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ABSTRACT 
 

We present the ambient ozone and relevant observed trace gas dataset in Seoul, South Korea, during the Megacity Air 
Pollution Studies (MAPS)-Seoul field campaign from May to June of 2015 (MAPS-Seoul 2015). We observed two 
distinctive periods, one with higher and the other with lower daytime ozone levels despite mostly clear conditions for both 
periods. The importance of peroxy radical contributions to excess ozone production is illustrated by the substantial 
differences in the Leighton constant (Φ) for the two periods. Moreover, higher levels of hydroxyl radical (OH) reactivity (s–1) 
were observed during the high ozone episode compared to the low ozone episode by as much as ~5 s–1. The contributions 
of nitrogen oxides (NOx) to OH reactivity become less important than those of volatile organic compounds (VOCs) during 
the high ozone episode, which suggests the NOx saturated ozone production regime. It was also notable that the biogenic 
VOC isoprene consistently contributed the most to OH reactivity from among the observed VOCs during the afternoon 
throughout the whole field campaign. Finally, we ran multiple box model scenarios to evaluate the ozone production rates 
of three different air mixtures: a high ozone mixture, a low ozone mixture, and a simulation of the regional air quality. The 
results indicate that the total OH reactivity levels and the relative contributions of VOCs to NOx play critical roles in ozone 
production rates. The simulated air quality mixture results in lower OH reactivity, causing lower ozone production rates 
than those calculated for the high ozone mixture, which clearly indicates the need for further improvements in the regional 
model to accurately simulate ozone precursors in the region. The results of this study suggest that a comprehensive trace 
gas dataset combined with observations of the OH reactivity enables us to properly diagnose the photochemistry behind 
ozone pollution, leading to effective ozone abatement policies. 
 
Keywords: Ozone; Leighton Constant; OH reactivity; Ozone production regime. 
 
 
 
INTRODUCTION 

 
Tropospheric ozone, a photochemical byproduct, is a 

reactive gas that maintains tropospheric oxidation capacity  
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by producing O(1D) from photolysis. The minor fraction of 
O(1D) reacts with water vapor to produce hydroxyl radical 
(OH), a universal oxidant (Levy, 1971). Thus, it is vital to 
maintain adequate ozone levels so that it can generate OH 
to remove potential toxic gases such as carbon monoxide 
(CO) and methane (CH4) from the troposphere. In the 
1940s, excessive ozone production from pollutants such as 
reactive nitrogen oxide (NOx = NO + NO2) and volatile 
organic compounds was first identified at levels that could 
exacerbate human health and negatively impact crop yields 
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(Blacet, 1952; Haagen-Smit, 1952). Among the various 
emission sources, automobiles with internal combustion 
engines were highlighted as the main cause of the ozone 
pollution problem. In this sense, it is not surprising that an 
ozone pollution outbreak was first reported in Southern 
California in the city of Los Angeles (Haagen-Smit, 1952).  

A simplified schematic of tropospheric photochemistry 
is illustrated in Fig. 1. The NO and NO2 reaction cycle can 
be considered a catalyst while peroxy radicals (hydrogen 
peroxy and organic peroxy radicals, denoted as HO2 and 
RO2, respectively) fuel the production of excess ozone since 
the NOx catalytic cycle involves a reaction that destroys 
ozone (R1).  

 
NO + O3 → NO2 + O3 (R1) 
 
NO2 + hν → NO + O (R2) 
 
O2 + O + M → O3 + M (R3) 
 
where M is the third body such as N2 or O2. 
 
NO + HO2 or RO2 → NO2 + OH or RO (R4) 
 
OH + NO2 + M → HNO3 + M (R5) 
 
HO2 + HO2 + M → H2O2 + O2 + M (R6) 
 
HO2 + RO2 → ROOH + O2 + M (R7) 
 

Early studies examining relationships between NOx and 
ozone in urban environments in Southern California have 
consistently reported that a series of reactions—R1, R2, and 
R3—present a null cycle. This indicates that NO oxidation 
is mostly followed by the reaction with ozone (R1) rather 
than HO2 or RO2 (Calvert, 1976; Ridley et al., 1992). In 
this case, the Leighton constant (Φ) becomes a unity.  
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On the other hand, once NO oxidation by peroxy radical 

becomes prominent (e.g., R4), the Leighton constant 
becomes higher than 1. Therefore, the Leighton constant 
allows us to gauge a relative importance of peroxy radical 
chemistry in the local photochemical system, specifically 
in ozone production (Parrish et al., 1986; Crawford et al., 
1996; Griffin et al., 2007).  

