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ABSTRACT

Motivation: Identifying regulatory elements is a fundamental problem

in the field of gene transcription. Motif discovery—the task of identify-

ing the sequence preference of transcription factor proteins, which

bind to these elements—is an important step in this challenge.

MEME is a popular motif discovery algorithm. Unfortunately,

MEME’s running time scales poorly with the size of the dataset.

Experiments such as ChIP-Seq and DNase-Seq are providing a rich

amount of information on the binding preference of transcription fac-

tors. MEME cannot discover motifs in data from these experiments in

a practical amount of time without a compromising strategy such as

discarding a majority of the sequences.

Results: We present EXTREME, a motif discovery algorithm designed

to find DNA-binding motifs in ChIP-Seq and DNase-Seq data. Unlike

MEME, which uses the expectation-maximization algorithm for motif

discovery, EXTREME uses the online expectation-maximization algo-

rithm to discover motifs. EXTREME can discover motifs in large data-

sets in a practical amount of time without discarding any sequences.

Using EXTREME on ChIP-Seq and DNase-Seq data, we discover

many motifs, including some novel and infrequent motifs that can

only be discovered by using the entire dataset. Conservation analysis

of one of these novel infrequent motifs confirms that it is evolutionarily

conserved and possibly functional.

Availability and implementation: All source code is available at the

Github repository http://github.com/uci-cbcl/EXTREME.

Contact: xhx@ics.uci.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Transcription factors (TFs) are proteins that play an important

role in transcriptional regulation by promoting or blocking the
recruitment of RNA polymerase II. They can bind specifically to

recognition sequences on the genome or to other TFs in a com-

plex. High-throughput assays generate a rich amount of infor-
mation on the sequence preference of TFs. ChIP-Seq (Johnson

et al., 2007) can provide the genome-wide binding sites of a single
TF. DNase-Seq, which sequences open chromatin regions in the

genome, can provide single nucleotide resolution for the binding
sites of many TFs (Hesselberth et al., 2009). When sequenced

deep enough, binding sites appear as dips, or footprints (FPs), in

the DNase-Seq signal. FPs only identify the locations of the TF

binding sites; they do not identify the proteins that are bound

there. These assays can provide functional information for thou-

sands to millions of base pair regions in the genome.
The task of identifying the sequence preference of a TF is

called motif discovery. Motif discovery algorithms can be classi-

fied as either search-based or probabilistic. Search-based algo-

rithms infer motifs as consensus sequences. Probabilistic

algorithms infer motifs as position frequency matrices (PFMs),

which specify the frequency of nucleotides for each position in

the binding site.
While PFMs provide more information about a TF’s binding

specificity than consensus sequences, inferring PFMs is not

always practical. Probabilistic motif discovery programs usually

use algorithms such as expectation-maximization (EM)

(Dempster et al., 1977) for inference. These algorithms scale

poorly with dataset size. Search-based algorithms are therefore

preferred for large datasets. DREME (Bailey, 2011) is an ex-

ample of a search-based algorithm designed for large datasets.

MEME is a popular probabilistic motif discovery program

(Bailey and Elkan, 1994). It uses the EM algorithm to infer

PFMs. Since its inception in 1994, it has gone through several

versions. However, MEME scales poorly with large datasets.

One strategy to improve MEME’s performance is to discard

many of the sequences. This is the strategy used by MEME-

ChIP (Machanick and Bailey, 2011). However, discarding

sequences can decrease the chance of discovering motifs corres-

ponding to infrequent cofactors. Another strategy, as used in

STEME, applies suffix trees to accelerate MEME (Reid and

Wernisch, 2011). However, STEME is only practical for finding

motifs of up to width 8 on large datasets because its efficiency

tails off quickly as the motif width increases. Other strategies for

accelerating MEME involve specialized hardware such as paral-

lel pattern matching chips on PCI cards (Sandve et al., 2006).

However, these implementations require hardware not available

to most researchers.
To overcome these issues, we propose an online implementa-

tion of the MEME algorithm that we have named EXTREME.

The online EM algorithm sticks closely to the original EM algo-

rithm (hereafter referred to as the batch EM algorithm) (Cappé

and Moulines, 2009). Normally, the online EM algorithm is de-

signed for cases where not all data can be stored at once.

