼𝜋[
∑𝐻
𝑡=ℎ 𝑟𝑡|𝑠ℎ, 𝑎ℎ = 𝑠, 𝑎], ∀𝑠, 𝑎, ℎ ∈  ,, [𝐻]. The performance measure is defined as 𝑣𝜋 ∶=

𝔼𝑑1
[

𝑉 𝜋
1

]

= 𝔼𝜋,𝑑1
[

∑𝐻
𝑡=1 𝑟𝑡

]

. The Bellman (optimality) equations follow ∀ℎ ∈ [𝐻]: 𝑄𝜋
ℎ = 𝑟ℎ +

𝑃ℎ𝑉 𝜋
ℎ+1, 𝑉 𝜋

ℎ = 𝔼𝑎∼𝜋ℎ[𝑄
𝜋
ℎ], 𝑄⋆

ℎ = 𝑟ℎ + 𝑃ℎ𝑉 ⋆
ℎ+1, 𝑉

⋆
ℎ = max𝑎𝑄⋆

ℎ (⋅, 𝑎) (where 𝑄ℎ, 𝑉ℎ, 𝑃ℎ are
vectors). By Definition 3.2.1, the 𝑄-values also admit linear structures, i.e. 𝑄𝜋

ℎ = ⟨𝜙,𝑤𝜋
ℎ⟩

for some 𝑤𝜋
ℎ ∈ ℝ𝑑 (Lemma B.5.9). Lastly, for a policy 𝜋, we denote the induced occu-

pancy measure over the state-action space at any time ℎ ∈ [𝐻] to be: for any 𝐸 ⊆  × ,
𝑑𝜋ℎ (𝐸) ∶= 𝔼[(𝑠ℎ, 𝑎ℎ) ∈ 𝐸|𝑠1 ∼ 𝑑1, 𝑎𝑖 ∼ 𝜋(⋅|𝑠𝑖), 𝑠𝑖 ∼ 𝑃𝑖−1(⋅|𝑠𝑖−1, 𝑎𝑖−1), 1 ≤ 𝑖 ≤ ℎ] and
𝔼𝜋,ℎ[𝑓 (𝑠, 𝑎)] ∶= ∫× 𝑓 (𝑠, 𝑎)𝑑

𝜋
ℎ (𝑠, 𝑎) ⋅ 𝑑𝑠𝑑𝑎. Here for notation simplicity we abuse 𝑑𝜋ℎ (⋅) to

denote either probability measure or density function.
3For completeness, we also provide a brief discussion for the related Linear mixture model [56] setting (Ap-

pendix B.4.2).
4This definition is a standard extension over the tabular MDPs by referencing the similar notions from the

bandit literature, i.e. from Multi-armed Bandit to Linear Bandit [96].
28

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

Offline learning setting. Offline RL requires the agent to learn the policy 𝜋 that maximizes
𝑣𝜋 , provided with the historical data =

{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1

)}ℎ∈[𝐻]

𝜏∈[𝐾]
rolled out from some behavior

policy 𝜇. The offline nature requires we cannot change 𝜇 and in particular we do not know the
data generating distribution of 𝜇. To sum up, the agent seeks to find a policy 𝜋alg such that
𝑣⋆ − 𝑣𝜋alg ≤ 𝜖 for the given batch data  and a given targeted accuracy 𝜖 > 0.

3.2.1 Assumptions

It is known that learning a near-optimal policy from the offline data  cannot be sample
efficient without certain data-coverage assumptions [90, 5]. To begin with, we define the pop-
ulation covariance matrix under the behavior policy 𝜇 for all ℎ ∈ [𝐻]:

Σ𝑝ℎ ∶= 𝔼𝜇,ℎ
[

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤
]

, (3.1)

since Σ𝑝ℎ measure the coverage of state-action space for data , we make the following assump-
tion.

Assumption 3.2.1 (Feature Coverage). The data distributions 𝜇 satisfy the minimum eigenvalue

condition: ∀ℎ ∈ [𝐻], 𝜅ℎ ∶= 𝜆min(Σ
𝑝
ℎ) > 0 and denote 𝜅 = minℎ 𝜅ℎ. Note 𝜅 is a system-

dependent (non-universal) quantity as it is upper bounded by 1∕𝑑 (Assumption 2 in [90]).

We make this assumption for the following reasons. First of all, our offline learning guaran-
tee (Theorem 3.3.1) provides simultaneously comparison to all the policies, which is stronger
than only competing with the optimal policy (whereas relaxed assumption suffices, for exam-
ple sup𝑥∈ℝ𝑑

𝑥Σ𝜋⋆𝑥⊤

𝑥Σ𝜇𝑥⊤
< ∞ [38]). As a consequence, the behavior distribution 𝜇 must be able to

explore each feature dimension for the result to be valid.
Even if Assumption 4.2.3 does not hold, we can always restrict our algorithmic design to the

effective subspan of Σ𝑝ℎ, which causes the alternative notion of 𝜅 ∶= minℎ∈[𝐻]{𝜅ℎ ∶ 𝑠.𝑡. 𝜅ℎ =

29

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

smallest positive eigenvalue at time ℎ} (see Appendix B.4.1 for detailed discussions). In this
scenario, learning the optimal policy cannot be guaranteed as a constant suboptimality gap
needs to be suffered due to the lack of coverage and this is formed as assumption-free RL in [5].
Lastly, previous works analyzing the linear MDPs impose very similar assumptions, e.g. [40]
Theorem 3.2 where Σ−1

 exists and [82] for the OPE problem.
Next, for any function 𝑉ℎ+1(⋅) ∈ [0,𝐻 − ℎ], we define the conditional variance 𝜎𝑉ℎ+1 ∶

 ×  → ℝ+ as 𝜎𝑉ℎ+1(𝑠, 𝑎)2 ∶= max{1,Var𝑃ℎ(𝑉ℎ+1)(𝑠, 𝑎)}.5 Based on this definition, we can
define the variance-involved population covariance matrices as:

Λ𝑝
ℎ ∶= 𝔼𝜇,ℎ

[

𝜎𝑉ℎ+1(𝑠, 𝑎)
−2𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

]

.

In particular, when 𝑉ℎ = 𝑉 ⋆
ℎ , we use the notation Λ⋆𝑝

ℎ instead. Since sup(𝑠,𝑎)∈× 𝜎𝑉ℎ(𝑠, 𝑎)
2 ≤

𝐻2, then by Assumption 4.2.3 we directly have the following corollary.

Corollary 3.2.1. Define 𝜄ℎ ∶= 𝜆min(Λ
𝑝
ℎ), 𝜄 ∶= minℎ 𝜄ℎ. Then 𝜄ℎ ≥

𝜅ℎ
𝐻2 > 0 ∀ℎ ∈ [𝐻], and 𝜄 > 0.

3.3 Algorithm and Main Results

Least square regression is usually considered as one of the “default” tools for handling prob-
lems with linear structures (e.g. LinUCB algorithm for linear Bandits) and finds its popularity
in RL as well since Least-Square Value Iteration (LSVI, [71]) is shown to be provably efficient
for linear MDPs, due to that 𝑉ℎ+1(𝑠′) is an unbiased estimator of [𝑃ℎ𝑉ℎ+1](𝑠, 𝑎). Concretely, it
solves the ridge regression problems at each time steps (with 𝜆 > 0 being the regularization
parameter):

𝑤̂ℎ ∶= argmin
𝑤∈ℝ𝑑

𝜆‖𝑤‖22 +
𝐾
∑

𝑘=1

[

⟨𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ), 𝑤⟩ − 𝑟

𝑘
ℎ − 𝑉ℎ+1(𝑠

′𝑘
ℎ+1)

]2 (3.2)
5The max(1, ⋅) applied here is for technical reason only. In general, it suffices to think 𝜎2𝑉ℎ+1 ≈ Varℎ𝑉ℎ+1.

30

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

and has the closed-form solution 𝑤̂ℎ = Σ−1
ℎ
∑𝐾

𝑘=1 𝜙(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)[𝑟𝑘,ℎ+𝑉ℎ+1(𝑠

′𝑘
ℎ)] with the cumulative

sample covariance Σ−1
ℎ =

∑𝐾
𝑘=1 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤ + 𝜆𝐼 . In offline RL, this has also been

leveraged in pessimistic value iteration [80] and fitted Q-evaluation [95]. Nevertheless, LSVI
could only yield suboptimal guarantees, as illustrated by the following example.

Example. Instantiate PEVI (Theorem 4.4 in [80]) with 𝜙(𝑠, 𝑎) = 𝟏𝑠,𝑎 (i.e. tabular MDPs)6,
by direct calculation the learning bound has the form 𝑂(𝑑𝐻 ⋅

∑

ℎ,𝑠,𝑎 𝑑
𝜋⋆
ℎ (𝑠, 𝑎)

√

1
𝐾⋅𝑑𝜇ℎ (𝑠,𝑎)

) and the

optimal result ([5] Theorem 4.1) gives 𝑂(∑ℎ,𝑠,𝑎 𝑑
𝜋⋆
ℎ (𝑠, 𝑎)

√

Var𝑃𝑠,𝑎 (𝑟+𝑉
⋆
ℎ+1)

𝐾⋅𝑑𝜇ℎ (𝑠,𝑎)
). The former has the

horizon dependence 𝐻2 and the latter is 𝐻3∕2 by law of total variance.
Motivation. By comparing the above two expressions, it can be seen that PEVI cannot

get rid of the explicit 𝐻 factor due to missing the variance information (w.r.t 𝑉 ⋆). If we go
deeper, one could find that it might not be all that ideal to put equal weights on all the training
samples in the least square objective (3.2), since, unlike linear regression where the randomness
coming from one source distribution, we are regressing over a sequence of distributions in RL
(i.e. each 𝑠ℎ, 𝑎ℎ corresponds to a different distribution 𝑃 (⋅|𝑠ℎ, 𝑎ℎ) and there are possibly infinite
many of them). Therefore, conceptually, the sample piece (𝑠ℎ, 𝑎ℎ, 𝑠ℎ+1) that has higher variance
distribution 𝑃 (⋅|𝑠ℎ, 𝑎ℎ) tends to be less “reliable” than the one (𝑠′ℎ, 𝑎′ℎ, 𝑠′ℎ+1) with lower variance
(hence should not have equal weight in (3.2)). This suggests reweighting scheme might help
improve the learning guarantee and reweighting over the variance of the value function stands
as a natural choice.

3.3.1 Variance-Aware Pessimistic Value Iteration

Now we explain our framework that incorporates the variance information. Our design is
motivated by the previous [76] (for online learning) and [82] (for policy evaluation). By the
offline nature, we can use the independent episodic data ′ = {(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ, 𝑟̄

𝜏
ℎ, 𝑠̄

𝜏′
ℎ)}

ℎ∈[𝐻]
𝜏∈[𝐾] (from 𝜇)

6This provides a valid illustration since tabular MDP is a special case of linear MDPs.

31

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

to estimate the conditional variance of any 𝑉 -values 𝑉ℎ+1 via the definition [Varℎ𝑉ℎ+1](𝑠, 𝑎) =

[𝑃ℎ(𝑉ℎ+1)2](𝑠, 𝑎)− ([𝑃ℎ𝑉ℎ+1](𝑠, 𝑎))2. For the second order moment, by Definition 3.2.1, it holds

[

𝑃ℎ𝑉
2
ℎ+1

]

(𝑠, 𝑎) = ∫
𝑉 2
ℎ+1

(

𝑠′
)

d𝑃ℎ
(

𝑠′ ∣ 𝑠, 𝑎
)

= 𝜙(𝑠, 𝑎)⊤ ∫
𝑉 2
ℎ+1

(

𝑠′
)

d𝜈ℎ
(

𝑠′
)

.

Denote 𝛽ℎ ∶= ∫ 𝑉
2
ℎ+1 (𝑠

′) d𝜈ℎ (𝑠′), then 𝑃ℎ𝑉 2
ℎ+1 = ⟨𝜙, 𝛽ℎ⟩ and we can estimator it via:

𝛽ℎ = argmin
𝛽∈ℝ𝑑

𝐾
∑

𝑘=1

[⟨

𝜙(𝑠̄𝑘ℎ, 𝑎̄
𝑘
ℎ), 𝛽

⟩

− 𝑉 2
ℎ+1

(

𝑠̄𝑘ℎ+1
)]2 + 𝜆‖𝛽‖22 = Σ̄−1

ℎ

𝐾
∑

𝑘=1
𝜙(𝑠̄𝑘ℎ, 𝑎̄

𝑘
ℎ)𝑉

2
ℎ+1

(

𝑠̄𝑘ℎ+1
)

and, similarly, the first order moment 𝑃ℎ𝑉ℎ+1 ∶= ⟨𝜙, 𝜃ℎ⟩ can be estimated via:

𝜃̄ℎ = argmin
𝜃∈ℝ𝑑

𝐾
∑

𝑘=1

[⟨

𝜙(𝑠̄𝑘ℎ, 𝑎̄
𝑘
ℎ), 𝜃

⟩

− 𝑉ℎ+1
(

𝑠̄𝑘ℎ+1
)]2 + 𝜆‖𝜃‖22 = Σ̄−1

ℎ

𝐾
∑

𝑘=1
𝜙(𝑠̄𝑘ℎ, 𝑎̄

𝑘
ℎ)𝑉ℎ+1

(

𝑠̄𝑘ℎ+1
)

The final estimator is defined as 𝜎2
𝑉ℎ
(⋅, ⋅) ∶= max{1, V̂arℎ𝑉ℎ+1(⋅, ⋅)} with the estimated condi-

tional variance V̂arℎ𝑉ℎ+1(⋅, ⋅) = ⟨𝜙(⋅, ⋅), 𝛽ℎ⟩[0,(𝐻−ℎ+1)2] −
[

⟨𝜙(⋅, ⋅), 𝜃̄ℎ⟩[0,𝐻−ℎ+1]
]2.7 In particular,

when setting𝑉ℎ+1 = 𝑉ℎ+1, it recovers 𝜎ℎ in Algorithm 2 line 8. Here Σ̄ℎ = ∑𝐾
𝜏=1 𝜙(𝑠̄

𝜏
ℎ, 𝑎̄

𝜏
ℎ)𝜙(𝑠̄

𝜏
ℎ, 𝑎̄

𝜏
ℎ)
⊤+

𝜆𝐼𝑑 .
Variance-weighted LSVI. The idea of LSVI (3.2) is based on approximate the Bellman

updates: ℎ(𝑉)(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + (𝑃ℎ𝑉)(𝑠, 𝑎). With variance estimator 𝜎ℎ at hand, we can
modify (3.2) to solve the variance-weighted LSVI instead (Line 10 of Algorithm 2)

𝑤̂ℎ ∶= argmin
𝑤∈ℝ𝑑

𝜆‖𝑤‖22+
𝐾
∑

𝑘=1

[

⟨𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ), 𝑤⟩ − 𝑟

𝑘
ℎ − 𝑉ℎ+1(𝑠

′𝑘
ℎ+1)

]2

𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

= Λ̂−1
ℎ

𝐾
∑

𝑘=1

𝜙
(

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

)

⋅
[

𝑟𝑘ℎ + 𝑉ℎ+1
(

𝑠𝑘ℎ+1
)]

𝜎2(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

where Λ̂ℎ =
∑𝐾

𝑘=1 𝜙(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤∕𝜎2

ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ) + 𝜆𝐼𝑑 . The estimated Bellman update ̂ℎ (acts

on 𝑉ℎ+1) is defined as: (̂ℎ𝑉ℎ+1)(⋅, ⋅) = 𝜙(⋅, ⋅)⊤𝑤̂ℎ and the pessimism Γℎ is assigned to update
𝑄̂ℎ ≈ ̂ℎ𝑉ℎ+1 − Γℎ, i.e. Bellman update + Pessimism (Line 10-12 in Algorithm 2).

7The truncation used here is a standard treatment for making the estimator to be within the valid range.
32

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

Algorithm 2 Variance-Aware Pessimistic Value Iteration (VAPVI)
1: Input: Dataset  =

{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ

)}𝐾,𝐻
𝜏,ℎ=1 

′ =
{(

𝑠̄𝜏ℎ, 𝑎̄
𝜏
ℎ, 𝑟̄

𝜏
ℎ

)}𝐾,𝐻
𝜏,ℎ=1. Universal constant 𝐶 .

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0.
3: for ℎ = 𝐻,𝐻 − 1,… , 1 do
4: Set Σ̄ℎ ← ∑𝐾

𝜏=1 𝜙(𝑠̄
𝜏
ℎ, 𝑎̄

𝜏
ℎ)𝜙(𝑠̄

𝜏
ℎ, 𝑎̄

𝜏
ℎ)
⊤ + 𝜆𝐼

5: Set 𝛽ℎ ← Σ̄−1
ℎ
∑𝐾

𝜏=1 𝜙(𝑠̄
𝜏
ℎ, 𝑎̄

𝜏
ℎ) ⋅ 𝑉ℎ+1(𝑠̄

𝜏
ℎ+1)

2

6: Set 𝜃̄ℎ ← Σ̄−1
ℎ
∑𝐾

𝜏=1 𝜙(𝑠̄
𝜏
ℎ, 𝑎̄

𝜏
ℎ) ⋅ 𝑉ℎ+1(𝑠̄

𝜏
ℎ+1)

7: Set [V̂arℎ𝑉ℎ+1
]

(⋅, ⋅) =
⟨

𝜙(⋅, ⋅), 𝜷̄ℎ
⟩

[0,(𝐻−ℎ+1)2] −
[⟨

𝜙(⋅, ⋅), 𝜽̄ℎ
⟩

[0,𝐻−ℎ+1]

]2

8: Set 𝜎ℎ(⋅, ⋅)2 ← max{1, V̂ar𝑃ℎ𝑉ℎ+1(⋅, ⋅)}
9: Set Λ̂ℎ ←

∑𝐾
𝜏=1 𝜙

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)⊤ ∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ) + 𝜆 ⋅ 𝐼 ,

10: Set 𝑤̂ℎ ← Λ̂−1
ℎ

(

∑𝐾
𝜏=1 𝜙

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

)

∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)
)

11: Set Γℎ(⋅, ⋅) ← 𝐶
√

𝑑 ⋅
(

𝜙(⋅, ⋅)⊤Λ̂−1
ℎ 𝜙(⋅, ⋅)

)1∕2
+ 2𝐻3

√

𝑑
𝐾

(Use Γ𝐼ℎ for the improved
version)

12: Set 𝑄̄ℎ(⋅, ⋅) ← 𝜙(⋅, ⋅)⊤𝑤̂ℎ − Γℎ(⋅, ⋅)
13: Set 𝑄̂ℎ(⋅, ⋅) ← min

{

𝑄̄ℎ(⋅, ⋅),𝐻 − ℎ + 1
}+

14: Set 𝜋ℎ(⋅ ∣ ⋅) ← argmax𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

, 𝑉ℎ(⋅) ← max𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

15: end for
16: Output:

{

𝜋ℎ
}𝐻
ℎ=1.

Tighter Pessimistic Design. To improve the learning guarantee, we create a tighter penalty
design that includes Λ̂−1

ℎ rather than Σ̄−1
ℎ and an extra higher order 𝑂(1

𝐾
) term:

Γℎ ← 𝑂
(
√

𝑑 ⋅ (𝜙(⋅, ⋅)⊤Λ̂−1
ℎ 𝜙(⋅, ⋅))

1∕2
)

+
2𝐻3

√

𝑑
𝐾

Note such a design admits no explicit factor in𝐻 in the main term (as opposed to [80]) therefore
is the key for achieving adaptive/problem-dependent results (as we shall discuss later). The full
algorithm VAPVI is stated in Algorithm 2. In particular, we halve the offline data into two
independent parts with  = {(𝑠𝜏ℎ, 𝑎

𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏′
ℎ)}

ℎ∈[𝐻]
𝜏∈[𝐾] and ′ = {(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ, 𝑟̄

𝜏
ℎ, 𝑠̄

𝜏′
ℎ)}

ℎ∈[𝐻]
𝜏∈[𝐾] for different

purposes (estimating variance and updating 𝑄-values).

33

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

3.3.2 Main result

We denote quantities 1,2,3,4 as in the Notation List. Then VAPVI provides the
following result. The complete proof is provided in Appendix B.1.

Theorem 3.3.1. Let𝐾 be the number of episodes. If𝐾 > max{1,2,3,4} and
√

𝑑 >

𝜉, where 𝜉 ∶= sup𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎), ℎ∈[𝐻]
|

|

|

|

𝑟ℎ+𝑉 (𝑠′)−(ℎ𝑉)(𝑠,𝑎)
𝜎𝑉 (𝑠,𝑎)

|

|

|

|

. Then for any 0 < 𝜆 < 𝜅, with

probability 1 − 𝛿, for all policy 𝜋 simultaneously, the output 𝜋 of Algorithm 2 satisfies

𝑣𝜋 − 𝑣𝜋 ≤ 𝑂
(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋

[

√

𝜙(⋅, ⋅)⊤Λ−1
ℎ 𝜙(⋅, ⋅)

]

)

+
2𝐻4

√

𝑑
𝐾

where Λℎ =
∑𝐾

𝑘=1
𝜙(𝑠𝑘ℎ,𝑎

𝑘
ℎ)⋅𝜙(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)
⊤

𝜎2
𝑉ℎ+1(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)

+ 𝜆𝐼𝑑 . In particular, we have with probability 1 − 𝛿,

𝑣⋆ − 𝑣𝜋 ≤ 𝑂
(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

𝜙(⋅, ⋅)⊤Λ⋆−1
ℎ 𝜙(⋅, ⋅)

]

)

+
2𝐻4

√

𝑑
𝐾

(3.3)

where Λ⋆
ℎ =

∑𝐾
𝑘=1

𝜙(𝑠𝑘ℎ,𝑎
𝑘
ℎ)⋅𝜙(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)
⊤

𝜎2
𝑉 ⋆ℎ+1(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)

+ 𝜆𝐼𝑑 and 𝑂 hides universal constants and the Polylog terms.

Theorem 3.3.1 provides improvements over the existing best-known results and we now
explain it. However, before that, we first discuss about our theorem condition.

Comparing to [76]. In the online regime, [76] is the first result that achieves optimal regret
rate with 𝑂(𝑑𝐻√

𝑇) in the linear (mixture) MDPs. However, this result requires the condition
𝑑 ≥ 𝐻 (their Theorem 6 and Remark 7). In offline RL, VAPVI only requires a milder condition
√

𝑑 > 𝜉 comparing to 𝑑 ≥ 𝐻 (since for any fixed 𝑉 ∈ [0,𝐻], the standardized quantity
𝑟+𝑉 (𝑠′)−(ℎ𝑉)(𝑠,𝑎)

𝜎𝑉 (𝑠,𝑎)
is bounded by constant with high probability, e.g. by chebyshev inequality),

which makes our result apply to a wider range of linear MDPs.
Comparing to [80]. [80] first shows pessimistic value iteration (PEVI) is provably efficient

for Linear MDPs in offline RL. VAPVI improves PEVI over 𝑂(√𝑑) on the feature dimension,

34

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

and improves the horizon dependence as Λℎ ≽
1
𝐻2Σℎ implies Λ−1

ℎ ≼ 𝐻2Σ−1
ℎ . In addition, when

instantiate to the tabular case, i.e. 𝜙(𝑠, 𝑎) = 𝟏𝑠,𝑎, VAPVI gives𝑂(√𝑑∑ℎ,𝑠,𝑎 𝑑
𝜋⋆
ℎ (𝑠, 𝑎)

√

Var𝑃𝑠,𝑎 (𝑟+𝑉
⋆
ℎ+1)

𝐾⋅𝑑𝜇ℎ (𝑠,𝑎)
),

which enjoys 𝑂(√𝐻) improvement over PEVI and the order 𝑂(𝐻3∕2) is tight (check Sec-
tion B.4 for the detailed derivation).

Comparing to [40]. Their linear MDP guarantee in Theorem 3.2. enjoys the same rate
as VAPVI in feature dimension but the horizon dependence is essentially the same as [80] (by
translating 𝐻 ≈ 𝑂(1

1−𝛾
)) therefore is not optimal. The general function approximation scheme

in [40] provides elegant characterizations for on-support error and off-support error, but the
algorithmic framework is information-theoretical only (and the practical version PSPI will not
yield the same learning guarantee). Also, due to the use finite function class and policy class,
the reduction to linear MDP only works with finite action space. As a comparison, VAPVI has
no constraints on any of these.

Comparing to [41]. Concurrently, [41] considers offline RL with the linear Bellman com-
plete model, which is more general than linear MDPs and, with the assumption 𝑄𝜋 ≤ 1,
their PACLE algorithm provides near-minimax optimal guarantee in this setting. However,
when recovering to the standard setting 𝑄𝜋 ∈ [0,𝐻], their bound will rescale by an 𝐻 fac-
tor,8 which could be suboptimal due to the variance-unawareness. The reason behind this
is: when 𝑄𝜋 ≤ 1, lack of variance information encoding will not matter, since in this case
Var𝑃 (𝑉 𝜋) ≤ 1 has constant order (therefore will not affect the optimal rate); when𝑄𝜋 ∈ [0,𝐻],
Var𝑃 (𝑉 𝜋) can be as large as 𝐻2, effectively leveraging the variance information can help im-
prove the sample efficiency, e.g. via law of total variances, just like VAPVI does. On the other
hand, their guarantee also requires finite action space, due to the mirror descent style analy-
sis. Nevertheless, we do point out [41] has improved state-action measure than VAPVI, as
‖

‖

𝐸𝜋[𝜙(⋅, ⋅)]‖‖𝑀−1 ≤ 𝔼𝜋[‖𝜙(⋅, ⋅)‖𝑀−1] by Jensen’s inequality and that norm ‖⋅‖𝑀−1 is convex for
some positive-definite matrix 𝑀 .

8Check their Footnote 2 in Page 9.
35

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

Adaptive characterization and faster convergence. Comparing to existing works, one
major improvement is that the main term for VAPVI √𝑑∑𝐻

ℎ=1 𝔼𝜋⋆
[

√

𝜙(⋅, ⋅)⊤Λ⋆−1
ℎ 𝜙(⋅, ⋅)

] ad-
mits no explicit dependence on 𝐻 , which provides a more adaptive/instance-dependent char-
acterization. For instance, if we ignore the technical treatment by taking 𝜆 = 0 and 𝜎⋆ℎ ≈

Var𝑃 (𝑉 ⋆
ℎ+1), then for the partially deterministic systems (where there are 𝑡 stochastic 𝑃ℎ’s and

𝐻−𝑡 deterministic 𝑃ℎ’s), the main term diminishes to √

𝑑
∑𝑡

𝑖=1 𝔼𝜋⋆
[

√

𝜙(⋅, ⋅)⊤Λ⋆−1
ℎ𝑖
𝜙(⋅, ⋅)

] with
ℎ𝑖 ∈ {ℎ ∶ 𝑠.𝑡. 𝑃ℎ is stochastic} and can be a much smaller quantity when 𝑡 ≪ 𝐻 . Furthermore,
for the fully deterministic system, VAPVI automatically provides faster convergence rate𝑂(1

𝐾
)

from the higher order term, given that the main term degenerates to 0. Those adaptive/instance-
dependent features are not enjoyed by [40, 41], as they always provide the standard statistical
rate 𝑂(1

√

𝐾
) (also check Remark 7 for a related discussion).

3.3.3 VAPVI-Improved: Further improvement in state-action dimension

Can we further improve the VAPVI? Indeed, by deploying a carefully tuned tighter penalty,
we are able to further improve the state-action dependence if the feature is non-negative (𝜙 ≥ 0).
Concretely, we replace the following Γ𝐼ℎ in Algorithm 2 instead, and call the algorithm VAPVI-
Improved (or VAPVI-I for short). The proof can be found in Appendix B.2.

Γ𝐼ℎ(𝑠, 𝑎) ← 𝜙(𝑠, 𝑎)⊤
|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

+𝑂(
𝐻3𝑑∕𝜅
𝐾

)

(3.4)

Theorem 3.3.2. Suppose the feature is non-negative (𝜙 ≥ 0). Let𝐾 be the number of episodes.

If𝐾 > max{1,2,3,4} and
√

𝑑 > 𝜉. Deploying Γ𝐼ℎ (3.4) in Algorithm 2. Then for any

0 < 𝜆 < 𝜅, with probability 1 − 𝛿, for all policy 𝜋 simultaneously, the output 𝜋 of Algorithm 2

36

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

(VAPVI-I) satisfies

𝑣𝜋 − 𝑣𝜋 ≤ 𝑂
(

√

𝑑 ⋅
𝐻
∑

ℎ=1

√

𝔼𝜋[𝜙(⋅, ⋅)]⊤Λ−1
ℎ 𝔼𝜋[𝜙(⋅, ⋅)]

)

+ 𝑂(
𝐻4𝑑∕𝜅
𝐾

)

In particular, when choosing 𝜋 = 𝜋⋆, the above guarantee holds true with Λ−1
ℎ replaced by

Λ⋆−1
ℎ . Here Λ−1

ℎ , Λ⋆−1
ℎ , 𝜉 are defined the same as Theorem 3.3.1.

Theorem 3.3.2 maintains nearly all the features of Theorem 3.3.1 (except higher order term
is slightly worse) and the dominate term evolves from 𝔼𝜋 ‖𝜙‖Λ−1

ℎ
to ‖

‖

𝔼𝜋[𝜙]‖‖Λ−1
ℎ

. Clearly, the
two bounds differ by the magnitude of Jensen’s inequality. To provide a concrete view of how
much improvement is made, we check the parameter dependence in the context of tabular MDPs
(where we ignore the higher order term for conciseness). In particular, we compare the results
under the single-policy concentrability.

Assumption 3.3.3 ([18, 19]). There exists a optimal policy 𝜋⋆, s.t. supℎ,𝑠,𝑎 𝑑𝜋
⋆

ℎ (𝑠, 𝑎)∕𝑑𝜇ℎ (𝑠, 𝑎) ∶=

𝐶⋆ < ∞, where 𝑑𝜋 is the marginal state-action probability under 𝜋.

In tabular RL, 𝜙(𝑠, 𝑎) = 𝟏𝑠,𝑎 and 𝑑 = 𝑆 ⋅𝐴 (𝑆,𝐴 be the finite state, action cardinality), then

Theorem 3.3.1 →
√

𝑆𝐴
𝐻
∑

ℎ

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)

√

√

√

√

Var𝑃𝑠,𝑎(𝑟 + 𝑉
⋆
ℎ+1)

𝐾 ⋅ 𝑑𝜇ℎ (𝑠, 𝑎)
≤
√

𝐻3𝐶⋆𝑆2𝐴
𝐾

;

Theorem 3.3.2 →
√

𝑆𝐴
𝐻
∑

ℎ

√

√

√

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)2

Var𝑃𝑠,𝑎(𝑟 + 𝑉
⋆
ℎ+1)

𝐾 ⋅ 𝑑𝜇ℎ (𝑠, 𝑎)
≤
√

𝐻3𝐶⋆𝑆𝐴
𝐾

.

(3.5)

Theorem 3.3.2 enjoys a 𝑆 state improvement over Theorem 3.3.1 and nearly recovers the min-
imax rate

√

𝐻3𝐶⋆𝑆
𝐾

[19]. The detailed derivation can be found in Appendix B.4. Also, to show
our result is near-optimal, we provide the corresponding lower bound. The proof is in Ap-
pendix B.3.

37

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

Theorem 3.3.4 (Minimax lower bound). There exist a pair of universal constants 𝑐, 𝑐′ > 0 such

that given dimension 𝑑, horizon 𝐻 and sample size 𝐾 > 𝑐′𝑑3, one can always find a family of

linear MDP instances  such that (where Λ⋆
ℎ =

∑𝐾
𝑘=1

𝜙(𝑠𝑘ℎ,𝑎
𝑘
ℎ)⋅𝜙(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)
⊤

Varℎ(𝑉 ⋆
ℎ+1)(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)

satisfies (Λ⋆
ℎ)

−1 exists and

Varℎ(𝑉 ⋆
ℎ+1)(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ) > 0 ∀𝑀 ∈ )

inf
𝜋

sup
𝑀∈

𝔼𝑀
[

𝑣⋆ − 𝑣𝜋
]/

(

√

𝑑 ⋅
𝐻
∑

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙]

)

≥ 𝑐. (3.6)

Theorem 3.3.4 nearly matches the main term in VAPVI-I (Theorem 3.3.2) and certifies it is
near-optimal. On the other hand, it is worth understanding how the above lower bound compares
to the lower bound in [80]. In general, they are not directly comparable since both results are
global minimax (not instance-dependent/local-minimax) lower bounds as the hardness only
hold for a family of hard instances (which makes comparison outside of the family instances
vacuum). However, for all the instances within the family, we can verify our lower bound 3.3.4
is tighter (see Appendix B.3.6 for detailed discussion).

3.4 Proof Overview

In this section, we provide a brief overview of the key proving ideas of the theorems. We
begin with Theorem 3.3.1. First, by the extended value difference lemma (Lemma D.0.7), we
can convert bounding the suboptimality gap of 𝑣⋆ − 𝑣𝜋 to bounding ∑𝐻

ℎ=1 2 ⋅ 𝔼𝜋
[

Γℎ(𝑠ℎ, 𝑎ℎ)
],

given that |(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)| ≤ Γℎ(𝑠, 𝑎) for all 𝑠, 𝑎, ℎ. To bound ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1, by
decomposing it reduces to bounding the key quantity

𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

[𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
]

(3.7)

38

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

The term is treated in two steps. First, we bound the gap of ‖‖
‖

‖

𝜎2
𝑉ℎ+1

− 𝜎2
ℎ

‖

‖

‖

‖

so we can convert 𝜎2
ℎ to

𝜎2
𝑉ℎ+1

. Next, since Var
[

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∣ 𝑠𝜏ℎ, 𝑎
𝜏
ℎ

]

≈ 𝜎2
𝑉ℎ+1

, therefore by the
variance-weighted scheme in ((3.7)), we can leverage the recent technical development Bern-

stein inequality for self-normalized martingale (Lemma C.11.4) for acquiring the tight result,
in contrast to the previous treatment of Hoeffding inequality for self-normalized martingale +
Covering.9 For the second part, one needs to further convert 𝜎2

𝑉ℎ+1
to 𝜎⋆2ℎ (Λ−1

ℎ to Λ⋆−1
ℎ) with

appropriate concentrations. The proof of Theorem 3.3.2 is similar but with more complicated
computations and relies on using the linear representation of 𝜙 in Γ𝐼ℎ (3.4), so that the expec-
tation over 𝜋 is inside the square root by taking expectation over the linear representation at
the beginning. The lower bound proof uses a simple modification of [41] which consists of the
reduction from learning to testing with Assouad’s method, and the use of standard information
inequalities (e.g. from total variation to KL divergence). For completeness, we provide the full
proof in Appendix B.3.

3.5 Conclusion

This chapter studies offline RL with linear MDP representation and contributes Variance

Aware Pessimistic Value Iteration (VAPVI) which adopts the conditional variance information
of the value function. VAPVI uses the estimated variances to reweight the Bellman residuals in
the least-square pessimistic value iteration and provides improved offline learning bounds over
the existing best-known results. VAPVI-I further improves over VAPVI in the state-action
dimension and is near-minimax optimal. One highlight of the theorems is that our learn-
ing bounds are expressed in terms of system quantities, which automatically provide natural
instance-dependent characterizations that previous results are short of.

9Variance-reweighting in (3.7) is important, since applying Bernstein inequality for self-normalized martingale
(Lemma C.11.4) without variance-reweighting cannot provide any improvement.

39

Near-optimal Offline Reinforcement Learning with Linear Representation Chapter 3

On the other hand, while VAPVI/VAPVI-I close the existing gap from previous literature
[80, 40], the optimal guarantee is in the minimax sense. Although our upper bounds possess
instance-dependent characterizations, the lower bound only holds true for a class of hard in-
stances. In this sense, whether “instance-dependent optimality” can be achieved remains elusive
in the current linear MDP setting (such a discussion is recently initiated in MAB problems [57]).
Furthermore, removing the dependence on 𝜅 in the higher order terms (e.g. Theorem 3.3.2) is
challenging and the recent development [97] using robust estimation has the potential to address
this issue. We leave these as future works.

40

Chapter 4

Provably Efficient Offline Reinforcement

Learning with Differentiable Function

Approximation

State-Of-The-Art offline reinforcement learning algorithms usually leverage powerful function
approximators (e.g. neural networks) to alleviate the sample complexity hurdle for better em-
pirical performances. Despite the successes, a more systematic understanding of the statisti-
cal complexity for function approximation remains lacking. Towards bridging the gap, in this
Chapter we study offline reinforcement learning with differentiable function class approxima-

tion (DFA). This function class naturally incorporates a wide range of models with nonlin-
ear/nonconvex structures. Most importantly, we show offline RL with differentiable function
approximation is provably efficient by analyzing the pessimistic fitted Q-learning (PFQL) al-
gorithm, and our results provide the theoretical basis for understanding a variety of practical
heuristics that rely on Fitted Q-Iteration style design. In addition, we further improve our guar-
antee with a tighter instance-dependent characterization.

41

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

4.1 Introduction, Related Work, and Our Contribution

Offline reinforcement learning [11, 10] refers to the paradigm of learning a policy in the se-
quential decision making problems, where only the logged data are available and were collected
from an unknown environment (Markov Decision Process / MDP). Inspired by the success of
scalable supervised learning methods, modern reinforcement learning algorithms (e.g. [8])
incorporate high-capacity function approximators to acquire generalization across large state-
action spaces and have achieved excellent performances along a wide range of domains. For
instance, there are a huge body of deep RL-based algorithms that tackle challenging problems
such as the game of Go and chess [8, 98], Robotics [99, 100], energy control [101] and Biology
[102, 103]. Nevertheless, practitioners also noticed that algorithms with general function ap-
proximators can be quite data/sample inefficient, especially for deep neural networks where the
models may require million of steps for tuning the large number of parameters they contain.1

On the other hand, statistical analysis has been actively conducted to understand the sam-
ple/statistical efficiency for reinforcement learning with function approximation, and fruitful
results have been achieved under the respective model representations [79, 13, 68, 73, 74, 70,
71, 72, 75, 77, 78, 80, 76, 40, 82, 83, 105, 41, 106, 107, 108]. However, most works consider
linear model approximators (e.g. linear (mixture) MDPs) or its variants. While the explicit
linear structures make the analysis trackable (linear problems are easier to analyze), they are
unable to reveal the sample/statistical complexity behaviors of practical algorithms that apply
powerful function approximations (which might have complex structures).

In addition, there is an excellent line of works tackling provably efficient offline RL with
general function approximation (e.g. [13, 40, 109]). Due to the generic function approximation
class considered, those complexity bounds are usually expressed in the standard worst-case
fashion𝑂(𝑉 2

max

√

1
𝑛
) which lack the characterizations of individual instance behaviors. However,

1Check [104] and the references therein for an overview.

42

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

as mentioned in [52], practical reinforcement learning algorithms often perform far better than
what these problem-independent bounds would suggest.

These observations motivate us to consider function approximation schemes that can help
address the existing limitations. In particular, in this work we consider offline reinforcement
learning with differentiable function class approximations. Its definition is given in below.

Definition 4.1.1 (Parametric Differentiable Function Class). Let  , be arbitrary state, action

spaces and a feature map 𝜙(⋅, ⋅) ∶  × → Ψ ⊂ ℝ𝑚. The parameter space Θ ∈ ℝ𝑑 . Both Θ

and Ψ are compact spaces. Then the parametric function class (for a model 𝑓 ∶ ℝ𝑑 ×ℝ𝑚 → ℝ)

is defined as

 ∶= {𝑓 (𝜃, 𝜙(⋅, ⋅)) ∶  × → ℝ, 𝜃 ∈ Θ}

that satisfies differentiability/smoothness condition: 1. for any 𝜙 ∈ ℝ𝑚, 𝑓 (𝜃, 𝜙) is third-time

differentiable with respect to 𝜃; 2. 𝑓, 𝜕𝜃𝑓, 𝜕2𝜃,𝜃𝑓, 𝜕
3
𝜃,𝜃,𝜃𝑓 are jointly continuous for (𝜃, 𝜙).

Remark 3. Differentiable Function Class was recently proposed for studying Off-Policy Eval-

uation (OPE) Problem [110] and we adopt it here for the policy learning task. Note by the

compactness of Θ, Ψ and continuity, there exists constants 𝐶Θ, 𝐵 , 𝜅1, 𝜅2, 𝜅3 > 0 that bounds:

‖𝜃‖2 ≤ 𝐶Θ, |𝑓 (𝜃, 𝜙(𝑠, 𝑎))| ≤ 𝐵 , ‖‖∇𝜃𝑓 (𝜃, 𝜙(𝑠, 𝑎))‖‖2 ≤ 𝜅1, ‖‖∇
2
𝜃𝜃𝑓 (𝜃, 𝜙(𝑠, 𝑎))‖‖2 ≤ 𝜅2, and

‖

‖

∇3
𝜃𝜃𝜃𝑓 (𝜃, 𝜙(𝑠, 𝑎))‖‖2 ≤ 𝜅3 for all 𝜃 ∈ Θ, 𝑠, 𝑎 ∈  ×.2

Why consider differentiable function class (Definition 4.1.1)? There are two main rea-
sons why differentiable function class is worth studying for reinforcement learning.

• Due to the limitation of statistical tools, existing analysis in reinforcement learning usu-
ally favor basic settings such as tabular MDPs (where the state space and action space
are finite [111, 44, 112, 113, 114, 30, 3, 16, 115, 17, 19, 116, 117, 118, 119]) or linear

2Here ‖

‖

‖

∇3
𝜃𝜃𝜃𝑓 (𝜃, 𝜙(𝑠, 𝑎))

‖

‖

‖2
is defined as the 2-norm for 3-𝑑 tensor and in the finite horizon setting we simply

instantiate  = 𝐻 .

43

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

MDPs [69, 71, 85, 80, 120, 90, 82] / linear Mixture MDPs [70, 56, 121, 122, 76] (where
the transition dynamic admits linear structures) so that well-established techniques (e.g.

from linear regression) can be applied. In addition, subsequent extensions are often based
on linear models (e.g. Linear Bellman Complete models [75] and Eluder dimension
[123, 77]). Differentiable function class strictly generalizes over the previous popular
choices, i.e. by choosing 𝑓 (𝜃, 𝜙) = ⟨𝜃, 𝜙⟩ or specifying 𝜙 to be one-hot representations,
and is far more expressive as it encompasses nonlinear approximators.

• Practically speaking, the flexibility of selecting model 𝑓 provides the possibility for han-
dling a variety of tasks. For instance, when 𝑓 is specified to be neural networks, 𝜃 cor-
responds to the weights of each network layers and 𝜙(⋅, ⋅) corresponds to the state-action
representations (which is induced by the network architecture). When facing with easier
tasks, we can deploy simpler model 𝑓 such as polynomials. Yet, our statistical guaran-
tee is not affected by the specific choices as we can plug the concrete form of model 𝑓
into Theorem 4.3.2 to obtain the respective bounds (we do not need separate analysis for
different tasks).

4.1.1 Related works

Reinforcement learning with function approximation. RL with function approximation
has a long history that can date back to [124, 125]. Later, it draws significant interest for the
finite sample analysis [71, 68]. Since then, people put tremendous efforts towards generalizing
over linear function approximations and examples include Linear Bellman complete models
[75], Eluder dimension [123, 77], linear deterministic 𝑄⋆ [53] or Bilinear class [78]. While
those extensions are valuable, the structure conditions assumed usually make the classes hard
to track beyond the linear case. For example, the practical instances of Eluder Dimension are
based on the linear-in-feature (or its transformation) representations (Section 4.1 of [53]). As a

44

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

Algorithm Assumption Suboptimality Gap 𝑣⋆ − 𝑣𝜋

VFQL, Theorem 4.3.1 Concentrability 4.2.2 √

𝐶eff𝐻 ⋅

√

𝐻2𝑑+𝜆𝐶2
Θ

𝐾
+

1
4

√

𝐻3𝑑𝜖
𝐾

+
√

𝐶eff𝐻3𝜖 +𝐻𝜖

PFQL, Theorem 4.3.2 Uniform Coverage 4.2.3 ∑𝐻
ℎ=1 16𝑑𝐻 ⋅ 𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Σ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

VAFQL, Theorem 4.4.1 Uniform Coverage 4.2.3 16𝑑 ⋅
∑𝐻

ℎ=1 𝔼𝜋⋆
[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Λ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

Table 4.1: Suboptimality gaps for different algorithms with differentiable function class 4.1.1.
Here we omit the higher order term for clear comparison. With Concentrability, we can only
achieve the worst case bound that does not explicit depend on the function model 𝑓 . With the
stronger uniform coverage 4.2.3, better instance-dependent characterizations become avail-
able. Here 𝐶eff is in 4.2.2, Σ⋆ in 4.3.2, Λ⋆ in 4.4.1 and 𝜖 in 4.2.1.

comparison, differentiable function class contains a range of functions that are widely used in
practical algorithms [126].

Offline RL with general function approximation (GFA). Another interesting thread of
work considered offline RL with general function approximation [59, 13, 35, 40] which only
imposes realizability and completeness/concentrability assumptions. The major benefit is that
the function hypothesis can be arbitrary with no structural assumptions and it has been shown
that offline RL with GFA is provably efficient. However, the generic form of functions in GFA
makes it hard to go beyond worst-case analysis and obtain fine-grained instance-dependent
learning bounds similar to those under linear cases. On the contrary, our results with DFA
can be more problem adaptive by leveraging gradients and higher order information.

In addition to the above, there are more connected works. [110] first considers the differ-
entiable function approximation (DFA) for the off-policy evaluation (OPE) task and builds the
asymptotic theory, [127] analyzes the deep Q-learning with the specific ReLu activations, and
[128] considers semi-parametric / nonparametric methods for offline RL (as opposed to our
parametric DFA in 4.1.1). These are nice complementary studies to our work.

45

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

4.1.2 Our contribution

We provide the first Instance-dependent offline learning bound under non-linear function
approximation. Informally, we show that (up to a lower order term) the natural complexity
measure is proportional to ∑𝐻

ℎ=1 𝔼𝜋⋆,ℎ[
√

𝑔𝜃(𝑠, 𝑎)⊤Σ−1
ℎ 𝑔𝜃(𝑠, 𝑎)] where 𝑔𝜃(𝑠, 𝑎) ∶= ∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))

is the gradient w.r.t. the parameter 𝜃⋆ at feature 𝜙 and Σℎ =
∑

𝑖 𝑔(𝑠𝑖,ℎ, 𝑎𝑖,ℎ)𝑔(𝑠𝑖,ℎ, 𝑎𝑖,ℎ)⊤ is the
Fisher information matrix of the observed data at 𝜃. This is achieved by analyzing the pes-

simistic fitted Q-learning (PFQL) algorithm (Theorem 4.3.2). In addition, we further analyze
its variance-reweighting variant, which recovers the variance-dependent structure and can yield
faster sample convergence rate. Last but not least, existing offline RL studies with tabular mod-
els, linear models and GLM models can be directly indicated by the appropriate choice of our
model  .

4.2 Preliminaries

Episodic Markov decision process. Let𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1) to denote a finite-horizon
Markov Decision Process (MDP), where  is the arbitrary state space and  is the arbitrary
action space which can be infinite or continuous. The transition kernel 𝑃ℎ ∶  × ↦ Δ (Δ

represents a distribution over states) maps each state action(𝑠ℎ, 𝑎ℎ) to a probability distribution
𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ) and 𝑃ℎ can be different for different ℎ (time-inhomogeneous). 𝐻 is the planning
horizon and 𝑑1 is the initial state distribution. Besides, 𝑟 ∶  × 𝐴 ↦ ℝ is the mean reward
function satisfying 0 ≤ 𝑟 ≤ 1. A policy 𝜋 = (𝜋1,… , 𝜋𝐻) assigns each state 𝑠ℎ ∈  a probability
distribution over actions by mapping 𝑠ℎ ↦ 𝜋ℎ(⋅|𝑠ℎ) ∀ℎ ∈ [𝐻] and induces a random trajectory
𝑠1, 𝑎1, 𝑟1,… , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1 with 𝑠1 ∼ 𝑑1, 𝑎ℎ ∼ 𝜋(⋅|𝑠ℎ), 𝑠ℎ+1 ∼ 𝑃ℎ(⋅|𝑠ℎ, 𝑎ℎ),∀ℎ ∈ [𝐻].

Given a policy𝜋, the𝑉 -value functions and state-action value function (Q-functions)𝑄𝜋
ℎ(⋅, ⋅) ∈

ℝ𝑆×𝐴 are defined as: 𝑉 𝜋
ℎ (𝑠) = 𝔼𝜋[

∑𝐻
𝑡=ℎ 𝑟𝑡|𝑠ℎ = 𝑠], 𝑄𝜋

ℎ(𝑠, 𝑎) = 𝔼𝜋[
∑𝐻
𝑡=ℎ 𝑟𝑡|𝑠ℎ, 𝑎ℎ = 𝑠, 𝑎], ∀𝑠, 𝑎, ℎ ∈

46

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

 ,, [𝐻]. The Bellman (optimality) equations follow ∀ℎ ∈ [𝐻], 𝑠, 𝑎 ∈  ×:

𝑄𝜋
ℎ(𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + ∫

𝑉 𝜋
ℎ+1(⋅)𝑑𝑃ℎ(⋅|𝑠, 𝑎), 𝑉

𝜋
ℎ (𝑠) = 𝔼𝑎∼𝜋ℎ(𝑠)[𝑄

𝜋
ℎ(𝑠, 𝑎)],

𝑄⋆
ℎ (𝑠, 𝑎) = 𝑟ℎ(𝑠, 𝑎) + ∫

𝑉 ⋆
ℎ+1(⋅)𝑑𝑃ℎ(⋅|𝑠, 𝑎), 𝑉

⋆
ℎ (𝑠) = max

𝑎
𝑄⋆
ℎ (𝑠, 𝑎).

We define Bellman operator ℎ for any function 𝑉 ∈ ℝ as ℎ(𝑉) = 𝑟ℎ + ∫ 𝑉 𝑑𝑃ℎ, then
ℎ(𝑉 𝜋

ℎ+1) = 𝑄𝜋
ℎ andℎ(𝑉 ⋆

ℎ+1) = 𝑄⋆
ℎ . The performance measure is 𝑣𝜋 ∶= 𝔼𝑑1

[

𝑉 𝜋
1

]

= 𝔼𝜋,𝑑1
[

∑𝐻
𝑡=1 𝑟𝑡

]

.
Lastly, the induced state-action marginal occupancy measure for any ℎ ∈ [𝐻] is defined to be:
for any 𝐸 ⊆  ×, 𝑑𝜋ℎ (𝐸) ∶= 𝔼[(𝑠ℎ, 𝑎ℎ) ∈ 𝐸|𝑠1 ∼ 𝑑1, 𝑎𝑖 ∼ 𝜋(⋅|𝑠𝑖), 𝑠𝑖 ∼ 𝑃𝑖−1(⋅|𝑠𝑖−1, 𝑎𝑖−1), 1 ≤

𝑖 ≤ ℎ] and 𝔼𝜋,ℎ[𝑓 (𝑠, 𝑎)] ∶= ∫× 𝑓 (𝑠, 𝑎)𝑑
𝜋
ℎ (𝑠, 𝑎)𝑑𝑠𝑑𝑎.

Offline Reinforcement Learning. The goal of Offline RL is to learn the policy 𝜋⋆ ∶=

argmax𝜋 𝑣𝜋 using only the historical data  =
{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1

)}ℎ∈[𝐻]

𝜏∈[𝐾]
. The data generating

behavior policy is denoted as 𝜇. In the offline regime, we have neither the knowledge about 𝜇
nor the access to further exploration for a different policy. The agent is asked to find a policy 𝜋
such that 𝑣⋆ − 𝑣𝜋 ≤ 𝜖 for the given batch data  and a specified accuracy 𝜖 > 0.

4.2.1 Assumptions

Function approximation in offline RL requires sufficient expressiveness of  . In fact, even
under the realizability and concentrability conditions, sample efficient offline RL might not be
achievable [92]. Therefore, under the differentiable function setting (Definition 4.1.1), we make
the following assumptions.

Assumption 4.2.1 (Realizability+Bellman Completeness). The differentiable function class 

in Definition 4.1.1 satisfies:

• Realizability: for optimal 𝑄⋆
ℎ , there exists 𝜃⋆ℎ ∈ Θ such that 𝑄⋆

ℎ (⋅, ⋅) = 𝑓 (𝜃⋆ℎ , 𝜙(⋅)) ∀ℎ;

• Bellman Completeness: Let  ∶= {𝑉 (⋅) ∈ ℝ ∶ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑉 ‖∞ ≤ 𝐻}. Then in this
47

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

case sup𝑉 ∈ inf𝑓∈ ‖

‖

𝑓 − ℎ(𝑉)‖
‖∞ ≤ 𝜖 for some 𝜖 ≥ 0.

Realizability and Bellman Completeness are widely adopted in the offline RL analysis with
general function approximations [13, 40] and Assumption 4.2.1 states its differentiable function
approximation version. There are other forms of completeness, e.g. optimistic closure defined
in [129].

Data coverage assumption. Furthermore, in the offline regime, it is known that function
approximation cannot be sample efficient for learning a 𝜖-optimal policy without data-coverage
assumptions when 𝜖 is small (i.e. high accuracy) [90]. In particular, we consider two types of
coverage assumptions and provide guarantees for them separately.

Assumption 4.2.2 (Concentrability Coverage). For any fixed policy 𝜋, define the marginal

state-action occupancy ratio as 𝑑𝜋ℎ (𝑠, 𝑎)∕𝑑
𝜇
ℎ (𝑠, 𝑎) ∀𝑠, 𝑎. Then the concentrability coefficient

is defined as 𝐶eff ∶= sup𝜋 supℎ∈[𝐻]
‖

‖

𝑑𝜋ℎ∕𝑑
𝜇
ℎ
‖

‖

2
2,𝑑𝜇ℎ

, where ‖𝑔(⋅, ⋅)‖2,𝑑𝜇 ∶=
√

𝔼𝑑𝜇[𝑔(⋅, ⋅)2] and

𝐶eff <∞.

This is the standard coverage assumption that has has been widely assumed in [59, 31, 13,
15]. In the above, it requires the occupancy ratio to be finitely bounded for all the policies. In
the recent work [40], they prove offline learning with GFA is efficient with only single policy
concentrability, we believe similar results can be derived for DFA by modifying their main
algorithm (3.2). However, chances are it will end up with a computational intractable algorithm.
We leave this as the future work.

Assumption 4.2.2 is fully characterized by the MDPs. In addition, we can make an alterna-
tive assumption 4.2.3 that depends on both the MDPs and the function approximation class  .3
It assumes a curvature condition for  .

Assumption 4.2.3 (Uniform Coverage). We have ∀ℎ ∈ [𝐻], there exists 𝜅 > 0,
3Generally speaking, 4.2.2 and 4.2.3 are not directly comparable. However, for the specific function class

𝑓 = ⟨𝜃, 𝜙⟩ with 𝜙 = 𝟏(𝑠, 𝑎) and tabular MDPs, it is easy to check 4.2.3 is strong than 4.2.2.
48

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

• 𝔼𝜇,ℎ
[

(

𝑓 (𝜃1, 𝜙(⋅, ⋅)) − 𝑓 (𝜃2, 𝜙(⋅, ⋅))
)2
]

≥ 𝜅 ‖
‖

𝜃1 − 𝜃2‖‖
2
2 , ∀𝜃1, 𝜃2 ∈ Θ; (⋆)

• 𝔼𝜇,ℎ
[

∇𝑓 (𝜃, 𝜙(𝑠, 𝑎)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))⊤
]

≻ 𝜅𝐼,∀𝜃 ∈ Θ. (⋆⋆)

In the linear function approximation regime, Assumption 4.2.3 reduces to 4.2.4 since (⋆)

and (⋆⋆) are identical assumptions. If 𝑓 (𝜃, 𝜙) = ⟨𝜃, 𝜙⟩, then (⋆)𝔼𝜇,ℎ[(𝑓 (𝜃1, 𝜙(⋅, ⋅)) − 𝑓 (𝜃2, 𝜙(⋅, ⋅)))2] =
(𝜃1−𝜃2)⊤𝔼𝜇,ℎ[𝜙𝜙⊤](𝜃1−𝜃2) ≥ 𝜅 ‖

‖

𝜃1 − 𝜃2‖‖
2
2 ∀𝜃1, 𝜃2 ⇔ 4.2.4⇔ (⋆⋆)𝔼𝜇,ℎ

[

∇𝑓 (𝜃, 𝜙(𝑠, 𝑎)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))⊤
]

≻ 𝜅𝐼 . Therefore, 4.2.3 can be considered as a natural extension of 4.2.4 for differentiable class.
We do point that 4.2.3 can be violated for function class  that is “not identifiable” by the data
distribution𝜇 (i.e., there exists 𝑓 (𝜃1), 𝑓 (𝜃2) ∈  , 𝜃1 ≠ 𝜃2 s.t. 𝔼𝜇,ℎ[

(

𝑓 (𝜃1, 𝜙(⋅, ⋅)) − 𝑓 (𝜃2, 𝜙(⋅, ⋅))
)2] =

0). Nevertheless, there are representative non-linear differentiable classes (e.g. generalized lin-
ear model (GLM)) satisfying 4.2.3.

Example 4.2.4 (Linear function coverage assumption [90, 82, 106, 130]). It satisfies thatΣfeature
ℎ ∶=

𝔼𝜇,ℎ
[

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤
]

≻ 𝜅𝐼 , ∀ℎ ∈ [𝐻] with some 𝜅 > 0.

Example 4.2.5 (offline generalized linear model [131, 129]). For a known feature map 𝜙 ∶

 × → 𝑑 and link function 𝑓 ∶ [−1, 1] ↦ [−1, 1] the class of GLM is GLM ∶= {(𝑠, 𝑎) ↦

𝑓 (⟨𝜙(𝑠, 𝑎), 𝜃⟩) ∶ 𝜃 ∈ Θ} satisfying 𝔼𝜇,ℎ
[

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤
]

≻ 𝜅𝐼 . Furthermore, 𝑓 (⋅) is either

monotonically increasing or decreasing and 0 < 𝜅 ≤ |𝑓 ′(𝑧)| ≤ 𝐾 <∞, |𝑓 ′′(𝑧)| ≤𝑀 <∞ for

all |𝑧| ≤ 1 and some 𝜅,𝐾,𝑀 . Then GLM satisfies 4.2.3, see Appendix C.1.

4.3 Differentiable Function Approximation is Provably Effi-

cient

In this section, we present our solution for offline reinforcement learning with differentiable
function approximation. As a warm-up, we first analyze the vanilla fitted Q-learning (VFQL,

49

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

Algorithm 5), which only requires the concentrability Assumption 4.2.2. The algorithm is pre-
sented in Appendix C.8.

Theorem 4.3.1. Choose 0 < 𝜆 ≤ 1∕2𝐶2
Θ in Algorithm 5. Suppose Assumption 4.2.1,4.2.2.