The different roles of NOx and VOCs in ozone 
photochemistry causes nonlinearity in ozone formation. 
For example, if NOx emissions are much greater than VOC 
emissions, ozone formation might not be as efficient as R5 
becomes the more effective radical and NOx sink. On the 
other hand, in an environment where VOC emissions are 
relatively higher than NOx emissions, peroxy radicals would 
not be able to effectively oxidize NO, and instead react with 
themselves (R6 and R7). The nonlinear nature became the 
guiding principle in establishing an effective ozone 
abatement policy (Seinfeld, 1989).  

In this study, we will examine an observational dataset 
relevant to ozone photochemistry collected in the late spring 
of 2015 during MAPS-2015 study in Seoul, South Korea 
(May 15–June 15, 2015). The analysis highlights the main 
causes of ozone pollution in this specific megacity 
environment and provides a diagnostic tool set that can be 
applied to other photochemical environments. 

 
METHODS 
 
Research Site 

The research site was established at Korea Institute of 
Science and Technology (KIST, Latitude: 37°36′10.4544′′ 
and longitude: 127°2′46.0284′′). The research site was 
established on elevated ground with no direct adjacent

 

 
Fig. 1. Simplified schematics of tropospheric ozone photochemistry. 
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traffic influence. The major road is around 300 m away to 
the northeastern side of the site. Otherwise, the site is 
surrounded by a forested area, as shown in Fig. 2. The site 
is located ~5 km away from the city center of Seoul. The 
population of the Seoul Metropolitan Area (SMA) is 
~25 million (2010 Government Census), which composes 
48.9% of population of South Korea. The population 
density of the SMA is 16,700 people per 1 km2, the densest 
among the cities of the countries affiliated in Organization 
for Economic Cooperation and Development (OECD). 

 
Observations 

The analytic methods, uncertainty and limit of detection 
of the species discussed in this manuscript are summarized 
in Table 1. Most of the observations were conducted by 

utilizing commercially available instruments except for the 
speciated VOC analysis and OH reactivity observations. 
The VOC analysis was conducted by canister samplings. 
The sampling frequency was twice per day consistently at 
10 a.m. and 4 p.m. local time for a total of 24 total samples. 
A two-liter stainless steel canister with electropolished 
inner layer was utilized for sampling. Each canister was 
evacuated in the lab with proper pre-treatment for ambient 
sampling before it was sent out to the field site (Colman et 
al., 2001). While it was sampled, extra care was taken to 
avoid any local contamination sources by directing inlet to 
upwind and carefully observing any potential contamination 
sources such as smoking or local traffic. The VOC analysis 
was conducted at the University of California, Irvine, 
immediately after the field campaign using a gas

 

 
Fig. 2. A satellite image (Google Earth) of SMA with a magnified view on the monitoring site. 

 

Table 1. A summary of analytical principles and characteristics of presented observables. 

Observables Manufacturer and model number Uncertainty 
Lower limit 
of detection

CO Thermo Scientific 48i TLE 10% 40 ppb 
NOx Thermo Scientific 42i-TL with a photolysis converter 15% 50 ppt 
SO2 Thermo Scientific 43i-TLE 10% 50 ppt 
Ozone Thermo Scientific 49i 5% < 1ppb 
VOCs Whole air sample with GC analysis (at UCI)   
OH Reactivity Custom Built 15% 3 s–1 
Meteorological parameters LSI LASTEM meteorological sensors N/A  
JNO2 Total Ultraviolet Radiometer, The Eppley Laboratory, Inc. 10%  
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chromatographic system equipped with five different column-
detector combinations including two flame ionization 
detectors, two electron capture detectors and one mass 
spectrometer. Details on the analytical system can be 
found in Colman et al. (2001). OH reactivity was observed 
using a chemical ionization mass spectrometer-comparative 
reactivity (CIMS-CRM) system. The analytical principle is 
well described in Kim et al. (2016) and Sanchez et al. 
(2018). Analytical methods and their characteristics applied 
for other presented trace gas observations in this study is 
summarized in Table 1.  
 