Although most computers have enough memory to store entire

sequence datasets at once, the online EM algorithm is still ad-

vantageous for motif discovery because, for large sample sizes,

the online EM algorithm is more efficient, from a computational

point of view, than the batch EM algorithm. We show that many

of the features of the original MEME algorithm can be adapted*To whom correspondence should be addressed.
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to the online methodology. Furthermore, we show that

EXTREME can achieve similar results to MEME in a fraction

of the execution time. We also show that using the entire dataset

is necessary to discover infrequent motifs, which is not always

practical to do with MEME. To the best of our knowledge, this

is the first application of the online EM algorithm to motif

discovery.

2 MATERIALS AND METHODS

2.1 MEME

The original MEME algorithm applies the batch EM algorithm to infer

PFMs. Here, we provide a brief overview of MEME’s model and how

MEME applies the batch EM algorithm to infer parameters.

2.1.1 MEME’s model Let Y ¼ ðY1,Y2, . . . ,YNÞ be the dataset of

sequences, where N is the number of sequences in the dataset. Each se-

quence is over the alphabet A ¼ ðA,C,G,TÞ. MEME uses a mixture

model that breaks up the dataset into all n (overlapping) subsequences

of length W, which it contains. We will refer to this new dataset as

X ¼ ðX1,X2, . . . ,XnÞ. The mixture model is a two-component

model that assumes each subsequence is either an instance of the motif

or background. Other variants of MEME place additional constraints.

The one occurrence per sequence variant assumes that each sequence

contains one instance of the motif. The zero or one occurrence per

sequence variant assumes each sequence can have zero or only one oc-

currence of the motif. These two variants make slight modifications to

MEME’s probabilistic model. We will only consider the two-component

model.

The background component is characterized as a zero-order Markov

model parameterized by the vector �bg ¼ ðf0,A, f0,C, f0,G, f0,TÞ where f0,k is

the background frequency of letter k. The motif model is characterized by

the PFM �m ¼ ðf1, f2, . . . , fWÞ. Each fj¼ (fj,A, fj,C, fj,G, fj,T) is a parameter

of an independent random variable describing a multinomial trial repre-

senting the distribution of letters at position j in the motif. �m param-

eterizes the probability that any W-mer is generated by the motif model

while �bg ¼ 1� �m is the probability that any W-mer is generated by the

background model. � ¼ ð�m, �bgÞ and � ¼ ð�m, �bgÞ are unknown param-

eters that are inferred from the known data X. Therefore, the MEME

model is

pðZi ¼ 1j�, �Þ ¼ �m, 1 � i � n ð1Þ

pðXijZi, �Þ ¼ pðXij�mÞ
Zi pðXij�bgÞ

1�Zi ð2Þ

where Zi is a binary latent variable that has a value of 1 if Xi is drawn

from the motif model or 0 if Xi is drawn from the background model. Zi’s

true value is unknown, but its conditional expected value, defined here as

Z
ð0Þ
i , for a given set of parameters can be calculated as follows:

Z
ð0Þ
i ¼ E½ZijX, �, �� ¼

pðXij�mÞ�m
pðXij�mÞ�m þ pðXij�bgÞ�bg

ð3Þ

To calculate Z
ð0Þ
i , we need to know the form of pðXij�mÞ and the form of

pðXij�bgÞ. MEME assumes the distributions of the motif class and back-

ground class are

pðXij�mÞ ¼
YW
j¼1

Y
k2A

f
Iðk,Xi, jÞ

j, k ð4Þ

pðXij�bgÞ ¼
YW
j¼1

Y
k2A

f
Iðk,Xi, jÞ

0, k ð5Þ

where Xi,j is the letter in the jth positon of subsequence Xi, and I(k,a) is

an indicator function

Iðk, aÞ ¼
1 if a ¼ k
0 otherwise

�
ð6Þ

2.1.2 Batch EM � and � are iteratively improved in the batch EM

algorithm. In the E-step, the expected counts of all nucleotides at each

position are calculated based on the current guess of the parameters. In

the M-step, the parameters are updated based on the values calculated in

the E-step. MEME repeats the E and M steps until the change in �m
(Euclidean distance) falls below a threshold (default: 10�6). The E and M

steps are as follows:

cj, k ¼
Pn
i¼1

EiZ
ð0Þ
i Iðk,Xi, jÞ

E� step : c0, k ¼
Pn
i¼1

PW
j¼1

1� Z
ð0Þ
i

� �
Iðk,Xi, jÞ

M� step :

