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RESEARCH ARTICLE
◥

ECONOMICS

Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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and ethnic identities. Our main sample thus
consisted of (i) 6079patientswho self-identified
as Black and (ii) 43,539 patients who self-
identified as White without another race or
ethnicity, whom we observed over 11,929 and
88,080 patient-years, respectively (1 patient-
year represents data collected for an indivi-
dual patient in a calendar year). The sample
was 71.2% enrolled in commercial insurance
and 28.8% in Medicare; on average, 50.9 years
old; and 63% female (Table 1).
For these patients, we obtained algorith-

mic risk scores generated for each patient-
year. In the health system we studied, risk
scores are generated for each patient during
the enrollment period for the system’s care
management program. Patients above the
97th percentile are automatically identified
for enrollment in the program. Those above
the 55th percentile are referred to their pri-
mary care physician, who is provided with
contextual data about the patients and asked
to consider whether they would benefit from
program enrollment.
Many existing metrics of algorithmic bias

may apply to this scenario. Some definitions
focus on calibration [i.e., whether the realized
value of some variable of interest Y matches
the risk score R (2, 22, 23)]; others on statis-
tical parity of some decision D influenced by
the algorithm (10); and still others on balance
of average predictions, conditional on the real-
ized outcome (22). Given this multiplicity and
the growing recognition that not all condi-
tions can be simultaneously satisfied (3, 10, 22),
we focus on metrics most relevant to the real-
world use of the algorithm, which are related
to calibration bias [formally, comparing Blacks
B and WhitesW, E½Y jR;W � ¼ E½Y jR;B� indi-
cates the absence of bias (here, E is the ex-
pectation operator)]. The algorithm’s stated
goal is to predict complex health needs for the
purpose of targeting an intervention that
manages those needs. Thus, we compare the
algorithmic risk score for patient i in year t
(Ri,t), formed on the basis of claims data Xi,(t−1)
from the prior year, to data on patients’ real-
ized health Hi,t, assessing how well the algo-
rithmic risk score is calibrated across race for
health outcomesHi,t. We also ask howwell the
algorithm is calibrated for costs Ci,t.
To measureH, we link predictions to a wide

range of outcomes in electronic health record
data, including all diagnoses (in the form of
International Classification of Diseases codes)
as well as key quantitative laboratory studies
and vital signs capturing the severity of chro-
nic illnesses. To measure C, we link predictions
to insurance claims data on utilization, includ-
ing outpatient and emergency visits, hospital-
izations, and health care costs. These data, and
the rationale for the specific measures of H
used in this study, are described inmore detail
in the supplementary materials.

Health disparities conditional on risk score
We begin by calculating an overall measure of
health status, the number of active chronic
conditions [or “comorbidity score,” a metric
used extensively in medical research (24) to
provide a comprehensive view of a patient’s
health (25)] by race, conditional on algorith-
mic risk score. Fig. 1A shows that, at the same
level of algorithm-predicted risk, Blacks have
significantly more illness burden thanWhites.
We can quantify these differences by choosing
one point on the x axis that corresponds to

a very-high-risk group (e.g., patients at the
97th percentile of risk score, at which patients
are auto-identified for program enrollment),
where Blacks have 26.3% more chronic ill-
nesses than Whites (4.8 versus 3.8 distinct
conditions; P < 0.001).
What do these prediction differences mean

for patients? Algorithm scores are a key input
to decisions about future enrollment in a care
coordination program. So as we might expect,
with less-healthy Blacks scored at similar risk
scores to more-healthy Whites, we find evidence
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Table 1. Descriptive statistics on our sample, by race. BP, blood pressure; LDL, low-density
lipoprotein.