Then if 𝐾 ≥ max
{

512𝜅
4
1

𝜅2

(

log(2𝐻𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

, with probability 1 − 𝛿, the

output 𝜋 of VFQL guarantees

𝑣⋆ − 𝑣𝜋 ≤
√

𝐶eff𝐻 ⋅ 𝑂
⎛

⎜

⎜

⎝

√

𝐻2𝑑 + 𝜆𝐶2
Θ

𝐾
+

1
4

√

𝐻3𝑑𝜖
𝐾

⎞

⎟

⎟

⎠

+ 𝑂(
√

𝐶eff𝐻3𝜖 +𝐻𝜖)

If the model approximation capacity is insufficient, 4.3.1 will induce extra error due to the
large 𝜖 . If 𝜖 → 0, the standard statistical rate 1

√

𝐾
can be recovered and similar results are

derived with general function approximation (GFA) [13, 15]. However, using concentrabil-
ity coefficient conceals the problem-dependent structure and omits the specific information of
differentiable functions in the complexity measure. Owing to this, we switch to the stronger
“uniform” coverage 4.2.3 and analyze the pessimistic fitted Q-learning (PFQL, Algorithm 3) to
arrive at the conclusion that offline RL with differentiable function approximation is provably
efficient.

Motivation of PFQL. The PFQL algorithm mingles the two celebrated algorithmic choices:
Fitted Q-Iteration (FQI) and Pessimism. However, before going into the technical details, we
provide some interesting insights that motivate our analysis.

First of all, the square error loss used in FQI [58, 59] naturally couples with the differentiable
function class as the resulting optimization objective is more computationally tractable (since
stochastic gradient descent (SGD) can be readily applied) comparing to other information-
theoretical algorithms derived with general function approximation (e.g. the maxmin objective
in [40], eqn (3.2)).4 In particular, FQI with differentiable function approximation resembles

4We mention [40] has a nice practical version PSPI, but the convergence is slower (the rate 𝑂(𝑛− 1
3)).

50

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

the theoretical prototype of neural FQI algorithm [126] and DQN algorithm [60, 127] when
instantiating the model 𝑓 to be deep neural networks. Furthermore, plenty of practical algo-
rithms leverage fitted-Q subroutines for updating the critic step (e.g. [132, 133]) with different
differentiable function choices.

In addition, we also incorporate pessimism for the design. Indeed, one of the fundamental
challenges in offline RL comes from the distributional shift. When such a mismatch occurs,
the estimated/optimized 𝑄-function (using batch data ) may witness severe overestimation
error due to the extrapolation of model 𝑓 [10]. Pessimism is the scheme to mitigate the error
/ overestimation bias via penalizing the Q-functions at state-action locations that have high
uncertainties (as opposed to the optimism used in the online case), and has been widely adopted
(e.g. [134, 37, 80]).

Algorithm 3 description. Inside the backward iteration of PFQL, Fitted Q-update is per-
formed to optimize the parameter (Line 4). 𝜃ℎ is the root of the first-order stationarity equation
∑𝐾

𝑘=1

(

𝑓 (𝜃, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅∇⊤
𝜃 𝑓 (𝜃, 𝜙ℎ,𝑘)+𝜆𝜃 = 0 andΣℎ is the Gram matrix with re-

spect to∇𝜃𝑓 |𝜃=𝜃ℎ . Note for any 𝑠, 𝑎 ∈ ×,𝑚(𝑠, 𝑎) ∶= (∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)))−1

measures the effective sample size that explored 𝑠, 𝑎 along the gradient direction ∇𝜃𝑓 |𝜃=𝜃ℎ , and
𝛽∕

√

𝑚(𝑠, 𝑎) is the estimated uncertainty at (𝑠, 𝑎). However, the quantity 𝑚(𝑠, 𝑎) depends on 𝜃ℎ,
and 𝜃ℎ needs to be close to the true 𝜃⋆ℎ (i.e. 𝑄̂ℎ ≈ 𝑓 (𝜃ℎ, 𝜙) needs to be close to 𝑄⋆

ℎ) for the un-
certainty estimation Γℎ to be valid, since putting a random 𝜃 into 𝑚(𝑠, 𝑎) can cause an arbitrary
Γℎ that is useless (or might even deteriorate the algorithm). Such an “implicit” constraint over
𝜃ℎ imposes the extra difficulty for the theoretical analysis due to that general differentiable func-
tions encode nonlinear structures. As a direct comparison, in the simpler linear MDP case, the
uncertainty measure Γℎ ∶=

√

𝜙(⋅, ⋅)⊤(Σlinear
ℎ)−1𝜙(⋅, ⋅) is always valid since it does not depend

on the least-square regression weight 𝑤̂ℎ [80].5 Besides, the choice of 𝛽 is set to be 𝑂(𝑑𝐻) in
Theorem 4.3.2 and the extra higher order term 𝑂(1

𝐾
) in Γℎ is for theoretical reason only.

5Here Σlinear
ℎ ∶=

∑𝐾
𝑘=1 𝜙ℎ,𝑘𝜙

⊤
ℎ,𝑘 + 𝜆𝐼𝑑 .

51

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

Algorithm 3 Pessimistic Fitted Q-Learning (PFQL)
1: Input: Offline Dataset  =

{(

𝑠𝑘ℎ, 𝑎
𝑘
ℎ, 𝑟

𝑘
ℎ, 𝑠

𝑘
ℎ+1

)}𝐾,𝐻
𝑘,ℎ=1. Require 𝛽. Denote 𝜙ℎ,𝑘 ∶= 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ).

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0 and 𝜆 > 0.
3: for ℎ = 𝐻,𝐻 − 1,… , 1 do

4: Set 𝜃ℎ ← argmin𝜃∈Θ

{

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]2

+ 𝜆 ⋅ ‖𝜃‖22

}

5: Set Σℎ ← ∑𝐾
𝑘=1 ∇𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)∇⊤

𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) + 𝜆𝐼𝑑 .
6: Set Γℎ(⋅, ⋅) ← 𝛽

√

∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))⊤Σ−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))

(

+𝑂(1
𝐾
)
)

7: Set 𝑄̄ℎ(⋅, ⋅) ← 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − Γℎ(⋅, ⋅)

8: Set 𝑄̂ℎ(⋅, ⋅) ← min
{

𝑄̄ℎ(⋅, ⋅),𝐻 − ℎ + 1
}+

9: Set 𝜋ℎ(⋅ ∣ ⋅) ← argmax𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

, 𝑉ℎ(⋅) ← max𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩



10: end for

11: Output:
{

𝜋ℎ
}𝐻
ℎ=1.

Model-Based vs. Model-Free. PFQL can be viewed as the strict generalization over the
previous value iteration based algorithms, e.g. PEVI algorithm ([80], linear MDPs) and the
VPVI algorithm ([5], tabular MDPs). On one hand, approximate value iteration (AVI) algo-
rithms [135] are usually model-based algorithms (for instance the tabular algorithm VPVI uses
empirical model 𝑃 for planning). On the other hand, FQI has the form of batch Q-learning
update (i.e. Q-learning is a special case with batch size equals to one), therefore is more of
model-free flavor. Since FQI is a concrete instantiation of the abstract AVI procedure [136],
PFQL draws a unified view of model-based and model-free learning.

Now we are ready to state our main result for PFQL and the full proof can be found in
Appendix C.3,C.4,C.5.

Theorem 4.3.2. Let 𝛽 = 8𝑑𝐻𝜄 and choose 0 < 𝜆 ≤ 1∕2𝐶2
Θ in Algorithm 3. Suppose Assump-

52

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

tion 4.2.1,4.2.3 with 𝜖 = 0.6 Then if𝐾 ≥ max
{

512𝜅
4
1

𝜅2

(

log(2𝐻𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

,

with probability 1 − 𝛿, for all policy 𝜋 simultaneously, the output of PFQL guarantees

𝑣𝜋 − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
8𝑑𝐻 ⋅ 𝔼𝜋

[
√

∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Σ

−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶hot

𝐾
),

where 𝜄 is a Polylog term and the expectation of 𝜋 is taken over 𝑠ℎ, 𝑎ℎ. In particular, if further

𝐾 ≥ max{𝑂((𝜅
2
1+𝜆)

2𝜅22𝜅
2
1𝐻

4𝑑2

𝜅6
), 128𝜅

4
1 log(2𝑑∕𝛿)

𝜅2
} we have

0 ≤ 𝑣𝜋⋆ − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
16𝑑𝐻 ⋅ 𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Σ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶 ′

hot

𝐾
).

Here Σ⋆ℎ =
∑𝐾

𝑘=1∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ))∇

⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))+𝜆𝐼𝑑 and the definition of higher order

parameter 𝐶hot , 𝐶 ′
hot can be found in the Notation List.

Corollary 4.3.1 (Offline Generalized Linear Models (GLM)). Consider the GLM function class

defined in 4.2.5. Suppose 𝛽, 𝜆,𝐾 are defined the same as Theorem 4.3.2. 𝜖 = 0. Then with

probability 1 − 𝛿, for all policy 𝜋 simultaneously, PFQL guarantees

𝑣𝜋 − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
8𝑑𝐻 ⋅ 𝔼𝜋

[
√

𝑓 ′(⟨𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)⟩)2 ⋅ 𝜙⊤(𝑠ℎ, 𝑎ℎ)Σ−1
ℎ 𝜙(𝑠ℎ, 𝑎ℎ)

]

⋅ 𝜄 + 𝑂(
𝐶hot

𝐾
).

PFQL is provably efficient. Theorem 4.3.2 verifies PFQL is statistically efficient. In par-
ticular, by Lemma C.11.5 we have ‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)‖‖Σ−1
ℎ
≲ 2𝜅1

√

𝜅𝐾
, resulting the main term to be

bounded by 32𝑑𝐻2𝜅1
√

𝜅𝐾
that recovers the standard statistical learning convergence rate 1

√

𝐾
.

Comparing to [80]. Theorem 4.3.2 strictly subsumes the linear MDP learning bound in
[80]. Indeed, 4.3.2 reduces to𝑂(𝑑𝐻∑𝐻

ℎ=1 𝔼𝜋⋆[
√

𝜙(𝑠ℎ, 𝑎ℎ)⊤(Σlinear
ℎ)−1𝜙(𝑠ℎ, 𝑎ℎ)]) since∇𝜃𝑓 (𝜃, 𝜙) =

∇𝜃⟨𝜃, 𝜙⟩ = 𝜙.
Instance-dependent learning. Previous studies for offline RL with general function ap-

6Here we assume model capacity is sufficient to make the presentation concise. If 𝜖 > 0, the complexity
bound will include the term 𝜖 . We include more discussion in Appendix C.7.

53

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

proximation (GFA) [13, 14] are more of worst-case flavors as they usually rely on the concen-

trability coefficient 𝐶 . The resulting learning bounds are expressed in the form7 𝑂(𝑉 2
max

√

𝐶
𝑛
)

that is unable to depict the behavior of individual instances. In contrast, the guarantee with
differentiable function approximation is more adaptive due to the instance-dependent structure
∑𝐻

ℎ=1 𝔼𝜋⋆
[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙)Σ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)

]

. This Fisher-Information style quantity character-
izes the learning hardness of separate problems explicitly as for different MDP instances 𝑀1,
𝑀2, via ∑𝐻

ℎ=1 𝔼𝜋⋆
[√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ,𝑀𝑖

, 𝜙)Σ⋆−1ℎ ∇𝜃𝑓 (𝜃⋆ℎ,𝑀𝑖
, 𝜙)

]

(𝑖 = 1, 2), the coupled 𝜃⋆ℎ,𝑀1
, 𝜃⋆ℎ,𝑀2

will
generate different performances. Standard worst-case bounds (e.g. from GFA approximation)
cannot explicitly differentiate between problem instances.

Feature representation vs. Parameters. One interesting observation from Theorem 4.3.2
is that the learning complexity does not depend on the feature representation dimension 𝑚 but
only on parameter dimension 𝑑 as long as function class  satisfies differentiability defini-
tion 4.1.1 (not even in the higher order term). This seems to suggest, when changing the model
𝑓 with more complex representations, the learning hardness will not grow as long as the num-
ber of parameters need to be learned does not increase. Note in the linear MDP analysis this
phenomenon is not captured since the two dimensions are coupled (𝑑 = 𝑚). Therefore, this
heuristic might help people rethink about what is the more essential element (feature represen-
tation vs. parameter space) in the representation learning RL regime (e.g. low rank MDPs
[107]). We leave the concrete understanding the connection between features and parameters
as the future work.

Technical challenges with differentiable function approximation (DFA). Informally, one
key step for the analysis is to bound |𝑓 (𝜃ℎ, 𝜙) − 𝑓 (𝜃⋆ℎ , 𝜙)|. This can be estimated by the first
order approximation ∇𝑓 (𝜃ℎ, 𝜙)⊤ ⋅ (𝜃ℎ − 𝜃⋆ℎ). However, different from the least-square value
iteration (LSVI) objective [71, 80], the fitted Q-update (Line 4, Algorithm 3) no longer admits
a closed-form solution for 𝜃ℎ. Instead, we can only leverage 𝜃ℎ is a stationary point of𝑍ℎ(𝜃) ∶=

7Here 𝑛 is the number of samples used in the infinite horizon discounted setting and is similar to 𝐾 in the
episodic setting.

54

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1
(

𝑠𝑘ℎ+1
)

]

∇𝑓 (𝜃, 𝜙ℎ,𝑘) + 𝜆 ⋅ 𝜃 (since 𝑍ℎ(𝜃ℎ) = 0). To measure the
difference 𝜃ℎ − 𝜃⋆ℎ , for any 𝜃 ∈ Θ, we do the Vector Taylor expansion 𝑍ℎ(𝜃) − 𝑍ℎ(𝜃ℎ) =

Σ𝑠ℎ(𝜃 − 𝜃ℎ) + 𝑅𝐾(𝜃) (where 𝑅𝐾(𝜃) is the higher-order residuals) at the point 𝜃ℎ with

Σ𝑠ℎ ∶=
𝜕
𝜕𝜃
𝑍ℎ(𝜃)

|

|

|

|𝜃=𝜃ℎ
= 𝜕
𝜕𝜃

(𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]

∇𝑓 (𝜃, 𝜙ℎ,𝑘) + 𝜆 ⋅ 𝜃

)

𝜃=𝜃ℎ

=
𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

⏟⏞⏞⏟⏞⏞⏟
∶=ΔΣ𝑠ℎ

+
𝐾
∑

𝑘=1
∇𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)∇⊤

𝜃 𝑓 (𝜃ℎ,𝑘, 𝜙ℎ,𝑘) + 𝜆𝐼𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=Σℎ

.

(4.1)
The perturbation term ΔΣ𝑠ℎ

encodes one key challenge for solving 𝜃ℎ − 𝜃⋆ℎ since it breaks the
positive definiteness of Σ𝑠ℎ, and, as a result, we cannot invert the Σ𝑠ℎ in the Taylor expansion
of 𝑍ℎ. This is due to DFA (Definition 4.1.1) is a rich class that incorporates nonlinear curva-
tures. In the linear function approximation regime, this hurdle will not show up since ∇2

𝜃𝜃𝑓 ≡ 0

and ΔΣ𝑠ℎ
is always invertible as long as 𝜆 > 0. Moreover, for the off-policy evaluation (OPE)

task, one can overcome this issue by expanding over the population counterpart of 𝑍ℎ at un-
derlying true parameter of the given behavior target policy [110].8 However, for the policy
learning task, we cannot use either population quantity or the true parameter 𝜃⋆ℎ since we need
a computable/data-based pessimism Γℎ to make the algorithm practical. Check the following
section for more discussions of the analysis.

4.3.1 Sketch of the PFQL Analysis

Due to the space constraint, here we only overview the key components of the analysis.
To begin with, by following the result of general MDP in [80], the suboptimality gap can be
bounded by (Appendix C.3) ∑𝐻

ℎ=1 2𝔼𝜋
[

Γℎ(𝑠ℎ, 𝑎ℎ)
] if |(ℎ𝑉ℎ+1 − 𝑓 (𝜃ℎ, 𝜙))(𝑠, 𝑎)| ≤ Γℎ(𝑠, 𝑎). To

8i.e. expanding over𝑍𝑝
ℎ(𝜃) ∶= 𝔼𝑠,𝑎,𝑠′ [(𝑓 (𝜃, 𝜙(𝑠, 𝑎))− 𝑟−𝑉 𝜋

ℎ+1(𝑠
′))∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))], and the corresponding ΔΣ𝑠ℎ

in 𝜕
𝜕𝜃𝑍ℎ(𝜃)|𝜃=𝜃𝜋ℎ is zero by Bellman equation.

55

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

deal withℎ𝑉ℎ+1, by Assumption 4.2.1 we can leverage the parameter Bellman operator 𝕋 (Def-
inition C.3.1) so that ℎ𝑉ℎ+1 = 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙). Next, we apply the second-order approximation to
obtain ℎ𝑉ℎ+1 − 𝑓 (𝜃ℎ, 𝜙) ≈ ∇𝑓 (𝜃ℎ, 𝜙)⊤(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) +

1
2
(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ)

⊤∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙)(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ).

Later, we use (4.1) to represent

𝑍ℎ(𝜃𝕋𝑉ℎ+1) −𝑍ℎ(𝜃ℎ) = Σ𝑠ℎ(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1) = Σℎ(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

by denoting𝑅𝐾(𝜃𝕋𝑉ℎ+1) = ΔΣ𝑠ℎ
(𝜃ℎ−𝜃𝕋𝑉ℎ+1)+𝑅𝐾(𝜃𝕋𝑉ℎ+1). Now thatΣ−1

ℎ is invertible thus provides
the estimation (note 𝑍ℎ(𝜃ℎ) = 0)

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ = Σ−1
ℎ ⋅𝑍ℎ(𝜃𝕋𝑉ℎ+1) − Σ−1

ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1).

However, to handle the higher order terms, we need the explicit finite sample bound for ‖𝜃𝕋𝑉ℎ+1−
𝜃ℎ‖2 (or ‖𝜃⋆ℎ − 𝜃ℎ‖2). In the OPE literature, [110] uses asymptotic theory (Prohorov’s Theorem)
to show the existence of 𝐵(𝛿) such that ‖𝜃ℎ − 𝜃⋆ℎ ‖ ≤ 𝐵(𝛿)

√

𝐾
. However, this is insufficient for

finite sample/non-asymptotic guarantees since the abstraction of 𝐵(𝛿) might prevent the result
from being sample efficient. For example, if 𝐵(𝛿) has the form 𝑒𝐻 log(1

𝛿
), then 𝑒𝐻 log(1𝛿)

√

𝐾
is an

inefficient bound since 𝐾 needs to be 𝑒𝐻∕𝜖2 large to guarantee 𝜖 accuracy.
To address this technicality, we use a novel reduction to general function approximation

(GFA) learning proposed in [13]. Concretely, we first bound the loss objective 𝔼𝜇[𝓁ℎ(𝜃ℎ)] −

𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] via a “orthogonal” decomposition and by solving a quadratic equation. The
resulting bound can be directly used to further bound ‖𝜃𝕋𝑉ℎ+1 −𝜃ℎ‖2 for obtaining efficient guar-
antee𝑂(𝑑𝐻

√

𝜅𝐾
). During the course, the covering technique is applied to extend the finite function

hypothesis in [13] to all the differentiable functions in Definition 4.1.1. See Appendix C.6 for
the complete proofs. The full proof can be found in Appendix C.3,C.4,C.5.

56

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

4.4 Improved Learning via Variance Awareness

In addition to knowing the provable efficiency for differentiable function approximation
(DFA), it is of great interest to understand what is the statistical limit with DFA, or equiva-
lently, what is the “optimal” sample/statistical complexity can be achieved in DFA (measured
by minimaxity criteria)? Towards this goal, we further incorporate variance awareness to im-
prove our learning guarantee. Variance awareness is first designed for linear Mixture MDPs
[93, 76] to achieve the near-minimax sample complexity and it uses estimated conditional vari-
ances Var𝑃 (⋅|𝑠,𝑎)(𝑉 ⋆

ℎ+1) to reweight each training sample in the LSVI objective.9 Later, such a
technique is leveraged by [82, 106] to obtained the instance-dependent results. Intuitively, con-
ditional variances 𝜎2(𝑠, 𝑎) ∶= Var𝑃 (⋅|𝑠,𝑎)(𝑉 ⋆

ℎ+1) serves as the uncertainty measure of the sample
(𝑠, 𝑎, 𝑟, 𝑠′) that comes from the distribution 𝑃 (⋅|𝑠, 𝑎). If 𝜎2(𝑠, 𝑎) is large, then the distribution
𝑃 (⋅|𝑠, 𝑎) has high variance and we should put less weights in a single sample (𝑠, 𝑎, 𝑟, 𝑠′) rather
than weighting all the samples equally. In the differentiable function approximation regime, the
update is modified to

𝜃ℎ ← argmin
𝜃∈Θ

{ 𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]2

𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

+ 𝜆 ⋅ ‖𝜃‖22

}

with 𝜎2
ℎ(⋅, ⋅) estimated by the offline data. Notably, empirical algorithms have also shown un-

certainty reweighting can improve the performances for both online RL [138] and offline RL
[139]. These motivates our variance-aware fitted Q-learning (VAFQL) algorithm 6.

Theorem 4.4.1. Suppose Assumption 4.2.1,4.2.3 with 𝜖 = 0. Let 𝛽 = 8𝑑𝜄 and choose 0 < 𝜆 ≤

1∕2𝐶2
Θ in Algorithm 6. Then if 𝐾 ≥ 𝐾0 and

√

𝑑 ≥ 𝑂(𝜁), with probability 1 − 𝛿, for all policy

9We mention [137] uses variance-aware confidence sets in a slightly different way.

57

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

𝜋 simultaneously, the output of VAFQL guarantees

𝑣𝜋 − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
8𝑑 ⋅ 𝔼𝜋

[
√

∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Λ

−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶̄hot

𝐾
),

where 𝜄 is a Polylog term and the expectation of 𝜋 is taken over 𝑠ℎ, 𝑎ℎ. In particular, we have

0 ≤ 𝑣𝜋⋆ − 𝑣𝜋 ≤ 16𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Λ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶̄ ′

hot

𝐾
).

Here Λ⋆
ℎ =

∑𝐾
𝑘=1∇𝜃𝑓 (𝜃⋆ℎ , 𝜙ℎ,𝑘)∇

⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙ℎ,𝑘)∕𝜎

⋆
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

2 + 𝜆𝐼𝑑 and the conditional variance

quantity 𝜎⋆ℎ (⋅, ⋅)
2 ∶= max{1,Var𝑃ℎ𝑉

⋆
ℎ+1(⋅, ⋅)}. The definition of 𝐾0, 𝐶̄hot , 𝐶̄ ′

hot , 𝜁 can be found in

the Notation List.

In particular, to bound the error for 𝒖ℎ, 𝒗ℎ and 𝜎2
ℎ, we need to define an operator 𝕁 that

is similar to the parameter Bellman operator C.3.1. The Full proof of Theorem 4.4.1 can be
found in Appendix C.9. Comparing to Theorem 4.3.2, VAFQL enjoys a net improvement of
the horizon dependence since Var𝑃 (𝑉 ⋆

ℎ) ≤ 𝐻2. Moreover, VAFQL provides better instance-
dependent characterizations as the main term is fully depicted by the system quantities except
the feature dimension 𝑑. For instance, when the system is fully deterministic (transition 𝑃ℎ’s are
deterministic), 𝜎⋆ℎ ≈ Var𝑃ℎ𝑉

⋆
ℎ+1(⋅, ⋅) ≡ 0 (if ignore the truncation) and Λ⋆−1 → 0. This yields

a faster convergence with rate 𝑂(1
𝐾
). Lastly, when reduced to linear MDPs, 4.4.1 recovers the

results of [106] except an extra factor of √𝑑.
On the statistical limits. To complement the study, we incorporate a minimax lower bound

via a reduction to [41, 106]. The following theorem reveals we cannot improve over Theo-
rem 4.4.1 by more than a factor of √𝑑 in the most general cases. The full discussion is deterred
to Appendix C.10.

Theorem 4.4.2 (Minimax lower bound). Specifying the model to have linear representation

𝑓 = ⟨𝜃, 𝜙⟩. There exist a pair of universal constants 𝑐, 𝑐′ > 0 such that given dimension 𝑑,
58

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

horizon𝐻 and sample size𝐾 > 𝑐′𝑑3, one can always find a family of MDP instances such that

for any algorithm 𝜋

inf
𝜋

sup
𝑀∈

𝔼𝑀
[

𝑣⋆ − 𝑣𝜋
]

≥ 𝑐
√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(⋅, ⋅))(Λ

⋆,𝑝
ℎ)−1∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(⋅, ⋅))

]

, (4.2)

where Λ⋆,𝑝ℎ = 𝔼
[

∑𝐾
𝑘=1

∇𝜃𝑓 (𝜃⋆ℎ ,𝜙(𝑠
𝑘
ℎ,𝑎

𝑘
ℎ))⋅∇𝜃𝑓 (𝜃

⋆
ℎ ,𝜙(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ))

⊤

Varℎ(𝑉 ⋆
ℎ+1)(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)

]

.

4.5 Conclusion

In this chapter [7], we study offline reinforcement learning with differentiable function ap-
proximation and show the sample efficiency for differentiable function learning. We further
improve the sample complexity with respect to the horizon dependence via a variance aware
variant. However, the dependence of the parameter space still scales with 𝑑 (whereas for linear
function approximation this dependence is √𝑑), and this is due to applying covering argument
for the rich class of differentiable functions. For large deep models, the dimension of the pa-
rameter can be huge, therefore it would be interesting to know if certain algorithms can further
improve the parameter dependence, or whether this 𝑑 is essential.

Also, how to relax uniform coverage assumption 4.2.3 is unknown under the current anal-
ysis. In addition, due to the technical reason, we require the third-order smoothness in Defini-
tion 4.1.1. If only the second-order or the first-order derivative information is provided, whether
learning efficiency can be achieved remains an interesting question. In addition, understand-
ing the connections between the differentiable function approximation and overparameterized
neural networks approximation [140, 141] is important.

Lastly, the differentiable function approximation setting provides a general framework that
is not confined to offline RL. Understanding the sample complexity behaviors of online rein-
forcement learning [71, 129], reward-free learning [142, 85] and representation learning [107]

59

Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
Chapter 4

might provide new and unified views over the existing studies.

60

Chapter 5

Conclusions and Summary

In this thesis, we analyzed the sample complexity for offline RL with problem-adaptive guaran-
tees. In particular, we propose the Adaptive Pessimistic Value Iteration for tabular RL in Chap-
ter 1, Variane-Aware Pessimistic Value Iteration (VAPVI) for linear function approximation in
Chapter 2, and Pessimistic Fitted Q-Learning (PFQL) for differentiable function approximation
in Chapter 3. Beyond that, our study also covers a wide range of topics that are not included in
the previous chapters.

• Offline Policy Evaluation. We proposed Tabular Marginalized Importance Sampling
(TMIS) estimator [2], whose MSE nearly-matches the cramer-rao lower bound in [143],
and this reveals TMIS estimator is asymptotically, locally, uniformly minimax optimal,
namely, optimal for every problem instance separately. Later, we propose the uniform
convergence problem in OPE, and obtained the near-optimal sample complexity in the
time-homogeneous and time-inhomogeneous settings respectively [3, 4, 144].

• Offline Policy Learning. For the policy learning task, we propose the Double Vari-

ance Reduction algorithm (DVR)[3] for the tabular reinforcement learning, which at-
tains the near-optimal minimax sample complexity guarantees for finite-horizon time-

61

Conclusions and Summary Chapter 5

homogenuous, time-inhomogenuous, and infinite horizon discounted settings respectively.
Besides, we also show linear function approximation [145] with partial coverage condi-
tion is also provably efficient.

• Stochastic Shortest Path and Posterior Sampling RL. We initiated the stochastic short-
est path setting in the offline regime under the tabular setting (there are finite number of
states and actions) [26]. We consider both the offline policy learning and the offline policy
evaluation tasks for this goal-orientated setting. Very recently, we propose the posterior
sampling algorithm for RL with delayed feedback and obtain the √

𝑇 -regret [146].

• Low-switching RL and 𝜌-gap-adjusted misspecification. In many real-world reinforce-
ment learning (RL) tasks, it is costly to run fully adaptive algorithms that update the ex-
ploration policy frequently. Instead, collecting data in large batches using the current pol-
icy deployment is usually cheaper. Those problems can be cast as the low-switching RL
problem, and [147] first achieves the log log 𝑇 switching cost with √

𝑇 regret. Later, we
further derive the logarithmic switching cost for the Linear Bellman Complete model and
generalized linear model in [148]. For bandit problem, we define the new 𝜌-gap-adjusted
misspecification, which does not require the function class to be uniformly misspecified.
Under the mild assumptions, we apply the same LinUCB algorithm to achieve the √

𝑇

regret for this new notion [149].

• Non-stationary RL and Zero-Sum Markov Games. We made the first attempt for
Non-stationary RL with general function approximation, and proposed a new complex-
ity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs,
which subsumes majority of existing tractable RL problems in static MDPs as well as
non-stationary MDPs [150]. Recently, for the model-free zero-sum Markov Games, the
sample complexity of our algorithm for identifying 𝜖-optimal Nash Equilibrium (NE) is
upper bounded by 𝑂(𝐻3𝑆𝐴𝐵∕𝜖2), which is optimal in the dependence of the horizon

62

Conclusions and Summary Chapter 5

𝐻 and the number of states 𝑆 (where 𝐴 and 𝐵 denote the number of actions of the two
players, respectively) [151].

• Deep Reinforcement Learning. We design the Closed-Form Policy Improvement (CFPI)
[152] operator for tackling the locomotion tasks. We initiate offline RL algorithms with
our novel policy improvement operators and empirically demonstrate their effectiveness
over state-of-the-art algorithms on the standard D4RL benchmark [21].

• MathAI and Quantization for Generalization. In [153], we introduce TheoremQA,
the first theorem-driven question-answering dataset designed to evaluate AI models’ ca-
pabilities to apply theorems to solve challenging science problems. We evaluate a wide
spectrum of 16 large language and code models with different prompting strategies like
Chain-of-Thoughts and Program-of-Thoughts. Given the diversity and broad coverage of
TheoremQA, we believe it can be used as a better benchmark to evaluate LLMs’ capabili-
ties to solve challenging science problems. Lastly, in [154], we explain why quantization
improves generalization by proposing a quasi-neural network to approximate the distri-
bution propagation.

63

Appendix A

Supplementary Material in Chapter 2

Algorithm 4 Vanilla Pessimistic Value Iteration
1: Input: Offline dataset  = {(𝑠𝜏ℎ, 𝑎

𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1)}

𝑛,𝐻
𝜏,ℎ=1. Absolute Constant 𝐶 , failure probability 𝛿.

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0.
3: for time ℎ = 𝐻,𝐻 − 1,… , 1 do

4: Set 𝑄̂ℎ(⋅, ⋅) ← 𝑟̂ℎ(⋅, ⋅) + (𝑃ℎ ⋅ 𝑉ℎ+1)(⋅, ⋅)

5: ∀𝑠ℎ, 𝑎ℎ, set Γℎ(𝑠ℎ, 𝑎ℎ) = 𝐶𝐻 log(𝐻𝑆𝐴∕𝛿)
√𝑛𝑠ℎ,𝑎ℎ

if 𝑛𝑠ℎ,𝑎ℎ ≥ 1, o.w. set to 𝐶𝐻 log(𝐻𝑆𝐴∕𝛿)
1

.
6: Set 𝑄̂𝑝

ℎ(⋅, ⋅) ← 𝑄̂ℎ(⋅, ⋅) − Γℎ(⋅, ⋅).{Pessmistic update}
7: Set 𝑄ℎ(⋅, ⋅) ← min{𝑄̂𝑝

ℎ(⋅, ⋅),𝐻 − ℎ + 1}+.
8: Select 𝜋ℎ(⋅|𝑠ℎ) ← argmax𝜋ℎ⟨𝑄ℎ(𝑠ℎ, ⋅), 𝜋ℎ(⋅|𝑠ℎ)⟩, ∀𝑠ℎ.
9: Set 𝑉ℎ(𝑠ℎ) ← ⟨𝑄ℎ(𝑠ℎ, ⋅), 𝜋ℎ(⋅|𝑠ℎ)⟩, ∀𝑠ℎ.

10: end for

11: Output: {𝜋ℎ}.

A.1 Proof of VPVI (Theorem 2.2.1)

We begin with the following helpful lemma.

64

Supplementary Material in Chapter 2 Chapter A

Lemma A.1.1. For any 0 < 𝛿 < 1, there exists an absolute constant 𝑐1 such that when total

episode 𝑛 > 𝑐1 ⋅ 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿, ∀ℎ ∈ [𝐻]

𝑛𝑠ℎ,𝑎ℎ ≥ 𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)∕2, ∀ (𝑠ℎ, 𝑎ℎ) ∈ ℎ.

Furthermore, we denote

 ∶= {𝑛𝑠ℎ,𝑎ℎ ≥ 𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)∕2, ∀ (𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻].} (A.1)

then equivalently 𝑃 () > 1 − 𝛿.

In addition, we denote

 ′ ∶= {𝑛𝑠ℎ,𝑎ℎ ≤
3
2
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ), ∀ (𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻].} (A.2)

then similarly 𝑃 ( ′) > 1 − 𝛿.

Proof: [Proof of Lemma A.1.1] Define𝐸 ∶= {∃ℎ, (𝑠ℎ, 𝑎ℎ) ∈ ℎ s.t. 𝑛𝑠ℎ,𝑎ℎ < 𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)∕2}.
Then combining the first part of multiplicative Chernoff bound (Lemma D.0.1 in the Appendix)
and a union bound, we obtain

ℙ[𝐸] ≤
∑

ℎ

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

ℙ[𝑛𝑠ℎ,𝑎ℎ < 𝑛𝑑
𝜇
ℎ (𝑠ℎ, 𝑎ℎ)∕2]

≤ 𝐻𝑆𝐴 ⋅ 𝑒−
𝑛⋅𝑑𝑚
8 ∶= 𝛿

solving this for 𝑛 then provides the stated result.
For  ′ we can similarly use the second part of Lemma D.0.1 to prove.

65

Supplementary Material in Chapter 2 Chapter A

Now in Lemma D.0.8, take 𝜋 = 𝜋⋆, 𝑄̂ℎ = 𝑄ℎ and 𝜋 = 𝜋 in Algorithm 4, we have

𝑉 𝜋⋆
1 (𝑠) − 𝑉 𝜋

1 (𝑠) ≤
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

−
𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
] (A.3)

here 𝜉ℎ(𝑠, 𝑎) = (ℎ𝑉ℎ+1)(𝑠, 𝑎)−𝑄ℎ(𝑠, 𝑎). This is true since by the definition of 𝜋 in Algorithm 4
⟨𝑄ℎ

(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ≤ 0 almost surely. Next we prove the asymmetric bound for
𝜉ℎ, which is the key lemma for the proof.

Lemma A.1.2. Denote 𝜉ℎ(𝑠, 𝑎) = (ℎ𝑉ℎ+1)(𝑠, 𝑎)−𝑄ℎ(𝑠, 𝑎), where𝑉ℎ+1 and𝑄ℎ are the quantities

in Algorithm 4 and ℎ(𝑉) ∶= 𝑟ℎ + 𝑃ℎ ⋅ 𝑉 for any 𝑉 . Then with probability 1 − 𝛿, then for any

ℎ, 𝑠ℎ, 𝑎ℎ such that 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0, we have (𝐶 ′ is an absolute constant)

0 ≤ 𝜉ℎ(𝑠ℎ, 𝑎ℎ) = (ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) −𝑄ℎ(𝑠ℎ, 𝑎ℎ) ≤ 𝐶 ′ ⋅

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

.

Proof: [Proof of Lemma A.1.2] Let us first consider the case where 𝑛𝑠ℎ,𝑎ℎ ≥ 1 for all
(𝑠ℎ, 𝑎ℎ) ∈ ℎ. In this case, by Hoeffding’s inequality and a union bound, w.p. 1 − 𝛿, since
0 ≤ 𝑟ℎ ≤ 1,

|𝑟̂ℎ(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ(𝑠ℎ, 𝑎ℎ)| ≤ 2

√

log(𝐻𝑆𝐴∕𝛿)
𝑛𝑠ℎ,𝑎ℎ

∀(𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻]. (A.4)

Next, recall 𝜋ℎ+1 in Algorithm 4 is computed backwardly therefore only depends on sample
tuple from time ℎ + 1 to 𝐻 . Aa a result 𝑉ℎ+1 = ⟨𝑄ℎ+1, 𝜋ℎ+1⟩ also only depends on the sample
tuple from time ℎ + 1 to 𝐻 . On the other side, by our construction 𝑃ℎ only depends on the
transition pairs from ℎ to ℎ + 1. Therefore 𝑉ℎ+1 and 𝑃ℎ are Conditionally independent (This
trick is also use in [3]) so by Hoeffding’s inequality again1 (note ||𝑉ℎ||∞ ≤ ||𝑄ℎ|| ≤ 𝐻 by

1It is worth mentioning if sub-policy 𝜋ℎ+1∶𝑡 depends on the data from all time steps 1, 2,… ,𝐻 , then 𝑉ℎ+1 and
𝑃ℎ are no longer conditionally independent and Hoeffding’s inequality cannot be applied.

66

Supplementary Material in Chapter 2 Chapter A

VPVI)
|

|

|

|

(

(𝑃ℎ − 𝑃ℎ)𝑉ℎ+1
)

(𝑠ℎ, 𝑎ℎ)
|

|

|

|

≤ 2

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
𝑛𝑠ℎ,𝑎ℎ

, ∀(𝑠ℎ, 𝑎ℎ) ∈ ℎ. (A.5)

Now apply Lemma A.1.1, we have with high probability the event  (A.1) is true, combining this
with (A.4), (A.5) and rescaling the constants we obtain with probability 1 − 𝛿, for all ℎ ∈ [𝐻],

|𝑟̂ℎ(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ(𝑠ℎ, 𝑎ℎ)| ≤ 𝐶

√

log(𝐻𝑆𝐴∕𝛿)
6𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

|

|

|

|

(

(𝑃ℎ − 𝑃ℎ)𝑉ℎ+1
)

(𝑠ℎ, 𝑎ℎ)
|

|

|

|

≤ 𝐶

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
6𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

, ∀(𝑠ℎ, 𝑎ℎ) ∈ ℎ.

(A.6)

Now we are ready to prove the Lemma.
Step1: we prove 𝜉ℎ(𝑠ℎ, 𝑎ℎ) ≥ 0 for all (𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻] with probability 1 − 𝛿.
We can condition on  ′ and (A.6) is true since our lemma is high probability version. Indeed,

if 𝑄̂𝑝
ℎ(𝑠ℎ, 𝑎ℎ) < 0, then 𝑄ℎ(𝑠ℎ, 𝑎ℎ) = 0. In this case, 𝜉ℎ(𝑠ℎ, 𝑎ℎ) = (ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) ≥ 0. If

𝑄̂𝑝
ℎ(𝑠ℎ, 𝑎ℎ) ≥ 0, then by definition 𝑄ℎ(𝑠ℎ, 𝑎ℎ) = min{𝑄̂𝑝

ℎ(𝑠ℎ, 𝑎ℎ),𝐻 − ℎ+ 1}+ ≤ 𝑄̂𝑝
ℎ(𝑠ℎ, 𝑎ℎ) and

this implies

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ≥(ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂
𝑝
ℎ(𝑠ℎ, 𝑎ℎ)

=(𝑟ℎ − 𝑟̂ℎ)(𝑠ℎ, 𝑎ℎ) + (𝑃ℎ − 𝑃ℎ)𝑉ℎ+1(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

≥ − 2𝐶

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
6𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

+ Γℎ(𝑠ℎ, 𝑎ℎ)

≥ − 𝐶

√

2𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

+ 𝐶

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
3∕2 ⋅ 𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

= 0

where the second inequality uses (A.6) and the third inequality uses  ′.
Step2: we prove 𝜉ℎ(𝑠ℎ, 𝑎ℎ) ≤ 𝐶 ′ ⋅

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛⋅𝑑𝜇ℎ (𝑠ℎ,𝑎ℎ)

for all ℎ ∈ [𝐻], (𝑠ℎ, 𝑎ℎ) ∈ ℎ with
probability 1 − 𝛿.

67

Supplementary Material in Chapter 2 Chapter A

First, since the construction 𝑉ℎ ≤ 𝐻 − ℎ + 1 for all ℎ ∈ [𝐻], this implies

𝑄̂𝑝
ℎ = 𝑄̂ℎ − Γℎ ≤ 𝑄̂ℎ = 𝑟̂ℎ + (𝑃ℎ𝑉ℎ+1) ≤ 1 + (𝐻 − ℎ) = 𝐻 − ℎ + 1

which uses 𝑟̂ℎ ≤ 1 almost surely and 𝑃ℎ is row-stochastic. Due to this, we have the equivalent
definition

𝑄ℎ ∶= min{𝑄̂𝑝
ℎ,𝐻 − ℎ + 1}+ = max{𝑄̂𝑝

ℎ, 0} ≥ 𝑄̂𝑝
ℎ.

Therefore

𝜉ℎ(𝑠ℎ, 𝑎ℎ) =(ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) −𝑄ℎ(𝑠ℎ, 𝑎ℎ) ≤ (ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂
𝑝
ℎ(𝑠ℎ, 𝑎ℎ)

=(ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂ℎ(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

=(𝑟ℎ − 𝑟̂ℎ)(𝑠ℎ, 𝑎ℎ) + (𝑃ℎ − 𝑃ℎ)𝑉ℎ+1(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

≤2𝐶

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
6𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

+ Γℎ(𝑠ℎ, 𝑎ℎ)

≤𝐶

√

2𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

+ 𝐶

√

2𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

=(
√

2
3
+
√

2)𝐶

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

∶= 𝐶 ′

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

where the first inequality uses (A.6) and the second one uses 𝑃 () ≥ 1 − 𝛿 (A.1).
Combining Step 1 and Step 2 we finish the proof.
Now we can finish proving the Theorem 2.2.1.
Proof: [Proof of Theorem 2.2.1]

Indeed, applying Lemma A.1.2 to (A.3) and average over initial distribution 𝑠1, we obtain

68

Supplementary Material in Chapter 2 Chapter A

with probability 1 − 𝛿

𝑣𝜋
⋆ − 𝑣𝜋 ≤

𝐻
∑

ℎ=1
𝔼𝜋⋆

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ)
]

−
𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ)
]

≤
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ)
]

−
𝐻
∑

ℎ=1
𝔼𝜋 [0]

≤𝐶 ′𝐻
𝐻
∑

ℎ=1
𝔼𝜋⋆

[√

log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

]

− 0

=𝐶 ′𝐻
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋
⋆

ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

log(𝐻𝑆𝐴∕𝛿)
𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

⋅

√

1
𝑛

Note the second inequality is valid since by Line 5 of Algorithm 4 the Q-value at locations with
𝑛𝑠ℎ,𝑎ℎ = 0 are heavily penalized with 𝑂(𝐻), hence the greedy 𝜋 will search at locations where
𝑛𝑠ℎ,𝑎ℎ > 0 (which implies 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0). The third inequality is valid since 𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) > 0

only if 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0. Therefore the expectation over 𝜋⋆, instead of summing over all (𝑠ℎ, 𝑎ℎ) ∈
 ×, is a sum over (𝑠ℎ, 𝑎ℎ) s.t. 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0. This completes the proof.

A.2 Proof of Assumption-Free Offline Reinforcement Learn-

ing (Theorem 2.3.1)

Due to the assumption-free setting, the behavior policy 𝜇 is on longer guaranteed to trace
any optimal policy 𝜋⋆. Therefore, in order to characterize the gap for the state-action agnostic
space, we design the pessimistic augmented MDP𝑀† to reformulate the system so that the stat-
actions that are agnostic to the behavior policy are subsumed into new state 𝑠†. Indeed, it comes
from its optimistic counterpart which has a long history (e.g. RMAX exploration [155, 156]).
Recently, [32, 37, 134] leverage this idea for continuous offline policy optimization, but their
use either does not follow the assumption-free regime (see Assumption 1 of [32]) or is more
empirically orientated [134, 37]. We find this helps to characterize the statistical gap when no

69

Supplementary Material in Chapter 2 Chapter A

assumption is made in offline RL, which provides a formal understanding of the hardness in
distributional mismatches.

A.2.1 Pessimistic augmented MDP

Let us define 𝑀† use one extra state 𝑠†ℎ for all ℎ ∈ {2,… ,𝐻} with augmented state space
† =  ∪ {𝑠†ℎ} and the transition and reward is defined as follows: (recall ℎ ∶= {(𝑠ℎ, 𝑎ℎ) ∶

𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0})

𝑃 †
ℎ (⋅ ∣ 𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑃ℎ(⋅ ∣ 𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈ ℎ,

𝛿𝑠†ℎ+1
𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ,

𝑟†(𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑟(𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈ ℎ

0 𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ

and we further define for any 𝜋

𝑉 †𝜋
ℎ (𝑠) = 𝔼†

𝜋

[

𝐻
∑

𝑡=ℎ
𝑟†𝑡

|

|

|

|

|

|

𝑠ℎ = 𝑠

]

, 𝑣†𝜋 = 𝔼†
𝜋

[

𝐻
∑

𝑡=1
𝑟†𝑡

]

∀ℎ ∈ [𝐻]. (A.7)

Furthermore, denote ℎ ∶= {(𝑠ℎ, 𝑎ℎ) ∶ 𝑛𝑠ℎ,𝑎ℎ > 0}, we also create a fictitious version𝑀† with:

𝑃 †
ℎ (⋅ ∣ 𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑃ℎ(⋅ ∣ 𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈ ℎ,

𝛿𝑠†ℎ+1
𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ,

𝑟̃†(𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑟(𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈ ℎ

0 𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ
(A.8)

and the value functions under 𝑀† is similarly defined. Note in Section 2.3, we call (A.8) 𝑀†.
However, it does not really matter since 𝑀† = 𝑀† with high probability, as stated in the
following.

Lemma A.2.1. For any 0 < 𝛿 < 1, there exists absolute constant 𝑐 s.t. when 𝑛 ≥ 𝑐 ⋅ 1∕𝑑𝑚 ⋅

log(𝐻𝑆𝐴∕𝛿),

ℙ(𝑀† =𝑀†) ≥ 1 − 𝛿.

70

Supplementary Material in Chapter 2 Chapter A

Proof: Note {𝑀† ≠𝑀†} ⊂ {∃ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) > 0 𝑎𝑛𝑑 𝑛𝑠ℎ,𝑎ℎ = 0}. Similar to Lemma A.1.1,
this happens with probability less than 𝛿 under the condition of 𝑛.

We have the following theorem to characterize the difference between the augmented MDP
𝑀† and the original MDP 𝑀 .

Theorem A.2.1. Denote 𝑀† = { ,,𝐻, 𝑟†, 𝑃 †, 𝑑1} and for any 𝜋 denote 𝑉 †𝜋
ℎ be the value

under 𝑀†. Then

𝑣𝜋 −
𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖ℎ

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) ≤ 𝑣𝜋 −
𝐻+1
∑

ℎ=2
𝑑†𝜋
ℎ (𝑠†ℎ) ≤ 𝑣†𝜋 ≤ 𝑣𝜋 (A.9)

Before proving Theorem A.2.1, we first prove the following helper Lemmas A.2.2, A.2.3.

Lemma A.2.2. ∀ℎ ∈ [𝐻], (𝑠ℎ, 𝑎ℎ) ∈  ×, 𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ) ≥ 𝑑†𝜋
ℎ (𝑠ℎ, 𝑎ℎ).

Proof: [Proof of Lemma A.2.2] There are two cases for (𝑠ℎ, 𝑎ℎ) ∈  ×: either (𝑠ℎ, 𝑎ℎ) ∈
ℎ or (𝑠ℎ, 𝑎ℎ) ∉ ℎ.

Step1: by the definition of 𝑃 †
ℎ , it directly holds: for all 𝑠ℎ+1 ∈  and (𝑠ℎ, 𝑎ℎ) ∈  × ,

𝑃 †
ℎ (𝑠ℎ+1|𝑠ℎ, 𝑎ℎ) ≤ 𝑃ℎ(𝑠ℎ+1|𝑠ℎ, 𝑎ℎ).

Step2: we prove the argument by induction. It is clear when ℎ = 1 𝑑𝜋1 (𝑠1, 𝑎1) = 𝑑†𝜋
1 (𝑠1, 𝑎1)

71

Supplementary Material in Chapter 2 Chapter A

(since there is no 𝑠†1). Then for any (𝑠ℎ, 𝑎ℎ) ∈  ×,

𝑑𝜋ℎ+1(𝑠ℎ+1, 𝑎ℎ+1) =
∑

𝑠ℎ,𝑎ℎ∈×
𝑃 𝜋(𝑠ℎ+1, 𝑎ℎ+1|𝑠ℎ, 𝑎ℎ)𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ)

=
∑

𝑠ℎ,𝑎ℎ∈×
𝜋(𝑎ℎ+1|𝑠ℎ+1)𝑃 𝜋

ℎ (𝑠ℎ+1|𝑠ℎ, 𝑎ℎ)𝑑
𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

≥
∑

𝑠ℎ,𝑎ℎ∈×
𝜋(𝑎ℎ+1|𝑠ℎ+1)𝑃

†𝜋
ℎ (𝑠ℎ+1|𝑠ℎ, 𝑎ℎ)𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ)

≥
∑

𝑠ℎ,𝑎ℎ∈×
𝜋(𝑎ℎ+1|𝑠ℎ+1)𝑃

†𝜋
ℎ (𝑠ℎ+1|𝑠ℎ, 𝑎ℎ)𝑑

†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

=
∑

𝑠ℎ,𝑎ℎ∈×,𝑠ℎ=𝑠
†
ℎ

𝜋(𝑎ℎ+1|𝑠ℎ+1)𝑃
†𝜋
ℎ (𝑠ℎ+1|𝑠ℎ, 𝑎ℎ)𝑑

†𝜋
ℎ (𝑠ℎ, 𝑎ℎ) = 𝑑†𝜋

ℎ+1(𝑠ℎ+1, 𝑎ℎ+1).

where the first inequality uses Step1, the second inequality uses induction assumption and the
second to last equal sign uses 𝑃 †𝜋

ℎ (𝑠ℎ+1|𝑠
†
ℎ, 𝑎ℎ) = 0 for 𝑠ℎ+1 ∈  . By induction we conclude the

proof for this lemma.
Next we prove the second lemma that measures 𝑑†𝜋

ℎ (𝑠†ℎ).

Lemma A.2.3. For all ℎ ∈ [2,𝐻 + 1], 𝑑†𝜋
ℎ (𝑠†ℎ) =

∑ℎ−1
𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡
𝑑†𝜋
𝑡 (𝑠𝑡, 𝑎𝑡).

72

Supplementary Material in Chapter 2 Chapter A

Proof: [Proof of Lemma A.2.3] Indeed,

𝑑†𝜋
ℎ+1(𝑠

†
ℎ+1) =

∑

𝑎ℎ+1

𝑑†𝜋
ℎ+1(𝑠

†
ℎ+1, 𝑎ℎ+1)

=
∑

𝑎ℎ+1

∑

(𝑠ℎ,𝑎ℎ)∉ℎ,𝑠ℎ=𝑠
†
ℎ

𝑃 †(𝑠†ℎ+1, 𝑎ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

=
∑

𝑎ℎ+1

(

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑃 †(𝑠†ℎ+1, 𝑎ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ) +

∑

𝑎ℎ

𝑃 †(𝑠†ℎ+1, 𝑎ℎ+1 ∣ 𝑠
†
ℎ, 𝑎ℎ)𝑑

†𝜋
ℎ (𝑠†ℎ, 𝑎ℎ)

)

=
∑

𝑎ℎ+1

(

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑃 †(𝑠†ℎ+1, 𝑎ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ) +

∑

𝑎ℎ

𝜋(𝑎ℎ+1 ∣ 𝑠
†
ℎ+1)𝑑

†𝜋
ℎ (𝑠†ℎ, 𝑎ℎ)

)

=
∑

𝑎ℎ+1

(

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑃 †(𝑠†ℎ+1, 𝑎ℎ+1 ∣ 𝑠ℎ, 𝑎ℎ)𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

)

+ 𝑑†𝜋
ℎ (𝑠†ℎ)

=
∑

𝑎ℎ+1

(

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝜋(𝑎ℎ+1 ∣ 𝑠
†
ℎ+1)𝑑

†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

)

+ 𝑑†𝜋
ℎ (𝑠†ℎ) =

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑑†𝜋
ℎ (𝑠ℎ, 𝑎ℎ) + 𝑑

†𝜋
ℎ (𝑠†ℎ).

Apply the above recursively we obtain the result.
Now we are ready to prove Theorem A.2.1.
Proof: [Proof of Theorem A.2.1] Step1: we first show 𝑣†𝜋 ≤ 𝑣𝜋.

Consider the stopping time 𝑇 = inf{𝑡 ∶ 𝑠.𝑡. (𝑠𝑡, 𝑎𝑡) ∉ ℎ} ∧𝐻 . Then 1 ≤ 𝑇 ≤ 𝐻 .

𝑣𝜋 =𝐸𝜋

[𝐻
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

= 𝐸𝜋

[𝑇−1
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

+
𝐻
∑

ℎ=𝑇
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

=𝐸†
𝜋

[𝑇−1
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

+ 𝐸𝜋

[𝐻
∑

ℎ=𝑇
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

≥ 𝐸†
𝜋

[𝑇−1
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

+ 𝐸𝜋

[𝐻
∑

ℎ=𝑇
0

]

=𝐸†
𝜋

[𝑇−1
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

+ 𝐸†
𝜋

[𝐻
∑

ℎ=𝑇
0

]

= 𝐸†
𝜋

[𝑇−1
∑

ℎ=1
𝑟
(

𝑠ℎ, 𝑎ℎ
)

]

+ 𝐸†
𝜋

[𝐻
∑

ℎ=𝑇
𝑟(𝑠ℎ, 𝑎ℎ)

]

= 𝑣†𝜋 ,

where the third and the fourth equal signs use the distribution of 𝑇 is identical under either 𝑀
73

Supplementary Material in Chapter 2 Chapter A

or 𝑀† by construction. The fifth equal sign uses the definition of pessimistic reward.
Step2: Next we show

𝑣𝜋 ≤ 𝑣†𝜋 +
𝐻+1
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) ≤ 𝑣†𝜋 +

𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡). (A.10)

Indeed,

𝑣𝜋 =
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×

(

𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ) − 𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

)

𝑟(𝑠ℎ, 𝑎ℎ) +
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟(𝑠ℎ, 𝑎ℎ)

≤
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×

(

𝑑𝜋ℎ (𝑠ℎ, 𝑎ℎ) − 𝑑
†𝜋
ℎ (𝑠ℎ, 𝑎ℎ)

)

⋅ 1 +
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=1

(

1 −
∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)

)

+
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) +

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) +

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)

(

𝑟(𝑠ℎ, 𝑎ℎ) − 𝑟†(𝑠ℎ, 𝑎ℎ)
)

+
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟†(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) +

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)
(

𝑟(𝑠ℎ, 𝑎ℎ) − 𝑟†(𝑠ℎ, 𝑎ℎ)
)

+
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)𝑟†(𝑠ℎ, 𝑎ℎ)

=
𝐻
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) +

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ)
(

𝑟(𝑠ℎ, 𝑎ℎ) − 𝑟†(𝑠ℎ, 𝑎ℎ)
)

+ 𝑣†𝜋

≤
𝐻
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) +

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∉ℎ

𝑑†𝜋ℎ (𝑠ℎ, 𝑎ℎ) ⋅ 1 + 𝑣†𝜋 =
𝐻+1
∑

ℎ=2
𝑑†𝜋ℎ (𝑠†ℎ) + 𝑣

†𝜋

74

Supplementary Material in Chapter 2 Chapter A

The first inequality is due to Lemma A.2.2. The fourth equal sign uses 𝑑†
1 (𝑠

†
1) = 0. The sixth

equal sign is due to 𝑟(𝑠ℎ, 𝑎ℎ) = 𝑟†(𝑠ℎ, 𝑎ℎ) when (𝑠ℎ, 𝑎ℎ) ∈ ℎ. The seventh equal sign is due
to 𝑟†(𝑠†ℎ, 𝑎ℎ) = 0. The last equal sign uses Lemma A.2.3. The right inequality in (A.10) uses
Lemma A.2.2. Step 1 and Step 2 conclude the proof of Theorem A.2.1.

Strong adaptive assumption-free bound

Now we are ready to launch the assumption-free AVPI (Algorithm 1) with the following
model-based construction 𝑀† (recall ℎ ∶= {(𝑠ℎ, 𝑎ℎ) ∶ 𝑛𝑠ℎ,𝑎ℎ > 0}):

𝑃 †
ℎ (⋅ ∣ 𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑃ℎ(⋅ ∣ 𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈ ℎ,

𝛿𝑠†ℎ+1
𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ,

𝑟̂†(𝑠ℎ, 𝑎ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑟̂(𝑠ℎ, 𝑎ℎ) 𝑠ℎ, 𝑎ℎ ∈  ×

0 𝑠ℎ = 𝑠†ℎ or 𝑠ℎ, 𝑎ℎ ∉ ℎ

where 𝑃 , 𝑟̂ is defined as

𝑃ℎ(𝑠′|𝑠ℎ, 𝑎ℎ) =
∑𝑛

𝜏=1 𝟏[(𝑠
𝜏
ℎ+1, 𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠′, 𝑠ℎ, 𝑎ℎ)]

𝑛𝑠ℎ,𝑎ℎ
, 𝑟̂ℎ(𝑠ℎ, 𝑎ℎ) =

∑𝑛
𝜏=1 𝟏[(𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠ℎ, 𝑎ℎ)] ⋅ 𝑟𝜏ℎ
𝑛𝑠ℎ,𝑎ℎ

,

(A.11)
The benefit of using𝑀† (A.8) is that in𝑀† there is no agnostic location even no assumption

is made. The 𝑀† creates a empirical estimate for 𝑀†. In this case, the pessimistic bonus is
designed as

Γℎ(𝑠ℎ, 𝑎ℎ) = 2

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ 𝜄

𝑛𝑠ℎ,𝑎ℎ
+ 14𝐻 ⋅ 𝜄

3𝑛𝑠ℎ,𝑎ℎ

if 𝑛𝑠ℎ,𝑎ℎ ∈ ℎ and 0 otherwise (here 𝑉ℎ+1 is computed backwardly from the next time step in
Algorithm 1). Now let us start the proof. First of all, let us assume 𝑀† = 𝑀† for the moment
so we can get rid of the tilde expression for notation convenience. We will formally recover the
result for 𝑀† at the end by Lemma A.2.1.

In particular, while we always use 𝜋⋆ to denote the optimal policy in the Original MDP, we

75

Supplementary Material in Chapter 2 Chapter A

augment it in the 𝑀†(𝑀†) arbitrarily and abuse the notation as:

𝜋⋆(⋅|𝑠ℎ) =

⎧

⎪

⎨

⎪

⎩

𝜋⋆(⋅|𝑠ℎ) 𝑠ℎ ∈ 

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠ℎ = 𝑠†ℎ
(A.12)

and always use 𝜋 to denote the output of Algorithm 1. We rely on the following lemma that
characterize the suboptimality gap.