for k 2 A and j ¼ 1, 2, . . . ,W

fj, k ¼
cj, kþ�kP

k2A

ðcj, kþ�kÞ
for j ¼ 0, 1, . . . ,W

�m ¼
Pn
i¼1

Z
ð0Þ
i

n

To discover multiple motifs, MEME associates an ‘erasing factor’ Ei

for each position in the data. The erasing factors vary between 0 and 1

and are set to 1 initially to indicate no erasing has taken place. Each time

a motif is discovered, the erasing factors are reduced by a factor repre-

senting the probability that the position overlaps an occurrence of

that motif. More details concerning how MEME erases are in Bailey

and Elkan (1995a). MEME also implements pseudo counts

� ¼ ð�A, �C,�G,�TÞ in the M-step to prevent any letter frequency fj,k
from becoming 0. This is because if any letter frequency fj,k becomes 0,

its value cannot change.

EM performs maximum likelihood estimation to maximize an object-

ive function. The new estimates in the M-step are always guaranteed to

increase the value of the objective function. As the E and M steps are

repeated, EM algorithms converge to a maximum. For MEME, the ob-

jective function is the expected value of the log likelihood of the model

parameters � and � given the joint distribution of the data X and missing

data Z:

E½logLð�, �jX,ZÞ� ¼
Pn
i¼1

Z
ð0Þ
i logðpðXij�mÞ�mÞ

þ
Pn
i¼1

1� Zð0Þi

� �
logðpðXij�bgÞ�bgÞ

ð7Þ

2.1.3 Seeding The EM algorithm is sensitive to initial conditions and

prone to converging to local maxima. To mitigate this problem, MEME

tests many seeds and runs the EM algorithm to convergence from the

‘best’ seed. The exact details of how MEME performs seeding can be

found in Bailey and Elkan (1995b).

2.1.4 Scoring the motifs Motif instances are determined according to

Bayesian decision theory. After a motif is discovered, a subsequence Xi is

classified as being an occurrence of the motif only if

log
pðXij�mÞ

pðXij�bgÞ

� �
4 log

�bg
�m

� �
ð8Þ

For each motif discovered, MEME calculates its E-value. This E-value

is the number of motifs, with the same width and number of occurrences,

that can generate an equal or higher log likelihood ratio if the dataset had

been generated according to background model. The log likelihood ratio

llr ¼ logðpðsitesjmotifÞ= logðsitesjbackgroundÞÞ is a measure of how differ-

ent the sites are from the background model. Calculating the E-value
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exactly can be time consuming, so it is not computed directly. It is instead

heuristically calculated as a function of the total information content and

the number of occurrences (Bailey et al., 2010).

2.1.5 Time complexity For each iteration of the batch EM algo-

rithm, the number of operations performed is approximately propor-

tional to W. Each batch EM iteration has a time complexity of O(nW).

Although the number of iterations can vary, it is typically proportional to

n. Therefore, the algorithm scales quadratically with the size of the data-

set and has a time complexity of O(n2W). The seed searching also scales

quadratically with the size of the dataset (Bailey and Elkan, 1995b).

2.2 EXTREME

EXTREME shares many similarities with MEME, especially in the im-

plementation. At the center of the EXTREME algorithm is the online

EM algorithm. We provide an overview of the online EM algorithm and

how EXTREME implements the online EM algorithm to discover

motifs.

2.2.1 Online EM Like the batch EM algorithm, the online EM algo-

rithm also repeatedly iterates between E and M steps, which update the

parameters. In contrast to the batch EM algorithm, each iteration of the

online EM algorithm operates on only one observation, Xi, instead of the

whole dataset X.

Following the instructions in Cappé andMoulines (2009), the E andM

steps, as derived from (7), are as follows:

sm, i ¼ sm, i�1 þ �i Z
ð0Þ
i � sm, i�1

� �
cj, k, i ¼ cj, k, i�1 þ �i Z

ð0Þ
i Iðk,Xi, jÞ � cj, k, i�1

� �
E� step: c0, k, i ¼ c0, k, i�1

þ�i
PW
j¼1

1� Z
ð0Þ
i

� �
Iðk,Xi, jÞ � c0, k, i�1

 !

for k 2 A, j ¼ 1, 2, . . . ,W, and 4i ¼ 1, 2, . . . , n
M� step: fj, k ¼

cj, k, iP
k2A

cj, k, i
for j ¼ 0, 1, . . . ,W

�m ¼ sm, i

The step size is �i ¼ �0i
��. � and �0 are set to 0.6 and 0.05, respectively.

