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A B S T R A C T

Despite wildfire being an important regulator of dryland ecosystems, uncontrolled wildfire can be harmful to
both forest ecosystems and human society, and wildfire prevention and control continue to raise worldwide
concern. Wildfire management depends on knowledge of wildfire ignitions, both for cause and location. The
regimes and factors influencing wildfire ignition have been studied at length. Humans have a profound effect on
fire regimes and human activity is responsible for igniting the largest number of fires in our study area.
Understanding the spatial patterns of ignitions is foremost to achieving efficiency in wildfire prevention.
Previous studies mainly concentrate on overall wildfire risk integrating numerous factors simultaneously, yet the
importance of human factors on ignition has not received much attention. In this study, we mapped human
accessibility to explore the influence of human activity on wildfire ignition in a simple and straightforward way.
A Bayesian weights-of-evidence (WofE) method was developed based on fire hotspots in China's Yunnan pro-
vince extracted from satellite images and verified as known wildfires for the period 2007–2013. We considered a
set of factors that impact fire ignition as associated with human accessibility: the locations of settlements, roads,
water and farmland susceptible to human wildfire ignition. Known points of likely wildfire ignition were selected
as training samples and all suspected thematic maps of the factors were taken as explanatory layers. Next, the
weights of each layer in terms of its explanatory power were computed and used to generate evidence based on a
threshold to pass a statistical test. The conditional independence (CI) of each layer was checked with the
Agterberg-Cheng test. Finally, the posterior probability was calculated and its precision validated using samples
of both presence and absence by withheld validation data. A comparison of WofE models was made to test the
predictability. Results show proximity to villages, roads and farmland are strongly associated with human
wildfire ignition and that wildfire more often occurs at an intermediate distance from high-density human
activity. The WofE method proved more powerful than logistic regression, improving predictive accuracy by
10% and was more straightforward in presenting the association of dependence and independence. In addition,
WofE with 1000 m buffer bands is more robust in predicting human wildfire ignition risk than binary or 100 m
buffers for the ecoregion studied. Our results are significant for advising practical wildfire management and
resource allocation, evaluation of human ignition control and also provides a foundation for future efforts to-
ward integrated wildfire prediction.
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1. Introduction

Despite wildfire being an important regulator of ecosystems by in-
fluencing vegetation succession, shaping biomass distribution and
maintaining biological diversity (Bond & Keeley, 2005; Bond,
Woodward, & Midgley, 2005; Bowman et al., 2011; Crisp, Burrows,
Cook, Thornhill, & Bowman, 2011; Simon et al., 2009), uncontrolled
wildfire is usually destructive to both forest ecosystems and to human
society by causing natural resource degradation, economic disruption
and loss of life, and reduced biodiversity (Cameron et al., 2009;
Johnston, 2009; Kwak et al., 2012; Rodrigues, de la Riva, &
Fotheringham, 2014). Especially in managed ecosystems, wildfire pre-
vention and control continues to be a worldwide concern. The regimes
and factors influencing wildfire ignition have been studied at length
(Cardille, Ventura, & Turner, 2001; Harrison, Marlon, & Bartlein, 2010;
Maingi & Henry, 2007; Plucinksi, 2011). Wildfire occurrence is attrib-
uted to weather and climate, fuel condition and a source of ignitions
(Gralewicz, Nelson, & Wulder, 2012a; Malamud, Millington, & Perry,
2005), based on which, wildfire risk or susceptibility can be assessed
(Dickson et al., 2006; Guo et al., 2017; Hawbaker et al., 2013; Xu,
Zhang, Chen, Wu, & Li, 2016). Although ignition is an integral com-
ponent of wildfire factors, it is crucial in terms of wildfire occurrence,
because the possibility of wildfire is minimal, no matter how dry the
weather conditions and how high the forest flammability without ig-
nition. Humans have a profound affect on fire regimes by being a source
of ignitions (Fusco, Abatzoglou, Balch, Finn, & Bradley, 2016), and
human activity is responsible for igniting a majority of all fires (Benali
et al., 2017; FAO, 2007; Prestemon & Butry, 2005; Román-Cuesta,
Gracia, & Retana, 2003). According to statistics, the main causes of
wildfires in China are related to human activities, with lightning ac-
counting for only 0.38% of the total (Zhong, Fan, Liu, & Li, 2003).
Consequently, an improved understanding of wildfire risk should ad-
dress the patterns of human activity and its relation to fire ignition
(Dickson et al., 2006; Narayanaraj & Wimberly, 2012; Prestemon, Pye,
Butry, Holmes, & Mercer, 2002). Significant research effort has been
undertaken to explore the relationship between wildfire and its causa-
tive factors with the goal of building predictive models (Cardille et al.,
2001; Chas-Amil, Prestemon, McClean, & Touza, 2015; Maingi & Henry,
2007; Narayanaraj & Wimberly, 2012; Romero-Calcerrada, Barrio-
Parra, Millington, & Novillo, 2010; Román-Cuesta et al., 2003; Salis
et al., 2013; Syphard et al., 2007; Watts & Hall, 2016; Ye, Wang, Guo, &
Li, 2017), and has concluded that wildfire tends to occur in areas near
human infrastructure on the human-wildland interface (Zhang, Lim, &
Sharples, 2016), and frequently exhibits nonlinear relationships
(Hawbaker et al., 2013). However, previous studies mainly concentrate
on overall wildfire risk integrating numerous factors simultaneously,
yet the importance of human factors on ignition has not received much
attention. Most fire literature examines biological and physical wildfire
factors, such as topography, wind, humidity and fuel load (Romero-
Calcerrada et al., 2010; Yang, He, & Shifley, 2008). With an increasing
concern in studies of the anthropogenic impacts on wildfire regime,
some researchers have tried to isolate the human variables in a quan-
titative way to figure out the patterns of human influence that cause
wildfire ignition (Catry, Rego, Bação, & Moreira, 2010; Fusco et al.,
2016; Romero-Calcerrada et al., 2010). The modeling of human activity
and its patterns of influence in a more explicit spatial way offer a new
level of explanation for local government decision making in wildfire
prevention. This implies wildfire prevention, rather than firefighting
and management after ignition.