Lemma A.2.4. Recall 𝜋⋆ in (A.12) and define ( †
ℎ 𝑉)(⋅, ⋅) ∶= 𝑟†ℎ(⋅, ⋅) + (𝑃 †

ℎ𝑉)(⋅, ⋅) for any 𝑉 ∈

ℝ𝑆+1. Note 𝜋,𝑄ℎ, 𝑉ℎ are defined in Algorithm 1 and denote 𝜉†ℎ(𝑠, 𝑎) = ( †
ℎ 𝑉ℎ+1)(𝑠, 𝑎)−𝑄ℎ(𝑠, 𝑎).

𝑉 †𝜋⋆
1 (𝑠) − 𝑉 †𝜋

1 (𝑠) ≤
𝐻
∑

ℎ=1
𝔼†
𝜋⋆

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

−
𝐻
∑

ℎ=1
𝔼†
𝜋

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

. (A.13)

where 𝑉 †𝜋
1 is defined in (A.7). Furthermore, (A.13) holds for all 𝑉 †𝜋⋆

ℎ (𝑠) − 𝑉 †𝜋
ℎ (𝑠).

Proof: [Proof of Lemma A.2.4] Apply Lemma D.0.8 with ℎ =  †
ℎ , 𝜋 = 𝜋⋆, 𝑄̂ℎ = 𝑄ℎ

and 𝜋 = 𝜋 in Algorithm 1, we can obtain the result since by the definition of 𝜋 in Algorithm 1
⟨𝑄ℎ

(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ≤ 0 almost surely for any 𝜋. The proof for 𝑉 †𝜋⋆
ℎ (𝑠) − 𝑉 †𝜋

ℎ (𝑠)

is identical.
Next we prove the adaptive asymmetric bound for 𝜉†ℎ, which is the key for recover the struc-

ture of intrinsic bound.

Lemma A.2.5. Denote 𝜉†ℎ(𝑠, 𝑎) = ( †
ℎ 𝑉ℎ+1)(𝑠, 𝑎) −𝑄ℎ(𝑠, 𝑎), where 𝑉ℎ+1 and𝑄ℎ are the quanti-

ties in Algorithm 1 and  †
ℎ (𝑉) ∶= 𝑟†ℎ + 𝑃

†
ℎ ⋅ 𝑉 for any 𝑉 ∈ ℝ𝑆+1. Then with probability 1 − 𝛿,

then for any ℎ, 𝑠ℎ, 𝑎ℎ such that 𝑛𝑠ℎ,𝑎ℎ > 0, we have

0 ≤𝜉†ℎ(𝑠ℎ, 𝑎ℎ) = ( †
ℎ 𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) −𝑄ℎ(𝑠ℎ, 𝑎ℎ)

≤4

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
+

28𝐻 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛𝑠ℎ,𝑎ℎ

76

Supplementary Material in Chapter 2 Chapter A

Proof: [Proof of Lemma A.2.5] Recall we are under 𝑀† (𝑀†). For all (𝑠ℎ, 𝑎ℎ) ∈ ℎ, by
Empirical Bernstein inequality (Lemma D.0.4) and a union bound2, w.p. 1−𝛿, since 0 ≤ 𝑟†ℎ ≤ 1,

|𝑟̂†ℎ(𝑠ℎ, 𝑎ℎ)−𝑟
†
ℎ(𝑠ℎ, 𝑎ℎ)| ≤

√

√

√

√

2Var𝑃 †(𝑟̂†ℎ) log(𝐻𝑆𝐴∕𝛿)
𝑛𝑠ℎ,𝑎ℎ

+
7 log(𝐻𝑆𝐴∕𝛿)

3𝑛𝑠ℎ,𝑎ℎ
∀(𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻].

(A.14)
Next, recall 𝜋ℎ+1 in Algorithm 1 is computed backwardly therefore only depends on sample
tuple from time ℎ + 1 to 𝐻 . Aa a result 𝑉ℎ+1 = ⟨𝑄ℎ+1, 𝜋ℎ+1⟩ also only depends on the sample
tuple from time ℎ + 1 to 𝐻 . On the other side, by our construction 𝑃 †

ℎ only depends on the
transition pairs from ℎ to ℎ + 1. Therefore 𝑉ℎ+1 and 𝑃 †

ℎ are Conditionally independent (This
trick is also use in [3]) so by Empirical Bernstein inequality again3 and a union bound (note
||𝑉ℎ||∞ ≤ ||𝑄ℎ|| ≤ 𝐻 by APVI) for all (𝑠ℎ, 𝑎ℎ) ∈ ℎ, w.p. 1 − 𝛿,

|

|

|

|

(

(𝑃 †
ℎ − 𝑃 †

ℎ)𝑉ℎ+1
)

(𝑠ℎ, 𝑎ℎ)
|

|

|

|

≤

√

√

√

√

2Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑉ℎ+1) ⋅ log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
+

7𝐻 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛𝑠ℎ,𝑎ℎ

.

(A.15)
Now we are ready to prove the Lemma.
Step1: we prove 𝜉ℎ(𝑠ℎ, 𝑎ℎ) ≥ 0 for all (𝑠ℎ, 𝑎ℎ) ∈ ℎ, ℎ ∈ [𝐻] with probability 1 − 𝛿.
Indeed, if 𝑄̂𝑝

ℎ(𝑠ℎ, 𝑎ℎ) < 0, then 𝑄ℎ(𝑠ℎ, 𝑎ℎ) = 0. In this case, 𝜉ℎ(𝑠ℎ, 𝑎ℎ) = (ℎ𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) ≥

0 (note𝑉ℎ ≥ 0 by the definition). If 𝑄̂𝑝
ℎ(𝑠ℎ, 𝑎ℎ) ≥ 0, then by definition𝑄ℎ(𝑠ℎ, 𝑎ℎ) = min{𝑄̂𝑝

ℎ(𝑠ℎ, 𝑎ℎ),𝐻−

2Here note even though |†
| = 𝑆 + 1, for state 𝑠†ℎ we always have 𝑛𝑠†ℎ,𝑎ℎ = 0 for any 𝑎ℎ. Therefore apply the

union bound only provides 𝐻𝑆𝐴 in th log term instead of 𝐻(𝑆 + 1)𝐴.
3It is worth mentioning if sub-policy 𝜋ℎ+1∶𝑡 depends on the data from all time steps 1, 2,… ,𝐻 , then 𝑉ℎ+1 and

𝑃ℎ are no longer conditionally independent and Hoeffding’s inequality cannot be applied.

77

Supplementary Material in Chapter 2 Chapter A

ℎ + 1}+ ≤ 𝑄̂𝑝
ℎ(𝑠ℎ, 𝑎ℎ) and this implies

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ≥ ( †
ℎ 𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂

𝑝
ℎ(𝑠ℎ, 𝑎ℎ)

=(𝑟†ℎ − 𝑟̂
†
ℎ)(𝑠ℎ, 𝑎ℎ) + (𝑃 †

ℎ − 𝑃 †
ℎ)𝑉ℎ+1(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

≥ − 2

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
−

14𝐻 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛𝑠ℎ,𝑎ℎ

+ Γℎ(𝑠ℎ, 𝑎ℎ) = 0

where the inequality uses (A.14), (A.15) and √

𝑎 +
√

𝑏 ≤
√

2(𝑎 + 𝑏) and 𝑟ℎ and 𝑠ℎ+1 are
conditionally independent given 𝑠ℎ, 𝑎ℎ. The last equal sign uses Line 6 of Algorithm 1.

Step2: we prove 𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ≤ 4

√

Var
𝑃 †𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ+𝑉ℎ+1)⋅log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
+ 28𝐻 ⋅log(𝐻𝑆𝐴∕𝛿)

3𝑛𝑠ℎ,𝑎ℎ
for all ℎ ∈

[𝐻], (𝑠ℎ, 𝑎ℎ) ∈ ℎ with probability 1 − 𝛿.
First, since by construction 𝑉ℎ ≤ 𝐻 − ℎ + 1 for all ℎ ∈ [𝐻], this implies

𝑄̂𝑝
ℎ = 𝑄̂ℎ − Γℎ ≤ 𝑄̂ℎ = 𝑟̂†ℎ + (𝑃 †

ℎ𝑉ℎ+1) ≤ 1 + (𝐻 − ℎ) = 𝐻 − ℎ + 1

which uses 𝑟̂†ℎ ≤ 1 almost surely and 𝑃 †
ℎ is row-stochastic. Due to this, we have the equivalent

definition
𝑄ℎ ∶= min{𝑄̂𝑝

ℎ,𝐻 − ℎ + 1}+ = max{𝑄̂𝑝
ℎ, 0} ≥ 𝑄̂𝑝

ℎ.

78

Supplementary Material in Chapter 2 Chapter A

Therefore

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) = ( †
ℎ 𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) −𝑄ℎ(𝑠ℎ, 𝑎ℎ) ≤ ( †

ℎ 𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂
𝑝
ℎ(𝑠ℎ, 𝑎ℎ)

=( †
ℎ 𝑉ℎ+1)(𝑠ℎ, 𝑎ℎ) − 𝑄̂ℎ(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

=(𝑟†ℎ − 𝑟̂
†
ℎ)(𝑠ℎ, 𝑎ℎ) + (𝑃 †

ℎ − 𝑃 †
ℎ)𝑉ℎ+1(𝑠ℎ, 𝑎ℎ) + Γℎ(𝑠ℎ, 𝑎ℎ)

≤2

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
+

14𝐻 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛𝑠ℎ,𝑎ℎ

+ Γℎ(𝑠ℎ, 𝑎ℎ)

=4

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ log(𝐻𝑆𝐴∕𝛿)

𝑛𝑠ℎ,𝑎ℎ
+

28𝐻 ⋅ log(𝐻𝑆𝐴∕𝛿)
3𝑛𝑠ℎ,𝑎ℎ

.

Combining Step 1 and Step 2 we finish the proof.

Proof of Theorem 2.3.1

Now we are ready to prove the Theorem 2.3.1.
First of all, by Lemma A.2.4 and Lemma A.2.5, for all 𝑡 ∈ [𝐻], 𝑠 ∈  (excluding 𝑠†) w.p.

1 − 𝛿

𝑉 †𝜋⋆
𝑡 (𝑠) − 𝑉 †𝜋

𝑡 (𝑠) ≤
𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠𝑡 = 𝑠
]

−
𝐻
∑

ℎ=𝑡
𝔼†
𝜋

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠𝑡 = 𝑠
]

≤
𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠𝑡 = 𝑠
]

− 0

≤
𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

⎡

⎢

⎢

⎢

⎣

4

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ 𝜄

𝑛𝑠ℎ,𝑎ℎ
+ 28𝐻 ⋅ 𝜄

3𝑛𝑠ℎ,𝑎ℎ
∣ 𝑠𝑡 = 𝑠

⎤

⎥

⎥

⎥

⎦

≤
𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

⎡

⎢

⎢

⎢

⎣

4

√

√

√

√

2Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ 𝜄

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+ 56𝐻 ⋅ 𝜄

3𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
∣ 𝑠𝑡 = 𝑠

⎤

⎥

⎥

⎥

⎦

(A.16)

here recall the expectation is only taken over 𝑠ℎ, 𝑎ℎ. Note by the Pessimistic MDP 𝑀† (𝑀†),
79

Supplementary Material in Chapter 2 Chapter A

for all (𝑠ℎ, 𝑎ℎ) ∉ ℎ and 𝑠†ℎ, the pessimistic reward leads to 𝑄†𝜋(𝑠ℎ, 𝑎ℎ), 𝑉 †𝜋(𝑠†ℎ) = 0 for any 𝜋,
therefore Lemma A.2.5 can be applied. Moreover, the last inequality is by Lemma A.1.1.

Lemma A.2.6 (self-bounding). We prove, for all 𝑡 ∈ [𝐻], w.p. 1 − 𝛿, for all 𝑠 ∈  (excluding

𝑠†),
|

|

|

𝑉 †𝜋⋆
𝑡 (𝑠) − 𝑉𝑡(𝑠)

|

|

|

≤
8
√

2𝜄𝐻2

√

𝑛 ⋅ 𝑑𝑚
+ 112𝐻2 ⋅ 𝜄

3𝑛 ⋅ 𝑑𝑚
.

where 𝑑𝑚 is defined in Theorem 2.3.1.

Remark 4. The self-bounding lemma essentially provides a crude high probability bound for

|𝑉 †𝜋⋆
𝑡 −𝑉𝑡| (or |𝑉 †𝜋⋆

𝑡 −𝑉 †𝜋
𝑡 |) with suboptimal order𝑂(𝐻2

√

𝑛𝑑𝑚
) and we can use it to further bound

the higher order term in the main result.

Proof: [Proof of Lemma A.2.6] Indeed, by (A.16), since Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ≤ 𝐻2, we
have w.p. 1 − 𝛿,

|

|

|

𝑉 †𝜋⋆
𝑡 (𝑠) − 𝑉 †𝜋

𝑡 (𝑠)||
|

≤
4
√

2𝜄𝐻2

√

𝑛 ⋅ 𝑑𝑚
+ 56𝐻2 ⋅ 𝜄

3𝑛 ⋅ 𝑑𝑚
(A.17)

for all 𝑡 ∈ [𝐻]. Next, when apply Lemma D.0.8 to Lemma A.2.4, by (D.2) and (D.3) we
essentially obtain

𝑉 †𝜋⋆
𝑡 (𝑠) − 𝑉𝑡(𝑠) =

𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠𝑡 = 𝑠
]

+
𝐻
∑

ℎ=𝑡
𝔼†
𝜋⋆

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋⋆ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ∣ 𝑠𝑡 = 𝑠
]

≤
4
√

2𝜄𝐻2

√

𝑛 ⋅ 𝑑𝑚
+ 56𝐻2 ⋅ 𝜄

3𝑛 ⋅ 𝑑𝑚
+ 0

and
𝑉𝑡(𝑠) − 𝑉 †𝜋

𝑡 (𝑠) = −
𝐻
∑

ℎ=𝑡
𝔼†
𝜋

[

𝜉†ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠𝑡 = 𝑠
]

≥ 0.

Combing those two with (A.17) we obtain the result.

80

Supplementary Material in Chapter 2 Chapter A

Lemma A.2.7. For all (𝑎ℎ, 𝑎ℎ) ∈ ℎ and any ||𝑉 ||∞ ≤ 𝐻 , w.p. 1 − 𝛿,

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑉) ≤ 6𝐻
√

𝜄
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

+
√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑉).

Proof:

This is a direct application of Lemma D.0.6 with a union bound. Specifically, we apply
𝑛−1
𝑛

≤ 1.
Now by Lemma A.2.6 and Lemma A.2.7, for all (𝑠ℎ, 𝑎ℎ) ∈ ℎ, w.p. 1 − 𝛿,

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ≤
√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) + 6𝐻
√

𝜄
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

≤
√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) +

‖

‖

‖

(𝑟̂†ℎ + 𝑉ℎ+1) − (𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1)

‖

‖

‖∞,𝑠∈
+ 6𝐻

√

𝜄
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

≤
√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) +

10
√

2𝜄𝐻2

√

𝑛 ⋅ 𝑑𝑚
+ 112𝐻2 ⋅ 𝜄

3𝑛 ⋅ 𝑑𝑚
+ 6𝐻

√

𝜄
𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

Therefore plug this into (A.16), and average over 𝑠1, we finally get, w.p. 1 − 𝛿,

𝑣†𝜋⋆ − 𝑣†𝜋 ≤
𝐻
∑

ℎ=1
𝔼†
𝜋⋆

⎡

⎢

⎢

⎢

⎣

4

√

√

√

√

2Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟̂†ℎ + 𝑉ℎ+1) ⋅ 𝜄

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+ 56𝐻 ⋅ 𝜄

3𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
∣ 𝑠1 = 𝑠

⎤

⎥

⎥

⎥

⎦

≤𝐶 ′
𝐻
∑

ℎ=1
𝔼†
𝜋⋆

⎡

⎢

⎢

⎢

⎣

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) ⋅ 𝜄

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

⎤

⎥

⎥

⎥

⎦

+ 𝑂(𝐻
3

𝑛 ⋅ 𝑑𝑚
)

=𝐶 ′
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑†𝜋⋆(𝑠ℎ, 𝑎ℎ)

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) ⋅ 𝜄

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+ 𝑂(𝐻

3

𝑛 ⋅ 𝑑𝑚
)

81

Supplementary Material in Chapter 2 Chapter A

here 𝑂 absorbs log factor and even higher orders.
Note throughout the section we assume 𝑀† =𝑀†. Now be Lemma A.2.1, we can replace

the ℎ in above by ℎ so the result holds in high probability.
Lastly, we end up with w.p. 1 − 𝛿

0 ≤𝑣𝜋⋆ − 𝑣𝜋 ≤
𝐻+1
∑

ℎ=2
𝑑†𝜋⋆
ℎ (𝑠†ℎ) + 𝑣

†𝜋⋆ − 𝑣𝜋 ≤
𝐻+1
∑

ℎ=2
𝑑†𝜋⋆
ℎ (𝑠†ℎ) + 𝑣

†𝜋⋆ − 𝑣†𝜋

≤
𝐻+1
∑

ℎ=2
𝑑†𝜋⋆
ℎ (𝑠†ℎ) + 𝐶

′
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑†𝜋⋆
ℎ (𝑠ℎ, 𝑎ℎ)

√

√

√

√

Var𝑃 †
𝑠ℎ,𝑎ℎ

(𝑟†ℎ + 𝑉
†𝜋⋆
ℎ+1) ⋅ 𝜄

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
+ 𝑂(𝐻

3

𝑛 ⋅ 𝑑𝑚
)

(A.18)

where the first inequality uses Lemma A.2.1 with 𝜋 = 𝜋⋆ and the second one uses Lemma A.2.1
with 𝜋 = 𝜋. This concludes the proof of Theorem 2.3.1. The rest of the results are coming from
Lemma A.2.2,A.2.3.

Remark 5. We mention the summation of the main term in (A.18) does not include 𝑠†ℎ since

𝑉 †𝜋
ℎ (𝑠†ℎ) = 0 for any 𝜋 due to the pessimistic MDP design. In particular, this state contributes

nothing to neither 𝑣†𝜋⋆ nor 𝑣†𝜋 .

A.2.2 Interpretation of Theorem 2.3.1

The constant (in 𝑛) gap, which is incurred by the behavior agnostic space ⋃𝐻
ℎ=1{(𝑠ℎ, 𝑎ℎ) ∶

𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) = 0}, is bounded by

𝐻+1
∑

ℎ=2
𝑑†𝜋⋆
ℎ (𝑠†ℎ) =

𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡

𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡) ≤

𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡

𝑑𝜋⋆𝑡 (𝑠𝑡, 𝑎𝑡),

Note for quantity 𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡) (where (𝑠𝑡, 𝑎𝑡) ∈  ×∖𝑡), it is equivalently defined as

𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡) = ℙ𝑀†

[

𝑆𝑡, 𝐴𝑡 = 𝑠𝑡, 𝑎𝑡||(𝑆𝑡−1, 𝐴𝑡−1) ∈ 𝑡−1,… , (𝑆1, 𝐴1) ∈ 1
]

82

Supplementary Material in Chapter 2 Chapter A

is probability for the first time the trajectory exits the reachable regions and enters (𝑠𝑡, 𝑎𝑡) ∉ 𝑡.
Therefore, 𝑑†𝜋⋆

𝑡 (𝑠𝑡, 𝑎𝑡) is much smaller than 𝑑𝜋⋆𝑡 (𝑠𝑡, 𝑎𝑡) for 𝑠𝑡, 𝑎𝑡 ∉ ℎ (since 𝑑𝜋⋆𝑡 (𝑠𝑡, 𝑎𝑡) includes
the probability that trajectory 𝑠𝑡, 𝑎𝑡). Such a feature is reflected by the quantity that express the
gap using the mass of the absorbing state: ∑𝐻+1

ℎ=2 𝑑
†𝜋⋆
ℎ (𝑠†ℎ)(=

∑𝐻+1
ℎ=2

∑ℎ−1
𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡
𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡)).

Especially, this gap can vary between 0 and𝐻 , depending on the exploratory ability of 𝜇. Also,
different from AVPI, the assumption-free AVPI set 0 penalty at locations where 𝑛𝑠𝑡,𝑎𝑡 = 0. The
interpretation is: the locations with 𝑛𝑠𝑡,𝑎𝑡 = 0 in 𝑀† are the fully aware locations (with deter-
ministic transition to 𝑠† and reward 0 by design) therefore we are certain about the behaviors in
those places.

A.3 Proof of Theorem 2.2.2

Indeed, Theorem 2.2.2 can be implied by Theorem 2.3.1 as a special case. Proof:

[Proof of Theorem 2.2.2] Under Assumption 3.3.3, 𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) = 0 if 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) = 0. In this
case,

0 ≤
𝐻+1
∑

ℎ=2
𝑑†𝜋⋆
ℎ (𝑠†ℎ) =

𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡

𝑑†𝜋⋆
𝑡 (𝑠𝑡, 𝑎𝑡) ≤

𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∈×∖𝑡

𝑑𝜋⋆𝑡 (𝑠𝑡, 𝑎𝑡)

=
𝐻+1
∑

ℎ=2

ℎ−1
∑

𝑡=1

∑

(𝑠𝑡,𝑎𝑡)∶𝑑
𝜇
𝑡 (𝑠𝑡,𝑎𝑡)=0

𝑑𝜋⋆𝑡 (𝑠𝑡, 𝑎𝑡) = 0

due to Lemma A.2.2,A.2.3. Therefore, the gap ∑𝐻
ℎ=1 𝑑

†𝜋⋆
ℎ (𝑠†ℎ) vanishes when Assumption 3.3.3

is true. Also, in this case 𝑀† can be replaced by a 𝑀 ′, where 𝑀 ′ is the sub-MDP induced by
𝜇. i.e., 𝑀 ′ =

⋃𝐻
ℎ=1 ℎ ×ℎ with ℎ ×ℎ = ℎ.4 The transitions and the rewards remain the

same in 𝑀†.
Since there is certain 𝜋⋆ that is fully covered by 𝜇, for such 𝜋⋆ we have 𝑉 𝜋⋆

ℎ |𝑀 = 𝑉 𝜋⋆
ℎ |𝑀 ′

4In this sub-MDP, each state might have different number of actions!

83

Supplementary Material in Chapter 2 Chapter A

for all ℎ ∈ [𝐻]. Also, in𝑀 ′, 𝜇 can explore all the locations, therefore the probability transition
to 𝑠†ℎ is 0. Hence, all the 𝑑†, 𝑃 †, 𝑟†, 𝑉 † in Theorem 2.2.2 are replaced by its original version.

Remark 6. Note even though the proof can essentially leverage the reduction of the proving

procedure of Theorem 2.3.1, for clear presentation of the algorithm design we still include

the locations with no observation and set the severe penalty 𝑂̃(𝐻). This is different from its

assumption-free version with 0 penalty (also see Section A.2.2 for related discussions).

A.4 Discussions and missing derivations in Section 2.2

We omit the 𝑂 notation in the derivations for the simplicity.

A.4.1 Derivation in Section 2.2.1

When the uniform data-coverage is satisfied,

𝑣⋆ − 𝑣𝜋 ≲
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

√

√

√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

≤

√

1
𝑛𝑑𝑚

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅
√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

≤

√

1
𝑛𝑑𝑚

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

≤

√

1
𝑛𝑑𝑚

𝐻
∑

ℎ=1

√

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ)Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉

⋆
ℎ+1)

≤

√

1
𝑛𝑑𝑚

√

√

√

√

𝐻
∑

ℎ=1
1 ⋅

√

√

√

√

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×
𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ)Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉

⋆
ℎ+1)

≤

√

1
𝑛𝑑𝑚

√

𝐻 ⋅

√

√

√

√Var𝜋

[

𝐻
∑

𝑡=1
𝑟𝑡

]

≤

√

𝐻3

𝑛𝑑𝑚
,

84

Supplementary Material in Chapter 2 Chapter A

where we use the Cauchy inequality and Sum of total variance.

A.4.2 Uniform data-coverage in the time-invariant setting (Remark 2)

In the time-invariant setting, 𝑃 is identical, therefore given data =
{(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1

)}ℎ∈[𝐻]

𝜏∈[𝑛]
,

we should modify 𝑛𝑠,𝑎 ∶= ∑𝐻
ℎ=1

∑𝑛
𝜏=1 𝟏[𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ = 𝑠ℎ, 𝑎ℎ] and

𝑃 (𝑠′|𝑠, 𝑎) =
∑𝐻
ℎ=1

∑𝑛
𝜏=1 𝟏[(𝑠

𝜏
ℎ+1, 𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠′, 𝑠, 𝑎)]

𝑛𝑠,𝑎
, 𝑟̂(𝑠, 𝑎) =

∑𝐻
ℎ=1

∑𝑛
𝜏=1 𝟏[(𝑎

𝜏
ℎ, 𝑠

𝜏
ℎ) = (𝑠, 𝑎)] ⋅ 𝑟𝜏ℎ

𝑛𝑠,𝑎
,

if 𝑛𝑠ℎ,𝑎ℎ > 0 and 𝑃 (𝑠′|𝑠, 𝑎) = 1∕𝑆, 𝑟̂(𝑠, 𝑎) = 0 if 𝑛𝑠,𝑎 = 0. Define 𝑑𝜇(𝑠, 𝑎) = 1
𝐻

∑𝐻
ℎ=1 𝑑

𝜇
ℎ (𝑠, 𝑎),

then since in this case

𝔼[𝑛𝑠,𝑎] =
𝐻
∑

ℎ=1

𝑛
∑

𝜏=1
𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ) = 𝑛𝐻𝑑𝜇(𝑠, 𝑎),

A similar algorithm should yield
√

1
𝑛𝐻𝑑𝑚

√

𝐻 ⋅

√

√

√

√Var𝜋

[𝐻
∑

𝑡=1
𝑟𝑡

]

≤

√

𝐻2

𝑛𝑑𝑚
.

Formalizing this result depends on decoupling the dependence between 𝑃 and 𝑉ℎ, which could
be more tricky (see [4, 17] for two treatments under the uniform data coverage assumption).
We leave this as the future work.

A.4.3 Derivation in Section 2.2.2

This follows from the derivation of Section 2.2.1 by bounding

𝑣⋆ − 𝑣𝜋 ≲

√

1
𝑛𝑑𝑚

√

𝐻 ⋅

√

√

√

√Var𝜋

[

𝐻
∑

𝑡=1
𝑟𝑡

]

≤
√

𝐻
𝑛𝑑𝑚

.

85

Supplementary Material in Chapter 2 Chapter A

A.4.4 Derivation in Section 2.2.3

Using the single concentrability coefficient 𝐶⋆, when 𝜋⋆ is deterministic,

𝑣⋆ − 𝑣𝜋 ≲
𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

𝑑𝜋
⋆

ℎ (𝑠ℎ, 𝑎ℎ) ⋅

√

√

√

√

Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

𝑛 ⋅ 𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)

≤
√

𝐶⋆
𝑛

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈ℎ

√

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅ Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

≤
√

𝐶⋆
𝑛

𝐻
∑

ℎ=1

∑

(𝑠ℎ,𝑎ℎ)∈×

√

𝑑𝜋⋆ℎ (𝑠ℎ, 𝑎ℎ) ⋅ Var𝑃𝑠ℎ,𝑎ℎ (𝑟ℎ + 𝑉
⋆
ℎ+1)

=
√

𝐶⋆
𝑛

𝐻
∑

ℎ=1

∑

𝑠ℎ∈

√

𝑑𝜋⋆ℎ (𝑠ℎ, 𝜋⋆ℎ (𝑠ℎ)) ⋅ Var𝑃𝑠ℎ,𝜋⋆ℎ (𝑠ℎ)
(𝑟ℎ + 𝑉 ⋆

ℎ+1)

≤
√

𝐶⋆
𝑛

𝐻
∑

ℎ=1

√

∑

𝑠ℎ∈
1
√

∑

𝑠ℎ∈
𝑑𝜋⋆ℎ (𝑠ℎ, 𝜋⋆ℎ (𝑠ℎ)) ⋅ Var𝑃𝑠ℎ,𝜋⋆ℎ (𝑠ℎ)

(𝑟ℎ + 𝑉 ⋆
ℎ+1)

≤
√

𝑆𝐶⋆
𝑛

𝐻
∑

ℎ=1

√

∑

𝑠ℎ∈
𝑑𝜋⋆ℎ (𝑠ℎ, 𝜋⋆ℎ (𝑠ℎ)) ⋅ Var𝑃𝑠ℎ,𝜋⋆ℎ (𝑠ℎ)

(𝑟ℎ + 𝑉 ⋆
ℎ+1)

≤
√

𝑆𝐶⋆
𝑛

√

𝐻 ⋅

√

√

√

√Var𝜋

[𝐻
∑

𝑡=1
𝑟𝑡

]

≤
√

𝐻3𝑆𝐶⋆
𝑛

.

where we use the Cauchy inequality and Sum of total variance. This is minimax rate optimal.

A.4.5 Derivation in Section 2.2.4

The derivation of Proposition 2.2.4 is similar to the previous cases except we use the bounds
Var𝑃ℎ(𝑉

⋆
ℎ+1) ≤ ℚ⋆

ℎ and ∑𝐻
ℎ=1 𝑟ℎ ≤ . The derivations for the deterministic system or the par-

tially deterministic system are straightforward. For the fast mixing example, we leverage the
fact that for any random variable 𝑋, |𝑋 − 𝔼[𝑋]| ≤ rng(𝑋), hence ℚ⋆ ≤ 1 + (rng𝑉 ⋆)2 ≤ 2.

Last but not least, we mention the per-step environmental normℚ⋆
ℎ ∶= max𝑠ℎ,𝑎ℎ Var𝑃𝑠ℎ,𝑎ℎ (𝑉

⋆
ℎ+1)

is more general than its maximal version in [52] withℚ⋆ ∶= max𝑠ℎ,𝑎ℎ,ℎVar𝑃𝑠ℎ,𝑎ℎ (𝑉
⋆
ℎ+1). Improve-

ment can be made for the ℚ⋆
ℎ version, e.g. for the partially deterministic systems, 𝑡

√

ℚ⋆∕𝑛𝑑𝑚

86

Supplementary Material in Chapter 2 Chapter A

vs 𝐻
√

ℚ⋆∕𝑛𝑑𝑚. Even though [52] considers the time-invariant setting, i.e. 𝑃 is identical, the
quantity ℚ⋆

ℎ ∶= max𝑠,𝑎Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1) can still be much smaller than ℚ⋆, e.g. when the range of

𝑉 ⋆
𝑡 ,… , 𝑉 ⋆

𝐻 is relatively small and the range of 𝑉 ⋆
1 ,… , 𝑉 ⋆

𝑡−1 is relatively large.
In this sense, beyond the current adaptive regret √ℚ⋆𝑆𝐴𝑇 [52], the more adaptive regret

should have a form like either
√

∑𝐻
ℎ=1ℚ

⋆
ℎ𝑆𝐴𝑇

𝐻
or

𝐻
∑

ℎ=1

√

ℚ⋆
ℎ𝑆𝐴𝑇

𝐻
.

This remains an open question in online RL.

87

Appendix B

Supplementary Material in Chapter 3

B.1 Proofs in Section 3.3.2

Instead of proofing the result for 𝑣⋆ − 𝑣𝜋, in most parts of the proof we deal with 𝑉 ⋆
1 − 𝑉 𝜋

1 ,
which is more general.

B.1.1 Some preparations

Define the Bellman update error 𝜁ℎ(𝑠, 𝑎) ∶= (ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) and recall 𝜋ℎ(𝑠) =

argmax𝜋ℎ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅ ∣ 𝑠)⟩, then by the direct application of Lemma D.0.8

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

−
𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

. (B.1)

The next lemma shows it is sufficient to bound the pessimistic penalty, which is the key in the
proof.

Lemma B.1.1. Suppose with probability 1 − 𝛿, it holds for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  × 𝐴 that

|(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)| ≤ Γℎ(𝑠, 𝑎), then it implies ∀𝑠, 𝑎, ℎ ∈  ×  × [𝐻], 0 ≤ 𝜁ℎ(𝑠, 𝑎) ≤

88

Supplementary Material in Chapter 3 Chapter B

2Γℎ(𝑠, 𝑎). Furthermore, it holds for any policy 𝜋 simultaneously, with probability 1 − 𝛿,

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋

[

Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

.

Proof: [Proof of Lemma C.3.2]
We first show given |(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)| ≤ Γℎ(𝑠, 𝑎), then 0 ≤ 𝜁ℎ(𝑠, 𝑎) ≤ 2Γℎ(𝑠, 𝑎),

∀𝑠, 𝑎, ℎ ∈  × × [𝐻].
Step1: we first show 0 ≤ 𝜁ℎ(𝑠, 𝑎), ∀𝑠, 𝑎, ℎ ∈  × × [𝐻].
Indeed, if 𝑄̄ℎ(𝑠, 𝑎) ≤ 0, then by definition 𝑄̂ℎ(𝑠, 𝑎) = 0 and in this case 𝜁ℎ(𝑠, 𝑎) ∶=

(ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) = (ℎ𝑉ℎ+1)(𝑠, 𝑎) ≥ 0; if 𝑄̄ℎ(𝑠, 𝑎) > 0, then 𝑄̂ℎ(𝑠, 𝑎) ≤ 𝑄̄ℎ(𝑠, 𝑎)

and

𝜁ℎ(𝑠, 𝑎) ∶=(ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) ≥ (ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̄ℎ(𝑠, 𝑎)

=(ℎ𝑉ℎ+1)(𝑠, 𝑎) − (̂ℎ𝑉ℎ+1)(𝑠, 𝑎) + Γℎ(𝑠, 𝑎) ≥ 0.

Step2: next we show 𝜁ℎ(𝑠, 𝑎) ≤ 2Γℎ(𝑠, 𝑎), ∀𝑠, 𝑎, ℎ ∈  × × [𝐻].
Indeed, we have 𝑄̂ℎ(𝑠, 𝑎) = max(𝑄̄ℎ(𝑠, 𝑎), 0) and this is because: 𝑄̄ℎ(𝑥, 𝑎) = (̂ℎ𝑉ℎ+1)(𝑥, 𝑎)−

Γℎ(𝑥, 𝑎) ≤ (ℎ𝑉ℎ+1)(𝑥, 𝑎) ≤ 𝐻 − ℎ + 1. Therefore, in this case we have:

𝜁ℎ(𝑠, 𝑎) ∶=(ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) ≤ (ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̄ℎ(𝑠, 𝑎)

=(ℎ𝑉ℎ+1)(𝑠, 𝑎) − (̂ℎ𝑉ℎ+1)(𝑠, 𝑎) + Γℎ(𝑠, 𝑎) ≤ 2 ⋅ Γℎ(𝑠, 𝑎).

For the last statement, denote 𝔉 ∶= {0 ≤ 𝜁ℎ(𝑠, 𝑎) ≤ 2Γℎ(𝑠, 𝑎), ∀𝑠, 𝑎, ℎ ∈  × × [𝐻]}.
Note conditional on 𝔉, then by (B.1), 𝑉 𝜋

1 (𝑠) − 𝑉
𝜋
1 (𝑠) ≤

∑𝐻
ℎ=1 2 ⋅ 𝔼𝜋[Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠] holds

89

Supplementary Material in Chapter 3 Chapter B

for any policy 𝜋 almost surely. Therefore,

ℙ

[

∀𝜋, 𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋[Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠].

]

=ℙ

[

∀𝜋, 𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋[Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠]

|

|

|

|

|

|

𝔉

]

⋅ ℙ[𝔉]

+ℙ

[

∀𝜋, 𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋[Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠]

|

|

|

|

|

|

𝔉𝑐

]

⋅ ℙ[𝔉𝑐]

≥ℙ

[

∀𝜋, 𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋[Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠]

|

|

|

|

|

|

𝔉

]

⋅ ℙ[𝔉] ≥ 1 ⋅ ℙ[𝔉] ≥ 1 − 𝛿,

which finishes the proof.

B.1.2 Bounding |

|

|

(ℎ𝑉ℎ+1)(𝑠, 𝑎) − (̂ℎ𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

.

By Lemma C.3.2, it remains to bound |(ℎ𝑉ℎ+1)(𝑠, 𝑎) − (̂ℎ𝑉ℎ+1)(𝑠, 𝑎)|. Suppose 𝑤ℎ is the
coefficient corresponding to the ℎ𝑉ℎ+1 (such𝑤ℎ exists by Lemma B.5.9), i.e. ℎ𝑉ℎ+1 = 𝜙⊤𝑤ℎ,
and recall (̂ℎ𝑉ℎ+1)(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝑤̂ℎ, then:
(

ℎ𝑉ℎ+1
)

(𝑠, 𝑎) −
(

̂ℎ𝑉ℎ+1
)

(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤
(

𝑤ℎ − 𝑤̂ℎ
)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏟⏞⏞⏟
(i)

+ 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(ii)

.

(B.2)
The term (i) is dealt by the following lemma.

90

Supplementary Material in Chapter 3 Chapter B

Lemma B.1.2. Recall 𝜅 in Assumption 4.2.3. Suppose𝐾 ≥ max
{

512𝐻4∕𝜅2 log
(

2𝑑
𝛿

)

, 4𝜆𝐻2∕𝜅
}

,

then with probability 1 − 𝛿, for all 𝑠, 𝑎, ℎ ∈  × × [𝐻]

|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

)

|

|

|

|

|

|

≤
2𝜆𝐻3

√

𝑑∕𝜅
𝐾

.

Proof: Recall ℎ𝑉ℎ+1 = 𝜙⊤𝑤ℎ and apply Lemma C.11.5, we obtain with probability 1−𝛿,
for all 𝑠, 𝑎, ℎ ∈  × × [𝐻],

𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅ 𝜙(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)
⊤𝑤ℎ∕𝜎2(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)

)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

Λ̂ℎ − 𝜆𝐼
)

𝑤ℎ = 𝜆 ⋅ 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ 𝑤ℎ

≤𝜆 ‖𝜙(𝑠, 𝑎)‖Λ̂−1
ℎ
⋅ ‖
‖

𝑤ℎ
‖

‖Λ̂−1
ℎ
≤ 𝜆
𝐾

‖𝜙(𝑠, 𝑎)‖(Λ̃𝑝ℎ)−1 ⋅
‖

‖

𝑤ℎ
‖

‖(Λ̃𝑝ℎ)
−1

≤ 𝜆
𝐾
1 ⋅

√

‖

‖

(Λ̃𝑝
ℎ)−1‖‖ ⋅ 2𝐻

√

𝑑 ⋅
√

‖

‖

(Λ̃𝑝
ℎ)−1‖‖

where Λ̃𝑝
ℎ ∶= 𝔼𝜇,ℎ

[

𝜎ℎ(𝑠, 𝑎)−2𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤
] and the second inequality is by Lemma C.11.5

(with 𝜙′ = 𝜙∕𝜎ℎ and ‖

‖

𝜙∕𝜎ℎ‖‖ ≤ ‖𝜙‖ ≤ 1 ∶= 𝐶) and the third inequality uses √𝑎⊤ ⋅ 𝐴 ⋅ 𝑎 ≤
√

‖𝑎‖2 ‖𝐴‖2 ‖𝑎‖2 = ‖𝑎‖2
√

‖𝐴‖2 with 𝑎 to be either𝜙 or𝑤ℎ. Moreover, 𝜆min(Λ̃
𝑝
ℎ) ≥ 𝜅∕maxℎ,𝑠,𝑎 𝜎ℎ(𝑠, 𝑎)2 ≥

𝜅∕𝐻2 implies ‖
‖

(Λ̃𝑝
ℎ)

−1
‖

‖

≤ 𝐻2∕𝜅, therefore for all 𝑠, 𝑎, ℎ ∈  ××[𝐻], with probability 1−𝛿

|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

)

|

|

|

|

|

|

≤
2𝜆𝐻3

√

𝑑∕𝜅
𝐾

.

For term (ii), denote: 𝑥𝜏 = 𝜙(𝑠𝜏ℎ,𝑎
𝜏
ℎ)

𝜎(𝑠𝜏ℎ,𝑎
𝜏
ℎ)
, 𝜂𝜏 =

(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎(𝑠𝜏ℎ, 𝑎
𝜏
ℎ),

91

Supplementary Material in Chapter 3 Chapter B

then by Cauchy inequality it follows

|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

|

|

|

|

|

|

≤
√

𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ 𝜙(𝑠, 𝑎) ⋅ ||

𝐾
∑

𝜏=1
𝑥𝜏𝜂𝜏||Λ̂−1

ℎ

(B.3)

Analyzing the term
√

𝜙(𝑠, 𝑎)Λ̂−1
ℎ 𝜙(𝑠, 𝑎)

Recall (in Theorem 3.3.1) the estimated Λ̂ℎ =
∑𝐾

𝜏=1 𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)⊤ ∕𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)+𝜆 ⋅𝐼

and Λℎ =
∑𝐾

𝜏=1 𝜙(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)
⊤𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎

2
𝑉ℎ+1

(𝑠𝜏ℎ, 𝑎
𝜏
ℎ) + 𝜆𝐼 . Then we have the following lemma to

control the term
√

𝜙(𝑠, 𝑎)Λ̂−1
ℎ 𝜙(𝑠, 𝑎).

Lemma B.1.3. Denote the quantities𝐶1 = max{2𝜆, 128 log(2𝑑∕𝛿), 128𝐻4 log(2𝑑∕𝛿)∕𝜅2} and

𝐶2 = max{ 𝜆2

𝜅 log((𝜆+𝐾)𝐻∕𝜆𝛿)
, 962𝐻12𝑑 log((𝜆+𝐾)𝐻∕𝜆𝛿)∕𝜅5}. Suppose the number of episode𝐾

satisfies 𝐾 > max{𝐶1, 𝐶2}, then with probability 1 − 𝛿,

√

𝜙(𝑠, 𝑎)Λ̂−1
ℎ 𝜙(𝑠, 𝑎) ≤ 2

√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎), ∀𝑠, 𝑎 ∈  ×.

Proof: [Proof of Lemma B.1.3]
By definition

√

𝜙(𝑠, 𝑎)Λ̂−1
ℎ 𝜙(𝑠, 𝑎) = ‖𝜙(𝑠, 𝑎)‖Λ̂−1

ℎ
. Then denote

Λ̂′
ℎ =

1
𝐾
Λ̂ℎ, Λ′

ℎ =
1
𝐾
Λℎ,

whereΛℎ =
∑𝐾

𝜏=1 𝜙(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)
⊤𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎

2
𝑉ℎ+1

(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)+𝜆𝐼 . Under the condition of𝐾 , by Lemma B.1.6,

92

Supplementary Material in Chapter 3 Chapter B

with probability 1 − 𝛿

‖

‖

‖

Λ̂′
ℎ − Λ′

ℎ
‖

‖

‖

≤ sup
𝑠,𝑎

‖

‖

‖

‖

‖

‖

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

𝜎2
ℎ(𝑠, 𝑎)

−
𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

𝜎2
𝑉ℎ+1

(𝑠, 𝑎)

‖

‖

‖

‖

‖

‖

≤ sup
𝑠,𝑎

|

|

|

|

|

|

𝜎2
ℎ(𝑠, 𝑎) − 𝜎

2
𝑉ℎ+1

(𝑠, 𝑎)

𝜎2
ℎ(𝑠, 𝑎)𝜎

2
𝑉ℎ+1

(𝑠, 𝑎)

|

|

|

|

|

|

⋅ ‖𝜙(𝑠, 𝑎)‖2 ≤ sup
𝑠,𝑎

|

|

|

|

|

|

𝜎2
ℎ(𝑠, 𝑎) − 𝜎

2
𝑉ℎ+1

(𝑠, 𝑎)

1

|

|

|

|

|

|

⋅ 1

≤ 12

√

𝐻4𝑑
𝜅𝐾

log
(

(𝜆 +𝐾)𝐻
𝜆𝛿

)

+ 12𝜆
𝐻2

√

𝑑
𝜅𝐾

.

(B.4)

Next by Lemma C.11.6 (with 𝜙 to be 𝜙∕𝜎𝑉ℎ+1 and 𝐶 = 1), it holds with probability 1 − 𝛿,

‖

‖

‖

‖

Λ′
ℎ −

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉ℎ+1

(𝑠, 𝑎)] + 𝜆
𝐾
𝐼𝑑
)

‖

‖

‖

‖

≤
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
.

Therefore by Weyl’s spectrum theorem and the condition𝐾 > max{2𝜆, 128 log(2𝑑∕𝛿), 128𝐻4 log(2𝑑∕𝛿)∕𝜅2},
the above implies

‖

‖

Λ′
ℎ
‖

‖

=𝜆max(Λ′
ℎ) ≤ 𝜆max

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉ℎ+1

(𝑠, 𝑎)]
)

+ 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

=
‖

‖

‖

‖

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉ℎ+1

(𝑠, 𝑎)]
‖

‖

‖

‖2
+ 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≤ ‖𝜙(𝑠, 𝑎)‖2 + 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≤ 1 + 𝜆

𝐾
+

4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≤ 2,

𝜆min(Λ′
ℎ) ≥𝜆min

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉ℎ+1

(𝑠, 𝑎)]
)

+ 𝜆
𝐾

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≥𝜆min

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉ℎ+1

(𝑠, 𝑎)]
)

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≥ 𝜅
𝐻2

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≥ 𝜅

2𝐻2
.

Hence with probability 1 − 𝛿, ‖
‖

Λ′
ℎ
‖

‖

≤ 2 and ‖

‖

Λ′−1
ℎ

‖

‖

= 1∕𝜆min(Λ′
ℎ) ≤ 2𝐻2∕𝜅. Similarly, one

93

Supplementary Material in Chapter 3 Chapter B

can show ‖

‖

‖

Λ̂′−1
ℎ

‖

‖

‖

≤ 2𝐻2∕𝜅 with high probability.
Now apply Lemma C.11.7 to Λ̂′

ℎ and Λ′
ℎ and a union bound, we obtain with probability

1 − 𝛿, for all 𝑠, 𝑎

‖𝜙(𝑠, 𝑎)‖Λ̂′−1
ℎ

≤

[

1 +
√

‖

‖

Λ′−1
ℎ

‖

‖

‖

‖

Λ′
ℎ
‖

‖

⋅ ‖‖
‖

Λ̂′−1
ℎ

‖

‖

‖

⋅ ‖‖
‖

Λ̂′
ℎ − Λ′

ℎ
‖

‖

‖

]

⋅ ‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

≤

[

1 +
√

2𝐻2

𝜅
⋅ 1 ⋅ 2𝐻

2

𝜅
⋅ ‖‖
‖

Λ̂′
ℎ − Λ′

ℎ
‖

‖

‖

]

⋅ ‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

≤
⎡

⎢

⎢

⎢

⎣

1 +

√

√

√

√

√

48𝐻4

𝜅2

⎛

⎜

⎜

⎝

√

𝐻4𝑑
𝜅𝐾

log
(

(𝜆 +𝐾)𝐻
𝜆𝛿

)

+ 𝜆
𝐻2

√

𝑑
𝜅𝐾

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

⋅ ‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

≤
⎡

⎢

⎢

⎢

⎣

1 +

√

√

√

√96𝐻4

𝜅2

√

𝐻4𝑑
𝜅𝐾

log
(

(𝜆 +𝐾)𝐻
𝜆𝛿

)

⎤

⎥

⎥

⎥

⎦

⋅ ‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

≤ 2 ‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

where the third inequality uses (B.4) and the last and the second last inequality use 𝐾 >

max{ 𝜆2

𝜅 log((𝜆+𝐾)𝐻∕𝜆𝛿)
, 962𝐻12𝑑 log((𝜆+𝐾)𝐻∕𝜆𝛿)∕𝜅5}. Note the above is equivalent to

√

𝜙(𝑠, 𝑎)Λ̂−1
ℎ 𝜙(𝑠, 𝑎) ≤

2
√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎) by multiplying 1∕

√

𝐾 on both sides.

Analyzing the term ||

∑𝐾
𝜏=1 𝑥𝜏𝜂𝜏||Λ̂−1

Lemma B.1.4. Recall 𝑥𝜏 =
𝜙(𝑠𝜏ℎ,𝑎

𝜏
ℎ)

𝜎(𝑠𝜏ℎ,𝑎
𝜏
ℎ)

and 𝜂𝜏 =
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎(𝑠𝜏ℎ, 𝑎
𝜏
ℎ).

Let 𝐶𝐻,𝑑,𝜅,𝐾 ∶= 36
√

𝐻4𝑑3

𝜅
log

(

(𝜆+𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 12𝜆𝐻
2
√

𝑑
𝜅

and denote

𝜉 ∶= sup
𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎), ℎ∈[𝐻]

|

|

|

|

|

𝑟ℎ + 𝑉 (𝑠′) −
(

ℎ𝑉
)

(𝑠, 𝑎)
𝜎𝑉 (𝑠, 𝑎)

|

|

|

|

|

.

94

Supplementary Material in Chapter 3 Chapter B

If 𝐾 ≥ 4𝐶2
𝐻,𝑑,𝜅,𝐾 and 𝐾 ≥ 𝑂(𝐻6𝑑∕𝜅), then with probability 1 − 𝛿,

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝑥𝜏𝜂𝜏

‖

‖

‖

‖

‖

‖Λ̂−1

≤ 16

√

𝑑 log
(

1 + 𝐾
𝜆𝑑

)

⋅ log
(

4𝐾2

𝛿

)

+ 4𝜉 log
(

4𝐾2

𝛿

)

≤ 𝑂max
{

√

𝑑, 𝜉
}

,

where 𝑂 absorbs the constants and Polylog terms.

Proof: [Proof of Lemma B.1.4] By construction, we have ‖

‖

𝑥𝜏‖‖ ≤ ‖

‖

𝜙∕𝜎‖
‖

≤ 1 and by
Lemma B.1.6, with probability 1 − 𝛿∕3,

‖

‖

‖

𝜎𝑉ℎ+1 − 𝜎ℎ
‖

‖

‖∞
= sup

𝑠,𝑎

|

|

|

|

𝜎2
𝑉ℎ+1

(𝑠, 𝑎) − 𝜎2
ℎ(𝑠, 𝑎)

|

|

|

|

|

|

|

𝜎𝑉ℎ+1(𝑠, 𝑎) + 𝜎ℎ(𝑠, 𝑎)
|

|

|

≤ 1
2
‖

‖

‖

‖

𝜎2
𝑉ℎ+1

− 𝜎2
ℎ

‖

‖

‖

‖∞
≤ 𝐶𝐻,𝑑,𝜅,𝐾

√

1
𝐾

Therefore, when 𝐾 ≥ 4𝐶2
𝐻,𝑑,𝜅,𝐾 , 𝐶𝐻,𝑑,𝜅,𝐾

√

1
𝐾
≤ 1∕2 ≤ 𝜎𝑉ℎ+1(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)∕2 and hence

|𝜂𝜏| ≤
|

|

|

|

|

|

|

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

𝜎𝑉ℎ+1(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ) −

𝐶𝐻,𝑑,𝜅,𝐾
𝐾1∕2

|

|

|

|

|

|

|

≤ 2
|

|

|

|

|

|

|

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

𝜎𝑉ℎ+1(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

≤ 2 sup
𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎)

|

|

|

|

|

𝑟 + 𝑉 (𝑠′) −
(

ℎ𝑉
)

(𝑠, 𝑎)
𝜎𝑉 (𝑠, 𝑎)

|

|

|

|

|

∶= 𝜉.

Next, for a fixed function 𝑉 , we define the Bellman error as ℎ(𝑉)(𝑠, 𝑎) = 𝑟ℎ + 𝑉 (𝑠′) −

95

Supplementary Material in Chapter 3 Chapter B

(ℎ𝑉)(𝑠, 𝑎), then

Var
[

𝜂𝜏|𝜏−1
]

=
Var

[

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)|

|

|

|

𝜏−1
]

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

=
Var

[

ℎ𝑉ℎ+1(𝑠𝜏ℎ, 𝑎
𝜏
ℎ) − ℎ𝑉 ⋆

ℎ+1(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ) + ℎ𝑉 ⋆

ℎ+1(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)
|

|

|

𝜏−1
]

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤
Var

[

ℎ𝑉 ⋆
ℎ+1(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
|

|

|

𝜏−1
]

+ 8𝐻 ‖

‖

‖

ℎ𝑉ℎ+1 − ℎ𝑉 ⋆
ℎ+1

‖

‖

‖∞

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤
Var

[

ℎ𝑉 ⋆
ℎ+1(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
|

|

|

𝜏−1
]

+ 16𝐻 ‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤
Var

[

ℎ𝑉 ⋆
ℎ+1(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
|

|

|

𝜏−1
]

+ 𝑂(𝐻
3
√

𝑑
√

𝜅𝐾
)

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

=
Var

[

ℎ𝑉 ⋆
ℎ+1(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
|

|

|

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

]

+ 𝑂(𝐻
3
√

𝑑
√

𝜅𝐾
)

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

=
Var𝑉 ⋆

ℎ+1
(𝑠𝜏ℎ, 𝑎

𝜏
ℎ) + 𝑂(

𝐻3
√

𝑑
√

𝜅𝐾
)

𝜎2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤
2Var𝑉 ⋆

ℎ+1
(𝑠𝜏ℎ, 𝑎

𝜏
ℎ) + 𝑂(

𝐻3
√

𝑑
√

𝜅𝐾
)

𝜎⋆2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤ 2 +
𝑂(𝐻

3
√

𝑑
√

𝜅𝐾
)

𝜎⋆2(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

≤𝑂(1)

where the first inequality is by Lemma B.5.11, the second inequality is by ℎ is non-expansive,
the third inequality is by Lemma B.1.7, the next equality is by Markovian property, and the
fourth inequality is by Lemma B.1.6 and Lemma B.1.8. The fifth inequality uses definition
𝜎ℎ,𝑉 (𝑠, 𝑎)2 ∶= max{1,Var𝑃ℎ(𝑉)(𝑠, 𝑎)} and the last one is by condition 𝐾 ≥ 𝑂(𝐻6𝑑∕𝜅) and
𝜎ℎ,𝑉 ⋆(𝑠, 𝑎)2 ∶= max{1,Var𝑃ℎ(𝑉

⋆)(𝑠, 𝑎)} ≥ 1. Thus, by Bernstein inequality for self-normalized

96

Supplementary Material in Chapter 3 Chapter B

martingale (Lemma C.11.4),1 with probability 1 − 𝛿,

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝑥𝜏𝜂𝜏

‖

‖

‖

‖

‖

‖Λ̂−1

≤ 𝑂
⎛

⎜

⎜

⎝

√

𝑑 log
(

1 + 𝐾
𝜆𝑑

)

⋅ log
(

4𝐾2

𝛿

)

⎞

⎟

⎟

⎠

+ 4𝜉 log
(

4𝐾2

𝛿

)

≤ 𝑂max
{

√

𝑑, 𝜉
}

where 𝑂 absorbs the constants and Polylog terms.
Recall 1,2,3,4 in List . Based on the above results, we have the following key

lemma:

Lemma B.1.5. Assume 𝐾 > max{1,2,3,4}, for any 0 < 𝜆 < 𝜅, suppose
√

𝑑 > 𝜉,

where 𝜉 ∶= sup𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎), ℎ∈[𝐻]
|

|

|

|

𝑟ℎ+𝑉 (𝑠′)−(ℎ𝑉)(𝑠,𝑎)
𝜎𝑉 (𝑠,𝑎)

|

|

|

|

. Then with probability 1 − 𝛿, for all

ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×,

|

|

|

(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

≤ 𝑂
(

√

𝑑
√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎)

)

+
2𝐻3

√

𝑑
𝐾

,

where Λℎ =
∑𝐾

𝜏=1 𝜙(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)
⊤𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎

2
𝑉ℎ+1

(𝑠𝜏ℎ, 𝑎
𝜏
ℎ) +𝜆𝐼 and 𝑂 absorbs the universal constants

and Polylog terms.

Proof: [Proof of Lemma B.1.5] Combing (B.2), Lemma B.1.2, (B.3), Lemma B.1.3 and
B.1.4 and a union bound to finish the proof.

B.1.3 Proof of the first part of Theorem 3.3.1

Theorem B.1.1 (First part of Theorem 3.3.1). Let𝐾 be the number of episodes. Suppose
√

𝑑 >

𝜉, where 𝜉 ∶= sup𝑉 ∈[0,𝐻], 𝑠′∼𝑃ℎ(𝑠,𝑎), ℎ∈[𝐻]
|

|

|

|

𝑟ℎ+𝑉 (𝑠′)−(ℎ𝑉)(𝑠,𝑎)
𝜎𝑉 (𝑠,𝑎)

|

|

|

|

and 𝐾 > max{1,2,3,4}2.

Then for any 0 < 𝜆 < 𝜅, with probability 1 − 𝛿, for all policy 𝜋 simultaneously, the output 𝜋 of
1To be rigorous, Lemma C.11.4 needs to be modified since the absolute value bound and the variance bound

here are in the high probability sense. However, this will not affect the validity of the result as the weaker version
can also be obtained (see [157] and a related discussion in [3] Remark E.7.) To make the proof more readable, we
do not include them here to avoid over-technicality.

2The definition of 𝑖 is in List .
97

Supplementary Material in Chapter 3 Chapter B

Algorithm 2 satisfies

𝑣𝜋 − 𝑣𝜋 ≤ 𝑂

(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋

[

(

𝜙(⋅, ⋅)⊤Λ−1
ℎ 𝜙(⋅, ⋅)

)1∕2
]

)

+
2𝐻4

√

𝑑
𝐾

where Λℎ =
∑𝐾

𝜏=1
𝜙(𝑠𝜏ℎ,𝑎

𝜏
ℎ)⋅𝜙(𝑠

𝜏
ℎ,𝑎

𝜏
ℎ)
⊤

𝜎2
𝑉ℎ+1(𝑠

𝜏
ℎ,𝑎

𝜏
ℎ)

+ 𝜆𝐼𝑑 and 𝑂 absorbs the universal constants and the Polylog

terms.

Proof: [Proof of Theorem B.1.1] Combing Lemma C.3.2 and Lemma B.1.5, we directly
have with probability 1 − 𝛿, for all policy 𝜋 simultaneously,

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤ 𝑂

(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋

[

(

𝜙(⋅, ⋅)⊤Λ−1
ℎ 𝜙(⋅, ⋅)

)1∕2
|

|

|

𝑠1 = 𝑠
]

)

+
2𝐻4

√

𝑑
𝐾

, (B.5)

now take the initial distribution 𝑑1 on both sides to get the stated result.

B.1.4 Two Intermediate results

The next two lemmas provide intermediate results in finishing the whole proofs.

Bounding the variance

Lemma B.1.6. Recall the definition 𝜎ℎ(⋅, ⋅)2 = max{1, V̂ar𝑃ℎ𝑉ℎ+1(⋅, ⋅)} + 1 and 𝜎𝑉ℎ+1(⋅, ⋅)
2 ∶=

max{1,Var𝑃ℎ𝑉ℎ+1(⋅, ⋅)}+1. Moreover,
[

V̂arℎ𝑉ℎ+1
]

(⋅, ⋅) =
⟨

𝜙(⋅, ⋅), 𝛽ℎ
⟩

[0,(𝐻−ℎ+1)2]−
[⟨

𝜙(⋅, ⋅), 𝜃̄ℎ
⟩

[0,𝐻−ℎ+1]

]2

(where 𝛽ℎ and 𝜃̄ℎ are defined in Algorithm 2). Let 𝐾 ≥ max
{

512(1∕𝜅)2 log
(

4𝐻𝑑
𝛿

)

, 4𝜆∕𝜅
}

,

then with probability 1 − 𝛿,

sup
ℎ
||𝜎2

ℎ − 𝜎
2
𝑉ℎ+1

||∞ ≤ 36

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 12𝜆
𝐻2

√

𝑑
𝜅𝐾

.