These are by no means the most optimized set of parameters, but they are

adequate for accurate motif discovery. As shown in Cappé and Moulines

(2009), the online EM algorithm converges to a local maximum of the

likelihood function (7) for � 2 ð05, 1�.
The E andM steps are repeated until a convergence threshold (default:

10�6) in terms of the symmetrized Kullback–Leibler divergence between

the PFM estimates at a user-defined number of intervals (default: 100) of

W-mers at the end of a complete pass through the dataset is satisfied. The

Kullback–Leibler divergence between two PFMs A and B is calculated as

follows:

KLDðA,BÞ ¼
1

2

XW
j¼1

X
k2A

Aj, k log
Aj, k

Bj, k

� �
þ Bj, k log

Bj, k

Aj, k

� �� �
ð9Þ

If convergence is not reached at the end of a pass, the exponent � is

updated to the midpoint between �’s current value and one and

EXTREME performs another pass through the dataset. EXTREME

repeats these steps until the convergence threshold is met.

To accommodate pseudo counts, we modify the indicator function

from (6):

Iðk, aÞ ¼
1þ �k if a ¼ k
�k otherwise

�
ð10Þ

By default, EXTREME sets �k to 0.0001 times the frequency of letter k in

the entire dataset.

To accommodate reverse complements, we also modify the calculation

of Z
ð0Þ
i from (3) so that for each Xi, the reverse complement is also

evaluated and Z
ð0Þ
i takes the higher of the two values. MEME, in con-

trast, handles reverse complements by adding a reverse-complemented

copy of the data, essentially doubling the size of the data.

2.2.2 Seeding Before running the online EM algorithm, the order of

the W-mers Xi is randomized. The online EM algorithm is therefore a

stochastic algorithm. This means that different runs of the online EM

algorithm can yield different results, even if ran multiple times from the

same initial conditions. This can present a problem for seeding because

even using the best seed from MEME’s heuristic is not guaranteed to

generate the optimal or even consistent solutions, causing EXTREME to

converge to local maxima. On the other hand, this also means that seeds

that would yield non-optimal solutions in MEME can yield optimal so-

lutions in EXTREME. In fact, local maxima may actually correspond to

biologically relevant motifs, especially in datasets that are rich in motifs

such as DNase-Seq data. Furthermore, an efficient online EM implemen-

tation of MEME offers little benefit if runtimes are dominated by the

inefficient seed search.