Box Model 

The Framework for 0-D Atmospheric Modeling (F0AM 
v 3.1) (Wolfe et al., 2016) is used to evaluate ozone 
formation potential from different mixtures of trace gases 
for periods representing high (Period I; dashed red box in 
Fig. 3) and moderate (Period II; dashed blue box in Fig. 3) 
ozone episodes. The box-model framework was incorporated 
with the Master Chemical Mechanism (MCM v 3.3.1) that 
includes near-explicit VOC oxidation mechanisms (Jenkin 
et al., 2015). The F0AM (previously named University of 
Washington Chemistry Model) has been used for exploring 
ozone and radical productions in several previous studies 
(Kim et al., 2013; Kim et al., 2015). The goal of the model 
analysis in this study was to mimic a chamber experiment 
by constraining each reaction step with field observations 
and investigate the production of ozone. A total of 41 

VOCs, presented in Kim et al. (2016) and other trace gases 
(i.e., CO, NO, NO2) measured at 4 p.m. local time were 
averaged for low and high ozone episodes during the 
campaign and constrained in the model. The photolysis 
rate constants were scaled based on measured JNO2.  
 
RESULTS AND DISCUSSION 
 

The temporal variations of trace gases relevant to ozone 
photochemistry is shown in Fig. 3. As described in Kim et 
al. (2016), the regional traffic emission causes consistently 
high NOx. The concentrations of most criteria pollutants 
are comparable to levels reported from Tokyo, Japan, and 
lower than levels reported from cities in China (Beijing, 
Tianjin, and Shanghai) (Kim et al., 2016). In terms of 
particulate pollution, the study period is considered less 
polluted compared to previous years (Lee et al., 2017). 
Nonetheless, ozone during the study period was at higher 
levels than what is considered healthy for children, elderly, 
and other susceptible individuals. The South Korean 
federal government has set their ozone attainment level at 
60 ppb over an eight-hour average and 100 ppb for a one-
hour average. In Fig. 3, the 100 ppb limit is shown by a 
dashed line over the ozone temporal variation. There are 
7 days where the ozone concentration exceeds 100 ppb in 
considerable duration (e.g., more than an hour). 

Fig. 4 depicts the average diurnal variations of relevant 
parameters during high (Period I) and moderate (Period II)

 

 
Fig. 3. The temporal variations of CO, SO2, NO, NO2, and ozone during the MAPS-Seoul 2015 field campaign. Two 
distinctive periods with high ozone (red) and low ozone (blue) are shown as the dashed boxes among the mostly clear days. 
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Fig. 4. The diurnal variations of trace gases for high ozone (Period I in red) and low ozone (Period II in blue) periods. The 
specific dates considered for statistics are shown in Fig. 1.  

 

ozone pollution episodes. The specific dates considered for 
the diurnal variations are in dashed red (Period I) and blue 
(Period II) boxes in Fig. 3. We observed higher levels of 
relatively long-lived pollutants such as CO and SO2 during 
Period I. The NOx (NO and NO2) levels do not show 
systematic differences during ozone’s daily maximum in 
the afternoon. Systematically higher levels of JNO2 were 
observed during Period II, although temperature appeared 
consistently higher during Period I that will cause a higher 
rate constant for R1. In summary, it is not entirely clear 
whether any one parameter triggered the observed high ozone 
episodes as both JNO2 and k1 are direct input parameters for 
the calculation of the Leighton constant (E1).  

