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Abstract

Human-Centric Reward Design

by

Yu Qing Du

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

How can we elicit the behaviors we want from artificial agents? One way of guiding behaviors
of intelligent systems is through reward design. By specifying reward functions to optimize,
we can use reinforcement learning (RL) to enable agents to learn from their own experience
and interactions. Thus, RL has seen great success in settings where it is feasible to hand-
specify reward functions that are well-aligned with the intended behaviors (e.g., using scores
as rewards for games). However, as we progress to developing intelligent systems that have
to learn more complex behaviors in the rich, diverse real world, reward design becomes
increasingly difficult—and crucial. To address this challenge, we posit that improving reward
signals will require new ways of incorporating human input.

This thesis comprises two main parts: reward design directly using human input or indirectly
using general knowledge we have about people. In the first part, we propose a framework
for building robust reward models from direct human feedback. We present a reward mod-
eling formulation that is amenable to large-scale pretrained vision-language models, leading
to more generalizable multimodal reward functions under visual and language distribution
shifts. In the second part, we use broad knowledge about humans as novel forms of input
for reward design. In the human assistance setting, we propose using human empowerment
as a task-agnostic reward input. This enables us to train assistive agents that circumvent
limitations of existing goal inference based methods, while also aiming to preserve human
autonomy. Finally, we study the case of eliciting exploratory behaviors in artificial agents.
Unlike prior work that indiscriminately optimizes for diversity in order to encourage explo-
ration, we propose leveraging human priors and general world knowledge to design intrinsic
reward functions that lead to more human-like exploration. To better understand how in-
trinsic objectives guiding human behavior can inform agent design, we also compare how
well human and agent behaviors in an open-ended exploration setting align with commonly-
proposed information theoretic objectives used as intrinsic rewards. We conclude with some
reflections on reward design challenges and directions for future work.
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CHAPTER

1

INTRODUCTION

Direct Human Input

Chapter 2: Human feedback
Chapters 4 & 5: 


Exploration priors and objectives Chapter 3: Empowerment

PART I PART II
Indirect Human Input

Figure 1.1: Thesis overview. We consider two main forms of human input for guiding reward
design: direct and indirect. Part I discusses learning reward models directly from human
feedback, where we focus on robustness against naturalistic distribution shifts. Part II dis-
cusses forming rewards based on broader knowledge we have about people—that they prefer
to be empowered, have priors about the world, and employ various exploration strategies.

Eliciting desired behaviors from machines is a fundamental challenge in artificial intel-
ligence (AI) research. While we have seen increasingly remarkable abilities in deep neural
models—ranging from generating text (Brown et al., 2020a; Touvron et al., 2023) and images



CHAPTER 1. INTRODUCTION 2

(Ho et al., 2020; Rombach et al., 2022) to controlling robotic agents (Agarwal et al., 2023;
Brohan et al., 2023)—ensuring that these systems consistently generate behaviors that are
aligned with human objectives (i.e., value alignment (Shapiro & Shachter, 2002; Hadfield-
Menell et al., 2016) or agent alignment (Leike et al., 2018)) remains an open problem. At
the same time, as these systems are deployed in the real world, both implementing and
evaluating for alignment become increasingly crucial.

One method for tackling this problem is to train agents through imitation learning. That
is, if we humans—ranging from everyday users interacting with intelligent systems to prac-
titioners designing such systems—know what desired behaviors likely look like, one natural
solution is to create demonstrations of such behaviors and train models to produce the same
behaviors via a maximum likelihood objective. This approach of imitation learning can be
effective in regimes where it is possible to collect vast amounts of high-quality demonstra-
tion data (e.g., leveraging existing internet-scale text and image data in the case of training
large language models (Brown et al., 2020a) or vision-language models (Alayrac et al., 2022),
or having humans generate robotic task demonstrations (Sammut et al., 1992; Jang et al.,
2022)). However, more often than not, the process of acquiring demonstrations that are high
quality and have sufficient coverage over the distribution of desirable behaviors is arduous and
expensive. Furthermore, it can be difficult to learn solely from demonstrations—the process
can lead to brittle policies that fail if the agent diverges too far from given demonstrations
(Camacho & Michie, 1995; Ross & Bagnell, 2010; Wang et al., 2017).

Reinforcement learning (RL) (Sutton & Barto, 2018) provides an alternative framework
for training intelligent agents. Rather than imitating demonstrations of ‘desirable behaviors’,
RL enables agents to learn from their own experience by optimizing for behaviors that
achieve high reward. When a given reward function is well-aligned with desirable behaviors,
this process reinforces learning policies that exhibit said desired behaviors. Thus, in this
framework we defer the challenge of specifying desired behaviors to reward design. While we
have seen deep RL techniques be highly successful in regimes where it is easy to hand-specify
a reward function that is aligned with desired behaviors (e.g., using scores in games (Samuel,
2000; Mnih et al., 2013)), reward design steadily grows more challenging as we try to train
policies for complex behaviors in the real world. This simultaneous increase in reward design
importance and difficulty is captured in the Reward Engineering Principle (Dewey, 2014).
In fact, even in cases where reward design may seem straightforward, slight mispecifications
or loopholes can lead to undesirable behaviors through reward hacking or gaming (Amodei
et al., 2016; Leike et al., 2017). As we develop more generalist agents for increasingly complex
task settings, how can we impose more human supervision in the reward design process?

In this thesis, we posit that reward design for increasingly general and capable agents will
require novel ways of incorporating human input. We note that the idea of using human
input to guide reward design in and of itself is not novel—prior work has extensively studied
a range of methods for guiding agent objectives with human inputs. For example, inverse
reinforcement learning extracts reward functions from human demonstrations (Russell, 1998;
Ng et al., 2000; Ziebart et al., 2008), active learning or teaching can be used to inform
reward estimation (Lopes et al., 2009; Cakmak & Lopes, 2012; Hadfield-Menell et al., 2016;
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Sadigh et al., 2017b), or rewards can be modelled from human feedback using deep neural
networks (Leike et al., 2018). Here, feedback can vary from preferences over generated
behaviors (Christiano et al., 2017; Lee et al., 2021, 2023) to direct reward sketches (Cabi
et al., 2020). Jeon et al. (2020) propose reward-rational implicit choice, a unifying formalism
for the different forms of information provided by humans for reward learning. Shah et al.
(2020) further unifies the paradigms of reward learning and assistance by demonstrating that
reward learning problems can be recast as a special case of assistance.

The goal of this thesis is to push the frontier of reward design in two main ways: by using
either direct or indirect forms of human input. In the former, we focus on building robustness
and increasing human feedback efficiency in the setting of learning reward models from direct
human feedback. In the latter, we propose novel ways of using general knowledge we have
about humans to design rewards for more complex behaviors—namely, human assistance
and exploration.

Concretely, Chapter 2 first introduces the general setting of learning reward models from
different forms of aggregated human feedback. Within this domain, we present our work
on developing more generalizable reward models for high-dimensional inputs by reformulat-
ing the reward modeling problem to be amenable to large-scale, pretrained vision-language
models. Here, we demonstrate increased robustness to both language and visual distribution
shifts. This enables us to extend multimodal reward models to rich, real world settings,
where there can be many diverse ways of accomplishing the same underlying task or goal.

Next, we ask: can we design rewards based on general knowledge we have about humans?
Chapter 3 presents our work on reward design for assistive agents. Assistance presents unique
challenges where the reward function for the same task can vary depending on each person’s
unique preferences, and is acutely susceptible to failure modes when the agent incorrectly
infers the individual person’s goals. How can we design rewards that balance assistance
with preserving individual human autonomy and preferences? We propose reframing the
objective of assistance to explicitly increase human control by using human empowerment as
a reward input, which significantly improves objective human performance under assistance
as well as subjective assessments of assistant usefulness. Chapters 4 and 5 explore the more
challenging domain of reward design for eliciting exploratory behaviors. While prior works
have proposed intrinsic reward functions for exploration in RL agents, these intrinsic rewards
often aim to maximize diversity indiscriminately. As such, they are unable to scale well to
the complexities of real world exploration, where there can be infinitely many diverse and
interesting states. On the other hand, humans are able to explore new settings in a way that is
guided by rich prior knowledge as well as some set of intrinsic objectives. Chapter 4 proposes
guiding exploration with rich human priors distilled into large language models. This enables
us to explore open-ended environments by leveraging priors over meaningful behaviors that
are common-sense and context sensitive. Chapter 5 presents our work contrasting human
and agent exploratory behaviors in open-ended settings. Finally, in Chapter 6 we reflect on
lessons learned and discuss exciting future directions.
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CHAPTER

2

ROBUSTIFYING REWARD MODELS

This chapter is based on the paper “Vision-Language Models as Success Detectors”
(Du et al., 2023a), written with Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica

Landon, Felix Hill, Nando de Freitas, and Serkan Cabi.

We begin this chapter with a brief introduction to the general setting of learning reward
models from human input. In cases where it is challenging to hand-prescribe a reward func-
tion, prior methods have used human input in order to extract or model reward functions.
The key idea behind this approach is to learn a reward model from human intentions, ex-
pressed in different forms of human input (Leike et al., 2018). The resulting reward model
can be used for training or evaluating agents without humans having to provide direct in-
the-loop feedback for all experiences an agent acquires in an environment.

Various forms of human input have been proposed in this setting, ranging from demon-
strations (Ng et al., 2000; Finn et al., 2016; Ho & Ermon, 2016), to corrections over behaviors
(Lopes et al., 2009; Sadigh et al., 2017b), to preferences over trajectories (Fürnkranz et al.,
2012; Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021), or even direct scalar rewards
(Cabi et al., 2020). See Section 2.2 for more detailed related works. More recently, reinforce-
ment learning using learned reward models from human feedback (RLHF) has seen prominent
progress in the domain of aligning large-scale models (Stiennon et al., 2020; Ouyang et al.,
2022); see Casper et al. (2023) for a survey of open challenges in RLHF. Many open questions
remain, such as: investigating which forms of human feedback are useful and necessary in
different domains, evaluating the intentions captured by reward models, managing reward
hacking and gaming, and accommodating distribution shifts. We focus on the last challenge
in this chapter.
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Q: Did the robot successfully insert a medium gear?

yes.

Q: Did the agent successfully place the cactus left of the sofa?

Q: Did the person successfully dip the sponge?

Answer:_

no.

yes.

no.

yes.

no.

Answer:_

Answer:_

Figure 2.1: SuccessVQA: Success detection tasks can be formulated as visual question
answering (VQA) problems. Large multimodal language models, such as Flamingo, offer the
opportunity to learn a generalizable success detector, which can act either as a reward model
or agent evaluator across a broad range of domains.

2.1 Introduction
Being able to detect successful (i.e., preferred) behavior is a crucial prerequisite for training
intelligent agents. For example, a signal of successful behavior is necessary as a reward for
policy learning or as an evaluation metric for identifying performant policies. As such, in
this chapter we are concerned with developing accurate and generalizable success detectors,
which classify if a behavior is successful or not. While it is possible to engineer success
detectors in specific domains, such as games (Mnih et al., 2013) or control tasks (Tunyasu-
vunakool et al., 2020), they are often challenging to specify for real-world settings. Success
detection in realistic settings can be difficult not only due to challenges with identifying
the environment state (e.g., detecting a particular object configuration from pixels), but
also due to ambiguities about what a successful state is (e.g., subjective goals, “generate
an entertaining story”). One possible approach for developing success detectors is through
reward modelling with human preference annotations (Christiano et al., 2017; Ouyang et al.,
2022; Cabi et al., 2020; Abbeel & Ng, 2004; Ng et al., 2000). However, the trained reward
models are often accurate only for the fixed set of tasks and narrow environment conditions
observed in the preference-annotated training data, and thus they require extensive further



CHAPTER 2. ROBUSTIFYING REWARD MODELS 6

labour-intensive annotations for increased coverage. This presents a significant bottleneck,
as we would like success detectors to be able to generalize broadly – for instance, once a
success detector learns what “successfully picking up a block” looks like, it should be able
to detect this behavior regardless of background or agent morphology changes thanks to a
semantic understanding of what “picking up a block” means.

Consider success detection in robotic manipulation, where tasks are specified with lan-
guage instructions and observations consist of images. We posit that generalizable success
detection is useful for learning generalizable policies in this domain. Here, effective success
detectors should generalize to task variations along two axes. Firstly, they should generalize
to language variations in the task specification. A model that is trained on detecting success
for the instruction “lift a rubber duck” should also accurately measure success for “lift a toy
duck object”. Secondly, success detectors should generalize to visual variations. If a camera
moves or additional objects are introduced in the scene, the model should still reliably de-
tect success on accomplishing a known task. Standard reward models are typically trained
for fixed conditions and tasks, and are thus unable to generalize well to such variations. As
such, adapting success detectors to new conditions under distribution shifts typically requires
collecting new annotations and re-training.

In this chapter, we aim to train success detectors that are robust with respect to variations
in both language specifications and perceptual conditions. To this end, we leverage large
pretrained vision-language models (VLMs), such as Flamingo (Alayrac et al., 2022), as a
foundation for learning success detectors. We hypothesize that Flamingo’s pretraining on
vast amounts of diverse language and visual data will enable learning more robust success
detectors. In particular, we show that the same simple approach of finetuning Flamingo with
human annotations leads to generalizable success detection across vastly different domains.
This simple approach allows us to use a unified architecture and training scheme, where we
require only 1) videos describing the world state, and 2) text describing the desired behavior
or task. We reframe the problem of success detection as a visual question answering (VQA)
task and refer to this formulation as SuccessVQA (Figure 2.1).

Concretely, we finetune Flamingo for success detection on three diverse domains: a sim-
ulated household (Abramson et al., 2021), real-world robotic manipulation, and in-the-wild
egocentric human videos (Grauman et al., 2022). The universality of the SuccessVQA task
formulation is instrumental in enabling use of the same training architecture in a wide range
of tasks and environments. We demonstrate that the resulting success detectors are capable
of zero-shot generalisation to unseen conditions (both in language and vision) where bespoke
learned reward models fail.

2.2 Related Work
Vision-Language Models (VLMs). Multimodal vision-language models (VLMs) have
shown remarkable success in recent years, where VLMs can serve as a foundation for various
tasks using language, vision, or arbitrary combinations of modalities. VLMs can be trained
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with contrastive objectives (Jia et al., 2021; Radford et al., 2021) and/or generative objectives
(Dai et al., 2022; Hu et al., 2022; Luo et al., 2020; Alayrac et al., 2022). In this work we rely
on the Flamingo model (Alayrac et al., 2022), which leverages a contrastive objective for
pretraining the vision encoder on text-and-image pairs. However, unlike other applications
of VLMs in single-image VQA tasks (Tiong et al., 2022), we rely on videos to specify the
world state, making our work more similar to video QA tasks (Xu et al., 2016). Variants of
our approach (e.g., by reducing the video input to a single frame) can also be applied with
other image-based VLMs built on large language models (Li et al., 2023; Koh et al., 2023).

Reward Modelling. Reward modelling is often necessary when it is challenging to hard-
code a reward function for an agent to learn from. To this end, many works have studied
learning reward models from human data. When demonstrations of desirable behavior are
available, one can leverage inverse reinforcement learning (IRL), where the key idea is to
recover a reward function that best explains expert behavior (Ng et al., 2000; Finn et al.,
2016; Ho & Ermon, 2016; Li et al., 2017; Fu et al., 2018; Merel et al., 2017; Zhu et al., 2018;
Baram et al., 2017). However, IRL relies on expert demonstrations, makes assumptions about
the relationship between the expert actions and the true reward, and can be difficult to train
in practice. When demonstrations are difficult to acquire, a more natural way of providing
human feedback is through comparative preferences that indicate the degree to which certain
agent behavior is desirable. This can be done with comparisons of whole episodes (Akrour
et al., 2012; Schoenauer et al., 2014; Brown et al., 2019; Sadigh et al., 2017a), trajectory
segments (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021; Abramson et al., 2022a),
or even synthesized hypothetical trajectories (Reddy et al., 2020). These methods then fit
a reward function as a preference-predictor, e.g., using a Bradley-Terry model (Bradley &
Terry, 1952). Nevertheless, preferences are not always the most natural form of feedback
from humans, and sometimes it can be easier for a person to provide direct success labels
or scalar rewards with respect to a given goal. This can be done online in response to
observed agent actions and state transitions (Knox & Stone, 2008; MacGlashan et al., 2017;
Arumugam et al., 2019). In robotics, proposed methods vary from sparse, single frame
annotations (Singh et al., 2019) to dense, whole trajectory annotations (Cabi et al., 2020).
In this work we learn from reward annotations, focusing on training success detectors which
can be viewed as binary reward functions. Since collecting human annotations for each new
task and environment can be expensive, we aim to study whether pretrained, large VLMs
can enable learning more generalizable success detectors from human annotations.

Large-Scale Pretraining for Success Detectors. Our work falls under the general
category of using foundation models as reward models. In language modelling, reward models
are typically trained by finetuning a pretrained large language model (LLM) with human
preferences over LLM generations. This reward model can then be used to finetune an
LLM with filtered supervised finetuning or reinforcement learning from human feedback
(RLHF) (Stiennon et al., 2020; Nakano et al., 2022; Menick et al., 2022; Glaese et al., 2022;
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Askell et al., 2021; Bai et al., 2022). For embodied agents, large-scale datasets of in-the-
wild human videos have been used to train reward models (Ma et al., 2022; Chen et al.,
2021a). Rather than using human reward annotations of agent behavior s, these methods
rely on task-annotated human videos of successful behavior s. Most similar to our work are
prior approaches that propose using contrastive VLMs as reward models. In simulated robot
domains, Mahmoudieh et al. (2022); Cui et al. (2022) propose using CLIP (Radford et al.,
2021) to generate task rewards from a text-based goal description and pixel observations.
Fan et al. (2022) leverage large-scale Minecraft data to finetune a Minecraft-specific video
CLIP model for detecting alignment (i.e., reward) with text task descriptions. Beyond
experimenting in different domains, we also leverage a generative VLM built on a frozen
large language model, which we hypothesize enables better language generalisation.

2.3 SuccessVQA: Success Detection as a VQA Task
Our primary contribution is SuccessVQA, a framework that allows us to train multi-task
success detectors by directly leveraging powerful pretrained VLMs, such as Flamingo. In
SuccessVQA, the VLM is given a visual input representing the state of the world (e.g., a
single image or a short video clip) and a question asking if the specified task is successfully
accomplished. This problem formulation has several advantages:

• It allows us to unify success detection across domains, using the same architecture
and training scheme. We consider three domains: a simulated 3D playroom used in
prior research on language-conditioned interactive agents (IA Playroom) (Abramson
et al., 2021, 2020), real robotic manipulation, and “in-the-wild" human videos from
Ego4D (Grauman et al., 2022).

• Relying on a pretrained vision-language model enables us to harness advantages of
pretraining on a large multimodal dataset. We hypothesize this enables better gener-
alization to language and visual distribution shifts.

• The task and state specification allows us to unify treatment of success detection across
tasks defined by singular successful states or target behavior s (i.e., detecting success
requires reasoning across multiple frames).

SuccessVQA Datasets. To create the SuccessVQA datasets, we use behavior trajectories
annotated by humans to indicate whether a task is completed successfully, and if so, when
success occurs. There may be multiple annotations per trajectory from different human
raters. In the cases where raters disagree, success or failure is determined by a majority
vote, and the median (across the raters who annotated success) of the first annotated success
frame is used as the ’point of success’. All subsequent frames are also successful, unless the
task is reversed (e.g. removing a gear after inserting it for the robotics domain). To generate
SuccessVQA examples, a trajectory is split into non-overlapping subsequences (Figure 2.2).
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Agent task: place a cyan pointy object on the bed

Annotated trajectory

SuccessVQA example

Did the agent 
successfully place a cyan 
pointy object on the bed?

Answer

yes

no

Question

Figure 2.2: SuccessVQA dataset creation: A trajectory is annotated by human raters
with a point of success (denoted by the trophy). Then the trajectory is split into subsequences
and converted to multiple SuccessVQA datapoints with corresponding questions and answers.