EXTREME’s seeding strategy applies a search-based motif discovery

algorithm to find motifs to initialize the online EM algorithm. Similar to

DREME (Bailey, 2011), the seeding algorithm finds words that are en-

riched in a sequence dataset relative to a negative sequence dataset. We

use the same dinucleotide shuffle algorithm used in DREME to generate

a dinucleotide-shuffled version of the input sequence set as the negative

sequence set. The seeding algorithm counts the number of occurrences of

words in the positive sequence set and the negative sequence set and

associates a ‘z-score’ with each word. The z-score is given by

z ¼
sþ � s�ffiffiffiffiffi

s�
p ð11Þ

where sþ and s� are the number of occurrences of the word in the positive

sequence and negative sequence sets, respectively. If s� is zero for a word,

it is changed to one to prevent division by zero. Unlike DREME, our

seeding algorithm searches for words that are not exact. Each word con-

tains g universal wildcard letters surrounded by flanking sites of l unam-

biguous letters. For example, TCAGNNGGAC is a word with a gap

length, g, of 2 and a half length, l, of 4. The gap length, g, varies between

the user-defined parameters gmin and gmax. Z-scores for each value of g

are normalized by dividing by the standard deviation of all z-scores for

each respective value of g. Words that have a normalized z-score that

exceed a user-defined threshold, zthresh, and have at least a user-defined

number of occurrences, smin, in the positive sequence set are aligned and

grouped together using a hierarchical clustering algorithm we adapted

from Xie et al. (2005). Word clusters are converted to frequency count

matrices by counting the number of occurrences of each letter at each

position along the alignment. The counts are weighted by the normalized

z-score of each word in a cluster so that more significant words will

contribute more to the count matrix than less significant words. A

count matrix is converted to a PFM, �m, by dividing each matrix element

by its respective row sum. The initial expected counts, c, is initially set to

the initial �m as well. �bg and the expected background counts c0 are set to

the nucleotide frequency in the dataset. �m and sm,0 are initialized to the

predicted number of motif occurrences divided by n, the total number of

W-mers. We predict the number of motif occurrences for a given PFM

seed as the number of W-mers that have a goodness-of-fit score40.7 [see

Pan and Phan (2009) for details].

We also alter the form of pðXij�mÞ from (4):

pðXij�mÞ ¼  
YW
j¼1

Y
k2A

f
Iðk,Xi, jÞ

j, k ð12Þ

The bias factor  has a value between 0 and 1. A bias factor closer to 0

biases the motif discovery toward subsequences that more closely match
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the current motif guess, decreasing the number of discovered motif oc-

currences. A bias factor closer to 1 makes the motif discovery less select-

ive, increasing the number of motif occurrences. After convergence, motif

occurrences are identified using (8).  is initially set to 1, and its value is

varied in a binary search fashion until the number of discovered motif

occurrences is between sitesmin (default: 10) and sitesmax (default: 5 times

the number of predicted motif sites). Up to 15 different values of  are

tried before EXTREME stops. Because each initial PFM guess can be

tested independently, this seeding strategy can be parallelized to allow

multiple motifs to be discovered simultaneously. Hierarchical clustering

of the discovered motifs can then identify individual motif classes.

2.2.3 Time complexity Each pass through the dataset with the online

EM algorithm has a time complexity of O(nW). Typically, the online EM

algorithm reaches convergence after one to five passes through the data,

so the overall time complexity is proportional to the width of the motif

and the size of the dataset. The seeding algorithm’s word search also

scales linearly with the dataset size, while the hierarchical clustering is

inefficient and can scale cubically with the number of words to cluster. In

practice, EXTREME as a whole scales linearly in time complexity with

the dataset size.

2.2.4 Implementation EXTREME is written in Python and is avail-

able on Github. To calculate E-values, EXTREME uses Cython bindings

to the original MEME C source code to call the appropriate functions.

EXTREME requires �8GB of memory for a 10Mb dataset. Most of the

memory is devoted to MEME’s E-value calculation, which involves a

preprocessing step that does not scale well to large numbers of motif sites.

3 RESULTS

MEME is a popular motif discovery algorithm. It has been a
valuable tool in the ongoing challenge of identifying regulatory

elements. However, its performance scales poorly with large

datasets. Experiments such as ChIP-Seq and DNase-Seq gener-

ate data that are too large for MEME to process in a practical
amount of time without discarding most of the data. To over-

come this challenge, we have developed EXTREME, a motif

discovery algorithm that can process ChIP-Seq and DNase-Seq

data efficiently without discarding any data. We first show, using
simulated datasets, that MEME’s running time scales much

faster than EXTREME’s running time with respect to dataset

size. Using a ChIP-Seq dataset and a DNase-Seq dataset, we
demonstrate that using the entire dataset of sequences is neces-

sary to discover infrequent motifs. We also show that the motifs

discovered by EXTREME are similar in quality to the motifs

discovered by MEME.

3.1 Comparison of MEME and EXTREME performance

We compare MEME and EXTREME using several simulated

datasets. Simulated datasets are generated with the RSAT suite
of tools (Thomas-Chollier et al., 2011). We generate four se-

quence datasets, each containing 1000 random masked hg19 gen-

omic sequences of a single length (100, 200, 300 or 400 bp), using
the RSAT random-genome-fragments tool. This masked reference

genome was preprocessed with RepeatMasker (Smit et al., 1996–

2010) and Tandem Repeats Finder (Benson, 1999) so that re-

peats (with period of �12) are masked by capital Ns. For each of
the four sequence datasets, we implant 50, 100, 500 or 1000 in-

stances of the JASPAR (Sandelin et al., 2004) VDR/RXRA het-

erodimer motif (Supplementary Fig. S1) using the RSAT

random-motifs and implant-sites tools, yielding 16 simulated

datasets, each containing 1000 sequences of varying lengths

and number of motif sites.
For the seeding step of each EXTREME run, we search for