With the development of remote sensing and Geographic
Information Systems, it is feasible to model human variables and their
impacts on wildfire ignition spatially. Yet due to the variety of human
motivations and behavior, modeling human activity remains a difficult
and complicated problem (Song, Wang, Satoh, & Fan, 2006). Never-
theless, there are clearly empirical associations between wildfire igni-
tion points and certain aspects of the human footprint. Humans usually

have an extent of mobility and a geographic range, which is largely
determined by the infrastructure and settlements. Consequently, pre-
vious work associated with human activity has commonly utilized land
cover, distance or proximity to roads, settlements or other infra-
structure as straight distance for buffer analyses (Fusco et al., 2016;
Gralewicz et al., 2012a; Guo et al., 2017; Hawbaker et al., 2013; Kwak
et al., 2012; Maingi & Henry, 2007; Romero-Calcerrada et al., 2010;
Zhang et al., 2016). However, the effects of different factors on fire
occurrence can vary among ecosystems and across spatial scales (Catry
et al., 2010). Additionally, numerous approaches have been employed
to estimate wildfire ignition probability. Logistic regression is the most
extensively used method due to its flexibility and robustness to non-
normally distributed variables (Catry et al., 2010; Curt, Fréjaville, &
Lahaye, 2016; Guo et al., 2014, 2016b; Legendre & Legendre, 2012;
Rodrigues et al., 2014). However, logistic regression generally produces
a result based on approximate linear relations between map layers
(Agterberg & Cheng, 2002; Guo et al., 2016c). Consequently, an im-
proved spatial prediction model of human activity should lead to a
better understanding of the spatial and temporal patterns of human-
caused wildfire ignition.

In this study, we applied an objective model using weights-of-evi-
dence (WofE) to identify the extent of human impacts on wildfire ig-
nition. To better investigate the patterns of human influence, we as-
sumed that wildfire occurrence is mainly determined by human
variables. Several steps were required. First, known points of historical
wildfire ignition locations were selected as the training samples and all
suspected thematic maps of human activities were taken as explanatory
layers. Next, the weights were computed and evidence generated at
different scales and for categories based on statistical significance.
Conditional independence was examined with the Agterberg-Cheng
test. Accordingly, the posterior probability was calculated and its pre-
cision validated for both presence and absence of wildfire ignition.
Lastly, we analyzed the predictive power of the model compared with
logistic regression and with different variable patterns.

2. Materials and methods

2.1. Study area

Yunnan province is located in the southwestern border of China
between 21°09′-29°15′ N and 97°32′-106°12′E (Fig. 1). It is ranked
second among the forested regions of China with abundant forest re-
sources. The area has a highly diverse gene pool of plants and animals,
and is among the top 25 global biodiversity hotspots (Myers,
Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000; Yuming, Kun,
Jiming, & Shengji, 2004). Yunnan has rugged topography, under-
developed transportation, is relatively poor, has multi-ethnic in-
habitants and is highly populated. Additionally, the northerly winter
monsoon in this region is usually obstructed by high mountains, gen-
erating a warm, dry winter and moderately hot humid summer mon-
soon type climate (Li et al., 2017). There is a record of continuous
droughts in recent years, which have made Yunan also a region of
frequent and severe wildfire occurrence, among the most in China (Xu
et al., 2007; Zhong et al., 2003). Wildfires in Yunnan mainly occur in
winter and spring from December to May, concentrated in spring from
mid-February to mid-May (Cao, Wang, & Liu, 2017; Chen, Fan, Niu, &
Zheng, 2014). Wildfire in Yunnan has shown a slight upward trend
during recent years (Zhao, Shu, Tiao, & Wang, 2009), mostly caused by
human activity (Chen, Pereira, Masiero, & Pirotti, 2017; Tian, Zhao,
Shu, & Wang, 2013) including arson, fire misuse, and the tradition of
honoring ancestors around Tomb Sweeping Day by burning imitation
currency. Additionally, the slash-and-burn farming cultivation and the
mosaic of farmland and forest aggravate this situation. State and local
governments conduct large scale ground patrols to check the ignitions
induced by human activities at the peak of wildfire occurrence season
every year.
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2.2. Wildfire points

A location layer is necessary to serve as the training points in the
WofE model computations. Wildfire statistics in 2007–2013 were col-
lected from the wildfire satellite monitoring center, of the State Forest
Administration. The data consisted of fire hotspots derived from
MODIS, NOAA, and FY remote sensing satellite images collected in the
Forest Monitoring System, and later verified as actual fire locations by
ground verification, since hotspots can include the heat sources of on-
going active fires. The data showed 15,614 hotspot points depicted as
high-temperature sites from 2007 to 2013, with 6343 points identified
as active fires. Due to large wildfires that developed dynamically over
time, the same fire was recorded repeatedly, so an elimination was
conducted manually. Finally, 2374 points were confirmed as wildfire
ignition points (Fig. 2), of which 2017 over the previous 6 years were
training points and the rest served as validation points.

2.3. Independent variables

According to prior work, the distances to roads and railways, and
population density, tourism sites, and farmland are usually considered
as human variables that contribute to wildfire ignition (Curt et al.,
2016; Fusco et al., 2016; Maingi & Henry, 2007; Zhang et al., 2016).
Location layers were collected that included the settlements, transpor-
tation, and infrastructure from databases of the Yunnan Forestry Disaster
Provincial Science and Technology Innovative Team. Considering that
different kinds of transportation and settlements lead to distinctive
human mobility ranges, the transportation data was categorised into
two line layers of main roads (national road, highway, provincial road,
and railway) and secondary roads (township roads and paths), while
settlements were divided into urban settlement points (city residents,
county residents, township residents) and village points. Additionally,

water was considered, usually involving hydropower stations, also
tourism sites such as temples leading to high human density. Farmland
areas were included in which farming results in more human activity,
and so fires.

In order to prepare the thematic evidence, proximity maps were
generated for 6 layers by a cost distance instead of Euclidean distance,
which more closely approximates the concept of the human activity
function (DeMers, 2002). Since the human travel cost of accessibility is
essentially limitless, we constrained the extent with a corridor, for in-
stance, there is less probability for humans to access a cliff than a plain.
Thus, we generated a cost raster to define the impedance based on slope
and elevation influence in terms of empirical knowledge, as below.

= × +CST s SP H( in( ) 0.1)0.3 0.3 (1)

where CST is the cost raster, SP is slope, and H is height, based on the
NASA Shuttle Radar Topographic Mission 90 m digital elevation model.