White Black

n (patient-years) 88,080 11,929
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

n (patients) 43,539 6079
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Demographics
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Age 51.3 48.6
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Female (%) 62 69
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care management program
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Algorithm score (percentile) 50 52
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Race composition of program (%) 81.8 18.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care utilization
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Actual cost $7540 $8442
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospitalizations 0.09 0.13
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospital days 0.50 0.78
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Emergency visits 0.19 0.35
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Outpatient visits 4.94 4.31
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Mean biomarker values
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

HbA1c (%) 5.9 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Systolic BP (mmHg) 126.6 130.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diastolic BP (mmHg) 75.5 75.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Creatinine (mg/dl) 0.89 0.98
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hematocrit (%) 40.7 37.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

LDL (mg/dl) 103.4 103.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Active chronic illnesses (comorbidities)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Total number of active illnesses 1.20 1.90
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypertension 0.29 0.44
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, uncomplicated 0.08 0.22
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arrythmia 0.09 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypothyroid 0.09 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Obesity 0.07 0.18
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Pulmonary disease 0.07 0.11
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Cancer 0.07 0.06
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Depression 0.06 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Anemia 0.05 0.10
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arthritis 0.04 0.04
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Renal failure 0.03 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Electrolyte disorder 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart failure 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Psychosis 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Valvular disease 0.03 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Stroke 0.02 0.03
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Peripheral vascular disease 0.02 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, complicated 0.02 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart attack 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Liver disease 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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of substantial disparities in program screening.
We quantify this by simulating a counterfactual
world with no gap in health conditional on
risk. Specifically, at some risk threshold a, we
identify the supramarginal White patient (i)
with Ri > a and compare this patient’s health
to that of the inframarginal Black patient ( j )
with Rj < a. IfHi >Hj , as measured by number
of chronic medical conditions, we replace the
(healthier, but supramarginal) White patient
with the (sicker, but inframarginal) Black patient.
We repeat this procedure until Hi = Hj, to
simulate an algorithm with no predictive gap
between Blacks and Whites. Fig. 1B shows the
results: At all risk thresholds a above the 50th
percentile, this procedure would increase the
fraction of Black patients. For example, at a =
97th percentile, among those auto-identified
for the program, the fraction of Black patients
would rise from 17.7 to 46.5%.
We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’
health status, as measured by biomarkers that
index the severity of the most common chro-
nic illnesses in our sample (as shown inTable 1).
This allows us to identify patients who might
derive a great deal of benefit from care man-
agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-
plications if they do not lower their blood sugar
(18, 26). (The materials and methods section
describes several experiments to rule out a large
effect of the program on these health measures
in year t; had there been such an effect, we
could not easily use the measures to assess the
accuracy of the algorithm’s predictions onhealth,
because the program is allocated as a function
of algorithm score.) Across all of these impor-
tant markers of health needs—severity of diabe-
tes, highbloodpressure, renal failure, cholesterol,
and anemia—we find that Blacks are substan-
tially less healthy than Whites at any level of
algorithmpredictions, as shown in Fig. 2. Blacks
havemore-severe hypertension, diabetes, renal
failure, and anemia, and higher cholesterol.
Themagnitudes of these differences are large:
For example, differences in severity of hyper-
tension (systolic pressure: 5.7 mmHg) and
diabetes [glycated hemoglobin (HbA1c): 0.6%]
imply differences in all-causemortality of 7.6%
(27) and 30% (28), respectively, calculatedusing
data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we
observe the algorithm’s inputs and outputs

as well as its objective function, providing us
a unique window into the mechanisms by
which bias arises. In our setting, the algorithm
takes in a large set of raw insurance claims
data Xi,t−1 (features) over the year t − 1: demo-
graphics (e.g., age, sex), insurance type, diag-
nosis and procedure codes, medications, and
detailed costs. Notably, the algorithm specifi-
cally excludes race.
The algorithm uses these data to predict Yi,t