words with a half-length l¼ 6, a gap length g between gmin ¼ 0

and gmax¼ 2, a normalized z-score greater than the threshold

zthresh¼ 5 and at least smin¼ 5 occurrences in the positive se-

quence set. The words are clustered and we select the cluster

containing the most words to convert to a PFM seed from

which to initialize the online EM algorithm. Because the online

EM algorithm is a stochastic algorithm, we repeat the online EM

portion of the run 30 times for each dataset with different

random seeds to initialize the pseudorandom number generator

to get a good estimate of performance. We also run MEME on

each of the 16 simulated datasets to find a single motif of a width

between 12 and 17 under the two-component model to approxi-

mate the same parameters for the EXTREME run. Figure 1

shows that MEME’s running time scales much faster than

EXTREME’s running time with respect to the input size for

all ‘noise’ levels. Extrapolating from these data, MEME can

take weeks to discover a motif in a 10Mb dataset. EXTREME

can complete this same task in hours. With the exception of one

of the datasets, MEME is marginally more accurate than

EXTREME in each case (Supplementary Fig. S3). In the one

exception, MEME fails to converge to the correct motif because

there are not enough true motif occurrences relative to the data-

set size for MEME’s seeding algorithm to pick a good seed. As

the number of motif occurrences increases, both MEME and

EXTREME better approximate the true PFM and the relative

difference between their results diminish. Although

EXTREME’s running time and accuracy vary more as the

noise level increases (Supplementary Figs. S2 and S3),

EXTREME still consistently generates results comparable with

those of MEME in a fraction of MEME’s running time.

Fig. 1. Comparison of MEME and EXTREME performance on simu-

lated datasets of varying sequence length and motif sites. The x-axis is the

total number of base pairs in the simulated dataset. The y-axis is the total

running time it takes for MEME or EXTREME to complete seeding and

reach convergence
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3.2 Discovering motifs in ChIP-Seq data

We compare the performance of MEME and EXTREME for

discovering motifs in ChIP-Seq data using a dataset generated by

the Myers Lab at the Hudson Alpha Institute for Biotechnology

(Birney et al., 2007). The ChIP-Seq data correspond to an NRSF

ChIP performed on the GM12878 cell line. Peaks were already

called and organized into BED files by the authors. We further

process the data by intersecting replicates and extracting genomic

sequences from the middle 100bp of the intersected regions from

the same hg19 masked reference genome we use for the simulated

data. The resulting sequence dataset consists of 2849 sequences

and 282 980bp.
We run EXTREME on the ChIP-Seq dataset to discover mul-

tiple motifs. For the seeding step, we search for words with a

half-length of 8 bp, a gap length between 0 and 10bp (inclusive),

a normalized z-score45 and at least five occurrences in the posi-

tive sequence set. The word search takes 32 s to find 1248 words.

Hierarchical clustering groups these words into 23 clusters,

taking 91 s to complete. These 23 clusters are converted to

PFMs of widths between 16 and 29bp, providing seeds for the

online EM algorithm. Each seed is processed by the online EM

algorithm on a separate core in parallel. Of the 23 seeds, 20

successfully yield motifs within 15 different values of the bias

factor  (12). The Supplementary Material contains these 20

motifs in MEMEMinimal Motif Format. Hierarchical clustering

of the 20 motifs groups them into 10 clusters. Online EM running

times range from 67 to 859 s, taking an average of 361 s. Running

times vary because different seeds can converge to different

motifs and may require additional passes through the data to

reach convergence. For comparison, we also run MEME on the

ChIP-Seq dataset to find a single motif of a width between 16

and 29bp under the two-component model using a single core.

MEME takes 8191 s to find a single motif. While comparison

between the multi-core EXTREME run to the single-core

MEME run is not straight-forward, it should be noted that the

total computing time for EXTREME, which sums the running

times for the seeding and each of the online EM runs, is 8305 s.

In the computing time it takes for MEME to discover a single

motif, EXTREME finds 10 motif clusters in roughly the same

amount of time. The disparity between the two programs’ per-

formances is compounded by the fact that MEME discovers

multiple motifs in serial, and would require roughly the same

running time to find each additional motif.