2.4. Methodology

The method of WofE modeling is based on Bayes' theorem and on
the concepts of prior and posterior probability, and was developed
originally for medical diagnosis, but has been applied subsequently to
mapping mineral potential (Agterberg & Cheng, 2002). The technique
was later extended to determining animal habitats, archaeology, en-
vironmental impact evaluation, risk assessment and also used in wild-
fire prediction (Dickson et al., 2006; Ford, Clarke, & Raines, 2009; Ilia,
Tsangaratos, Koumantakis, & Rozos, 2017; Lv, Zheng, Zhao, & Hu,
2013; Raines & Bonham-Carter, 2007; Romero-Calcerrada, Novillo,
Millington, & Gomez-Jimenez, 2008, 2010; Tahmassebipoor, Rahmati,
Noormohamadi, & Lee, 2016; Weed, 2005). The method assumes that
an event occurs at a set of known presence points and uses evidence
from multiple evidential themes that might cause the event expressed in

Fig. 1. Location of the study area.
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binary or in categorical variables. The causative variables are re-
presented in a log-linear model based on an assumption of conditional
independence among them and used to compute a probability map.
WofE has the advantage of analyzing the relationship between variables
and a distribution using a geostatistical method in an objective way
instead of using prior knowledge. It has been widely applied and in-
tegrated into ESRI's ArcGIS as an extension called ArcSDM (Sawatzky,
Raines, Bonham-Carter, & Looney, 2009). The main algorithm is de-
scribed by Bonham-Carter (Bonham-Carter, Agterberg, & Wright, 1989)
as below.

Supposing the total area is partitioned into equal cells, D represents
the cells where the wildfire has occurred, then the weight for every
evidence layer B can be expressed by W+ and W−:

=

⎧

⎨
⎪

⎩
⎪

=

=

+

−W

W

W

ln Evidence is present

ln Evidence is absent

0 Data is missing

P B D
P B D
P B D
P B D

( )
( )
( )
( )

(2)

C=W+−W− (3)

where, W+and W− are the measurement of positive or negative cor-
relation between event location and evidence. IfW+ is positive andW−

is negative, that indicates more events occur due to an evidential theme
than would be expected by chance. Conversely, when W+ is negative
and W− is positive, implies there are fewer events due to an evidential
theme than would be expected by chance (Bonham-Carter et al., 1989).
The difference between the two weights gives the contrast C, which can
be used to define the optimal thresholds to find the best pattern of
evidence. When C equals zero, it indicates that the conditional factor
under consideration is not significant for the analysis, i.e. is not sig-
nificantly different from a random distribution. A negative contrast

means a negative correlation (the factor reduces wildfire ignition), and
conversely, a positive contrast represents a positive relation or direct
causation (Corsini, Cervi, & Ronchetti, 2009; Tahmassebipoor et al.,
2016). Since C usually shows uncertainty (Bonham-Carter, 1994), CS,
the Studentized value of C, is more often used than C in the selection of
evidence variables and in the breakpoints in their classes (Ilia et al.,
2017; Romero-Calcerrada et al., 2010).

Given n evidence factors, the potential distribution of probability for
every spatial cell, i.e. the posterior odds, can be depicted as:

∑=
⎧
⎨
⎩

+
⎫
⎬
⎭

Oposterior W O )exp ln( prior
j

n

j
k

(4)

Thus the posterior probability is:

=
+

P
O

O1posterior
posterior

posterior (5)

Several steps are involved in the weights-of-evidence calculation:

(1) Select known present points of events as the training samples, such
as the wildfire locations of occurrence (points), then reduce the
points by thinning to one per cell to satisfy the assumption.

(2) Calculate the weights of evidential variables and generate thematic
evidence.

Thematic maps of suspected independent factors to point distribu-
tion are assembled and made binary or categorical, with as few classes
as possible. Then the weights can be calculated using the training
points, and outputs are stored in a cumulative categorical table of the
correlation indicators of W+, W− and C. These variables are clues re-
flecting whether the variables and classes are acceptable evidence or
not, and also can instruct the reclassification of the themes in the most
predictive manner. This procedure is a trial and error process.

Fig. 2. Map of known wildfire ignitions in Yunnan province, China, during 2007–2013.
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(3) Check conditional independence.

WofE is established on the assumption that map layers are ap-
proximately conditionally independent of each other, and that condi-
tional independence (CI) can be tested by statistical validation between
layers in a contingency table and an overall or “omnibus” test
(Agterberg & Cheng, 2002; Lv et al., 2013) applied. An overall CI ratio
(n/T, n is the number of observed training points, and T is expected
number of training points), varying from 0 to 1 is usually used. When
the value is greater than 0.85 the layer satisfies conditional in-
dependence, then the evidence can be accepted and the prediction is
valid, otherwise, the evidence violates the assumption and the predic-
tion is invalid (Bonham-Carter, 1994). Another one-tailed significance
test uses a null hypothesis, expressed as the Agterberg & Cheng Con-
ditional Independence test in ArcSDM. The test statistic of (T-n)/stan-
dard deviation of T, being greater than probability values at the 95% or
99% level of significance indicates that the hypothesis of CI should be
rejected (Agterberg & Cheng, 2002; Sawatzky et al., 2009).

(4) Calculate posterior probability and generate risk map.

According to the weighted layers and the evidence, the posterior
probability map of wildfire risk induced by human activity can be
calculated, and then reclassified into a thematic map with 4 risk cate-
gories {very high, high, medium, low } based on the appropriate
threshold of indicator R (the ratio of posterior to prior) (Carranza &
Hale, 2000; Romero-Calcerrada et al., 2010). The method can also
produce a binary predictive map with presence and absence zones.

=

⎧

⎨
⎪

⎩
⎪

−
−

>

R

0.5 Low predictive risk
0.5 0.8 Medium predictive risk
0.8 1.5 High predictive risk

1.5 Very High predictive risk (6)

(5) Validation of the model

The precision of model can be validated by using wildfire location
data with both absence and presence on a binary map of occurrence.
We applied with- and out-of-sample validation on training and testing
observations, which are 2374 and 357 wildfire presence accounting for
85% and 15% respectively. A model is considered valid when it iden-
tifies at least 70% of the occurrences used in developing the model or at
least of 50% of “undiscovered” occurrences whose samples are withheld
(Carranza & Hale, 2000).