For simplicity, we make the clip lengths the same as the pretraining clip lengths used for
Flamingo: by first creating subsequences of length 211 frames, then downsampling from
30 FPS to 1 FPS to create 8-frame subsequences. We then generate the VQA question
using one of two methods. When trajectories correspond to some known task, we use the
template: Did the robot/agent/person successfully {task}?, for example, Did the
agent successfully place the cactus left of the sofa? (see Figure 2.1, first and
second rows). When no task is provided but there is a narration corresponding the actions
in the clip, as in Ego4D, we use a frozen Flamingo model to rephrase the narrations into
questions. For example, given a narration The person is scooping the ice cream, we
convert it to the question Did the person successfully scoop the ice cream? (see
Figure 2.1, last row). Finally, the answer is generated: yes if the given subsequence ends in
one or more success frames, and no otherwise.

Training and Evaluation. We finetune the Flamingo (3B) vision-language model on the
SuccessVQA dataset for each domain. Specifically, we finetune all the vision layers (vision
encoder, perceiver, and cross attention layers) and keep the language layers frozen. In the
experiments we refer to this model as FT Flamingo 3B. For evaluation we compute clip-
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Question: Did the agent successfully place a cyan pointy object on the bed?

no yes

Figure 2.3: We compute episode-level success detection accuracy during evaluation in order
to compare against bespoke success detection models for each domain. To do this, we create
subsequences and predict success on each clip individually, then consolidate the predictions
at an episode level.

level success detection accuracy against the ground truth human annotations on held-out
trajectories. In the simulated household and robotics domains (Sections 2.4 and 2.5) we
also compute episode-level accuracy to directly compare against baseline bespoke success
detection models, denoted bespoke SD. Note that these baselines were hand-designed inde-
pendently and tuned specifically for each domain. While these models differ from Flamingo
in both pretraining schemes and architecture, they represent a best attempt at designing
an accurate reward model for in-distribution evaluations. Episode-level success detection is
computed as follows: first, we generate subsequences from the test trajectories in the same
way as during training. Next, the success detection model classifies each clip individually
for success, as illustrated in Figure 2.3. We consolidate classifications in one of two ways. 1)
When the success is completely defined by the observed environment state (as in the robotics
tasks), we only look at the first and the last clip of an episode. Then, the entire episode as
successful if the first clip is in a failure state and the last clip is in a success state. 2) When
the success is defined by a particular behavior (as in the simulated household domain), if
any subsequence in an episode is classified as success we classify the episode as successful.
We report balanced accuracy on the test episodes, as there can be a large imbalance between
the number of successful and failure episodes in the dataset. A random model would achieve
50% balanced accuracy.

Experiments Overview. We use the SuccessVQA problem formulation to train success
detectors across a diverse range of tasks in vastly different domains: simulated household
or IA Playroom (Section 2.4), robotics (Section 2.5), and Ego4D videos (Section 2.6). We
investigate whether Flamingo as a success detector model backbone enables generalization
across the following axes:

• language generalization (Section 2.4). Can we accurately detect success for novel
tasks specified with language? To answer this question, we evaluate generalization to
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unseen tasks specified with language. For example, if we train on detecting success for
the task arrange objects in a row, can we accurately detect success for the task
arrange objects in a circle? For these experiments, we use simulated tasks in the
IA Playroom where the dataset contains a large and diverse set of language-specified
tasks.

• visual robustness (Section 2.5). Can we detect success in the presence of unseen
visual variations? To answer this question, we evaluate success detection accuracy for
a known semantic task, but in the presence of naturalistic visual perturbations. In
these experiments, we use real-world robotic manipulation tasks where we introduce
visual variations at test-time using different camera viewpoints and distractor objects.

We compare our model against bespoke evaluation models designed and trained specifically
for each domain. Note that we do not expect the Flamingo-based models to outperform
the bespoke models in a given in-distribution scenario, as we use bespoke baselines designed
and tuned for their respective particular domain. Rather, we aim to investigate whether the
Flamingo-based models have better robustness to both aforementioned language and visual
changes, while also not requiring any domain-specific architectural or training changes. We
emphasize that the benefit of SuccessVQA is the simple task formulation that can be applied
across a wide range of domains and is directly amenable for use with large pretrained VLMs.
Finally, in Section 2.6 we show an example of an in-the-wild SuccessVQA dataset derived
from Ego4D (Grauman et al., 2022). Initial results for success detection in this domain
are promising, and we hope to encourage further work on accurate reward modelling in
unstructured real-world settings.

2.4 Language Robustness with Interactive Agents
In this section we train and evaluate success detectors in the simulated IA Playroom envi-
ronment, a diverse 3D house environment designed for training language-conditioned inter-
active agents (Abramson et al., 2021, 2020). The environment consists of a “randomised set
of rooms, with children’s toys and domestic objects, as well as containers, shelves, furniture,
windows, and doors" (see Figure 1 in Abramson et al. (2020)). The tasks are generated
from human-human interactions in the IA Playroom, where a setter is instructed to provide
a task via language for a solver, e.g., bring me the book from the living room. Success
detectors in this environment can serve as automated evaluators for trained policies.

There are two properties in this environment that are particularly challenging for auto-
mated success detection: large language variety and the environment’s multi-task nature.
Large language variations are present because the tasks were originally generated from hu-
man interactions, and people are likely to use diverse language to specify even semantically
similar tasks. For example, the task of bringing an object to the setter can be phrased in
many ways: bring a fruit from the pantry, bring me the banana which is in the
pantry, bring the yellow coloured object near me. Moreover, success detection in this
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environment is intrinsically multi-task in its nature because: (1) there is a vast set of possible
tasks that can be specified with different utterances, and (2) the behavior of different people
and trained agents can vary greatly for the same task. For automated evaluation, it is not
scalable to train a new model for each language and task variation.

Training Dataset. We use tasks and trajectories from the Standardized Test Suite (STS),
designed specifically for evaluating learned Interactive Agents (Abramson et al., 2021, 2020).
We focus on the movement-based tasks: tasks that require the solver agent to move around
and interact with the environment. The STS consists of a set of “scenarios that typify the
behavior [the Interactive Agents team] wishes to evaluate" (Abramson et al., 2022b), and
various trained agent policies are tasked with accomplishing the given scenarios. These test
episodes are then annotated by human raters to indicate if a task is successfully completed
and if so, at which frame success occurred. We use these annotations to create a SuccessVQA
dataset for FT Flamingo 3B finetuning and to train a baseline bespoke SD model for com-
parison. The training set consists of STS and human interaction data collected between
September 2021 to April 2022, 546,887 trajectories in total (1,421,111 clips).

Baseline Success Detectors. For the bespoke SD baseline, we use a success detection
model specifically and independently designed for the STS with the best practices we are
aware of. We consider two types of baseline models: whole episode evaluation and autoregres-
sive evaluation. As the whole episode model consistently outperformed the autoregressive
model, in this section we only report the results from that baseline (see Appendix A.1 for
additional results). This model creates a downsampled set of 32 frames from the entire eval-
uation episode and embeds the images with a ResNet-101. The agent input and output text
are also embedded using a learned text embedding. All embeddings are then concatenated
together and fed to a transformer with an MLP head that predicts the likelihood the episode
was successful. An auxiliary instruction-matching contrastive loss is also applied.

Evaluation. To select the best success detection model, we use the model and checkpoint
with the highest balanced accuracy on a held-out validation split from the same distribution
as the training data. We then evaluate the chosen success detector model across three
different test sets:

• Test 1: unseen episodes (in distribution) – a randomly held-out 10% of training
dataset trajectories, which includes rephrasings of training tasks. This dataset contains
175,952 clips.

• Test 2: unseen behavior (out of distribution agents) – trajectories generated
by new agents on tasks seen in the training dataset, including rephrasings of training
tasks. These agents potentially demonstrate novel behavior , allowing us to assess
success detector robustness to unseen behavior s on known tasks. This determines if
we can reuse the same models as agent behavior evolves over time (i.e. the success
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Property Test 3 Examples

Unseen descriptor arrange 4 pointy objects in a square shape in the bed room,
where square is not mentioned in the training set. Instead, at train
time we have tasks arranging objects in an arc or triangle.

Unseen objects push the train engine with water bird, where neither train
engine nor bird are mentioned in the training set.

Unseen actions hit the candle using the pillow which is left of airplane
in the living room, where the action hit is not mentioned in the
training set.

Table 2.1: Examples of unseen task variants used in Test 3 (rightmost column in Table 2.2).

Test 1: Test 2: Test 3:
Model unseen episodes unseen behaviors unseen tasks

bespoke SD 80.6% 85.4% 49.9%
FT Flamingo 3B 83.4% 85.0% 59.3%

Table 2.2: Zero-shot episode-level balanced accuracies for IA Playroom STS evaluation mod-
els in new conditions. For reference, human level balanced accuracy is around 88% due to
inter-rater disagreement.

detector is accurate even when the agent solves a known task in a novel way). This
dataset contains 462,061 clips.

• Test 3: unseen tasks (out of distribution agents and tasks) – the most chal-
lenging setting: trajectories generated by new agents on new tasks not seen during
training. For examples of such new tasks, see Table 2.1. Note that this set comprises
completely new tasks as well as rephrasings of said tasks. As the tasks are new, the suc-
cess detector models need to master a semantic understanding of language to properly
generalise to success detection in this set. This dataset contains 272,031 clips.

Results. Table 2.2 presents the episode-level balanced accuracy on each test set. We find
that without finetuning, the accuracy of the Flamingo model is close to random chance
(see Appendix A.1 for details). This is unsurprising, as the IA domain differs greatly from
Flamingo’s pretraining data. When finetuning on the same data, FT Flamingo 3B matches
the performance of the bespoke models in Test 1 (unseen episodes) and Test 2 (unseen
behavior ). More importantly, in Test 3 (unseen tasks), the performance of a bespoke model
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drops to a random chance, while FT Flamingo 3B outperforms it by a significant margin
(10%). As the instructions in Test 3 are for novel tasks, not just rephrasings of tasks
seen during training, this experiment demonstrates that the success detector exhibits some
amount of semantic understanding of the scenes. We hypothesize that this is possible due to
Flamingo’s large language model backbone and web-scale pretraining. That said, there is still
a large margin for improvement on the most challenging test set. For future work, it would
be interesting to investigate how different model scales, dataset sizes, or cross-finetuning
with different datasets can affect generalisation.

2.5 Visual Robustness with Robotic Manipulation

insert 
small gear

insert 
medium gear

insert 
large gear

remove 
small gear

remove 
medium gear

remove 
large gear

Figure 2.4: Successful frames for the 6 robotics gear manipulation tasks.

In this section we train and evaluate success detectors on a family of real-life robotic gear
manipulation tasks with a Panda robot arm. There are six tasks corresponding to inserting
or removing a small, medium, or large gear within a basket (Figure 2.4). We consider visual
observations from a basket camera. Ideally, a success detector should remain accurate under
naturalistic visual changes, such as different camera view angles, lighting conditions, or
background changes. Furthermore, as the performance of learned policies improves, we may
want to introduce new objects or tasks to the environment. It quickly becomes impractical
to re-annotate and re-train success detectors from previous tasks in new conditions, thus
making it important to train visually robust success detectors. For example, a model that
has learned to detect successful gear insertion should still be able to robustly detect success
even if the basket has additional task-irrelevant distractor objects or camera angle changes.
To investigate this, we design our experiments to carry out zero-shot evaluations on test
episodes with such visual changes.

Training Dataset. Human operators provide 101, 789 demonstrations for 6 tasks using
a 6DoF control device. Each episode is then annotated by humans with rewards for each
task (e.g., every episode has 6 reward annotations, one for each task). Human annotators
label positive rewards for all frames with a success state (i.e., if the task is solved), and zero
rewards otherwise. Note that it is possible for a task to be accidentally undone in the same
episode, at which point the reward annotation would revert to zero. The reward annotations
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Robot task: insert medium gear

Annotated trajectory

SuccessVQA example

Did the robot successfully 
insert medium gear?

Answer

yes

no
Question

Figure 2.5: Sample SuccessVQA example created from an annotated subsequence of a gear
manipulation episode. Success annotation is shown with the trophy.

and corresponding episode frames are then converted into SuccessVQA examples (see Figure
2.5). The ground truth VQA answer is obtained from the human annotations: clip answers
are labelled successful if they contain only a single transition from zero to positive reward
or only have positive rewards throughout, otherwise they are labelled as unsuccessful. We
train a single FT Flamingo 3B success detector model for all 6 tasks.

Baseline Success Detector. As a baseline, we consider a ResNet-based (He et al., 2016)
per-frame success classification model, trained and tuned specifically for this domain inde-
pendently of this work. The ResNet-18 is pretrained on ImageNet, and the classification
layer is swapped out for a binary classification layer. We finetune a separate success classifi-
cation model for each of the 6 gear tasks, applying image augmentations during finetuning.
This is distinct from our method where we train a single multi-task model across all 6 tasks.
We consider an episode successful if the first and last frames1 of the episode are classified as
a failure (output < 0.5) and success (output > 0.5) correspondingly. We will further refer
to the baseline model simply as bespoke success detector (bespoke SD).

Evaluation. To compare against the bespoke SD, we look at episode-level balanced accu-
racy. Given an evaluation episode, we consider the episode successful under FT Flamingo
3B if the first clip is classified as unsuccessful and the last clip is classified as successful (see
Figure A.3 in the Appendix). This matches the episode-level classification scheme of bespoke

1We find that incorporating more frames does not improve episode-level accuracy.
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Test 2: Viewpoint variation (back camera):

Test 3: Distractor objects (pegs):

Test 1: In-domain:

Figure 2.6: Examples of three evaluation datasets: in-domain episodes similar to the training
dataset, episodes with a different camera viewing angle and episodes with distractor objects
in the basket.

SD. We conduct the evaluation on three test sets (see Figure 2.6): Test 1: In-domain episodes
(first row), Test 2: Episodes with a viewpoint variation, using a different (back) camera
(second row), and Test 3: Episodes with distractor objects in the basket, but the original
camera (last row). The last two settings are designed to test the robustness of the models
to naturalistic visual perturbations in the environment. The trained success detectors can
then either be used as automated evaluators or reward models for agent training.

In-Domain Performance. In Test 1, we conduct an in-domain evaluation where the test
set comes from the same visual conditions as the training set (see Figure 2.6, top row).
The test set includes all the training episodes and an additional held out 2076 episodes.
The results in Table 2.3 show that while the bespoke SD consistently outperforms the FT
Flamingo 3B, the performance of the FT Flamingo 3B model is still comparable for the
insertion task. Note that the accuracy of the Flamingo model on the remove tasks is lower,
which we hypothesize is likely due to a data balancing issue. We have 5 times more training
data available for insertion than removal, and training a single model across all tasks likely
led to a tradeoff in accuracy between the insertion and removal tasks, which are temporal
opposites of each other. We also conduct experiments into the efficacy of policies trained with
these success detectors in Appendix A.2, with initial proof-of-concept evaluations suggesting
that policy performance under either FT Flamingo 3B or bespoke SD are similar.

Visual Robustness. Next, we measure zero-shot accuracy on two natural visual vari-
ations described above: Test 2 and Test 3. In Test 2, we look at zero-shot robustness to
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Insert Remove
Small Medium Large Small Medium Large

bespoke SD 98.0% 98.4% 99.1% 97.3% 98.7% 98.4%
FT Flamingo 3B 96.0% 94.4% 95.0% 82.1% 83.4% 87.2%

Table 2.3: In-Domain Episode-level Accuracy for Gear Manipulation. Balanced
accuracy evaluated on 50000-60000 episodes per task.

different viewpoints (Figure 2.6, middle row). Given that the success detectors were only
trained on frames from the front basket camera, we evaluate robustness by measuring suc-
cess detector accuracy on episodes recorded with the back basket camera. As we can see in
Table 2.4, changing the camera angle drastically hurts the quality of bespoke SD (accuracy
decreases of 10-50 absolute percentage points) while the performance of FT Flamingo 3B is
more stable (accuracy decreases by less than 10%). Note that in some tasks the performance
of the bespoke model drops to the level of random guess, essentially rendering the model
useless for success detection. With this, FT Flamingo 3B becomes the best performing
model in 5 out of 6 tasks.

Insert Remove
Small Medium Large Small Medium Large

bespoke SD 78.0% 53.1% 50.9% 85.8% 53.8% 72.8%
-19.9% -45.4% -48.3% -11.5% -44.9% -25.5%

FT Flamingo 3B 91.0% 89.8% 89.7% 76.7% 75.9% 79.4%
-4.0% -4.6% -5.3% -5.5% -7.5% -7.8%

Table 2.4: Viewpoint variation. Zero-shot success detection balanced accuracy when
training on front camera views and evaluating on back camera views. We show the absolute
balanced accuracy and the percentage point change compared to Test 1 from Table 2.3.

In Test 3 we look at zero-shot robustness in the setting where some distractor objects (two
pegs and a board, see Figure 2.6, last row) are introduced. Table 2.5 shows that detecting
success on known tasks across this novel visual setting causes a 4-30% (absolute percentage
points) drop in balanced accuracy for the bespoke model, while the accuracy mostly stays
stable for the Flamingo-based models, with a 4.5% drop in accuracy at most.

These two experiments demonstrate that Flamingo-based success detection models are
robust to natural visual variations. We hypothesize that the pretrained Flamingo-based
success detection model is better suited to zero-shot visual generalisation than the bespoke
baseline reward model, as Flamingo is pretrained on a diverse set of visual data with corre-
sponding language grounding. While the baseline model was also pretrained and used image
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Insert Remove
Small Medium Large Small Medium Large

bespoke SD 88.8% 85.0% 71.8% 93.6% 93.8% 92.4%
-9.2% -13.4% -27.4% -3.8% -4.9% -6.0%

FT Flamingo 3B 96.1% 95.6% 90.6% 82.4% 83.6% 84.7%
+0.1% +1.2% -4.5% +0.3% +0.1% -2.5%

Table 2.5: Distractor Objects. Zero-shot success detection balanced accuracy on scenes
with distractor objects. We show the absolute balanced accuracy and the percentage point
change compared to Test 1 from Table 2.3.

augmentations during task finetuning, it was not exposed to such a diverse set of visual
data or language. Large-scale diverse pretraining might contribute to better semantic tasks
recognition under naturalistic visual changes. These encouraging results suggest that pre-
trained VLM-based success detectors are likely better suited to the real-world tasks involving
unstructured, open, and evolving settings.

2.6 Real World Success Detection with Ego4D
In this section we describe creating a SuccessVQA dataset using “in-the-wild" egocentric
videos of humans performing tasks. This present a much more diverse setting than the prior
two domains, in both visuals and language. We construct this dataset using annotations
from the Ego4D dataset (Grauman et al., 2022), where unlike prior benchmarks in action
recognition, the focus is on detecting a temporal point of success for a given action. It is
an example of a realistic, unstructured setting where the ground-truth success labels can be
obtained only from human annotations. While the FT Flamingo 3B success detector model
shows initial promising results, our experiments show that the benchmark is nonetheless very
challenging with much room for future progress.

Ego4D is a publicly available dataset of egocentric human-in-the-wild videos. The videos
show people executing common tasks (e.g., washing dishes, cleaning cars, gardening). To
generate ‘successful’ and ‘unsuccessful’ action sequences, we make use of annotations from
the Ego4D Forecasting + Hands & Objects (FHO) dataset, where corresponding narrations
describe the actions of the camera wearer in the videos. Additionally, critical state changes
are annotated: “how the camera wearer changes the state of an object by using or manip-
ulating it–which we call an object state change” (Grauman et al., 2022). Each narration
is centered on an 8-second clip, which is further annotated with the critical frames PRE,
Point of No Return (PNR), and POST for indicating when the narrated state change has
occurred. The PNR frame annotates the start of the state change, the PRE frame indicates
a point before the state change, and the POST frame is a point after the state change is



CHAPTER 2. ROBUSTIFYING REWARD MODELS 19

PRE PNR POST

Narration: #C C rolls the dough

Noun (object of interest): dough

Verb: roll

Annotated trajectory

SuccessVQA example

Did the person 
successfully roll the 

dough?