98

Supplementary Material in Chapter 3 Chapter B

Proof: Step1: we first show for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×, with probability 1 − 𝛿

|

|

|

⟨𝜙(𝑠, 𝑎), 𝛽ℎ⟩[0,(𝐻−ℎ+1)2] − ℙℎ(𝑉ℎ+1)2(𝑠, 𝑎)
|

|

|

≤ 12

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+4𝜆
𝐻2

√

𝑑
𝜅𝐾

.

Proof of Step1. Note

|

|

|

⟨𝜙(𝑠, 𝑎), 𝛽ℎ⟩[0,(𝐻−ℎ+1)2] − ℙℎ(𝑉ℎ+1)2(𝑠, 𝑎)
|

|

|

≤ |

|

|

⟨𝜙(𝑠, 𝑎), 𝛽ℎ⟩ − ℙℎ(𝑉ℎ+1)2(𝑠, 𝑎)
|

|

|

=
|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅ 𝑉ℎ+1(𝑠̄

𝜏
ℎ+1)

2 − ℙℎ(𝑉ℎ+1)2(𝑠, 𝑎)
|

|

|

|

|

|

=
|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅ 𝑉ℎ+1(𝑠̄

𝜏
ℎ+1)

2 − 𝜙(𝑠, 𝑎)⊤ ∫
(𝑉ℎ+1)2(𝑠′)𝑑𝜈ℎ(𝑠′)

|

|

|

|

|

|

=
|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅ 𝑉ℎ+1(𝑠̄

𝜏
ℎ+1)

2 − 𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ (

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)𝜙(𝑠̄

𝜏
ℎ, 𝑎̄

𝜏
ℎ)
⊤ + 𝜆𝐼)∫

(𝑉ℎ+1)2(𝑠′)𝑑𝜈ℎ(𝑠′)
|

|

|

|

|

|

≤
|

|

|

|

|

|

𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

|

|

|

|

|

|

⏟⏞⏞⏟⏞⏞⏟
1

+ 𝜆
|

|

|

|

𝜙(𝑠, 𝑎)⊤Σ̄−1
ℎ ∫

(𝑉ℎ+1)2(𝑠′)𝑑𝜈ℎ(𝑠′)
|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2

For 2, since 𝐾 ≥ max
{

512(1∕𝜅)2 log
(

4𝐻𝑑
𝛿

)

, 4𝜆∕𝜅
}

, by Lemma C.11.5 and a union
bound over ℎ ∈ [𝐻], with probability 1 − 𝛿 for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×,

2 ≤𝜆 ‖𝜙(𝑠, 𝑎)‖Σ̄−1
ℎ

‖

‖

‖

‖

∫
(𝑉ℎ+1)2(𝑠′)𝑑𝜈ℎ(𝑠′)

‖

‖

‖

‖Σ̄−1
ℎ

≤𝜆 2
√

𝐾
‖𝜙(𝑠, 𝑎)‖(Σ𝑝ℎ)−1

2
√

𝐾

‖

‖

‖

‖

∫
(𝑉ℎ+1)2(𝑠′)𝑑𝜈ℎ(𝑠′)

‖

‖

‖

‖(Σ𝑝ℎ)
−1
≤ 4𝜆 ‖‖

‖

(Σ𝑝ℎ)
−1‖
‖

‖

𝐻2
√

𝑑
𝐾

≤ 4𝜆
𝐻2

√

𝑑
𝜅𝐾

.

(B.6)
For 1, we have

1 ≤ ‖𝜙(𝑠, 𝑎)‖Σ̄−1
ℎ

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

‖

‖

‖

‖

‖

‖Σ̄−1
ℎ

(B.7)

Bounding using covering. Note for any fix 𝑉ℎ+1, we can define 𝑥𝜏 = 𝜙(𝑠̄𝜏ℎ, 𝑎̄
𝜏
ℎ) (‖𝜙‖2 ≤ 1) and

99

Supplementary Material in Chapter 3 Chapter B

𝜂𝜏 = 𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) is 𝐻2-subgaussian, by Lemma C.11.3 (where 𝑡 = 𝐾 and

𝐿 = 1) with probability 1 − 𝛿,
‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

‖

‖

‖

‖

‖

‖Σ̄−1
ℎ

≤
√

8𝐻4 ⋅
𝑑
2
log

(𝜆 +𝐾
𝜆𝛿

)

letℎ(𝜖) be the minimal 𝜖-cover (with respect the supremum norm) ofℎ ∶= {𝑉ℎ ∶ 𝑉ℎ(⋅) =

max𝑎∈

{

min{𝜙(𝑠, 𝑎)⊤𝜃 − 𝐶1

√

𝑑 ⋅ 𝜙(⋅, ⋅)⊤Λ̂−1
ℎ 𝜙(⋅, ⋅) − 𝐶2,𝐻 − ℎ + 1}+}

}

. That is, for any
𝑉 ∈ ℎ, there exists a value function 𝑉 ′ ∈ ℎ(𝜖) such that sup𝑠∈ |𝑉 (𝑠) − 𝑉 ′(𝑠)| < 𝜖. Now
by a union bound, we obtain with probability 1 − 𝛿

sup
𝑉ℎ+1∈ℎ+1(𝜖)

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

‖

‖

‖

‖

‖

‖Σ̄−1
ℎ

≤
√

8𝐻4 ⋅
𝑑
2
log

(𝜆 +𝐾
𝜆𝛿

|ℎ+1(𝜖)|
)

which implies

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

‖

‖

‖

‖

‖

‖Σ̄−1
ℎ

≤
√

8𝐻4 ⋅
𝑑
2
log

(𝜆 +𝐾
𝜆𝛿

|ℎ+1(𝜖)|
)

+ 4𝐻2
√

𝜖2𝐾2∕𝜆

choosing 𝜖 = 𝑑
√

𝜆∕𝐾 , applying Lemma B.3 of [80]3 to the covering number ℎ+1(𝜖) w.r.t.
ℎ+1, we can further bound above by

≤
√

8𝐻4 ⋅
𝑑3

2
log

(𝜆 +𝐾
𝜆𝛿

2𝑑𝐻𝐾
)

+ 4𝐻2
√

𝑑2 ≤ 6
√

𝐻4 ⋅ 𝑑3 log
(𝜆 +𝐾

𝜆𝛿
2𝑑𝐻𝐾

)

3Note the same result in [80] applies even though we have an extra constant 𝐶2.

100

Supplementary Material in Chapter 3 Chapter B

Apply a union bound for ℎ ∈ [𝐻], we have with probability 1 − 𝛿, for all ℎ ∈ [𝐻],

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ) ⋅

(

𝑉ℎ+1(𝑠̄𝜏ℎ+1)
2 − ℙℎ(𝑉ℎ+1)2(𝑠̄𝜏ℎ, 𝑎̄

𝜏
ℎ)
)

‖

‖

‖

‖

‖

‖Σ̄−1
ℎ

≤ 6

√

𝐻4𝑑3 log
(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

(B.8)
and similar to 2, with probability 1 − 𝛿 for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×,

‖𝜙(𝑠, 𝑎)‖Σ̄−1
ℎ
≤

2 ‖
‖

(Σ𝑝ℎ)
−1
‖

‖

1∕2

√

𝐾
≤ 2

√

𝜅𝐾
. (B.9)

Combing (B.6), (B.7), (B.8) and (B.9) we obtain with probability 1 − 𝛿 for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×

 ×,

|

|

|

⟨𝜙(𝑠, 𝑎), 𝛽ℎ⟩[0,(𝐻−ℎ+1)2] − ℙℎ(𝑉ℎ+1)2(𝑠, 𝑎)
|

|

|

≤ 12

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+4𝜆
𝐻2

√

𝑑
𝜅𝐾

.

Step2: we show for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×, with probability 1 − 𝛿

|

|

|

⟨𝜙(𝑠, 𝑎), 𝜃̄ℎ⟩[0,𝐻−ℎ+1] − ℙℎ(𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

≤ 12

√

𝐻2𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 4𝜆
𝐻
√

𝑑
𝜅𝐾

.

(B.10)
The proof of Step2 follows nearly the identical way as Step1 except 𝑉 2

ℎ is replaced by 𝑉ℎ.
Step3: We prove supℎ||𝜎2

ℎ − 𝜎
2
𝑉ℎ
||∞ ≤ 36

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆+𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 12𝜆𝐻
2
√

𝑑
𝜅𝐾

.
Proof of Step3. By (B.10),

|

|

|

[⟨

𝜙(⋅, ⋅), 𝜃̄ℎ
⟩

[0,𝐻−ℎ+1]

]2 −
[

ℙℎ(𝑉ℎ+1)(𝑠, 𝑎)
]2
|

|

|

= |

|

|

⟨𝜙(𝑠, 𝑎), 𝜃̄ℎ⟩[0,𝐻−ℎ+1] + ℙℎ(𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

⋅ ||
|

⟨𝜙(𝑠, 𝑎), 𝜃̄ℎ⟩[0,𝐻−ℎ+1] − ℙℎ(𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

≤2𝐻 ⋅ ||
|

⟨𝜙(𝑠, 𝑎), 𝜃̄ℎ⟩[0,𝐻−ℎ+1] − ℙℎ(𝑉ℎ+1)(𝑠, 𝑎)
|

|

|

≤ 24

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 8𝜆
𝐻2

√

𝑑
𝜅𝐾

.

101

Supplementary Material in Chapter 3 Chapter B

Combining this with Step1 we receive ∀ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  ×, with probability 1 − 𝛿

|

|

|

|

V̂arℎ𝑉ℎ+1(𝑠, 𝑎) − Var𝑃ℎ𝑉ℎ+1(𝑠, 𝑎)
|

|

|

|

≤ 36

√

𝐻4𝑑3

𝜅𝐾
log

(

(𝜆 +𝐾)2𝐾𝑑𝐻2

𝜆𝛿

)

+ 12𝜆
𝐻2

√

𝑑
𝜅𝐾

.

Finally, by the non-expansiveness of operator max{1, ⋅}, we have the stated result.

A crude bound on supℎ||𝑉 ⋆
ℎ − 𝑉ℎ||∞.

Lemma B.1.7. Define 𝜎ℎ(𝑠, 𝑎) =
√

max
{

1, V̂ar𝑃ℎ𝑉ℎ+1(𝑠, 𝑎)
}

+ 1, if𝐾 ≥ max{1,2,3,4}

and 𝐾 > 𝐶 ⋅𝐻4𝜅2, then with probability at least 1 − 𝛿,

sup
ℎ

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉ℎ

‖

‖

‖∞
≤ 𝑂

(

𝐻2
√

𝑑
√

𝜅𝐾

)

.

Proof: Step1: We show with probability at least 1 − 𝛿, supℎ ‖‖
‖

𝑉 ⋆
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
≤ 𝑂

(

𝐻2
√

𝑑
√

𝜅𝐾

)

.
Indeed, combing Lemma C.3.2 and Lemma B.1.5, similar to the proof of Theorem B.1.1,

we directly have with probability 1 − 𝛿, for all policy 𝜋 simultaneously, and for all 𝑠 ∈  ,
ℎ ∈ [𝐻]

𝑉 𝜋
ℎ (𝑠) − 𝑉

𝜋
ℎ (𝑠) ≤ 𝑂

(

√

𝑑 ⋅
𝐻
∑

𝑡=ℎ
𝔼𝜋

[

(

𝜙(⋅, ⋅)⊤Λ−1
𝑡 𝜙(⋅, ⋅)

)1∕2
|

|

|

𝑠ℎ = 𝑠
]

)

+
2𝐻4

√

𝑑
𝐾

, (B.11)

Next, since 𝐾 ≥ max
{

512(1∕𝜅)2 log
(

4𝐻𝑑
𝛿

)

, 4𝜆∕𝜅
}

, by Lemma C.11.5 and a union bound
over ℎ ∈ [𝐻], with probability 1 − 𝛿

sup
𝑠,𝑎

‖𝜙(𝑠, 𝑎)‖Λ̂−1
ℎ
≤ 2

√

𝐾
sup
𝑠,𝑎

‖𝜙(𝑠, 𝑎)‖Λ𝑝−1ℎ
≤ 2𝐻

√

𝜅𝐾
, ∀ℎ ∈ [𝐻].

102

Supplementary Material in Chapter 3 Chapter B

Lastly, taking 𝜋 = 𝜋⋆ in (B.11) to obtain

0 ≤ 𝑉 𝜋⋆
ℎ (𝑠) − 𝑉 𝜋

ℎ (𝑠) ≤𝑂

(

√

𝑑 ⋅
𝐻
∑

𝑡=ℎ
𝔼𝜋⋆

[

(

𝜙(⋅, ⋅)⊤Λ−1
𝑡 𝜙(⋅, ⋅)

)1∕2
|

|

|

𝑠ℎ = 𝑠
]

)

+
2𝐻4

√

𝑑
𝐾

≤𝑂

(

𝐻2
√

𝑑
√

𝜅𝐾

)

+
2𝐻4

√

𝑑
𝐾

.

(B.12)

This implies by using the condition 𝐾 > 𝐶 ⋅𝐻4𝜅2, we finish the proof of Step1.
Step2: We show with probability 1 − 𝛿, supℎ ‖‖

‖

𝑉ℎ − 𝑉 𝜋
ℎ
‖

‖

‖∞
≤ 𝑂

(

𝐻2
√

𝑑
√

𝜅𝐾

)

.
Indeed, applying Extended Value Difference Lemma D.0.7 for 𝜋 = 𝜋′ = 𝜋, then with

probability 1 − 𝛿, for all 𝑠, ℎ

|

|

|

𝑉ℎ(𝑠) − 𝑉 𝜋
ℎ (𝑠)

|

|

|

=
|

|

|

|

|

|

𝐻
∑

𝑡=ℎ
𝔼𝜋

[

𝑄̂ℎ(𝑠ℎ, 𝑎ℎ) −
(

ℎ𝑉ℎ+1
)

(𝑠ℎ, 𝑎ℎ)
|

|

|

|

𝑠ℎ = 𝑠
]

|

|

|

|

|

|

≤
𝐻
∑

𝑡=ℎ

‖

‖

‖

(̂ℎ𝑉ℎ+1 − ℎ𝑉ℎ+1)(𝑠, 𝑎)
‖

‖

‖

+ ‖

‖

Γℎ(𝑠, 𝑎)‖‖

≤𝑂
(

𝐻
√

𝑑
‖

‖

‖

‖

√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎)

‖

‖

‖

‖

)

+
4𝐻4

√

𝑑
𝐾

≤ 𝑂

(

𝐻2
√

𝑑
√

𝜅𝐾

)

where the second inequality uses Lemma B.1.54 and the last inequality follows the same pro-
cedure as Step1.

Step3: Combine Step1 and Step2, by triangular inequality and a union bound we finish the
proof of the lemma.

Remark 7. Note as an intermediate calculation, (B.12) ensures a learning bound with order
4To be absolutely rigorous, we cannot directly apply Lemma B.1.5 here since the crude bound has already

been used in Lemma B.1.4. However, this can be resolved completely by first deriving an even cruder bound for
supℎ||𝑉 ⋆

ℎ − 𝑉ℎ||∞ that has 1∕√𝐾 rate without using Lemma C.5 (which we call it Lemma C.8∗), and we can use
Lemma C.8∗ to show a similar result Lemma C.5∗. Finally, we can use Lemma C.5∗ here to finish the proof of
this Lemma B.1.7. However, we avoid explicitly doing this to prevent over-technicality.

103

Supplementary Material in Chapter 3 Chapter B

𝑂(𝐻
2
√

𝑑
√

𝜅𝐾
). Here, the convergence rate is the standard statistical rate 1

√

𝐾
and the𝐻2 dependence

is loose. However, the feature dependence
√

𝑑∕𝜅 is roughly tight, since, in the well-explored

case (Assumption 2 of [90]), 𝜅 = 1∕𝑑 and the
√

𝑑∕𝜅 =
√

𝑑2 recovers the optimal feature

dependence 𝑑𝐻
√

𝑇 in the online setting [76]. If 𝜅 ≪ 1∕𝑑, then doing offline learning requires

sample size proportional to 𝑑∕𝜅, which reveals offline RL is harder when the exploration of

behavior policy is insufficient. When 𝜅 = 0, learning the optimal policy accurately cannot be

guaranteed even if the sample/episode size 𝐾 → ∞.

B.1.5 Proof of the second part of Theorem 3.3.1

Lemma B.1.8. Recall 𝜎ℎ =
√

max
{

1, V̂ar𝑃ℎ𝑉ℎ+1
}

+ 1 and 𝜎⋆ℎ =
√

max
{

1,Var𝑃ℎ𝑉
⋆
ℎ+1

}

+ 1.

Let 𝐾 ≥ max
{

512(1∕𝜅)2 log
(

4𝐻𝑑
𝛿

)

, 4𝜆∕𝜅
}

and 𝐾 ≥ max{1,2,3,4}, then with

probability 1 − 𝛿,

sup
ℎ
||𝜎2

ℎ − 𝜎
⋆2
ℎ ||∞ ≤ 𝑂

(

𝐻3
√

𝑑
√

𝜅𝐾

)

.

Proof: By definition and the non-expansiveness of max{1, ⋅} + 1, we have

‖

‖

‖

‖

𝜎2
𝑉ℎ+1

− 𝜎⋆2ℎ
‖

‖

‖

‖∞
≤ ‖

‖

‖

Var𝑉ℎ+1 − Var𝑉 ⋆
ℎ+1

‖

‖

‖∞

≤
‖

‖

‖

‖

ℙℎ

(

𝑉 2
ℎ+1 − 𝑉

⋆2
ℎ+1

)

‖

‖

‖

‖∞
+ ‖

‖

‖

(ℙℎ𝑉ℎ+1)2 − (ℙℎ𝑉
⋆
ℎ+1)

2‖
‖

‖∞

≤ ‖

‖

‖

𝑉 2
ℎ+1 − 𝑉

⋆2
ℎ+1

‖

‖

‖∞
+ ‖

‖

‖

(ℙℎ𝑉ℎ+1 + ℙℎ𝑉
⋆
ℎ+1)(ℙℎ𝑉ℎ+1 − ℙℎ𝑉

⋆
ℎ+1)

‖

‖

‖∞

≤2𝐻 ‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞
+ 2𝐻 ‖

‖

‖

ℙℎ𝑉ℎ+1 − ℙℎ𝑉
⋆
ℎ+1

‖

‖

‖∞
≤ 𝑂

(

𝐻3
√

𝑑
√

𝜅𝐾

)

.

with probability 1 − 𝛿 for all ℎ ∈ [𝐻], where the last inequality comes from Lemma B.1.7.
Combining this with Lemma B.1.6, we have the stated result.

Lemma B.1.9. Denote the quantities𝐶1 = max{2𝜆, 128 log(2𝑑∕𝛿), 128𝐻4 log(2𝑑∕𝛿)∕𝜅2} and

𝐶2 = max{ 𝜆2

𝜅 log((𝜆+𝐾)𝐻∕𝜆𝛿)
, 962𝐻12𝑑 log((𝜆+𝐾)𝐻∕𝜆𝛿)∕𝜅5}. Suppose the number of episode𝐾

104

Supplementary Material in Chapter 3 Chapter B

satisfies 𝐾 > max{𝐶1, 𝐶2}, then with probability 1 − 𝛿,

√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎) ≤ 2

√

𝜙(𝑠, 𝑎)Λ⋆−1
ℎ 𝜙(𝑠, 𝑎), ∀𝑠, 𝑎 ∈  ×,

Proof: [Proof of Lemma B.1.9]
By definition

√

𝜙(𝑠, 𝑎)Λ−1
ℎ 𝜙(𝑠, 𝑎) = ‖𝜙(𝑠, 𝑎)‖Λ−1

ℎ
. Then denote

Λ′
ℎ =

1
𝐾
Λℎ, Λ⋆′

ℎ = 1
𝐾
Λ⋆
ℎ ,

whereΛℎ =
∑𝐾

𝜏=1 𝜙(𝑠
𝜏
ℎ, 𝑎

𝜏
ℎ)
⊤𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎

2
𝑉 ⋆
ℎ+1
(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)+𝜆𝐼 . Under the condition of𝐾 , by Lemma B.1.8,

with probability 1 − 𝛿

‖

‖

‖

Λ⋆′

ℎ − Λ′
ℎ
‖

‖

‖

≤ sup
𝑠,𝑎

‖

‖

‖

‖

‖

‖

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

𝜎⋆2ℎ (𝑠, 𝑎)
−
𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

𝜎2
𝑉ℎ+1

(𝑠, 𝑎)

‖

‖

‖

‖

‖

‖

≤ sup
𝑠,𝑎

|

|

|

|

|

|

𝜎⋆2ℎ (𝑠, 𝑎) − 𝜎2
𝑉ℎ+1

(𝑠, 𝑎)

𝜎⋆2ℎ (𝑠, 𝑎)𝜎2
𝑉ℎ+1

(𝑠, 𝑎)

|

|

|

|

|

|

⋅ ‖𝜙(𝑠, 𝑎)‖2 ≤ sup
𝑠,𝑎

|

|

|

|

|

|

𝜎⋆2ℎ (𝑠, 𝑎) − 𝜎2
𝑉ℎ+1

(𝑠, 𝑎)

1

|

|

|

|

|

|

⋅ 1

≤ 𝑂

(

𝐻3
√

𝑑
√

𝜅𝐾

)

.

(B.13)

Next by Lemma C.11.6 (with 𝜙 to be 𝜙∕𝜎𝑉 ⋆
ℎ+1

and 𝐶 = 1), it holds with probability 1 − 𝛿,

‖

‖

‖

‖

Λ⋆′

ℎ −
(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉 ⋆
ℎ+1
(𝑠, 𝑎)] + 𝜆

𝐾
𝐼𝑑
)

‖

‖

‖

‖

≤
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
.

Therefore by Weyl’s spectrum theorem and the condition𝐾 > max{2𝜆, 128 log(2𝑑∕𝛿), 128𝐻4 log(2𝑑∕𝛿)∕𝜅2},

the above implies

105

Supplementary Material in Chapter 3 Chapter B

‖

‖

‖

Λ⋆′

ℎ
‖

‖

‖

=𝜆max(Λ⋆′

ℎ) ≤ 𝜆max

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉 ⋆
ℎ+1
(𝑠, 𝑎)]

)

+ 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≤
‖

‖

‖

‖

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉 ⋆
ℎ+1
(𝑠, 𝑎)]

‖

‖

‖

‖

+ 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≤ ‖𝜙(𝑠, 𝑎)‖2 + 𝜆
𝐾

+
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≤ 1 + 𝜆

𝐾
+

4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≤ 2,

𝜆min(Λ⋆′

ℎ) ≥𝜆min

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉 ⋆
ℎ+1
(𝑠, 𝑎)]

)

+ 𝜆
𝐾

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≥𝜆min

(

𝔼𝜇,ℎ[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤∕𝜎2
𝑉 ⋆
ℎ+1
(𝑠, 𝑎)]

)

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2

≥ 𝜅
𝐻2

−
4
√

2
√

𝐾

(

log 2𝑑
𝛿

)1∕2
≥ 𝜅

2𝐻2
.

Hence with probability 1 − 𝛿, ‖‖
‖

Λ⋆′

ℎ
‖

‖

‖

≤ 2 and ‖

‖

‖

Λ⋆′−1
ℎ

‖

‖

‖

= 1∕𝜆min(Λ⋆′

ℎ) ≤ 2𝐻2∕𝜅. Similarly,

‖

‖

‖

Λ′−1
ℎ

‖

‖

‖

≤ 2𝐻2∕𝜅 with high probability.

Now apply Lemma C.11.7 to Λ⋆′

ℎ and Λ′
ℎ and a union bound, we obtain with probability

1 − 𝛿, for all 𝑠, 𝑎

‖𝜙(𝑠, 𝑎)‖Λ′−1
ℎ

≤
[

1 +
√

‖

‖

Λ⋆′−1
ℎ

‖

‖

‖

‖

Λ⋆′

ℎ
‖

‖

⋅ ‖
‖

Λ′−1
ℎ

‖

‖

⋅ ‖
‖

Λ⋆′

ℎ − Λ′
ℎ
‖

‖

]

⋅ ‖𝜙(𝑠, 𝑎)‖Λ⋆′−1ℎ

≤

[

1 +
√

2𝐻2

𝜅
⋅ 1 ⋅ 2𝐻

2

𝜅
⋅ ‖
‖

Λ⋆′

ℎ − Λ′
ℎ
‖

‖

]

⋅ ‖𝜙(𝑠, 𝑎)‖Λ⋆′−1ℎ

≤
⎡

⎢

⎢

⎣

1 +

√

√

√

√

𝐻4

𝜅2

[

𝑂

(

𝐻3
√

𝑑
√

𝜅𝐾

)]

⎤

⎥

⎥

⎦

⋅ ‖𝜙(𝑠, 𝑎)‖Λ⋆′−1ℎ
≤ 2 ‖𝜙(𝑠, 𝑎)‖Λ⋆′−1ℎ

where the third inequality uses (B.13) and the last inequality uses𝐾 > max{ 𝜆2

𝜅 log((𝜆+𝐾)𝐻∕𝜆𝛿)
, 962𝐻12𝑑 log((𝜆+

𝐾)𝐻∕𝜆𝛿)∕𝜅5}. The claimed result follows straightforwardly by multiplying 1∕
√

𝐾 on both

106

Supplementary Material in Chapter 3 Chapter B

sides of the above.
Proof: [Proof of Theorem 3.3.1] The first part of the theorem has been shown in The-

orem B.1.1. For the second part, apply Theorem B.1.1 with 𝜋 = 𝜋⋆, then with probability
1 − 𝛿,

𝑣𝜋⋆ − 𝑣𝜋 ≤ 𝑂

(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

(

𝜙(⋅, ⋅)⊤Λ−1
ℎ 𝜙(⋅, ⋅)

)1∕2
]

)

+
2𝐻4

√

𝑑
𝐾

,

Now apply Lemma B.1.9 and a union bound, with probability 1 − 𝛿,

0 ≤ 𝑣⋆ − 𝑣𝜋 ≤ 𝑂

(

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

(

𝜙(⋅, ⋅)⊤Λ⋆−1
ℎ 𝜙(⋅, ⋅)

)1∕2
]

)

+
2𝐻4

√

𝑑
𝐾

.

B.2 Proof of Theorem 3.3.2

First of all, we show the following lemma.

Lemma B.2.1. Suppose 𝐾 > max{1,2,3,4}. Plug

Γ𝐼ℎ(𝑠, 𝑎) ← 𝜙(𝑠, 𝑎)⊤
|

|

|

|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

+𝑂(
𝐻3𝑑∕𝜅
𝐾

)

in Algorithm 2 and let ℎ be the Bellman operator and ̂ℎ be the approximated Bellman operator.

Then we have with probability 1 − 𝛿:

|(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)| ≤ Γ𝐼ℎ(𝑠, 𝑎), ∀𝑠, 𝑎 ∈  ×.

Proof: [Proof of Lemma B.2.1] Suppose𝑤ℎ is the coefficient corresponding to the ℎ𝑉ℎ+1
(such 𝑤ℎ exists by Lemma B.5.9), i.e. ℎ𝑉ℎ+1 = 𝜙⊤𝑤ℎ, and recall (̂ℎ𝑉ℎ+1)(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝑤̂ℎ,

107

Supplementary Material in Chapter 3 Chapter B

then:
(

ℎ𝑉ℎ+1
)

(𝑠, 𝑎) −
(

̂ℎ𝑉ℎ+1
)

(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤
(

𝑤ℎ − 𝑤̂ℎ
)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏟⏞⏞⏟
(i)

+ 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(ii)

+ 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
((

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(iii) (B.14)

For term (i), by Lemma B.1.2 it is bounded by 2𝜆𝐻3
√

𝑑∕𝜅
𝐾

with probability 1 − 𝛿∕2.5
For term (ii), it is bounded by

𝜙(𝑠, 𝑎)⊤
|

|

|

|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

.

5Note Here Lemma B.1.2 still applies even if the Γℎ changes since it works for all 𝑉ℎ ∈ [0,𝐻] so that ‖
‖

𝑤ℎ‖‖2 ≤
2𝐻

√

𝑑 and the truncation (Line 13 in Algorithm 2) guarantees this.

108

Supplementary Material in Chapter 3 Chapter B

For term (iii), by Cauchy inequality

𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
((

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

≤ ‖𝜙(𝑠, 𝑎)‖Λ̂−1
ℎ
⋅
‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
((

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
‖

‖

‖

‖

‖

‖Λ̂−1
ℎ

≤ 2𝐻
√

𝜅𝐾
⋅
‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
((

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
‖

‖

‖

‖

‖

‖Λ̂−1
ℎ

≤ 2𝐻
√

𝜅𝐾
⋅ 𝑂(

𝐻2
√

𝑑∕𝜅
√

𝐾
) ⋅

√

𝑑 = 𝑂(
𝐻3𝑑∕𝜅
𝐾

)

where the first inequality is by Lemma C.11.5 (with 𝜙′ = 𝜙∕𝜎ℎ and ‖

‖

𝜙∕𝜎ℎ‖‖ ≤ ‖𝜙‖ ≤ 1 ∶= 𝐶)
and the third inequality uses √

𝑎⊤ ⋅ 𝐴 ⋅ 𝑎 ≤
√

‖𝑎‖2 ‖𝐴‖2 ‖𝑎‖2 = ‖𝑎‖2
√

‖𝐴‖2 with 𝑎 to be
either𝜙 or𝑤ℎ. Moreover, 𝜆min(Λ̃

𝑝
ℎ) ≥ 𝜅∕maxℎ,𝑠,𝑎 𝜎ℎ(𝑠, 𝑎)2 ≥ 𝜅∕𝐻2 implies ‖

‖

(Λ̃𝑝
ℎ)

−1
‖

‖

≤ 𝐻2∕𝜅.
The second inequality is true by denoting 𝑥𝜏 = 𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ) and

𝜂𝜏 =
((

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎ℎ(𝑠𝜏ℎ, 𝑎
𝜏
ℎ)

and use Lemma B.5.10 as the condition for applying Lemma C.11.3. By collecting those three
terms together we have the result.

109

Supplementary Material in Chapter 3 Chapter B

B.2.1 Proof of Theorem 3.3.2

Proof: Use Lemma B.2.1 as the condition for Lemma C.3.2 and average over initial
distribution 𝑑1, we obtain with probability 1 − 𝛿,

𝑣𝜋 − 𝑣𝜋 ≤

𝐻
∑

ℎ=1
𝔼𝜋ℎ [𝜙(𝑠, 𝑎)]

⊤

|

|

|

|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

+ 𝑂(
𝐻4𝑑∕𝜅
𝐾

)

(B.15)
Denote 𝐴ℎ ∶=

∑𝐾
𝜏=1

𝜙(𝑠𝜏ℎ,𝑎𝜏ℎ)⋅
(

𝑟𝜏ℎ+𝑉ℎ+1(𝑠𝜏ℎ+1)−
(

ℎ𝑉ℎ+1
)

(𝑠𝜏ℎ,𝑎𝜏ℎ)
)

𝜎2ℎ(𝑠
𝜏
ℎ,𝑎

𝜏
ℎ)

, then

𝔼𝜋ℎ [𝜙(𝑠, 𝑎)]
⊤

|

|

|

|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

̂ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

≤𝔼𝜋ℎ [𝜙]
⊤ ⋅ ||

|

Λ̂−1
ℎ 𝐴ℎ

|

|

|

+ 𝔼𝜋ℎ [𝜙]
⊤

|

|

|

|

|

|

|

Λ̂−1
ℎ

𝐾
∑

𝜏=1

𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

− ̂ℎ𝑉ℎ+1
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

|

|

|

|

|

|

|

For the second term, it can be bounded similar to term (iii) in Lemma B.2.1 and for the first
term we have the following:

𝔼𝜋ℎ [𝜙]
⊤ ⋅ ||

|

Λ̂−1
ℎ 𝐴ℎ

|

|

|

= 𝔼𝜋ℎ [𝜙]
⊤ ⋅ Λ̂−1

ℎ ⋅ Λ̂ℎ
|

|

|

Λ̂−1
ℎ 𝐴ℎ

|

|

|

≤ ‖

‖

‖

𝔼𝜋ℎ[𝜙]
‖

‖

‖Λ̂−1
ℎ

⋅ ‖‖
‖

Λ̂ℎ|Λ̂−1
ℎ 𝐴ℎ|

‖

‖

‖Λ̂−1
ℎ

≤ ‖

‖

‖

𝔼𝜋ℎ[𝜙]
‖

‖

‖Λ̂−1
ℎ

⋅ ‖
‖

|𝐴ℎ|
‖

‖Λ̂−1
ℎ
≤ 𝑂(

√

𝑑) ‖‖
‖

𝔼𝜋ℎ[𝜙]
‖

‖

‖Λ̂−1
ℎ

≤ 𝑂(
√

𝑑 ‖‖
‖

𝔼𝜋ℎ[𝜙]
‖

‖

‖Λ−1
ℎ

),

where the first inequality uses Cauchy’s inequality, the second inequality uses Λ̂ℎ is coordinate-
wise positive (since we assume here 𝜙 ≥ 0), the third inequality is identical to the analysis
in Section B.1.2 and the fourth inequality is identical to the analysis in Section B.1.2 with 𝜙
replaced by 𝔼[𝜙]. Plug this back to (B.15) we finish the proof for the first part. For the second

110

Supplementary Material in Chapter 3 Chapter B

part, converting Λ−1
ℎ to Λ⋆−1

ℎ is identical to Section B.1.5. This finishes the proof.

B.3 Proof of Minimax Lower bound Theorem 3.3.4

The proof follows the lower bound proof of zanette2021provable. For completeness, we
provide all the details in below.

B.3.1 Construction

Similar to the proof of [zanette2021provable, Theorem 2], we construct a family of MDPs,
each parameterized by a Boolean vector 𝑢 = (𝑢1,… , 𝑢𝐻) with each 𝑢ℎ ∈ {−1,+1}𝑑−2 for
ℎ ∈ [𝐻]. The MDPs share the same transition kernel and are only different in the reward
observations.

State space: At each time step ℎ, there are two states  = {+1,−1}.

Action space: The action space  = {−1, 0,+1}𝑑−2.

Feature map: The feature map 𝜙 ∶  × ↦ ℝ𝑑 is given by

𝜙(+1, 𝑎) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎
√

2𝑑
1
√

2

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 , 𝜙(−1, 𝑎) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎
√

2𝑑

0
1
√

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 .

The construction ensures the condition ‖𝜙(𝑠, 𝑎)‖2 ≤ 1 for any (𝑠, 𝑎) ∈  ×.

Transition kernel: The transition probability 𝑃ℎ(𝑠′ ∣ 𝑠, 𝑎) is independent of action 𝑎. In other
words, the Markov decision process reduces to a homogeneous Markov chain with tran-

111

Supplementary Material in Chapter 3 Chapter B

sition matrix

𝐏 =
⎛

⎜

⎜

⎝

1
2

1
2

1
2

1
2

⎞

⎟

⎟

⎠

∈ ℝ2.

By letting

𝜈ℎ(+1) = 𝜈ℎ(−1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝟎𝑑−2
1
√

2
1
√

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 ,

we have 𝑃ℎ(𝑠′ ∣ 𝑠, 𝑎) = ⟨𝜙(𝑠, 𝑎), 𝜈ℎ(𝑠′)⟩ to be a valid probability transition.

Reward observations: For any MDP 𝑀𝑢, at each times step ℎ, the reward follows a Gaussian
distribution with

𝑅𝑢,ℎ(𝑠, 𝑎) ∼ 
(

𝑠
√

6
+ 𝛿

√

2𝑑
⟨𝑎, 𝑢ℎ⟩, 1

)

,

where 𝛿 ∈
[

0, 1
√

3𝑑

] determines to what extent the MDP models are different from each
other. The mean reward function satisfies 𝑟𝑢,ℎ(𝑠, 𝑎) = ⟨𝜙(𝑠, 𝑎), 𝜃𝑢,ℎ⟩ with

𝜃𝑢,ℎ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝑢ℎ
1
√

3

− 1
√

3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 .

Offline data collection Scheme: The dataset  = {(𝑠𝜏ℎ, 𝑎
𝜏
ℎ, 𝑟

𝜏
ℎ, 𝑠

𝜏
ℎ+1)}

ℎ∈[𝐻]
𝜏∈[𝐾] consist of 𝐾 i.i.d.

trajectories. All the trajectories initiate from uniform distribution. We take a behavior
policy 𝜇(⋅ ∣ 𝑠) that is independent of state 𝑠. Let {𝑒1, 𝑒2,… , 𝑒𝑑−2} be the canonical bases

112

Supplementary Material in Chapter 3 Chapter B

of ℝ𝑑−2 and 𝟎𝑑−2 ∈ ℝ𝑑−2 be the zero vector. The behavior policy 𝜇 is set as

𝜇(𝑒𝑗 ∣ 𝑠) =
1
𝑑

for any 𝑗 ∈ [𝑑 − 2] and 𝜇(𝟎𝑑−2 ∣ 𝑠) =
2
𝑑
.

B.3.2 Overview of proof

The proof of the theorem is based on Assouad’s method, where we first reduce the problem
to binary hypothesis tests and then connect the testing error to the uncertainty quantity in the
upper bound.

Lemma B.3.1 (Reduction to testing). There exists a universal constant 𝑐1 > 0 such that

inf
𝜋
max
𝑢∈

𝔼𝑢
[

𝑉 ⋆
𝑢 − 𝑉 𝜋

𝑢

]

≥ 𝑐1 𝛿
√

𝑑 𝐻 min
𝑢,𝑢′∈ ∶𝐷𝐻 (𝑢′;𝑢)=1

inf
𝜓

[

ℙ𝑢(𝜓 ≠ 𝑢) + ℙ𝑢′(𝜓 ≠ 𝑢′)
]

,

where 𝜋 denotes the output of any algorithm that maps from observations to an estimated policy.

𝜓 is any test function for parameter 𝑢 and 𝐷𝐻 is the hamming distance.

Lemma B.3.2. There exists a universal constant 𝑐2 > 0 such that when taking 𝛿 ∶= 𝑐2 𝑑
√

𝐾
, we

have

min
𝑢,𝑢′∈ ∶𝐷𝐻 (𝑢′;𝑢)=1

inf
𝜓

[

ℙ𝑢(𝜓 ≠ 𝑢) + ℙ𝑢′(𝜓 ≠ 𝑢′)
]

≥ 1
2
. (B.16)

When 𝐾 ≳ 𝑑3, 𝛿 ∶= 𝑐2 𝑑
√

𝐾
ensures that 𝛿 ≤ 1∕

√

3𝑑. Combining the above two lemmas
yields a lower bound

inf
𝜋
max
𝑢∈

𝔼𝑢
[

𝑉 ⋆
𝑢 − 𝑉 𝜋

𝑢

]

≥ 𝑐
𝑑
√

𝑑𝐻
√

𝐾
, (B.17)

where 𝑐 > 0 is a universal constant. We then use the following B.3.3 to connect the above lower
bound to the uncertainty term √

𝑑 ⋅
∑𝐻

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] for the chosen linear MDP

113

Supplementary Material in Chapter 3 Chapter B

instances class .

Lemma B.3.3. There exists a universal constant 𝑐3 > 0 such that for all 𝑀 ∈ ,

𝐻
∑

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] ≤ 𝑐3

𝑑 𝐻
√

𝐾
. (B.18)

Plugging inequality (B.3.3) into the bound (B.17), we obtain the minimax lower bound (3.6)
in the statement of theorem.

B.3.3 Reduction to testing via Assouad’s method

Proof: [Proof of Lemma B.3.1] For any index vector 𝑢 = (𝑢1,… , 𝑢𝐻) ∈  = {−1,+1}(𝑑−2)×𝐻 ,
the optimal policy for MDP instance 𝑀𝑢 is simply

𝜋⋆ℎ (⋅) = 𝑢ℎ for ℎ ∈ [𝐻].

Similar to the proof of Lemma 9 in [41], we can show that the value suboptimality of policy 𝜋
on MDP 𝑀𝑢 is given by

𝑉 ⋆
𝑢 − 𝑉 𝜋

𝑢 = 𝛿
√

2𝑑

𝐻
∑

ℎ=1

‖

‖

‖

𝑢ℎ − 𝔼𝜋[𝑎ℎ]
‖

‖

‖1
.

Define 𝑢𝜋 = (𝑢𝜋1 ,… , 𝑢𝜋𝐻) with 𝑢𝜋ℎ ∶= sign
(

𝔼𝜋[𝑎ℎ]
), then the 𝓁1-norm is lower bounded as

‖

‖

‖

𝑢ℎ − 𝔼𝜋[𝑎ℎ]
‖

‖

‖1
≥ 𝐷𝐻 (𝑢𝜋ℎ; 𝑢ℎ),

where 𝐷𝐻 (⋅; ⋅) denotes the Hamming distance. It follows that

𝑉 ⋆
𝑢 − 𝑉 𝜋

𝑢 ≥ 𝛿
√

2𝑑
𝐷𝐻 (𝑢𝜋; 𝑢). (B.19)

114

Supplementary Material in Chapter 3 Chapter B

We then apply Assouad’s method (Lemma 2.12 in [158]) and obtain that

inf
𝑢̂∈

max
𝑢∈

𝔼𝑢
[

𝐷𝐻 (𝑢̂; 𝑢)
]

≥ (𝑑 − 2)𝐻
2

min
𝑢,𝑢′∈ ∶𝐷𝐻 (𝑢′;𝑢)=1

inf
𝜓

[

ℙ𝑢(𝜓 ≠ 𝑢) + ℙ𝑢′(𝜓 ≠ 𝑢′)
]

, (B.20)

where 𝜓 is any test functions mapping from observations to {𝑢, 𝑢′}. Combining inequali-
ties (B.19) and (B.20), we finish the proof.

B.3.4 Lower bound on the testing error

Proof: [Proof of Lemma B.3.2] The proof of Lemma B.3.2 is similar to that of Lemma 10
in [41]. We first apply Theorem 2.12 in [158] to lower bound the testing error using Kull-
back–Leibler divergence and obtain

min
𝑢,𝑢′∈ ∶𝐷𝐻 (𝑢′;𝑢)=1

inf
𝜓

[

ℙ𝑢(𝜓 ≠ 𝑢) + ℙ𝑢′(𝜓 ≠ 𝑢′)
]

≥ 1 −
(

1
2

max
𝑢,𝑢′∈ ∶𝐷𝐻 (𝑢′;𝑢)=1

𝐷KL(𝑢‖𝑢′)
)1∕2

.

(B.21)

It only remains to estimate 𝐷KL(𝑢‖𝑢′).
The probability density 𝑢 takes the form

𝑢() =
𝐾
∏

𝑘=1
𝜉1(𝑠𝑘1)

𝐻
∏

ℎ=1
𝜇
(

𝑎𝑘ℎ ∣ 𝑠
𝑘
ℎ)

[

𝑅𝑢,ℎ(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)
]

(𝑟𝑘ℎ) ℙℎ(𝑠𝑘ℎ+1 ∣ 𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

where 𝜉1 =
[1
2
, 1
2

] is the initial distribution. It follows that

115

Supplementary Material in Chapter 3 Chapter B

𝐷𝐾𝐿(𝑢‖𝑢′) = 𝔼𝑢
[

log(𝑢∕𝑢′)
]

= 𝐾 ⋅
𝐻
∑

ℎ=1
𝔼𝑢
[

log
([

𝑅𝑢,ℎ(𝑠1ℎ, 𝑎
1
ℎ)
]

(𝑟1ℎ)
/[

𝑅𝑢′,ℎ(𝑠1ℎ, 𝑎
1
ℎ)
]

(𝑟1ℎ)
)

]

= 𝐾
𝑑

𝑑−2
∑

𝑗=1
𝐷KL

(


(𝛿
√

2𝑑
⟨𝑒𝑗 , 𝑢ℎ⟩, 1

)

‖

‖

‖


(𝛿
√

2𝑑
⟨𝑒𝑗 , 𝑢

′
ℎ⟩, 1

)

)

.

If we take 𝛿 = 𝑐2 𝑑
√

𝐾
, then inequality (B.16) is ensured, as claimed in the statement of the

lemma.

B.3.5 Connection to the uncertainty term

Proof: [Proof of Lemma B.3.3] We first calculate the explicit form of the inverse of
variance-rescaled covariance matrix Λ⋆,𝑝

ℎ . For each time step ℎ ∈ [𝐻], the value function
𝑉 ⋆
𝑢,ℎ+1 takes the form

𝑉 ⋆
𝑢,ℎ+1 = 𝔼𝜋⋆𝑟𝑢,ℎ+1 +

(

ℙ𝜋⋆
ℎ+1𝑉

⋆
𝑢,ℎ+2

)

.

Since (ℙℎ+1𝑉 ⋆
𝑢,ℎ+2

)

(+1) =
(

ℙℎ+1𝑉 ⋆
𝑢,ℎ+2

)

(−1) and 𝑟𝑢,ℎ+1(+1, 𝑎) − 𝑟𝑢,ℎ+1(−1, 𝑎) = 2∕
√

6, we have

Var𝑃ℎ(𝑉
⋆
𝑢,ℎ+1)(+1, 𝑎) = Var𝑃ℎ(𝔼𝜋⋆𝑟𝑢,ℎ+1)(+1, 𝑎) =

1
6
.

Similarly,

Var𝑃ℎ(𝑉
⋆
𝑢,ℎ+1)(−1, 𝑎) = Var𝑃ℎ(𝑉

⋆
𝑢,ℎ+1)(+1, 𝑎) =

1
6
.

116

Supplementary Material in Chapter 3 Chapter B

By routine calculation, we find that the population-level rescaled covariance matrix takes the
form

Λ⋆,𝑝
ℎ = 3𝐾

2

⎛

⎜

⎜

⎜

⎝

2
𝑑2
𝐈𝑑−2

1
𝑑
√

𝑑
𝟏(𝑑−2)×2

1
𝑑
√

𝑑
𝟏2×(𝑑−2) 𝐈2

⎞

⎟

⎟

⎟

⎠

∈ ℝ𝑑×𝑑

for any ℎ ∈ [𝐻]. Applying Gaussian elimination on Λ⋆,𝑝
ℎ , we have

(Λ⋆,𝑝
ℎ)−1 = 2

3𝐾

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑑2

2

{

𝐈𝑑−2 +
1
𝑑−2

𝟏(𝑑−2)×(𝑑−2)
}

− 𝑑
√

𝑑
2(𝑑−2)

𝟏(𝑑−2)×2

− 𝑑
√

𝑑
2(𝑑−2)

𝟏2×(𝑑−2)
1
𝑑−2

⎛

⎜

⎜

⎝

𝑑 − 1 1

1 𝑑 − 1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For each time step ℎ ∈ [𝐻], we have (by Jensen’s inequality)

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] ≤

1
2
‖

‖

‖

𝜙(+1, 𝑢ℎ)
‖

‖

‖(Λ⋆,𝑝ℎ)−1
+ 1

2
‖

‖

‖

𝜙(−1, 𝑢ℎ)
‖

‖

‖(Λ⋆,𝑝ℎ)−1
.

Recall that by our construction,

𝜙(+1, 𝑢ℎ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢ℎ
√

2𝑑
1
√

2

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 , 𝜙(−1, 𝑢ℎ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢ℎ
√

2𝑑

0
1
√

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑑 .

117

Supplementary Material in Chapter 3 Chapter B

It follows that

‖

‖

‖

𝜙(+1, 𝑢ℎ)
‖

‖

‖

2

(Λ⋆,𝑝ℎ)−1
= ‖

‖

‖

𝜙(−1, 𝑢ℎ)
‖

‖

‖

2

(Λ⋆,𝑝ℎ)−1

= 2
3𝐾

{

𝑑
4
𝑢⊤ℎ
{

𝐈𝑑−2 +
1
𝑑−2

𝟏(𝑑−2)×(𝑑−2)
}

𝑢ℎ −
𝑑

2(𝑑 − 2)
𝟏⊤𝑑−2𝑢ℎ +

𝑑 − 1
2(𝑑 − 2)

}

= 2
3𝐾

{

𝑑2

4
+ 𝑑

4(𝑑 − 2)
(

1 − 𝟏⊤𝑑−2𝑢ℎ
)2 + 1

4

}

≤ 2
3𝐾

{

𝑑2

4
+
𝑑(𝑑 − 1)2

4(𝑑 − 2)
+ 1

4

}

= 2
3𝐾

{

𝑑2

2
+ 𝑑 − 1

2(𝑑 − 2)

}

≲ 𝑑2∕𝐾.

Therefore,

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] ≲ 𝑑∕

√

𝐾.

Taking the summation over ℎ ∈ [𝐻], we obtain the bound (B.18) as claimed in the lemma
statement.

B.3.6 Comparison to Lower bound in [80]

Generally speaking, Theorem 3.3.4 and lower bound in [80] are not directly comparable
since both results are global minimax (not instance-dependent/local-minimax) lower bounds
and their hardness only hold for a family of hard instances (which makes comparison out-
side of the family instances vacuum). However, for all the instances within the family, we
can compare them. Since both papers use tabular hard instance constructions, we only compare
√

𝑑
∑𝐻

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] and ∑𝐻

ℎ=1 𝔼𝜋⋆[
√

𝜙(𝑠ℎ, 𝑎ℎ)⊤Λ⋆−1
ℎ 𝜙(𝑠ℎ, 𝑎ℎ)] under the tabular

setting.

118

Supplementary Material in Chapter 3 Chapter B

Indeed, under the tabular setting 𝜙(𝑠, 𝑎) = 𝟏𝑠,𝑎, 𝑑 = 𝑆𝐴, we have

𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

𝜙(⋅, ⋅)⊤Λ⋆−1
ℎ 𝜙(⋅, ⋅)

]

=
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)

√

𝟏⊤𝑠,𝑎Λ
⋆−1
ℎ 𝟏𝑠,𝑎

=
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)

√

𝟏⊤𝑠,𝑎diag
{Var𝑃⋅,⋅(𝑉

⋆
ℎ+1)

𝑛ℎ,⋅,⋅

}

𝟏𝑠,𝑎

=
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)

√

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎
𝑛ℎ,𝑠,𝑎 ∶=

𝐾
∑

𝜏=1
𝟏[𝑠𝜏ℎ, 𝑎

𝜏
ℎ = 𝑠, 𝑎]

and

√

𝑑
𝐻
∑

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤(Λ⋆
ℎ)−1𝔼𝜋⋆[𝜙] =

√

𝑆𝐴
𝐻
∑

ℎ=1

√

𝔼𝜋⋆[𝟏𝑠,𝑎]⊤diag
{Var𝑃⋅,⋅(𝑉

⋆
ℎ+1)

𝑛ℎ,⋅,⋅

}

𝔼𝜋⋆[𝟏𝑠,𝑎]

=
√

𝑆𝐴
𝐻
∑

ℎ=1

√

Vec(𝑑𝜋⋆ℎ (⋅, ⋅))⊤diag
{Var𝑃⋅,⋅(𝑉

⋆
ℎ+1)

𝑛ℎ,⋅,⋅

}

Vec(𝑑𝜋⋆ℎ (⋅, ⋅))

=
√

𝑆𝐴
𝐻
∑

ℎ=1

√

√

√

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)2

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎
=

𝐻
∑

ℎ=1

√

𝑆𝐴

√

√

√

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)2

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎

≥
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)

√

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎
,

where the last step uses C-S inequality. This finishes verification.

B.4 Some missing derivations and discussions

B.4.1 Regarding coverage assumption

Now we discuss the feature coverage assumption. Indeed, even if Assumption 4.2.3 is not
satisfied, we can still learn in the effective subspan of Σ𝑝ℎ ∶= 𝔼𝜇,ℎ

[

𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤
]. Concretely,

since Σ𝑝ℎ is symmetric, by orthogonal decomposition we have Σ𝑝ℎ = 𝑍ℎΛ𝑍⊤
ℎ , where 𝑍ℎ (can be

estimated using the samples for practical purpose) consists of orthogonal basis and Λ consists
119

Supplementary Material in Chapter 3 Chapter B

of eigenvalues of Σ𝑝ℎ in the diagonal. Suppose we do not have a full coverage, i.e.

Λ = diag[𝜆1, 𝜆2, ..., 𝜆𝑑′ , 0, ..., 0] with 𝑑′ < 𝑑,

then we can create transformed features 𝜙′
ℎ(𝑠, 𝑎) = 𝑍ℎ ⋅ 𝜙ℎ(𝑠, 𝑎), and then

𝔼𝜇,ℎ
[

𝜙′
ℎ(𝑠, 𝑎)𝜙

′
ℎ(𝑠, 𝑎)

⊤] = Λ = diag[𝜆1, 𝜆2, ..., 𝜆𝑑′ , 0, ..., 0].

Then we can do learning w.r.t. the truncated features 𝜙′
ℎ|1∶𝑑′’s instead of the original 𝜙. It re-

duces to the weaker notion of 𝜅 ∶= minℎ∈[𝐻]{𝜅ℎ ∶ 𝑠.𝑡. 𝜅ℎ = smallest positive eigenvalue at time ℎ}.

B.4.2 On Variance-Awareness for Linear Mixture MDP

In this section we provide a short discussion of applying VAPVI for the setting where the
model is described by a mixture of linear kernels. We first recall the definition of linear mixture
MDP models.

Definition B.4.1 (Linear Mixture Models). We assume the MDP is linear w.r.t. feature map

𝜓 ∶  ×  ×  → ℝ𝑑 , i.e., for any ℎ ∈ [𝐻], there exists 𝜃ℎ ∈ ℝ𝑑 with ‖

‖

𝜃ℎ‖‖2 ≤ 𝐵 for 𝐵

bounded such that

𝑃ℎ(𝑠′|𝑠, 𝑎) = 𝜓(𝑠, 𝑎, 𝑠′)⊤𝜃ℎ

for all (𝑠, 𝑎, 𝑠′) ∈  × ×  . Also, for any bounded function 𝑉 ∶  → [0, 1],

‖

‖

‖

‖

∫
𝜓(𝑠, 𝑎, 𝑠′) ⋅ 𝑉 (𝑠′)𝑑𝑠′

‖

‖

‖

‖2
≤
√

𝑑

for any (𝑠, 𝑎) ∈  ×.

120

Supplementary Material in Chapter 3 Chapter B

In this setting, similar to [56], one can create a value-dependent state-action feature as

𝜙𝑉ℎ (⋅, ⋅) = ∫
𝜓(⋅, ⋅, 𝑠′)𝑉ℎ+1(𝑠′)𝑑𝑠′

Then replacing the all the feature mapping 𝜙 in Algorithm 2 by 𝜙𝑉ℎ , VAPVI can be similarly
conducted for Linear mixture MDPs. However, there are three differences:

• 𝜙𝑉ℎ depends on 𝑉 , which could incur extra randomness when instantiated with VAPVI
(since 𝑉 is plugged by 𝑉ℎ+1);

• Unlike 𝜙 in linear MDP, 𝜙ℎ is different for all the time step ℎ (since it is coupled with
𝑉ℎ+1).

• The reward might not admit linear in feature structure, which requires modifications of
the algorithm (e.g. regressing over 𝑃ℎ𝑉ℎ+1(⋅, ⋅) instead of 𝑃ℎ𝑉ℎ+1(⋅, ⋅) + 𝑟ℎ(⋅, ⋅) = 𝑄ℎ(⋅, ⋅)

in [56]).

We leave how to analyze VAPVI-style algorithm for linear mixture MDPs as the future works.

B.4.3 Derivation of (3.5)
When reducing Theorem 3.3.1,3.3.2 to the tabular case, set 𝜙(𝑠, 𝑎) = 𝟏𝑠,𝑎, 𝑑 = 𝑆𝐴, 𝜆 = 0,

and recall by Assumption 3.3.3 (let’s assume 𝜋⋆ is a deterministic policy as it always exists in

121

Supplementary Material in Chapter 3 Chapter B

tabular MDP) 𝐶⋆ ∶= supℎ,𝑠,𝑎 𝑑𝜋
⋆

ℎ (𝑠, 𝑎)∕𝑑𝜇ℎ (𝑠, 𝑎), then for Theorem 3.3.1

√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

𝜙(⋅, ⋅)⊤Λ⋆−1ℎ 𝜙(⋅, ⋅)
]

=
√

𝑑 ⋅
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋

⋆

ℎ (𝑠, 𝑎)
√

𝟏⊤𝑠,𝑎Λ
⋆−1
ℎ 𝟏𝑠,𝑎

=
√

𝑆𝐴 ⋅
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋

⋆

ℎ (𝑠, 𝑎)

√

√

√

√𝟏⊤𝑠,𝑎diag
{Var𝑃⋅,⋅(𝑉

⋆
ℎ+1)

𝑛ℎ,⋅,⋅

}

𝟏𝑠,𝑎

=
√

𝑆𝐴 ⋅
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋

⋆

ℎ (𝑠, 𝑎)

√

√

√

√

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎
𝑛ℎ,𝑠,𝑎 ∶=

𝐾
∑

𝜏=1
𝟏[𝑠𝜏ℎ, 𝑎

𝜏
ℎ = 𝑠, 𝑎]

≲
√

𝑆𝐴 ⋅
𝐻
∑

ℎ=1

∑

𝑠,𝑎
𝑑𝜋

⋆

ℎ (𝑠, 𝑎)

√

√

√

√

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝐾 ⋅ 𝑑𝜇ℎ (𝑠, 𝑎)

≤
√

𝑆𝐴𝐶⋆∕𝐾 ⋅
𝐻
∑

ℎ=1

∑

𝑠,𝑎

√

𝑑𝜋⋆ℎ (𝑠, 𝑎)Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

=
√

𝑆𝐴𝐶⋆∕𝐾 ⋅
𝐻
∑

ℎ=1

∑

𝑠

√

𝑑𝜋⋆ℎ (𝑠, 𝜋⋆(𝑠))Var𝑃𝑠,𝜋⋆(𝑠)(𝑉
⋆
ℎ+1)

≤
√

𝑆𝐴𝐶⋆∕𝐾 ⋅
𝐻
∑

ℎ=1

√

𝑆 ⋅
∑

𝑠
𝑑𝜋⋆ℎ (𝑠, 𝜋⋆(𝑠))Var𝑃𝑠,𝜋⋆(𝑠)(𝑉

⋆
ℎ+1)

≤
√

𝑆2𝐴𝐶⋆∕𝐾 ⋅

√

√

√

√𝐻
𝐻
∑

ℎ=1

∑

𝑠
𝑑𝜋⋆ℎ (𝑠, 𝜋⋆(𝑠))Var𝑃𝑠,𝜋⋆(𝑠)(𝑉

⋆
ℎ+1)

=
√

𝑆2𝐴𝐶⋆∕𝐾 ⋅

√

√

√

√𝐻 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆ℎ [Var𝑃(⋅,⋅)(𝑉

⋆
ℎ+1)] ≤

√

𝐻3𝑆2𝐴𝐶⋆∕𝐾

where the first inequality is by Chernoff bound and the last one is by Lemma 3.4. of [2] (Law
of total variances). The rest of them are from Cauchy’s inequality. Similarly, for Theorem 3.3.2,

122

Supplementary Material in Chapter 3 Chapter B

we also have

√

𝑑 ⋅
𝐻
∑

ℎ=1

√

𝔼𝜋⋆[𝜙]⊤Λ⋆−1ℎ 𝔼𝜋⋆[𝜙] =
√

𝑑 ⋅
𝐻
∑

ℎ=1

√

Vec{𝑑𝜋⋆}Λ⋆−1ℎ Vec{𝑑𝜋⋆}

=
√

𝑑 ⋅
𝐻
∑

ℎ=1

√

√

√

√Vec{𝑑𝜋⋆}diag
{Var𝑃⋅,⋅(𝑉

⋆
ℎ+1)

𝑛ℎ,⋅,⋅

}

Vec{𝑑𝜋⋆}

=
√

𝑆𝐴 ⋅
𝐻
∑

ℎ=1

√

√

√

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)2

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝑛ℎ,𝑠,𝑎

≲
√

𝑆𝐴 ⋅
𝐻
∑

ℎ=1

√

√

√

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)2

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ+1)

𝐾 ⋅ 𝑑𝜇ℎ (𝑠, 𝑎)

≤
√

𝑆𝐴𝐶⋆∕𝐾 ⋅
𝐻
∑

ℎ=1

√

∑

𝑠,𝑎
𝑑𝜋⋆ℎ (𝑠, 𝑎)Var𝑃𝑠,𝑎(𝑉

⋆
ℎ+1)

=
√

𝑆𝐴𝐶⋆∕𝐾 ⋅
𝐻
∑

ℎ=1

√

∑

𝑠
𝑑𝜋⋆ℎ (𝑠, 𝜋⋆(𝑠))Var𝑃𝑠,𝜋⋆(𝑠)(𝑉

⋆
ℎ+1)

≤
√

𝑆𝐴𝐶⋆∕𝐾 ⋅

√

√

√

√𝐻 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆ℎ [Var𝑃(⋅,⋅)(𝑉

⋆
ℎ+1)] ≤

√

𝐻3𝑆𝐴𝐶⋆∕𝐾.