3. Results

3.1. Evidential themes

All explanatory variables were transformed into proximity raster
layers as the evidential layers by cost distance computation in 100 m
(Fig. 3) and 1000 m increments. From the pattern of human proximity,
human activity more often occurs close to settlements, roads, farmland
and water. However, different human variables are quite heterogeneous
spatially. Owing to Yunnan's topography characteristics with higher in
the north and lower in the south, decreasing in steps (Yuming et al.,
2004), human accessibility also varies significantly spatially.

As to the proximity to urban settlements, human activity has a quite
high accessibility of 5 km in the east and west rather than the north and
south, while human activity from villages can access almost all loca-
tions within 3 km except in the northwestern canyons. Similar patterns
were obtained from transportation proximity, with high accessibility in
the center extending to the east due to two major highways of Hukun
and Shankun connecting to the neighboring province. Using main
roads, humans can travel to each direction of the province, and also

easily reach other places within 3 km using secondary roads except for
areas of poor accessibility in the east and northwest. For proximity to
water, humans move within 5 km near the water across the region
along its great rivers and waters. In terms of proximity to farmland,
humans can extend to most places within 3 km which reflects a land-
scape mosaic of agriculture and forest.

3.2. Weight calculation and evidence generation

To strengthen the exploration of the association between wildfire
and human activity, all the weight statistics for every variable were
calculated significantly in binary levels, as categories and at the dif-
ferent scales (resolutions) of 100 m and 1000 m, shown in Tables 1 To
3. As a result, The 2017 training points led to a prior annual probability
of 0.000 052 in every 100 m cell and 0.005 016 in 1000 m. The cutoffs
of each binary evidential theme were determined by test reclassification
and the highest CS weight statistics in accumulative proximity chosen
(Fig. 4). Fig. 4 shows the variation of studentized value, indicating that
the relation alters as proximity increases. Then the weights for the
binary evidential themes were calculated (Table 1). From Table 1, all
the evidential layers have positive W+ and negative W− weights with
positive contrasts, which means more wildfire will be predicted con-
sidering all these variables, and all these variables were positively as-
sociated with wildfire ignition. However, different layers had distinct
contrasts, showing various strengths of the causative relationships.
Proximity to villages ranks at the top with the greatest contrast of
0.9926 followed by proximity to secondary roads of 0.8197, then
proximity to farmland of 0.5720 and proximity to urban settlements of
0.4389 while the proximity to water and main roads have relatively
small value contrasts of 0.2825 and 0.2299 respectively. These binary
weight statistics show that wildfire ignition is strongly associated with
proximity to villages, secondary roads, and farmland.

When calculating the weight for categories, a detailed relation was
obtained between specific patterns of human variables with wildfire
ignition. From Table 2, studentized contrast (CS) of each variable
fluctuates over space from negative to positive, then negative in diverse
classes rather than simply negative or positive trend, which indicates
more complication exists and wildfire ignitions more often occur at a
particular distance from settlements, roads, and other infrastructure.
Despite the variables being proximities, the patterns of the influence on
wildfire ignition is quite different. In terms of proximity to urban set-
tlements, distances less than 6 km and more than 20 km shows a ne-
gative correlation with wildfire ignition, the distance between them
indicates a negative influence on wildfire with less wildfire than there
would be expected than by chance accounting for these classes. Wildfire
ignition most often occurs at distances from urban settlements between
12 km and 20 km with the highest studentized contrast (CS) of 7.9270.
This is similar for proximity to villages, wildfire ignition favors a dis-
tance between 5 km and 8 km with the greatest CS at 7.7314.

For proximity to main roads, distances between 5 km and 20 km are
positively associated with wildfire ignition, showing the highest CS

5.0645 at 10 km. For proximity to secondary roads, wildfire ignition
favors distance from 1 km to 8 km, especially below 2 km with the
highest level of CS at 4.1674. As far as proximity to farmland, positive
CS appears at distances between 1 km and 15 km with the largest at
14.4813 between 3 km and 8 km. For proximity to water, positive as-
sociation appears at the distance of 3 km and 15 km and the maximum
CS is 6.0506 at a distance less than 8 km.

When changing the scale of each variable to 1000 m, almost the
same patterns of weight statistics were obtained compared with 100 m.
From Table 3, the positive relationship between wildfire and human
activities exists in those areas neither too close nor too far for human
proximity, where the region at a medium distance shows a high prob-
ability of wildfire ignition. As to the detailed impact of each class, the
proximity to urban settlements shows a different pattern with the
highest CS of 5.6711 in the distance range of 6 km–11 km, much closer
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Fig. 3. Human proximity maps: (a)proximity to urban settlements; (b)proximity to villages; (c)proximity to main roads; (d)proximity to secondary roads; (e)proximity to farmland; (f)
proximity to water.
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than those at the 100 m scale. The pattern of the proximity to secondary
roads is the same as at 100 m with most possibility of wildfire ignition
between 1 km and 8 km with a greatest CS of 4.9422. This similarity
appears in other layers except for small differences of maximum CS at
various distances. According to the weight statistics, different evidence
layers were generated for the following WofE models.

3.3. Conditional independence test

Conditional independence was examined for models of different
evidence using ArcSDM. Since 6 layers did not satisfy the assumption of
conditional independence, we tested several most probable combina-
tions of evidence layers (Table 4). From Table 4, we can see a 3 evi-
dence layer model at 100 m of the proximity to villages, secondary
roads and farmland satisfies the conditional independence test. The
observed number of training points n is 2017 while the expected
number of training points T is 2066.9. The difference is 49.9 and the
standard deviation of T is 26.013. The Conditional Independence Ratio
is 0.98, which being greater than 0.85, indicates no conditional in-
dependence among the causative factors, implying that the evidence
can be accepted and the prediction is valid. For the one-tailed sig-
nificance test, the test statistic is 1.9168 with a probability of 0.972,
which is significant given a 99% confidence level and also indicates that
the assumption of conditional independence can be accepted. Other-
wise, a 4 layer model of proximity to villages, main roads, secondary
roads, and farmland is accepted given a 95% confidence level. Also, a 6
layers model in binary meets the conditional independence with the
total conditional ratio of 0.99 and the one-tailed test was accepted at
the 95% confidence level.

3.4. Wildfire ignition risk

With ArcSDM, we calculated three responses from the binary and
categorical evidence themes at 100 m and 1000 m respectively, re-
presenting the wildfire ignition risk by the ratio of posterior to prior
(Fig. 5), the legends present the probabilities of human wildfire igni-
tion. In addition, a forward stepwise logistic regression was made to
compare with the WofE, a three variables model of the proximity to
secondary roads, villages and farmland was accepted at the 0.05 sig-
nificance level.