Answer

yes

no

Question

Figure 2.7: Sample Ego4D clip converted to SuccessVQA Examples. Ego4D annotations
include PRE, POST and PNR (point of no return) annotations which are then used to
generate answers in the SuccessVQA examples.

completed. We propose using the critical frame annotations as annotations of ‘success’ for
the behavior described in the narration. Specifically, we treat PNR frame as a point at which
‘success’ occurs. To generate a negative example for a clip, we use the frames in the 8-second
clip prior to the PRE frame. These frames do not contain the point of success, but they
often demonstrate the beginning of the relevant action. We then generate the questions for
SuccessVQA by rephrasing the narrations into questions using Flamingo (Figure 2.7).

Unlike the prior domains where there is only one relevant task per episode, a single
Ego4D video can have multiple narrations corresponding to different actions. Thus, instead of
episode-level accuracy we evaluate success detection accuracy on clips taken from completely
held out videos. In our experiments, FT Flamingo 3B finetuned on the SuccessVQA dataset
attains 99% training accuracy and 62% test set accuracy. For reference zero shot and 4-shot
Flamingo only achieves 50% and 52% accuracy. That is, without finetuning, the Flamingo
model is not capable of detecting success. Providing a few examples with few-shot prompting
improves performance, but very slightly. Finetuning on the in-domain Ego4D SuccessVQA
examples leads to a significant improvement. That said, there is still a large gap between
train and test performance. We find that it is currently difficult to generalise fully accurately
to unseen real world videos, so this domain provides an exciting avenue for future work.
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2.7 Conclusion
In this chapter we propose SuccessVQA—a reformulation of reward modeling or success
detection that is amenable to pretrained VLMs such as Flamingo. We investigate suc-
cess detection across a wide range of domains: simulated language-conditioned interactive
agents, real-world robotic manipulation, and “in-the-wild" human videos. We find that the
pretrained VLM has comparable performance on most in-distribution tasks, and increased
robustness across language and visual changes compared to task-specific reward models, and
emphasize that our contribution is a more universal success detection task formulation that
can be applied easily across vastly different domains.

Limitations and Future Work. There still exist some gaps between the Flamingo-based
reward models and the bespoke reward models in our experiments. Furthermore, inference
with a larger VLM is expensive, making online success detection challenging. Lastly, we
find that finetuning on a sufficient amount of in-domain data is necessary for robust success
detection, as zero-shot or few-shot performance in our chosen domains is not yet sufficient.
Nonetheless, we are optimistic that further progress on broadly improving VLMs will result
in more accurate few-shot success detection. VLMs are often used as policies, see e.g., Reed
et al. (2022), but in this work we have demonstrated that there is also great value in using
them as reward models—in other words, VLMs as rewards focuses on the ‘what to do’ and
not on ‘how to do it’. We therefore expect such models to transfer more easily than policies
when the same task can be accomplished in many ways, and where fine visual details are
not necessary (e.g., grasp angle for fine motor control).

To address the limitations of the current approach, improving inference speed or distilla-
tion to a smaller model can help with efficient online success detection. Before deployment
as a reward model for learning policies,further investigations into model accuracy to avoid
reward hacking and more thorough understanding of the impacts of reward model false pos-
itives and false negatives are necessary. So far we have experimented with a Flamingo 3B,
but larger models might bring further improvements in robustness and generalisation. The
shared SuccessVQA format can also enable shared finetuning across different datasets (e.g.,
combining Ego4D SuccessVQA and VQAv2 (Goyal et al., 2017)) to study the impact of
cross-task transfer. Lastly, the flexibility in multimodal models allows us to consider success
detection tasks where the task is specified visually (e.g., with a goal image) or the state is
described in language (e.g., a dialogue agent) in the same framework as the current work.
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CHAPTER

3

HUMAN EMPOWERMENT FOR
ASSISTANCE

This chapter is based on the paper “AvE: Assistance via Empowerment” (Du et al., 2020),
written with Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and Anca Dragan.

3.1 Introduction
We aim to enable artificial agents, whether physical or virtual, to assist humans in a broad
array of tasks. However, designing rewards to train assistive agents is challenging when the
human’s goal is unknown, because that makes it unclear what the agent should learn to
do. Assistance games (Hadfield-Menell et al., 2016) formally capture this as the problem of
working together with a human to maximize a common reward function whose parameters
are only known to the human and not to the agent. Naturally, approaches to assistance in
both shared workspace (Pellegrinelli et al., 2016; Fisac et al., 2018, 2020; Pérez-D’Arpino &
Shah, 2015; Nikolaidis & Shah, 2013; Macindoe et al., 2012) and shared autonomy (Javdani
et al., 2015, 2018; Dragan & Srinivasa, 2013; Gopinath et al., 2016; Pellegrinelli et al., 2016)
settings have focused on inferring the human’s goal (or, more broadly, the hidden reward
parameters) from their ongoing actions, building on tools from Bayesian inference (Baker
et al., 2006) and inverse reinforcement learning (Ng et al., 2000; Russell, 1998; Abbeel & Ng,
2004; Argall et al., 2009; Ziebart et al., 2008; Ho & Ermon, 2016; Ramachandran & Amir,
2007; Duan et al., 2017; Mainprice & Berenson, 2013). However, goal inference can fail
when the human model is misspecified, e.g. because people are not acting noisy-rationally
(Majumdar et al., 2017; Reddy et al., 2018b), or because the set of candidate goals the agent
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Figure 3.1: Toy scenario where a robot operates multiple doors. On the left, the robot
attempts to infer the human’s intended goal, C, but mistakenly infers B. On the right, the
robot assesses that the human’s empowerment would increase with doors B and C open.
Naively opening all doors will not increase empowerment as A is too small for the person
and D leads to the same location as C.

is considering is incorrect (Bobu et al., 2018). In such cases, the agent can infer an incorrect
goal, causing its assistance (along with the human’s success) to suffer, as in Figure 3.1.

Even in scenarios where the agent correctly infers the human’s goal, we encounter further
questions about the nature of collaborations between humans and assistive agents: what
roles do each of them play in achieving the shared goal? One can imagine a scenario where
a human is attempting to traverse down a hallway blocked by heavy objects. Here, there
are a range of assistive behaviors: a robot could move the objects and create a path so
the human is still the main actor, or a robot could physically carry the person down the
hallway, making the human passive. Depending on the context, either solution may be more
or less appropriate. How do we design rewards that respect and capture individual human
preferences throughout assistance? Specifically, the boundary between assisting humans
in tackling challenging tasks and solving these tasks in the place of humans is not clearly
defined. As AI improves at ‘human’ jobs, it is crucial to consider how the technology can
complement and amplify human abilities, rather than replace them (Wilson & Daugherty,
2018a,b).

Our key insight is that agents can assist humans without inferring their goals or limit-
ing their autonomy by instead increasing the human’s controllability of their environment
– in other words, their ability to affect the environment through actions. We capture this
via empowerment, an information-theoretic quantity that is a measure of the controllabil-
ity of a state through calculating the logarithm of the number of possible distinguishable
future states that are reachable from the initial state (Salge et al., 2014b). In our method,
Assistance via Empowerment (AvE), we formalize the learning of assistive agents as an aug-
mentation of reinforcement learning with a reward input based on human empowerment.
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The intuition behind our method is that by prioritizing agent actions that increase the hu-
man’s empowerment, we are enabling the human to more easily reach whichever goal they
want. Thus, we are assisting the human without information about their goal – the agent
does not carry the human to the goal, but instead clears a path so they can get there on their
own. Without any information or prior assumptions about the human’s goals or intentions,
our agents can still learn to assist humans.

We test our insight across different environments by investigating whether having the
agent’s behavior take into account human empowerment during learning will lead to agents
that are able to assist humans in reaching their goal, despite having no information about
what the goal truly is. Our proposed method is the first one, to our knowledge, that suc-
cessfully uses the concept behind empowerment with real human users in a human-agent
assistance scenario. Our experiments suggest that while goal inference is preferable when
the goal set is correctly specified and small, empowerment can significantly increase the
human’s success rate when the goal set is large or misspecified. This does come at some
penalty in terms of how quickly the human reaches their goal when successful, pointing
to an interesting future work direction in hybrid methods that try to get the best of both
worlds. As existing methods for computing empowerment are computationally intensive, we
also propose an efficient empowerment-inspired proxy metric that avoids the challenges of
computing empowerment while preserving the intuition behind its usefulness in assistance.
We demonstrate the success of this algorithm and our method in a user study on shared au-
tonomy for controlling a simulated dynamical system. We find that the strategy of stabilizing
the system naturally emerges out of our method, which in turn leads to higher user success
rate. While our method cannot outperform an oracle that has knowledge of the human’s
goal, we find that increasing human empowerment provides a novel step towards generalized
assistance, including in situations where the human’s goals cannot be easily inferred.

Concretely, in this chapter we formalize learning for human-agent assistance via using
human empowerment as a component of the agent reward function. To show the advantage
of this formulation, we directly compare our method against a goal inference approach and
confirm where our method is able to overcome potential pitfalls of inaccurate goal inference
in assistance. In order to enact this method in a practical user study in a continuous domain,
we propose a computationally efficient proxy for empowerment, thus enabling human-in-the-
loop experiments of learned assistance in a challenging simulated teleoperation task.

3.2 Empowerment Preliminary
To estimate the effectiveness of actions on a given environment, Klyubin et al. (2005a)
propose computing the channel capacity between an action sequence, a⃗T

.
= (a1, a2, . . . , aT ),

and the final state, sT , where the channel is represented by the environment. Formally,
empowerment of a state s is:

E(s) = maximum
p(a⃗T |s)

I [⃗aT ; sT | s], (3.1)
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where I [⃗aT ; sT | s]
.
= H(sT | s) − H(sT | a⃗T , s) is the mutual information between a⃗T and

the sT , H(·) is entropy, and T is the time horizon, which is a hyperparameter. The probing
probability distribution p(⃗aT |s) is only used for the computation of the empowerment/channel
capacity E(s), and never generates the behavior directly. Note that the actions are applied
in an open-loop fashion, without feedback.

In the context of learning, empowerment as an information-theoretic quantity has mainly
been seen as a method for producing intrinsic motivation (Salge et al., 2014b; Mohamed &
Rezende, 2015; Klyubin et al., 2005b; de Abril & Kanai, 2018). Guckelsberger et al. (2016)
showed that a composition of human empowerment, agent empowerment, and agent-to-
human empowerment are useful for games where a main player is supported by an artificial
agent. An alternative view of this compositional approach was proposed in Salge & Polani
(2017), where the agent-to-human empowerment was replaced by human-to-agent empow-
erment. The latter is a human-centric approach, where only the humans’ actions affect the
agents’ states in a way which is beneficial for the human. These approaches have only con-
ceptually discussed the applicability of empowerment to human-agent collaborative settings.
Our work concretely proposes that assistance in shared workspaces and shared autonomy
tasks can be cast as an empowerment problem, and evaluates this approach with real users.

Given the challenge of computing empowerment, some existing approximations are:

• Tabular case approximations. In tabular cases with a given channel probability,
p(sT | a⃗T , s), the problem in (3.1) is solved by the Blahut-Arimoto algorithm (Blahut,
1972). This method does not scale to: high dimensional state and/or action space or
long time horizons. An approximation can be done by Monte Carlo simulation (Jung
et al., 2011), however, the computational complexity precludes user studies of real time
empowerment-based methods for assistance in an arbitrary state or action space.

• Variational approximations. Previous work has proposed a method for using varia-
tional approximation to provide a lower bound on empowerment (Mohamed & Rezende,
2015). This was extended later to closed-loop empowerment (Gregor et al., 2016). Both
of these methods estimate empowerment in a model-free setting. Recent work has also
proposed estimating empowerment by the latent space water-filling algorithm (Zhao
et al., 2019), or by applying bi-orthogonal decomposition (Tiomkin et al., 2017), which
assumes known system dynamics. However, these estimation methods are computa-
tionally hard, which precludes their use in reinforcement learning, especially, when a
system involves learning with humans, as in our work.

3.3 Assistance via Empowerment
Problem Setting. We formulate the human-assistance problem as a reinforcement learn-
ing problem, where we model assistance as a Markov Decision Process (MDP) defined by the
tuple (S,Aa, T , γ,R). S consists of the human and agent states, (Sh, Sa), Aa is the set of
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agent actions, T is an unknown transition function, γ is a discount factor, and R is a reward
function, . We assume the human has an internal policy πh to try to achieve a goal g∗ ∈ Sh

that is unknown to the agent. Note that the human may not behave completely rationally
and πh may not enable them to achieve g∗, requiring assistance. As the agent does not
know the human policy, we capture state changes from human actions in the environment
transition function (st+1

h , st+1
a ) = T ((sth, sta), aa).

Our method uses reinforcement learning to learn an assistive policy πa that maximizes
the expected sum of discounted rewards E[

∑
t γ

tR(sta, sth)]. For assistance, we propose the
augmented reward function

R(sa, sh) = Roriginal(sa, sh) + cemp · Ehuman(sh) (3.2)

where Roriginal captures any general parts of the reward that are non-specific to assisting
with the human’s goal, such as a robot’s need to avoid collisions, and where Ehuman(sh) is the
agent’s estimation of the human’s empowerment in their current state, sh. In simple tabular
environments we can directly compute empowerment, however, this does not extend to more
realistic assistance scenarios. Thus for our user study, we propose an empowerment-inspired
proxy as detailed in Section 4.3. We access the human’s action and state space either through
observation in the shared workspace case or directly in shared autonomy. The coefficient
cemp ≥ 0 is included to balance the weighting between the original reward function and the
empowerment term.

Approach for Human-in-the-Loop Training. As our work is intended for real-time
human assistance applications, we strongly prioritize computational efficiency over the nu-
merical accuracy of the empowerment estimation in our user study. To compute true empow-
erment, one considers potential forward-simulations of agent actions of duration T starting
in sinit and their resulting effect. However, since existing methods for approximating em-
powerment in continuous domains from empirical data are computationally quite hard and
do not scale well, here we instead draw on the intuition of empowerment to propose a proxy
metric using a measure of diversity of final states as a surrogate for the channel capacity.

Namely, we use a fast and simple analogy of the sparse sampling approximation from
(Salge et al., 2014a) for the empowerment method. In that work, the number of discrete
states visited by the forward-simulations was counted. A large number of different final
states corresponded to an initial state with high empowerment. In the continuum, counting
distinct states becomes meaningless. Therefore, here, we measure diversity of the final
state by computing the variance of the flattened sample vectors of Sf , as summarized in
Algorithm 1, and use this pragmatic approach directly in place of E in Eq. 3.1. While this
proxy relies on an assumption of homogeneous noise and high SNR, it can be computed
much more efficiently than empowerment, lending it to be directly applicable to human-in-
the-loop training of assistive agents. Even as a coarse proxy for empowerment, we find that
it is sufficient to significantly increase human success in our user study in Section 3.4. To
empirically motivate our proxy, we compare the known empowerment landscape of a non-
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Figure 3.2: Comparison between our proxy for empowerment (left) and the known landscape
(right) of the non-linear pendulum over a long time horizon. The proxy landscape captures
the essential properties of the empowerment landscape: maximum at the upright position
and comparatively low values for states with energy below the separatrix energy.

linear pendulum with our proxy result in Figure 3.2. A rigourous study of the properties of
the proxy is deterred to the future work.

Algorithm 1 Empowerment-inspired Diversity Bonus
Initialize environment at state sinit
Initialize empty list of final states sf
Rollout N trajectories of horizon T
for n = 1 ... N do s← sinit

for t = 1 ... T do
# randomly generate actions and update state
a = sample action
s← T (s, a)

end for
sf ← sf + [s]

end for
# To compute scalar reward bonus
return Var(flatten(sf ))
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3.4 Experiments
In this section we evaluate our method in two distinct assistive tasks where a human at-
tempts to achieve a goal: firstly, a shared workspace task where the human and assistant
are independent agents, and secondly, a shared autonomy control task. The first task is
used to directly compare the empowerment method in a tabular case against a goal inference
baseline to motivate our method, and the second task is used to test both our proxy metric
in Algorithm 1 and evaluate our overall method with real users in a challenging simulated
teleoperation task. For accompanying code, see https://github.com/yuqingd/ave.

Shared Workspace: Gridworld

Experiment Setup. To motivate our method as an alternative when goal inference may
fail, we constructed a gridworld simulation as follows: a simulated proxy human attempts to
move greedily towards a goal space. The grid contains blocks that are too heavy for them to
move, however, an agent can assist by moving these blocks to any adjacent open space. The
agent observes the location of the blocks and the humans but not the location of the goal.
As a metric for successful assistance, we measure the success rate of the human reaching the
goal and the average number of steps taken.

Figure 3.3: Sample rollouts with proxy human , immovable blocks , and goal at the star.
Each frame consists of an action taken by the agent. Left column shows two cases of goal
inference: ideal case (top) and failure mode with misspecified case (bottom) where the goal
is blocked.

We compare against a goal inference method where the agent maintains a probability
distribution over a candidate goal set and updates the likelihood of each goal based on the
human’s action at each step. We test variations of goal inference that highlight potential
causes of failure: 1) when the goal set is too large, and 2) when the true goal is not in
the goal set. Here, we define failure as the human’s inability to achieve the goal before the
experiment times out at 1000 steps. In this discrete scenario, we can compute empowerment
directly by sampling 1000 trajectories and computing the logarithm of the number of distinct
states the blocks and the human end up in. For comparison, we also provide results where

https://github.com/yuqingd/ave
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we approximate empowerment with our proxy. The agent assumes that the human can move
into any adjacent free space but does not know the human’s policy or goal. We simulate a
variety of initializations of the human’s position, the number of blocks and their positions,
and the goal position. Here we highlight the results of two main scenarios in Table 3.1:
where the blocks trap the human in a corner, and where the blocks trap the human in the
center of the grid. This is because the center of the grid has highest empowerment and the
corner of the grid has lowest empowerment, and situations where the human is trapped are
where assistance is most crucial. We ran 100 trials of randomized goal initializations and
computed the number of steps the human takes to get to their goal (if successful) under each
of the reward formulations.

Human in Corner | Success, (Mean Steps) LG Set SG Set NG

GI (known) 90%, (4.35) 100%, (4.35)
GI (unknown) 90%, (4.35) 92%, (4.51)
Empowerment 100%, (5.24)

Empowerment Proxy 99%, (8.79)
Oracle 100%, (4.1)

Human in Center | Success, (Mean Steps) LG Set SG Set NG

GI (known) 50%, (2.27) 100%, (2.57)
GI (unknown) 50%, (2.27) 55%, (3.3)
Empowerment 100%, (4.8)

Empowerment Proxy 100%, (6.71)
Oracle 100%, (1.91)

Table 3.1: Success rates and mean steps to goal (after removing failed trials) for human in
corner (top) and human in center (bottom) scenarios. For human in corner, the human is
randomly initialized in one of the four corners of the grid with two blocks trapping them.
For human in center, the human is initialized at the center of the grid with four blocks
surrounding them, one on each side. GI – goal inference with either the goal in the goal
set (known) goal or the goal missing from the goal set (unknown). Large Goal (LG) Set
considers every possible space as a goal, Small Goal (SG) Set only considered two possible
goals, and No Goal (NG) is our method.