(i.e., the label). In this instance, the algorithm
takes total medical expenditures (for simplic-
ity, we denote “costs” Ct) in year t as the label.
Thus, the algorithm’s prediction on health
needs is, in fact, a prediction on health costs.
As a first check on this potential mechanism

of bias, we calculate the distribution of real-
ized costs C versus predicted costs R. By this
metric, one could call the algorithm unbiased.
Fig. 3A shows that, at every level of algorithm-
predicted risk, Blacks andWhites have (rough-
ly) the same costs the following year. In other
words, the algorithm’s predictions are well cal-
ibrated across races. For example, at the med-
ian risk score, Black patients had costs of $5147
versus $4995 for Whites (U.S. dollars); in the
top 5% of algorithm-predicted risk, costs were
$35,541 for Blacks versus $34,059 for Whites.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,
by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario
that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The × symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black
line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).

RESEARCH | RESEARCH ARTICLE
on F

ebruary 12, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



Because these programs are used to target
patients with high costs, these results are large-
ly inconsistent with algorithmic bias, as mea-
sured by calibration: Conditional on risk score,
predictions do not favor Whites or Blacks any-
where in the risk distribution.
To summarize, we find substantial disparities

in health conditional on risk but little disparity
in costs. On the one hand, this is surprising:
Health care costs and health needs are highly
correlated, as sicker patients need and receive
more care, on average. On the other hand, there
aremany opportunities for awedge to creep in
between needing health care and receiving
health care—and crucially, we find that wedge
to be correlated with race, as shown in Fig. 3B.
At a given level of health (again measured by
number of chronic illnesses), Blacks generate
lower costs thanWhites—on average, $1801 less
per year, holding constant the number of chron-
ic illnesses (or $1144 less, if we instead hold
constant the specific individual illnesses that
contribute to the sum). Table S2 also shows
that Black patients generate very different
kinds of costs: for example, fewer inpatient
surgical and outpatient specialist costs, and
more costs related to emergency visits and
dialysis. These results suggest that the driv-
ing force behind the bias we detect is that
Black patients generate lesser medical ex-
penses, conditional on health, even when we
account for specific comorbidities. As a re-
sult, accurate prediction of costs necessarily
means being racially biased on health.
How might these disparities in cost arise?

The literature broadly suggests two main po-
tential channels. First, poor patients face sub-
stantial barriers to accessing health care, even
when enrolled in insurance plans. Although
the population we study is entirely insured,
there are many other mechanisms by which
poverty can lead to disparities in use of health
care: geography and differential access to trans-
portation, competing demands from jobs or
child care, or knowledge of reasons to seek care
(29–31). To the extent that race and socioeco-
nomic status are correlated, these factors will
differentially affect Black patients. Second, race
could affect costs directly via several channels:
direct (“taste-based”) discrimination, changes
to the doctor–patient relationship, or others. A
recent trial randomly assigned Black patients
to a Black or White primary care provider and
found significantly higher uptake of recom-
mended preventive carewhen the provider was
Black (32). This is perhaps the most rigorous
demonstration of this effect, and it fits with a
larger literature on potential mechanisms by
which race can affect health care directly. For
example, it has long been documented that
Black patients have reduced trust in the health
care system (33), a fact that some studies trace
to the revelations of the Tuskegee study and
other adverse experiences (34). A substantial

literature in psychology has documented phys-
icians’differential perceptions of Black patients,
in terms of intelligence, affiliation (35), or pain
tolerance (36). Thus, whether it is communi-
cation, trust, or bias, something about the inter-
actions of Black patients with the health care
system itself leads to reduced use of health care.
The collective effect of these many channels is
to lower health spending substantially for Black

patients, conditional on need—a finding that has
been appreciated for at least two decades (37).