=
− + + −

+ − + + −
P

a a a
a a a

exp( 1.09 0.571 0.417 0.5141 )
1 exp( 1.09 0.571 0.417 0.5141 )

1 2 3

1 2 3 (7)

In equation (7) P,a1,a2,a3 are predictive dependence, proximity to
secondary roads, villages and farmland respectively.

In Fig. 5, the patterns of human wildfire ignition risk show variation
across space. The predictive maps at 100 m and 1000 m appear quite
similar and different risks scatter spatially, while the binary and logistic
regressions show much more area in the very high ignition risk level.
The percentage of every risk map differs, low risks are 25.12%
(1000m), 28.08% (100m), 14.61% (binary) and 7.54% (logistic) se-
quentially. Medium risks take the proportion of 215.7%, 21.84%,

26.22% and 28.56% in turn. High risks are 30.57%, 22.34%, 28.48%
and 14.07% accordingly, while the very high risk accounts 18.09%,
27.74%, 53.61% and 51.70% respectively. In the result for categorical
WofE, there is an obvious high risk in the southwestern and southern
underdeveloped region, especially in Lijiang, then scattered high risk in
the south of Chuxiong prefecture and Zhaotong. Medium risk regions
are mostly distributed in the west and east, while low risk areas exist in
the east of Kunming to Qujing, northeast of Zhaotong, west of Dehong
and Baoshan. The wildfire risk is obvious aggregated in the WofE binary
model, with most areas joining the high risk, especially in Kunming city
and Dianchi Lake nearby, while the very high risk for the logistic model
is focused in the northwest, even in alpine regions.

3.5. Model validation

An additional non-overlapping sample of 2017 wildfire ignition
points was used to validate the models, the accuracy of each model was
greater than 70% with the Logistic regression ranked highest at
95.04%. When evaluated with 357 presence and 457 absence additional
wildfire ignition points to test the validation, the WofE categorical
model had a higher accuracy of wildfire absence but a lower precision
of wildfire presence compared to the WofE binary and logistic regres-
sion models (Table 5). Note that the logistic regression model has very
high precision in both predictive and unknown wildfire presence, but
when used with unknown absence, the accuracy dramatically decreased
to 30.85%, which consequently impacted the total accuracy. Overall,
the WofE model at 1000 m achieved the highest total accuracy of
69.38%, then the WofE model at 100 m at 69.38%, logistic and the
WofE in binary with 59.28% and 48.28% respectively. From Table 5,
categorical WofE was more useful in identifying at least 70% of oc-
currence in developing the model and 50% of the “undiscovered”
(Carranza & Hale, 2000), which indicates the categorical WofE model at
1000 m categories is most robust in predicting human wildfire ignition
risk for the ecoregion.

When overlaying the wildfire ignition risk map with the main ve-
getation ecosystems, results show that wildfire ignitions in Yunnan
mainly occur in four ecosystems: (I) semi-warm wet evergreen broad-
leaf forest, due to strong human disturbance in the long term, the main
vegetation-fuel in this ecosystem is secondary Pinus yunnanensis, which
mostly exists on the plateaus in middle Yunnan; (II) semi-savanna in the
dry-hot valleys, where the main fuel consists of Quercus acutissima
shrubs and dry-hot herbs located in the valley of the Mekong River,
Salween River, Dulong River, Yangtze River and Yuanjiang Rivers; (III)
cold temperate alpine dark coniferous forest, where Abies forresti is the
main fuel scattered in the high mountains of the northwest; and (IV)
montane humid evergreen broad leaved forest, whose main fuel is Pinus
kesiya plantations which developed after the initial vegetation was
cleared and mostly exists in the regions of Puer, Lingchang and
Jinghong. These locations are consistent with the known wildfires
statistics among the training points.

Table 1
Summary of weights for evidential themes in binary.

Variables Proximity (km) N W+ s(W+) W− s(W−) C s(C) Cs

Proximity to villages 8 1991 0.0217 0.0224 −0.9709 0.1961 0.9926 0.1974 5.0283
Proximity to urban settlements 20 1952 0.0176 0.0226 −0.4213 0.1240 0.4389 0.1261 3.4808
Proximity to secondary roads 6 2012 0.0031 0.0223 −0.8165 0.4472 0.8197 0.4478 1.8306
Proximity to main roads 19 1371 0.0796 0.0270 −0.1504 0.0393 0.2299 0.0477 4.8183
Proximity to water 19 1942 0.0121 0.0227 −0.2704 0.1155 0.2825 0.1177 2.4002
Proximity to farmland 12 1876 0.0526 0.0231 −0.5195 0.0842 0.5720 0.0873 6.5508

Note: W+ is positive weights; s(W+) is stand deviation of W+; W− is negative weights; s(W−) is stand deviation of W−; The contrast C is the difference between W+ and W−; s(C) is
stand deviaton of C; CS is the studentized C.
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4. Discussion

4.1. Determinants of human wildfire ignition

Starting wildfires is one among the multitude of human influences
on wildfire regimes with diverse motivations such as accident, arson
and farming. Wildfires are mostly ignited by human activity in China,
especially in southwest China (Chen et al., 2014, 2017; Zhong et al.,
2003). We quantified human accessibility to explore the influence of
human activity on wildfire ignition instead of considering more specific

measures of human activity, such as population density, which is gen-
erally used in wildfire study (Catry et al., 2010; Chang et al., 2013; Guo
et al., 2016a; Kwak et al., 2012), but has proven a poor predictor for
ecoregions (Fusco et al., 2016). From Table 4, not all of our previously
suspected human factors were good predictors of wildfire ignition, our
study revealed that proximity to roads, villages and farmland are strong
predictors of wildfire ignition, while urban settlements and access to
water show poor predictability, which is consistent with other findings
(Catry et al., 2010; Dlamini, 2010; Fusco et al., 2016; Gralewicz,
Nelson, & Wulder, 2012b; Maingi & Henry, 2007; Vilar, Woolford,

Fig. 4. Variations of studentized value for cumulative proximity to (a)urban settlements; (b)villages; (c)main roads; (d)secondary roads; (e)farmland; (f)water.
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Table 2
Summary of weights for categories of evidential themes in 100 m.