B.5 Related Concentration Results and Decompositions

Lemma B.5.1 (Matrix McDiarmid inequality / Matrix Chernoff bound [159]). Let 𝑧𝑘, 𝑘 =

1,… , 𝐾 be independent random vectors in ℝ𝑑 , and let𝐻 be a mapping that maps𝐾 vectors to

a 𝑑×𝑑 symmetric matrix. Assume there exists a sequence of fixed symmetric matrices {𝐴𝑘}𝑘∈[𝐾]

such that for 𝑧𝑘, 𝑧′𝑘 ranges over all possible values for each 𝑘 ∈ [𝐾], it holds

(𝐻(𝑧1,… , 𝑧𝑘,… , 𝑧𝐾) −𝐻(𝑧1,… , 𝑧′𝑘,… , 𝑧𝐾))2 ⪯ 𝐴2
𝑘.

123

Supplementary Material in Chapter 3 Chapter B

Define 𝜎2 ∶= ‖

‖

∑

𝑘𝐴
2
𝑘
‖

‖

. Then for any 𝑡 > 0,

ℙ
{

‖

‖

𝐻(𝑧1,… , 𝑧𝐾) − 𝔼𝐻(𝑧1,… , 𝑧𝐾)‖‖ ≥ 𝑡
}

≤ 𝑑 ⋅ exp
(

−𝑡2

8𝜎2

)

Lemma B.5.2 (Hoeffding inequality for self-normalized martingales [160]). Let {𝜂𝑡}∞𝑡=1 be a

real-valued stochastic process. Let {𝑡}∞𝑡=0 be a filtration, such that 𝜂𝑡 is𝑡-measurable. Assume

𝜂𝑡 also satisfies 𝜂𝑡 given 𝑡−1 is zero-mean and 𝑅-subgaussian, i.e.

∀𝜆 ∈ ℝ, 𝔼
[

𝑒𝜆𝜂𝑡 ∣ 𝑡−1
]

≤ 𝑒𝜆2𝑅2∕2

Let {𝑥𝑡}∞𝑡=1 be an ℝ𝑑-valued stochastic process where 𝑥𝑡 is 𝑡−1 measurable and ‖

‖

𝑥𝑡‖‖ ≤ 𝐿. Let

Λ𝑡 = 𝜆𝐼𝑑 +
∑𝑡

𝑠=1 𝑥𝑠𝑥
⊤
𝑠 . Then for any 𝛿 > 0, with probability 1 − 𝛿, for all 𝑡 > 0,

‖

‖

‖

‖

‖

𝑡
∑

𝑠=1
𝑥𝑠𝜂𝑠

‖

‖

‖

‖

‖

2

Λ−1
𝑡

≤ 8𝑅2 ⋅
𝑑
2
log

(𝜆 + 𝑡𝐿
𝜆𝛿

)

.

Lemma B.5.3 (Bernstein inequality for self-normalized martingales [76]). Let {𝜂𝑡}∞𝑡=1 be a real-

valued stochastic process. Let {𝑡}∞𝑡=0 be a filtration, such that 𝜂𝑡 is 𝑡-measurable. Assume 𝜂𝑡

also satisfies

|

|

𝜂𝑡|| ≤ 𝑅,𝔼
[

𝜂𝑡 ∣ 𝑡−1
]

= 0,𝔼
[

𝜂2𝑡 ∣ 𝑡−1
]

≤ 𝜎2.

Let {𝑥𝑡}∞𝑡=1 be an ℝ𝑑-valued stochastic process where 𝑥𝑡 is 𝑡−1 measurable and ‖

‖

𝑥𝑡‖‖ ≤ 𝐿.

Let Λ𝑡 = 𝜆𝐼𝑑 +
∑𝑡

𝑠=1 𝑥𝑠𝑥
⊤
𝑠 . Then for any 𝛿 > 0, with probability 1 − 𝛿, for all 𝑡 > 0,

‖

‖

‖

‖

‖

𝑡
∑

𝑠=1
𝐱𝑠𝜂𝑠

‖

‖

‖

‖

‖𝚲−1
𝑡

≤ 8𝜎

√

𝑑 log
(

1 + 𝑡𝐿2

𝜆𝑑

)

⋅ log
(

4𝑡2
𝛿

)

+ 4𝑅 log
(

4𝑡2
𝛿

)

Lemma B.5.4 (Converting the variance under the matrix norm). Let Λ1 and Λ2 ∈ ℝ𝑑×𝑑 are

124

Supplementary Material in Chapter 3 Chapter B

two positive semi-definite matrices. Then:

‖

‖

‖

Λ−1
1
‖

‖

‖

≤ ‖

‖

‖

Λ−1
2
‖

‖

‖

+ ‖

‖

‖

Λ−1
1
‖

‖

‖

⋅ ‖‖
‖

Λ−1
2
‖

‖

‖

⋅ ‖
‖

Λ1 − Λ2
‖

‖

and

‖𝜙‖Λ−1
1
≤

[

1 +
√

‖

‖

‖

Λ−1
2
‖

‖

‖

‖

‖

Λ2
‖

‖

⋅ ‖‖
‖

Λ−1
1
‖

‖

‖

⋅ ‖
‖

Λ1 − Λ2
‖

‖

]

⋅ ‖𝜙‖Λ−1
2
.

for all 𝜙 ∈ ℝ𝑑 .

Proof: For the first part, note

‖

‖

‖

Λ−1
1
‖

‖

‖

≤ ‖

‖

‖

Λ−1
2
‖

‖

‖

+ ‖

‖

‖

Λ−1
1 − Λ−1

2
‖

‖

‖

≤ ‖

‖

‖

Λ−1
2
‖

‖

‖

+ ‖

‖

‖

Λ−1
2
‖

‖

‖

‖

‖

Λ1 − Λ2
‖

‖

‖

‖

‖

Λ−1
1
‖

‖

‖

For the second one,

‖𝜙‖Λ−1
1
=
√

𝜙⊤Λ−1
1 𝜙 =

√

𝜙⊤
(

Λ−1
1 − Λ−1

2

)

𝜙 + 𝜙⊤Λ−1
2 𝜙

=
√

𝜙⊤Λ−1∕2
2

(

Λ1∕2
2 Λ−1

1 Λ1∕2
2 − 𝐼 + 𝐼

)

Λ−1∕2
2 𝜙 ≤

√

‖𝜙‖Λ−1
2
⋅
(

1 + ‖

‖

‖

Λ1∕2
2 Λ−1

1 Λ1∕2
2 − 𝐼‖‖

‖

)

‖𝜙‖Λ−1
2

≤
(

1 + ‖

‖

‖

Λ1∕2
2 Λ−1

1 Λ1∕2
2 − 𝐼‖‖

‖

1∕2
)

⋅ ‖𝜙‖Λ−1
2
=
(

1 + ‖

‖

‖

Λ1∕2
2 Λ−1

1

(

Λ2 − Λ1
)

Λ−1
2 Λ1∕2

2
‖

‖

‖

1∕2
)

⋅ ‖𝜙‖Λ−1
2

≤

(

1 +
√

‖

‖

Λ2
‖

‖

‖

‖

‖

Λ−1
1
‖

‖

‖

‖

‖

‖

Λ−1
2
‖

‖

‖

‖

‖

Λ1 − Λ2
‖

‖

)

⋅ ‖𝜙‖Λ−1
2

Lemma B.5.5 (Lemma H.4 of [82]). let 𝜙 ∶  ×  → ℝ𝑑 satisfies ‖𝜙(𝑠, 𝑎)‖ ≤ 𝐶 for all

𝑠, 𝑎 ∈  × . For any 𝐾 > 0, 𝜆 > 0, define 𝐺̄𝐾 =
∑𝐾

𝑘=1 𝜙(𝑠𝑘, 𝑎𝑘)𝜙(𝑠𝑘, 𝑎𝑘)
⊤ + 𝜆𝐼𝑑 where

125

Supplementary Material in Chapter 3 Chapter B

(𝑠𝑘, 𝑎𝑘)’s are i.i.d samples from some distribution 𝜈. Then with probability 1 − 𝛿,

‖

‖

‖

‖

‖

𝐺̄𝐾

𝐾
− 𝔼𝜈

[

𝐺̄𝐾

𝐾

]

‖

‖

‖

‖

‖

≤
4
√

2𝐶2

√

𝐾

(

log 2𝑑
𝛿

)1∕2
.

Proof: [Proof of Lemma C.11.6] For completeness, we provide the proof of Lemma C.11.6.
Let 𝑥𝑘 = 𝜙(𝑠𝑘, 𝑎𝑘). Denote Σ̃ℎ as the matrix obtained by replacing the k-th vector 𝑥𝑘 in Σ̂ℎ by
𝑥𝑘 and leaving the rest 𝐾 − 1 vectors unchanged. Then

(

Σ̂ℎ
𝐾

−
Σ̃ℎ
𝐾

)2

=

(

𝑥𝑘𝑥⊤𝑘 − 𝑥̃𝑘𝑥̃
⊤
𝑘

𝐾

)

⪯ 1
𝐾2

(

2𝑥𝑘𝑥⊤𝑘𝑥𝑘𝑥
⊤
𝑘 + 2𝑥̃𝑘𝑥̃⊤𝑘 𝑥̃𝑘𝑥̃

⊤
𝑘

)

⪯ 4𝐶4

𝐾2
𝐼𝑑 ∶= 𝐴2

𝑘.

Notice that ‖‖
‖

∑𝐾
𝑘 𝐴

2
𝑘
‖

‖

‖

= 4𝐶4

𝐾
, by Lemma B.5.1 we have the result.

Lemma B.5.6 (Lemma H.5. of [82]). Let 𝜙 ∶  × → ℝ𝑑 be a bounded function s.t. ‖𝜙‖2 ≤

𝐶 . Define 𝐺̄𝐾 =
∑𝐾

𝑘=1 𝜙(𝑠𝑘, 𝑎𝑘)𝜙(𝑠𝑘, 𝑎𝑘)
⊤ + 𝜆𝐼𝑑 where (𝑠𝑘, 𝑎𝑘)’s are i.i.d samples from some

distribution 𝜈. Let 𝐺 = 𝔼𝜈[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤]. Then for any 𝛿 ∈ (0, 1), if 𝐾 satisfies

𝐾 ≥ max
{

512𝐶4 ‖
‖

‖

𝐆−1‖
‖

‖

2
log

(2𝑑
𝛿

)

, 4𝜆 ‖‖
‖

𝐆−1‖
‖

‖

}

.

Then with probability at least 1 − 𝛿, it holds simultaneously for all 𝑢 ∈ ℝ𝑑 that

‖𝑢‖𝐺̄−1
𝐾
≤ 2

√

𝐾
‖𝑢‖𝐺−1 .

Lemma B.5.7 (Extended Value Difference (Section B.1 in [56])). Let 𝜋 = {𝜋ℎ}𝐻ℎ=1 and 𝜋′ =

{𝜋′
ℎ}

𝐻
ℎ=1 be two arbitrary policies and let {𝑄̂ℎ}𝐻ℎ=1 be any given Q-functions. Then define

𝑉ℎ(𝑠) ∶= ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅ ∣ 𝑠)⟩ for all 𝑠 ∈  . Then for all 𝑠 ∈  ,

126

Supplementary Material in Chapter 3 Chapter B

𝑉1(𝑠) − 𝑉 𝜋′
1 (𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋′

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅ ∣ 𝑠ℎ
)

− 𝜋′
ℎ

(

⋅ ∣ 𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋′

[

𝑄̂ℎ
(

𝑠ℎ, 𝑎ℎ
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠ℎ, 𝑎ℎ
)

∣ 𝑠1 = 𝑠
]

(B.22)

where (ℎ𝑉)(⋅, ⋅) ∶= 𝑟ℎ(⋅, ⋅) + (𝑃ℎ𝑉)(⋅, ⋅) for any 𝑉 ∈ ℝ𝑆 .

Proof:

Denote 𝜉ℎ = 𝑄̂ℎ − ℎ𝑉ℎ+1. For any ℎ ∈ [𝐻], we have

𝑉ℎ − 𝑉 𝜋′
ℎ = ⟨𝑄̂ℎ, 𝜋ℎ⟩ − ⟨𝑄𝜋′

ℎ , 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑄̂ℎ −𝑄𝜋′

ℎ , 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑃ℎ(𝑉ℎ+1 − 𝑉 𝜋′

ℎ+1) + 𝜉ℎ, 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑃ℎ(𝑉ℎ+1 − 𝑉 𝜋′

ℎ+1), 𝜋
′
ℎ⟩ + ⟨𝜉ℎ, 𝜋

′
ℎ⟩

recursively apply the above for 𝑉ℎ+1−𝑉 𝜋′
ℎ+1 and use the 𝔼𝜋′ notation (instead of the inner product

of 𝑃ℎ, 𝜋′
ℎ) we can finish the prove of this lemma.

Lemma B.5.8. Let 𝜋 =
{

𝜋ℎ
}𝐻
ℎ=1 and 𝑄̂ℎ(⋅, ⋅) be the arbitrary policy and Q-function and also

𝑉ℎ(𝑠) = ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅|𝑠)⟩ ∀𝑠 ∈  . and 𝜁ℎ(𝑠, 𝑎) ∶= (ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) (element-wisely)

to be the Bellman update error. Then for any arbitrary 𝜋, we have

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

−
𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑥
]

where the expectation are taken over 𝑠ℎ, 𝑎ℎ.

127

Supplementary Material in Chapter 3 Chapter B

Proof: Note the gap can be rewritten as

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) = 𝑉 𝜋

1 (𝑠) − 𝑉1(𝑠) + 𝑉1(𝑠) − 𝑉
𝜋
1 (𝑠).

By Lemma D.0.7 with 𝜋 = 𝜋, 𝜋′ = 𝜋, we directly have

𝑉 𝜋
1 (𝑠)−𝑉1(𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑠
]

(B.23)
Next apply Lemma D.0.7 again with 𝜋 = 𝜋′ = 𝜋, we directly have

𝑉1(𝑠) − 𝑉 𝜋
1 (𝑠) = −

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜁ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

. (B.24)

Combine the above two results we prove the stated result.

Lemma B.5.9. For a linear MDP, for any 0 ≤ 𝑉 (⋅) ≤ 𝐻 , then there exists a 𝑤ℎ ∈ ℝ𝑑

s.t. ℎ𝑉 = ⟨𝜙,𝑤ℎ⟩ and ‖

‖

𝑤ℎ
‖

‖2 ≤ 2𝐻
√

𝑑 for all ℎ ∈ [𝐻]. Here ℎ(𝑉)(𝑠, 𝑎) = 𝑟ℎ(𝑥, 𝑎) +

(𝑃ℎ𝑉)(𝑠, 𝑎). Similarly, for any 𝜋, there exists 𝑤𝜋
ℎ ∈ ℝ𝑑 , such that 𝑄𝜋

ℎ = ⟨𝜙,𝑤𝜋
ℎ⟩ with ‖

‖

𝑤𝜋
ℎ
‖

‖2 ≤

2(𝐻 − ℎ + 1)
√

𝑑.

Proof: By definition,

ℎ𝑉 = 𝑟ℎ + (𝑃ℎ𝑉) = ⟨𝜙, 𝜃ℎ⟩ + ⟨𝜙,∫
𝑉 (𝑠)𝑑𝜈ℎ(𝑠)⟩

⇒ 𝑤ℎ = 𝜃ℎ + ∫
𝑉 (𝑠)𝑑𝜈ℎ(𝑠),

therefore ‖

‖

𝑤ℎ
‖

‖2 ≤ ‖

‖

𝜃ℎ‖‖2 +𝐻 ⋅ ‖
‖

𝜈ℎ()‖‖ ≤ 1 +𝐻
√

𝑑 ≤ 2𝐻
√

𝑑. The proof of the second part
is similar by backward induction and the fact 𝑉 𝜋

ℎ ≤ 𝐻 − ℎ + 1 for any 𝜋.

Lemma B.5.10. For any pessimistic bonus design Γℎ, suppose 𝐾 > max{1,2,3,4},

128

Supplementary Material in Chapter 3 Chapter B

then with probability 1 − 𝛿, Algorithm 2 yields

‖

‖

‖

ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1
‖

‖

‖∞
≤ 𝑂(

𝐻2
√

𝑑∕𝜅
√

𝐾
)

Proof: [Proof of Lemma B.5.10] Suppose𝑤ℎ is the coefficient corresponding to the ℎ𝑉ℎ+1
(such 𝑤ℎ exists by Lemma B.5.9), i.e. ℎ𝑉ℎ+1 = 𝜙⊤𝑤ℎ, and recall (̂ℎ𝑉ℎ+1)(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝑤̂ℎ,
then:
(

ℎ𝑉ℎ+1
)

(𝑠, 𝑎) −
(

̂ℎ𝑉ℎ+1
)

(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤
(

𝑤ℎ − 𝑤̂ℎ
)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

=𝜙(𝑠, 𝑎)⊤𝑤ℎ − 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏟⏞⏞⏟
(i)

+ 𝜙(𝑠, 𝑎)⊤Λ̂−1
ℎ

(

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(ii)

.

(B.25)
For term (i), it is bounded by 2𝜆𝐻3

√

𝑑∕𝜅
𝐾

with probability 1 − 𝛿 by Lemma B.1.2.
For term (ii), by Cauchy inequality it is bounded by

‖𝜙(𝑠, 𝑎)‖Λ̂−1
ℎ
⋅
‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
‖

‖

‖

‖

‖

‖Λ̂−1
ℎ

≤ 2𝐻
√

𝜅𝐾

‖

‖

‖

‖

‖

‖

𝐾
∑

𝜏=1
𝜙
(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

⋅
(

𝑟𝜏ℎ + 𝑉ℎ+1
(

𝑠𝜏ℎ+1
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠𝜏ℎ, 𝑎
𝜏
ℎ

)

)

∕𝜎2
ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)
‖

‖

‖

‖

‖

‖Λ̂−1
ℎ

≤ 2𝐻
√

𝜅𝐾
⋅ 𝑂̃(𝐻

√

𝑑) = 𝑂(
𝐻2

√

𝑑∕𝜅
√

𝐾
),

where the first inequality is by Lemma C.11.5 (with 𝜙′ = 𝜙∕𝜎ℎ and ‖

‖

𝜙∕𝜎ℎ‖‖ ≤ ‖𝜙‖ ≤ 1 ∶= 𝐶)
129

Supplementary Material in Chapter 3 Chapter B

and the third inequality uses √

𝑎⊤ ⋅ 𝐴 ⋅ 𝑎 ≤
√

‖𝑎‖2 ‖𝐴‖2 ‖𝑎‖2 = ‖𝑎‖2
√

‖𝐴‖2 with 𝑎 to be
either𝜙 or𝑤ℎ. Moreover, 𝜆min(Λ̃

𝑝
ℎ) ≥ 𝜅∕maxℎ,𝑠,𝑎 𝜎ℎ(𝑠, 𝑎)2 ≥ 𝜅∕𝐻2 implies ‖

‖

(Λ̃𝑝
ℎ)

−1
‖

‖

≤ 𝐻2∕𝜅.
The second inequality comes from Lemma C.11.3 with𝑅 = 𝐻 since |𝜂𝜏| = |(𝑟𝜏ℎ+𝑉ℎ+1

(

𝑠𝜏ℎ+1
)

−

(ℎ𝑉ℎ+1)(𝑠𝜏ℎ, 𝑎
𝜏
ℎ))∕𝜎ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)| ≤ 𝐻 and |𝑥𝜏| = |𝜙(𝑠𝜏ℎ, 𝑎

𝜏
ℎ)∕𝜎ℎ(𝑠

𝜏
ℎ, 𝑎

𝜏
ℎ)| ≤ 1.

The final result is obtained by absorbing the term (i) via the condition𝐾 > max{1,2,3,4}.

Lemma B.5.11. Suppose random variables ‖𝑋‖∞ ≤ 2𝐻 , ‖𝑌 ‖∞ ≤ 2𝐻 , then

|Var(𝑋) − Var(𝑌)| ≤ 8𝐻 ⋅ ‖𝑋 − 𝑌 ‖∞ .

Proof: [Proof of Lemma B.5.11]

|Var(𝑋) − Var(𝑌)| =|𝔼[𝑋2] − 𝔼[𝑌 2] − (𝔼[𝑋]2 − 𝔼[𝑌]2)| = |𝔼[(𝑋 + 𝑌)(𝑋 − 𝑌)] − (𝔼[𝑋 + 𝑌])(𝔼[𝑋 − 𝑌])|

≤𝔼[|𝑋 + 𝑌 | ⋅ |𝑋 − 𝑌 |] + 4𝐻 ⋅ ‖𝑋 − 𝑌 ‖∞

≤4𝐻𝔼[|𝑋 − 𝑌 |] + 4𝐻 ⋅ ‖𝑋 − 𝑌 ‖∞ = 8𝐻 ⋅ ‖𝑋 − 𝑌 ‖∞ .

130

Appendix C

Supplementary Material in Chapter 4

C.1 Further Illustration that Generalized Linear Model Ex-

ample satisfies 4.2.3

Recall the definition in 4.2.5, then:
For (⋆⋆),

𝔼𝜇,ℎ
[

∇𝑓 (𝜃, 𝜙(𝑠, 𝑎)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))⊤
]

= 𝔼𝜇,ℎ
[

𝑓 ′(⟨𝜃, 𝜙(𝑠, 𝑎)⟩)2𝜙(⋅, ⋅) ⋅ 𝜙(⋅, ⋅)⊤
]

≻ 𝜅2𝔼𝜇,ℎ
[

𝜙(⋅, ⋅) ⋅ 𝜙(⋅, ⋅)⊤
]

≻ 𝜅3𝐼, ∀𝜃 ∈ Θ

For (⋆), by Taylor’s Theorem,

𝔼𝜇,ℎ
[

(

𝑓 (𝜃1, 𝜙(⋅, ⋅)) − 𝑓 (𝜃2, 𝜙(⋅, ⋅))
)2
]

= 𝔼𝜇,ℎ[𝑓 ′(𝜃𝑠,𝑎, 𝜙(⋅, ⋅))2(𝜃1 − 𝜃2)⊤𝜙(⋅, ⋅)𝜙(⋅, ⋅)⊤(𝜃1 − 𝜃2)]

≥ 𝜅2𝔼𝜇,ℎ[(𝜃1 − 𝜃2)⊤𝜙(⋅, ⋅)𝜙(⋅, ⋅)⊤(𝜃1 − 𝜃2)] = 𝜅2(𝜃1 − 𝜃2)⊤𝔼𝜇,ℎ[𝜙(⋅, ⋅)𝜙(⋅, ⋅)⊤](𝜃1 − 𝜃2) ≥ 𝜅3
‖

‖

𝜃1 − 𝜃2‖‖
2
2

and choose 𝜅3 as 𝜅 in 4.2.3.

131

Supplementary Material in Chapter 4 Chapter C

C.2 On the computational complexity

For storage of Pessimistic Fitted Q-learning, at each time step ℎ ∈ [𝐻] in Algorithm 3,
we need to store 𝜃ℎ, Σℎ and ∇𝑓 (𝜃ℎ, 𝜙ℎ,𝑘). Therefore, the total space complexity is 𝑂(𝑑𝐻 +

𝑑2𝐻 + 𝑑𝐾𝐻). For computation, assuming 𝜃ℎ is solved via SGD and let 𝑀 denote the number
of gradient steps, then the complexity is dominated by computing 𝜃ℎ,Σℎ and Σ−1

ℎ , which results
in 𝑂(𝑀𝐻 +𝐾𝑑𝐻 + 𝑑3𝐻) complexity (where 𝐻 comes from ℎ = 𝐻,… , 1).

The space complexity and computational complexity for VAFQL has the same order as
PFQL except that the constant factors are larger.

C.3 Some basic constructions

First of all, Recall in the first-order condition, we have

∇𝜃

{

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1
(

𝑠𝑘ℎ+1
)

]2
+ 𝜆 ⋅ ‖𝜃‖22

}

|

|

|

|

|

|𝜃=𝜃ℎ

= 0, ∀ℎ ∈ [𝐻].

Therefore, if we define the quantity 𝑍ℎ(⋅, ⋅) ∈ ℝ𝑑 as

𝑍ℎ(𝜃|𝑉) =
𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉
(

𝑠𝑘ℎ+1
)]

∇𝑓 (𝜃, 𝜙ℎ,𝑘) + 𝜆 ⋅ 𝜃, ∀𝜃 ∈ Θ, ‖𝑉 ‖2 ≤ 𝐻,

then we have (recall 𝜃ℎ ∈ Int(Θ))
𝑍ℎ(𝜃ℎ|𝑉ℎ+1) = 0.

In addition, according to Bellman completeness Assumption 4.2.1, for any bounded 𝑉 (⋅) ∈

ℝ with ‖𝑉 ‖∞ ≤ 𝐻 , inf𝑓∈ ‖

‖

𝑓 − ℎ(𝑉)‖
‖∞ ≤ 𝜖 , ∀ℎ (recall ℎ(𝑉) = 𝑟ℎ + ∫ 𝑉 𝑑𝑃ℎ). There-

fore, we can define the parameter Bellman operator 𝕋 as follows.

Definition C.3.1 (parameter Bellman operator). By the Bellman completeness Assumption 4.2.1,

132

Supplementary Material in Chapter 4 Chapter C

for any ‖𝑉 ‖∞ ≤ 𝐻 , we can define the parameter Bellman operator 𝕋 ∶ 𝑉 → 𝜃𝕋𝑉 ∈ Θ such

that

𝜃𝕋𝑉 = argmin
𝜃∈Θ

‖

‖

𝑓 (𝜃, 𝜙) − ℎ(𝑉)‖
‖∞

Denote 𝛿𝑉 ∶= 𝑓 (𝜃𝕋𝑉 , 𝜙) − ℎ(𝑉), then we have ‖

‖

𝑓 (𝜃𝕋𝑉 , 𝜙) − ℎ(𝑉)‖
‖∞ = ‖

‖

𝛿𝑉 ‖‖∞ ≤ 𝜖 . In

particular, by realizability Assumption 4.2.1 it holds 𝜃𝕋𝑉 ⋆
ℎ+1

= 𝜃⋆ℎ and this is due to 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙) =

ℎ(𝑉 ⋆
ℎ+1) = 𝑉 ⋆

ℎ = 𝑓 (𝜃⋆ℎ , 𝜙).
1

C.3.1 Suboptimality decomposition

Denote 𝜄ℎ(𝑠, 𝑎) ∶= ℎ𝑉ℎ+1(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎), by [80] we have the following decomposition.

Lemma C.3.1 (Lemma 3.1 of [80]). Let 𝜋 = {𝜋ℎ}𝐻ℎ=1 a policy and 𝑄̂ℎ be any estimates with

𝑉ℎ = ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅ ∣ 𝑠)⟩. Then for any policy 𝜋, we have

𝑣𝜋 − 𝑣𝜋 = −
𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)] +

𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)] +

𝐻
∑

ℎ=1
𝐸𝜋[⟨𝑄̂ℎ

(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅ ∣ 𝑠ℎ
)

− 𝜋ℎ
(

⋅ ∣ 𝑠ℎ
)

⟩].

In particular, if we choose 𝜋ℎ(⋅|𝑠) ∶= argmax𝜋⟨𝑄̂ℎ(𝑠, ⋅), 𝜋(⋅ ∣ 𝑠)⟩, then

𝑣𝜋 − 𝑣𝜋 = −
𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)] +

𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)].

Lemma C.3.2. Let ̂ℎ be the general estimated Bellman operator. Suppose with probability

1 − 𝛿, it holds for all ℎ, 𝑠, 𝑎 ∈ [𝐻] ×  × 𝐴 that |(ℎ𝑉ℎ+1 − ̂ℎ𝑉ℎ+1)(𝑠, 𝑎)| ≤ Γℎ(𝑠, 𝑎), then it

implies ∀𝑠, 𝑎, ℎ ∈  × × [𝐻], 0 ≤ 𝜁ℎ(𝑠, 𝑎) ≤ 2Γℎ(𝑠, 𝑎). Furthermore, it holds for any policy
1Here without loss of generality we assume 𝑄⋆ℎ can be uniquely identified, i.e. there is a unique 𝜃⋆ such that

𝑓 (𝜃⋆ℎ , 𝜙) = 𝑄⋆ℎ .

133

Supplementary Material in Chapter 4 Chapter C

𝜋 simultaneously, with probability 1 − 𝛿,

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) ≤

𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋

[

Γℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

.

Proof: [Proof of Lemma C.3.2] This is a generic result that holds true for the general
MDPs and was first raised by Theorem 4.2 of [80]. Later, it is summarized in Lemma C.1 of
[106].

With Lemma C.3.2, we need to bound the term |ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎)|.

C.4 Analyzing |ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎)| for PFQL.

Throughout this section, we suppose 𝜖 = 0, i.e. 𝑓 (𝜃𝕋𝑉 , 𝜙) = ℎ(𝑉). According to the
regression oracle (Line 4 of Algorithm 3), the estimated Bellman operator ̂ℎ maps 𝑉ℎ+1 to 𝜃ℎ,
i.e. ̂ℎ𝑉ℎ+1 = 𝑓 (𝜃ℎ, 𝜙). Therefore (recall Definition C.3.1)

ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎) = ℎ𝑉ℎ+1(𝑠, 𝑎) − 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))

=𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

+ Hotℎ,1,

(C.1)

where we apply the first-order Taylor expansion for the differentiable function 𝑓 at point 𝜃ℎ and
Hotℎ,1 is a higher-order term. Indeed, the following Lemma C.4.1 bounds the Hotℎ,1 term with
𝑂(1

𝐾
).

Lemma C.4.1. Recall the definition (from the above decomposition)Hotℎ,1 ∶= 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎))−

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

, then with probability 1 − 𝛿,

|

|

Hotℎ,1|| ≤
18𝐻2𝜅2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 𝜅2𝜆𝐶2

Θ

𝜅𝐾
, ∀ℎ ∈ [𝐻].

134

Supplementary Material in Chapter 4 Chapter C

Proof: [Proof of Lemma C.4.1] By second-order Taylor’s Theorem, there exists a point 𝜉
(lies in the line segment of 𝜃ℎ and 𝜃𝕋𝑉ℎ+1) such that

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎))−𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) = ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

+1
2

(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)⊤

∇2
𝜃𝜃𝑓 (𝜉, 𝜙(𝑠, 𝑎))

(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

Therefore, by directly applying Theorem C.6.1, with probability 1 − 𝛿, for all ℎ ∈ [𝐻],

|

|

Hotℎ,1|| =
1
2
|

|

|

|

(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)⊤

∇2
𝜃𝜃𝑓 (𝜉, 𝜙(𝑠, 𝑎))

(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

|

|

|

|

≤1
2
𝜅2 ⋅

‖

‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
‖

‖

‖

2

2
≤

18𝐻2𝜅2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 𝜅2𝜆𝐶2
Θ

𝜅𝐾

C.4.1 Analyzing ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

via 𝑍ℎ.

From (C.1) and Lemma C.4.1, the problem further reduces to bounding∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

.
To begin with, we first provide a characterization of 𝜃𝕋𝑉ℎ+1 − 𝜃ℎ. Indeed, by first-order Vector
Taylor expansion (Lemma C.11.1), we have (note 𝑍ℎ(𝜃ℎ|𝑉ℎ+1) = 0) for any 𝜃 ∈ Θ,

𝑍ℎ(𝜃|𝑉ℎ+1) −𝑍ℎ(𝜃ℎ|𝑉ℎ+1) = Σ𝑠ℎ(𝜃 − 𝜃ℎ) + 𝑅𝐾(𝜃), (C.2)

135

Supplementary Material in Chapter 4 Chapter C

where 𝑅𝐾(𝜃) is the higher-order residuals and Σ𝑠ℎ ∶=
𝜕
𝜕𝜃
𝑍ℎ(𝜃|𝜃ℎ+1)

|

|

|𝜃=𝜃ℎ
with

Σ𝑠ℎ ∶=
𝜕
𝜕𝜃
𝑍ℎ(𝜃|𝑉ℎ+1)

|

|

|

|𝜃=𝜃ℎ
= 𝜕
𝜕𝜃

(

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]

∇𝑓 (𝜃, 𝜙ℎ,𝑘) + 𝜆 ⋅ 𝜃

)

𝜃=𝜃ℎ

=
𝐾
∑

𝑘=1

{(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

}

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∶=ΔΣ𝑠ℎ

+
𝐾
∑

𝑘=1
∇𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)∇⊤

𝜃 𝑓 (𝜃ℎ,𝑘, 𝜙ℎ,𝑘) + 𝜆𝐼𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Σℎ

,

(C.3)
here ∇2 = ∇

⨂

∇ denotes outer product of gradients.
Note ΔΣ𝑠ℎ

is not desirable since it could prevent Σ𝑠ℎ from being positive-definite (and it could
cause Σ𝑠ℎ to be singular). Therefore, we first deal with ΔΣ𝑠ℎ

in below.

Lemma C.4.2. With probability 1 − 𝛿, for all ℎ ∈ [𝐻],

1
𝐾

‖

‖

‖

ΔΣ𝑠ℎ
‖

‖

‖2
=
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤9𝜅2 max(
𝜅1
√

𝜅
, 1)

√

𝑑𝐻2(log(2𝐻∕𝛿) + 𝑑 log(1 + 2𝐶Θ𝐻𝜅3𝐾) + 𝐶𝑑,log𝐾)
𝐾

+ 1
𝐾
.

Proof: [Proof of Lemma C.4.2]
Step1: We prove for fixed 𝜃̄ ∈ Θ, with probability 1 − 𝛿, for all ℎ ∈ [𝐻],

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤ 9𝜅2max(
𝜅1
√

𝜅
, 1)

√

𝐻2(log(2𝐻∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

.

136

Supplementary Material in Chapter 4 Chapter C

Indeed, we have
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

+
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

.

(C.4)

On one hand, by Theorem C.6.1 with probability 1 − 𝛿∕2 for all ℎ ∈ [𝐻]

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤ 𝜅2 ⋅max
𝜃,𝑠,𝑎

‖∇𝑓 (𝜃, 𝜙(𝑠, 𝑎))‖2
‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2

≤ 𝜅2𝜅1
‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
≤ 𝜅2𝜅1

⎛

⎜

⎜

⎝

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+

√

𝑏𝑑,𝐾,𝜖
𝜅

+

√

2𝐻𝜖
𝜅

⎞

⎟

⎟

⎠

.

(C.5)
On other hand, recall the definition of 𝕋 , we have

𝔼
[

(𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)) ⋅ ∇

2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ,𝑘)

|

|

|

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

]

=𝔼
[

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

|

|

|

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

]

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ,𝑘)

=
(

(ℎ𝑉ℎ+1)(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − 𝔼

[

𝑟ℎ,𝑘 + 𝑉ℎ+1(𝑠𝑘ℎ+1)
|

|

|

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

])

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ,𝑘)

=
(

(ℎ𝑉ℎ+1)(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − (ℎ𝑉ℎ+1(𝑠𝑘ℎ+1))(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ,𝑘) = 0.

Also, since ‖

‖

‖

‖

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1))

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖2
≤ 𝐻𝜅2, denote 𝜎2 ∶= 𝐾 ⋅

𝐻2𝜅2
2 , then by Vector Hoeffding’s inequality (Lemma C.11.2),

ℙ

(

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≥ 𝑡∕𝐾
|

|

|

|

|

|

{𝑠𝑘ℎ, 𝑎
𝑘
ℎ}

𝐾
𝑘=1

)

≤ 𝑑⋅𝑒−𝑡2∕8𝑑𝐾𝐻2𝜅22 ∶= 𝛿

137

Supplementary Material in Chapter 4 Chapter C

which is equivalent to

ℙ
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤

√

8𝑑𝐻2𝜅2
2 log(𝑑∕𝛿)
𝐾

|

|

|

|

|

|

|

{𝑠𝑘ℎ, 𝑎
𝑘
ℎ}

𝐾
𝑘=1

⎞

⎟

⎟

⎠

≥ 1−𝛿

Define𝐴 = {
‖

‖

‖

‖

1
𝐾

∑𝐾
𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖2
≤
√

8𝑑𝐻2𝜅22 log(𝑑∕𝛿)

𝐾
},

then by law of total expectationℙ(𝐴) = 𝔼[𝟏𝐴] = 𝔼[𝔼[𝟏𝐴|{𝑠𝑘ℎ, 𝑎
𝑘
ℎ}

𝐾
𝑘=1]] = 𝔼[ℙ[𝐴|{𝑠𝑘ℎ, 𝑎

𝑘
ℎ}

𝐾
𝑘=1]] ≥

𝔼[1 − 𝛿] = 1 − 𝛿, i.e. with probability at least 1 − 𝛿∕2 (and a union bound),

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤

√

8𝑑𝐻2𝜅2
2 log(2𝐻𝑑∕𝛿)
𝐾

, ∀ℎ ∈ [𝐻].

Using above and (C.4), (C.5) and a union bound, w.p. 1 − 𝛿, for all ℎ ∈ [𝐻],

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤ 6𝜅2𝜅1

√

𝐻2(log(2𝐻∕𝛿) + 𝐶𝑑,log𝐾)
𝜅𝐾

+

√

8𝑑𝐻2𝜅22 log(2𝐻𝑑∕𝛿)
𝐾

≤ 9𝜅2max(
𝜅1
√

𝜅
, 1)

√

𝑑𝐻2(log(2𝐻∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

Step2: we finish the proof of the lemma.
Consider

{

𝑓 (𝜃̄) ∶=
‖

‖

‖

‖

1
𝐾

∑𝐾
𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃̄, 𝜙ℎ)

‖

‖

‖

‖2

|

|

|

|

𝜃̄ ∈ Θ
}

, then
by triangular inequality

|𝑓 (𝜃̄1) − 𝑓 (𝜃̄2)| ≤
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅
[

∇2
𝜃𝜃𝑓 (𝜃̄1, 𝜙ℎ) − ∇2

𝜃𝜃𝑓 (𝜃̄2, 𝜙ℎ)
]

‖

‖

‖

‖

‖

‖2

≤𝐻 ⋅ sup
𝑠,𝑎

‖

‖

‖

∇2
𝜃𝜃𝑓 (𝜃̄1, 𝜙ℎ) − ∇2

𝜃𝜃𝑓 (𝜃̄2, 𝜙ℎ)
‖

‖

‖2
≤ 𝐻𝜅3 ‖‖𝜃̄1 − 𝜃̄2‖‖2 .

By Lemma C.11.8, the covering number  of the 𝜖-net of the above function class satisfies
log ≤ 𝑑 log(1 + 2𝐶Θ𝐻𝜅3

𝜖
). By choosing 𝜖 = 1∕𝐾 , by a union bound over  cases we obtain for

138

Supplementary Material in Chapter 4 Chapter C

all ℎ ∈ [𝐻]

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙ℎ)

‖

‖

‖

‖

‖

‖2

≤9𝜅2 max(
𝜅1
√

𝜅
, 1)

√

𝑑𝐻2(log(2𝐻∕𝛿) + 𝑑 log(1 + 2𝐶Θ𝐻𝜅3𝐾) + 𝐶𝑑,log𝐾)
𝐾

+ 1
𝐾
.

Combing Lemma C.4.2 and Theorem C.6.1 (and a union bound), we directly have

Corollary C.4.1. With probability 1 − 𝛿,

‖

‖

‖

‖

1
𝐾
ΔΣ𝑠ℎ

(𝜃ℎ − 𝜃𝕋𝑉ℎ+1)
‖

‖

‖

‖2
≤
‖

‖

‖

‖

1
𝐾
ΔΣ𝑠ℎ

‖

‖

‖

‖2

‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
≤ 𝑂(

𝜅2 max(𝜅1
𝜅
, 1
√

𝜅
)𝑑2𝐻2

𝐾
)

Here 𝑂 absorbs all the constants and Polylog terms.

Now we select 𝜃 = 𝜃𝕋𝑉ℎ+1 in (C.2), and denote 𝑅𝐾(𝜃𝕋𝑉ℎ+1) = ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1) +𝑅𝐾(𝜃𝕋𝑉ℎ+1),

then (C.2) is equivalent to

𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1) −𝑍ℎ(𝜃ℎ|𝑉ℎ+1) = Σ𝑠ℎ(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) +𝑅𝐾(𝜃𝕋𝑉ℎ+1) = Σℎ(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) +𝑅𝐾(𝜃𝕋𝑉ℎ+1)

Note 𝜆 > 0 implies Σℎ is invertible, then we have (recall 𝑍ℎ(𝜃ℎ|𝜃ℎ+1) = 0)

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ =Σ
−1
ℎ [𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1) −𝑍ℎ(𝜃ℎ|𝑉ℎ+1)] − Σ−1

ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

=Σ−1
ℎ [𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1)] − Σ−1

ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

139

Supplementary Material in Chapter 4 Chapter C

Plug it back to (C.1) to get

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1)] − ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1

ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) + 𝜆𝜃𝕋𝑉ℎ+1]

−∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘)]

⏟⏞⏞⏟⏞⏞⏟
∶=𝐼

−∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ

[

𝑅𝐾(𝜃𝕋𝑉ℎ+1) + 𝜆𝜃𝕋𝑉ℎ+1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=Hot2 (C.6)

We will bound second term Hot2 to have higher order 𝑂(1
𝐾
) in Section C.4.5 and focus on the

first term. By direct decomposition,

𝐼 ∶=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘)]

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∶=𝐼1

+∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∶=𝐼2

+∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ

[𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅
(

∇⊤
𝜃 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − ∇⊤

𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)
)

]

⏟⏞⏞⏟⏞⏞⏟
∶=𝐼3

140

Supplementary Material in Chapter 4 Chapter C

C.4.2 Bounding the term 𝐼3

We first bound the term 𝐼3. We have the following Lemma.

Lemma C.4.3. For any fixed𝑉 (⋅) ∈ ℝ with ‖𝑉 ‖∞ ≤ 𝐻 and any fixed 𝜃 such that ‖
‖

𝜃𝕋𝑉 − 𝜃‖
‖2 ≤

√

36𝐻2(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾
. Let

𝐼3 ∶= ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ

[

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

]

,

and if 𝐾 ≥ max
{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅1𝐷2𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

, then with probability 1 − 𝛿,

(where 𝐷 = max{𝜅1,
√

(144𝑑𝐻2𝜅22(𝐻2 log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+8𝑑𝐻2𝜅22𝜆𝐶
2
Θ) log(𝑑∕𝛿)

𝜅
})

|𝐼3| ≤ 4𝜅1

√

(144𝑑𝐻2𝜅2
2

(

𝐻2 log(𝐻∕𝛿) + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅2
2𝜆𝐶

2
Θ) log(𝑑∕𝛿)

𝜅3
1
𝐾

+ 𝑂(1
𝐾3∕2

).

Proof: [Proof of Lemma C.4.3] Indeed, with probability 1 − 𝛿∕2,

|𝐼3| =
‖

‖

‖

‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ

[𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

]

‖

‖

‖

‖

‖

‖

≤ ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

where, under the condition 𝐾 ≥ max
{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

, we ap-
plied Lemma C.11.5 .

Next, on one hand, ‖
‖

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)‖‖2 ≤ 𝜅2⋅‖‖𝜃𝕋𝑉 − 𝜃‖
‖2 ≤ 𝜅2

√

36𝐻2(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾
.

141

Supplementary Material in Chapter 4 Chapter C

On the other hand,

𝔼
[(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇⊤
𝜃 𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇⊤

𝜃 𝑓 (𝜃, 𝜙ℎ,𝑘)
)

|

|

|

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

]

=𝔼
[(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

|

|

|

𝑠𝑘ℎ, 𝑎
𝑘
ℎ

]

⋅
(

∇⊤
𝜃 𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇⊤

𝜃 𝑓 (𝜃, 𝜙ℎ,𝑘)
)

=
(

(ℎ𝑉)(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − (ℎ𝑉)(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)
)

⋅
(

∇⊤
𝜃 𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇⊤

𝜃 𝑓 (𝜃, 𝜙ℎ,𝑘)
)

= 0

Therefore by Vector Hoeffding’s inequality (Lemma C.11.2) (also note the condition for bound-
edness ‖‖

‖

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖2
≤ 𝐻𝜅2⋅‖‖𝜃𝕋𝑉 − 𝜃‖

‖2 ≤

𝐻𝜅2

√

36𝐻2(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾
) with probability 1 − 𝛿∕2,

‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖

‖

‖

‖2

≤

√

√

√

√

√

√

√

4𝑑

(

𝐻𝜅2

√

36𝐻2(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾

)2

log(𝑑
𝛿
)

𝐾

=

√

(144𝑑𝐻2𝜅22
(

𝐻2 log(𝐻∕𝛿) + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅22𝜆𝐶
2
Θ) log(𝑑∕𝛿)

𝜅
⋅
1
𝐾

and this implies with probability 1 − 𝛿∕2,

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖

‖

‖

‖2

≤

√

(144𝑑𝐻2𝜅2
2

(

𝐻2 log(𝐻∕𝛿) + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅2
2𝜆𝐶

2
Θ) log(𝑑∕𝛿)

𝜅

choose 𝑢 = ∑𝐾
𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
) in Lemma C.11.5,

142

Supplementary Material in Chapter 4 Chapter C

by a union bound we obtain with probability 1 − 𝛿

|𝐼3| =
‖

‖

‖

‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ

[𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

]

‖

‖

‖

‖

‖

‖

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

⎛

⎜

⎜

⎝

2

√

(144𝑑𝐻2𝜅22
(

𝐻2 log(𝐻∕𝛿) + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅22𝜆𝐶
2
Θ) log(𝑑∕𝛿)

𝜅2𝐾
+ 𝑂(1

𝐾
)
⎞

⎟

⎟

⎠

=4𝜅1

√

(144𝑑𝐻2𝜅22
(

𝐻2 log(𝐻∕𝛿) + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅22𝜆𝐶
2
Θ) log(𝑑∕𝛿)

𝜅3
1
𝐾

+ 𝑂(1
𝐾3∕2

).

Lemma C.4.4. Under the same condition as Lemma C.4.3. With probability 1 − 𝛿,

|𝐼3| ≤ 4𝜅1

√

(144𝑑𝐻2𝜅22
(

𝐻2 log(𝐻∕𝛿) +𝐷𝑑,log𝐾 + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅22𝜆𝐶
2
Θ)(log(𝑑∕𝛿) +𝐷𝑑,log𝐾)

𝜅3
1
𝐾
+𝑂(1

𝐾3∕2
).

Here 𝐷𝑑,log𝐾 ∶= 𝑑⋅log(1+6𝐶Θ(2𝜅21 +𝐻𝜅2)𝐾)+𝑑 log(1+6𝐶Θ𝐻𝜅2𝐾)+𝑑 log
(

1 + 288𝐶Θ𝜅21 (𝜅1
√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2𝐾2
)

+𝑑2 log
(

1 + 288
√

𝑑𝐵𝜅41𝐾
2
)

=

𝑂(𝑑2) with 𝑂 absorbs Polylog terms.

Proof: [Proof of Lemma C.4.4] Define

ℎ(𝑉 , 𝜃, 𝜃) =
𝐾
∑

𝑘=1

(

𝑓 (𝜃, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 (𝑠𝑘ℎ+1)
)

⋅
(

∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)
)

,

143

Supplementary Material in Chapter 4 Chapter C

then

|ℎ(𝑉1, 𝜃1, 𝜃1) − ℎ(𝑉2, 𝜃2, 𝜃2)|

≤
|

|

|

|

|

|

𝐾
∑

𝑘=1

(

[𝑓 (𝜃1, 𝜙ℎ,𝑘) − 𝑉1(𝑠𝑘ℎ+1)] − [𝑓 (𝜃2, 𝜙ℎ,𝑘) − 𝑉2(𝑠𝑘ℎ+1)]
)

⋅
(

∇𝜃𝑓 (𝜃1, 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃1, 𝜙ℎ,𝑘)
)

|

|

|

|

|

|

+
|

|

|

|

|

|

𝐾
∑

𝑘=1

(

𝑓 (𝜃2, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉2(𝑠𝑘ℎ+1)
)

⋅
(

[∇𝜃𝑓 (𝜃1, 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃1, 𝜙ℎ,𝑘)] − [∇𝜃𝑓 (𝜃2, 𝜙ℎ,𝑘) − ∇𝜃𝑓 (𝜃2, 𝜙ℎ,𝑘)]
)

|

|

|

|

|

|

≤𝐾 sup
𝑠,𝑎,𝑠′

|

|

|

[𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))] − [𝑉1(𝑠′) − 𝑉2(𝑠′)]
|

|

|2
⋅ 2𝜅1

+𝐾𝐻 ⋅ sup
𝑠,𝑎

‖

‖

‖

[∇𝜃𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − ∇𝜃𝑓 (𝜃1, 𝜙(𝑠, 𝑎))] − [∇𝜃𝑓 (𝜃2, 𝜙(𝑠, 𝑎)) − ∇𝜃𝑓 (𝜃2, 𝜙(𝑠, 𝑎))]
‖

‖

‖2

≤𝐾2𝜅2
1
‖

‖

‖

𝜃1 − 𝜃2
‖

‖

‖2
+ 2𝐾𝜅1 ‖‖𝑉1 − 𝑉2‖‖∞ +𝐻𝐾𝜅2

‖

‖

‖

𝜃1 − 𝜃2
‖

‖

‖2
+𝐻𝐾𝜅2 ‖‖𝜃1 − 𝜃2‖‖2

=(2𝜅2
1 +𝐻𝜅2)𝐾

‖

‖

‖

𝜃1 − 𝜃2
‖

‖

‖2
+ 2𝜅1𝐾 ‖

‖

𝑉1 − 𝑉2‖‖∞ +𝐻𝐾𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 .

Let 𝑎 be the 𝜖∕3
(2𝜅21+𝐻𝜅2)𝐾

-covering net of {𝜃 ∶ ‖𝜃‖2 ≤ 𝐶Θ}, 𝑉 be the 𝜖
6𝜅1𝐾

-covering net of
 defined in Lemma C.11.9 and 𝑏 be the 𝜖

3𝐻𝜅2𝐾
-covering net of {𝜃 ∶ ‖𝜃‖2 ≤ 𝐶Θ}, then by

Lemma C.11.8 and Lemma C.11.9,

log |𝑎| ≤ 𝑑 ⋅ log(1 +
6𝐶Θ(2𝜅2

1 +𝐻𝜅2)𝐾
𝜖

), log |𝑏| ≤ 𝑑 log(1 +
6𝐶Θ𝐻𝜅2𝐾

𝜖
)

log𝑉 ≤ 𝑑 log

(

1 +
288𝐶Θ𝜅2

1 (𝜅1
√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2𝐾2

𝜖2

)

+ 𝑑2 log

(

1 +
288

√

𝑑𝐵𝜅4
1𝐾

2

𝜖2

)

.

Further notice with probability 1−𝛿∕2 (by Lemma C.11.5), for all fixed sets of parameters 𝜃, 𝑉
satisfies ‖

‖

𝜃𝕋𝑉 − 𝜃‖
‖2 ≤

√

36𝐻2(log(2𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾
simultaneously,

|𝐼3 − 𝐼3| ≤
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅ ‖‖
‖

ℎ(𝑉ℎ+1, 𝜃𝕋𝑉ℎ+1 , 𝜃ℎ) − ℎ(𝑉 , 𝜃𝕋𝑉 , 𝜃)
‖

‖

‖Σ−1
ℎ

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

⋅ ‖‖
‖

ℎ(𝑉ℎ+1, 𝜃𝕋𝑉ℎ+1 , 𝜃ℎ) − ℎ(𝑉 , 𝜃𝕋𝑉 , 𝜃)
‖

‖

‖Σ−1
ℎ

144

Supplementary Material in Chapter 4 Chapter C

and ‖

‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
‖

‖

‖2
≤

√

36𝐻2(log(2𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅𝐾
with probability 1 − 𝛿∕2 by Theorem C.6.1.

Now, choosing 𝜖 = 𝑂(1∕𝐾2) and by Lemma C.4.3 and union bound over covering instances,
we obtain with probability 1 − 𝛿

|𝐼3| ≤ 4𝜅1

√

(144𝑑𝐻2𝜅22
(

𝐻2 log(𝐻∕𝛿) +𝐷𝑑,log𝐾 + 𝐶𝑑,log𝐾
)

+ 8𝑑𝐻2𝜅22𝜆𝐶
2
Θ)(log(𝑑∕𝛿) +𝐷𝑑,log𝐾)

𝜅3
1
𝐾
+𝑂(1

𝐾3∕2
).

C.4.3 Bounding the second term 𝐼2

In this section, we bound the term

𝐼2 ∶= ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)].

The following Lemma shows that 𝐼2 is a higher-order error term with rate 𝑂(1
𝐾
).

Lemma C.4.5 (Bounding 𝐼2). If 𝐾 satisfies 𝐾 ≥ 512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾

𝜆2
)
)

, and

𝐾 ≥ 4𝜆∕𝜅, then with probability 1 − 𝛿

|𝐼2| ≤ 𝑂(
𝜅2
1𝐻

2𝑑2

𝜅𝐾
) + 𝑂(1

𝐾3∕2
).

Here 𝑂 absorbs constants and Polylog terms.

Proof: [Proof of Lemma C.4.5] Step1. Define 𝜂𝑘(𝑉) ∶= 𝑓 (𝜃𝕋𝑉 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) −

𝑉 (𝑠𝑘ℎ+1)+𝑉
⋆
ℎ+1(𝑠

𝑘
ℎ+1) and let ‖𝑉 (⋅)‖∞ ≤ 𝐻 be any fixed function such that sup𝑠𝑘ℎ,𝑎𝑘ℎ,𝑠𝑘ℎ+1 |𝜂𝑘(𝑉)| ≤

𝑂(𝜅1𝐻2
√

𝑑2

𝜅𝐾
), i.e. arbitrary fixed 𝑉 function in the neighborhood (measured by 𝜂𝑘) of 𝑉 ⋆

ℎ+1.
Then by definition of 𝕋 it holds 𝔼[𝜂𝑘(𝑉 , 𝜃)|𝑠𝑘ℎ, 𝑎𝑘ℎ] = 0. Let the fixed 𝜃 ∈ Θ be arbitrary and
define 𝑥𝑘(𝜃) = ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘). Next, define 𝐺ℎ(𝜃) =

∑𝐾
𝑘=1∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)) ⋅∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

⊤ +

𝜆𝐼𝑑 , since ‖

‖

𝑥𝑘‖‖2 ≤ 𝜅1 and |𝜂𝑘| ≤ 𝑂(𝜅1𝐻2
√

𝑑2

𝜅𝐾
), by self-normalized Hoeffding’s inequality

145

Supplementary Material in Chapter 4 Chapter C

(Lemma C.11.3), with probability 1 − 𝛿 (recall 𝑡 ∶= 𝐾 in Lemma C.11.3),

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
𝑥𝑘(𝜃)𝜂𝑘(𝑉)

‖

‖

‖

‖

‖

‖𝐺ℎ(𝜃)−1

≤ 𝑂(𝜅1𝐻2

√

𝑑2

𝜅𝐾
)

√

𝑑 log
(

𝜆 +𝐾𝜅1
𝜆𝛿

)

.

Step2. Define ℎ(𝑉 , 𝜃) ∶=
∑𝐾

𝑘=1 𝑥𝑘(𝜃)𝜂𝑘(𝑉) and 𝐻(𝑉 , 𝜃) ∶= ‖

‖

‖

∑𝐾
𝑘=1 𝑥𝑘(𝜃)𝜂𝑘(𝑉)‖‖

‖𝐺ℎ(𝜃)−1
,

then note by definition |𝜂𝑘(𝑉)| ≤ 2𝐻 , which implies ‖ℎ(𝑉 , 𝜃)‖2 ≤ 2𝐾𝐻𝜅1 and

|𝜂𝑘(𝑉1) − 𝜂𝑘(𝑉2)| ≤ |ℎ𝑉1 − ℎ𝑉2| + ‖

‖

𝑉1 − 𝑉2‖‖∞ ≤ 2 ‖
‖

𝑉1 − 𝑉2‖‖∞

and

‖

‖

ℎ(𝑉1, 𝜃1) − ℎ(𝑉2, 𝜃2)‖‖2 ≤𝐾 max
𝑘

(

2𝐻 ‖

‖

𝑥𝑘(𝜃1) − 𝑥𝑘(𝜃2)‖‖2 + 𝜅1|𝜂𝑘(𝑉1) − 𝜂𝑘(𝑉2)|
)

≤𝐾(2𝐻𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 + 2𝜅1 ‖‖𝑉1 − 𝑉2‖‖∞).