Problem formulation

Our findings highlight the importance of the
choice of the label on which the algorithm is
trained. On the one hand, the algorithmman-
ufacturer’s choice to predict future costs is rea-
sonable: The program’s goal, at least in part, is
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algorithm-predicted risk, by race. (A to
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show the auto-identification threshold (black
line: 97th percentile) and the screening
threshold (gray line: 55th percentile).
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to reduce costs, and it stands to reason that
patients with the greatest future costs could
have the greatest benefit from the program.
As noted in the supplementary materials,
the manufacturer is not alone. Although the
details of individual algorithms vary, the cost
label reflects the industry-wide approach. For
example, the Society of Actuaries’s compre-
hensive evaluation of the 10 most widely
used algorithms, including the particular al-
gorithm we study, used cost prediction as its
accuracy metric (21). As noted in the report,
the enthusiasm for cost prediction is not
restricted to industry: Similar algorithms are
developed and used by non-profit hospitals,
academic groups, and governmental agen-
cies, and are often described in academic
literature on targeting population health
interventions (18, 19).
On the other hand, future cost is by no

means the only reasonable choice. For exam-
ple, the evidence on care management prog-
rams shows that they do not operate to reduce
costs globally. Rather, these programs primar-
ily work to prevent acute health decompensa-
tions that lead to catastrophic health care
utilization (indeed, they actually work to in-
crease other categories of costs, such as pri-
mary care and home health assistance; see
table S2). Thus avoidable future costs, i.e.,
those related to emergency visits and hospi-

talizations, could be a useful label to predict.
Alternatively, rather than predicting costs
at all, we could simply predict a measure of
health; e.g., the number of active chronic health
conditions. Because the program ultimately
operates to improve the management of these
conditions, patients with the most encoun-
ters related to them could also be a promis-
ing group on which to deploy preventative
interventions.
The dilemma of which label to choose re-

lates to a growing literature on “problem formu-
lation” in data science: the task of turning an
often amorphous concept we wish to predict
into a concrete variable that can be predicted
in a given dataset (38). Problems in health
seem particularly challenging: Health is, by
nature, holistic and multidimensional, and
there is no single, precise way to measure it.
Health care costs, though well measured and
readily available in insurance claims data,
are also the result of a complex aggregation
process with a number of distortions due to
structural inequality, incentives, and ineffi-
ciency. So although the choice of label is
perhaps the single most important decision
made in the development of a prediction al-
gorithm, in our setting and in many others,
there is often a confusingly large array of
different options, each with its own profile
of costs and benefits.

Experiments on label choice
Through a series of experiments with our data-
set, we can gain some insight into how label
choice affects both predictive performance and
racial bias. We develop three new predictive
algorithms, all trained in the same way, to
predict the following outcomes: total cost in
year t (this tailors cost predictions to our own
dataset rather than the national training set),
avoidable cost in year t (due to emergency
visits and hospitalizations), and health in year
t (measured by the number of chronic condi-
tions that flare up in that year). We train all
models in a random ⅔ training set and show
all results only from the ⅓ holdout set. Fur-
thermore, as with the original algorithm, we
exclude race from the feature set (more details
are in the materials and methods).
Table 2 shows the results of these experi-

ments. The first finding is that all algorithms
perform reasonably well for predicting not
only the outcome on which they were trained
but also the other outcomes: The concentra-
tion of realized outcomes in those at or above
the 97th percentile is notably similar for all
algorithms across all outcomes. The largest
difference in performance across algorithms
is seen for cost prediction: Of all costs in the
holdout set, the fraction generated by those
at or above the 97th percentile is 16.5% for the
cost predictor versus 12.1% for the predictor
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of chronic conditions. We then test for label
choice bias, defined analogously to calibra-
tion bias above: For two algorithms trained to
predict Y and Y ', and using a threshold t
indexing a (similarly sized) high-risk group,
we would test p½BjR > t� ¼ p½BjR′ > t� (here,
p denotes probability and B represents Black
patients).
We find that the racial composition of this

highest-risk group varies far more across algo-
rithms: The fraction of Black patients at or
above these risk levels ranges from 14.1% for
the cost predictor to 26.7% for the predictor
of chronic conditions. Thus, although there
could be many reasonable choices of label—
all predictions are highly correlated, and any
could be justified as a measure of patients’
likely benefit from the program—they have
markedly different implications in terms of
bias, with nearly twofold variation in composi-
tion of Black patients in the highest-risk groups.