The temporal variations of ozone and the Leighton 
constant are presented in Fig. 5(a). There are significant 
differences in the Leighton constant between Period I and 
Period II. The average diurnal variations of the Leighton 
constant of Period I and Period II are shown in Fig. 5(b). The 
calculated constant is conspicuously higher during Period I, 
confirming the systematic differences. These differences 
are especially pronounced during the afternoon. Fig. 5(c) 
demonstrates linear correlation between the Leighton constant 
and ozone between 1:00 p.m. and 3:00 p.m., local time. A 
general tendency that higher NO2 positively correlates with 
the higher Leighton constant is observed from the color-
coded data point by NOx mixing ratios in a given ozone 
concentration bin. Considering the nonlinear nature of 
ozone tropospheric photochemistry, it is difficult to attribute a 
single reason behind this correlation. Nonetheless, the 
Leighton constant tends to be higher when peroxy radials 
become a dominant oxidant for the NO to NO2 conversion, 

leading to a net ozone production. From the OH radical 
recycling perspective, reactions between OH and NO2 
would act as a sink to both NOx and HOx. However, 
reactions between OH and CO or VOCs lead to OH recycling 
and ozone production in high NOx environments, such as 
this study location (Fig. 1). Consequently, OH reactivity 
should also have a direct impact in the ozone production 
regime. Kirchner et al. (2001), proposed that the OH 
reactivity ratio of VOCs and NOx is a better predictor of 
the ozone production regime (NOx-limited or VOC limited 
regimes) than the concentration-based metrics. Sinha et al. 
(2012) supported this notion and proposed that OH reactivity 
measurements be used as a tool for assessing ozone 
production rates and informing ozone abatement policies.  

The observed OH reactivity indicates that, on average, 
NOx was the dominant contributor to the calculated OH 
reactivity from the trace gas observational dataset. NOx 
contributed as much as 55% in the morning and 43% in the 
afternoon (Kim et al., 2016). VOCs contributed 33% and 
39% in the morning and afternoon, respectively, to the 
calculated OH reactivity during the study period. The 
biggest contributor to OH reactivity in the afternoon (47%) 
among the observed VOCs was isoprene, a biogenically 
emitted VOC (BVOC). Fig. 6 depicts the diurnal variations 
of observed and calculated OH reactivity from Periods I 
and II. The total calculated OH reactivity, including VOCs, 
is represented by blue star markers for each period. The 
markers are only presented at 4 p.m. local standard time 
when the VOC samplings were conducted. Although the 
total calculated OH reactivity accounts for the observed 
OH reactivity in the afternoon within the analytical
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Fig. 5. (a) Temporal variation of ozone and the Leighton constant (Φ) during the MAPS-2015 Seoul field campaign. The 
dashed blue line shows ozone levels at 100 ppb (b) the diurnal variations of the Leighton constant (Φ) for Period I (red) 
and Period II (blue), and (c) correlation between the Leighton constant (Φ) and ozone for the time between 13:00 and 
15:00 local standard time. Each data point is color coded by NOx mixing ratios. 

 

uncertainty, there are some distinctive differences between 
Periods I and II. First, higher levels of OH reactivity were 
observed in the afternoon (~33%) during Period I compared 
to Period II. The criteria pollutants (CO, NOx, O3, and 
SO2) contributed to 70% of the calculated OH reactivity 
during Period II and 61% during Period I. In contrast, the 
VOC contribution to the calculated OH reactivity is assessed 
much higher during Period I (39%) then that (30%) of 
Period II as shown in one data point at 4 p.m. local time in 
Fig. 6. Regardless of these differences, the relative 
contributions from the VOC class to OH reactivity have a 
similar distribution (Fig. 7). In both cases, BVOCs, mostly 
isoprene, contribute the most to the VOC reactivity. There 
are some noticeable differences in contributions to calculated 
OH reactivity from aromatics and OVOCs in two periods. 
The differences are collectively evaluated in a box model 
simulation exercise presented below. In addition, a detailed 
description on VOC speciation observed during the campaign 
can be found in Kim et al. (2016).  