Furthermore,

‖

‖

‖

𝐺ℎ(𝜃1)−1 − 𝐺ℎ(𝜃2)−1
‖

‖

‖2
≤ ‖

‖

‖

𝐺ℎ(𝜃1)−1
‖

‖

‖2
‖

‖

𝐺ℎ(𝜃1) − 𝐺ℎ(𝜃2)‖‖2
‖

‖

‖

𝐺ℎ(𝜃2)−1
‖

‖

‖2

≤ 1
𝜆2
𝐾 sup

𝑘

‖

‖

‖

∇𝑓 (𝜃1, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃1, 𝜙ℎ,𝑘)⊤ − ∇𝑓 (𝜃2, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)⊤
‖

‖

‖2

≤ 1
𝜆2
𝐾 sup

𝑘

[

‖

‖

‖

(∇𝑓 (𝜃1, 𝜙ℎ,𝑘) − ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)) ⋅ ∇𝑓 (𝜃1, 𝜙ℎ,𝑘)⊤
‖

‖

‖2
+ ‖

‖

‖

∇𝑓 (𝜃2, 𝜙ℎ,𝑘) ⋅ (∇𝑓 (𝜃1, 𝜙ℎ,𝑘)⊤ − ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)⊤)
‖

‖

‖2

]

≤
2𝜅1𝐾
𝜆2

𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 =
2𝜅1𝜅2𝐾
𝜆2

‖

‖

𝜃1 − 𝜃2‖‖2 .

146

Supplementary Material in Chapter 4 Chapter C

All the above imply

|𝐻(𝑉1, 𝜃1) −𝐻(𝑉2, 𝜃2)| ≤
√

|

|

ℎ(𝑉1, 𝜃1)⊤𝐺ℎ(𝜃1)−1ℎ(𝑉1, 𝜃1) − ℎ(𝑉2, 𝜃2)⊤𝐺ℎ(𝜃2)−1ℎ(𝑉2, 𝜃2)||

≤
√

‖

‖

ℎ(𝑉1, 𝜃1) − ℎ(𝑉2, 𝜃2)‖‖2 ⋅
1
𝜆
⋅ 2𝐾𝐻𝜅1 +

√

2𝐾𝐻𝜅1 ⋅ ‖‖𝐺ℎ(𝜃1)−1 − 𝐺ℎ(𝜃2)−1‖‖2 ⋅ 2𝐾𝐻𝜅1

+
√

2𝐾𝐻𝜅1 ⋅
1
𝜆
⋅ ‖
‖

ℎ(𝑉1, 𝜃1) − ℎ(𝑉2, 𝜃2)‖‖2

≤2
√

𝐾(2𝐻𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 + 2𝜅1 ‖‖𝑉1 − 𝑉2‖‖∞) ⋅
1
𝜆
⋅ 2𝐾𝐻𝜅1 +

√

2𝐾𝐻𝜅1 ⋅
2𝜅1𝜅2𝐾
𝜆2

‖

‖

𝜃1 − 𝜃2‖‖2 ⋅ 2𝐾𝐻𝜅1

≤

(

4
√

𝐾3𝐻2𝜅1𝜅2
1
𝜆
+
√

8𝐾3𝐻2𝜅3
1𝜅2

1
𝜆2

)

√

‖

‖

𝜃1 − 𝜃2‖‖2 + 4
√

𝐾3𝜅2
1𝐻

1
𝜆
‖

‖

𝑉1 − 𝑉2‖‖∞

Then a 𝜖-covering net of {𝐻(𝑉 , 𝜃)} can be constructed by the union of 𝜖2

4
(

4
√

𝐾3𝐻2𝜅1𝜅2
1
𝜆+
√

8𝐾3𝐻2𝜅31𝜅2
1
𝜆2

)2 -

covering net of {𝜃 ∈ Θ} and 𝜖2

4(4
√

𝐾3𝜅21𝐻
1
𝜆)

2
-covering net of  in Lemma C.11.9. The covering

number 𝜖 satisfies

log𝜖 ≤𝑑 log

⎛

⎜

⎜

⎜

⎜

⎝

1 +
8𝐶Θ

(

4
√

𝐾3𝐻2𝜅1𝜅2
1
𝜆
+
√

8𝐾3𝐻2𝜅3
1𝜅2

1
𝜆2

)2

𝜖2

⎞

⎟

⎟

⎟

⎟

⎠

+𝑑 log

⎛

⎜

⎜

⎜

⎝

1 +
8𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖4

16(4
√

𝐾3𝜅21𝐻
1
𝜆)

4

⎞

⎟

⎟

⎟

⎠

+ 𝑑2 log

⎛

⎜

⎜

⎜

⎝

1 +
8
√

𝑑𝐵𝜅2
1

𝜖4

16(4
√

𝐾3𝜅21𝐻
1
𝜆)

4

⎞

⎟

⎟

⎟

⎠

.

Step3. First note by definition in Step2
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

= 𝐻(𝑉ℎ+1, 𝜃ℎ)

147

Supplementary Material in Chapter 4 Chapter C

and with probability 1 − 𝛿

|𝜂𝑘(𝑉ℎ+1)| =|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)|

≤𝜅1 ⋅
‖

‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃
⋆
ℎ
‖

‖

‖2
+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞

≤𝜅1

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+ 𝐶

(

𝜅1𝐻
2

√

𝑑2

𝜅𝐾

)

= 𝑂

(

𝜅1𝐻
2

√

𝑑2

𝜅𝐾

)

(C.7)
where the second inequality uses 𝜃𝕋𝑉 ⋆

ℎ+1
= 𝜃⋆ℎ and the third inequality uses Theorem C.6.1 and

Theorem C.6.2. The last equal sign is due to 𝐶𝑑,log𝐾 ≤ 𝑂(𝑑2) (recall Lemma C.6.1).
Now choosing 𝜖 = 𝑂(1∕𝐾) in Step2 and union bound over both (C.7) and covering number

in Step2, we obtain with probability 1 − 𝛿,

𝐻(𝑉ℎ+1, 𝜃ℎ) =
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
𝑥𝑘(𝜃ℎ)𝜂𝑘(𝑉ℎ+1)

‖

‖

‖

‖

‖

‖𝐺ℎ(𝜃ℎ)−1

≤ 𝑂(𝜅1𝐻2

√

𝑑2

𝜅𝐾
)
√

𝑑 + 𝑑2 = 𝑂(
𝜅1𝐻2𝑑2

√

𝜅𝐾
) (C.8)

where we absorb all the Polylog terms. Meanwhile, by Lemma C.11.5 with probability 1 − 𝛿,

‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙𝑠,𝑎)
‖

‖

‖Σ−1
ℎ

≤
2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
). (C.9)

Finally, by (C.8) and (C.9) and a union bound, we have with probability 1 − 𝛿,

|𝐼2| ∶=
|

|

|

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)]

|

|

|

|

|

|

≤ ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙𝑠,𝑎)
‖

‖

‖Σ−1
ℎ

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

= ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙𝑠,𝑎)
‖

‖

‖Σ−1
ℎ

⋅𝐻(𝑉ℎ+1, 𝜃ℎ) ≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

⋅ 𝑂(
𝜅1𝐻2𝑑2
√

𝜅𝐾
) = 𝑂(

𝜅21𝐻
2𝑑2

𝜅𝐾
) + 𝑂(1

𝐾3∕2
)

where the first inequality is Cauchy–Schwarz inequality.

148

Supplementary Material in Chapter 4 Chapter C

C.4.4 Bounding the main term 𝐼1

In this section, we bound the dominate term

𝐼1 ∶= ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ [

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)].

First of all, by Cauchy–Schwarz inequality, we have

|𝐼1| ≤
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

.

(C.10)
Then we have the following Lemma to bound 𝐼1.

Lemma C.4.6. With probability 1 − 𝛿,

|𝐼1| ≤ 4𝐻𝑑 ‖‖
‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅ 𝐶𝛿,log𝐾 + 𝑂(
𝜅1

√

𝜅𝐾
),

where 𝐶𝛿,log𝐾 only contains Polylog terms.

Proof: [Proof of Lemma C.4.6] Step1. Let the fixed 𝜃 ∈ Θ be arbitrary and define
𝑥𝑘(𝜃) = ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘). Next, define 𝐺ℎ(𝜃) =

∑𝐾
𝑘=1∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

⊤ + 𝜆𝐼𝑑 ,
then ‖

‖

𝑥𝑘‖‖2 ≤ 𝜅1. Also denote 𝜂𝑘 ∶= 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘)−𝑟ℎ,𝑘−𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1), then𝔼[𝜂𝑘|𝑠𝑘ℎ, 𝑎𝑘ℎ] = 0 and

|𝜂𝑘| ≤ 𝐻 . Now by self-normalized Hoeffding’s inequality (Lemma C.11.3), with probability
1 − 𝛿 (recall 𝑡 ∶= 𝐾 in Lemma C.11.3),

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
𝑥𝑘(𝜃)𝜂𝑘

‖

‖

‖

‖

‖

‖𝐺ℎ(𝜃)−1

≤ 2𝐻

√

𝑑 log
(

𝜆 +𝐾𝜅1
𝜆𝛿

)

.

Step2. Define ℎ(𝜃) ∶= ∑𝐾
𝑘=1 𝑥𝑘(𝜃)𝜂𝑘 and 𝐻(𝜃) ∶= ‖

‖

‖

∑𝐾
𝑘=1 𝑥𝑘(𝜃)𝜂𝑘

‖

‖

‖𝐺ℎ(𝜃)−1
, then note by defini-

149

Supplementary Material in Chapter 4 Chapter C

tion |𝜂𝑘| ≤ 𝐻 , which implies ‖ℎ(𝜃)‖2 ≤ 𝐾𝐻𝜅1 and by 𝑥𝑘(𝜃1)−𝑥𝑘(𝜃2) = ∇2
𝜃𝜃𝑓 (𝜉, 𝜙) ⋅ (𝜃1−𝜃2),

‖

‖

ℎ(𝜃1) − ℎ(𝜃2)‖‖2 ≤𝐾 max
𝑘

(

𝐻 ‖

‖

𝑥𝑘(𝜃1) − 𝑥𝑘(𝜃2)‖‖2
)

≤ 𝐻𝐾𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 .

Furthermore,

‖

‖

‖

𝐺ℎ(𝜃1)−1 − 𝐺ℎ(𝜃2)−1
‖

‖

‖2
≤ ‖

‖

‖

𝐺ℎ(𝜃1)−1
‖

‖

‖2
‖

‖

𝐺ℎ(𝜃1) − 𝐺ℎ(𝜃2)‖‖2
‖

‖

‖

𝐺ℎ(𝜃2)−1
‖

‖

‖2

≤ 1
𝜆2
𝐾 sup

𝑘
‖

‖

∇𝑓 (𝜃1, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃1, 𝜙ℎ,𝑘)⊤ − ∇𝑓 (𝜃2, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)⊤‖‖2

≤
2𝜅1𝐾
𝜆2

𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 =
2𝜅1𝜅2𝐾
𝜆2

‖

‖

𝜃1 − 𝜃2‖‖2 .

All the above imply

|𝐻(𝜃1) −𝐻(𝜃2)| ≤
√

|

|

ℎ(𝜃1)⊤𝐺ℎ(𝜃1)−1ℎ(𝜃1) − ℎ(𝜃2)⊤𝐺ℎ(𝜃2)−1ℎ(𝜃2)||

≤
√

‖

‖

ℎ(𝜃1) − ℎ(𝜃2)‖‖2 ⋅
1
𝜆
⋅𝐾𝐻𝜅1 +

√

𝐾𝐻𝜅1 ⋅ ‖‖𝐺ℎ(𝜃1)−1 − 𝐺ℎ(𝜃2)−1‖‖2 ⋅𝐾𝐻𝜅1

+
√

𝐾𝐻𝜅1 ⋅
1
𝜆
⋅ ‖
‖

ℎ(𝜃1) − ℎ(𝜃2)‖‖2

≤2
√

𝐾𝐻𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 ⋅
1
𝜆
⋅𝐾𝐻𝜅1 +

√

𝐾𝐻𝜅1 ⋅
2𝜅1𝜅2𝐾
𝜆2

‖

‖

𝜃1 − 𝜃2‖‖2 ⋅𝐾𝐻𝜅1

≤
(

√

4𝐾2𝐻2𝜅1𝜅2∕𝜆 +
√

2𝐾3𝐻2𝜅3
1𝜅2∕𝜆2

)

√

‖

‖

𝜃1 − 𝜃2‖‖2

Then a 𝜖-covering net of {𝐻(𝜃)} can be constructed by the union of 𝜖2
(

√

4𝐾2𝐻2𝜅1𝜅2∕𝜆+
√

2𝐾3𝐻2𝜅31𝜅2∕𝜆
2
)2 -

covering net of {𝜃 ∈ Θ}. By Lemma C.11.8, the covering number 𝜖 satisfies

log𝜖 ≤𝑑 log

⎛

⎜

⎜

⎜

⎜

⎝

1 +
2𝐶Θ

(

√

4𝐾2𝐻2𝜅1𝜅2∕𝜆 +
√

2𝐾3𝐻2𝜅3
1𝜅2∕𝜆2

)2

𝜖2

⎞

⎟

⎟

⎟

⎟

⎠

= 𝑂(𝑑)

150

Supplementary Material in Chapter 4 Chapter C

Step3. First note by definition in Step2

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

= 𝐻(𝜃ℎ)

Now choosing 𝜖 = 𝑂(1∕𝐾) in Step2 and union bound over the covering number in Step2, we
obtain with probability 1 − 𝛿,

𝐻(𝜃ℎ) =
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
𝑥𝑘(𝜃ℎ)𝜂𝑘

‖

‖

‖

‖

‖

‖𝐺ℎ(𝜃ℎ)−1

≤ 2𝐻

√

𝑑
[

log
(

𝜆 +𝐾𝜅1
𝜆𝛿

)

+ 𝑂(𝑑)
]

+ 𝑂(1
𝐾
). (C.11)

where we absorb all the Polylog terms. Combing above with (C.10), we obtain with probability
1 − 𝛿,

|𝐼1| ≤
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

‖

‖

‖

‖

‖

‖Σ−1
ℎ

≤ ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅
⎛

⎜

⎜

⎝

2𝐻

√

𝑑
[

log
(

𝜆 +𝐾𝜅1
𝜆𝛿

)

+ 𝑂(𝑑)
]

+ 𝑂(1
𝐾
)
⎞

⎟

⎟

⎠

≤4𝐻𝑑 ‖‖
‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅ 𝐶𝛿,log𝐾 + 𝑂(
𝜅1

√

𝜅𝐾
),

where 𝐶𝛿,log𝐾 only contains Polylog terms.

C.4.5 Analyzing Hot2 in (C.6)
Lemma C.4.7. Recall Hot2 ∶= ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1

ℎ

[

𝑅𝐾(𝜃𝕋𝑉ℎ+1) + 𝜆𝜃𝕋𝑉ℎ+1
]

. If the number of

episode 𝐾 satisfies 𝐾 ≥ max
{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜅𝜆2
)
)

, 4𝜆
𝜅

}

, then with proba-

151

Supplementary Material in Chapter 4 Chapter C

bility 1 − 𝛿,

|

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ

[

𝑅𝐾(𝜃𝕋𝑉ℎ+1) + 𝜆𝜃𝕋𝑉ℎ+1
]

|

|

|

|

≤ 𝑂
⎛

⎜

⎜

⎝

𝜅2 max(𝜅1
𝜅
, 1
√

𝜅
)𝑑2𝐻2 + 𝑑2𝐻3𝜅3+𝜆𝜅1𝐶Θ

𝜅

𝐾

⎞

⎟

⎟

⎠

where 𝑂 absorbs all the constants and Polylog terms.

Proof: [Proof of Lemma C.4.7]
Step1: we first show with probability 1 − 𝛿

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

|

|

|

≤ 𝑂(1
𝐾
).

Recall by plug in 𝜃𝕋𝑉ℎ+1 in (C.2), we have

𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1) −𝑍ℎ(𝜃ℎ|𝑉ℎ+1) =
𝜕
𝜕𝜃
𝑍ℎ(𝜃ℎ|𝑉ℎ+1)(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1), (C.12)

and by second-order Taylor’s Theorem we have

‖

‖

‖

𝑅𝐾(𝜃𝕋𝑉ℎ+1)
‖

‖

‖2
=
‖

‖

‖

‖

𝑍ℎ(𝜃𝕋𝑉ℎ+1|𝑉ℎ+1) −𝑍ℎ(𝜃ℎ|𝑉ℎ+1) −
𝜕
𝜕𝜃
𝑍ℎ(𝜃ℎ|𝑉ℎ+1)(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ)

‖

‖

‖

‖2

=1
2
‖

‖

‖

‖

(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ)
⊤ 𝜕2

𝜕𝜃𝜕𝜃
𝑍ℎ(𝜉|𝑉ℎ+1)(𝜃𝕋𝑉ℎ+1 − 𝜃ℎ)

‖

‖

‖

‖2

≤1
2
𝜅𝑧2

‖

‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
‖

‖

‖

2

2

(C.13)

Note

𝜕2

𝜕𝜃𝜃
𝑍ℎ(𝜃|𝑉ℎ+1)

|

|

|

|𝜃=𝜉
= 𝜕
𝜕𝜃

Σ𝑠ℎ =
𝐾
∑

𝑘=1

𝜕
𝜕𝜃

{(

𝑓 (𝜉, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜉, 𝜙ℎ,𝑘)

}

+
𝐾
∑

𝑘=1

𝜕
𝜕𝜃

(

∇𝜃𝑓 (𝜉, 𝜙ℎ,𝑘)∇⊤
𝜃 𝑓 (𝜉, 𝜙ℎ,𝑘) + 𝜆𝐼𝑑

)

(C.14)
Therefore, we can bound 𝜅𝑧2 with 𝜅𝑧2 ≤ (𝐻𝜅3 + 3𝜅1𝜅2)𝐾 and this implies with probability

152

Supplementary Material in Chapter 4 Chapter C

1 − 𝛿∕2,

‖

‖

‖

𝑅𝐾(𝜃𝕋𝑉ℎ+1)
‖

‖

‖2
≤1
2
𝜅𝑧2

‖

‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
‖

‖

‖

2

2
≤ 1

2
(𝐻𝜅3 + 3𝜅1𝜅2)𝐾 ⋅ ‖‖

‖

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
‖

‖

‖

2

2

≤1
2
(𝐻𝜅3 + 3𝜅1𝜅2)𝐾 ⋅

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾

≤𝑂((𝐻𝜅3 + 3𝜅1𝜅2)𝐻2𝑑2∕𝜅).

And by Corollary C.4.1 with probability 1 − 𝛿∕2,

‖

‖

‖

ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1)

‖

‖

‖2
≤ 𝑂(1),

Therefore, by Lemma C.11.5 and a union bound with probability 1 − 𝛿,

|∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ 𝑅𝐾(𝜃𝕋𝑉ℎ+1)| =

|

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤Σ−1
ℎ

(

ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

)

|

|

|

|

≤ ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

‖

‖

‖

ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

‖

‖

‖Σ−1
ℎ

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

‖

‖

‖

ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

‖

‖

‖Σ−1
ℎ

≤

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)(

𝐶
√

𝐾
+ 𝑂(1

𝐾
)

)

= 𝑂
⎛

⎜

⎜

⎝

𝜅2 max(𝜅1
𝜅
, 1
√

𝜅
)𝑑2𝐻2 + 𝑑2𝐻3𝜅3

𝜅

𝐾

⎞

⎟

⎟

⎠

where 𝑂 absorbs all the constants and Polylog terms. Here the last inequality uses bound for
‖

‖

‖

𝑅𝐾(𝜃𝕋𝑉ℎ+1)
‖

‖

‖2
and ‖

‖

‖

ΔΣ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1)

‖

‖

‖2
.

Step2: By Lemma C.11.5, with probability 1 − 𝛿,

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Σ−1
ℎ 𝜆𝜃𝕋𝑉ℎ+1

|

|

|

≤ 𝜆 ‖‖
‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

‖

‖

‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖Σ−1
ℎ

≤ 𝜆

(

2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

⋅

(

2𝐶Θ
√

𝜅𝐾
+ 𝑂(1

𝐾
)

)

=
4𝜆𝜅1𝐶Θ

𝜅𝐾
+ 𝑂(1

𝐾
3
2

)

153

Supplementary Material in Chapter 4 Chapter C

C.5 Proof of Theorem 4.3.2

Now we are ready to prove Theorem 4.3.2. In particular, we prove the first part. Also, recall
that we consider the exact Bellman completeness (𝜖 = 0).

C.5.1 The first part

Proof: [Proof of Theorem 4.3.2 (first part)] First of all, from the previous calculation (C.1),
(C.6), we have

|

|

|

ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎)
|

|

|

≤
|

|

|

|

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

|

|

|

|

+ |

|

Hotℎ,1||

≤|𝐼1| + |𝐼2| + |𝐼3| + |Hotℎ,2| + |

|

Hotℎ,1||

Now by Lemma C.4.4, Lemma C.4.5, Lemma C.4.6, Lemma C.4.7 and Lemma C.4.1 (and
a union bound), with probability 1 − 𝛿,

|𝐼3| ≤𝑂(

√

𝑑3𝐻2𝜅2
2𝜅

2
1

𝜅3
) 1
𝐾
,

|𝐼2| ≤𝑂(
𝜅2
1𝐻

2𝑑2

𝜅𝐾
) + 𝑂(1

𝐾3∕2
),

|𝐼1| ≤4𝐻𝑑
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅ 𝐶𝛿,log𝐾 + 𝑂(
𝜅1

√

𝜅𝐾
),

|Hot2,ℎ| ≤𝑂
⎛

⎜

⎜

⎝

𝜅2 max(𝜅1
𝜅
, 1
√

𝜅
)𝑑2𝐻2 + 𝑑2𝐻3𝜅3+𝜆𝜅1𝐶Θ

𝜅

𝐾

⎞

⎟

⎟

⎠

,

|Hot1,ℎ| ≤𝑂(
𝐻2𝜅2𝑑2

𝜅
) 1
𝐾
.

Finally, Plug the above into Lemma C.3.2, by a union bound over all ℎ ∈ [𝐻], we have with

154

Supplementary Material in Chapter 4 Chapter C

probability 1 − 𝛿, for any policy 𝜋,

𝑣𝜋 − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
2 ⋅ 𝔼𝜋

[

|𝐼1| + |𝐼2| + |𝐼3| + |Hotℎ,2| + |

|

Hotℎ,1||
]

≤
𝐻
∑

ℎ=1
8𝑑𝐻𝔼𝜋

[
√

∇⊤𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Σ−1
ℎ ∇𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶hot

𝐾
).

where 𝜄 = 𝐶𝛿,log𝐾 only contains Polylog terms and

𝐶hot =
𝜅1𝐻
√

𝜅
+
𝜅2
1𝐻

3𝑑2

𝜅
+

√

𝑑3𝐻4𝜅2
2𝜅

2
1

𝜅3
+𝜅2 max(

𝜅1
𝜅
, 1
√

𝜅
)𝑑2𝐻3+

𝑑2𝐻4𝜅3 + 𝜆𝜅1𝐶Θ

𝜅
+
𝐻3𝜅2𝑑2

𝜅

C.5.2 The second part

Next we prove the second part of Theorem 4.3.2. Proof: [Proof of Theorem 4.3.2
(second part)] Step1. Choose 𝜋 = 𝜋⋆ in the first part, we have

0 ≤ 𝑣𝜋⋆ − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
8𝑑𝐻 ⋅ 𝔼𝜋⋆

[
√

∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Σ

−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶hot

𝐾
),

Next, by the triangular inequality of the norm to obtain

|

|

|

|

‖

‖

‖

∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))
‖

‖

‖Σ−1
ℎ

− ‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))‖‖Σ−1
ℎ

|

|

|

|

≤ ‖

‖

‖

∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))
‖

‖

‖Σ−1
ℎ

=
‖

‖

‖

‖

∇2
𝜃𝜃𝑓 (𝜉, 𝜙(𝑠ℎ, 𝑎ℎ)) ⋅

(

𝜃ℎ − 𝜃⋆ℎ
)

‖

‖

‖

‖Σ−1
ℎ

,

155

Supplementary Material in Chapter 4 Chapter C

since with probability 1 − 𝛿,

‖

‖

‖

‖

∇2
𝜃𝜃𝑓 (𝜉, 𝜙(𝑠ℎ, 𝑎ℎ)) ⋅

(

𝜃ℎ − 𝜃⋆ℎ
)

‖

‖

‖

‖2
≤ 𝜅2

‖

‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖2
≤ 𝑂

(

𝜅1𝜅2𝐻2𝑑
𝜅

√

1
𝐾

)

,

where the last inequality uses part three of Theorem C.6.2. Then by a union bound and Lemma C.11.5,

‖

‖

‖

‖

∇2
𝜃𝜃𝑓 (𝜉, 𝜙(𝑠ℎ, 𝑎ℎ)) ⋅

(

𝜃ℎ − 𝜃⋆ℎ
)

‖

‖

‖

‖Σ−1
ℎ

≤ 𝑂
(

𝜅1𝜅2𝐻2𝑑
𝜅3∕2

⋅
1
𝐾

)

.

Step2. Next, we show with probability 1 − 𝛿,

‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))‖‖Σ−1
ℎ
≤ 2 ‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))‖‖Σ⋆−1ℎ
.

First of all,

‖

‖

‖

‖

1
𝐾
Σℎ −

1
𝐾
Σ⋆ℎ

‖

‖

‖

‖2
=
‖

‖

‖

‖

‖

‖

1
𝐾

(

𝐾
∑

𝑘=1
∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))⊤ − ∇𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))∇𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠, 𝑎))

⊤

)

‖

‖

‖

‖

‖

‖2

≤ sup
𝑠,𝑎

(

‖

‖

‖

‖

(

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
)

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖

‖2

+
‖

‖

‖

‖

(

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
)

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖

‖2

)

≤2𝜅2𝜅1
‖

‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖2
≤ 𝑂

(

𝜅2𝜅2
1𝐻

2𝑑
𝜅

√

1
𝐾

)

Second, by Lemma C.11.6 with probability 1 − 𝛿

‖

‖

‖

‖

‖

Σ⋆ℎ
𝐾

− 𝔼𝜇[∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)
⊤] − 𝜆

𝐾

‖

‖

‖

‖

‖

≤
4
√

2𝜅2
1

√

𝐾

(

log 2𝑑
𝛿

)1∕2

156

Supplementary Material in Chapter 4 Chapter C

This implies

‖

‖

‖

‖

‖

Σ⋆ℎ
𝐾

‖

‖

‖

‖

‖

≤ ‖

‖

‖

𝔼𝜇[∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)
⊤]‖‖
‖

+ 𝜆
𝐾

+
4
√

2𝜅2
1

√

𝐾

(

log 2𝑑
𝛿

)1∕2

≤𝜅2
1 + 𝜆 + 4

√

2𝜅2
1

(

log 2𝑑
𝛿

)1∕2

and also by Weyl’s spectrum theorem and under the condition𝐾 ≥ 128𝜅41 log(2𝑑∕𝛿)

𝜅2
, with probability

1 − 𝛿

𝜆min(
Σ⋆ℎ
𝐾

) ≥𝜆min
(

𝔼𝜇[∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)∇𝜃𝑓 (𝜃⋆ℎ , 𝜙)
⊤]
)

+ 𝜆
𝐾

−
4
√

2𝜅2
1

√

𝐾

(

log 2𝑑
𝛿

)1∕2

≥𝜅 + 𝜆
𝐾

−
4
√

2𝜅2
1

√

𝐾

(

log 2𝑑
𝛿

)1∕2
≥ 𝜅

2

then ‖

‖

‖

(Σ
⋆
ℎ

𝐾
)−1‖‖

‖

≤ 2
𝜅
. Similarly, with probability 1 − 𝛿, ‖‖

‖

(Σℎ
𝐾
)−1‖‖

‖

≤ 2
𝜅
. Then by Lemma C.11.7,

‖

‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
‖

‖

‖𝐾Σ−1
ℎ

≤

[

1 +
√

‖

‖

‖

𝐾Σ⋆−1ℎ
‖

‖

‖

‖

‖

‖

Σ⋆ℎ∕𝐾
‖

‖

‖

⋅ ‖‖
‖

𝐾Σ−1
ℎ
‖

‖

‖

⋅ ‖‖
‖

Σℎ∕𝐾 − Σ⋆ℎ∕𝐾
‖

‖

‖

]

⋅ ‖‖
‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
‖

‖

‖𝐾Σ⋆−1ℎ

≤
⎡

⎢

⎢

⎣

1 +

√

√

√

√

4
𝜅2
𝑂(𝜅21 + 𝜆)𝑂

(

𝜅2𝜅21𝐻
2𝑑

𝜅

√

1
𝐾

)

⎤

⎥

⎥

⎦

⋅ ‖‖
‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
‖

‖

‖𝐾Σ⋆−1ℎ

≤2 ‖‖
‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
‖

‖

‖𝐾Σ⋆−1ℎ

as long as 𝐾 ≥ 𝑂((𝜅
2
1+𝜆)

2𝜅22𝜅
2
1𝐻

4𝑑2

𝜅6
). The above is equivalently to

‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))‖‖Σ−1
ℎ
≤ 2 ‖

‖

∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))‖‖Σ⋆−1ℎ
.

157

Supplementary Material in Chapter 4 Chapter C

Combining Step1, Step2 and a union bound, we have with probability 1 − 𝛿,

0 ≤𝑣𝜋⋆ − 𝑣𝜋 ≤
𝐻
∑

ℎ=1
8𝑑𝐻 ⋅ 𝔼𝜋⋆

[
√

∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Σ

−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶hot
𝐾

)

≤
𝐻
∑

ℎ=1
8𝑑𝐻 ⋅ 𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Σ

−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶hot
𝐾

) + 𝑂
(

𝜅1𝜅2𝐻4𝑑2

𝜅3∕2
⋅
1
𝐾

)

≤
𝐻
∑

ℎ=1
16𝑑𝐻 ⋅ 𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Σ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

]

⋅ 𝜄 + 𝑂(
𝐶 ′
hot
𝐾

)

where 𝐶 ′
hot = 𝐶hot +

𝜅1𝜅2𝐻4𝑑2

𝜅3∕2
.

C.6 Provable Efficiency by reduction to General Function Ap-

proximation

In this section, we bound the accuracy of the parameter difference ‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
via a

reduction to General Function Approximation scheme in [13].
Recall the objective

𝓁ℎ(𝜃) ∶=
1
𝐾

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)
)

− 𝑟(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − 𝑉ℎ+1

(

𝑠𝑘ℎ+1
)

]2
+ 𝜆
𝐾

⋅ ‖𝜃‖22 (C.15)

Then by definition, 𝜃ℎ ∶= argmin𝜃∈Θ 𝓁ℎ(𝜃) and 𝜃𝕋𝑉ℎ+1 satisfies 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙) = ℎ𝑉ℎ+1 + 𝛿𝑉ℎ+1 .
Therefore, in this case, we have the following lemma:
Lemma C.6.1. Fix ℎ ∈ [𝐻]. With probability 1 − 𝛿,

𝔼𝜇[𝓁ℎ(𝜃ℎ)]−𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾) + 𝜆𝐶2

Θ

𝐾
+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+4𝐻𝜖 .

where the expectation over 𝜇 is taken w.r.t. (𝑠𝑘ℎ, 𝑎
𝑘
ℎ, 𝑠

𝑘
ℎ+1) 𝑘 = 1, ..., 𝐾 only (i.e., first com-

pute 𝔼𝜇[𝓁ℎ(𝜃)] for a fixed 𝜃, then plug-in either 𝜃ℎ+1 or 𝜃𝕋𝑉ℎ+1). Here 𝐶𝑑,log(𝐾) ∶= 𝑑 log(1 +

158

Supplementary Material in Chapter 4 Chapter C

24𝐶Θ(𝐻 + 1)𝜅1𝐾)+𝑑 log
(

1 + 288𝐻2𝐶Θ(𝜅1
√

𝐶Θ + 2
√

𝜅1𝜅2∕𝜆)2𝐾2
)

+𝑑2 log
(

1 + 288𝐻2
√

𝑑𝜅2
1𝐾

2∕𝜆
)

.

Proof: [Proof of Lemma C.6.1] Step1: we first prove the case where 𝜆 = 0.
Indeed, fix ℎ ∈ [𝐻] and any function 𝑉 (⋅) ∈ ℝ . Similarly, define 𝑓𝑉 (𝑠, 𝑎) ∶= 𝑓 (𝜃𝕋𝑉 , 𝜙) =

ℎ𝑉 + 𝛿𝑉 . For any fixed 𝜃 ∈ Θ, denote 𝑔(𝑠, 𝑎) = 𝑓 (𝜃, 𝜙(𝑠, 𝑎)). Then define2

𝑋(𝑔, 𝑉 , 𝑓𝑉) ∶= (𝑔(𝑠, 𝑎) − 𝑟 − 𝑉 (𝑠′))2 − (𝑓𝑉 (𝑠, 𝑎) − 𝑟 − 𝑉 (𝑠′))2.

Since all episodes are independent of each other,𝑋𝑘(𝑔, 𝑉 , 𝑓𝑉) ∶= 𝑋(𝑔(𝑠𝑘ℎ, 𝑎
𝑘
ℎ), 𝑉 (𝑠𝑘ℎ+1), 𝑓𝑉 (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

are independent r.v.s and it holds

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝑔, 𝑉 , 𝑓𝑉) = 𝓁(𝑔) − 𝓁(𝑓𝑉). (C.16)

Next, the variance of 𝑋 is bounded by:

Var[𝑋(𝑔, 𝑉 , 𝑓𝑉)] ≤ 𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉)2]

=𝔼𝜇
[

(

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2 −

(

𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2
)2
]

=𝔼𝜇
[

(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ))2(𝑔(𝑠ℎ, 𝑎ℎ) + 𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 2𝑟ℎ − 2𝑉 (𝑠ℎ+1))2
]

≤4𝐻2 ⋅ 𝔼𝜇[(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ))2]

≤4𝐻2 ⋅ 𝔼𝜇
[

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2 −

(

𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2
]

+ 8𝐻3𝜖 (∗)

=4𝐻2 ⋅ 𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉)] + 8𝐻3𝜖

2We abuse the notation here to use either 𝑋(𝑔, 𝑉 , 𝑓𝑉) or 𝑋(𝜃, 𝑉 , 𝑓𝑉). They mean the same quantity.

159

Supplementary Material in Chapter 4 Chapter C

where the step (∗) comes from

𝔼𝜇
[

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2 −

(

𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2
]

=𝔼𝜇
[(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ)
)

⋅
(

𝑔(𝑠ℎ, 𝑎ℎ) + 𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 2𝑟ℎ − 2𝑉 (𝑠ℎ+1)
)]

=𝔼𝜇
[(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ)
)

⋅
(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ) + 2𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 2𝑟ℎ − 2𝑉 (𝑠ℎ+1)
)]

=𝔼𝜇
[

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ)
)2
]

+ 𝔼𝜇
[

2(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ))𝔼𝑃ℎ[𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1) ∣ 𝑠ℎ, 𝑎ℎ]
]

≥𝔼𝜇
[

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ)
)2
]

− 2𝐻 ‖

‖

𝛿𝑉 ‖‖∞ ≥ 𝔼𝜇
[

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ)
)2
]

− 2𝐻𝜖
(C.17)

where the last step uses law of total expectation and the definition of 𝑓𝑉 .
Therefore, by Bernstein inequality, with probability 1 − 𝛿,

𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉)] −
1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝑔, 𝑓 , 𝑓𝑉)

≤
√

2Var[𝑋(𝑔, 𝑓 , 𝑓𝑉)] log(1∕𝛿)
𝐾

+
4𝐻2 log(1∕𝛿)

3𝐾

≤

√

8𝐻2𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉)] log(1∕𝛿)
𝐾

+

√

16𝐻3𝜖 log(1∕𝛿)
𝐾

+
4𝐻2 log(1∕𝛿)

3𝐾
.

Now, if we choose 𝑔(𝑠, 𝑎) ∶= 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)), then 𝜃ℎ minimizes 𝓁ℎ(𝜃), therefore, it also mini-
mizes 1

𝐾

∑𝐾
𝑘=1𝑋𝑖(𝜃, 𝑉ℎ+1, 𝑓𝑉ℎ+1) and this implies

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1) ≤

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝜃𝕋𝑉ℎ+1 , 𝑉ℎ+1, 𝑓𝑉ℎ+1) = 0.

Therefore, we obtain

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] ≤

√

8𝐻2 ⋅ 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] log(1∕𝛿)

𝐾
+

√

16𝐻3𝜖 log(1∕𝛿)
𝐾

+
4𝐻2 log(1∕𝛿)

3𝐾
.

However, the above does not hold with probability 1−𝛿 since 𝜃ℎ and𝑉ℎ+1 ∶= min{max𝑎 𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎))−

160

Supplementary Material in Chapter 4 Chapter C

√

∇𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎))⊤𝐴 ⋅ ∇𝑓 (𝜃, 𝜙(⋅, 𝑎)),𝐻} (where𝐴 is certain symmetric matrix with bounded
norm) depend on 𝜃ℎ and 𝜃ℎ+1 which are data-dependent. Therefore, we need to further apply
covering Lemma C.11.10 and choose 𝜖 = 𝑂(1∕𝐾) and a union bound to obtain with probability
1 − 𝛿,

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] ≤

√

8𝐻2 ⋅ 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)](log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
+

7𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)
3𝐾

+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+ 4𝐻𝜖

where𝐶𝑑,log(𝐾) ∶= log(1+24𝐶Θ(𝐻 + 1)𝜅1𝐾)+𝑑 log
(

1 + 288𝐻2𝐶Θ(𝜅1
√

𝐶Θ + 2
√

𝜅1𝜅2∕𝜆)2𝐾2
)

+

𝑑2 log
(

1 + 288𝐻2
√

𝑑𝜅2
1𝐾

2∕𝜆
)

.3 Solving this quadratic equation to obtain with probability
1 − 𝛿,

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+4𝐻𝜖

Now according to (C.16), by definition we finally have with probability 1− 𝛿 (recall the expec-
tation over 𝜇 is taken w.r.t. (𝑠𝑘ℎ, 𝑎𝑘ℎ, 𝑠𝑘ℎ+1) 𝑘 = 1, ..., 𝐾 only)

𝔼𝜇[𝓁ℎ(𝜃ℎ+1)] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] = 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)]

≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+ 4𝐻𝜖 .
(C.18)

Step2. If 𝜆 > 0, there is only extra term 𝜆
𝐾

(

‖

‖

‖

𝜃ℎ
‖

‖

‖2
− ‖

‖

‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖2

)

≤ 𝜆
𝐾
‖

‖

‖

𝜃ℎ
‖

‖

‖2
≤ 𝜆𝐶2

Θ

𝐾
in

addition to above. This finishes the proof.

Theorem C.6.1 (Provable efficiency (Part I)). Let 𝐶𝑑,log𝐾 be the same as Lemma C.6.1. Then

3Here in our realization of Lemma C.11.9, we set 𝐵 = 1∕𝜆 (since ‖

‖

‖

Σ−1
ℎ
‖

‖

‖2
≤ 1∕𝜆).

161

Supplementary Material in Chapter 4 Chapter C

denote 𝑏𝑑,𝐾,𝜖 ∶=
√

16𝐻3𝜖 (log(1∕𝛿)+𝐶𝑑,log𝐾)

𝐾
+ 4𝐻𝜖 , with probability 1 − 𝛿

‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
≤

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+

√

𝑏𝑑,𝐾,𝜖
𝜅

+

√

2𝐻𝜖
𝜅

, ∀ℎ ∈ [𝐻].

Proof: [Proof of Theorem C.6.1] Apply a union bound in Lemma C.6.1, we have with
probability 1 − 𝛿,

𝔼𝜇[𝓁ℎ(𝜃ℎ)] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] ≤
36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 𝜆𝐶2

Θ
𝐾

+ 𝑏𝑑,𝐾,𝜖 , ∀ℎ ∈ [𝐻]

⇒𝔼𝜇[𝓁ℎ(𝜃ℎ) −
𝜆
𝐾

‖

‖

‖

𝜃ℎ
‖

‖

‖

2

2
] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1) −

𝜆
𝐾

‖

‖

‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
] ≤

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝐾
+ 𝑏𝑑,𝐾,𝜖

(C.19)
Now we prove for all ℎ ∈ [𝐻],

𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

]

≤ 𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃ℎ) −
𝜆 ‖‖
‖

𝜃ℎ
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

−𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃𝕋𝑉ℎ+1) −
𝜆 ‖‖
‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

+2𝐻𝜖 .

(C.20)
Indeed, similar to (C.18), by definition we have

𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃ℎ) −
𝜆 ‖‖
‖

𝜃ℎ
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

− 𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃𝕋𝑉ℎ+1) −
𝜆 ‖‖
‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

= 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)]

=𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

]

+𝔼𝜇
[(

𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ))
)

⋅
(

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
)]

=𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

]

+𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ))
)

⋅ 𝔼
(

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
|

|

|

|

𝑠ℎ, 𝑎ℎ
)

]

≥𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

]

− 2𝐻𝜖

162

Supplementary Material in Chapter 4 Chapter C

where the third identity uses 𝜇 is taken w.r.t. 𝑠ℎ, 𝑎ℎ, 𝑠ℎ+1 (recall Lemma C.6.1) and law of total expecta-
tion. The first inequality uses the definition of 𝜃𝕋𝑉ℎ+1 .

Now apply Assumption 4.2.3, we have

𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2
]

≥ 𝜅 ‖‖
‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
,

Combine the above with (C.19) and (C.20), we obtain the stated result.

Theorem C.6.2 (Provable efficiency (Part II)). Let𝐶𝑑,log𝐾 be the same as Lemma C.6.1 and sup-

pose 𝜖 = 0. Furthermore, suppose 𝜆 ≤ 1∕2𝐶2
Θ and𝐾 ≥ max

{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

.

Then, with probability 1 − 𝛿, ∀ℎ ∈ [𝐻],

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻2(log(𝐻2∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅
+

2𝐻2𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾
+𝑂(1

𝐾
).

Furthermore, we have with probability 1 − 𝛿,

sup
ℎ

‖

‖

‖

𝑉ℎ − 𝑉 ⋆
ℎ
‖

‖

‖∞
≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻2(log(𝐻2∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅
+

2𝐻2𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
)

=𝑂

(

𝜅1𝐻
2

√

𝑑2
𝜅

√

1
𝐾

)

where 𝑂 absorbs Polylog terms and higher order terms. Lastly, it also holds for all ℎ ∈ [𝐻],

163

Supplementary Material in Chapter 4 Chapter C

w.p. 1 − 𝛿

‖

‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖2
≤
⎛

⎜

⎜

⎜

⎝

𝜅1𝐻

√

72𝐻2(log(𝐻2∕𝛿) + 𝐶𝑑,log𝐾) + 4𝜆𝐶2
Θ

𝜅
+

4𝐻2𝑑𝜅1
𝜅

⎞

⎟

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
)

=𝑂

(

𝜅1𝐻2𝑑
𝜅

√

1
𝐾

)

Proof: [Proof of Theorem C.6.2] Step1: we show the first result.
We prove this by backward induction. When ℎ = 𝐻 + 1, by convention 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) =

𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎)) = 0 so the base case holds. Suppose for ℎ + 1, with probability 1 − (𝐻 − ℎ)𝛿,
it holds true that sup𝑠,𝑎 ||

|

𝑓 (𝜃ℎ+1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ+1, 𝜙(𝑠, 𝑎))
|

|

|

≤ 𝐶ℎ+1
√

1
𝐾
+ 𝑎(ℎ + 1), we next

consider the case for 𝑡 = ℎ.
On one hand, by Theorem C.6.1, we have with probability 1 − 𝛿∕2,

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎))
|

|

|

+ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃
⋆
ℎ , 𝜙(𝑠, 𝑎))

|

|

|

= sup
𝑠,𝑎

|

|

|

∇𝑓 (𝜉, 𝜙(𝑠, 𝑎))⊤(𝜃ℎ − 𝜃𝕋𝑉ℎ+1)
|

|

|

+ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙(𝑠, 𝑎))||

|

≤𝜅1 ⋅
‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
+ sup

𝑠,𝑎

|

|

|

ℎ,𝑠,𝑎𝑉ℎ+1 − ℎ,𝑠,𝑎𝑉 ⋆
ℎ+1

|

|

|

≤𝜅1

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞
,

Recall𝑉ℎ+1(⋅) ∶= min{max𝑎 𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎))−Γℎ(⋅, 𝑎),𝐻} and𝑉 ⋆
ℎ+1(⋅) = max𝑎 𝑓 (𝜃⋆ℎ+1, 𝜙(⋅, 𝑎)) =

min{max𝑎 𝑓 (𝜃⋆ℎ+1, 𝜙(⋅, 𝑎)),𝐻}, we obtain

‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞
≤ sup

𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ+1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ+1, 𝜙(𝑠, 𝑎))
|

|

|

+ sup
ℎ,𝑠,𝑎

Γℎ(𝑠, 𝑎) (C.21)

164

Supplementary Material in Chapter 4 Chapter C

Note the above holds true for any generic Γℎ(𝑠, 𝑎). In particular, according to Algorithm 3, we
specify

Γℎ(⋅, ⋅) = 𝑑𝐻
√

∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))⊤Σ−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))

(

+𝑂(1
𝐾
)
)

and by Lemma C.11.5, with probability 1 − 𝛿,

Γℎ ≤
2𝑑𝐻𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

and by a union bound this implies with probability 1 − (𝐻 − ℎ + 1)𝛿,

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤𝐶ℎ+1

√

1
𝐾

+ 𝜅1

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+

2𝑑𝐻𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
) ∶= 𝐶ℎ

√

1
𝐾

+ 𝑂(1
𝐾
)

Solving for 𝐶ℎ, we obtain 𝐶ℎ ≤ 𝜅1𝐻
√

36𝐻2(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅
+𝐻 2𝑑𝐻𝜅1

√

𝜅
for all𝐻 . By a union

bound (replacing 𝛿 by 𝛿∕𝐻), we obtain the stated result.
Step2: Utilizing the intermediate result (C.21), we directly have with probability 1 − 𝛿,

sup
ℎ

‖

‖

‖

𝑉ℎ − 𝑉 ⋆
ℎ
‖

‖

‖∞
≤ sup

𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

+
2𝑑𝐻𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
),

where sup𝑠,𝑎
|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

can be bounded using Step1.
Step3: Denote 𝑀 ∶=

(

𝜅1𝐻
√

36𝐻2(log(𝐻2∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅
+ 2𝐻2𝑑𝜅1

√

𝜅

)

√

1
𝐾
+ 𝑂(1

𝐾
), then by

Step1 we have with probability 1 − 𝛿 (here 𝜉 is some point between 𝜃ℎ and 𝜃⋆ℎ) for all ℎ ∈ [𝐻]

𝑀2 ≥ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

2

≥𝔼𝜇,ℎ[(𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎)))
2] ≥ 𝜅 ‖‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖

2

2

165

Supplementary Material in Chapter 4 Chapter C

where the last inequality is by Assumption 4.2.3. Solve this to obtain the stated result.

C.7 With positive Bellman completeness coefficient 𝜖 > 0

In Theorem 4.3.2, we consider the case where 𝜖 = 0. If 𝜖 > 0, similar guarantee can be
achieved with the measurement of model misspecification. For instance, the additional error
√

16𝐻3𝜖 (log(1∕𝛿)+𝐶𝑑,log𝐾)

𝐾
+ 4𝐻𝜖 will show up in Lemma C.6.1 (as stated in the current version),

√

𝑏𝑑,𝐾,𝜖
𝜅

+
√

2𝐻𝜖
𝜅

will show up in Lemma C.6.1. Then the decomposition in (C.1) will incur
the extra 𝛿𝑉ℎ+1 term with 𝛿𝑉ℎ+1 might not be 0. The analysis with positive 𝜖 > 0 will make
the proofs more intricate but incurs no additional technical challenge. Since the inclusion of
this quantity is not our major focus, as a result, we only provide the proof for the case where
𝜖 = 0 so the readers can focus on the more critical components that characterize the hardness
of differentiable function class.

C.8 VFQL and its analysis

We present the vanilla fitted Q-learning (VFQL) Algorithm 5 as follows. For VFQL, no
pessimism is used and we assume 𝜃ℎ ∈ Θ without loss of generality.

166

Supplementary Material in Chapter 4 Chapter C

Algorithm 5 Vanilla Fitted Q-Learning (VFQL)
1: Input: Offline Dataset  =

{(

𝑠𝑘ℎ, 𝑎
𝑘
ℎ, 𝑟

𝑘
ℎ, 𝑠

𝑘
ℎ+1

)}𝐾,𝐻
𝑘,ℎ=1. Denote 𝜙ℎ,𝑘 ∶= 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ).

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0 and 𝜆 > 0.
3: for ℎ = 𝐻,𝐻 − 1,… , 1 do

4: Set 𝜃ℎ ← argmin𝜃∈Θ

{

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]2

+ 𝜆 ⋅ ‖𝜃‖22

}

5: Set 𝑄̂ℎ(⋅, ⋅) ← min
{

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)),𝐻 − ℎ + 1
}+

6: Set 𝜋ℎ(⋅ ∣ ⋅) ← argmax𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

, 𝑉ℎ(⋅) ← max𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩



7: end for

8: Output:
{

𝜋ℎ
}𝐻
ℎ=1.

C.8.1 Analysis for VFQL (Theorem 4.3.1)

Recall 𝜄ℎ(𝑠, 𝑎) ∶= ℎ𝑉ℎ+1(𝑠, 𝑎)−𝑄̂ℎ(𝑠, 𝑎) and the definition of Bellman operator C.3.1. Note
min{⋅,𝐻 − ℎ + 1}+ is a non-expansive operator, therefore we have

|𝜄ℎ(𝑠, 𝑎)| =|ℎ𝑉ℎ+1(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎)| =
|

|

|

|

min
{

ℎ𝑉ℎ+1(𝑠, 𝑎),𝐻 − ℎ + 1
}+

− min
{

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)),𝐻 − ℎ + 1
}+

|

|

|

|

≤ |

|

|

ℎ𝑉ℎ+1(𝑠, 𝑎) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))
|

|

|

≤ |

|

|

𝑓 (𝜃𝕋𝑉ℎ+1) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))
|

|

|

+ 𝜖 .

By Lemma C.3.1, we have for any 𝜋,

𝑣𝜋 − 𝑣𝜋 = −
𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)] +

𝐻
∑

ℎ=1
𝐸𝜋[𝜄ℎ(𝑠ℎ, 𝑎ℎ)] ≤

𝐻
∑

ℎ=1
𝐸𝜋[|𝜄ℎ(𝑠ℎ, 𝑎ℎ)|] +

𝐻
∑

ℎ=1
𝐸𝜋[|𝜄ℎ(𝑠ℎ, 𝑎ℎ)|]

≤
𝐻
∑

ℎ=1
𝔼𝜋[|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅)) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))|] +

𝐻
∑

ℎ=1
𝔼𝜋[|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅)) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))|] + 2𝐻𝜖

≤
𝐻
∑

ℎ=1

√

𝔼𝜋[|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅)) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))|
2] +

𝐻
∑

ℎ=1

√

𝔼𝜋[|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅)) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))|
2] + 2𝐻𝜖

≤2
√

𝐶eff

𝐻
∑

ℎ=1

√

𝔼𝜇,ℎ[|𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅)) − 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))|
2] + 2𝐻𝜖

(C.22)
167

Supplementary Material in Chapter 4 Chapter C

where the second inequality uses Cauchy inequality and the third one uses the definition of
concentrability coefficient 4.2.2.

Next, for VFQL, there is no pessimism therefore the quantity 𝐵 in Lemma C.11.10 is zero,
hence the covering number applied in Lemma C.6.1 is bounded by 𝐶𝑑,log(𝐾) ≤ 𝑂(𝑑) and

𝔼𝜇[𝓁ℎ(𝜃ℎ)]−𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾) + 𝜆𝐶2

Θ

𝐾
+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+4𝐻𝜖 .

Now leveraging (C.19) and (C.20) in Theorem C.6.1 to obtain

𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2
]

≤𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃ℎ) −
𝜆 ‖‖
‖

𝜃ℎ
‖

‖

‖

2

2

𝐾

⎤

⎥

⎥

⎥

⎦

− 𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃𝕋𝑉ℎ+1) −
𝜆 ‖‖
‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2

𝐾

⎤

⎥

⎥

⎥

⎦

+ 2𝐻𝜖

≤
36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2

Θ

𝐾
+ 𝑏𝑑,𝐾,𝜖 + 2𝐻𝜖

Plug the above into (C.22), we obtain with probability 1 − 𝛿, for all policy 𝜋,

𝑣𝜋 − 𝑣𝜋 ≤ 2
√

𝐶eff𝐻

√

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝐾
+ 𝑏𝑑,𝐾,𝜖 + 2𝐻𝜖 + 2𝐻𝜖

=2
√

𝐶eff𝐻

√

√

√

√
36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2

Θ

𝐾
+

√

16𝐻3𝜖 (log(1∕𝛿) + 𝐶𝑑,log𝐾)
𝐾

+ 6𝐻𝜖 + 2𝐻𝜖

=
√

𝐶eff𝐻 ⋅ 𝑂
⎛

⎜

⎜

⎝

√

𝐻2𝑑 + 𝜆𝐶2
Θ

𝐾
+

1
4

√

𝐻3𝑑𝜖
𝐾

⎞

⎟

⎟

⎠

+ 𝑂(
√

𝐶eff𝐻3𝜖 +𝐻𝜖)

This finishes the proof of Theorem 4.3.1.

168

Supplementary Material in Chapter 4 Chapter C

C.9 Proofs for VAFQL

In this section, we present the analysis for variance-aware fitted Q learning (VAFQL).
Throughout the whole section, we assume 𝜖 = 0, i.e. the exact Bellman-Completeness holds.
The algorithm is presented in the following. Before giving the proofs of Theorem 6, we first
prove some useful lemmas.
Algorithm 6 Variance-Aware Fitted Q Learning (VAFQL)

1: Input: Split dataset  =
{(

𝑠𝑘ℎ, 𝑎
𝑘
ℎ, 𝑟

𝑘
ℎ

)}𝐾,𝐻
𝑘,ℎ=1 

′ =
{(

𝑠̄𝑘ℎ, 𝑎̄
𝑘
ℎ, 𝑟̄

𝑘
ℎ

)}𝐾,𝐻
𝑘,ℎ=1. Require 𝛽.

2: Initialization: Set 𝑉𝐻+1(⋅) ← 0. Denote 𝜙ℎ,𝑘 ∶= 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ), 𝜙̄ℎ,𝑘 ∶= 𝜙(𝑠̄𝑘ℎ, 𝑎̄

𝑘
ℎ)3: for ℎ = 𝐻,𝐻 − 1,… , 1 do

4: Set 𝒖ℎ ← argmin𝜃∈Θ

{

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙̄ℎ,𝑘
)

− 𝑉ℎ+1(𝑠̄𝑘ℎ+1)
]2

+ 𝜆 ⋅ ‖𝜃‖22

}

5: Set 𝒗ℎ ← argmin𝜃∈Θ

{

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙̄ℎ,𝑘
)

− 𝑉 2
ℎ+1(𝑠̄

𝑘
ℎ+1)

]2
+ 𝜆 ⋅ ‖𝜃‖22

}

6: Set [V̂arℎ𝑉ℎ+1
]

(⋅, ⋅) = 𝑓 (𝒗ℎ, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −
[

𝑓 (𝒖ℎ, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2

7: Set 𝜎ℎ(⋅, ⋅)2 ← max{1, V̂ar𝑃ℎ𝑉ℎ+1(⋅, ⋅)}

8: Set 𝜃ℎ ← argmin𝜃∈Θ

{

∑𝐾
𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
]2

∕𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ) + 𝜆 ⋅ ‖𝜃‖

2
2

}

9: Set Λℎ ← ∑𝐾
𝑘=1∇𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)∇𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

⊤∕𝜎2(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) + 𝜆 ⋅ 𝐼 ,

10: Set Γℎ(⋅, ⋅) ← 𝛽
√

∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))⊤Λ−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))

(

+𝑂(1
𝐾
)
)

11: Set 𝑄̄ℎ(⋅, ⋅) ← 𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − Γℎ(⋅, ⋅), 𝑄̂ℎ(⋅, ⋅) ← min
{

𝑄̄ℎ(⋅, ⋅),𝐻 − ℎ + 1
}+

12: Set 𝜋ℎ(⋅ ∣ ⋅) ← argmax𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

, 𝑉ℎ(⋅) ← max𝜋ℎ
⟨

𝑄̂ℎ(⋅, ⋅), 𝜋ℎ(⋅ ∣ ⋅)
⟩

13: end for
14: Output:

{

𝜋ℎ
}𝐻
ℎ=1.

C.9.1 Provable Efficiency for Variance-Aware Fitted Q Learning

Recall the objective

𝓁ℎ(𝜃) ∶=
1
𝐾

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)
)

− 𝑟(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − 𝑉ℎ+1(𝑠

𝑘
ℎ+1)

]2
∕𝜎2

ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ) +

𝜆
𝐾

⋅ ‖𝜃‖22

169

Supplementary Material in Chapter 4 Chapter C

Then by definition, 𝜃ℎ ∶= argmin𝜃∈Θ 𝓁ℎ(𝜃) and 𝜃𝕋𝑉ℎ+1 satisfies 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙) = ℎ𝑉ℎ+1(𝑠𝑘ℎ+1)

(recall 𝜖 = 0). Therefore, in this case, we have the following lemma:

Lemma C.9.1. Fix ℎ ∈ [𝐻]. With probability 1 − 𝛿,

𝔼𝜇[𝓁ℎ(𝜃ℎ)] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾) + 𝜆𝐶2

Θ

𝐾

where the expectation over 𝜇 is taken w.r.t. (𝑠𝑘ℎ, 𝑎
𝑘
ℎ, 𝑠

𝑘
ℎ+1) 𝑘 = 1, ..., 𝐾 only (i.e., first com-

pute 𝔼𝜇[𝓁ℎ(𝜃)] for a fixed 𝜃, then plug-in either 𝜃ℎ+1 or 𝜃𝕋𝑉ℎ+1). Here 𝐶𝑑,log(𝐾) ∶= 𝑑 log(1 +

24𝐶Θ(𝐻 + 1)𝜅1𝐾)+𝑑 log
(

1 + 288𝐻2𝐶Θ(𝜅1
√

𝐶Θ + 2
√

𝜅1𝜅2∕𝜆)2𝐾2
)

+𝑑2 log
(

1 + 288𝐻2
√

𝑑𝜅2
1𝐾

2∕𝜆
)

+

𝑑 log(1 + 16𝐶Θ𝐻2𝜅1𝐾) + 𝑑 log(1 + 32𝐶Θ𝐻3𝜅1𝐾).

Proof: [Proof of Lemma C.9.1]
Step1: Consider the case where 𝜆 = 0. Indeed, fix ℎ ∈ [𝐻] and any function 𝑉 (⋅) ∈

ℝ . Similarly, define 𝑓𝑉 (𝑠, 𝑎) ∶= 𝑓 (𝜃𝕋𝑉 , 𝜙) = ℎ𝑉 . For any fixed 𝜃 ∈ Θ, denote 𝑔(𝑠, 𝑎) =
𝑓 (𝜃, 𝜙(𝑠, 𝑎)). Moreover, for any 𝑢, 𝑣 ∈ Θ, define

𝜎2
𝑢,𝑣(⋅, ⋅) ∶= max{1, 𝑓 (𝑣, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −

[

𝑓 (𝑢, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2}

Then define (we omit the subscript 𝑢, 𝑣 of 𝜎2
𝑢,𝑣 for the illustration purpose when there is no

ambiguity)

𝑋(𝑔, 𝑉 , 𝑓𝑉 , 𝜎2) ∶=
(𝑔(𝑠, 𝑎) − 𝑟 − 𝑉 (𝑠′))2 − (𝑓𝑉 (𝑠, 𝑎) − 𝑟 − 𝑉 (𝑠′))2

𝜎2
𝑢,𝑣(𝑠, 𝑎)

.