Analysis. Our results suggest that in the case where we have a small and correctly
specified goal set, goal inference is the best strategy to use as it consistently succeeds and
takes fewer steps to reach the goal on average. However, this represents an ideal case. When
we have a misspecified goal set and/or a larger goal set, the success rate drops significantly.
The failure modes occur when the agent is mistaken or uncertain about the goal location,
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and chooses to move a block on top of the true goal. As the human can no longer access
the goal, they wait in an adjacent block and cannot act further to inform the agent about
the true goal location, leading to an infinite loop. Since our empowerment method does not
maintain a goal set, it does not encounter this issue and is able to succeed consistently, albeit
with a tradeoff in higher mean steps performance. Interestingly, we note that the failure
cases that the goal inference method encounters could easily be resolved by switching to the
empowerment method – that is, since the human is next to a block that is on top of the goal,
increasing human empowerment would move the block away and allow the human to access
it. This highlights a potential for future work in hybrid assistance methods. In assistance
scenarios where accurate goal inference may be too challenging to complete or the risks of
assisting with an incorrect goal are too high, our goal-agnostic method provides assistance
while circumventing potential issues with explicitly inferring human goals or rewards. As
motivation for our proxy, we note that the proxy increases the mean steps to goal and can
lead to a 1% decrease in success rate. This is because the inaccurate measure of empowerment
can occasionally lead to blocking the goal, as in the non-ideal goal inferences cases. However,
the proxy success rate is still much higher than that of goal inference.

Shared Autonomy: Lunar Lander

Our previous experiments motivate the benefits of a goal-agnostic human assistance method
using human empowerment. To evaluate our method with real users, we ran a user study in
the shared autonomy domain. The purpose of this experiment is two-fold: we demonstrate
that a simplified empowerment-inspired proxy metric is sufficient for assisting the human
while avoiding the computational demands of computing empowerment, and we demonstrate
the efficacy of our method by assisting real humans in a challenging goal-oriented task
without inference. For clarity, in this section we use ‘empowerment’ to denote the proxy
defined in Section 4.3.

We build on recent work in this area by Reddy et al. (2018a) which proposed a human-in-
the-loop model-free deep reinforcement learning (RL) method for tackling shared autonomy
without assumptions of known dynamics, observation model, or set of user goals. Their
method trains a policy (via Q-learning) that maps state and the user control input to an
action. To maintain the user’s ability to control the system, the policy only changes the user
input when it falls below the optimal Q-value action by some margin α. In this case, RL
will implicitly attempt to infer the goal from the human input in order to perform better
at the task, but this is incredibly challenging. With our method, empowerment is a way to
explicitly encourage the shared autonomy system to be more controllable, allowing the user
to more easily control the shared system. As a result, we hypothesize that optimizing for
human empowerment will lead to a more useful assistant faster than vanilla RL.
Experiment Setup. The main simulation used is Lunar Lander from OpenAI Gym
(Brockman et al., 2016), as it emulates challenges of teleoperating a control system. Gen-
erally human players find the game incredibly difficult due to the dynamics, fast reaction
time required, and limited control interface. The goal of the game is to control a lander



CHAPTER 3. HUMAN EMPOWERMENT FOR ASSISTANCE 30

using a main thruster and two lateral thrusters in order to land at a randomly generated site
indicated by two flags, giving the player a positive reward. The game ends when the lander
crashes on the surface, exceeds the time limit, or flies off the edges of the screen, giving the
player a negative reward. The action space consists of six discrete actions that are combina-
tions of the main thruster settings (on, off) and the lateral thruster settings (left, right, off).
To assist players, we use DQN to train a copilot agent whose reward depends on landing
successfully at the goal, but cannot observe where that goal is and instead keeps a memory
of the past 20 actions input by the user. The user input and copilot action space are identical
and the state-space contains the lander’s position, velocity, tilt, angular velocity, and ground
contact sensors. We compute the empowerment-based reward bonus by randomly rolling out
10 trajectories at each state and computing the variance in the final positions of the lander,
as described in Section 4.3. Since both the human and agent control the same lander, the
empowerment of the shared autonomy system is coupled. We hypothesize that including the
empowerment term would be particularly useful for a challenging control task such as Lunar
Lander, since states where the lander is more stable are easier for the player to control.
Simulation Experiments. We first test our method using simulated ‘human’ pilots as
designed in the original study (Reddy et al., 2018a). First, an optimal pilot is trained with
the goal as a part of its state space using DQN. Each of the ‘human’ pilots are imperfect
augmentations of this optimal pilot as follows: the Noop pilot takes no actions, the Laggy
pilot repeats its previously taken action with probability p = 0.85, the Noisy pilot takes a
wrong action with probability p = 0.3 (e.g. go down instead of up), and the Sensor pilot only
moves left or right depending on its position relative to the goal, but does not use the main
thruster. We use these pilots as simulated proxies for humans and train two copilots with
each of them: one with empowerment added to the reward function and one without. For
the empowered copilots, we do a hyperparameter sweep over cemp from 0.00001 to 10.0 and
found the best performance with cemp = 0.001. The copilots were trained on 500 episodes of
max length 1000 steps on AWS EC2. We then conduct a cross evaluation for each copilot
and pilot pair by counting successful landings across 100 evaluation episodes, averaged across
10 seeds.

Full Noop Laggy Noisy Sensor

No Copilot 58.2 0 11.9 11.6 0
No Empowerment (Baseline) 5.9 38.4 8.5 2.8
Empowerment 9.7 37.3 30.7 10.8

Table 3.2: Best successful landing percentages for each simulated pilot in 100 episodes,
averaged across 10 seeds. Our method improves upon the baseline for all pilots except
Laggy, where the performance is on par with the baseline.

We find that for almost all simulated pilots, our method leads to increased successful
landing rate (shown in Table 3.2) when paired with the best copilot. In the only case where



CHAPTER 3. HUMAN EMPOWERMENT FOR ASSISTANCE 31

we do not outperform the baseline, with the Laggy pilot, the success rates between the
baseline and our method only differ by 1.1%. In all cases, empowerment perform better
than the simulated single pilot with no copilot. From our simulation results we see that our
method can increase controllability for these simulated pilots, leading to higher successful
landing rates in Lunar Lander.

Copilot taking over

Landing too quickly

(a) Without empowerment.

Slowing 
Down

Correcting 
Behaviour 

(b) With empowerment.

Figure 3.4: Sample trajectories from the user study. The leftmost image shows the copilot
take over and swing the lander to the left even though the user is trying to move right. On
the second image from the left, the copilot does not slow the motion down sufficiently so
the lander has too much momentum and fails to land on the legs, leading to a crash. In the
two right images, we see the frames overlap more than in the no empowerment case due to
the slower, more stable motion. The rightmost image shows corrective stabilization behavior
when approaching the goal from an inconvenient angle. See https://youtu.be/oQ1TvWG-Jns
for a video summary of user study results.

User Study. To test our method with real pilots, we conducted an IRB-approved user
study to compare human player performance on Lunar Lander with human-in-the-loop train-
ing. As with the simulated experiments, we manipulate the objective the copilot is trained
with: our method with the empowerment bonus in the reward function (cemp = 0.001) and
the baseline with no empowerment. We found that the quality of assistance depends on
this coefficient as follows: increasing cemp generally makes the copilot more inclined to focus
on stabilization, but if cemp is too high, the copilot tends to override the pilot and focus
only on hovering in the air. The objective measure of this study is the successful landing
rate of the human-copilot team, and the subjective measure is based on a 7-point Likert
scale survey about each participant’s experience with either copilot. We designed the survey
to capture whether the copilots improved task performance, increased/decreased the user’s
autonomy and control, and directly compare the user’s personal preference between the two
copilots (refer to Table 3.4). We recruited 20 (11 male, 9 female) participants aged 21-49
(mean 25). Each participant was given the rules of the game and an initial practice period
of 25 episodes to familiarize themselves with the controls and scoring, practice the game,
and alleviate future learning effects.

To speed up copilot learning, each copilot was first pretrained for 500 episodes with the
simulated Laggy pilot, then fine-tuned as each human participant played for 50 episodes
with each of the two copilot conditions without being informed how the copilots differ. To

https://youtu.be/oQ1TvWG-Jns
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alleviate the confounding factor of improving at the game over time, we counterbalanced the
order of the two conditions.

The objective success rates from the user study are summarized in Table 3.3. We ran a
paired two-sample t-Test on the success rate when the copilot was trained with and without
empowerment and found that the copilot with empowerment helped the human succeed at
a significantly higher rate (p < 0.0001), supporting our hypothesis.

No Empowerment Empowerment
Success Rate 17± 9 33 ± 7

Table 3.3: Objective User Study Results: Average success rates with standard deviation.

The results of our survey are summarized in Table 3.4 where we report the mean response
to each question for each copilot and the p-value of a paired two-sample t-Test. To account
for multiple comparisons, we also report the Bonferroni-corrected p-values. We find that the
participants perceived the empowerment copilot’s actions made the game significantly easier
(p = 0.007) as compared to the no-empowerment copilot. Furthermore, the two comparison
questions have a significant level of internal consistency, with Chronbach’s α = 0.96, and the
most frequent response is a strong preference (7) for the empowerment copilot. Although
on average the perception of control and assistance is higher with the empowerment copilot,
this difference was not found to be significant. Comments from the participants suggest that
the empowerment copilot generally provided more stabilization at the expense of decreased
human left/right thruster control, which the most users were able to leverage and collaborate
with – the copilot increased stability and reduced the lander speed, allowing the user to better
navigate to the goal (see Figure 3.4b). On the other hand, the no-empowerment copilot did
not consistently provide stability or would take over user control, moving away from the
goal (see Figure 3.4a). These results are exciting as prior work in shared autonomy has
proposed heuristics for assistance, such as virtual fixtures (Marayong et al., 2002; Aarno
et al., 2005) or potential fields (Aigner & McCarragher, 1997; Crandall & Goodrich, 2002),
but we find that one benefit of empowerment is the natural emergence of stabilization without
relying on heuristics. We also note that our empowerment-inspired reward bonus allowed
us to leverage the intuitive benefits of controllability without the large computational costs
of the empowerment method, allowing the empowerment-based copilot to learn alongside
each human player in real time. While our method empirically demonstrated the merits
of empowerment-based assistance, the user study also highlighted limitations of assistance
through pure empowerment. Predominantly optimizing for empowerment can lead to failure
modes where the assistant prevents landing altogether due to prioritizing stability excessively.
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Question Emp No-Emp p-value p-value∗

A
ut

on
om

y I had sufficient control over the lander’s movement. 4.7 3.6 0.025 0.175
The copilot often overrode useful controls from me. 4.5 5.35 0.053 0.371
The copilot did not provide enough assistance. 3 3.45 0.14 0.98
The copilot provided too much assistance. 3.15 3.95 0.12 0.84
The quality of the copilot improved over time. 6.25 5.75 0.096 0.672

P
er

fo
rm The copilot’s actions made parts of the task easier. 6.4 5.55 0.001 0.007

The copilot’s assistance increased my performance
at the task. 6.4 5.6 0.032 0.21

Comparison Questions Chronbach’s α Mean Mode
I preferred the assistance from the empowerment copilot to
the no empowerment copilot. 0.96 4.9± 2 7I was more successful at completing the task with the
empowerment copilot than the no empowerment copilot.

Table 3.4: Subjective User Study Survey Results. 1 = strongly disagree, 7 = strongly agree.
p-value∗ are Bonferonni-corrected p-values.

3.5 Conclusion
In this chapter, we introduce a novel formalization of assistance: rather than attempting
to infer a human’s goal(s) and explicitly helping them to achieve what we think they want,
we instead propose empowering the human to increase their controllability over the envi-
ronment. This serves as proof-of-concept for a new direction in human-agent collaboration.
In particular, our work circumvents typical challenges in goal inference and shows the ad-
vantage of this method in different simulations where the agents are generally able to assist
the human without assumptions about the human’s intentions. We also propose an efficient
algorithm inspired by empowerment for real time assistance-based use cases, allowing us to
conduct human-in-the-loop training with our method and demonstrate success in assisting
humans in a user study.

Limitations and Future Work. Our experiments find that in cases where the human’s
goals can be inferred accurately, general empowerment is not the best method to use. As
there exist situations where optimizing for human empowerment will not be the best way to
provide assistance, in future work we seek to formalize how goal-agnostic and goal-oriented
assistance can be combined. For example, a natural continuation of this work we will explore
a hybrid approach, combining local and global planning. Another area of future work is to
explore the use of human empowerment for assisting humans with general reward functions.
In this work, we primarily focus on assisting with goal states as a way to compare with
existing goal inference assistance methods, but the human empowerment objective can po-
tentially apply to more general reward formulations. Furthermore, we proposed a proxy to
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empowerment in order to make a user study feasible, which came at a cost of not being an
accurate measure of true empowerment. Although we found that our simplified method led
to significant improvement in our user study, the current proxy assumes homogeneous noise
and is sensitive to scenarios with noise varying between different states, and the sample-
based method naturally requires more computational power as action space grows – that
being said, there are many meaningful assistance applications with small action spaces (e.g.
navigation with mobility devices, utensil stabilization). Future work can analyze the trade-
offs between computational tractability and numerical empowerment accuracy in the human
assistance domain.
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CHAPTER

4

HUMAN PRIORS FOR EXPLORATION

This chapter is based on the paper “Guiding Pretraining in Reinforcement Learning with
Large Language Models” (Du et al., 2023c), written with Olivia Watkins, Zihan Wang,

Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and Jacob Andreas.

4.1 Introduction
Reinforcement learning algorithms work well when learners receive frequent rewards that in-
centivize progress toward target behaviors. But hand-defining such reward functions requires
significant engineering efforts in all but the simplest cases (Amodei et al., 2016; Lehman et al.,
2020). To master complex tasks in practice, RL agents may therefore need to learn some
behaviors in the absence of externally-defined rewards. What should they learn? How can
we design intrinsic rewards to elicit such behaviors?

Prior intrinsically motivated RL methods answer this question by augmenting rewards
with auxiliary objectives based on novelty, surprise, uncertainty, or prediction errors (Belle-
mare et al., 2016; Pathak et al., 2017; Burda et al., 2019; Zhang et al., 2021; Liu & Abbeel,
2021; Yarats et al., 2021). But not everything novel or unpredictable is useful: noisy TVs
and the movements of leaves on a tree may provide an infinite amount of novelty, but do not
lead to meaningful behaviors (Burda et al., 2019). More recent approaches compute nov-
elty with higher-level representations like language (Tam et al., 2022; Mu et al., 2022), but
can continue driving the agent to explore behaviors that are unlikely to correspond to any
human-meaningful goal—like enumerating unique configurations of furniture in a household.
It is not sufficient for extrinsic-reward-free RL agents to optimize for novelty alone: learned
behaviors must also be useful.
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1. Cut down the tree.
2. Craft a pickaxe.
3. Eat cow.
4. Sleep.

   . . . 
k. Build a wood house.

You see trees, 
cows, grass, 
table, and 

bushes. You have 
wood in your 

inventory. You 
feel hungry, 
thirsty, and 

sleepy. 

LLM

Prompt:
What should 
you do next?

Figure 4.1: ELLM uses a pretrained large language model (LLM) to suggest plausibly useful
goals in a task-agnostic way. Building on LLM capabilities such as context-sensitivity and
common-sense, ELLM trains RL agents to pursue goals that are likely meaningful without
requiring direct human intervention. Prompt is illustrative; see full prompt and goal format
in Appendix B.3.

In this chapter, we describe a method for intrinsic reward design using not just language-
based representations but pretrained language models (LLMs) as a source of information
about useful behavior. LLMs are probabilistic models of text trained on large text corpora;
their predictions encode rich information about human common-sense knowledge and cultural
conventions. Our method, Exploring with LLMs (ELLM), queries LMs for possible goals
given an agent’s current context and rewards agents for accomplishing those suggestions. As a
result, exploration is biased towards completion of goals that are diverse, context-sensitive,
and human-meaningful. ELLM-trained agents exhibit better coverage of useful behaviors
during pretraining, and outperform or match baselines when fine-tuned on downstream tasks.

4.2 Related Work
Intrinsically Motivated RL. When reward functions are sparse, agents often need to
carry out a long, specific sequence of actions to achieve target tasks. As action spaces or
target behaviors grow more complex, the space of alternative action sequences to explore
grows combinatorially. As such, undirected exploration that randomly perturbs actions or
policy parameters has little chance of succeeding (Ten et al., 2022; Ladosz et al., 2022).

Many distinct action sequences can lead to similar outcomes (Baranes & Oudeyer, 2013)—
for example, most action sequences cause a humanoid agent to fall, while very few make it
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walk. Building on this observation, intrinsically motivated RL algorithms (IM-RL) choose
to explore outcomes rather than actions (Oudeyer & Kaplan, 2007; Ten et al., 2022; Ladosz
et al., 2022). Knowledge-based IMs (KB-IMs) focus on maximising the diversity of states
(reviews in Aubret et al., 2019; Linke et al., 2020). Competence-based IMs (CB-IMs)
maximise the diversity of skills mastered by the agent (review in Colas et al., 2022). Because
most action sequences lead to a very restricted part of the outcome space (e.g. different ways
of falling on the floor likely correspond to a single outcome), these methods lead to a greater
diversity of outcomes than undirected exploration (Lehman et al., 2008; Colas et al., 2018).

However, maximizing diversity of outcomes may not always be enough. Complex environ-
ments can contain sources of infinite novelty. In such environments, seeking ever-more-novel
states might drive learning towards behaviors that have little relevance to the true task re-
ward. Humans do not explore outcome spaces uniformly, but instead rely on their physical
and social common-sense to explore plausibly-useful behaviors first. In video games, they
know that keys should be used to open doors, ladders should be climbed, and snakes might
be enemies. If this semantic information is removed, their exploration becomes severely im-
pacted (Dubey et al., 2018). The approach we introduce in this chapter, ELLM, may be
interpreted as a CB-IM algorithm that seeks to explore the space of possible and plausibly-
useful skills informed by human prior knowledge.

Linguistic Goals and Pretrained Language Models. One way of representing a di-
verse outcome space for exploration is through language. Training agents to achieve language
goals brings several advantages: (1) goals are easy to express for non-expert users; (2) they
can be more abstract than standard state-based goals (Colas et al., 2022); and (3) agents
can generalize better thanks to the partial compositionality and recursivity of language (Her-
mann et al., 2017; Hill et al., 2019; Colas et al., 2020). Such linguistic goals can be used
as instructions for language-conditioned imitation learning or RL. In RL, agents typically
receive language instructions corresponding to the relevant reward functions (Luketina et al.,
2019) and are only rarely intrinsically motivated (with the exception of Mu et al., 2022; Colas
et al., 2020; Tam et al., 2022), where language is also used as a more general compact state
abstraction for task-agnostic exploration.

Representing goals in language unlocks the possibility of using text representations and
generative models of text (large language models, or LLMs) trained on large corpora. In imi-
tation learning, text pretraining can help learners automatically recognize sub-goals and learn
modular sub-policies from unlabelled demonstrations (Lynch & Sermanet, 2021; Sharma
et al., 2021), or chain pre-trained goal-oriented policies together to accomplish high-level
tasks (Yao et al., 2020; Huang et al., 2022a; Ahn et al., 2022; Huang et al., 2022b). In RL,
LM-encoded goal descriptions greatly improve the generalization of instruction-following
agents across instructions (Chan et al., 2019) and from synthetic to natural goals (Hill et al.,
2020). LLMs have also been used as proxy reward functions when prompted with desired
behaviors (Kwon et al., 2023). Unlike these approaches, ELLM uses pretrained LLMs to
constrain exploration towards plausibly-useful goals in a task-agnostic manner. It does not
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Text 
obs

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

“You see grass, 
trees, bushes, cows, 
and a crafting table. 
Your inventory has 

wood.”

Valid actions: sleep, eat, attack, chop, 
drink, place, make, mine. You are a player 
playing a game. Suggest the best actions the 
player can take based on the things you see 
and the items in your inventory. Only use 
valid actions and objects.

You see plant, tree, and skeleton. You are 
targeting skeleton. What do you do?

- Eat plant , chop tree , attack skeleton

{current obs}
What do you do? 

LLM

(a) Policy parametrization for ELLM. We optionally con-
dition on embeddings of the goals Etext(g

1:k
t ) and state

Etext(Cobs(ot)).

LM Embed LM Embed

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

“Chop tree”

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

(b) LLM reward scheme. We re-
ward the agent for the similarity be-
tween the captioned transition and
the goals.