Relation to human judgment

As noted above, the algorithm is not used for
program enrollment decisions in isolation.
Rather, it is used as a screening tool, in part
to alert primary care doctors to high-risk

patients. Specifically, for patients at or above
a certain level of predicted risk (the 55th per-
centile), doctors are presented with contex-
tual information from patients’ electronic health
records and insurance claims and are promp-
ted to consider enrolling them in the prog-
ram. Thus, realized enrollment decisions largely
reflect how doctors respond to algorithmic
predictions, along with other administrative
factors related to eligibility (for instance, pri-
mary care practice site, residence outside of
a nursing home, and continual enrollment in
an insurance plan).
Table 3 shows statistics on those enrolled in

the program, accounting for 1.3% of observa-
tions in our sample: The enrolled individuals
are 19.2% Black (versus 11.9% Black in our en-
tire sample) and account for 2.9% of all costs
and 3.3% of all active chronic conditions in the
population as a whole. We then perform four
counterfactual simulations to put these num-
bers in context; naturally, these simulations
use only observable factors, not the many un-
observed administrative and human factors
that also affect enrollment. First, we calculate
the realized program enrollment rate within
each percentile of the original algorithm’s pre-

dicted risk bins and randomly sample patients
in each bin for enrollment. This simulation,
which mimics “race-blind” enrollment condi-
tional on algorithm score, would yield an en-
rolled population that is 18.3% Black (versus
19.2% observed; P = 0.8348). Second, rather
than randomly sampling, we sample thosewith
the highest predicted number of active chronic
conditions within a risk bin (using our ex-
perimental algorithm described above); this
would yield a population that is 26.9% Black.
Finally, we compare this to simply assigning
those with the highest predicted costs, or the
highest number of active chronic conditions,
to the program (also using our own algorithms
detailed above), which would yield 17.2 and
29.2% Black patients, respectively. Thus, al-
though doctors do redress a small part of the
algorithm’s bias, they do so far less than an
algorithm trained on a different label.

Discussion

Bias attributable to label choice—the difference
between some unobserved optimal prediction
and thepredictionof an algorithm trained onan
observed label—is a useful framework through
which to understand bias in algorithms, both
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Table 3. Doctors’ decisions versus algorithmic predictions. For those
enrolled in the high-risk care management program (1.3% of our sample),
we first show the fraction of the population that is Black, as well as
the fraction of all costs and chronic conditions accounted for by these
observations. We also show these quantities for four alternative program
enrollment rules, which we simulate in our dataset (using the holdout
set when we use our experimental predictors). We first calculate the program

enrollment rate within each percentile bin of predicted risk from the original
algorithm and either (i) randomly sample patients or (ii) sample those
with the highest predicted number of active chronic conditions within a bin
and assign them to the program. The resultant values are then compared
with values obtained by simply assigning the aforementioned 1.3% of
our sample with (iii) the highest predicted cost or (iv) the highest number
of active chronic conditions to the program.

Population Fraction Black (SE) Fraction of all costs (SE) Fraction of all active chronic conditions (SE)

Observed program enrollment (1.3%) 0.192 (0.003) 0.029 (0.001) 0.033 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Simulated alternative enrollment rules
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Random, in predicted-cost bin 0.183 (0.003) 0.044 (0.002) 0.034 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Predicted health, in predicted-cost bin 0.269 (0.003) 0.044 (0.002) 0.064 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Highest predicted cost 0.172 (0.003) 0.100 (0.002) 0.047 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Worst predicted health 0.292 (0.004) 0.067 (0.002) 0.076 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Table 2. Performance of predictors trained on alternative labels. For each new algorithm, we show the label on which it was trained (rows) and the
concentration of a given outcome of interest (columns) at or above the 97th percentile of predicted risk. We also show the fraction of Black patients
in each group.