Kim et al. (2016) also presented a regional model (a 
nested GEOS-Chem framework) that estimated OH 
reactivity. In general, the model simulated OH reactivity 

was significantly lower than observed (~30%). NOx and 
VOCs were estimated to contribute to 34% and 55% of the 
total OH reactivity, respectively, resembling the relative 
contributions in Period I. We ran multiple box-model 
simulations to evaluate ozone production potential of three 
different air mixtures—Period I, Preiod II, and the regional 
model products. The simulation results are presented in 
Fig. 8. As expected, the air mixture from Period I produces 
more ozone during the three-hour time scale (Fig. 8(a)). 
The time evolution of ozone from the model simulation of 
the GEOS-Chem simulated air mixture followed the pattern 
of the air mixture simulation for Period I, but with a smaller 
increment. This makes sense as relative contributions to OH 
reactivity from NOx and VOCs are similar for both air 
mixtures. However, the total trace gas reactivity is assessed to 
be smaller in the air mixture simulated by GEOS-Chem. 
On the other hand, the simulated ozone temporal evolution 
for the air mixture of Period II indicates a different 
pattern—steady state is quickly achieved with rapid initial 
ozone production. These differences can be examined 
further with the simulated net ozone production rates 
illustrated in Fig. 8(b). The Period II air mixture shows a
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Fig. 6. The diurnal averages of observed and calculated OH reactivity during (a) Period I and (b) Period II. The Blue starts 
notate calculated OH reactivity including OH reactivity calculated from the VOC observations, conducted 4 pm at the 
local time. 

 

 
Fig. 7. OH reactivity contributions from different classes of VOCs for (a) Period I and (b) Period II (OVOCs notate 
oxygenated VOCs). 
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Fig. 8. Box model simulations of (a) ozone production and (b) net ozone production rates using different air mixtures. A 
detailed description of the different model scenarios is found in the text. 

 

rapid initial net ozone production followed by a rapid 
decrease in ozone production. However, the mixtures of 
Period I and the regional model simulation illustrate more 
sustained net ozone production rates. The outcomes reflect 
different roles of NOx and VOCs in photochemistry. In the 
beginning of Period II, the relatively high contribution of 
NO2 to OH reactivity generates more ozone but the role of 
peroxy radicals from VOC oxidation become more important 
in ozone production as time progresses. Therefore, the model 
simulations with more relative contributions from VOCs to 
their calculated OH reactivity suggest there is more 
sustained ozone production under these scenarios. These 
modeling exercises clearly demonstrate the importance of 
considering the relative contributions of NOx and VOCs to 
OH reactivity in order to assess ozone production potential.  

 
SUMMARY AND CONCLUSION 
 

We examined the photochemistry of high ozone episodes 
in Seoul, South Korea, during the MAPS campaign of 
spring 2015. The Leighton constant was consistently assessed 
at higher levels (> 4) during the active photochemistry 
period (1–5 p.m. local time) compared to days with lower 
ozone concentrations under similar physical conditions, 
e.g., in terms of temperature and solar radiation. The 
comparisons of OH reactivity between higher and lower 
ozone episodes illustrate that the high ozone episode is 

associated with higher observed OH reactivity. Moreover, 
during this period, the contribution from VOCs to the OH 
reactivity is higher than that from NOx. Indeed, the box 
model simulation results clearly indicate higher ozone 
production for the air mixture with higher OH reactivity 
and higher VOC contributions to that reactivity, which is 
consistent with ambient ozone observations. A previous 
study (Kim et al., 2016) shows that a regional model 
underestimates the OH reactivity but slightly overestimates 
the relative contribution from VOCs to OH reactivity. The 
box model simulation with this air mixture results in ozone 
production behaviors that substantially differ from those in 
the observationally constrained box model outcomes, which 
highlights the importance of improving model performance 
for the proper diagnosis and prediction of regional ozone 
production and transport. Overall, this observationally 
constrained analysis demonstrates that VOCs are a limiting 
factor in ozone production in SMA. Consequently, the 
proposed NOx-abatement policy may increase ozone 
production in the beginning as the sustained influence of 
BVOCs is uncontrollable (Carlton et al., 2010); however, 
policy makers should not hesitate to implement this plan. 
Rather, this study urges aggressive NOx abatement in order 
to significantly reduce ozone production. The reduction in 
NOx will also help to reduce tropospheric oxidation 
capacity, which positively correlates secondary aerosol 
production (Palm et al., 2018). 
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