UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Using Graph Theory to Understand the Structure of Event Knowledge in Memory

Permalink

https://escholarship.org/uc/item/6hb2p671

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Brown, Kevin Christidis, Nickolas Elman, Jeffrey <u>et al.</u>

Publication Date 2019

Peer reviewed

Using Graph Theory to Understand the Structure of Event Knowledge in Memory

Kevin Brown

Oregon State University, Corvallis, Oregon, United States

Nickolas Christidis

University of Western Ontario, London, Ontario, Canada

Jeffrey Elman

University of California, San Diego, California, United States

Ken McRae

University of Western Ontario, London, Ontario, Canada

Abstract

There are several competing theories regarding how event knowledge is represented in the mind, ranging from a strictly temporally ordered list of activities to sets of connected scenes which may themselves consist of ordered activities. We employed a network science approach to provide data-driven insight into event structure. We converted sets of human generated activity sequences, in which roughly 25 participants list up to 12 activities for 81 different events (making a sandwich, cleaning the house, taking money out of an ATM, etc.), into directed, weighted networks. Analyses of the event networks revealed a complex and varied temporal structure to events. In addition, we were able to identify scenes within events, and use graph theory to understand activity centrality, popularity, and influence, as well as the coupling between these activity characteristics. In the aggregate, we find that network science makes multiple data-driven, empirically testable predictions about event structure.