Variables Proximity (km) N W+ s(W+) W− s(W−) C s(C) Cs

Proximity of urban settlements 0–6 504 −0.3752 0.0445 0.1645 0.0257 −0.5397 0.0514 −10.4946
6–12 945 0.1464 0.0325 −0.1134 0.0305 0.2597 0.0446 5.8211
12–20 499 0.3224 0.0448 −0.0867 0.0257 0.4091 0.0516 7.9270
20–35 68 −0.2989 0.1213 0.0122 0.0227 −0.3111 0.1234 −2.5219
>35 1 −2.6391 1.0000 0.0065 0.0223 −2.6456 1.0002 −2.6449

Proximity of villages 0–1 192 −0.4182 0.0722 0.0562 0.0234 −0.4743 0.0759 −6.2519
1–3 726 −0.0784 0.0371 0.0469 0.0278 −0.1253 0.0464 −2.7006
3–5 608 0.1471 0.0406 −0.0573 0.0266 0.2044 0.0485 4.2127
5–8 407 0.356 0.0496 −0.073 0.0249 0.4290 0.0555 7.7314
8–15 82 −0.3538 0.1104 0.0181 0.0227 −0.3719 0.1127 −3.2985
>15 2 −1.9016 0.7071 0.0057 0.0223 −1.9073 0.7075 −2.6960

Proximity of main roads 0–5 392 −0.1553 0.0505 0.0414 0.0248 −0.1966 0.0563 −3.4946
5–10 428 0.2233 0.0483 −0.0525 0.0251 0.2758 0.0545 5.0645
10–20 605 0.1752 0.0407 −0.0666 0.0266 0.2418 0.0486 4.9761
20–50 561 −0.1023 0.0422 0.0424 0.0262 −0.1447 0.0497 −2.9127
>50 31 −1.0387 0.1796 0.0289 0.0224 −1.0676 0.181 −5.8982

Proximity of secondary roads 0–1 885 −0.1662 0.0336 0.1523 0.0297 −0.3185 0.0449 −7.0981
1–2 583 0.1497 0.0414 −0.055 0.0264 0.2047 0.0491 4.1674
2–4 472 0.1641 0.0460 −0.0452 0.0254 0.2093 0.0526 3.9793
4–8 75 0.1571 0.1155 −0.0056 0.0227 0.1627 0.1177 1.3828
>8 2 −0.9994 0.7071 0.0017 0.0223 −1.0011 0.7075 −1.415

Proximity of farmland 0–1 596 −0.5353 0.0410 0.3523 0.0265 −0.8876 0.0488 −18.1866
1–3 515 0.3252 0.0441 −0.0909 0.0258 0.4161 0.0511 8.149
3–8 734 0.4745 0.0369 −0.1957 0.0279 0.6702 0.0463 14.4813
8–15 145 0.2788 0.0830 −0.0187 0.0231 0.2975 0.0862 3.4507
>15 27 −0.8094 0.1925 0.0171 0.0224 −0.8264 0.1938 −4.2654

Proximity of water 0–3 345 −0.1335 0.0538 0.0299 0.0245 −0.1634 0.0591 −2.7604
3–8 701 0.1934 0.0378 −0.0895 0.0276 0.2829 0.0468 6.0506
8–15 652 0.0719 0.0392 −0.0326 0.0271 0.1045 0.0476 2.1941
15–25 284 −0.2063 0.0593 0.0383 0.024 −0.2446 0.0640 −3.8205
>25 35 −0.9346 0.1690 0.0277 0.0225 −0.9623 0.1705 −5.6435

Note: W+ is positive weights; s(W+) is stand deviation of W+; W− is negative weights; s(W−) is stand deviation of W−; The contrast C is the difference between W+ and W−; s(C) is
stand deviaton of C; CS is the studentized C.

Table 3
Summary of weights for categories of evidential themes in 1000 m resolution.

Variables Proximity (km) N W+ s(W+) W− s(W−) C s(C) Cs

Proximity to urban settlements 0–2 52 −1.0573 0.1388 0.0534 0.0231 −1.1108 0.1407 −7.8938
2–6 456 −0.2357 0.0469 0.0859 0.0261 −0.3216 0.0537 −5.9887
6–11 809 0.1606 0.0353 −0.1018 0.0299 0.2624 0.0463 5.6711
11–14 305 0.2801 0.0575 −0.0449 0.0249 0.3250 0.0626 5.1908
14–21 262 0.2592 0.0620 −0.0353 0.0246 0.2944 0.0667 4.4164
>21 46 −0.5806 0.1493 0.0190 0.0231 −0.5996 0.1511 −3.9695

Proximity to villages 0–1 188 −0.3934 0.0731 0.0534 0.0240 −0.4468 0.0769 −5.8099
1–3 442 −0.1357 0.0477 0.0441 0.0260 −0.1798 0.0543 −3.3115
3–7 1237 0.1731 0.0285 −0.2501 0.0381 0.4232 0.0476 8.8950
7–12 56 −0.3166 0.1339 0.0112 0.0232 −0.3278 0.1359 −2.4123
>12 7 −1.5025 0.4085 0.0110 0.0229 −1.5135 0.4091 −3.6995

Proximity to main roads 0–2 135 −0.4336 0.0862 0.0417 0.0237 −0.4753 0.0894 −5.3172
2–15 975 0.168 0.0321 −0.1467 0.0324 0.3148 0.0457 6.8939
15–25 425 0.0865 0.0486 −0.0231 0.0258 0.1096 0.0551 1.9902
25–50 360 −0.1612 0.0528 0.0409 0.0253 −0.2021 0.0586 −3.4506
>50 35 −0.9016 0.1717 0.0266 0.023 −0.9282 0.1732 −5.3589

Proximity to secondary roads 0–1 1028 −0.1331 0.0313 0.1755 0.0333 −0.3086 0.0458 −6.7446
1–2 593 0.1755 0.0412 −0.0691 0.0274 0.2446 0.0495 4.9422
2–5 283 0.1761 0.0596 −0.0274 0.0247 0.2035 0.0645 3.1524
5–8 24 0.3356 0.1931 −0.004 0.023 0.3397 0.1945 1.7465
>8 2 −0.9533 0.7078 0.0017 0.0228 −0.9549 0.7082 −1.3485