Many of the discovered motifs are novel, demonstrating vary-

ing half-site distances and orientations (Fig. 2). Interestingly, two

of the discovered motifs show that the half-sites are reversed. To

determine whether the reversed motif is functional, we scan for

sequences in the ChIP-Seq dataset matching one of the reversed

motifs’ consensus sequence, align these sequences and extract

GERP scores (Cooper et al., 2005). Sequences containing this

reversed motif are enriched in high GERP scores, showing that

these sequences are conserved and possibly functional (Fig. 3).
Some of the motifs discovered in this dataset have a low

number of occurrences. One of the motifs, for example, only

has 11 sites in the data. It would be unlikely to discover these

infrequent motifs if the majority of sequences are discarded. This

highlights the importance of using the entire dataset for thorough

motif discovery.

3.3 Discovering motifs in DNase-Seq data

To assess the performance of MEME and EXTREME for
DNase-Seq data, we use a DNase-Seq FP dataset generated by

the Stamatoyannopoulos Lab at the University of Washington
(Neph et al., 2012). The DNase-Seq data correspond to a foot-

printing experiment performed on the K562 cell line. FPs are
already organized into a BED file by the authors. We further

process the FP data by extending each FP by 5bp on each side
and then merging any intersecting regions. Genomic sequences
are extracted from the masked hg19 reference genome. The re-

sulting dataset consists of 198 527 sequences and 10 487 345bp.
We first discover motifs in the DNase-Seq dataset using

MEME. We do not run MEME on the whole dataset because
we know MEME can take months to complete for a dataset of
this size. We therefore run MEME-ChIP on the dataset, which

runs MEME on 600 randomly selected sequences. For the data
subset, MEME discovers two motifs that strongly resemble pre-

viously discovered motifs (CTCF and SP1). The other discovered
motifs are repetitive or fail to meet our E-value threshold of 0.01.

In the seeding step of EXTREME, we first search for words
with a half-length of 4bp, a gap length between 0 and 10bp
(inclusive), a normalized z-score45 and at least 10 occurrences

in the positive sequence dataset. The word search takes 836 s to

Fig. 2. Motifs discovered by EXTREME in the GM12878 NRSF ChIP-

Seq dataset. Each motif comes from one of the 10 motif clusters. Motifs

are aligned to highlight the varying distances and orientations between

the half-sites. Number of non-overlapping motif sites in non-repetitive

regions and E-values shown next to each motif. E-values are calculated

according to MEME’s heuristic
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yield 761 words. Hierarchical clustering of the words takes 23 s to

group the words into 129 clusters. We then convert the clusters to

129 PFM seeds of widths between 8 and 19bp. Each seed is

processed independently by the online EM algorithm on a sep-

arate core in parallel. Running times vary for each of the online

EM runs, ranging from 4475 to 18300 s, completing in an average

of 7390 s. Hierarchical clustering groups the discovered motifs

into 22 distinct clusters.

To discover additional motifs in the DNase-Seq data, we mask

the seven most abundant motifs from different motif clusters by

replacing instances of those motifs with capital Ns and restart the

motif discovery. We remove these motif instances because the

first round of motif discovery shows that many different seeds

can converge to the same motif, and we want to bias the motif

discovery toward different motifs. Based on TOMTOM (Gupta

et al., 2007) analysis, the seven motifs strongly match known

motifs (TOMTOM E50.01): CTCF, SP1, SRF, NRF1,

JUNDM2, ZNF143 and TAL1/GATA1. In this second round

of motif discovery, we search for words with a half-length of

5 bp, a gap length between 0 and 10bp (inclusive), a normalized

z-score48 and at least 10 occurrences in the positive sequence

dataset. The word search takes 888 s to yield 1187 words.

Hierarchical clustering of the words completes in 102 s and

yields 357 clusters, which are then converted to PFM seeds of

widths between 10 and 21bp. Each seed is independently pro-

cessed by the online EM algorithm on a separate core in parallel.

Online EM run times range from 3330 to 22 702 s, completing in

an average of 7605 s. Hierarchical clustering condense the motifs

into 131 clusters.