Figure 4.2: ELLM uses GPT-3 to suggest adequate exploratory goals and SentenceBERT
embeddings to compute the similarity between suggested goals and demonstrated behaviors
as a form of intrinsically-motivated reward.

assume a pretrained low-level policy, demonstrations, or task-specific prompts. Most similar
to our work, Choi et al. (2022) also prompt LLMs for priors. However, they use LM priors
to classify safe and unsafe states to reward, which is a subset of common-sense exploratory
behaviors ELLM should generate. Also similar to our work, Kant et al. (2022) query LLMs
for zero-shot commonsense priors in the Housekeep environment, but they apply these to a
planning task rather than as rewards for reinforcement learning.

4.3 Structuring Exploration with LLM Priors
Problem Description. We consider Partially Observed Markov Decision Processes
(POMDP) defined by a tuple (S,A,O,Ω, T , γ,R), in which observations o ∈ Ω derive from
environment states s ∈ S and actions a ∈ A via O(o | s, a). T (s′ | s, a) describes the
dynamics of the environment while R and γ are the environment’s reward function and
discount factor.

IM agents optimize for an intrinsic reward Rint alongside or in place of R. CB-IM
methods, in particular, define Rint via a family of goal-conditioned reward functions:

Rint(o, a, o
′) = Eg∼G[Rint(o, a, o

′ | g)]. (4.1)

A CB-IM agent is expected to perform well with respect to the original R when the intrinsic
reward Rint is both easier to optimize and well aligned with R, such that behaviors maxi-
mizing Rint also maximize R. Every CB-IM algorithm must define two elements in Equa-
tion 4.1: (1) the distribution of goals to sample from, i.e. G, and (2) the goal-conditioned
reward functions Rint(o, a, o

′ | g). Given these, A CB-IM algorithm trains a goal-conditioned
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policy π(a | o, g) to maximize Rint. For some intrinsic reward functions, agents may achieve
high reward under the original reward function R immediately; for others, additional fine-
tuning with R may be required. In eq. (4.1), the space of goals G is determined by the
goal-conditioned reward function Rint(· | g): every choice of g induces a corresponding dis-
tribution over optimal behaviors.

Goal-based Exploration Desiderata. How should we choose G and Rint(· | g) to help
agents make progress toward general reward functions R? Goals targeted during exploration
should satisfy three properties:

• Diverse: targeting diverse goals increases the chance that the target behavior is similar
to one of them.

• Common-sense sensitive: learning should focus on feasible goals (chop a tree >
drink a tree) which are likely under the distribution of goals humans care about
(drink water > walk into lava).

• Context sensitive: learning should focus on goals that are feasible in the current
environment configuration (e.g. chop a tree only if a tree is in view).

Most CB-IM algorithms hand-define the reward functions Rint (2) and the support of
the goal distribution (1) in alignment with the original task R, but use various intrinsic
motivations to guide goal sampling (1): e.g. novelty, learning progress, intermediate difficulty
(see a review in Colas et al., 2022). In Exploring with Large Language Models (ELLM),
we propose to leverage language-based goal representations and language-model-based goal
generation to alleviate the need for environment-specific hand-coded definitions of (1) and
(2). We hypothesize that world knowledge captured in LLMs will enable the automatic
generation of goals that are diverse, human-meaningful and context sensitive.

Goal Generation with LLMs (G). Pretrained large language models broadly fall into
three categories: autoregressive, masked, or encoder-decoder models Min et al. (2021).
Autoregressive models (e.g.GPT; Radford et al., 2018), are trained to maximize the log-
likelihood of the next word given all previous words, and are thus capable of language gen-
eration. Encoder-only models (e.g. BERT; Devlin et al., 2018), are trained with a masked
objective, enabling effective encoding of sentence semantics. Pretraining LMs on large text
corpora yields impressive zero- or few-shot on diverse language understanding and generation
tasks, including tasks requiring not just linguistic knowledge but world knowledge Brown
et al. (2020b).

ELLM uses autoregressive LMs to generate goals and masked LMs to build vector repre-
sentations of goals. When LLMs generate goals, the support of the goal distribution becomes
as large as the space of natural language strings. While querying LLMs unconditionally for
goals can offer diversity and common-sense sensitivity, context-sensitivity requires knowledge
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of agent state. Thus, at each timestep we acquire goals by prompting the LLM with a list
of the agent’s available actions and a text description of the current observation via a state
captioner Cobs : Ω→ Σ∗, where Σ∗ is the set of all strings (see Figure 4.2).

We investigate two concrete strategies for extracting goals from LLMs: (1) open-ended
generation, in which the LLM outputs text descriptions of suggested goals (e.g. next you
should...), and (2) closed-form, in which a possible goal is given to the LLM as a QA task
(e.g. Should the agent do X? (Yes/No)). Here the LLM goal suggestion is only accepted
when the log-probability of Yes is greater than No. The former is more suited for open-ended
exploration and the latter is more suited for environments with large but delimitable goal
spaces. While the LLM does not have prior knowledge of all possible goals, we can provide
some guidance towards desirable suggestions through few-shot prompting. See Appendix
B.3 for the full prompt.

Rewarding LLM Goals (Rint). Next we consider the goal-conditioned reward (2). We
compute rewards for a given goal g (Rint in Eq. 4.1) by measuring the semantic similar-
ity between the LLM-generated goal and the description of the agent’s transition in the
environment as computed by a transition captioner Ctransition : Ω×A× Ω→ Σ:

Rint(o, a, o
′ | g) =

{
∆(Ctransition(o, a, o

′), g) if > T

0 otherwise.

Here, the semantic similarity function ∆(· , ·) is defined as the cosine similarity between
representations from an LM encoder E(·) of captions and goals:

∆(Ctransition(o, a, o
′), g) =

E(Ctransition(o, a, o
′)) · E(g)

∥E(Ctransition(o, a, o′))∥∥E(g)∥
.

In practice, we use a pretrained SentenceBERT model (Reimers & Gurevych, 2019) for
E(·). We choose cosine similarity to measure alignment between atomic agent actions and
freeform LLM generations, as done in prior work (Huang et al., 2022a). When the caption
of a transition is sufficiently close to the goal description (∆ > T ), where T is a similarity
threshold hyperparameter, the agent is rewarded proportionally to their similarity. Finally,
since there can be multiple goals suggested, we reward the agent for achieving any of the k
suggestions by taking the maximum of the goal-specific rewards:

∆max = max
i=1...k

∆
(
Ctransition(ot, at, ot+1), g

i
t

)
.

As a result, the general reward function of CB-IM methods from Equation 4.1 can be
rewritten:

Rint(o, a, o
′) = ELLM(g1 .. k|Cobs(o)) [∆

max] . (4.2)
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Implementation Details. The full ELLM algorithm is summarized in Algorithm 2. See
Figure 4.1 for the high-level pipeline. To impose a novelty bias, we also filter out LM
suggestions that the agent has already achieved earlier in the same episode. This prevents
the agent from exploring the same goal repeatedly. In Appendix B.12 we show this step is
essential to the method.

We consider two forms of agent training: (1) a goal-conditioned setting where the
agent is given a sentence embedding of the list of suggested goals, π(a | o, E(g1:k)), and
(2) a goal-free setting where the agent does not have access to the suggested goals, π(a | o).
While Rint remains the same in either case, training a goal-conditioned agent introduces both
challenges and benefits: it can take time for the agent to learn the meaning of the different
goals and connect it to the reward, but having a language-goal conditioned policy can be
more amenable to downstream tasks than an agent just trained on an exploration reward. We
also consider two types of policy inputs– (1) just the partially observed pixel observations, or
(2) the pixel observations combined with the embedded language-state captions E(Cobs(o)).
Since (2) performs better (see analysis in Appendix B.5), we use (2) for all experiments
unless otherwise specified. All variants are trained with the DQN algorithm (Mnih et al.,
2013), with implementation details in Appendix B.8.

This method focuses on the benefits of LLM priors for RL exploration and mostly assumes
a pre-existing captioning function. In simulation, this can be acquired for free with the
ground truth simulator state. For real world applications, one can use object-detection
(Zaidi et al., 2022), captioning models (Stefanini et al., 2022), or action recognition models
(Kong & Fu, 2022). Alternatively, one could use multi-modal vision-language models with
a similar LM component (Alayrac et al., 2022). To test the robustness of our method under
varying captioning quality, Section 4.4 studies a relaxation of these assumptions by looking
at a variant of ELLM using a learned captioner trained on human descriptions.

4.4 Experiments
Our experiments test the following hypotheses:

• (H1) Prompted pretrained LLMs can generate plausibly-useful exploratory goals satis-
fying the desiderata described above: diversity, common-sense and context sensitivity.

• (H2) Training an ELLM agent on these exploratory goals improves performance on
downstream tasks compared to methods that do not leverage LLM-priors.

We evaluate ELLM in two complex environments: (1) Crafter, an open-ended environ-
ment in which exploration is required to discover long-term survival strategies (Hafner, 2022),
and (2) Housekeep, an embodied robotics environment that requires common-sense to restrict
the exploration of possible rearrangements of household objects (Kant et al., 2022). Besides
environment affordances, these environments also differ in viewpoint (3rd vs 1st person) and
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Algorithm 2 ELLM Algorithm
Initialize untrained policy π
t ← 0
ot ← env.RESET()
while t < max_env_steps do

# Generate k suggestions, filtering achieved ones
g1:kt ←PREV_ACHIEVED(LLM(Cobs(ot)))
# Interact with the environment
at ∼ π(at|ot, E(Cobs(ot))), E(g1:kt ))
st+1 ← env.STEP(at)
# Compute suggestion achievement reward
rt ← 0
∆max ← maxi=1...k∆(Ctransition(ot, at, ot+1), g

i
t)

if ∆max > threshold then
rt = ∆max

end if
# Update agent using any RL algorithm
Buffert+1 ←Buffert ∪ (ot, at, g

1:k
t , rt, ot+1)

π ←UPDATE(π, Buffert+1)
end while

action space (large high-level vs low-level). In each environment, we compare ELLM with ex-
isting IM-RL methods (Liu & Abbeel, 2021; Burda et al., 2019), an oracle with ground-truth
rewards, and ablations of ELLM; see Table 4.1.

Crafter

Environment description. We first test ELLM in the Crafter environment, a 2D version
of Minecraft (Hafner, 2022). Like Minecraft, Crafter is a procedurally generated and partially
observable world that enables collecting and creating a set of artifacts organized along an
achievement tree which lists all possible achievements and their respective prerequisites (see
Figure 4 in Hafner, 2022). Although Crafter does not come with a single main task to solve,
we can track agent progress along the achievement tree.

We modify the original game in two ways. Crafter’s original action space already incorpo-
rates a great deal of human domain knowledge: a single do action is interpreted in different
ways based on the agent’s context, each of which would correspond to a very different low-
level action in a real environment (‘do’ means ‘attack’ in front of a zombie but ‘eat’ in front
of a plant). We remove this assistance by augmenting the action space with more specific
verb + noun pairs that are not guaranteed to be useful (e.g. ‘eat zombie’). This makes
it possible in Crafter to attempt a wide range of irrelevant/nonsensical tasks, providing an
opportunity for an LM narrow the goal space down to reasonable goals. See Appendix B.2
for details. Second, to make RL training easier across all conditions, we increase the damage
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You see {observation}. 
You have in your inventory {items}*. 
You feel {health status}*.   

      *omitted if empty.

You see bush, grass, plant, tree, and 
water. You have in your inventory 
sapling.

- Plant sapling
- Chop tree
- Chop bush

Seen objects: {object, receptacle}. 
Seen receptacles: {receptacles}. 
You are holding {gripped_object}. 

Seen objects: clock in kitchen sink.
Seen receptacles: kitchen bottom 
cabinet, kitchen sink, living room 
shelf, living room carpet …
You are holding a cereal box.

- Place cereal box in kitchen cabinet 
- Pick clock

Figure 4.3: Sample templated captions and suggested goals.

the agent does against enemies and reduce the amount of wood required to craft a table from
2 to 1; see Appendix Figure B.2 for comparisons.

We use Codex (Chen et al., 2021b) as our LLM with the open-ended suggestion generation
variant of ELLM, where we directly take the generated text from the LLM as the set of
suggested goals to reward. Each query prompt consists of a list of possible verbs the agent
can use (but not a list of all possible nouns), a description of the agent’s current state, and
the question ‘What do you do?’. We add two examples of similar queries to the start of the
prompt in order to guide the language model to format suggestions in a consistent way; see
the full prompt in Appendix B.3.

Goals suggested by the LLM. To answer H1, we study the goals suggested by the
LLM in Table 4.2: are they diverse, context-sensitive and common-sensical? The major-
ity of suggested goals (64.9%) are context-sensitive, sensible, and achievable in the game.
Most of the 5% of goals not allowed by Crafter’s physics (e.g. build a house) are context-
and common-sensitive as well. The last third of the goals violate either context-sensitivity
(13.6%) or common-sense (16.4%). See Appendix B.11 for details.

Pretraining exploration performance. A perfect exploration method would unlock all
Crafter achievements in every episode, even without prior knowledge of the set of possi-
ble achievements. Thus, we measure exploration quality as the average number of unique
achievements per episode across pretraining (Figure 4.4). Although it is not given access
to Crafter’s achievement tree, ELLM learns to unlock about 6 achievements every episode,
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Method Description

ELLM (ours)
Rewards the agent for achieving any goal suggested by the LLM using the
similarity-based reward functions Rint defined in Eq. 4.2. It only rewards the
agent for achieving a given goal once per episode (novelty bias).

Oracle The upper bound: it suggests all context-sensitive goals at any step, only
common-sensical ones (from the list of

(Crafter only) valid goals) and uses the same novelty bias as ELLM. Rewards are computed
exactly with a hard-coded Rint.

Novelty

This baseline removes the common-sense sensitivity assumption of the Oracle and
rewards the agent for achieving any of the goals expressible in the environment
including invalid ones (e.g. drink tree) as long as the agent performs the
goal-reaching action in the right context (e.g. while facing a tree). Uses a
hard-coded Rint and a novelty bias like the Oracle.

Uniform This variant removes the novelty bias from Novelty and samples uniformly from
the set of expressible goals.

APT State-of-the-art KB-IM algorithm that maximizes state entropy computed as the
distance between the current

(Liu & Abbeel, 2021)
state’s embedding es and its K nearest neighbors es[1..K] within a minibatch
uniformly sampled from memory. There is no goal involved and
Rint = log ∥es − es[1..K]∥.

RND State-of-the-art KB-IM algorithm that rewards the agent for maximizing a form
of novelty estimated by the

(Burda et al., 2019)
prediction error of a model h trained to predict the output of a random network
h̃. Rint = ∥h(s, a) − h̃(s, a)∥.

Table 4.1: Descriptions of the compared algorithms. (Additional comparisons in Appendix
B.14).

against 9 for the ground-truth-reward Oracle (Figure 4.4). It outperforms all exploration
methods that only focus on generating novel behaviors (APT, RND, Novelty)—all limited
to less than 3 achievements in average. As shown in Table 4.2, ELLM does not only focus
on novelty but also generates common-sensical goals. This boosts exploration in Crafter,
supporting H1.

We also test variants of each method (with / without goal conditioning, with / without
text observations) where applicable. We do not find goal conditioning to bring a significant
advantage in performance during pretraining. The non-conditioned agent might infer the
goals (and thus the rewarded behaviors) from context alone. Similarly to Mu et al. (2022)
and Tam et al. (2022), we find that agents trained on visual + textual observations (as
computed by E(Cobs(o))) outperform agents trained on visual observations only (opaque vs
semi-transparent bars in Appendix Figure B.4). That said, optimizing for novelty alone,
whether in visual or semantic spaces, seems insufficient for fully solving Crafter.

The naïve approach of finetuning a pretrained policy on the downstream task performs
poorly across all pretraining algorithms. We hypothesize this is because relevant features and
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Suggested Rewarded

Context-Insensitive 13.6% 1.1%
Common-Sense Insensitive 16.4% 32.4%
Good 64.9% 66.5%
Impossible 5.0% 0%

Table 4.2: Fractions of suggested and rewarded goals that fail to satisfy context-sensitivity or
common-sense sensitivity; that satisfy these properties and are achievable in Crafter (Good);
or that are not allowed by Crafter’s physics. See Appendix B.11 for examples of each.
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Figure 4.4: Ground truth achievements unlocked per episode across pretraining, mean±std
across 5 seeds.

Q-values change significantly between pretraining and finetuning, especially when the density
of rewards changes. Instead, we find it is more effective to use the pretrained policy for
guided exploration. We initialize and train a new agent, but replace 50% of the algorithm’s
randomly-sampled ϵ-greedy exploration actions with actions sampled from the pretrained
policy. In Appendix B.13 we include the poor finetuning results discuss why we think guided
exploration does better.

Figure 4.5 compares the downstream performance of ELLM to the performance of the
two strongest baselines RND and APT using both transfer methods. (full comparisons with
all baselines shown in Appendix B.1). For the goal-conditioned version of ELLM, we provide
the agent with the sequence of subgoals required to achieve the task. Even though not
all subgoals were mastered during pretraining, we still observe that the goal-conditioned
pretrained agents outperform the unconditioned ones.

Performance of the different methods varies widely task-to-task and even seed-to-seed
since each task requires a different set of skills, and any given agent may or may not have
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learned a particular skill during pretraining. For instance, ELLM agents typically learn to
place crafting tables and attack cows during pretraining, leading to low-variance learning
curves. They typically do not learn to make wood swords, so we see a high-variance learning
curve which depends on how quickly each agent stumbles across the goal during finetuning.
Despite the variance, we see that goal-conditioned ELLM stands out as the best-performing
method on average. Notably, ELLM (both goal-conditioned and goal-free) is the only method
with nonzero performance across all tasks.

Figure 4.5: Success rates across training for each of the seven downstream tasks in Crafter.
Each run trains an agent from scratch while leveraging a pretrained policy for exploration.
Plots show mean ± std for 5 seeds. Some plots have multiple overlapping curves at 0.

ELLM with imperfect transition captioner. Perfect captioners might not be easy to
obtain in some environments. However, trained captioners might generate more linguistic
diversity and make mistakes. To test the robustness of ELLM to diverse and imperfect
captions, we replace the oracle transition captioner Ctransition with a captioner trained on a
mixture of human and synthetic data (847+900 labels) using the ClipCap algorithm (Mokady
et al., 2021b). Synthetic data removes some of the human labor while still providing a diver-
sity of captions for any single transition (3 to 8). Appendix B.10 presents implementation
details and analyzes how the trained captioner might cause errors in generated rewards.
Although its false negative rate is low (it detects goal achievements well), its false positive
rate is rather high. This means it might generate rewards for achievements that were not
unlocked due to a high similarity between the generated caption and goal description gener-
ated by the LLM. In ELLM pretraining, we use the learned captioner to caption transitions
where an action is successful and use that caption to compute the reward via the similarity
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Figure 4.6: Pretraining with a learned captioner vs a ground truth captioner. We see
performance drops, especially for ELLM, but still relatively good performance. (3 seeds,
mean± std.)

metric (see Section 4.3). Figure 4.6 shows that ELLM performance is overall robust to this
imperfect captioner.
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(b) Downstream evaluation: Using the frozen pretrained exploration policies only for ϵ-greedy-style
action selection for 1M steps.

Figure 4.7: Housekeep: Correct arrangement success rates on 4 object-receptacle task sets.
Mean ± std over 5 seeds.
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Task 1 Task 2 Task 3 Task 4

Match Acc. 85.7% 87.5% 50% 66.7%
Mismatch Acc. 93.8% 90.1% 94.0% 87.6%

Table 4.3: Classification accuracy of LLM for each Housekeep task (top row is true positives,
bottom row is true negatives).