Proximity to farmland 0–1 384 −0.7688 0.0511 0.3394 0.0255 −1.1082 0.0571 −19.4014
1–5 1106 0.3513 0.0302 −0.3342 0.0349 0.6855 0.0462 14.8524
5–8 261 0.4909 0.0622 −0.0590 0.0246 0.5499 0.0668 8.229
8–14 141 0.3786 0.0845 −0.0246 0.0237 0.4032 0.0878 4.5927
14–20 30 −0.1727 0.1830 0.0030 0.0230 −0.1756 0.1844 −0.9525

Proximity to water > 20 8 −1.3453 0.3538 0.0119 0.0229 −1.3572 0.3545 −3.8282
0–3 87 −0.4828 0.1074 0.0298 0.0234 −0.5126 0.1099 −4.6644
3–7 773 0.1252 0.0361 −0.0758 0.0295 0.201 0.0466 4.3138
7–20 970 0.0604 0.0322 −0.0575 0.0324 0.1179 0.0457 2.5828
>20 100 −0.6616 0.1001 0.0526 0.0234 −0.7142 0.1028 −6.9452

Note: W+ is positive weights; s(W+) is stand deviation of W+; W− is negative weights; s(W−) is stand deviation of W−; The contrast C is the difference between W+ and W−; s(C) is
stand deviaton of C; CS is the studentized C.
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Martell, & Martín, 2010; Ye et al., 2017; Zhang, Zhang, & Zhou, 2010).
Among these determinants, proximity to villages is most highly

linked with wildfire ignition. High frequency of ignition and intensity of
fires in rural areas occur when residents interact frequently with wild
areas for farming and other reasons. Urban areas had fewer ignitions
due to lower availability of forest and fuel to start a wildfire, and more
organized firefighting (Gonzalez-Olabarria, Mola-Yudego, Pukkala, &
Palahi, 2011). With regard to the influence of roads, our results indicate
that humans travel further by main roads, then easily access forest areas

by secondary roads, thereby increasing the interaction between humans
and the wild area surroundings to wildfires. This finding confirms
previous studies of the influence of roads on wildfires occurrence (Catry
et al., 2010; Dlamini, 2010; Rodrigues et al., 2014). As to proximity to
farmland, more wildfire ignitions exist in the area adjacent to farmland,
which reflects the local reality of slash-and-burn cultivation, the tra-
ditional agricultural practice of crop residue burning and logging to
precede the agriculture frontier (Bowman et al., 2011; Chen et al.,
2017; Tian et al., 2013). This result stressed others conclusions that

Table 4
Summary of conditional independent test of different variables composition

Model CI T n T-n Std(T) (T-n)/Std(T)

6 layers (urban settlements, villages, main roads, secondary roads, water, farmland) 0.92 2182.3 2017 165.3 6.987 23.656
5 layers (urban settlements, villages, main roads, water, farmland) 0.94 2153.2 2017 136.2 10.873 12.528
5 layers (villages, main roads, secondary roads, water, farmland) 0.97 2082.6 2017 65.6 9.437 6.950
5 layers (urban settlements, villages, main roads, secondary roads, farmland) 0.93 2178.4 2017 161.4 11.571 13.946
4 layers (urban settlements, villages, main roads, farmland) 0.94 2147 2017 130.8 17.748 7.369
4 layers (villages, main roads, secondary roads, farmland) 0.97 2074.8 2017 57.8 15.655 3.692
3 layers in 100m (villages, secondary roads, farmland) 0.98 2066.9 2017 49.9 26.013 1.9168

Note: CI is Conditional Independence Ratio; T is Expected number of training points; n is Observed number of training points;T-n is Difference of T and n; std(T) is Standard Deviation of T;
(T-n)/std(T) is one-tailed test statistics.

Fig. 5. Map of human wildfire ignition risk:(a)categories WofE at 100m; (b)categories WofE at 1000m; (c)binary WofE; (d)logistic regression.
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wildfire ignitions in these areas are mainly caused by human agri-
cultural practices (Benali et al., 2017; Chen et al., 2017; Tian et al.,
2013).

A mosaic distribution of farmland with forest and the dependence
on agricultural activities by ethnic minorities make this region a high
wildfire risk, continuously troubling to authorities in wildfire man-
agement. However, we did not find wildfire associated with accessi-
bility to water to support our initial assumption that more infra-
structure was located along water. This may suggest that the
relationship is more complicated, on one hand, the proximity to water
increases human activities, but on the other the closer to water, the
more humidity in soil and thus higher moisture in the fuel load, thereby
less likelihood to ignite a wildfire (Dlamini, 2010; Sturtevant & Cleland,
2007; Zhang et al., 2010; Zumbrunnen et al., 2011). So, our findings
suggest that a strict control of cropland fire should be adopted to im-
prove wildfire prevention in the rural areas.

4.2. Human wildfire ignition patterns

Our study strengthened the previous finding that the relationship
between human activity and wildfire occurrence is not linear (Bowman
et al., 2011), as can be seen in Fig. 4. Considering model significance,
we note that in Table 2 wildfire ignition patterns vary with distance,
implying wildfire-prone regions mostly lie in the area of intermediate
proximities to human activities. The results indicate that wildfire occurs
more often at a particular distance from infrastructure, and has a low
probability near high density human activity where there is a strong
capacity for wildfire suppression. This finding disagrees with the
common conclusion that wildfire often exists in near to infrastructure
(Calef, McGuire, & Chapin, 2008; Ganteaume et al., 2013; Zhang et al.,
2016). However, it coincides with previous research showing that the
highest fire density is at intermediate levels of population density
(Archibald, Roy, WilgenBrian, & Scholes, 2009; Syphard et al., 2007).
With regard to proximity to villages, area between 3 and 7 km have
high human wildfire ignition probability as distances increase, while
when the distance is smaller than 3 km or greater than 7 km, the
likelihood decreases as the distance increases. Similarly, wildfire is
easily ignited by humans in the proximity of 2 km and 15 km to main
roads, 1 km and 2 km of secondary roads and 1 km and 5 km of
farmland. This finding is likely due to increasing levels of fire detection
and suppression when the proximity of wildfire poses a threat to hu-
mans and infrastructure (Fusco et al., 2016), especially with early
wildfire detection, consequently large wildfires are rare in these areas.
At greater distances, far from villages (> 7 km), main roads (> 25 km),
secondary roads (> 8 km), and farmland (> 14 km) the wildfire
probability appears pretty low, especially as the distance increases. This
may be explained by the reality that the most distant areas are high
rugged topography and not accessible to humans. Therefore, it is not
surprising that the low wildfire risk area in Fig. 5 (categories WofE in
1000m) is mainly in the southwestern and northeastern high moun-
tains, plus the relatively flat areas, especially Dianchi Lake, also in-
accessible to humans. The results also show how wildfire management
and fire prevention patrols should proceed. Attention should be paid to
the areas of medium proximity to infrastructure instead of directly
adjacent to infrastructure where there is high human activity. Distant
zones should receive less attention.