Since all episodes are independent of each other,𝑋𝑘(𝑔, 𝑉 , 𝑓𝑉) ∶= 𝑋(𝑔(𝑠𝑘ℎ, 𝑎
𝑘
ℎ), 𝑉 (𝑠𝑘ℎ+1), 𝑓𝑉 (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ), 𝜎

2(𝑠𝑘ℎ, 𝑎
𝑘
ℎ))

are independent r.v.s and it holds

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝑔, 𝑉 , 𝑓𝑉 , 𝜎2) = 𝓁(𝑔) − 𝓁(𝑓𝑉). (C.23)

170

Supplementary Material in Chapter 4 Chapter C

Next, the variance of 𝑋 is bounded by

Var[𝑋(𝑔, 𝑉 , 𝑓𝑉 , 𝜎2)] ≤ 𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)2]

=𝔼𝜇
[

(

(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2 −

(

𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2
)2

∕𝜎2(𝑠ℎ, 𝑎ℎ)2
]

=𝔼𝜇
[

(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ))2

𝜎2(𝑠ℎ, 𝑎ℎ)
⋅
(𝑔(𝑠ℎ, 𝑎ℎ) + 𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 2𝑟ℎ − 2𝑉 (𝑠ℎ+1))2

𝜎2(𝑠ℎ, 𝑎ℎ)

]

≤4𝐻2 ⋅ 𝔼𝜇[
(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓𝑉 (𝑠ℎ, 𝑎ℎ))2

𝜎2(𝑠ℎ, 𝑎ℎ)
]

=4𝐻2 ⋅ 𝔼𝜇

[
(

𝑔(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2 −

(

𝑓𝑉 (𝑠ℎ, 𝑎ℎ) − 𝑟ℎ − 𝑉 (𝑠ℎ+1)
)2

𝜎2(𝑠ℎ, 𝑎ℎ)

]

(∗)

=4𝐻2 ⋅ 𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)]

(∗) follows from that

𝔼𝜇
⎡

⎢

⎢

⎣

𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ))

𝜎2(𝑠ℎ, 𝑎ℎ)
⋅ 𝔼

(

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
|

|

|

|

𝑠ℎ, 𝑎ℎ
)
⎤

⎥

⎥

⎦

= 0.

Therefore, by Bernstein inequality, with probability 1 − 𝛿,

𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)] − 1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)

≤
√

2Var[𝑋(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)] log(1∕𝛿)
𝐾

+
4𝐻2 log(1∕𝛿)

3𝐾

≤

√

8𝐻2𝔼𝜇[𝑋(𝑔, 𝑓 , 𝑓𝑉 , 𝜎2)] log(1∕𝛿)
𝐾

+
4𝐻2 log(1∕𝛿)

3𝐾
.

Now, if we choose 𝑔(𝑠, 𝑎) ∶= 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) and 𝑢 = 𝒖ℎ, 𝑣 = 𝒗ℎ from Algorithm 6, then 𝜃ℎ

171

Supplementary Material in Chapter 4 Chapter C

minimizes 𝓁ℎ(𝜃), therefore, it also minimizes 1
𝐾

∑𝐾
𝑘=1𝑋𝑖(𝜃, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎

2
ℎ) and this implies

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎

2
ℎ) ≤

1
𝐾

𝐾
∑

𝑘=1
𝑋𝑘(𝜃𝕋𝑉ℎ+1 , 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎

2
ℎ) = 0.

Thus, we obtain

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎
2
ℎ)] ≤

√

8𝐻2 ⋅ 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎
2
ℎ)] log(1∕𝛿)

𝐾
+

4𝐻2 log(1∕𝛿)
3𝐾

.

However, the above does not hold with probability 1−𝛿 since 𝜃ℎ, 𝜎2
ℎ and𝑉ℎ+1 ∶= min{max𝑎 𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎))−

√

∇𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎))⊤𝐴 ⋅ ∇𝑓 (𝜃, 𝜙(⋅, 𝑎)),𝐻} (where𝐴 is certain symmetric matrix with bounded
norm) depend on 𝜃ℎ, 𝜃ℎ+1 which are data-dependent. Therefore, we need to further apply cov-
ering Lemma C.11.11 and choose 𝜖 = 𝑂(1∕𝐾) and a union bound to obtain with probability
1 − 𝛿,

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎
2
ℎ)] ≤

√

8𝐻2 ⋅ 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1 , 𝜎
2
ℎ)](log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
+
4𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)

3𝐾
.

where𝐶𝑑,log(𝐾) ∶= 𝑑 log(1+24𝐶Θ(𝐻 + 1)𝜅1𝐾)+𝑑 log
(

1 + 288𝐻2𝐶Θ(𝜅1
√

𝐶Θ + 2
√

𝜅1𝜅2∕𝜆)2𝐾2
)

+

𝑑2 log
(

1 + 288𝐻2
√

𝑑𝜅2
1𝐾

2∕𝜆
)

+𝑑 log(1+16𝐶Θ𝐻2𝜅1𝐾)+𝑑 log(1+32𝐶Θ𝐻3𝜅1𝐾) (where we
let 𝐵 = 1∕𝜆 since ‖

‖

Λ−1
ℎ
‖

‖2 ≤ 1∕𝜆). Solving this quadratic equation to obtain with probability
1 − 𝛿,

𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
.

Now according to (C.23), by definition we finally have with probability 1− 𝛿 (recall the expec-
tation over 𝜇 is taken w.r.t. (𝑠𝑘ℎ, 𝑎𝑘ℎ, 𝑠𝑘ℎ+1) 𝑘 = 1, ..., 𝐾 only)

𝔼𝜇[𝓁ℎ(𝜃ℎ+1)] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] = 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)] ≤
36𝐻2(log(1∕𝛿) + 𝐶𝑑,log𝐾)

𝐾
(C.24)

172

Supplementary Material in Chapter 4 Chapter C

where we used 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙) = ℎ𝑉ℎ+1 = 𝑓𝑉ℎ+1 .
Step2. If 𝜆 > 0, there is only extra term 𝜆

𝐾

(

‖

‖

‖

𝜃ℎ
‖

‖

‖2
− ‖

‖

‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖2

)

≤ 𝜆
𝐾
‖

‖

‖

𝜃ℎ
‖

‖

‖2
≤ 𝜆𝐶2

Θ

𝐾
in

addition to above. This finishes the proof.

Theorem C.9.1 (Provable efficiency for VAFQL). Let 𝐶𝑑,log𝐾 be the same as Lemma C.9.1.

Then, with probability 1 − 𝛿

‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
≤

√

36𝐻4(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
, ∀ℎ ∈ [𝐻].

Proof: [Proof of Theorem C.9.1] Apply a union bound in Lemma C.9.1, we have with
probability 1 − 𝛿,

𝔼𝜇[𝓁ℎ(𝜃ℎ)] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1)] ≤
36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 𝜆𝐶2

Θ

𝐾
, ∀ℎ ∈ [𝐻]

⇒𝔼𝜇[𝓁ℎ(𝜃ℎ) −
𝜆
𝐾

‖

‖

‖

𝜃ℎ
‖

‖

‖

2

2
] − 𝔼𝜇[𝓁ℎ(𝜃𝕋𝑉ℎ+1) −

𝜆
𝐾

‖

‖

‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
] ≤

36𝐻2(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝐾 (C.25)
Now we prove for all ℎ ∈ [𝐻],

𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2
]

= 𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃ℎ) −
𝜆 ‖‖
‖

𝜃ℎ
‖

‖

‖

2

2

𝐾

⎤

⎥

⎥

⎥

⎦

−𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃𝕋𝑉ℎ+1) −
𝜆 ‖‖
‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2

𝐾

⎤

⎥

⎥

⎥

⎦

.

(C.26)

173

Supplementary Material in Chapter 4 Chapter C

Indeed, identical to (C.24),

𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃ℎ) −
𝜆 ‖‖
‖

𝜃ℎ
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

− 𝔼𝜇

⎡

⎢

⎢

⎢

⎣

𝓁ℎ(𝜃𝕋𝑉ℎ+1) −
𝜆 ‖‖
‖

𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
𝐾

⎤

⎥

⎥

⎥

⎦

= 𝔼𝜇[𝑋(𝜃ℎ, 𝑉ℎ+1, 𝑓𝑉ℎ+1)]

=𝔼𝜇
(

[

𝑓
(

𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
]2

∕𝜎2ℎ(𝑠ℎ, 𝑎ℎ) −
[

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
]2

∕𝜎2ℎ(𝑠ℎ, 𝑎ℎ)
)

=𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

∕𝜎2ℎ(⋅, ⋅)
]

+𝔼𝜇
[(

𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ))
)

⋅
(

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
)

∕𝜎2ℎ(𝑠ℎ, 𝑎ℎ)
]

=𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

∕𝜎2ℎ(⋅, ⋅)
]

+𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ))
)

⋅ 𝔼
(

𝑓
(

𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠ℎ, 𝑎ℎ)
)

− 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1)
|

|

|

|

𝑠ℎ, 𝑎ℎ
)

∕𝜎2ℎ(𝑠ℎ, 𝑎ℎ)
]

=𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

∕𝜎2ℎ(⋅, ⋅)
]

where the third identity uses law of total expectation and that 𝜇 is taken w.r.t. 𝑠ℎ, 𝑎ℎ, 𝑠ℎ+1 only
(recall Lemma C.9.1) so the 𝜎2

ℎ can be move outside of the conditional expectation.4 The fourth
identity uses the definition of 𝜃𝕋𝑉ℎ+1 since 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) = ℎ,𝑠,𝑎𝑉ℎ+1.

Then we have

𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2

∕𝜎2
ℎ(⋅, ⋅)

]

≥𝔼𝜇
[

(

𝑓 (𝜃ℎ, 𝜙(⋅, ⋅)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(⋅, ⋅))
)2
]

∕𝐻2 ≥ 𝜅
𝐻2

‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖

2

2
,

where the third identity uses 𝜇 is over 𝑠ℎ, 𝑎ℎ only and the last one uses 𝜎2
ℎ(⋅, ⋅) ≤ 𝐻2. Combine

the above with (C.25) and (C.26), we obtain the stated result.

Theorem C.9.2 (Provable efficiency of VAFQL (Part II)). Let𝐶𝑑,log𝐾 be the same as Lemma C.9.1.

Furthermore, suppose 𝜆 ≤ 1∕2𝐶2
Θ and𝐾 ≥ max

{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

.

4Recall 𝜎2ℎ computed in Algorithm 6 uses an independent copy ′.

174

Supplementary Material in Chapter 4 Chapter C

Then, with probability 1 − 𝛿, ∀ℎ ∈ [𝐻]

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻4(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅
+

2𝑑𝐻3𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾
+𝑂(1

𝐾
),

Furthermore, we have with probability 1 − 𝛿,

sup
ℎ

‖

‖

‖

𝑉ℎ − 𝑉 ⋆
ℎ
‖

‖

‖∞
≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻4(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅
+

2𝑑𝐻3𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
)

=𝑂

(

𝜅1𝐻
3

√

𝑑2

𝜅

√

1
𝐾

)

where 𝑂 absorbs Polylog terms and higher order terms. Lastly, it also holds for all ℎ ∈ [𝐻],

w.p. 1 − 𝛿

‖

‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖2
≤
⎛

⎜

⎜

⎜

⎝

𝜅1𝐻

√

72𝐻4(log(𝐻2∕𝛿) + 𝐶𝑑,log𝐾) + 4𝜆𝐶2
Θ

𝜅
+

4𝐻3𝑑𝜅1
𝜅

⎞

⎟

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
)

=𝑂

(

𝜅1𝐻3𝑑
𝜅

√

1
𝐾

)

Proof: [Proof of Theorem C.9.2] Step1: we show the first result.
We prove this by backward induction. When ℎ = 𝐻 + 1, by convention 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) =

𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎)) = 0 so the base case holds. Suppose for ℎ + 1, with probability 1 − (𝐻 − ℎ)𝛿,
sup𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤ 𝐶ℎ+1
√

1
𝐾

, we next consider the case for 𝑡 = ℎ.

175

Supplementary Material in Chapter 4 Chapter C

On one hand, by Theorem C.9.1, we have with probability 1 − 𝛿∕2,

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎))
|

|

|

+ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃
⋆
ℎ , 𝜙(𝑠, 𝑎))

|

|

|

= sup
𝑠,𝑎

|

|

|

∇𝑓 (𝜉, 𝜙(𝑠, 𝑎))⊤(𝜃ℎ − 𝜃𝕋𝑉ℎ+1)
|

|

|

+ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙(𝑠, 𝑎))||

|

≤𝜅1 ⋅
‖

‖

‖

𝜃ℎ − 𝜃𝕋𝑉ℎ+1
‖

‖

‖2
+ sup

𝑠,𝑎

|

|

|

ℎ,𝑠,𝑎𝑉ℎ+1 − ℎ,𝑠,𝑎𝑉 ⋆
ℎ+1

|

|

|

≤𝜅1

√

36𝐻4(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+ ‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞
,

Recall we have the form 𝑉ℎ+1(⋅) ∶= min{max𝑎 𝑓 (𝜃ℎ+1, 𝜙(⋅, 𝑎)) − Γℎ(⋅, 𝑎),𝐻} and 𝑉 ⋆
ℎ+1(⋅) =

max𝑎 𝑓 (𝜃⋆ℎ+1, 𝜙(⋅, 𝑎)) = min{max𝑎 𝑓 (𝜃⋆ℎ+1, 𝜙(⋅, 𝑎)),𝐻}, we obtain

‖

‖

‖

𝑉ℎ+1 − 𝑉 ⋆
ℎ+1

‖

‖

‖∞
≤ sup

𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ+1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ+1, 𝜙(𝑠, 𝑎))
|

|

|

+ sup
ℎ,𝑠,𝑎

Γℎ(𝑠, 𝑎) (C.27)

Note the above holds true for any generic Γℎ(𝑠, 𝑎). In particular, according to Algorithm 6, we
specify

Γℎ(⋅, ⋅) = 𝑑
√

∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))⊤Λ−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(⋅, ⋅))

(

+𝑂(1
𝐾
)
)

and by Lemma C.11.5, with probability 1 − 𝛿 (note here Σ−1
ℎ is replaced by Λ−1

ℎ and ‖

‖

Λ−1
ℎ
‖

‖2 ≤

𝐻2∕𝜅),
Γℎ ≤

2𝑑𝐻2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
)

176

Supplementary Material in Chapter 4 Chapter C

and by a union bound this implies with probability 1 − (𝐻 − ℎ + 1)𝛿,

sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤𝐶ℎ+1

√

1
𝐾

+ 𝜅1

√

36𝐻4(log(𝐻∕𝛿) + 𝐶𝑑,log𝐾) + 2𝜆𝐶2
Θ

𝜅𝐾
+

2𝑑𝐻2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
) ∶= 𝐶ℎ

√

1
𝐾
.

Solving for 𝐶ℎ, we obtain 𝐶ℎ ≤ 𝜅1𝐻
√

36𝐻4(log(𝐻∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅
+ 𝐻 2𝑑𝐻2𝜅1

√

𝜅
for all 𝐻 . By a

union bound (replacing 𝛿 by 𝛿∕𝐻), we obtain the stated result.
Step2: Utilizing the intermediate result (C.27), we directly have with probability 1 − 𝛿,

sup
ℎ

‖

‖

‖

𝑉ℎ − 𝑉 ⋆
ℎ
‖

‖

‖∞
≤ sup

𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

+
2𝑑𝐻2𝜅1
√

𝜅𝐾
+ 𝑂(1

𝐾
),

where sup𝑠,𝑎
|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

can be bounded using Step1.
Step3: Denote 𝑀 ∶=

(

𝜅1𝐻
√

36𝐻4(log(𝐻2∕𝛿)+𝐶𝑑,log𝐾)+2𝜆𝐶2
Θ

𝜅
+ 2𝐻3𝑑𝜅1

√

𝜅

)

√

1
𝐾
+ 𝑂(1

𝐾
), then by

Step1 we have with probability 1 − 𝛿 (here 𝜉 is some point between 𝜃ℎ and 𝜃⋆ℎ) for all ℎ ∈ [𝐻]

𝑀2 ≥ sup
𝑠,𝑎

|

|

|

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

2

≥ 𝔼𝜇[
(

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃⋆ℎ , 𝜙(𝑠, 𝑎))
)2
] ≥ 𝜅 ‖‖

‖

𝜃ℎ − 𝜃⋆ℎ
‖

‖

‖

2

2

where the last step is by Assumption 4.2.3. Solving this to obtain the stated result.

177

Supplementary Material in Chapter 4 Chapter C

C.9.2 Bounding |𝜎2ℎ − 𝜎
⋆2
ℎ |

Recall the definition 𝜎⋆2ℎ (⋅, ⋅) = max{1, [Var𝑃ℎ𝑉
⋆
ℎ+1](⋅, ⋅)}. In this section, we bound the

term |𝜎2
ℎ − 𝜎

⋆2
ℎ | ∶= ‖

‖

𝜎2
ℎ(⋅, ⋅) − 𝜎

⋆2
ℎ (⋅, ⋅)‖

‖∞ and

𝒖ℎ =argmin
𝜃∈Θ

{

1
𝐾

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙̄ℎ,𝑘
)

− 𝑉ℎ+1(𝑠̄𝑘ℎ+1)
]2

+ 𝜆
𝐾

⋅ ‖𝜃‖22

}

𝒗ℎ =argmin
𝜃∈Θ

{

1
𝐾

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙̄ℎ,𝑘
)

− 𝑉 2
ℎ+1(𝑠̄

𝑘
ℎ+1)

]2
+ 𝜆
𝐾

⋅ ‖𝜃‖22

} (C.28)

where
𝜎2
ℎ(⋅, ⋅) ∶= max{1, 𝑓 (𝒗ℎ, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −

[

𝑓 (𝒖ℎ, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2}

and true parameters 𝒖⋆ℎ , 𝒗⋆ℎ satisfy 𝑓 (𝒖⋆ℎ , 𝜙(⋅, ⋅)) = 𝔼𝑃 (𝑠′|⋅,⋅)[𝑉 ⋆
ℎ (𝑠

′)], 𝑓 (𝒗⋆ℎ , 𝜙) = 𝔼𝑃 (𝑠′|⋅,⋅)[𝑉 ⋆2
ℎ (𝑠′)].

Furthermore, we define

𝜎2
𝑉ℎ+1

(⋅, ⋅) ∶= max{1, [Var𝑃ℎ𝑉ℎ+1](⋅, ⋅)}

and the parameter Expectation operator 𝕁 ∶ 𝑉 ∈ ℝ → 𝜃𝕁𝑉 ∈ Θ such that:

𝑓 (𝜃𝕁𝑉 , 𝜙) = 𝔼𝑃ℎ[𝑉 (𝑠′)], ∀ ‖𝑉 ‖2 ≤  .

Note 𝜃𝕁𝑉 ∈ Θ by Bellman completeness, reward 𝑟 is constant and differentiability (Defini-
tion 4.1.1) is an additive closed property. By definition,

|𝜎2
ℎ − 𝜎

2
𝑉ℎ+1

| ≤|𝑓 (𝒗ℎ, 𝜙) − 𝑓 (𝜃𝕁𝑉 2
ℎ+1
, 𝜙)| + |𝑓 (𝒖ℎ, 𝜙)2 − 𝑓 (𝜃𝕁𝑉ℎ+1 , 𝜙)

2
|

≤|𝑓 (𝒗ℎ, 𝜙) − 𝑓 (𝜃𝕁𝑉 2
ℎ+1
, 𝜙)| + 2𝐻 ⋅ |𝑓 (𝒖ℎ, 𝜙) − 𝑓 (𝜃𝕁𝑉ℎ+1 , 𝜙)|

178

Supplementary Material in Chapter 4 Chapter C

and

|𝜎⋆2ℎ − 𝜎2
ℎ| ≤|𝑓 (𝒗

⋆
ℎ , 𝜙) − 𝑓 (𝒗ℎ, 𝜙)| + |𝑓 (𝒖⋆ℎ , 𝜙)

2 − 𝑓 (𝒗ℎ, 𝜙)2|

≤|𝑓 (𝒗⋆ℎ , 𝜙) − 𝑓 (𝒗ℎ, 𝜙)| + 2𝐻 ⋅ |𝑓 (𝒖⋆ℎ , 𝜙) − 𝑓 (𝒗ℎ, 𝜙)|

We first give the following result.

Lemma C.9.2. Suppose 𝜆 ≤ 1∕2𝐶2
Θ and𝐾 ≥ max

{

512𝜅
4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 + 4𝜅31𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

.

Then, with probability 1 − 𝛿, ∀ℎ ∈ [𝐻],

‖

‖

‖

𝒖ℎ − 𝜃𝕁𝑉ℎ+1
‖

‖

‖2
≤

√

36𝐻2(log(𝐻∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅𝐾
, ∀ℎ ∈ [𝐻],

‖

‖

‖

𝒗ℎ − 𝜃𝕁𝑉 2
ℎ+1

‖

‖

‖2
≤

√

36𝐻4(log(𝐻∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅𝐾
, ∀ℎ ∈ [𝐻].

and

sup
𝑠,𝑎

|

|

|

𝑓 (𝒖ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝒖⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻2(log(𝐻2∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅
+

2𝐻2𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
),

sup
𝑠,𝑎

|

|

|

𝑓 (𝒗ℎ, 𝜙(𝑠, 𝑎)) − 𝑓 (𝒗⋆ℎ , 𝜙(𝑠, 𝑎))
|

|

|

≤
⎛

⎜

⎜

⎝

𝜅1𝐻

√

36𝐻4(log(𝐻2∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅
+

2𝐻3𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
).

The above directly implies for all ℎ ∈ [𝐻], with probability 1 − 𝛿,

|𝜎⋆2ℎ − 𝜎2
ℎ| ≤

⎛

⎜

⎜

⎝

3𝜅1𝐻2

√

36𝐻4(log(𝐻2∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅
+

6𝐻4𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
)

|𝜎2
ℎ − 𝜎

2
𝑉ℎ+1

| ≤3𝐻𝜅1

√

36𝐻4(log(𝐻∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅𝐾
.

Proof: [Proof of Lemma C.9.2] In fact, the proof follows a reduction from the provable

179

Supplementary Material in Chapter 4 Chapter C

efficiency procedure conducted in Section C.6. This is due to the regression procedure in (C.28)
is the same as the procedure (C.15) except the parameter Bellman operator 𝕋 is replaced by
the parameter Expectation operator 𝕁 (recall here 𝜙̄ℎ,𝑘 uses the independent copy ′ and𝑂(𝑑2)

comes from the covering argument.). Concretely, the𝑋(𝑔, 𝑉 , 𝑓𝑉) used in Lemma C.6.1 will be
modified to 𝑋(𝑔, 𝑉 , 𝑓𝑉) = (𝑔(𝑠, 𝑎) − 𝑉 (𝑠′))2 − (𝑓 (𝜃𝕁𝑉 , 𝜙(𝑠, 𝑎)) − 𝑉 (𝑠′))2 by removing reward
information and the decomposition

𝔼𝜇
[

(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑉 (𝑠ℎ+1))2 − (𝑓 (𝜃𝕁𝑉 , 𝜙(𝑠ℎ, 𝑎ℎ)) − 𝑉 (𝑠ℎ+1))2
]

= 𝔼𝜇
[

(𝑔(𝑠ℎ, 𝑎ℎ) − 𝑓 (𝜃𝕁𝑉 , 𝜙(𝑠ℎ, 𝑎ℎ)))2
]

holds true. Then with probability 1 − 𝛿,

|𝜎⋆2ℎ − 𝜎2
ℎ| ≤|𝑓 (𝒗

⋆
ℎ , 𝜙) − 𝑓 (𝒗ℎ, 𝜙)| + 2𝐻 ⋅ |𝑓 (𝒖⋆ℎ , 𝜙) − 𝑓 (𝒗ℎ, 𝜙)|

≤
⎛

⎜

⎜

⎝

3𝜅1𝐻2

√

36𝐻4(log(𝐻2∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅
+

6𝐻4𝑑𝜅1
√

𝜅

⎞

⎟

⎟

⎠

√

1
𝐾

+ 𝑂(1
𝐾
).

and

|𝜎2
ℎ − 𝜎

2
𝑉ℎ+1

| ≤|𝑓 (𝒗ℎ, 𝜙) − 𝑓 (𝜃𝕁𝑉 2
ℎ+1
, 𝜙)| + 2𝐻 ⋅ |𝑓 (𝒖ℎ, 𝜙) − 𝑓 (𝜃𝕁𝑉ℎ+1 , 𝜙)|

≤𝜅1
‖

‖

‖

𝒗ℎ − 𝜃𝕁𝑉 2
ℎ+1

‖

‖

‖2
+ 2𝐻𝜅1

‖

‖

‖

𝒖ℎ − 𝜃𝕁𝑉ℎ+1
‖

‖

‖2

≤3𝐻𝜅1

√

36𝐻4(log(𝐻∕𝛿) + 𝑂(𝑑2)) + 2𝜆𝐶2
Θ

𝜅𝐾
.

C.9.3 Proof of Theorem 4.4.1

In this section, we sketch the proof of Theorem 4.4.1 since the most components are identical
to Theorem 4.3.2. We will focus on highlighting the difference for obtaining the tighter bound.

180

Supplementary Material in Chapter 4 Chapter C

First of all, Recall in the first-order condition, we have

∇𝜃

⎧

⎪

⎨

⎪

⎩

𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉ℎ+1
(

𝑠𝑘ℎ+1
)

]2

𝜎2
ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

+ 𝜆 ⋅ ‖𝜃‖22

⎫

⎪

⎬

⎪

⎭

|

|

|

|

|

|

|

|𝜃=𝜃ℎ

= 0, ∀ℎ ∈ [𝐻].

Therefore, if we define the quantity 𝑍ℎ(⋅, ⋅) ∈ ℝ𝑑 as

𝑍ℎ(𝜃|𝑉 , 𝜎2) =
𝐾
∑

𝑘=1

[

𝑓
(

𝜃, 𝜙ℎ,𝑘
)

− 𝑟ℎ,𝑘 − 𝑉
(

𝑠𝑘ℎ+1
)]

𝜎(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

∇𝑓 (𝜃, 𝜙ℎ,𝑘)
𝜎(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)

+ 𝜆 ⋅ 𝜃, ∀𝜃 ∈ Θ, ‖𝑉 ‖2 ≤ 𝐻,

then we have
𝑍ℎ(𝜃ℎ|𝑉ℎ+1, 𝜎2

ℎ) = 0.

According to the regression oracle (Line 8 of Algorithm 6), the estimated Bellman operator
̂ℎ maps 𝑉ℎ+1 to 𝜃ℎ, i.e. ̂ℎ𝑉ℎ+1 = 𝑓 (𝜃ℎ, 𝜙). Therefore (recall Definition C.3.1)

ℎ𝑉ℎ+1(𝑠, 𝑎) − ̂ℎ𝑉ℎ+1(𝑠, 𝑎) = ℎ𝑉ℎ+1(𝑠, 𝑎) − 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))

=𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))

=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

+ Hotℎ,1,

(C.29)

where we apply the first-order Taylor expansion for the differentiable function 𝑓 at point 𝜃ℎ and
Hotℎ,1 is a higher-order term. Indeed, the following Lemma C.4.1 bounds the Hotℎ,1 term with
𝑂(1

𝐾
).

Lemma C.9.3. Recall the definition (from the above decomposition)Hotℎ,1 ∶= 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙(𝑠, 𝑎))−

𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

, then with probability 1 − 𝛿,

|

|

Hotℎ,1|| ≤ 𝑂(1
𝐾
), ∀ℎ ∈ [𝐻].

181

Supplementary Material in Chapter 4 Chapter C

Proof: The proof is identical to that of Lemma C.4.1 but with the help of Lemma C.9.1.
Next, according to the expansion of 𝑍ℎ(𝜃|𝑉ℎ+1, 𝜎2

ℎ), we have

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
(

𝜃𝕋𝑉ℎ+1 − 𝜃ℎ
)

= 𝐼1 + 𝐼2 + 𝐼3 + Hot2, (C.30)

where

Hot2 ∶=∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Λ−1
ℎ

[

𝑅𝐾(𝜃𝕋𝑉ℎ+1) + 𝜆𝜃𝕋𝑉ℎ+1
]

ΔΛ𝑠ℎ
=

𝐾
∑

𝑘=1

(

𝑓 (𝜃ℎ, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠𝑘ℎ+1)
)

⋅ ∇2
𝜃𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

𝜎2(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

Λℎ =
𝐾
∑

𝑘=1

∇𝜃𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)∇⊤
𝜃 𝑓 (𝜃ℎ,𝑘, 𝜙ℎ,𝑘)

𝜎2(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

+ 𝜆𝐼𝑑

𝑅𝐾(𝜃𝕋𝑉ℎ+1) =ΔΛ𝑠ℎ
(𝜃ℎ − 𝜃𝕋𝑉ℎ+1) + 𝑅𝐾(𝜃𝕋𝑉ℎ+1)

where 𝑅𝐾(𝜃𝕋𝑉ℎ+1) is the second order residual that is bounded by 𝑂(1∕𝐾) and

𝐼1 =∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Λ−1
ℎ

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

𝐼2 =∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Λ−1
ℎ

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑉ℎ+1(𝑠𝑘ℎ+1) + 𝑉

⋆
ℎ+1(𝑠

𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

𝐼3 =∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))Λ−1
ℎ

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅
(

∇⊤
𝜃 𝑓 (𝜃𝕋𝑉ℎ+1 , 𝜙ℎ,𝑘) − ∇⊤

𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)
)

𝜎2ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

Similar to the PFQL case, 𝐼2, 𝐼3,Hot2 can be bounded to have order 𝑂(1∕𝐾) via provably effi-
ciency theorems in Section C.9.1 and in particular, the inclusion of 𝜎2

𝑢,𝑣 will not cause additional
order in 𝑑.5 Now we prove the result for the dominate term 𝐼1.

5Note in Lemma C.11.11, we only have additive terms that has the same order has Lemma C.11.10.
182

Supplementary Material in Chapter 4 Chapter C

Lemma C.9.4. With probability 1 − 𝛿,

|𝐼1| ≤ 4𝐻𝑑 ‖‖
‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Σ−1
ℎ

⋅ 𝐶𝛿,log𝐾 + 𝑂(
𝜅1

√

𝜅𝐾
),

where 𝐶𝛿,log𝐾 only contains Polylog terms.

Proof: [Proof of Lemma C.9.4] First of all, by Cauchy–Schwarz inequality, we have

|𝐼1| ≤
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Λ−1
ℎ

⋅

‖

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

𝜎2
ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

‖

‖

‖

‖

‖

‖

‖Λ−1
ℎ

.

(C.31)
Recall that 𝜎2

𝑢,𝑣(⋅, ⋅) ∶= max{1, 𝑓 (𝑣, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −
[

𝑓 (𝑢, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2}.

Step1. Let the fixed 𝜃 ∈ Θ be arbitrary and fixed 𝑢, 𝑣 such that 𝜎2
𝑢,𝑣(⋅, ⋅) ≥

1
2
𝜎2
𝒖⋆ℎ ,𝒗

⋆
ℎ
(⋅, ⋅) =

1
2
𝜎⋆2ℎ (⋅, ⋅) and define 𝑥𝑘(𝜃, 𝑢, 𝑣) = ∇𝜃𝑓 (𝜃, 𝜙ℎ,𝑘)∕𝜎𝑢,𝑣(𝑠𝑘ℎ, 𝑎

𝑘
ℎ). Next, define𝐺𝑢,𝑣(𝜃) =

∑𝐾
𝑘=1∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))⋅

∇𝑓 (𝜃, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ))

⊤∕𝜎2
𝑢,𝑣(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ) + 𝜆𝐼𝑑 , then ‖

‖

𝑥𝑘‖‖2 ≤ 𝜅1. Also denote 𝜂𝑘 ∶= [𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) −

𝑟ℎ,𝑘 − 𝑉 ⋆
ℎ+1(𝑠

𝑘
ℎ+1)]∕𝜎𝑢,𝑣(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ), then 𝔼[𝜂𝑘|𝑠𝑘ℎ, 𝑎

𝑘
ℎ] = 0 and

Var[𝜂𝑘|𝑠𝑘ℎ, 𝑎
𝑘
ℎ] =

Var[𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)|𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ]

𝜎2
𝑢,𝑣(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

≤
2Var[𝑓 (𝜃𝕋𝑉 ⋆

ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)|𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ]

𝜎⋆2ℎ (𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

=
2[Var𝑃ℎ𝑉

⋆
ℎ+1](𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

𝜎⋆2ℎ (𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

≤ 2,

then by Self-normalized Bernstein’s inequality (Lemma C.11.4), with probability 1 − 𝛿,

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
𝑥𝑘(𝜃, 𝑢, 𝑣)𝜂𝑘

‖

‖

‖

‖

‖

‖𝐺(𝜃,𝑢,𝑣)−1

≤ 16

√

√

√

√𝑑 log

(

1 +
𝐾𝜅2

1

𝜆𝑑

)

⋅ log
(

4𝐾2

𝛿

)

+4𝜁 log
(

4𝐾2

𝛿

)

≤ 𝑂(
√

𝑑)

where |𝜂𝑘| ≤ 𝜁 with 𝜁 = 2max𝑠,𝑎,𝑠′
|𝑓 (𝜃𝕋𝑉 ⋆ℎ+1

,𝜙(𝑠,𝑎))−𝑟−𝑉 ⋆
ℎ+1(𝑠

′)|

𝜎⋆ℎ (𝑠,𝑎)
and the last inequality uses √

𝑑 ≥

183

Supplementary Material in Chapter 4 Chapter C

𝑂(𝜁).
Step2. Define ℎ(𝜃, 𝑢, 𝑣) ∶= ∑𝐾

𝑘=1 𝑥𝑘(𝜃, 𝑢, 𝑣)𝜂𝑘(𝑢, 𝑣) and 𝐻(𝜃, 𝑢, 𝑣) ∶= ‖ℎ(𝜃, 𝑢, 𝑣)‖𝐺𝑢,𝑣(𝜃)−1 ,

‖

‖

ℎ(𝜃1, 𝑢1, 𝑣1) − ℎ(𝜃2, 𝑢2, 𝑣2)‖‖2 ≤ 𝐾 max
𝑘

‖

‖

(𝑥𝑘 ⋅ 𝜂𝑘)(𝜃1, 𝑢1, 𝑣1) − (𝑥𝑘 ⋅ 𝜂𝑘)(𝜃2, 𝑢2, 𝑣2)‖‖2

≤ 𝐾 max
𝑘

{

𝐻
|

|

|

|

|

|

∇𝑓 (𝜃1, 𝜙ℎ,𝑘) − ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)
𝜎2
𝑢1,𝑣1

(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

|

|

|

|

|

|

+𝐻𝜅1
|

|

|

|

|

|

𝜎2
𝑢1,𝑣1

(𝑠𝑘ℎ, 𝑎
𝑘
ℎ) − 𝜎

2
𝑢2,𝑣2

(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)

𝜎2
𝑢1,𝑣1

(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)𝜎2

𝑢2,𝑣2
(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)

|

|

|

|

|

|

}

≤ 𝐾𝐻𝜅1 ‖‖𝜃1 − 𝜃2‖‖2 +𝐾𝐻𝜅1
‖

‖

‖

𝜎2
𝑢1,𝑣1

− 𝜎2
𝑢2,𝑣2

‖

‖

‖2

Furthermore,

‖

‖

‖

𝐺ℎ(𝜃1, 𝑢1, 𝑣1)−1 − 𝐺ℎ(𝜃2, 𝑢2, 𝑣2)−1
‖

‖

‖2
≤ ‖

‖

‖

𝐺ℎ(𝜃1, 𝑢1, 𝑣1)−1
‖

‖

‖2
‖

‖

𝐺ℎ(𝜃1, 𝑢1, 𝑣1) − 𝐺ℎ(𝜃2, 𝑢2, 𝑣2)‖‖2
‖

‖

‖

𝐺ℎ(𝜃2, 𝑢2, 𝑣2)−1
‖

‖

‖2

≤ 1
𝜆2
𝐾 sup

𝑘

‖

‖

‖

‖

‖

‖

∇𝑓 (𝜃1, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃1, 𝜙ℎ,𝑘)⊤

𝜎2𝑢1,𝑣1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

−
∇𝑓 (𝜃2, 𝜙ℎ,𝑘) ⋅ ∇𝑓 (𝜃2, 𝜙ℎ,𝑘)⊤

𝜎2𝑢2,𝑣2(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)

‖

‖

‖

‖

‖

‖2

≤ 1
𝜆2

(

𝐾𝜅2𝜅1 ‖‖𝜃1 − 𝜃2‖‖2 +𝐾𝜅
2
1
‖

‖

‖

𝜎2𝑢1,𝑣1 − 𝜎
2
𝑢2,𝑣2

‖

‖

‖2

)

All the above imply

|𝐻(𝜃1, 𝑢1, 𝑣1) −𝐻(𝜃2, 𝑢2, 𝑣2)| ≤
√

|

|

|

ℎ(𝜃1, 𝑢1, 𝑣1)⊤𝐺𝑢1,𝑣1(𝜃1)
−1ℎ(𝜃1, 𝑢1, 𝑣1) − ℎ(𝜃2, 𝑢2, 𝑣2)⊤𝐺𝑢2,𝑣2(𝜃2)

−1ℎ(𝜃2, 𝑢2, 𝑣2)
|

|

|

≤
√

‖

‖

ℎ(𝜃1, 𝑢1, 𝑣1) − ℎ(𝜃2, 𝑢2, 𝑣2)‖‖2 ⋅
1
𝜆
⋅𝐾𝐻𝜅1 +

√

𝐾𝐻𝜅1 ⋅
‖

‖

‖

𝐺𝑢1,𝑣1(𝜃1)
−1 − 𝐺𝑢2,𝑣2(𝜃2)

−1‖
‖

‖2
⋅𝐾𝐻𝜅1

+
√

(𝐾𝐻𝜅1 ⋅
1
𝜆
) ⋅ ‖

‖

ℎ(𝜃1, 𝑢1, 𝑣1) − ℎ(𝜃2, 𝑢2, 𝑣2)‖‖2

≤2
√

𝐾𝐻𝜅1(‖‖𝜃1 − 𝜃2‖‖2 +
‖

‖

‖

𝜎2𝑢1,𝑣1 − 𝜎
2
𝑢2,𝑣2

‖

‖

‖2
) ⋅ 1
𝜆
⋅𝐾𝐻𝜅1 +

√

𝐾2𝐻2𝜅21 ⋅
𝐾𝜅1
𝜆2

(

𝜅2 ‖‖𝜃1 − 𝜃2‖‖2 + 𝜅1
‖

‖

‖

𝜎2𝑢1,𝑣1 − 𝜎
2
𝑢2,𝑣2

‖

‖

‖2

)

≤
(

√

4𝐾2𝐻2𝜅21∕𝜆 +
√

𝐾3𝐻2𝜅31𝜅2∕𝜆
2
)

√

‖

‖

𝜃1 − 𝜃2‖‖2 +
(

√

4𝐾2𝐻2𝜅21∕𝜆 +
√

𝐾3𝐻2𝜅41∕𝜆
2
)
√

‖

‖

‖

𝜎2𝑢1,𝑣1 − 𝜎
2
𝑢2,𝑣2

‖

‖

‖2

184

Supplementary Material in Chapter 4 Chapter C

note

|𝜎2
𝑢1,𝑣1

(𝑠, 𝑎) − 𝜎2
𝑢2,𝑣2

(𝑠, 𝑎)| ≤ |

|

𝑓 (𝑣1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝑣2, 𝜙(𝑠, 𝑎))|| + 2𝐻 |

|

𝑓 (𝑢1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝑢2, 𝜙(𝑠, 𝑎))||

≤𝜅1 ‖‖𝑣1 − 𝑣2‖‖2 + 2𝐻𝜅1 ‖‖𝑢1 − 𝑢2‖‖2 ,

Then a 𝜖-covering net of {𝐻(𝜃, 𝑢, 𝑣)} can be constructed by the union of covering net for 𝜃, 𝑢, 𝑣
and by Lemma C.11.8, the covering number 𝜖 satisfies (where 𝑂 absorbs Polylog terms)

log𝜖 ≤𝑂(𝑑)

Step3. First note by definition in Step2

‖

‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

𝑓 (𝜃𝕋𝑉 ⋆
ℎ+1
, 𝜙ℎ,𝑘) − 𝑟ℎ,𝑘 − 𝑉 ⋆

ℎ+1(𝑠
𝑘
ℎ+1)

)

⋅ ∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙ℎ,𝑘)

𝜎2
ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

‖

‖

‖

‖

‖

‖

‖Λ−1
ℎ

= 𝐻(𝜃ℎ, 𝒖ℎ, 𝒗ℎ)

Now choosing 𝜖 = 𝑂(1∕𝐾) in Step2 and union bound over the covering number in Step2, we
obtain with probability 1 − 𝛿 (recall √𝑑 ≥ 𝑂(𝜁)),

𝐻(𝜃ℎ, 𝒖ℎ, 𝒗ℎ) ≤16

√

√

√

√𝑑 log

(

1 +
𝐾𝜅2

1

𝜆𝑑

)

⋅ [log
(

4𝐾2

𝛿

)

+ 𝑂(𝑑)] + 4𝜁 [log
(

4𝐾2

𝛿

)

+ 𝑂(𝑑)] + 𝑂(1
𝐾
)

≤𝑂(𝑑) + 𝑂(1
𝐾
)

where we absorb all the Polylog terms. Combing above with (C.31), we obtain with probability

185

Supplementary Material in Chapter 4 Chapter C

1 − 𝛿,

|𝐼1| ≤
‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Λ−1
ℎ

⋅𝐻(𝜃ℎ, 𝒖ℎ, 𝒗ℎ)

≤ ‖

‖

‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Λ−1
ℎ

⋅
[

𝑂(𝑑) + 𝑂(1
𝐾
)
]

≤𝑂
(

𝑑 ‖‖
‖

∇𝑓 (𝜃ℎ, 𝜙(𝑠, 𝑎))
‖

‖

‖Λ−1
ℎ

)

+ 𝑂(
𝜅1

√

𝜅𝐾
),

Combing dominate term 𝐼1 (via Lemma C.9.4) and all other higher order terms we can
obtain the first result together with Lemma C.3.2.

The proof of the second result is also very similar to the proofs in Section C.5.2. Concretely,
when picking 𝜋 = 𝜋⋆, we can convert the quantity

√

∇⊤
𝜃 𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))Λ

−1
ℎ ∇𝜃𝑓 (𝜃ℎ, 𝜙(𝑠ℎ, 𝑎ℎ))

to
√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Λ

−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

using Theorem C.9.2, and convert
√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Λ

−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

to
√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))Λ

⋆−1
ℎ ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(𝑠ℎ, 𝑎ℎ))

using Lemma C.9.2.

186

Supplementary Material in Chapter 4 Chapter C

C.10 The lower bound

Theorem C.10.1 (Restatement of Theorem 4.4.2). Specifying the model to have linear rep-

resentation 𝑓 = ⟨𝜃, 𝜙⟩. There exist a pair of universal constants 𝑐, 𝑐′ > 0 such that given

dimension 𝑑, horizon 𝐻 and sample size 𝐾 > 𝑐′𝑑3, one can always find a family of MDP

instances such that for any algorithm 𝜋

inf
𝜋

sup
𝑀∈

𝔼𝑀
[

𝑣⋆ − 𝑣𝜋
]

≥ 𝑐
√

𝑑 ⋅
𝐻
∑

ℎ=1
𝔼𝜋⋆

[

√

∇⊤
𝜃 𝑓 (𝜃

⋆
ℎ , 𝜙(⋅, ⋅))(Λ

⋆,𝑝
ℎ)−1∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(⋅, ⋅))

]

, (C.32)

where Λ⋆,𝑝ℎ = 𝔼
[

∑𝐾
𝑘=1

∇𝜃𝑓 (𝜃⋆ℎ ,𝜙(𝑠
𝑘
ℎ,𝑎

𝑘
ℎ))⋅∇𝜃𝑓 (𝜃

⋆
ℎ ,𝜙(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ))

⊤

Varℎ(𝑉 ⋆
ℎ+1)(𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)

]

.

Remark 8. Note Theorem 4.4.2 is a valid lower bound for comparison. This is because the

upper bound result holds true for all model 𝑓 such that the corresponding  satisfies Assump-

tion 4.2.1, 4.2.3. Therefore, for the lower bound construction it suffices to find one model 𝑓 such

that the lower bound (C.32) holds. Here we simply choose the linear function approximation.

C.10.1 Regarding the proof of lower bound

The proof of Theorem 4.4.2 can be done via a reduction to linear function approximation
lower bound. In fact, it can be directly obtained from Theorem 3.5 of [106], and the original
proof comes from Theorem 2 of [41].

Concretely, all the proofs in Theorem 3.5 of [106] follows and the only modification is to
replace

√

𝔼𝜋⋆[𝜙]⊤
(

Λ⋆
ℎ

)−1 𝔼𝜋⋆[𝜙] ≤
1
2
‖

‖

‖

𝜙
(

+1, 𝑢ℎ
)

‖

‖

‖(Λ⋆,𝑝ℎ)−1
+ 1

2
‖

‖

‖

𝜙
(

−1, 𝑢ℎ
)

‖

‖

‖(Λ⋆,𝑝ℎ)−1

187

Supplementary Material in Chapter 4 Chapter C

in Section E.5 by

𝔼𝜋⋆
[
√

𝜙(⋅, ⋅)⊤(Λ⋆,𝑝
ℎ)−1𝜙(⋅, ⋅)

]

= 1
2
‖

‖

‖

𝜙(+1, 𝑢ℎ)
‖

‖

‖(Λ⋆,𝑝ℎ)−1
+ 1

2
‖

‖

‖

𝜙(−1, 𝑢ℎ)
‖

‖

‖(Λ⋆,𝑝ℎ)−1
,

and the final result holds with 𝜙(⋅, ⋅) = ∇𝜃𝑓 (𝜃⋆ℎ , 𝜙(⋅, ⋅)) by the reduction 𝑓 = ⟨𝜃, 𝜙⟩.

C.11 Helpful Results

Lemma C.11.1 (𝑘-th Order Mean Value Form of Taylor’s Expansion). Let 𝑘 ≥ 1 be an integer

and let function 𝑓 ∶ ℝ𝑑 → ℝ be 𝑘 times differentiable and continuous over the compact domain

Θ ⊂ ℝ𝑑 . Then for any 𝑥, 𝜃 ∈ Θ, there exists 𝜉 in the line segment of 𝑥 and 𝜃, such that

𝑓 (𝑥) − 𝑓 (𝜃) =∇𝑓 (𝜃)⊤(𝑥 − 𝜃) + 1
2!
(𝑥 − 𝜃)⊤∇2

𝜃𝜃𝑓 (𝜃)(𝑥 − 𝜃) +… + 1
(𝑘 − 1)!

∇𝑘−1𝑓 (𝜃)
(

⨂

(𝑥 − 𝜃)
)𝑘−1

+ 1
𝑘!
∇𝑘𝑓 (𝜉)

(

⨂

(𝑥 − 𝜃)
)𝑘
.

Here ∇𝑘𝑓 (𝜃) denotes 𝑘-dimensional tensor and
⨂

denotes tensor product.

Lemma C.11.2 (Vector Hoeffding’s Inequality). Let𝑋 = (𝑋1,… , 𝑋𝑑) be 𝑑-dimensional vector

Random Variable with 𝐸[𝑋] = 0 and ‖𝑋‖2 ≤ 𝑅. 𝑋(1),… , 𝑋(𝑛)’s are 𝑛 samples. Then with

probability 1 − 𝛿,
‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑖=1
𝑋(𝑖)

‖

‖

‖

‖

‖2

≤
√

4𝑑𝑅2

𝑛
log(𝑑

𝛿
).

Proof: [Proof of Lemma C.11.2] Since ‖𝑋‖2 ≤ 𝑅 implies |𝑋𝑗| ≤ 𝑅, by the univariate Ho-
effding’s inequality, for a fixed 𝑗 ∈ {1, ..., 𝑑}, denote 𝑌𝑗 ∶= 1

𝑛

∑𝑛
𝑖=1𝑋

(𝑖)
𝑗 . Then with probability

1 − 𝛿 (note |𝑋(𝑖)
𝑗 | ≤ 𝑅),

ℙ

(

|𝑌𝑗| ≥ 2
√

𝑅2

𝑛
log(1

𝛿
)

)

≤ 𝛿.

188

Supplementary Material in Chapter 4 Chapter C

By a union bound,

ℙ

(

∃ 𝑖 𝑠.𝑡. |𝑌𝑗| ≥ 2
√

𝑅2

𝑛
log(1

𝛿
)

)

≤ 𝑑𝛿 ⇔ ℙ

(

∀ 𝑖 |𝑌𝑗| ≤ 2
√

𝑅2

𝑛
log(1

𝛿
)

)

≥ 1 − 𝑑𝛿

⇔ ℙ
(

∀ 𝑖 𝑌 2
𝑗 ≤ 4𝑅2

𝑛
log(1

𝛿
)
)

≥ 1 − 𝑑𝛿 ⇒ ℙ

(

‖𝑌 ‖2 ≤
√

4𝑑𝑅2

𝑛
log(1

𝛿
)

)

≥ 1 − 𝑑𝛿

⇔ ℙ

(

‖𝑌 ‖2 ≤
√

4𝑑𝑅2

𝑛
log(𝑑

𝛿
)

)

≥ 1 − 𝛿.

Lemma C.11.3 (Hoeffding inequality for self-normalized martingales [160]). Let {𝜂𝑡}∞𝑡=1 be a

real-valued stochastic process. Let {𝑡}∞𝑡=0 be a filtration, such that 𝜂𝑡 is𝑡-measurable. Assume

𝜂𝑡 also satisfies 𝜂𝑡 given 𝑡−1 is zero-mean and 𝑅-subgaussian, i.e.

∀𝜆 ∈ ℝ, 𝔼
[

𝑒𝜆𝜂𝑡 ∣ 𝑡−1
]

≤ 𝑒𝜆2𝑅2∕2

Let {𝑥𝑡}∞𝑡=1 be an ℝ𝑑-valued stochastic process where 𝑥𝑡 is 𝑡−1 measurable and ‖

‖

𝑥𝑡‖‖ ≤ 𝐿. Let

Λ𝑡 = 𝜆𝐼𝑑 +
∑𝑡

𝑠=1 𝑥𝑠𝑥
⊤
𝑠 . Then for any 𝛿 > 0, with probability 1 − 𝛿, for all 𝑡 > 0,

‖

‖

‖

‖

‖

𝑡
∑

𝑠=1
𝑥𝑠𝜂𝑠

‖

‖

‖

‖

‖

2

Λ−1
𝑡

≤ 8𝑅2 ⋅
𝑑
2
log

(𝜆 + 𝑡𝐿
𝜆𝛿

)

.

Lemma C.11.4 (Bernstein inequality for self-normalized martingales [76]). Let {𝜂𝑡}∞𝑡=1 be a

real-valued stochastic process. Let {𝑡}∞𝑡=0 be a filtration, such that 𝜂𝑡 is𝑡-measurable. Assume

𝜂𝑡 also satisfies

|

|

𝜂𝑡|| ≤ 𝑅,𝔼
[

𝜂𝑡 ∣ 𝑡−1
]

= 0,𝔼
[

𝜂2𝑡 ∣ 𝑡−1
]

≤ 𝜎2.

Let {𝑥𝑡}∞𝑡=1 be an ℝ𝑑-valued stochastic process where 𝑥𝑡 is 𝑡−1 measurable and ‖

‖

𝑥𝑡‖‖ ≤ 𝐿.

189

Supplementary Material in Chapter 4 Chapter C

Let Λ𝑡 = 𝜆𝐼𝑑 +
∑𝑡

𝑠=1 𝑥𝑠𝑥
⊤
𝑠 . Then for any 𝛿 > 0, with probability 1 − 𝛿, for all 𝑡 > 0,

‖

‖

‖

‖

‖

𝑡
∑

𝑠=1
𝐱𝑠𝜂𝑠

‖

‖

‖

‖

‖𝚲−1
𝑡

≤ 8𝜎

√

𝑑 log
(

1 + 𝑡𝐿2

𝜆𝑑

)

⋅ log
(

4𝑡2
𝛿

)

+ 4𝑅 log
(

4𝑡2
𝛿

)

Lemma C.11.5. Let∇𝑓 (𝜃, 𝜙(⋅, ⋅)) ∶ × → ℝ𝑑 be a bounded function s.t. sup𝜃∈Θ ‖∇𝑓 (𝜃, 𝜙(⋅, ⋅))‖2 ≤

𝜅1. If 𝐾 satisfies

𝐾 ≥ max

{

512
𝜅4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 +

4𝜅1𝐵2𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

Then with probability at least 1 − 𝛿, for all ‖𝑢‖2 ≤ 𝐵 simultaneously, it holds that

‖𝑢‖Σ−1
ℎ
≤ 2𝐵

√

𝜅𝐾
+ 𝑂(1

𝐾
)

where Σℎ =
∑𝐾

𝑘=1∇𝑓 (𝜃ℎ, 𝜙(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ)) ⋅ ∇𝑓 (𝜃ℎ, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

⊤ + 𝜆𝐼𝑑 .

Proof: [Proof of Lemma C.11.5] For a fixed 𝜃, define 𝐺̄ =
∑𝐾

𝑘=1∇𝑓 (𝜃, 𝜙(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ))⋅∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

⊤+

𝜆𝐼𝑑 , and 𝐺 = 𝔼𝜇[∇𝑓 (𝜃, 𝜙(𝑠ℎ, 𝑎ℎ)) ⋅∇𝑓 (𝜃, 𝜙(𝑠ℎ, 𝑎ℎ))⊤], then by Lemma H.5. of [82], as long as

𝐾 ≥ max{512𝜅4
1
‖

‖

‖

𝐺−1‖
‖

‖

2
log(2𝑑

𝛿
), 4𝜆 ‖‖

‖

𝐺−1‖
‖

‖2
}, (C.33)

then with probability 1−𝛿, for all 𝑢 ∈ ℝ𝑑 simultaneously, ‖𝑢‖𝐺̄−1 ≤ 2
√

𝐾
‖𝑢‖𝐺−1 . As a corollary,

if we constraint 𝑢 to the subspace ‖𝑢‖2 ≤ 𝐵, then we have: with probability 1 − 𝛿, for all
{𝑢 ∈ ℝ𝑑 ∶ ‖𝑢‖2 ≤ 𝐵} simultaneously,

‖𝑢‖𝐺̄−1 ≤ 2
√

𝐾
‖𝑢‖𝐺−1 = 2

√

𝐾

√

𝑢⊤𝐺−1𝑢 ≤
2𝐵

√

‖𝐺−1
‖2

√

𝐾
. (C.34)

190

Supplementary Material in Chapter 4 Chapter C

Next, for any 𝜃, define

ℎ𝑢(𝜃) ∶= ‖𝑢‖𝐺̄−1 =
√

𝑢⊤𝐺̄−1𝑢 =

√

√

√

√

√𝑢⊤
(

𝐾
∑

𝑘=1
∇𝑓 (𝜃, 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))⊤ + 𝜆𝐼𝑑

)−1

𝑢

and 𝐺̄(𝜃) = ∑𝐾
𝑘=1∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)) ⋅ ∇𝑓 (𝜃, 𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ))

⊤ + 𝜆𝐼𝑑 , we have for any 𝜃1, 𝜃2

‖

‖

𝐺̄(𝜃1) − 𝐺̄(𝜃2)‖‖2 ≤
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1

(

∇𝑓 (𝜃1, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)) − ∇𝑓 (𝜃2, 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ))

)

⋅ ∇𝑓 (𝜃1, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ))

⊤
‖

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

‖

𝐾
∑

𝑘=1
∇𝑓 (𝜃2, 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ))

(

∇𝑓 (𝜃1, 𝜙(𝑠𝑘ℎ, 𝑎
𝑘
ℎ)) − ∇𝑓 (𝜃2, 𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ))

)⊤
‖

‖

‖

‖

‖

‖

≤𝐾𝜅2𝜅1 ‖‖𝜃1 − 𝜃2‖‖2 +𝐾𝜅2𝜅1 ‖‖𝜃1 − 𝜃2‖‖2 ≤ 2𝐾𝜅2𝜅1 ‖‖𝜃1 − 𝜃2‖‖2 .

Use the basic inequality for 𝑎, 𝑏 > 0 ⇒ |

√

𝑎 −
√

𝑏| ≤
√

|𝑎 − 𝑏|,

sup
𝑢

|ℎ𝑢(𝜃1) − ℎ𝑢(𝜃2)| ≤ sup
𝑢

√

|

|

|

𝑢⊤
(

𝐺̄(𝜃1)−1 − 𝐺̄(𝜃2)−1
)

𝑢||
|

≤
√

𝐵2 ⋅ ‖
‖

𝐺̄(𝜃1)−1 − 𝐺̄(𝜃2)−1‖‖2

≤
√

𝐵2 ⋅ ‖
‖

𝐺̄(𝜃1)−1‖‖2 ‖‖𝐺̄(𝜃1) − 𝐺̄(𝜃2)‖‖2 ‖‖𝐺̄(𝜃2)−1‖‖2

≤
√

𝐵2 1
𝜆
2𝐾𝜅2𝜅1 ‖‖𝜃1 − 𝜃2‖‖2

1
𝜆
=

√

2𝐵2𝐾𝜅1𝜅2 ‖‖𝜃1 − 𝜃2‖‖2
𝜆2

Therefore, the 𝜖-covering net of {ℎ(𝜃) ∶ 𝜃 ∈ Θ} is implies by the 𝜆2𝜖2

2𝐾𝐵2𝜅1𝜅2
-covering net of

{𝜃 ∶ 𝜃 ∈ Θ}, so by Lemma C.11.8, the covering number 𝜖 satisfies

log𝜖 ≤ 𝑑 log(1 +
4𝐵2𝐾𝜅1𝜅2𝐶Θ

𝜆2𝜖2
).

Select 𝜃 = 𝜃ℎ. Choose 𝜖 = 𝑂(1∕𝐾) and by a union bound over (C.34) to get with probability

191

Supplementary Material in Chapter 4 Chapter C

1 − 𝛿, for all ‖𝑢‖2 ≤ 𝐵 (note By Assumption 4.2.3 ‖

‖

𝐺−1
‖

‖2 ≤ 1∕𝜅),

‖𝑢‖Σ−1
ℎ
≤ 2𝐵

√

𝜅𝐾
+ 𝑂(1

𝐾
)

if (union bound over the condition (C.33))

𝐾 ≥ max

{

512
𝜅4
1

𝜅2

(

log(2𝑑
𝛿
) + 𝑑 log(1 +

4𝜅1𝐵2𝜅2𝐶Θ𝐾3

𝜆2
)
)

, 4𝜆
𝜅

}

where this condition is satisfied by the Lemma statement.