Housekeep

Environment description. Housekeep is an embodied robotics environment where the
agent is tasked with cleaning up a house by rearranging misplaced objects (Kant et al.,
2022). The agent must successfully match the environment’s ground truth correct mapping
of objects to receptacles without direct instructions specifying how objects need to be rear-
ranged. This mapping was determined via crowd-sourcing common-sense object-receptacle
combinations. An example layout of the task can be found in Figure 1 in Kant et al. (2022).
Common-sense priors are necessary for learning to rearrange misplaced objects into reason-
able configurations.

We focus on a simplified subset of Housekeep consisting of 4 different scenes with one room
each, each with 5 different misplaced objects and a suite of different possible receptacles; see
Appendix B.6 for details. Because the agent does not have access to the ground truth target
locations, we use the game reward’s rearrangement success rate as a measure of exploration
quality: common-sensical exploration should perform better. A success rate of 100% means
the agent has picked and placed all 5 misplaced objects in correct locations. Note that we
intentionally focus on a domain where the downstream application benefits strongly from
exploring reasonable goals during pretraining. Rather than designing reward functions that
correspond to all correct rearrangements for all possible objects, we investigate whether
ELLM can be a general purpose method that guides learning human-meaningful behaviors.

Unlike Crafter’s combinatorial and high-level action space, Housekeep operates with low-
level actions: moving forward, turning, looking up or down, and picking or placing an
object. This allows us to investigate whether ELLM enables high-level exploration despite
using lower-level control. We assume access to an egocentric instance segmentation sensor
to generate captions of in-view objects and receptacles, and use the text-davinci-002 In-
structGPT model (Ouyang et al., 2022) as our LLM. Given a description of visible objects,
the receptacles the objects are currently in, and all previously seen receptacles, we create
a list of all possible object-receptacle mappings. We use the closed-form variant of ELLM
and query the LLM for whether each object should be placed in each receptacle as a yes/no
question. By querying for each object-receptacle combination individually, we are able to
cache and efficiently reuse LLM queries. The agent can be given two types of goals: (1)
picking an object if it is not already in a suggested receptacle, and (2) placing a gripped
object in a suggested receptacle.
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Goals suggested by LLM. In Housekeep, we assess LLM goals by looking at the classi-
fication accuracy of correct and incorrect arrangements (Table 4.3). We find that the LLM
accuracy at identifying mismatches (e.g. vase in kitchen sink) are all above 87%, how-
ever, accuracy of identifying matches varies greatly depending on the available objects and
receptacles (ranging from 50-90%). Since there are only a few correct positions, each false
negative hurts accuracy greatly. Taking a closer look, we find that some LLM labels are rea-
sonable despite disagreeing with the environment mapping: e.g. suggesting vase in living
room table, and not suggesting pan in living room cabinet. This suggests that there are
ambiguities in the ground truth mappings, likely due to human disagreement.

Pretraining and downstream performance. To investigate H1, we compare ELLM
against the strongest baselines (RND, APT, Novelty) described in Table 4.1. In Housekeep
the novelty baseline rewards the agent for novel instances of pick or place actions in an
episode, allowing us to differentiate between success attributable solely to the captioner and
the pick/place prior, and success attributable to any LLM common-sense priors. For brevity,
we focus only on the pixel + text-observation variant of all methods. Sample efficiency curves
measuring the ground truth rearrangement success during both pretraining and finetuning
are shown in Figure 4.7a. In three of the four tasks, we find that the ELLM bias leads to
higher success rates during pretraining, suggesting coverage better aligned with the down-
stream task compared to the baselines. We also find much higher pretraining success rates
in the first two tasks. Since Table 4.3 shows higher LLM accuracy for these two tasks, this
difference shows the impact of LLM inaccuracies on pretraining.

For H2, we test two different ways of using the pretrained models in the downstream
rearrangement task. First, we directly finetune the pretrained model on the ground truth
correct rearrangement; shown after the dashed vertical line in Figure 4.7a. Here, the success
rates for finetuned ELLM matches or outperform the baselines, especially if pretraining has
already led to high success rates. Interestingly, we also find that the goal-conditioned ELLM
variant consistently suffers a drop in performance when finetuning starts. We hypothesize
this is due to the treatment of all suggested goals as a single string, so if any single goal
changes between pretraining and finetuning the agent must relearn the goal embedding
changes. Second, in Figure 4.7b we present results for directly training a new agent on
the downstream task, using the frozen pretrained model as an exploratory actor during ϵ-
greedy exploration. Once again, we observe that ELLM consistently matches or outperforms
all baselines. We also see here that the KB-IM baselines are more competitive, suggesting
that this training scheme is better suited for pretrained exploration agents that are not
well-aligned to the downstream task.

4.5 Conclusion
We present ELLM, an intrinsic motivation method that aims to bias exploration towards
common-sense and plausibly useful behaviors via a pretrained LLM. We have shown that
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such priors are useful for pretraining agents in extrinsic-reward-free settings that require
common-sense behaviors that other exploration methods fail to capture.

ELLM goes beyond standard novelty search approaches by concentrating exploration on
common-sensical goals. This is helpful in environments offering a wide array of possible
behaviors among which very few can said to be plausibly useful. It is less helpful in environ-
ments with little room for goal-based exploration, when human common-sense is irrelevant or
cannot be expressed in language (e.g. fine-grained manipulation), or where state information
is not naturally encoded as a natural language string.

Limitations and Future Work. LLM performance is sensitive to prompt choice. Even
with a well-chosen prompt, LLMs sometimes make errors, often due to missing domain-
specific knowledge. False negatives can permanently prevent the agent from learning a key
skill: in Crafter, for example, the LLM never suggests creating wood pickaxes. There are
multiple avenues to address this limitation: (1) combining ELLM rewards with other KB-
IM rewards like RND, (2) prompting LLMs with descriptions of past achievements (or other
feedback about environment dynamics) so that LLMs can learn about the space of achievable
goals, (3) injecting domain knowledge into LLM prompts, or (4) fine-tuning LLMs on task-
specific data. While ELLM does not rely on this domain knowledge, when this information
exists it is easy to incorporate.

ELLM requires states and transition captions. Our learned captioner experiments Fig-
ure 4.6 suggest we can learn these from human-labeled samples, but in some environments
training this captioner might be less efficient than collecting demonstrations or hard-coding
a reward function. Still, we are optimistic that as progress in general-purpose captioning
models continues, off-the-shelf captioners will become feasible for more tasks. Lastly, sug-
gestion quality improves considerably with model size. Querying massive LLMs regularly
may be time- and cost-prohibitive in some RL environments.

As general-purpose generative models become available in domains other than text,
ELLM-like approaches might also be used to suggest plausible visual goals, or goals in other
state representations. ELLM may thus serve as a platform for future work that develops
even more general and flexible strategies for incorporating human background knowledge
into reinforcement learning.
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CHAPTER

5

HUMAN INTRINSIC OBJECTIVES

This chapter is based on the paper “What can AI Learn from Human Exploration?
Intrinsically-Motivated Humans and Agents in Open-World Exploration” (Du et al., 2023b),

written with Eliza Kosoy, Li Dayan, Maria Rufova, Pieter Abbeel, and Alison Gopnik.

5.1 Introduction

Figure 5.1: Left: Example screen from Crafter Hafner (2022). The player is at the center
of the screen; the yellow arrow shows which direction they are facing. Their health, food,
water and energy status are at the bottom left, the raw materials they have collected are at
the bottom right, and the tools built so far are in the bottom row. Middle: Actions available
to the human participants and RL agents. Right: We compare behaviors of children, adults,
and RL agents.
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Humans often explore new environments remarkably effectively, even in the total absence
of external rewards (Matusch et al., 2020). There have been many attempts to formalize
the natural curiosity of humans, but evidence from empirical studies about what is actually
motivating human exploration remains inconclusive (Poli et al., 2022). Furthermore, these
studies are limited in that they tend to put humans in very simple and unrealistic environ-
ments and look at at limited range of exploratory behaviors. Tracking the complexities of
more open-ended and spontaneous exploration has proven challenging. Kosoy et. al have
begun designing more complex unified online environments which allow spontaneous explo-
ration (Kosoy et al., 2020, 2022), but have still primarily focused on simple tasks. There is
not yet a realistic environment that allows for more than one type of activity and many of
the environments are task specific. Other work such as (Pelz, 2020) are limited by what can
be clicked within the realm of a specific game. Our goal is to study human exploration in a
more complex setting that can also help us develop more effective intrinsic rewards for artifi-
cial agents. Reinforcement learning (RL) agents must actively collect meaningful experience
in order to find optimal behaviors in initially unknown environments. To facilitate this,
existing works have proposed various objectives that guide exploration by approximating
some notion of novelty or curiosity, with some commonly-used concepts being count-based
state-visitation (Ostrovski et al., 2017; Machado et al., 2018), prediction error (Pathak et al.,
2017; Schmidhuber, 1991), state novelty (Burda et al., 2018; Zhang et al., 2021), skill learning
(Eysenbach et al., 2018; Lee et al., 2019), or information gain (Houthooft et al., 2016; Pathak
et al., 2019); see (Aubret et al., 2019; Portelas et al., 2020) for surveys. However, general
intrinsically motivated RL agents still don’t come close to human-level sample efficiency,
these intrinsic rewards sometimes produce counterproductive behavior (Burda et al., 2018),
and it remains unclear if engineered intrinsic rewards are truly aligned with human explo-
ration. Few studies use human exploration as a basis for agent exploration—some examples
include illuminating key differences between human and agent priors (Dubey et al., 2018), or
developing objectives loosely inspired by curiosity and novelty seeking (Pathak et al., 2017).

Motivated by the gap between human and agent exploration, we study the behavior
of humans and agents in the same environment—Crafter (Hafner, 2022), a Minecraft-like
complex, open-ended environment. We collect play data from both children and adults, em-
phasizing that the child behavioral data is important for gaining insights into fundamental
untrained exploration capacities of humans. We propose five ways of scoring exploration in
the game and analyze how well the exploration performance of humans and agents correlate
with commonly-used information theoretic objectives that have also been used to explain
exploration motivations: Entropy, Information Gain, and Empowerment. Interestingly, we
find that only human exploration performance is consistently positively correlated with the
information theoretic objectives, despite the agents being explicitly trained to optimize ap-
proximations of the given objectives and the overall exploration scores of humans and agents
spanning a similar range. We also record and transcribe human utterances during play, and
in a preliminary analysis find a significant positive correlation between children’s frequency of
verbalizing goals and their Empowerment, supporting previous work in psychology which has
suggested that self-talk could play an important role in children’s creative problem-solving
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(Lee, 2011) and in AI which suggests goal-generation aids exploration in agents (Du et al.,
2023c; Hu et al., 2023).

5.2 Related Work
Exploration in AI. Exploration strategies in AI range in complexity from occasionally
taking random actions (e.g., ϵ-greedy) to optimizing complex intrinsic reward functions. In-
trinsic rewards are often motivated by objectives such as: increasing entropy, information
gain, and/or empowerment. State entropy maximization objectives use the intuition that
exploration is motivated by visiting diverse states. Information gain measures the amount of
information gained about the environment (Lindley, 1956), where exploration is motivated
by reducing surprise, developing a better understanding of environment dynamics. Empow-
erment measures of the number of available options (Klyubin et al., 2005b,a), such that
maximizing empowerment encourages exploration that increases the agent’s control.

However, outside of very simple environments, actual implementation of these objectives
is limited. Approximations have been proposed in prior works: count-based exploration
bonuses (Tang et al., 2017; Bellemare et al., 2016), entropy-maximization (Hazan et al.,
2019; Liu & Abbeel, 2021; Yarats et al., 2021), curiosity-based approaches that encourage
agents to take actions that are maximally informative about the environment; for example,
by rewarding states or transitions that the agent can not yet predict well (Schmidhuber, 1991;
Pathak et al., 2017; Burda et al., 2018; Zhang et al., 2021), leveraging Bayesian networks
(Houthooft et al., 2016), or network ensembles (Pathak et al., 2019). Empowerment-based
objectives can learn behaviors that have measurable influence over the environment (Gregor
et al., 2016; Eysenbach et al., 2018; Klyubin et al., 2005a). However, even with sophisticated
exploration objectives, RL agents often lag far behind human sample efficiency (Matusch
et al., 2020; Hafner et al., 2023). In the rare cases that human-level exploration is achieved,
this is done by a painstaking amount of hard-coded structure (Tsividis et al., 2021).

One explanation for the gap between human and agent behavior is the vast prior knowl-
edge that humans have due to their life experience. (Dubey et al., 2018) find that removing
visual priors greatly reduces human abilities, while agents are unimpacted. (Du et al., 2023c)
propose using large language models as a fuzzy repository of human knowledge as a way of
incorporating human priors in RL exploration. That said, prior knowledge by itself is useless
without an exploration objective. Our work aims to understand which objectives motivate
human exploration, and how that can inform intrinsic rewards for agents.

Exploration in Cognitive Science. Dating back to Piaget (1933), developmental re-
searchers have conceived of children as active and curious learners who are intrinsically
motivated to explore the world in systematic and rational ways (Schulz & Bonawitz, 2007;
Cook et al., 2011; Legare, 2012; Schulz, 2012); see Schulz (2012) for a review. As in the AI
literature, there is just as much variety in proposed objectives underlying human curiosity
and exploration (Ten et al., 2022; Pelz, 2020), including perceived novelty (Taffoni et al.,
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2014; Berlyne, 1950; Smock & Holt, 1962; Poli et al., 2022) which simply suggests that hu-
mans are drawn to stimuli that appear more novel, expected learning progress (Baldassarre
et al., 2014; Ten et al., 2021; Oudeyer & Kaplan, 2007) which is the idea that people find it
intrinsically rewarding to improve their performance, information gain (Liquin et al., 2021;
Ruggeri et al., 2021; Addyman & Mareschal, 2013) where the driver of exploration is to
gather maximal information about the environment, (or even more specifically the possi-
bility of learning causal relations (Taffoni et al., 2014)) maximizing empowerment (Brändle
et al., 2022, 2023) and totally random exploration more common in young children (Meder
et al., 2021).

Although humans have been found to be sensitive to many of the above exploration ob-
jectives, evidence on what exactly people base their exploration on is inconsistent (Poli et al.,
2022). Many papers propose that humans are driven by a combination of objectives, such as
a desire for both knowledge of task space and competence across that space (Baranes et al.,
2014), or that humans find it rewarding to perform above a certain level while simultane-
ously making substantial learning progress (Ten et al., 2021). This mirrors how RL agents
also commonly maximize the weighted sum of multiple objective functions, the weighting of
which is also often changed during the course of the agent’s lifetime of environment interac-
tions (Pitis et al., 2020; Tsividis et al., 2021). Studies thus far have been limited to highly
simplistic and unrealistic environments, typically stateless or with only a couple different
states (Gershman, 2018) or where participants are asked to choose from a limited set of
options (Baranes et al., 2014; Ten et al., 2021). At the more naturalistic end are 3D maze
environments where participants can move around (Kosoy et al., 2020), but these are still
quite limited with navigation being the only available task. Our hope is that studying human
exploration in a richer environment can help shed light onto which exploration objectives
people actually use and why they are so effective.

Language and Exploration. We also partially use utterances to understand human ex-
ploration in this work; while we are not aware of existing work on verbalizations and intrinsic
motivation, there are some works on verbalization and problem solving. It has been found
across a wide range of studies that verbalization or private speech can be helpful for un-
derstanding situations and surmounting difficulties, for instance by focusing attention on
important features and discarding irrelevant ones (Schunk, 1986; Granato et al., 2020), or
assisting with coding and retention of information (Gidley Larson & Suchy, 2015). This sug-
gests that participants with more verbalizations might explore better because they can better
process the flow of information from their environment. Furthermore, overt verbalization (i.e.
thinking aloud) is especially common for younger children (ages 6-7), and particularly when
encountering obstacles (Vygotsky, 1962). This could suggest a stronger correlation between
success in exploration and frequency of utterances for children, but not adults.
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5.3 Environment and Data Collection

Figure 5.2: Dependency tree of all the achievements
that can be unlocked in Crafter (from Figure 4, Hafner
(2022)). Due to our action pruning, Collect Diamond,
Make Iron Pickaxe, Make Iron Sword, Make Stone
Sword, Place Stone are not achievable in our setting.

Open-Ended Environment: Crafter.
Motivated by the lack of human
exploration studies in rich and
open-ended environments, we con-
duct our comparisons in Crafter
Hafner (2022). Similar to Minecraft,
Crafter comprises of exploration
challenges in both the breadth and
depth of activities to explore. The
player controls a character in a
procedurally generated world con-
taining various resources that can
be collected and used to replen-
ish health or build tools (Figure
5.1). Players are able to explore
a breadth of skills: collecting food
and water, sleeping, and avoiding
or killing enemies, as well as depth
of skills: crafting increasingly com-
plex tools. This gives rise to the
achievement tree in Figure 5.2.

The available actions a either
move the player or enable interactions with the environment. Interactions only affect the
cell that the player is directly facing, with the "do" action being the most versatile (used
to eat, drink, cut tree, mine, fight). Seven additional actions execute a unique action. Note
that we remove three of the most complex actions from the original game as they were not
feasible to fit on a conventional game controller (see Figure 5.1, centre). Interaction actions
have no effect if the player lacks sufficient prerequisites (e.g. place crafting table only
works if the player has sufficient wood in their inventory). While the original Crafter work
contained expert human data, we focus on collecting play data from adults and children
who are fully unfamiliar with the game in a reward-free setting so we can observe how they
explore in an unknown environment.

We also modify the game to make it easier for human play. First, we slightly lengthen
the fraction of an in-game day that is spent in daylight by changing the daylight function
from 1− |cos (πx)|3 to 1− |cos (πx)|12. We also add an explicit ’Game Over’ screen when an
episode ends so participants are aware of episode transitions. Lastly, we slightly prune the
action space to fit the available actions onto the handheld controller (Figure 5.2).

Participants. In this pre-registered, IRB approved study (AsPredicted reference: 92521).
We recruited 51 children between the ages of 6-10 years (Mean age: 8.6 years, Female: 19,
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Male: 32) from the Bay Area Discovery Museum (BADM), as well as 24 adults from the
University of California, Berkeley campus ages 18-25 years (Mean age 24.8, Female: 10,
Male: 14). No direction was given about the game in order to encourage open-ended play,
and participants were allowed to play for up to 20 minutes. Participants who were not able
to complete at least one full game round were excluded. We found that 80% of children had
video game experience with 64.7% having Minecraft-specific experience, and 79.1% of adults
had video game experience with 54.1% having played Minecraft previously.

Data Collection Procedure. In this study, we introduced children and adults to the
novel “Crafter” game. Participants were first shown a short tutorial video explaining what
each controller button did (Figure 5.1) and then allowed to play for up to 20 minutes, with
the option to quit early. During this time period, the game automatically restarts a new
episode any time the player died to a Game Over screen. Participants were not shown any
score or given any objective–which was reflected in the wide variation in responses to the
question about the point of the game, ranging from “just have fun" or “try not to rage quit"
to “killing the skeletons" or “don’t die". All actions taken and the complete world state was
recorded for every time-step while playing, along with audio from the participant which was
later transcribed manually with timestamps. Due to a lack of consent for audio recording
for all participants, this resulted in transcripts from 35 children and 22 adults.

Agent Training Procedure. We train three RL agents and use one random agent as
baselines. The random agent samples noop 47.5% of the time in order to match the average
reaction time of the human players, and uniformly samples all available actions otherwise.
For trained agents, we compare against state-of-the-art intrinsic RL objectives: NovelD
(Zhang et al., 2021) and APT (Liu & Abbeel, 2021). NovelD incentivizes information gain
by providing a large intrinsic reward at the boundary between explored and unexplored
regions, using RND (Burda et al., 2018) as a measure of state novelty. APT uses a particle-
based entropy estimator (Singh et al., 2003) to reward the agent for maximizing state entropy
in an abstract representation space. As a measure of best-case performance we also train an
agent with the game extrinsic reward function, which reveals the possible set of achievements.
The game reward function provides a sparse reward of 1 every time a new achievement is
unlocked alongside a small health-based reward every time the agent is hurt or healed. The
agent policy input is a simplified semantic representation of the game: the material in the cell
the agent is facing, the status, and the inventory. All RL agents are trained with Rainbow
DQN (Hessel et al., 2018) for one million timesteps, using the same hyperparameters for
Crafter from Table B.3. We report 12 seeds for each agent.
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5.4 Experiments

Overview of Exploration Scores

As there is no single objective measure for “good exploration", we construct five exploration
scores for Crafter (Table 5.1). As the difficulty and number of achievements unlocked is
a simple measure of how well a player explores semantically meaningful state changes in
Crafter, four measures are achievement-based. The last one, map coverage, is based on
task-agnostic physical exploration.