4.3. Model predictability

The WofE is a data driven and learning based method, its log al-
gorithm is comparable to conventional logistic regression (Chang et al.,
2013; Vilar et al., 2010; Zhang et al., 2010). By comparison, we have
found that despite the same three variables being used in the catego-
rical WofE model at 100 m being acceptable, logistic regression over-
estimated areas with high human wildfire ignition risk, even in the
highest snow-covered mountains in the northwestern and northeastern,
which contradicts common sense. This finding reflects a low prediction
for absence of wildfire in the validation data but high accuracy in
presence data, which is in accordance with the demonstration of the
regression's predictability but not particularly good (Chang et al.,
2013). Categorical WofE is superior to logistic regression with the total
accuracy improved by 10%, and WofE also proved to be a useful ap-
proach for explicitly considering the spatial association between igni-
tion occurrence and the evidential maps, plus it is relatively straight-
forward to implement and interpret (Romero-Calcerrada et al., 2008,
2010). We also affirm the conclusion that logistic regression may be
subject to problems associated with a lack of conditional independence
(Agterberg & Cheng, 2002). As to the independence of WofE, we have
noticed the category pattern performed better due to it representing the
relationship between dependent and independent variables in a more
explicit way. With regard to spatial scale, we assumed that the high
resolution would represent the variables with more accuracy. Actually,
at 100 m scale, the prior and posterior probabilities were very low,
indicating that wildfire ignition occurs in a small number of spatial cells
at any specific scale. At detailed scales, probability variation among
neighboring cells shows no difference when they cluster at a coarse
scale. Our results have demonstrated that 1000 m resolution is more
suitable for ecoregion-wide wildfire study (Table 5).

4.4. Limitations

The application of the WofE model has generated a posterior
probability map of human wildfire ignition risk, especially the prob-
ability of fire caused by human accessibility to potentially flammable
areas. Despite human activity not being a sufficient variable, we also
note that our results may cause omitted variables bias, but it is im-
possible to include all the relevant variables in a regression equation
and omitted variable bias is therefore unavoidable (Clarke, 2005), to
fully study wildfire ignited by humans, it would be necessary to include
vegetation-fuel, meteorological, and topographical factors. Ad-
ditionally, we addressed the cost function to model human accessibility,
including some potential variables related to wildfire occurrence, such
as slope and elevation. The results may show some bias, and some
reasons contribute to this. (1) Geometric error in the known wildfire
location. As the wildfire data were extracted from satellite imagery at a
coarse resolution of 1 km at nadir, geometric errors exist everywhere in
the image and error is expected to be about 2–4 cells of
2383.36–3107.85m (Long, Zhao, Ding, Yang, & Zhou, 2016; Yang et al.,
2015). (2)The known wildfires just represent large-scale fires rather
than all small fires, or exact locations of fire starts. According to the
mechanism of satellite monitoring, hotspots usually are fires with
greater area, and those of a small initial fire or with short duration are
hard to detect due to their lower heat radiation. Consequently, the map

Table 5
Validation of models.

model Expected (2017) Accuracy (%) Presence (358) Accuracy (%) Absence (457) Accuracy (%) Total accuracy (%)

WofE (100m) 1544 76.55 214 59.78 333 72.87 66.32
WofE (1000m) 1579 78.28 221 61.73 352 77.02 69.38
WofE (Binary) 1790 88.75 301 84.08 57 12.47 48.28
Logistic 1917 95.04 314 87.71 141 30.85 59.28
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shows the pattern of scale for the wildfire that may be more suited to
regional or province-wide management. (3) Samples also show wildfire
occurrence rather than frequency, which made the results less capable
of showing the spatio-temporal frequency pattern of wildfire.

For temporal scale, we emphasize the result of wildfire is time de-
pendent due to the use of known wildfire over seven years and the
evidential themes varying over time. Especially the farmland and roads
are continuously changing with the development of the economy and
changes in land use. Thus, we highlight that our result represents a
static wildfire pattern over time, and snap-shot maps of causative fac-
tors.

5. Conclusion

As former studies show, human activity is a key factor in accounting
for most wildfire ignition in the southwest of China (Chen et al., 2014,
2017; Zhong et al., 2003). This study analyzed the pattern of human
wildfire ignition risk considering human accessibility independently of
other fire factors. By applying weights-of-evidence analysis, the re-
lationship between wildfire ignition and the evidential themes was
clearly illustrated and the posterior prediction of wildfire shows high
accuracy, statistical significance and validity. The reclassification cri-
teria for the evidence layers is also a good reference for other qualified
wildfire ignition prediction based on proximity variables. In summary,
human wildfire ignition is strongly associated with proximity to vil-
lages, roads and farmland, prone areas are those at intermediate dis-
tances from high-density human activity rather than too close or far
away. The result also reflects the management capacity of wildfire
spatially. The method of weights-of-evidence has the advantages of
objectivity, simplicity and predictive power compared to other methods
(Agterberg & Cheng, 2002). Our results are consistent with what is
known about wildfire ignition, especially in the high risk areas of cer-
tain ecosystems. There is also some bias due to the training points
geometric errors and representing large scale fires rather than small
fires due to the use of coarse satellite imagery. Moreover, the results are
affected by choice of binary versus categorical evidence and appear to
be influenced by the scale of analysis. The results show potential for the
support of local government decision making in controlling human
induced wildfire ignition and wildfire resources allocation.

Obviously, our results are assumed static and ignition densities are
averaged. Nevertheless, the method can represent a baseline of the ig-
nition pattern, with which an integrated, dynamic prediction of wildfire
occurrence can be carried out by overlapping temporal variables and
other fire factors. Based on the risk evaluation of single variables,
analyzing posterior probabilities of every fire factor in order to support
comprehensive wildfire prediction should be a goal of future efforts.
Furthermore, combining posterior prediction with computer simula-
tion, it is feasible to conduct multi-scale ignition simulation, visuali-
zation and wildfire prediction, which will strengthen the practical ap-
plication of the model.
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