Lemma C.11.6. let 𝜙 ∶  ×  → ℝ𝑑 satisfies ‖𝜙(𝑠, 𝑎)‖ ≤ 𝐶 for all 𝑠, 𝑎 ∈  × . For any

𝐾 > 0, 𝜆 > 0, define 𝐺̄𝐾 =
∑𝐾

𝑘=1 𝜙(𝑠𝑘, 𝑎𝑘)𝜙(𝑠𝑘, 𝑎𝑘)
⊤ + 𝜆𝐼𝑑 where (𝑠𝑘, 𝑎𝑘)’s are i.i.d samples

from some distribution 𝜈. Then with probability 1 − 𝛿,

‖

‖

‖

‖

‖

𝐺̄𝐾

𝐾
− 𝔼𝜈

[

𝐺̄𝐾

𝐾

]

‖

‖

‖

‖

‖

≤
4
√

2𝐶2

√

𝐾

(

log 2𝑑
𝛿

)1∕2
.

Proof: [Proof of Lemma C.11.6] See Lemma H.5 of [106] or Lemma H.4 of Lemma [82]
for details.

Lemma C.11.7 (Lemma H.4 in [106]). Let Λ1 and Λ2 ∈ ℝ𝑑×𝑑 are two positive semi-definite

matrices. Then:
‖

‖

‖

Λ−1
1
‖

‖

‖

≤ ‖

‖

‖

Λ−1
2
‖

‖

‖

+ ‖

‖

‖

Λ−1
1
‖

‖

‖

⋅ ‖‖
‖

Λ−1
2
‖

‖

‖

⋅ ‖
‖

Λ1 − Λ2
‖

‖

and

‖𝜙‖Λ−1
1
≤

[

1 +
√

‖

‖

‖

Λ−1
2
‖

‖

‖

‖

‖

Λ2
‖

‖

⋅ ‖‖
‖

Λ−1
1
‖

‖

‖

⋅ ‖
‖

Λ1 − Λ2
‖

‖

]

⋅ ‖𝜙‖Λ−1
2
.

for all 𝜙 ∈ ℝ𝑑 .

192

Supplementary Material in Chapter 4 Chapter C

C.11.1 Covering Arguments

Lemma C.11.8. (Covering Number of Euclidean Ball) For any 𝜖 > 0, the 𝜖-covering number

of the Euclidean ball in ℝ𝑑 with radius 𝑅 > 0 is upper bounded by (1 + 2𝑅∕𝜖)𝑑 .

Lemma C.11.9. Define  to be the class mapping  to ℝ with the parametric form

𝑉 (⋅) ∶= min{max
𝑎
𝑓 (𝜃, 𝜙(⋅, 𝑎)) −

√

∇𝑓 (𝜃, 𝜙(⋅, 𝑎))⊤𝐴 ⋅ ∇𝑓 (𝜃, 𝜙(⋅, 𝑎)),𝐻}

where the parameter spaces are {𝜃 ∶ ‖𝜃‖2 ≤ 𝐶Θ} and {𝐴 ∶ ‖𝐴‖2 ≤ 𝐵}. Let  
𝜖 be the

covering number of 𝜖-net with respect to 𝑙∞ distance, then we have

log 
𝜖 ≤ 𝑑 log

(

1 +
8𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+ 𝑑2 log

(

1 +
8
√

𝑑𝐵𝜅2
1

𝜖2

)

.

Proof: [Proof of Lemma C.11.9]

sup
𝑠

|𝑉1(𝑠) − 𝑉2(𝑠)|

≤ sup
𝑠,𝑎

|

|

|

|

𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) −
√

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))⊤𝐴1 ⋅ ∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎)) +
√

∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))⊤𝐴2 ⋅ ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))
|

|

|

|

= sup
𝑠,𝑎

|

|

|

|

∇𝑓 (𝜉, 𝜙(𝑠, 𝑎)) ⋅ (𝜃1 − 𝜃2) −
√

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))⊤𝐴1 ⋅ ∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) +
√

∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))⊤𝐴2 ⋅ ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))
|

|

|

|

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + sup
𝑠,𝑎

|

|

|

|

√

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))⊤𝐴1 ⋅ ∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) −
√

∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))⊤𝐴2 ⋅ ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))
|

|

|

|

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + sup
𝑠,𝑎

√

|

|

[∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))]⊤𝐴1 ⋅ ∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))||

+ sup
𝑠,𝑎

√

|

|

∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))⊤(𝐴1 − 𝐴2) ⋅ ∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))|| + sup
𝑠,𝑎

√

|

|

∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))⊤𝐴2 ⋅ [∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))]||

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 2 sup
𝑠,𝑎

√

‖

‖

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))‖‖2 ⋅ 𝐵 ⋅ 𝜅1 +
√

𝜅21
‖

‖

𝐴1 − 𝐴2
‖

‖2

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 2 sup
𝑠,𝑎

√

‖

‖

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − ∇𝑓 (𝜃2, 𝜙(𝑠, 𝑎))‖‖2 ⋅ 𝐵 ⋅ 𝜅1 +
√

𝜅21
‖

‖

𝐴1 − 𝐴2
‖

‖2

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 2 sup
𝑠,𝑎

√

‖

‖

∇𝑓 (𝜃1, 𝜙(𝑠, 𝑎))‖‖2 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 ⋅ 𝐵 ⋅ 𝜅1 +
√

𝜅21
‖

‖

𝐴1 − 𝐴2
‖

‖2

≤𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 2
√

𝜅2 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 ⋅ 𝐵 ⋅ 𝜅1 +
√

𝜅21
‖

‖

𝐴1 − 𝐴2
‖

‖2

≤
(

𝜅1
√

𝐶Θ + 2
√

𝐵𝜅1𝜅2
)
√

‖

‖

𝜃1 − 𝜃2‖‖2 + 𝜅1
√

‖

‖

𝐴1 − 𝐴2
‖

‖2 ≤
(

𝜅1
√

𝐶Θ + 2
√

𝐵𝜅1𝜅2
)
√

‖

‖

𝜃1 − 𝜃2‖‖2 + 𝜅1
√

‖

‖

𝐴1 − 𝐴2
‖

‖𝐹

Here ‖⋅‖𝐹 is Frobenius norm. Let 𝜃 be the 𝜖2

4(𝜅1
√

𝐶Θ+2
√

𝐵𝜅1𝜅2)2
-net of space {𝜃 ∶ ‖𝜃‖2 ≤ 𝐶Θ}

193

Supplementary Material in Chapter 4 Chapter C

and 𝑤 be the 𝜖2

4𝜅21
-net of the space {𝐴 ∶ ‖𝐴‖𝐹 ≤

√

𝑑𝐵}, then by Lemma C.11.8,

|𝑤| ≤

(

1 +
8𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)𝑑

, |𝐴| ≤

(

1 +
8
√

𝑑𝐵𝜅2
1

𝜖2

)𝑑2

Therefore, the covering number of space  satisfies

log 
𝜖 ≤ log(|𝑤|⋅|𝐴|) ≤ 𝑑 log

(

1 +
8𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+𝑑2 log

(

1 +
8
√

𝑑𝐵𝜅2
1

𝜖2

)

Lemma C.11.10 (Covering of 𝔼𝜇(𝑋(𝑔, 𝑉 , 𝑓))). Define

𝑋(𝜃, 𝜃′) ∶= (𝑓 (𝜃, 𝜙(𝑠, 𝑎)) − 𝑟 − 𝑉𝜃′(𝑠′))2 − (𝑓𝑉𝜃′ (𝑠, 𝑎) − 𝑟 − 𝑉𝜃′(𝑠
′))2,

where 𝑓𝑉 ∶= ℎ𝑉 +𝛿𝑉 and 𝑉 (𝑠) has form 𝑉𝜃(𝑠) that belongs to (as defined in Lemma C.11.9).

Here 𝑋(𝜃, 𝜃′) is a function of 𝑠, 𝑎, 𝑟, 𝑠′ as well, and we suppress the notation for conciseness

only. Then the function class  = {ℎ(𝜃, 𝜃′) ∶= 𝔼𝜇[𝑋(𝜃, 𝜃′)]| ‖𝜃‖2 ≤ 𝐶Θ, 𝑉𝜃 ∈ } has the

covering number of (𝜖 + 4𝐻𝜖)-net bounded by

𝑑 log(1+
24𝐶Θ(𝐻 + 1)𝜅1

𝜖
)+𝑑 log

(

1 +
288𝐻2𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+𝑑2 log

(

1 +
288𝐻2

√

𝑑𝐵𝜅2
1

𝜖2

)

.

Proof: [Proof of Lemma C.11.10] First of all,

𝑋(𝜃, 𝜃′) =𝑓 (𝜃, 𝜙(𝑠, 𝑎))2 − 𝑓𝑉𝜃′ (𝑠, 𝑎)
2 − 2𝑓 (𝜃, 𝜙(𝑠, 𝑎)) ⋅ (𝑟 + 𝑉𝜃′(𝑠′)) + 2𝑓𝑉𝜃′ (𝑠, 𝑎) ⋅ (𝑟 + 𝑉𝜃′(𝑠

′)),

194

Supplementary Material in Chapter 4 Chapter C

For any (𝜃1, 𝜃′1), (𝜃2, 𝜃′2),

|𝑋(𝜃1, 𝜃′1) −𝑋(𝜃2, 𝜃′2)| ≤ |𝑓 (𝜃1, 𝜙(𝑠, 𝑎))2 − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))2|

+|𝑓𝑉𝜃′1
(𝑠, 𝑎)2 − 𝑓𝑉𝜃′2

(𝑠, 𝑎)2| + 2|𝑓𝑉𝜃′1
(𝑠, 𝑎) − 𝑓𝑉𝜃′2

(𝑠, 𝑎)| ⋅ (𝑟 + 𝑉𝜃′1(𝑠
′))

+2𝑓𝑉𝜃′2
(𝑠, 𝑎) ⋅ |𝑉𝜃′1(𝑠

′) − 𝑉𝜃′2(𝑠
′)| + 2|𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))| ⋅ (𝑟 + 𝑉𝜃′1(𝑠

′))

+2|𝑓 (𝜃2, 𝜙(𝑠, 𝑎))| ⋅ |𝑉𝜃′1(𝑠
′) − 𝑉𝜃′2(𝑠

′)|

≤2𝐻 ⋅ |𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))| + 2𝐻 ⋅ |𝑓𝑉𝜃′1
(𝑠, 𝑎) − 𝑓𝑉𝜃′2

(𝑠, 𝑎)|

+4𝐻 ⋅ |𝑉𝜃′1(𝑠
′) − 𝑉𝜃′2(𝑠

′)| + 4(𝐻 + 1) ⋅ |𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))|

≤(6𝐻 + 1) ⋅ |𝑓 (𝜃1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝜃2, 𝜙(𝑠, 𝑎))| + 2𝐻 max
𝑠′

|𝑉𝜃′1(𝑠
′) − 𝑉𝜃′2(𝑠

′)| + 4𝐻𝜖

+4𝐻 ⋅ |𝑉𝜃′1(𝑠
′) − 𝑉𝜃′2(𝑠

′)|

≤(6𝐻 + 1) ‖∇𝑓 (𝜉, 𝜙(𝑠, 𝑎))‖2 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 6𝐻 ‖

‖

‖

𝑉𝜃′1 − 𝑉𝜃′2
‖

‖

‖∞
+ 4𝐻𝜖

≤(6𝐻 + 1)𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 6𝐻 ‖

‖

‖

𝑉𝜃′1 − 𝑉𝜃′2
‖

‖

‖∞
+ 4𝐻𝜖

where the second inequality comes from 𝑓𝑉 = ℎ𝑉 + 𝛿𝑉 . Note the above holds true for all
𝑠, 𝑎, 𝑟, 𝑠′, therefore it implies

|𝔼𝜇[𝑋(𝜃1, 𝜃′1)] − 𝔼𝜇[𝑋(𝜃2, 𝜃′2)]| ≤ sup
𝑠,𝑎,𝑠′

|𝑋(𝜃1, 𝜃′1) −𝑋(𝜃2, 𝜃′2)|

≤(6𝐻 + 1)𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 6𝐻 ‖

‖

‖

𝑉𝜃′1 − 𝑉𝜃′2
‖

‖

‖∞
+ 4𝐻𝜖

Now let 1 be the 𝜖
12(𝐻+1)𝜅1

-net of {𝜃 ∶ ‖𝜃‖2 ≤ 𝐶Θ} and 2 be the 𝜖∕6𝐻-net of  , applying

195

Supplementary Material in Chapter 4 Chapter C

Lemma C.11.8 and Lemma C.11.9 to obtain

log |1| ≤𝑑 log(1 +
24𝐶Θ(𝐻 + 1)𝜅1

𝜖
),

log |2| ≤𝑑 log

(

1 +
288𝐻2𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+ 𝑑2 log
⎛

⎜

⎜

⎝

1 +
288𝐻2

√

𝑑𝐵𝜅21
𝜖2

⎞

⎟

⎟

⎠

which implies the covering number of  to be bounded by

log |1| ⋅ |2| ≤𝑑 log(1 +
24𝐶Θ(𝐻 + 1)𝜅1

𝜖
) + 𝑑 log

(

1 +
288𝐻2𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+𝑑2 log
⎛

⎜

⎜

⎝

1 +
288𝐻2

√

𝑑𝐵𝜅21
𝜖2

⎞

⎟

⎟

⎠

.

Lemma C.11.11. Denote 𝜎2
𝑢,𝑣(⋅, ⋅) ∶= max{1, 𝑓 (𝑣, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −

[

𝑓 (𝑢, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2}

and define

𝑋̄(𝜃, 𝜃′, 𝑢, 𝑣) ∶=
(𝑓 (𝜃, 𝜙(𝑠, 𝑎)) − 𝑟 − 𝑉𝜃′(𝑠′))2 − (𝑓𝑉𝜃′ (𝑠, 𝑎) − 𝑟 − 𝑉𝜃′(𝑠

′))2

𝜎2
𝑢,𝑣(𝑠, 𝑎)

,

where 𝑓𝑉 ∶= ℎ𝑉 and 𝑉 (𝑠) has form 𝑉𝜃(𝑠) that belongs to  (as defined in Lemma C.11.9).

Here 𝑋̄(𝜃, 𝜃′, 𝑢, 𝑣) is a function of 𝑠, 𝑎, 𝑟, 𝑠′ as well, and we suppress the notation for conciseness

only. Then the function class  = {ℎ(𝜃, 𝜃′, 𝑢, 𝑣) ∶= 𝔼𝜇[𝑋̄(𝜃, 𝜃′, 𝑢, 𝑣)]| ‖𝜃‖2 ≤ 𝐶Θ, 𝑉𝜃 ∈ }

has the covering number of 𝜖-net bounded by

𝑑 log(1 +
24𝐶Θ(𝐻 + 1)𝜅1

𝜖
) + 𝑑 log

(

1 +
288𝐻2𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+ 𝑑2 log
⎛

⎜

⎜

⎝

1 +
288𝐻2

√

𝑑𝐵𝜅21
𝜖2

⎞

⎟

⎟

⎠

+ 𝑑 log(1 +
16𝐶Θ𝐻2𝜅1

𝜖
) + 𝑑 log(1 +

32𝐶Θ𝐻3𝜅1
𝜖

)

Proof: [Proof of Lemma C.11.11] Recall 𝜎2
𝑢,𝑣(⋅, ⋅) ∶= max{1, 𝑓 (𝑣, 𝜙(⋅, ⋅))[0,(𝐻−ℎ+1)2] −

[

𝑓 (𝑢, 𝜙(⋅, ⋅))[0,𝐻−ℎ+1]
]2}, and since max, truncation are non-expansive operations, then we can

196

Supplementary Material in Chapter 4 Chapter C

achieve for any 𝑠, 𝑎

|𝜎2
𝑢1,𝑣1

(𝑠, 𝑎) − 𝜎2
𝑢2,𝑣2

(𝑠, 𝑎)| ≤ |

|

𝑓 (𝑣1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝑣2, 𝜙(𝑠, 𝑎))|| + 2𝐻 |

|

𝑓 (𝑢1, 𝜙(𝑠, 𝑎)) − 𝑓 (𝑢2, 𝜙(𝑠, 𝑎))||

≤𝜅1 ‖‖𝑣1 − 𝑣2‖‖2 + 2𝐻𝜅1 ‖‖𝑢1 − 𝑢2‖‖2 ,

Hence

|

|

𝑋̄(𝜃1, 𝜃′1, 𝑢1, 𝑣1) − 𝑋̄(𝜃2, 𝜃′2, 𝑢2, 𝑣2)|| =
|

|

|

|

|

𝑋(𝜃1, 𝜃′1)
𝜎2
𝑢1,𝑣1

−
𝑋(𝜃2, 𝜃′2)
𝜎2
𝑢2,𝑣2

|

|

|

|

|

≤
|

|

|

|

|

𝑋(𝜃1, 𝜃′1) −𝑋(𝜃2, 𝜃′2)
𝜎2
𝑢1,𝑣1

|

|

|

|

|

+
|

|

|

|

|

𝑋(𝜃2, 𝜃′2)
𝜎2
𝑢1,𝑣1

𝜎2
𝑢2,𝑣2

(

𝜎2
𝑢1,𝑣1

− 𝜎2
𝑢2,𝑣2

)|

|

|

|

|

≤ |

|

𝑋(𝜃1, 𝜃′1) −𝑋(𝜃2, 𝜃′2)|| + 2𝐻2 |
|

|

𝜎2
𝑢1,𝑣1

− 𝜎2
𝑢2,𝑣2

|

|

|

≤ |

|

𝑋(𝜃1, 𝜃′1) −𝑋(𝜃2, 𝜃′2)|| + 2𝐻2𝜅1 ‖‖𝑣1 − 𝑣2‖‖2 + 4𝐻3𝜅1 ‖‖𝑢1 − 𝑢2‖‖2

≤ (6𝐻 + 1)𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 6𝐻 ‖

‖

‖

𝑉𝜃′1 − 𝑉𝜃′2
‖

‖

‖∞
+ 2𝐻2𝜅1 ‖‖𝑣1 − 𝑣2‖‖2 + 4𝐻3𝜅1 ‖‖𝑢1 − 𝑢2‖‖2

Note the above holds true for all 𝑠, 𝑎, 𝑟, 𝑠′, therefore it implies

|𝔼𝜇[𝑋̄(𝜃1, 𝜃′1, 𝑢1, 𝑣1)] − 𝔼𝜇[𝑋̄(𝜃2, 𝜃′2, 𝑢2, 𝑣2)]|

≤(6𝐻 + 1)𝜅1 ⋅ ‖‖𝜃1 − 𝜃2‖‖2 + 6𝐻 ‖

‖

‖

𝑉𝜃′1 − 𝑉𝜃′2
‖

‖

‖∞
+ 2𝐻2𝜅1 ‖‖𝑣1 − 𝑣2‖‖2 + 4𝐻3𝜅1 ‖‖𝑢1 − 𝑢2‖‖2

and similar to Lemma C.11.10, the covering number of 𝜖-net will be bounded by

𝑑 log(1 +
24𝐶Θ(𝐻 + 1)𝜅1

𝜖
) + 𝑑 log

(

1 +
288𝐻2𝐶Θ(𝜅1

√

𝐶Θ + 2
√

𝐵𝜅1𝜅2)2

𝜖2

)

+ 𝑑2 log
⎛

⎜

⎜

⎝

1 +
288𝐻2

√

𝑑𝐵𝜅21
𝜖2

⎞

⎟

⎟

⎠

+ 𝑑 log(1 +
16𝐶Θ𝐻2𝜅1

𝜖
) + 𝑑 log(1 +

32𝐶Θ𝐻3𝜅1
𝜖

)

Comparing to Lemma C.11.10, the last two terms are incurred by covering 𝑢, 𝑣 arguments.

197

Appendix D

Assisting lemmas

Lemma D.0.1 (Multiplicative Chernoff bound [161]). Let 𝑋 be a Binomial random variable

with parameter 𝑝, 𝑛. For any 1 ≥ 𝜃 > 0, we have that

ℙ[𝑋 < (1 − 𝜃)𝑝𝑛] < 𝑒−
𝜃2𝑝𝑛
2 . and ℙ[𝑋 ≥ (1 + 𝜃)𝑝𝑛] < 𝑒−

𝜃2𝑝𝑛
3

Lemma D.0.2 (Hoeffding’s Inequality [162]). Let 𝑥1, ..., 𝑥𝑛 be independent bounded random

variables such that 𝔼[𝑥𝑖] = 0 and |𝑥𝑖| ≤ 𝜉𝑖 with probability 1. Then for any 𝜖 > 0 we have

ℙ

(

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 ≥ 𝜖

)

≤ 𝑒
− 2𝑛2𝜖2

∑𝑛
𝑖=1 𝜉

2
𝑖 .

Lemma D.0.3 (Bernstein’s Inequality). Let 𝑥1, ..., 𝑥𝑛 be independent bounded random variables

such that 𝔼[𝑥𝑖] = 0 and |𝑥𝑖| ≤ 𝜉 with probability 1. Let 𝜎2 = 1
𝑛

∑𝑛
𝑖=1Var[𝑥𝑖], then with

probability 1 − 𝛿 we have

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 ≤

√

2𝜎2 ⋅ log(1∕𝛿)
𝑛

+
2𝜉
3𝑛

log(1∕𝛿)

Lemma D.0.4 (Empirical Bernstein’s Inequality [163]). Let 𝑥1, ..., 𝑥𝑛 be i.i.d random variables

198

Assisting lemmas Chapter D

such that |𝑥𝑖| ≤ 𝜉 with probability 1. Let 𝑥̄ = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 and 𝑉𝑛 = 1

𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)

2, then with

probability 1 − 𝛿 we have

|

|

|

|

|

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 − 𝔼[𝑥]

|

|

|

|

|

≤

√

2𝑉𝑛 ⋅ log(2∕𝛿)
𝑛

+
7𝜉
3𝑛

log(2∕𝛿).

Lemma D.0.5 (Freedman’s inequality [164]). Let 𝑋 be the martingale associated with a fil-

ter  (i.e. 𝑋𝑖 = 𝔼[𝑋|𝑖]) satisfying |𝑋𝑖 − 𝑋𝑖−1| ≤ 𝑀 for 𝑖 = 1, ..., 𝑛. Denote 𝑊 ∶=
∑𝑛

𝑖=1Var(𝑋𝑖|𝑖−1) then we have

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝜖,𝑊 ≤ 𝜎2) ≤ 2𝑒−
𝜖2

2(𝜎2+𝑀𝜖∕3) .

Or in other words, with probability 1 − 𝛿,

|𝑋 − 𝔼[𝑋]| ≤
√

8𝜎2 ⋅ log(1∕𝛿) + 2𝑀
3

⋅ log(1∕𝛿), Or 𝑊 ≥ 𝜎2.

Lemma D.0.6 (Empirical Bernstein Inequality). Let 𝑛 ≥ 2 and 𝑉 ∈ ℝ𝑆 be any function with

||𝑉 ||∞ ≤ 𝐻 , 𝑃 be any 𝑆-dimensional distribution and 𝑃 be its empirical version using 𝑛

samples. Then with probability 1 − 𝛿,

|

|

|

|

|

√

Var𝑃 (𝑉) −
√

𝑛 − 1
𝑛

Var𝑃 (𝑉)
|

|

|

|

|

≤ 2𝐻
√

log(2∕𝛿)
𝑛 − 1

.

Proof: This is a directly application of Theorem 10 in [163]. Indeed, by direct translating
Theorem 10 of [163],

𝑉𝑛(𝑉) = 1
𝑛(𝑛 − 1)

∑

1≤𝑖<𝑗≤𝑛

(

𝑉 (𝑠𝑖) − 𝑉 (𝑠𝑗)
)2 = 1

𝑛

𝑛
∑

𝑖=1
(𝑉 (𝑠𝑖) − 𝑉)2 = Var𝑃 (𝑉).

199

Assisting lemmas Chapter D

where 𝑠𝑖 ∼ 𝑃 are i.i.d random variables and

𝔼[𝑉𝑛] =𝔼
[

Var𝑃 (𝑉)
]

= 𝔼
[

𝔼𝑃 [𝑉
2] −

(

𝔼𝑃 [𝑉]
)2
]

=𝔼

[

1
𝑛

𝑛
∑

𝑖=1
𝑉 2(𝑠𝑖)

]

− 𝔼
⎡

⎢

⎢

⎣

(

1
𝑛

𝑛
∑

𝑖=1
𝑉 (𝑠𝑖)

)2
⎤

⎥

⎥

⎦

=𝔼
[

𝑉 2] − 1
𝑛2
𝔼

[

𝑛
∑

𝑖=1
𝑉 2(𝑠𝑖) + 2

∑

1≤𝑖<𝑗≤𝑛
𝑉 (𝑠𝑖)𝑉 (𝑠𝑗)

]

=𝔼
[

𝑉 2] − 1
𝑛
𝔼
[

𝑉 2] − 2
𝑛(𝑛 − 1)∕2

𝑛2
(𝔼[𝑉])2

=𝑛 − 1
𝑛

Var𝑃 (𝑉).

Therefore by Theorem 10 of [163] we directly have the result.

D.0.1 Extend Value Difference

The extended value difference lemma helps characterize the difference between the esti-
mated value 𝑉1 and the true value 𝑉 𝜋

1 , which was first summarized in [56] and also used in
[39].

Lemma D.0.7 (Extended Value Difference (Section B.1 in [56])). Let 𝜋 = {𝜋ℎ}𝐻ℎ=1 and 𝜋′ =

{𝜋′
ℎ}

𝐻
ℎ=1 be two arbitrary policies and let {𝑄̂ℎ}𝐻ℎ=1 be any given Q-functions. Then define

𝑉ℎ(𝑠) ∶= ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅ ∣ 𝑠)⟩ for all 𝑠 ∈  . Then for all 𝑠 ∈  ,

𝑉1(𝑠) − 𝑉 𝜋′
1 (𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋′

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅ ∣ 𝑠ℎ
)

− 𝜋′
ℎ

(

⋅ ∣ 𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋′

[

𝑄̂ℎ
(

𝑠ℎ, 𝑎ℎ
)

−
(

ℎ𝑉ℎ+1
)

(

𝑠ℎ, 𝑎ℎ
)

∣ 𝑠1 = 𝑠
]

(D.1)

where (ℎ𝑉)(⋅, ⋅) ∶= 𝑟ℎ(⋅, ⋅) + (𝑃ℎ𝑉)(⋅, ⋅) for any 𝑉 ∈ ℝ𝑆 .

Proof:
200

Assisting lemmas Chapter D

Denote 𝜉ℎ = 𝑄̂ℎ − ℎ𝑉ℎ+1. For any ℎ ∈ [𝐻], we have

𝑉ℎ − 𝑉 𝜋′
ℎ = ⟨𝑄̂ℎ, 𝜋ℎ⟩ − ⟨𝑄𝜋′

ℎ , 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑄̂ℎ −𝑄𝜋′

ℎ , 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑃ℎ(𝑉ℎ+1 − 𝑉 𝜋′

ℎ+1) + 𝜉ℎ, 𝜋
′
ℎ⟩

= ⟨𝑄̂ℎ, 𝜋ℎ − 𝜋′
ℎ⟩ + ⟨𝑃ℎ(𝑉ℎ+1 − 𝑉 𝜋′

ℎ+1), 𝜋
′
ℎ⟩ + ⟨𝜉ℎ, 𝜋

′
ℎ⟩

recursively apply the above for 𝑉ℎ+1−𝑉 𝜋′
ℎ+1 and use the 𝔼𝜋′ notation (instead of the inner product

of 𝑃ℎ, 𝜋′
ℎ) we can finish the prove of this lemma.

The following lemma helps to characterize the gap between any two policies.

Lemma D.0.8. Let 𝜋 =
{

𝜋ℎ
}𝐻
ℎ=1 and 𝑄̂ℎ(⋅, ⋅) be the arbitrary policy and Q-function and also

𝑉ℎ(𝑠) = ⟨𝑄̂ℎ(𝑠, ⋅), 𝜋ℎ(⋅|𝑠)⟩ ∀𝑠 ∈  . and 𝜉ℎ(𝑠, 𝑎) = (ℎ𝑉ℎ+1)(𝑠, 𝑎) − 𝑄̂ℎ(𝑠, 𝑎) element-wisely.

Then for any arbitrary 𝜋, we have

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

−
𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑥
]

where the expectation are taken over 𝑠ℎ, 𝑎ℎ.

Proof: Note the gap can be rewritten as

𝑉 𝜋
1 (𝑠) − 𝑉

𝜋
1 (𝑠) = 𝑉 𝜋

1 (𝑠) − 𝑉1(𝑠) + 𝑉1(𝑠) − 𝑉
𝜋
1 (𝑠).

201

Assisting lemmas Chapter D

By Lemma D.0.7 with 𝜋 = 𝜋, 𝜋′ = 𝜋, we directly have

𝑉 𝜋
1 (𝑠)−𝑉1(𝑠) =

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

+
𝐻
∑

ℎ=1
𝔼𝜋

[

⟨𝑄̂ℎ
(

𝑠ℎ, ⋅
)

, 𝜋ℎ
(

⋅|𝑠ℎ
)

− 𝜋ℎ
(

⋅|𝑠ℎ
)

⟩ ∣ 𝑠1 = 𝑠
]

(D.2)
Next apply Lemma D.0.7 again with 𝜋 = 𝜋′ = 𝜋, we directly have

𝑉1(𝑠) − 𝑉 𝜋
1 (𝑠) = −

𝐻
∑

ℎ=1
𝔼𝜋

[

𝜉ℎ(𝑠ℎ, 𝑎ℎ) ∣ 𝑠1 = 𝑠
]

. (D.3)

Combine the above two results we prove the stated result.

202

Bibliography

[1] M. Yin, On the Statistical Complexity of Offline Policy Evaluation for Tabular
Reinforcement Learning. PhD thesis, UC Santa Barbara, 2023.

[2] M. Yin and Y.-X. Wang, Asymptotically efficient off-policy evaluation for tabular
reinforcement learning, in International Conference on Artificial Intelligence and
Statistics, pp. 3948–3958, PMLR, 2020.

[3] M. Yin, Y. Bai, and Y.-X. Wang, Near-optimal provable uniform convergence in offline
policy evaluation for reinforcement learning, in International Conference on Artificial
Intelligence and Statistics, pp. 1567–1575, PMLR, 2021.

[4] M. Yin and Y.-X. Wang, Optimal uniform ope and model-based offline reinforcement
learning in time-homogeneous, reward-free and task-agnostic settings, Advances in
neural information processing systems (2021).

[5] M. Yin and Y.-X. Wang, Towards instance-optimal offline reinforcement learning with
pessimism, Advances in neural information processing systems (2021).

[6] M. Yin, Y. Duan, M. Wang, and Y.-X. Wang, Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism,
International Conference on Learning Representations, (2022).

[7] M. Yin, M. Wang, and Y.-X. Wang, Offline reinforcement learning with differentiable
function approximation is provably efficient, International Conference on Learning
Representations, (2023).

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et. al., Mastering the game of go without human
knowledge, nature 550 (2017), no. 7676 354–359.

[9] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et. al., Grandmaster level in starcraft ii using
multi-agent reinforcement learning, Nature 575 (2019), no. 7782 350–354.

[10] S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, arXiv preprint arXiv:2005.01643 (2020).

203

[11] S. Lange, T. Gabel, and M. Riedmiller, Batch reinforcement learning, in Reinforcement
learning, pp. 45–73. Springer, 2012.

[12] H. Le, C. Voloshin, and Y. Yue, Batch policy learning under constraints, in
International Conference on Machine Learning, pp. 3703–3712, 2019.

[13] J. Chen and N. Jiang, Information-theoretic considerations in batch reinforcement
learning, in International Conference on Machine Learning, pp. 1042–1051, 2019.

[14] T. Xie and N. Jiang, Q* approximation schemes for batch reinforcement learning: A
theoretical comparison, in Uncertainty in Artificial Intelligence, pp. 550–559, 2020.

[15] T. Xie and N. Jiang, Batch value-function approximation with only realizability, arXiv
preprint arXiv:2008.04990 (2020).

[16] M. Yin, Y. Bai, and Y.-X. Wang, Near-optimal offline reinforcement learning via
double variance reduction, Advances in Neural Information Processing Systems (2021).

[17] T. Ren, J. Li, B. Dai, S. S. Du, and S. Sanghavi, Nearly horizon-free offline
reinforcement learning, Advances in neural information processing systems (2021).

[18] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell, Bridging offline reinforcement
learning and imitation learning: A tale of pessimism, arXiv preprint arXiv:2103.12021
(2021).

[19] T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai, Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning, Advances in neural
information processing systems (2021).

[20] C. Gulcehre, Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, K. Zolna,
R. Agarwal, J. Merel, D. Mankowitz, C. Paduraru, et. al., Rl unplugged: Benchmarks
for offline reinforcement learning, Advances in neural information processing systems
(2020).

[21] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, D4rl: Datasets for deep
data-driven reinforcement learning, arXiv preprint arXiv:2004.07219 (2020).

[22] J. Fu, M. Norouzi, O. Nachum, G. Tucker, Z. Wang, A. Novikov, M. Yang, M. R.
Zhang, Y. Chen, A. Kumar, et. al., Benchmarks for deep off-policy evaluation,
International Conference on Learning Representations (2021).

[23] M. Janner, Q. Li, and S. Levine, Reinforcement learning as one big sequence modeling
problem, arXiv preprint arXiv:2106.02039 (2021).

[24] C. Diehl, T. S. Sievernich, M. Krüger, F. Hoffmann, and T. Bertram, Uncertainty-aware
model-based offline reinforcement learning for automated driving, IEEE Robotics and
Automation Letters 8 (2023), no. 2 1167–1174.

204

[25] C. M. Hruschka, M. Schmidt, D. Töpfer, and S. Zug, Uncertainty-adaptive, risk based
motion planning in automated driving, in 2019 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), pp. 1–7, IEEE, 2019.

[26] M. Yin, W. Chen, M. Wang, and Y.-X. Wang, Offline stochastic shortest path:
Learning, evaluation and towards optimality, Uncertainty in Artificial Intelligence,
(2022).

[27] R. Liu, J. L. Greenstein, J. C. Fackler, J. Bergmann, M. M. Bembea, and R. L. Winslow,
Offline reinforcement learning with uncertainty for treatment strategies in sepsis, arXiv
preprint arXiv:2107.04491 (2021).

[28] G. Gao, S. Ju, M. S. Ausin, and M. Chi, Hope: Human-centric off-policy evaluation for
e-learning and healthcare, arXiv preprint arXiv:2302.09212 (2023).

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[30] A. Agarwal, S. Kakade, and L. F. Yang, Model-based reinforcement learning with a
generative model is minimax optimal, in Conference on Learning Theory, pp. 67–83,
2020.

[31] C. Szepesvári and R. Munos, Finite time bounds for sampling based fitted value
iteration, in Proceedings of the 22nd international conference on Machine learning,
pp. 880–887, 2005.

[32] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, Off-policy policy gradient with
state distribution correction, in Uncertainty in Artificial Intelligence, 2019.

[33] A. Antos, R. Munos, and C. Szepesvari, Fitted q-iteration in continuous action-space
mdps, in Advances in Neural Information Processing Systems, pp. 9–16, 2008.

[34] A. Antos, C. Szepesvári, and R. Munos, Learning near-optimal policies with
bellman-residual minimization based fitted policy iteration and a single sample path,
Machine Learning 71 (2008), no. 1 89–129.

[35] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, Provably good batch
reinforcement learning without great exploration, arXiv preprint arXiv:2007.08202
(2020).

[36] J. D. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun, Mitigating covariate
shift in imitation learning via offline data without great coverage, Advances in Neural
Information Processing Systems (2021).

[37] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, Morel: Model-based offline
reinforcement learning, Advances in Neural Information Processing Systems (2020).

205

[38] M. Uehara and W. Sun, Pessimistic model-based offline rl: Pac bounds and posterior
sampling under partial coverage, arXiv preprint arXiv:2107.06226 (2021).

[39] Y. Jin, Z. Yang, and Z. Wang, Is pessimism provably efficient for offline rl?,
International Conference on Machine Learning (2020).

[40] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal, Bellman-consistent
pessimism for offline reinforcement learning, Advances in neural information
processing systems (2021).

[41] A. Zanette, M. J. Wainwright, and E. Brunskill, Provable benefits of actor-critic
methods for offline reinforcement learning, 2021.

[42] R. Wang, D. P. Foster, and S. M. Kakade, What are the statistical limits of offline rl with
linear function approximation?, International Conference on Machine Learning (2021).

[43] A. Zanette, Exponential lower bounds for batch reinforcement learning: Batch rl can
be exponentially harder than online rl, International Conference on Machine Learning
(2021).

[44] M. G. Azar, I. Osband, and R. Munos, Minimax regret bounds for reinforcement
learning, in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 263–272, JMLR. org, 2017.

[45] A. Krishnamurthy, A. Agarwal, and J. Langford, Pac reinforcement learning with rich
observations, Advances in neural information processing systems (2016).

[46] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire, Contextual
decision processes with low bellman rank are pac-learnable, in International
Conference on Machine Learning-Volume 70, pp. 1704–1713, 2017.

[47] Z. Zhang, X. Ji, and S. S. Du, Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon, arXiv preprint
arXiv:2009.13503 (2020).

[48] N. Jiang and A. Agarwal, Open problem: The dependence of sample complexity lower
bounds on planning horizon, in Conference On Learning Theory, pp. 3395–3398, 2018.

[49] Y. Bai, T. Xie, N. Jiang, and Y.-X. Wang, Provably efficient q-learning with low
switching cost, in Advances in Neural Information Processing Systems, vol. 32, 2019.

[50] W. C. Cheung, D. Simchi-Levi, and R. Zhu, Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism, arXiv preprint
arXiv:2006.14389 (2020).

206

[51] O.-A. Maillard, T. A. Mann, and S. Mannor, How hard is my mdp?" the
distribution-norm to the rescue", Advances in Neural Information Processing Systems
27 (2014) 1835–1843.

[52] A. Zanette and E. Brunskill, Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds, in International
Conference on Machine Learning, pp. 7304–7312, PMLR, 2019.

[53] Z. Wen and B. Van Roy, Efficient exploration and value function generalization in
deterministic systems, Advances in Neural Information Processing Systems 26 (2013).

[54] A. Zanette and E. Brunskill, Problem dependent reinforcement learning bounds which
can identify bandit structure in mdps, in International Conference on Machine
Learning, pp. 5747–5755, PMLR, 2018.

[55] S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic
multi-armed bandit problems, Foundations and Trends in Machine Learning (2012).

[56] Q. Cai, Z. Yang, C. Jin, and Z. Wang, Provably efficient exploration in policy
optimization, in International Conference on Machine Learning, pp. 1283–1294,
PMLR, 2020.

[57] C. Xiao, Y. Wu, J. Mei, B. Dai, T. Lattimore, L. Li, C. Szepesvari, and D. Schuurmans,
On the optimality of batch policy optimization algorithms, in International Conference
on Machine Learning, pp. 11362–11371, PMLR, 2021.

[58] G. J. Gordon, Approximate solutions to Markov decision processes. Carnegie Mellon
University, 1999.

[59] D. Ernst, P. Geurts, and L. Wehenkel, Tree-based batch mode reinforcement learning,
Journal of Machine Learning Research 6 (2005) 503–556.

[60] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et. al., Human-level control
through deep reinforcement learning, nature 518 (2015), no. 7540 529–533.

[61] S. Fujimoto, D. Meger, and D. Precup, Off-policy deep reinforcement learning without
exploration, in International Conference on Machine Learning, pp. 2052–2062, PMLR,
2019.

[62] A. Kumar, J. Fu, G. Tucker, and S. Levine, Stabilizing off-policy q-learning via
bootstrapping error reduction, Advances in Neural Information Processing Systems
(2019).

[63] Y. Wu, G. Tucker, and O. Nachum, Behavior regularized offline reinforcement
learning, arXiv preprint arXiv:1911.11361 (2019).

207

[64] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma, Mopo:
Model-based offline policy optimization, arXiv preprint arXiv:2005.13239 (2020).

[65] A. Kumar, A. Zhou, G. Tucker, and S. Levine, Conservative q-learning for offline
reinforcement learning, Advances in Neural Information Processing Systems (2020).

[66] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas,
and I. Mordatch, Decision transformer: Reinforcement learning via sequence
modeling, arXiv preprint arXiv:2106.01345 (2021).

[67] I. Kostrikov, A. Nair, and S. Levine, Offline reinforcement learning with in-sample
q-learning, in International Conference on Learning Representations, 2022.

[68] L. Yang and M. Wang, Sample-optimal parametric q-learning using linearly additive
features, in International Conference on Machine Learning, pp. 6995–7004, PMLR,
2019.

[69] L. Yang and M. Wang, Reinforcement learning in feature space: Matrix bandit,
kernels, and regret bound, in International Conference on Machine Learning,
pp. 10746–10756, PMLR, 2020.

[70] A. Modi, N. Jiang, A. Tewari, and S. Singh, Sample complexity of reinforcement
learning using linearly combined model ensembles, in International Conference on
Artificial Intelligence and Statistics, pp. 2010–2020, PMLR, 2020.

[71] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, Provably efficient reinforcement learning
with linear function approximation, in Conference on Learning Theory, pp. 2137–2143,
PMLR, 2020.

[72] A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang, Model-based reinforcement
learning with value-targeted regression, in International Conference on Machine
Learning, pp. 463–474, PMLR, 2020.

[73] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford, Provably
efficient rl with rich observations via latent state decoding, in International Conference
on Machine Learning, pp. 1665–1674, PMLR, 2019.

[74] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford, Model-based rl in
contextual decision processes: Pac bounds and exponential improvements over
model-free approaches, in Conference on learning theory, pp. 2898–2933, PMLR,
2019.

[75] A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill, Learning near optimal
policies with low inherent bellman error, in International Conference on Machine
Learning, pp. 10978–10989, PMLR, 2020.

208

[76] D. Zhou, Q. Gu, and C. Szepesvari, Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes, in Conference on Learning Theory,
pp. 4532–4576, PMLR, 2021.

[77] C. Jin, Q. Liu, and S. Miryoosefi, Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms, arXiv preprint arXiv:2102.00815 (2021).

[78] S. S. Du, S. M. Kakade, J. D. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang,
Bilinear classes: A structural framework for provable generalization in rl,
International Conference on Machine Learning (2021).

[79] R. Munos, Error bounds for approximate policy iteration, in ICML, vol. 3,
pp. 560–567, 2003.

[80] Y. Jin, Z. Yang, and Z. Wang, Is pessimism provably efficient for offline rl?, in
International Conference on Machine Learning, pp. 5084–5096, PMLR, 2021.

[81] Y. Duan, C. Jin, and Z. Li, Risk bounds and rademacher complexity in batch
reinforcement learning, International Conference on Machine Learning (2021).

[82] Y. Min, T. Wang, D. Zhou, and Q. Gu, Variance-aware off-policy evaluation with linear
function approximation, Advances in neural information processing systems (2021).

[83] T. Nguyen-Tang, S. Gupta, H. Tran-The, and S. Venkatesh, On finite-sample analysis of
offline reinforcement learning with deep relu networks, arXiv preprint
arXiv:2103.06671 (2021).

[84] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy, Optimism in reinforcement
learning with generalized linear function approximation, in International Conference
on Learning Representations, 2021.

[85] R. Wang, S. S. Du, L. F. Yang, and R. Salakhutdinov, On reward-free reinforcement
learning with linear function approximation, Advances in neural information
processing systems (2020).

[86] J. He, D. Zhou, and Q. Gu, Logarithmic regret for reinforcement learning with linear
function approximation, in International Conference on Machine Learning,
pp. 4171–4180, PMLR, 2021.

[87] Z. Liu, Y. Zhang, Z. Fu, Z. Yang, and Z. Wang, Provably efficient generative
adversarial imitation learning for online and offline setting with linear function
approximation, arXiv preprint arXiv:2108.08765 (2021).

[88] L. Shi, G. Li, Y. Wei, Y. Chen, and Y. Chi, Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity, arXiv preprint
arXiv:2202.13890 (2022).

209

[89] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, On the theory of policy gradient
methods: Optimality, approximation, and distribution shift, Journal of Machine
Learning Research 22 (2021), no. 98 1–76.

[90] R. Wang, D. P. Foster, and S. M. Kakade, What are the statistical limits of offline rl with
linear function approximation?, International Conference on Learning Representations
(2021).

[91] A. Zanette, Exponential lower bounds for batch reinforcement learning: Batch rl can
be exponentially harder than online rl, International Conference on Machine Learning
(2021).

[92] D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu, Offline reinforcement
learning: Fundamental barriers for value function approximation, arXiv preprint
arXiv:2111.10919 (2021).

[93] M. S. Talebi and O.-A. Maillard, Variance-aware regret bounds for undiscounted
reinforcement learning in mdps, in Algorithmic Learning Theory, pp. 770–805, PMLR,
2018.

[94] Z. Zhang, J. Yang, X. Ji, and S. S. Du, Variance-aware confidence set:
Variance-dependent bound for linear bandits and horizon-free bound for linear mixture
mdp, arXiv preprint arXiv:2101.12745 (2021).

[95] Y. Duan, Z. Jia, and M. Wang, Minimax-optimal off-policy evaluation with linear
function approximation, in International Conference on Machine Learning,
pp. 8334–8342, 2020.

[96] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge University Press, 2020.
[97] A. Wagenmaker, Y. Chen, M. Simchowitz, S. S. Du, and K. Jamieson, First-order

regret in reinforcement learning with linear function approximation: A robust
estimation approach, arXiv preprint arXiv:2112.03432 (2021).

[98] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et. al., Mastering atari, go, chess and shogi by
planning with a learned model, Nature 588 (2020), no. 7839 604–609.

[99] S. Gu, E. Holly, T. Lillicrap, and S. Levine, Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates, in 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–3396, IEEE, 2017.

[100] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection,
The International journal of robotics research 37 (2018), no. 4-5 421–436.

210

[101] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de Las Casas, et. al., Magnetic control of tokamak
plasmas through deep reinforcement learning, Nature 602 (2022), no. 7897 414–419.

[102] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, Applications of deep
learning and reinforcement learning to biological data, IEEE transactions on neural
networks and learning systems 29 (2018), no. 6 2063–2079.

[103] M. Popova, O. Isayev, and A. Tropsha, Deep reinforcement learning for de novo drug
design, Science advances 4 (2018), no. 7 eaap7885.

[104] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, Deep
reinforcement learning: A brief survey, IEEE Signal Processing Magazine 34 (2017),
no. 6 26–38.

[105] G. Li, Y. Chen, Y. Chi, Y. Gu, and Y. Wei, Sample-efficient reinforcement learning is
feasible for linearly realizable mdps with limited revisiting, Advances in Neural
Information Processing Systems 34 (2021) 16671–16685.

[106] M. Yin, Y. Duan, M. Wang, and Y.-X. Wang, Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism,
International Conference on Learning Representations (2022).

[107] M. Uehara, X. Zhang, and W. Sun, Representation learning for online and offline rl in
low-rank mdps, in International Conference on Learning Representations, 2022.

[108] Q. Cai, Z. Yang, and Z. Wang, Reinforcement learning from partial observation:
Linear function approximation with provable sample efficiency, in International
Conference on Machine Learning, pp. 2485–2522, PMLR, 2022.

[109] W. Zhan, B. Huang, A. Huang, N. Jiang, and J. D. Lee, Offline reinforcement learning
with realizability and single-policy concentrability, arXiv preprint arXiv:2202.04634
(2022).

[110] R. Zhang, X. Zhang, C. Ni, and M. Wang, Off-policy fitted q-evaluation with
differentiable function approximators: Z-estimation and inference theory, International
Conference on Machine Learning (2022).

[111] M. G. Azar, R. Munos, and H. J. Kappen, Minimax pac bounds on the sample
complexity of reinforcement learning with a generative model, Machine learning 91
(2013), no. 3 325–349.

[112] A. Sidford, M. Wang, X. Wu, L. Yang, and Y. Ye, Near-optimal time and sample
complexities for solving markov decision processes with a generative model, in
Advances in Neural Information Processing Systems, pp. 5186–5196, 2018.

211

[113] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, Is q-learning provably efficient?, in
Advances in Neural Information Processing Systems, pp. 4863–4873, 2018.

[114] Q. Cui and L. F. Yang, Is plug-in solver sample-efficient for feature-based
reinforcement learning?, in Advances in neural information processing systems, 2020.

[115] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, Sample complexity of asynchronous
q-learning: Sharper analysis and variance reduction, Advances in neural information
processing systems 33 (2020) 7031–7043.

[116] G. Li, L. Shi, Y. Chen, Y. Chi, and Y. Wei, Settling the sample complexity of
model-based offline reinforcement learning, arXiv preprint arXiv:2204.05275 (2022).

[117] Z. Zhang, X. Ji, and S. Du, Horizon-free reinforcement learning in polynomial time:
the power of stationary policies, in Conference on Learning Theory, pp. 3858–3904,
PMLR, 2022.

[118] D. Qiao, M. Yin, M. Min, and Y.-X. Wang, Sample-efficient reinforcement learning
with loglog (t) switching cost, International Conference on Machine Learning (2022).

[119] Q. Cui and S. S. Du, When is offline two-player zero-sum markov game solvable?,
arXiv preprint arXiv:2201.03522 (2022).

[120] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic, Provably efficient safe
exploration via primal-dual policy optimization, in International Conference on
Artificial Intelligence and Statistics, pp. 3304–3312, PMLR, 2021.

[121] W. Zhang, D. Zhou, and Q. Gu, Reward-free model-based reinforcement learning with
linear function approximation, Advances in Neural Information Processing Systems 34
(2021) 1582–1593.

[122] D. Zhou, J. He, and Q. Gu, Provably efficient reinforcement learning for discounted
mdps with feature mapping, in International Conference on Machine Learning,
pp. 12793–12802, PMLR, 2021.

[123] D. Russo and B. Van Roy, Eluder dimension and the sample complexity of optimistic
exploration, Advances in Neural Information Processing Systems 26 (2013).

[124] S. J. Bradtke and A. G. Barto, Linear least-squares algorithms for temporal difference
learning, Machine learning 22 (1996), no. 1 33–57.

[125] J. Tsitsiklis and B. Van Roy, Analysis of temporal-diffference learning with function
approximation, Advances in neural information processing systems 9 (1996).

[126] M. Riedmiller, Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method, in European conference on machine learning,
pp. 317–328, Springer, 2005.

212

[127] J. Fan, Z. Wang, Y. Xie, and Z. Yang, A theoretical analysis of deep q-learning, in
Learning for Dynamics and Control, pp. 486–489, PMLR, 2020.

[128] N. Kallus and M. Uehara, Double reinforcement learning for efficient off-policy
evaluation in markov decision processes., J. Mach. Learn. Res. 21 (2020), no. 167 1–63.

[129] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy, Optimism in reinforcement
learning with generalized linear function approximation, International Conference on
Learning Representations (2021).

[130] W. Xiong, H. Zhong, C. Shi, C. Shen, L. Wang, and T. Zhang, Nearly minimax optimal
offline reinforcement learning with linear function approximation: Single-agent mdp
and markov game, arXiv preprint arXiv:2205.15512 (2022).

[131] L. Li, Y. Lu, and D. Zhou, Provably optimal algorithms for generalized linear
contextual bandits, in International Conference on Machine Learning, pp. 2071–2080,
PMLR, 2017.

[132] J. Schulman, X. Chen, and P. Abbeel, Equivalence between policy gradients and soft
q-learning, arXiv preprint arXiv:1704.06440 (2017).

[133] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, in International
conference on machine learning, pp. 1861–1870, PMLR, 2018.

[134] J. Buckman, C. Gelada, and M. G. Bellemare, The importance of pessimism in
fixed-dataset policy optimization, arXiv preprint arXiv:2009.06799 (2020).

[135] R. Munos, Error bounds for approximate value iteration, in Proceedings of the
National Conference on Artificial Intelligence, vol. 20, p. 1006, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[136] R. Munos, Performance bounds in l_p-norm for approximate value iteration, SIAM
journal on control and optimization 46 (2007), no. 2 541–561.

[137] Z. Zhang, J. Yang, X. Ji, and S. S. Du, Improved variance-aware confidence sets for
linear bandits and linear mixture mdp, Advances in Neural Information Processing
Systems 34 (2021).

[138] V. Mai, K. Mani, and L. Paull, Sample efficient deep reinforcement learning via
uncertainty estimation, International Conference on Learning Representations (2022).

[139] Y. Wu, S. Zhai, N. Srivastava, J. Susskind, J. Zhang, R. Salakhutdinov, and H. Goh,
Uncertainty weighted actor-critic for offline reinforcement learning, International
Conference on Machine Learning (2021).

213

[140] T. Nguyen-Tang and R. Arora, Provably efficient neural offline reinforcement learning
via perturbed rewards, .

[141] T. Xu and Y. Liang, Provably efficient offline reinforcement learning with
trajectory-wise reward, arXiv preprint arXiv:2206.06426 (2022).

[142] C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu, Reward-free exploration for
reinforcement learning, in International Conference on Machine Learning,
pp. 4870–4879, PMLR, 2020.

[143] N. Jiang and L. Li, Doubly robust off-policy value evaluation for reinforcement
learning, in Proceedings of the 33rd International Conference on International
Conference on Machine Learning-Volume 48, pp. 652–661, JMLR. org, 2016.

[144] S. Madhow, D. Xiao, M. Yin, and Y.-X. Wang, Offline policy evaluation for
reinforcement learning with adaptively collected data, arXiv preprint
arXiv:2306.14063 (2023).

[145] T. Nguyen-Tan, M. Yin, S. Gupta, S. Venkates, and R. Arora, On instance-dependent
bounds for offline reinforcement learning with linear function approximation,
Association for the Advancement of Artificial Intelligence, (2023).

[146] N. L. Kuang, M. Yin, M. Wang, Y.-X. Wang, and Y.-A. Ma, Posterior sampling with
delayed feedback for reinforcement learning with linear function approximation, arXiv
preprint arXiv:2310.18919 (2023).

[147] D. Qiao, M. Yin, M. Min, and Y.-X. Wang, Sample-efficient reinforcement learning
with loglog(t) switching cost, International Conference on Machine Learning, (2022).

[148] D. Qiao, M. Yin, and Y.-X. Wang, Logarithmic switching cost in reinforcement
learning beyond linear mdps, arXiv preprint arXiv:2302.12456 (2023).

[149] C. Liu, M. Yin, and Y.-X. Wang, No-regret linear bandits beyond realizability, arXiv
preprint arXiv:2302.13252 (2023).

[150] S. Feng, M. Yin, R. Huang, Y.-X. Wang, J. Yang, and Y. Liang, Non-stationary
reinforcement learning under general function approximation, arXiv preprint
arXiv:2306.00861 (2023).

[151] S. Feng, M. Yin, Y.-X. Wang, J. Yang, and Y. Liang, Model-free algorithm with
improved sample efficiency for zero-sum markov games, arXiv preprint
arXiv:2308.08858 (2023).

[152] J. Li, E. Zhang, M. Yin, Q. Bai, Y.-X. Wang, and W. Y. Wang, Offline reinforcement
learning with closed-form policy improvement operators, NeurIPS workshop in Offline
RL, (2022).

214

[153] W. Chen, M. Yin, M. Ku, E. Wan, X. Ma, J. Xu, T. Xia, X. Wang, and P. Lu,
Theoremqa: A theorem-driven question answering dataset, arXiv preprint
arXiv:2305.12524 (2023).

[154] K. Zhang, M. Yin, and Y.-X. Wang, Why quantization improves generalization: Ntk of
binary weight neural networks, arXiv preprint arXiv:2206.05916 (2022).

[155] R. I. Brafman and M. Tennenholtz, R-max-a general polynomial time algorithm for
near-optimal reinforcement learning, Journal of Machine Learning Research 3 (2002),
no. Oct 213–231.

[156] T. Jung and P. Stone, Gaussian processes for sample efficient reinforcement learning
with rmax-like exploration, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 601–616, Springer, 2010.

[157] F. Chung and L. Lu, Concentration inequalities and martingale inequalities: a survey,
Internet Mathematics 3 (2006), no. 1 79–127.

[158] P. D. Sampson and P. Guttorp, Nonparametric estimation of nonstationary spatial
covariance structure, Journal of the American Statistical Association 87 (1992),
no. 417 108–119.

[159] J. A. Tropp, User-friendly tail bounds for sums of random matrices, Foundations of
computational mathematics 12 (2012), no. 4 389–434.

[160] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, Improved algorithms for linear stochastic
bandits, in Advances in Neural Information Processing Systems, pp. 2312–2320, 2011.

[161] H. Chernoff et. al., A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations, The Annals of Mathematical Statistics 23 (1952), no. 4
493–507.

[162] K. Sridharan, A gentle introduction to concentration inequalities, Dept. Comput. Sci.,
Cornell Univ., Tech. Rep (2002).

[163] A. Maurer and M. Pontil, Empirical bernstein bounds and sample variance
penalization, Conference on Learning Theory (2009).

[164] J. Tropp et. al., Freedman’s inequality for matrix martingales, Electronic
Communications in Probability 16 (2011) 262–270.

215

	Curriculum Vitae
	Abstract
	List of Symbols
	Introduction
	On the Instance-dependent Tabular Offline Reinforcement Learning
	Preliminaries for Offline Reinforcement Learning
	Instrinsic Offline Reinforcement Learning Bound and Adaptive Pessimistic Value Iteration
	Towards Assumption-Free Offline RL
	Sketch of the Analysis for APVI
	Conclusion

	Near-optimal Offline Reinforcement Learning with Linear Representation
	Motivation and Related Prior Works
	Preliminaries for Linear Markov Decision Processes
	Algorithm and Main Results
	Proof Overview
	Conclusion

	Provably Efficient Offline Reinforcement Learning with Differentiable Function Approximation
	Introduction, Related Work, and Our Contribution
	Preliminaries
	Differentiable Function Approximation is Provably Efficient
	Improved Learning via Variance Awareness
	Conclusion

	Conclusions and Summary
	Supplementary Material in Chapter 2
	Proof of VPVI (Theorem 2.2.1)
	Proof of Assumption-Free Offline Reinforcement Learning (Theorem 2.3.1)
	Proof of Theorem 2.2.2
	Discussions and missing derivations in Section 2.2

	Supplementary Material in Chapter 3
	Proofs in Section 3.3.2
	Proof of Theorem 3.3.2
	Proof of Minimax Lower bound Theorem 3.3.4
	Some missing derivations and discussions
	Related Concentration Results and Decompositions

	Supplementary Material in Chapter 4
	Further Illustration that Generalized Linear Model Example satisfies 4.2.3
	On the computational complexity
	Some basic constructions
	Analyzing |Ph "019AVh+1(s,a)-"019APh"019AVh+1(s,a)| for PFQL.
	Proof of Theorem 4.3.2
	Provable Efficiency by reduction to General Function Approximation
	With positive Bellman completeness coefficient F>0
	VFQL and its analysis
	Proofs for VAFQL
	The lower bound
	Helpful Results

	Assisting lemmas
	Bibliography