Exploration Score Definition

Achievement Score Number of unique achievements (cells of Figure 5.2) unlocked
throughout gameplay.

Weighted Achievement Score
Same as score, but accounts for task complexity by weighting
each achieved task by its level in the skill tree (i.e. deeper tasks
contribute more to the score).

Breadth Score

A measure of how broadly the player has explored the task space
by calculating how much progress has been made in a breadth-
first traversal of the skill tree (i.e. only count tasks up to and
including the first incomplete level of the tree).

Depth Score A measure of how deeply the player has explored the task space
by returning the depth of the deepest task achieved.

Map Coverage Score Percentage of the game map covered.

Table 5.1: Description of exploration scores proposed for our study.

Summary Statistics

We present summary statistics across all human and agent data. First, Figure 5.3 shows
summary histograms for each measure, showing the normalized density of people and agents
on the proposed exploration scores. We find that adults generally score better than children,
and there is a wider diversity of performance among both children and adults than any
individual agent condition. However, we note that the overall spread of human and agent
performances are similar–i.e., it is not the case that humans greatly outperform the agents
or vice versa.

Next, we look at how exploration progression over time differs between humans and
agents. Figure 5.4 looks at a random subset of participants and trained agents, plotting
the total number of unique achievements they have ever unlocked over time. Again, adults
on average score higher than children. There is also larger variation in children gameplay,
with many children who quit playing early, including those who were making rapid progress.
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Figure 5.3: Summary density histograms for each exploration score. Cumulative measures
are cumulative across all episodes, while Map Coverage averages across episodes. Left plot
for each measure shows human performance, right plot shows agent performance.

Agents are much less sample efficient, reaching similar performance only after over 100× the
number of environment interactions used by humans.
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Finally, we examine whether exploration is more focused on breadth or depth. Figure 5.5
shows a normalized 2D histogram of exploration breadth and depth through the achievement
tree. Notably, children show the clearest correlation between the breadth and depth of
exploration, whereas all other groups have participants or agents that are more focused on
either breadth or depth. This suggests that children may play in a way that explores diverse
and increasingly complex skills similarly.
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Figure 5.6: Information theoretic objectives vs. exploration scores with significance p < 0.05
on the linear fit. We note that only adults and children consistently show a significant positive
correlation between the achievement-based scores and the given objectives. We generally do
not see a significant relationship between physical map coverage and the objectives. For full
plots, see Figure C.3.

Analyzing Information Theoretic Objectives

We verify whether objectives proposed as intrinsic motivation functions are indeed signif-
icantly correlated with human and agent exploration. We focus on Entropy, Information
Gain, and Empowerment, each of which have been proposed as motivations for exploration
in both the AI and cognitive science literature (see Section 5.2). Rather than computing
these functions on raw pixel inputs, we construct a state representation s that inherently
imbues some prior knowledge by combining the following: the semantic label of the cell the
player is currently facing, the contents of their inventory, and the increase in their status from
the previous state, if any. This captures aspects of the environment that the player is most
likely to be paying attention to and has direct control over, while aiming to avoid meaningless
increases in the objectives (e.g., visually novel configurations of the procedurally generated



CHAPTER 5. HUMAN INTRINSIC OBJECTIVES 60

map that are not semantically novel). We use this representation to construct transition
tables of each participant’s and agent’s behaviors, mapping each transition (s, a, s′) to the
number of times it was experienced.

Entropy. The entropy of the distribution of states visited throughout play is given by

Entropy =
∑
s

−p(s) log(p(s)) (5.1)

Concretely, we compute p(s) as Ns/
∑

sNs, where Ns is the number of times a transition
in the transition table started with s. We report the cumulative entropy over the person or
agent’s total experience. This can be interpreted as a measure of the diversity of all visited
states.

Information Gain. We measure the total information gain from all experiences of
taking action a from state s as the log count of the total number of times that transition has
been made (Matusch et al., 2020).

IG(s, a) = log(1 +N(s,a)), (5.2)

where N(s,a) is the number of times that same action a has been taken given being in state
s. We then report the average amount of information gained per transition (accounting for
all past experiences) as the overall information gain of a player’s experience.

Information Gain =

∑
(s,a) IG(s, a)∑
(s,a) N(s,a)

(5.3)

This can be interpreted as a measure of novel transitions encountered, such that the player
acquires less information each time they take the same action in a known state. We use the
log-count approximation as prior work has found it to perform similarly to more complex
measures (Matusch et al., 2020). A similar alternative is to use the square root instead of
the logarithm (Brändle et al., 2023).

Empowerment. Empowerment is defined as the channel capacity of the agent’s actua-
tion channel (Klyubin et al., 2005a). We compute one-step empowerment as most impactful
actions in Crafter are single-step:

Empowerment = max
p(a|s)
I [a; s′|s] = max

p(a|s)

∑
A,S

p(s′|a)p(a) log p(s′|a)∑
A p(s′|a)p(a)

(5.4)

We use the Blahut-Arimoto (Dupuis et al., 2004) algorithm to approximate the channel
capacity, as proposed in Klyubin et al. (2005a). We report the cumulative empowerment
over the person or agent’s total experience. This can be interpreted as a measure of the
amount of control the agent has over visited states, or the amount of information the agent
could inject into the environment.

In Figure 5.6, we plot each information theoretic objective against the proposed explo-
ration scores and compute a least squares linear fit for each condition. For clarity, we only
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show the plots with a significant correlation (p < 0.05). Interestingly, we find only the
humans consistently exhibit significant positive correlation between the exploration scores
and the information theoretic objectives (the only exception being Breadth vs. Information
Gain). This is despite the non-random agents spanning similar absolute score values (see
Figure 5.3), achieving Entropy and Empowerment comparable to adults (see Figure C.3),
and the children performing worse on average across all scores. For example, the NovelD
agent behavior across all objectives correlates well with Achievement Score but none of the
other exploration scores. This suggests human exploration may be advantageously guided
by information theoretic intrinsic motivations, while the agents’ is not, even when agents
are explicitly trained on intrinsic rewards that aim to approximate those same motivations.
We do not see similar correlations for map coverage, suggesting that the information theo-
retic objectives are more aligned with exploration in the skill space rather than just physical
exploration of the map space.

Analyzing Verbalizations

We investigate whether self-talk might help exploration by examining the relationship be-
tween verbalizations and the intrinsic objectives. Following prior works using LLMs for
summarizing human data (Rathje et al., 2023), we take transcriptions from each participant
and use ChatGPT (gpt-3.5-turbo) to classify whether each utterance expresses a question
and/or a goal. To improve accuracy, we also ask the LLM to generate reasoning before
making each classification.

Questions Questions about the game, such as “How do I move?" or “What is that skeleton
doing?"

Goals Stated goals for the game, such as “I need to get some water."

Table 5.2: Classes of verbalizations analyzed in our study.

The children talked significantly more during gameplay than the adults (averaging 240 vs
160 words per session, despite adults often playing for longer). To account for different play
durations, we normalize the number of utterances by the total number of timesteps played.
Our exploratory analysis found, among just the child participants, a significant correlation
between the fraction of verbalizations expressing goals or questions, and the cumulative
Empowerment (see Figure 5.7), with goals exhibiting by far the highest correlation (r2 =
0.28, p = 0.005 unadjusted). This corroborates with prior findings in psychology that self-talk
can help direct and focus problem solving in children, especially by focusing their behavior
in a goal-directed manner, and findings in AI that agents that generate goals may explore
more effectively (Lee, 2011; Hu et al., 2023; Du et al., 2023c). Inferring which exploration
motivations are implied by the choice of verbalized goal is important future work.
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Figure 5.7: Fraction of verbalized questions and goals vs. cumulative entropy, information
gain, and empowerment for children. We find that the relationship between the fraction of
uttered goals and empowerment has the highest correlation and largest significance (r2 =
0.28, p = 0.005 unadjusted). No significant relationship was found in the adult data (full
plots in Figure C.1).

5.5 Conclusion
Conclusions Our goal in this work is to develop an understanding of human exploratory
behaviors in an open-ended environment. To this end, we propose a framework for studying
human and agent behaviors in a shared, open-ended environment within Crafter, with various
scores for measuring exploration quality. We find that both children and adult exploration
success consistently correlates with Entropy, Information Gain, and Empowerment. On
the other hand, we find surprisingly that this is not the case for either intrinsically or
extrinsically motivated RL agents, despite the intrinsically motivated agents using objectives
that approximate maximizing Entropy or Information Gain. This suggests that perhaps
humans are making use of the information theoretic objectives for exploration more effectively
than current RL agents are able to. We emphasize that finding this relationship is important,
as one possible explanation for the gap between human and agent exploration is simply the
degree of prior knowledge—but human behavior being correlated with the different objectives
suggests that humans, unprompted, can explore in ways that optimize these objectives. In
some preliminary analyses of verbalizations, we find that goal-based utterances in children
are significantly correlated with Empowerment. This suggests that goal-setting may be an
important component of exploration, with further verbalization analyses left for future work.

Limitations and Future Work. One limitation of our work is the small sample size,
limiting broader conclusions about human exploration in general. We also note that the
analyses on verbalizations were exploratory, and need to be confirmed with a larger sample in
a preregistered study format. That said, we hope this work inspires interest in the intersection
between cognitive science and AI, laying ground for future work that can collect larger
datasets in richer and more naturalistic settings.
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CHAPTER

6

CONCLUSION

In this thesis, we propose that addressing reward design for increasingly capable reinforce-
ment learning agents will require novel ways of incorporating human input. We begin with
the domain of learning reward models from human feedback, where we propose leveraging
large-scale pretrained vision-language models to robustify learned reward models and better
handle naturalistic vision and language distribution shifts. Next, we propose novel forms of
human input for training assistive agents and for guiding exploration. Within the domain
of human assistance, we propose using human empowerment as an input to agent reward
functions, enabling us to circumvent some challenges of existing goal inference based ap-
proaches for assistance. Within the domain of intrinsic reward design for exploration, we
first propose using human priors and general world knowledge as input for rewards that
elicit more human-aligned exploration in open-ended domains. Next, we explicitly study the
exploratory behaviors of human adults and children in a unified environment with unsuper-
vised reinforcement learning agents in order to identify differences in exploration objectives
between humans and current agents.

We study a range of different rewards and behaviors in this work—task-specific language-
conditioned agents, real-world robotic manipulation, simulated assistive agents, and agents
exploring in open-ended worlds. In studying human-centric reward design in each of these
scenarios, many open questions remain. While the discussed approaches push the frontier
of incorporating human input in a range of settings, the scope of tasks we hope intelligent
machines will eventually be able to accomplish span an even wider scope. If we are to continue
incorporating human supervision through reward design, one crucial direction for future work
is to better understand which forms of human input are usable, effective, and necessary in
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different domains. While human feedback over trajectories and demonstrations currently
dominate as forms of human input for training intelligent agents, these forms of feedback
have their own limitations and may not be generally applicable to all behaviors and types of
agents. How can we provide more immediate forms of feedback or corrections, enabling active
learning and teaching? What tools can we build that facilitate better communication between
humans and agents in interaction? Beyond direct human feedback as input, are there other
objectives (as we found with human empowerment) that act as meaningful reward inputs?
Alternatively, AI-provided feedback has emerged as a means of providing fuzzily human-
aligned feedback without the inefficiencies and cost of human-in-the-loop feedback. How can
we ensure that the AI-provided feedback and evaluations align with actual human feedback?

An orthogonal direction to developing new forms of human input is to further our un-
derstanding of existing effective forms of input. When learning reward models from human
preferences that aim to capture general human intent, open questions remain as to whether
the learned reward models are well-aligned with the intended human objectives. While
some initial work in this area show reward models for large language models can be well-
calibrated (Bai et al., 2022), further work is needed to develop more transparency into such
reward models and to better understand their failure modes. Can we formulate methods for
correcting and adjusting reward models over time, as objectives change and model failures
are detected?

The general question of how we can use human input to guide agent behaviors carries
important sociotechnical implications. Ideally, human inputs into reward design should be
representative of the objectives of people that are affected by such a system, directly or
indirectly. Future work in this direction should build on interdisciplinary insights; drawing
on lessons from domains such as HCI, where there exists bodies of prior work on interpreting
and making use of human preferences, and psychology, where better understanding human
objectives and behaviors can inform reward design for agents. While some of these inter-
disciplinary works exist, many challenges remain. We hope that the work presented in this
thesis paves a way forward for reward design that actively accommodates different forms of
human input, allowing us to better elicit desired behaviors in intelligent systems.
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APPENDIX

A

VISION-LANGUAGE MODELS AS
SUCCESS DETECTORS

A.1 Simulated household domain
To evaluate agent policies on the standardized set of scenarios (STS), each agent is first given
a period of context to replay up to a "continuation point", after which the agent policy is used
to complete the trajectory. Each continuation is then evaluated offline by human annotators
as either successful or failure, along with the point at which success or failure occurs. These
human annotations are then used to rank agent policies, using the proportion of successful
annotations they receive. For more details on the evaluation procedure, see Abramson et al.
(2022b).

Baseline Evaluation Models

While human evaluations provide the ground truth signal for assessing agent capabilities,
the cost of annotations scales directly with the number of evaluations for each new task
and agent. Thus, there has been interest in automating the evaluation protocol to enable
evaluation to scale over time. Ideally, an automated evaluation model will condition on an
episode of agent behavior and the input task utterance, and output a classification whether
or not the task is successful.
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Currently two baseline evaluation models have been developed for the STS: whole-episode
and autoregressive models. In both cases, the reward annotations for a particular episode
are aggregated using majority voting.

Whole episode evaluation models.

Figure A.1: Whole Episode Bespoke Evaluation Model

For these models, we first preprocess an STS episode by downsampling it to 32 frames
and tokenizing the text instruction and agent responses. The images are then embedded
with a ResNet-101, the input and output text are embedded, and these embeddings are
concatenated together and fed to a transformer with 16 layers and 16 attention heads. The
transformer output is fed through two MLP heads: one to predict the likelihood of the episode
being successful, P(success), and an auxiliary contrastive loss, P(matching). P(success) is
supervised with the aggregated reward annotations, and P(matching) is trained to predict
whether an instruction matches the episode or has been shuffled.

Autoregressive evaluation models. The autoregressive evaluation models use the
same architecture as the agents, which takes inputs on a per-frame basis, rather than at
the episode level. The model embeds the images and language for each frame, passes the
embeddings to a multimodal transformer followed by an LSTM, and is asked to predict
success or no-success on a per frame basis. The success of an entire episode is then determined
by whether or not any single frame was predicted to be successful.
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Figure A.2: Autoregressive Bespoke Evaluation Model

Model Test 1: Test 2: Test 3:
unseen episodes unseen behavior unseen language

Baseline Whole Episode Model 80.6% 85.4% 49.9%
Baseline Autoregressive Model 71.7% 70.4% (not tested)

Flamingo 3B 50% 50% 50%
FT Flamingo 3B 83.4% 85.0% 59.3%

Table A.1: Zero-shot episode-level balanced accuracies for IA Playroom STS evaluation
models. For reference, human level balanced accuracy is around 88%.

A.2 Robotics domain

Ground truth in robotics domain

Figure A.3 shows how the ground truth success and failure labels are assigned to the full
episodes. For an episode to be successful, it must start in a failure state and terminate in a
success state.

Data Efficiency in robotics domain

We investigate whether the pretraining used for Flamingo makes it more amenable to ac-
curate success detection in the lower-data regime. For this set of experiments, we train on
only 100-200 episodes (100x less than the tens of thousands of episodes used in the above
experiments) per task and evaluate on the same in-domain test set. As shown in Table A.2,
for five of the six tasks the Flamingo-based model is less affected by the smaller dataset than
the ResNet-based model.
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failure state success state

success state failure state

success state success state

failure state failure state

Start state End state Ground truth label

Success

Failure

Failure

Failure

Figure A.3: Ground truth labels for robotics tasks. The episode is considered positive
only when it starts in a failure state and ends in a success state, all other episodes are
considered as negative.

Balanced Accuracy Insert Small Insert Medium Insert Large

bespoke SD 68.7% (-29.2%) 70.2% (-28.3%) 89.7% (-9.4%)
FT Flamingo 3B 77.6% (-18.3) 85.3% (-9.1%) 93.2% (-1.8%)

Remove Small Remove Medium Remove Large

bespoke SD 86.7% (-10.6%) 95.3% (-3.4%) 95.7% (-2.7%)
FT Flamingo 3B 70.5% (-11.6%) 86.7% (+3.3%) 87.1% (-0.0%)

Table A.2: Data Efficiency – train on 100-200 episodes, evaluate on 50-60k episodes.

Policy Evaluation

We further verify that the FT Flamingo 3B success detector can be used to train use-
ful policies using reward-filtered behavior cloning (BC). In filtered BC, we first use FT
Flamingo 3B to classify demonstration episodes as successes or failures for a particular
task. Then, we use only the episodes classified as success for BC training. Table A.3 shows
the average success rates of the policies evaluated on 20 episodes with manual resets. In
manual resets no extra gears are pre-inserted on the pegs for the insert task and only the
one relevant gear is pre-inserted for the remove tasks. The success rates vary between 50%
and 75%, suggesting that the accuracy of the success detector models is sufficient for some
amount of policy training. To compare with the bespoke SD model, we also conduct filtered
BC training with the bespoke SD reward model and evaluate an insert large gear policy over
100 episodes with automated resets. In automated resets, policies for different tasks are run
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in sequence one after another and any number of gears might be already inserted at the
start of the episode. In this case, the success rate with FT Flamingo 3B is 30% and with
bespoke SD it is 33%. This provides a preliminary proof-of-concept that the difference in
reward model accuracy did not lead to a large difference in policy performance. We leave
more detailed policy evaluations to future work.

Small Medium Large

Insert 55% 65% 70%
Remove 60% 75% 60%

Table A.3: Policy success rates. Policies are trained with filtered behavior cloning where
only successful episodes are used for trianing and success is determined by FT Flamingo
3B.
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GUIDING PRETRAINING IN
REINFORCEMENT LEARNING WITH

LARGE LANGUAGE MODELS

B.1 Crafter Downstream Training
We finetune on seven downstream Crafter tasks plus the Crafter game reward:

• Place Crafting Table - agent must chop a tree and then create a crafting table. This
is an easy task most agents will have seen during pretraining.

• Attack Cow - agent must chase and attack a cow. This is also an easy task often
seen during pretraining in most methods.

• Make Wood Sword - agent must chop a tree, use it to make a crafting table, chop a
second tree, use the wood at the crafting table to make a wood sword. This task could
be achieved during the pretraining env, but many agents rarely or never achieved it
because of the sheer number of prerequisites.

• Mine Stone - agent must chop a tree, use it to make a crafting table, chop a second
tree, use the wood at the crafting table to make a wood pickaxe, seek out stone,
and then mine stone. This task is so challenging that we replaced the fully sparse
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reward (where all pretraining methods fail) with a semi-sparse reward for achieving
each subtask.

• Deforestation - agent must chop 4 trees in a row. This task tests whether having goal
conditioning improves performance by directing the agent. During pretraining most
agents will have chopped a tree, but novelty bias should deter agents from regularly
chopping 4 trees in a row.

• Gardening Like above, this task tests the value of goal conditioning. The agent must
first collect water and then chop the grass. Both skills maybe have been learned during
pretraining, but never in sequence.