Algorithm training
label

Concentration in highest-risk patients (SE) Fraction of Black patients in
group with highest risk (SE)Total costs Avoidable costs Active chronic conditions

Total costs 0.165 (0.003) 0.187 (0.003) 0.105 (0.002) 0.141 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Avoidable costs 0.142 (0.003) 0.215 (0.003) 0.130 (0.003) 0.210 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Active chronic conditions 0.121 (0.003) 0.182 (0.003) 0.148 (0.003) 0.267 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Best-to-worst difference 0.044 0.033 0.043 0.126
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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in the health sector and further afield. This is
because labels are often measured with errors
that reflect structural inequalities (39). Within
the health sector, using mortality or readmis-
sion rates to measure hospital performance
penalizes those serving poor or non-White pop-
ulations (40, 41). Outside of the health arena,
credit-scoring algorithms predict outcomes re-
lated to income, thus incorporating disparities
in employment and salary (2). Policing algo-
rithms predict measured crime, which also re-
flects increased scrutiny of some groups (42).
Hiring algorithms predict employment deci-
sions or supervisory ratings, which are affec-
ted by race and gender biases (43). Even retail
algorithms, which set pricing for goods at the
national level, penalize poorer households,
which are subjected to increased prices as a
result (44).
This mechanism of bias is particularly perni-

cious because it can arise from reasonable
choices: Using traditional metrics of overall
prediction quality, cost seemed to be an effec-
tive proxy for health yet still produced large
biases. After completing the analyses described
above, we contacted the algorithm manufac-
turer for an initial discussion of our results. In
response, themanufacturer independently rep-
licated our analyses on its national dataset of
3,695,943 commercially insured patients. This
effort confirmed our results—by one measure
of predictive bias calculated in their dataset,
Black patients had 48,772 more active chronic
conditions thanWhite patients, conditional on
risk score—illustrating how biases can indeed
arise inadvertently.
To resolve the issue, we began to experiment

with solutions together. As a first step, we sug-
gested using the existing model infrastructure—
sample, predictors (excluding race, as before),
training process, and so forth—but changing
the label: Rather than future cost, we created
an index variable that combined health pre-
diction with cost prediction. This approach
reduced the number of excess active chronic
conditions in Blacks, conditional on risk score,
to 7758, an 84% reduction in bias. Building on
these results, we are establishing an ongoing
(unpaid) collaboration to convert the results of
Table 3 into a better, scaled predictor of multi-
dimensional health measures, with the goal of
rolling these improvements out in a future
round of algorithm development. Of course,
our experience may not be typical of all algo-
rithm developers in this sector. But because
the manufacturer of the algorithm we study is
widely viewed as an industry leader in data
and analytics, we are hopeful that this en-
deavor will prompt other manufacturers to
implement similar fixes.
These results suggest that label biases are

fixable. Changing the procedures by which
we fit algorithms (for instance, by using a new
statistical technique for decorrelating predic-

tors with race or other similar solutions) is
not required. Rather, we must change the data
we feed the algorithm—specifically, the labels
we give it. Producing new labels requires deep
understanding of the domain, the ability to
identify and extract relevant data elements,
and the capacity to iterate and experiment.
But there is precedent for all of these func-
tions in the literature and, more concretely,
in the private companies that invest heavily
in developing new and improved labels to
predict factors such as consumer behavior
(45). In addition, although health—as well
as criminal justice, employment, and other
socially important areas—presents substan-
tial challenges to measurement, the impor-
tance of these sectors emphasizes the value
of investing in such research. Because labels
are the key determinant of both predictive
quality and predictive bias, careful choice
can allow us to enjoy the benefits of algo-
rithmic predictions while minimizing their
risks.
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