Examples of motifs discovered in the K562 dataset are shown

in Figure 4. All motifs discovered by EXTREME in the K562

dataset are available in MEME Minimal Motif Format in the

Supplementary material. Many of the motifs discovered by

EXTREME have a low number of occurrences relative to the

total size of the dataset. One motif only has 464 occurrences in

the 10.5Mb dataset (Fig. 4e). These kinds of motifs are too in-

frequent to be discovered in subsets of the data. Discovering

motifs in a subset of the data is only possible for motifs that

are present in high abundance, such as the ones shown in

Figure 4a and b, which are also the motifs discovered by the

MEME run on the data subset. Again, this highlights the im-

portance of using the whole dataset for motif discovery. Using

MEME to discover these infrequent motifs is not practical be-

cause MEME can take months to discover a motif in a dataset as

large as the K562 dataset. Furthermore, the number of occur-

rences for motifs is less than expected. For example, EXTREME

only finds 1771 occurrences of the CCAAT box motif (Fig. 4f),

even though the ENCODE NFYA ChIP-Seq data indicate it

should be present in at least a third of all human promoters.

The reason for the discrepancy is likely due to the way Neph

et al. (2012) called FPs. Neph et al. (2012) reported high-confi-

dence FPs at an FDR of 1%. This is a stringent threshold and we

therefore expect their footprinting algorithm to call many false

negatives as a result.

3.4 Comparison to known motifs

We assess the similarity of the motifs discovered by EXTREME

in the DNase-Seq and ChIP-Seq datasets to known motifs using

TOMTOM. Some of the motifs discovered by EXTREME have

highly significant matches to known motifs (Fig. 5). Many of the

motifs discovered, however, are novel and fail to meet our

TOMTOM E-value threshold of 0.01. Validating these novel

motifs requires further computational or experimental scrutiny.

4 DISCUSSION

A search-based seeding strategy combined with the online EM

algorithm is effective for efficient de novomotif discovery in large

datasets. EXTREME uses the online EM algorithm to discover

motifs that closely match motifs discovered by MEME. MEME

can take months to discover even a single motif in a large dataset

like the DNase-Seq dataset. While strategies such as discarding

sequences are effective for quickly discovering abundant motifs,

it is insufficient for finding infrequent motifs, which are numer-

ous in DNase-Seq data. EXTREME can quickly process entire

large datasets without discarding sequences or using specialized

hardware. If available, EXTREME can take advantage of par-

allelized hardware configurations, which is useful for rapidly dis-

covering multiple motifs in large datasets. Although such

configurations are not available to all researchers, EXTREME

can still be used with more traditional configurations to serially

discover multiple motifs at a substantially faster rate than

MEME can.
We expect EXTREME to be a valuable tool for thorough

motif discovery in large datasets. Its ability to discover multiple

motifs in DNase-Seq data will be especially useful for under-

standing transcriptional regulation. Because motifs discovered

(a)

(b)

Fig. 3. Conservation analysis of the reversed NRSF motif. Sequences in

the GM12878 NRSF ChIP-Seq dataset containing the consensus se-

quence GCTGTCCNTTCAGCA or its reverse complement are aligned

with 10bp flanking sequences. (a) GERP scores are plotted for each

nucleotide in a heatmap. The motif’s sequence logo is aligned at the

top for reference. (b) The average GERP score plotted against the gen-

omic positions, relative to the center of the alignment
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by EXTREME closely match motifs discovered by MEME,
the results can be used to reliably associate FPs with well-studied
TFs. This also means that any discovered novel motifs can con-

fidently be associated with TFs. This is especially useful for the
study of TFs that lack a suitable antibody for ChIP experiments.
While EXTREME is effective in motif discovery, there is

still much room for improvement. EXTREME’s performance
can be vastly improved if it were reimplemented in C. Future
implementations of EXTREME can also incorporate

more MEME elements such as the one occurrence per sequence
and zero or one occurrence per sequence models. To encourage
further investigation, we have made EXTREME publicly avail-
able at the Github repository http://github.com/uci-cbcl/

EXTREME.
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 4. Six examples of motifs discovered by EXTREME in the K562 dataset. Number of non-overlapping motif sites in non-repetitive regions and E-

values shown below each motif. The E-values show how significant the motifs are, calculated according to MEME’s heuristic

(a) (b)

(c) (d)

Fig. 5. TOMTOM comparisons of motifs discovered by EXTREME

with motifs in databases. Each panel shows the logo of the motif dis-

covered by EXTREME (lower logo) aligned with the best matching motif

in the databases (upper logo), along with the name of the best matching

motif and significance value of the match
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