• Plant Row - agent must plant two plants in a row. This task is challenging because
even a highly skilled ELLM agent cannot have learned this task 0-shot because the
state captioner has no concept of a “row”.
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Figure B.1: Goal completion success rate for different tasks in the Crafter environment.
RL training uses sparse rewards. Each method trains an agent from scratch while using a
pretrained policy for exploration. Each line shows the mean across 5 seeds with shaded stds.

B.2 Crafter Env Modifications
The default Crafter action space contains an all purpose “do” action which takes different
actions depending on what object the agent is facing - for instance attacking a skeleton,
chopping a tree, or drinking water.

We modify the action space to increase the exploration problem by turning the general
‘do’ action into more precise combinations of action verbs + noun arguments. Whereas ‘do’
previously was an all purpose action that could attack a skeleton, chop a tree, or drink
water, the agent must now learn to choose between the actions as arbitrary verb + noun
combinations, ‘attack skeleton’, ‘chop tree’, ‘drink water.’ The exploration problem
becomes more difficult as this larger combinatorial action space is not restricted to admissible
actions and the agent could try to drink skeleton or attack water. Whereas the old action
space was 17-dimensional, our new combinatorial one contains 260 possible actions. One way
to impose human priors is to design the agent’s action space explicitly to disallow invalid
combinations (e.g. ’drink’ + ’furnace’). However, manually designing and imposing such
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Figure B.2: Training without the environment simplifications described in Section 4.4. Left:
pretraining results (comparable to Figure 4.4). Right: original vs modified env performance.
Curves average over 3 seeds with std shading. We see minor performance changes across
most algorithms but no change in the rank-order of methods.

constraints is also unlikely to be scalable. We hypothesize that our method, guided by
common-sense knowledge from LLMs, will focus on learning to use only meaningful action
combinations. For the purposes of the Novelty and Uniform baselines, which reward agents
for achieving even nonsensical goals, we consider a goal “achieved” if the agent takes an action
in front of the appropriate target object (e.g taking “drink furnace” in front of a furnace).

B.3 Crafter Prompt
Valid actions: sleep, eat, attack, chop, drink, place, make, mine

You are a player playing a game. Suggest the best actions the player can take
based on the things you see and the items in your inventory. Only use valid
actions and objects.

You see plant, tree, and skeleton. You are targeting skeleton. What do you
do?

- Eat plant
- Chop tree
- Attack skeleton
You see water, grass, cow, and diamond. You are targeting grass. You have in

your inventory plant. What do you do?
- Drink water
- Chop grass
- Attack cow
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- Place plant
In total, the actions present in the prompt make up:

• 6 / 10 (60%) of the good actions the ELLM agent receives.

• 6 / 21 (28.6%) of all rewarded actions the agent receives.

• 7 / 15 (50%) of all good action suggested.

• 7 / 51 (13.7%) of all actions suggested.

In future work, it would be interesting to explore how performance changes with fewer
actions included in the prompt. As a preliminary experiment, we have found that pretrain-
ing performance is maintained if you provide a prompt with only one example of a list of
valid goals. The list only contains two goals. Instead, we use more extensive instructions
to tell the agent what good suggestions look like. See the prompt below and pretraining
comparison in Figure B.3. This new prompt comes with a decrease in the fraction of “Good”
suggestions (shown in Table B.1, showing that suggestion accuracy is not perfectly correlated
with success.

New prompt: Valid actions: sleep, eat, attack, chop, drink, place, make,
mine

You are a player playing a Minecraft-like game. Suggest the best actions the
player can take according to the following instructions.

1. Make suggestions based on the things you see and the items in your
inventory.

2. Each scene is independent. Only make suggestions based on the visible
objects, status, and inventory in the current scene.

3. Each suggestion should either be a single valid action, or a phrase
consisting of an action and an object. (example: "Eat plant").

4. Do not make suggestions which are not possible or not desirable, such as
“Eat skeleton”.

5. Only make suggestions which are reasonable given the current scene (e.g.
only “Eat plant” if a plant is visible).

6. You may suggest multiple actions with the same object, but do not duplicate
list items.

7. Use your knowledge of Minecraft to make suggestions.
8. Prioritize actions which involve the object you are facing or which the

agent hasn’t achieved before.
9. Each scene will include a minimum and maximum number of suggestions. Stick

within this range.
New scene: You see plant, cow, and skeleton. You are facing skeleton. What

do you do (include 1-2 suggestions)?
- Eat plant
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- Attack skeleton

New scene: You see [INSERT CURRENT SCENE DESCRIPTION.] What do you do (include
2-7 suggestions)?

Suggested Rewarded

Context-Insensitive 21.0% 0.8%
Common-Sense Insensitive 20.5% 54.8%
Good 34.1% 44.4%
Impossible 24.5% 0%

Table B.1: Fractions of suggested and rewarded goals which are good, generated with the
modified two-example prompt.
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Figure B.3: Comparison between performance of the prompt containing 7 suggested goals
(used throughout Chapter 4) and a modified prompt which only includes 2 examples.

B.4 Crafter Action Space
We expand the action space of Crafter to increase exploration difficulty and study if ELLM
can learn to avoid nonsensical or infeasible actions. The full action space consists of just
verbs (for actions that do not act on anything, such as sleep) or verb + noun combinations
as follows:
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• Verbs: do nothing (no noun), move left (no noun), move right (no noun), move up
(no noun), move down (no noun), sleep (no noun), mine, eat, attack, chop, drink,
place, make

• Nouns: zombie, skeleton, cow, tree, stone, coal, iron, diamond, water,
grass, crafting table, furnace, plant, wood pickaxe, stone pickaxe, iron
pickaxe, wood sword, stone sword, iron sword

For example, an action can be drink water or drink grass.

B.5 Crafter Pretraining Ablation

2.5 5.0 7.5
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Oracle (no goals)
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RND
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Median

2.5 5.0 7.5

IQM

2.5 5.0 7.5

Mean

Achievements

Figure B.4: Number of ground truth achievements unlocked per episode at the end of pre-
training. We show the median, interquartile mean (IQM) and mean of the achievements
measured in 10 evaluation trials, each averaged over 10 episodes and 5 seeds (50 points)
Agarwal et al. (2021). Opaque bars represent variants leveraging textual observations in
addition of visual ones and dashed lines represent the gap with vision-only variants (less
opaque). We report results for each method described in Table 4.1. Results show that
providing textual observations increases performance across all conditions.

B.6 Housekeep Tasks
The original Housekeep benchmark features a large set of different household scenes and
episodes with different objects and receptacles possibly instantiated. The ground truth
correct object-receptacle placements were determined by crowdsourcing humans. However,
since our focus is on RL pretraining, we do not make use of the mapping and planning
methods from the original benchmark. To scope the problem for RL, we focus on the first 4
tasks with 5 different misplaced objects per task.
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Misplaced Objects
Task 1 peppermint, lamp, lantern, herring fillets, vase
Task 2 lamp, sparkling water, plant, candle holder, mustard bottle
Task 3 pepsi can pack, electric heater, helmet, golf ball, fruit snack
Task 4 chocolate, ramekin, pan, shredder, knife

Table B.2: Objects per task

B.7 Housekeep Prompt
You are a robot in a house. You have the ability to pick up objects and place
them in new locations. For each example, state if the item should be stored
in/on the receptacle.

Should you store a dirty spoon in/on the chair: No.
Should you store a mixing bowl in/on the dishwasher: Yes.
Should you store a clean sock in/on the drawer: Yes.

B.8 Algorithmic Details
We make use of DQN Mnih et al. (2013), with double Q-learning Van Hasselt et al. (2016),
dueling networks Wang et al. (2016), and multi-step learning Sutton et al. (1998).

Name Value (Crafter) Value (Housekeep)
Frame Stack 4 4

γ .99 .99
Seed Frames 5000 5000

n-step 3 3
batch size 64 256

lr 6.25e-5 1e-4
target update τ 1.0 1.0

ϵ-min 0.01 0.1
update frequency 4 4

Table B.3: DQN Hyperparameters

For both environments, policies take in 84 × 84 images which are encoded using the
standard Nature Atari CNN Mnih et al. (2015). The image is then passed through a linear
layer to output a 512 dimensional vector. If the policy is text-conditioned, we compute the
language embedding of the state caption using paraphrase-MiniLM-L3-v2 SBERT model
Reimers & Gurevych (2019), and if the policy is goal-conditioned we similarly compute the
language embedding of the goals g1:k using paraphrase-MiniLM-L3-v2. We encode all goals



APPENDIX B. GUIDING PRETRAINING IN REINFORCEMENT LEARNING WITH
LARGE LANGUAGE MODELS 97

as a single text sequence as we did not see any improvement from encoding them each
separately and summing or concatenating the embeddings. The image and text embeddings
are then concatenated together before being passed to the Q-networks. Each of the value
and advantage streams of the Q-function are parametrized as 3-layer MLPs, with hidden
dimensions of 512 and ReLU nonlinearities.

In the Crafter environment, we swept over the following hyperparameters for the Ora-
cle and Scratch (no-pretraining) conditions: learning rate, exploration decay schedule, and
network update frequency. We then applied these hyperparameters to all conditions, after
confirming that the hyperparameters were broadly successful in each case.

For Housekeep pretraining, we swept lr ∈ [1e− 3, 1e− 4, 1e− 5], ϵ-min ∈ [0.1, 0.01], and
batch size ∈ [64, 256].

B.9 Hard-coded Captioner Details
Crafter The state captioner is based on the template shown in Figure 4.3 (left). This
consists of three components: the observation, the items, and the agent status.

• Observation: We take the underlying semantic representation of the current image
from the simulator. Essentially this maps each visible grid cell to a text description
(e.g. each tree graphic is mapped to “tree”). We then take this set of descriptions (i.e.
not accounting for the number of each object) and populate the “observation” cell of
the template.

• Items: We convert each of the inventory items to the corresponding text descriptor,
and use this set of descriptions to populate the “item” cell of the template.

• Health status: We check if any of the health statuses are below maximum, and if so,
convert each to a corresponding language description (e.g. if the hunger status is < 9,
we say the agent is “hungry”).

The transition captioner uses the action labels. Each action maps to a predefined verb +
noun pairing directly (e.g. “eat cow”).

Housekeep The state captioner is based on the template shown in Figure 4.3 (right). We
use the simulator’s semantic sensor to get a list of all visible objects, receptacles, and the
currently held object. The transition captioner is also based on the simulator’s semantic
sensor, which indicates which receptacles the visible objects are currently in.

B.10 Learned Crafter Captioner
The captioner is trained with a slightly modified ClipCap algorithm (Mokady et al., 2021a)
on a dataset of trajectories generated by a trained policy using the PPO implementation
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from Stanić et al. (2022). Visual observations at timestep t and t + 1 are embedded with
a pretrained and frozen CLIP ViT-B-32 model (Radford et al., 2021) and concatenated
together with the difference in semantic embeddings between the two corresponding states.
Semantic embeddings include the inventory and a multi-hot embedding of the set of objects
present in the local view of the agent. This concatenated representation of the transition is
then mapped through a learned mapping function to a sequence of 10 tokens. Finally, we
use these 10 tokens as a prefix and pursue decoding using a pretrained and frozen GPT-
2 to generate the caption (Radford et al., 2019). We train the mapping from transition
representation to GPT tokens on a dataset of 847 human labels and 900 synthetic labels
obtained by sampling from a set of between 3 and 8 different captions for each each distinct
type of transitions. Instead of the programmatic “chop tree” and “attack zombie,” labeled
captions involve fully-formed sentences: “You collected a sapling from the ground,”
“You built a sword out of wood,” or “You just stared at the sea.” Because of this
additional linguistic diversity, we compare captions to goals with a lower cosine similarity
threshold of .5.

Imperfect captioners can cause learning issues in two different ways: (1) they can generate
wrong captions all together and (2) they can generate a valid caption that still lead to faulty
reward computations. If the caption is linguistically too different from the achievement it
captions, the similarity-based reward might not be able to pick it up (false negative reward).
This same linguistic variability might cause the reward function to detect the achievement
of another achievement that was not achieved (false positive reward). Figure B.5 measures
all these issues at once. For each row, it answers: what is the probability that the reward
function would detect a positive reward for each of the column achievements when the true
achievement is the row label? The false negative rate is 11% on average (1 - the diagonal
values), with a much higher false negative rate for chop grass (100%). Indeed, human caption
mentioned the outcome of that action instead of the action itself (collect sapling); which the
similarity-based reward fails to capture. The false positive rate (all non diagonal values)
is significant here: the agent can get rewarded for several achievements it did not unlock.
This often occurs when achievements share words (e.g. wood, stone, collect). This indicates
a difficulty of the semantic similarity to differentiate between achievements involving these
words.

B.11 Crafter LLM Analysis
Table 4.2 shows that the actions agents are rewarded for are dominated by good actions
(66.5%) and bad actions (32.4%). This makes sense; impossible actions can never be
achieved. Most context-insensitive cannot be achieved (e.g. “drink water” suggested when
no water is present). We consider an action a “success” by checking whether the agent at-
tempted a particular action in front of the right object, so the agent occasionally is rewarded
when it takes a context-insensitive action in the appropriate physical location but without
the necessary prerequisites (e.g. mining stone without a pickaxe).
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Figure B.5: Reward confusion matrix. Each row gives the probability that any of the column
achievement is detected when the row achievement is truly unlocked. For instance, in row 2,
when the agent chops a tree, with high probability the agent will be rewarded for the “chop
tree” and “chop grass” actions. Tested on trajectories collected from an expert PPO policy,
each row estimates probabilities using between 27 and 100 datapoints (27 for mine iron, the
rarest achievements). Rows do not sum to one, as a given achievement, depending on its
particular caption, could potentially trigger several rewards.

Table B.4 gives examples of LLM suggestions in Crafter.

Suggestion Type Examples

Good chop tree, attack skeleton, place plant
Context-Insensitive make crafting table (without wood), mine stone

(without a pickaxe or not by stone)
Common-Sense-Insensitive mine grass, make diamond, attack plant
Impossible make path, make wood, place lava

Table B.4: Classification accuracy of LLM for each Housekeep task (left column is true
positives, right column is true negatives).

B.12 Novelty Bonus Ablation
We ablate the importance of ELLM’s novelty bias in Figure B.6 by allowing the agent to be
rewarded repeatedly for achieving the same goal. We see that without the novelty bonus the
agent only learns to repeat a small set of easy goals and fails to explore diversely.
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(a) Crafter pretraining runs (similar to Figure 4.4), including the “ELLM without novelty” ablation
where ELLM’s novelty bias is removed.

(b) Housekeep pretraining runs (similar to Figure 4.7a), including the “ELLM without novelty”
ablation where ELLM’s novelty bias is removed.

Figure B.6: Testing ELLM without a novelty filter—rewarding the agent for accomplishing
the same language model goals multiple times.

B.13 Analysis of Downstream Training Approaches
We explored two methods for using exploratory policies: finetuning, where the weights of
the exploration policy are finetuned and the guided exploration method, where a new policy
is trained from scratch and the pretrained policy is used for ϵ-greedy exploration.

We found that in Housekeep both methods are effective for ELLM (Figure 4.7a and Figure
4.7b). However, in Crafter we found that the finetuning method performed poorly across
all methods (ELLM, baselines, and oracles). Often, we observed that early in finetuning,
the agent would unlearn all of its previous useful behaviors, including moving around the
environment to interact with objects. We hypothesize that this due to a mismatch in the
density and magnitude of rewards between pretraining and finetuning. When the finetuning
agent finds it is achieving much lower than the expected return for taking its typical actions, it
down-weights the likelihood of taking those actions and unlearns its previous skills. We found
that decreasing the learning rate, freezing early layers of the network, manually adjusting
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finetuning rewards to be at the same scale as pretraining rewards, and decreasing the initial
exploration rate partially mitigated this problem. However, these also decrease the sample
efficiency and/or performance at convergence of the finetuned policy compared to a training-
from-scratch baseline. In Figure B.7), across all methods this method is less reliable than
the guided exploration method (Figure 4.5).

These findings are consistent with our Housekeep findings. In that environment, the
ELLM pretraining task (achieving object placements suggested by a LLM) and the finetuning
task (achieving object placements suggested by humans) are similar enough we only see minor
dips in performance when finetuning starts. However, the RND and APT baselines have a
greater pretrain-finetune mismatch, and we observe those methods did comparatively better
with the guided exploration method.
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Figure B.7: Success rates across training for each of the seven downstream tasks in the
Crafter environment. Each run finetunes the pretrained agent using a lower learning rate
than used during pretraining (2e− 5). Plots show mean ± std for 5 seeds

B.14 Additional Baselines
We also include experiments with NovelD Zhang et al. (2021) in Figure B.8, a state-of-the-art
exploration method which uses an estimate of state novelty to reward the agent for moving
to more novel states. During pretraining, we find it performs similarly to the other prior-free
intrinsic motivation methods.

B.15 Code and Compute
All code will be released soon, licensed under the MIT license (with Crafter, Housekeep
licensed under their respective licenses).

For LLM access, we use OpenAI’s APIs. Initial experiments with the smaller GPT-3
models led to degraded performance, hence choosing Codex and Davinci for our experi-
ments. Codex is free to use and Davinci is priced at $0.02/1000 tokens. We find caching to
be significantly helpful in reducing the number of queries made to the API. Each API query
takes .02 seconds, so without caching a single 5-million step training run would spend 27
hours querying the API (and far more once we hit the OpenAI rate limit) and cost thou-
sands of dollars. Since we cache heavily and reuse the cache across runs, by the end of our
experimentation, were make almost no API queries per run.
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(a) Crafter pretraining curve as in Figure 4.4, including NovelD baseline

(b) Housekeep pretraining curves as in Figure 4.7a, including NovelD baseline

Figure B.8: Additional pretraining curves including NovelD for both Crafter and Housekeep.

We use NVIDIA TITAN Xps and NVIDIA GeForce RTX 2080 Tis, with 2-3 seeds per
GPU and running at roughtly 100ksteps/hour. Across all the ablations, this amounts to
approximately 100 GPUs for pretraining.



103

APPENDIX

C

INTRINSICALLY-MOTIVATED HUMANS
AND AGENTS

C.1 Additional Plots
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Figure C.1: Fraction of verbalized questions and goals vs. cumulative entropy, information
gain, and empowerment for adults and children. We find that the relationship between the
fraction of uttered goals and empowerment has the highest correlation and largest significance
(r2 = 0.28, p = 0.005 unadjusted).
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Figure C.2: Bar plot of all possible achievements, showing the fraction of each set of partic-
ipants or agents that unlocked each achievement at least once.
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Figure C.3: Information theoretic objectives vs. exploration scores, without filtering for
significance.


	Contents
	List of Figures
	List of Tables
	Introduction
	Robustifying Reward Models
	Introduction
	Related Work
	SuccessVQA: Success Detection as a VQA Task
	Language Robustness with Interactive Agents
	Visual Robustness with Robotic Manipulation
	Real World Success Detection with Ego4D
	Conclusion
	Human Empowerment for Assistance
	Introduction
	Empowerment Preliminary
	Assistance via Empowerment
	Experiments
	Conclusion
	Human Priors for Exploration
	Introduction
	Related Work
	Structuring Exploration with LLM Priors
	Experiments
	Conclusion


	Human Intrinsic Objectives
	Introduction
	Related Work
	Environment and Data Collection
	Experiments
	Conclusion

	Conclusion
	Bibliography
	Vision-Language Models as Success Detectors
	Simulated household domain
	Robotics domain

	Guiding Pretraining in Reinforcement Learning with Large Language Models
	Crafter Downstream Training
	Crafter Env Modifications
	Crafter Prompt
	Crafter Action Space
	Crafter Pretraining Ablation
	Housekeep Tasks
	Housekeep Prompt
	Algorithmic Details
	Hard-coded Captioner Details
	Learned Crafter Captioner
	Crafter LLM Analysis
	Novelty Bonus Ablation
	Analysis of Downstream Training Approaches
	Additional Baselines
	Code and Compute
	Intrinsically-Motivated Humans and Agents
	Additional Plots







