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A method for inferring regional origins of
neurodegeneration

Justin Torok, Pedro D. Maia, Fon Powell, Sneha Pandya and Ashish Raj for the Alzheimer’s
Disease Neuroimaging Initiative*

Alzheimer’s disease, the most common form of dementia, is characterized by the emergence and spread of senile plaques and

neurofibrillary tangles, causing widespread neurodegeneration. Though the progression of Alzheimer’s disease is considered to be

stereotyped, the significant variability within clinical populations obscures this interpretation on the individual level. Of particular

clinical importance is understanding where exactly pathology, e.g. tau, emerges in each patient and how the incipient atrophy

pattern relates to future spread of disease. Here we demonstrate a newly developed graph theoretical method of inferring prior

disease states in patients with Alzheimer’s disease and mild cognitive impairment using an established network diffusion model and

an L1-penalized optimization algorithm. Although the ‘seeds’ of origin using our inference method successfully reproduce known

trends in Alzheimer’s disease staging on a population level, we observed that the high degree of heterogeneity between patients at

baseline is also reflected in their seeds. Additionally, the individualized seeds are significantly more predictive of future atrophy

than a single seed placed at the hippocampus. Our findings illustrate that understanding where disease originates in individuals is

critical to determining how it progresses and that our method allows us to infer early stages of disease from atrophy patterns

observed at diagnosis.
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Introduction
Alzheimer’s disease-associated atrophy, tau and amyloid

pathology and metabolic load all display highly stereotyped

progression into brain circuits. Tau in particular is associated

with regional atrophy, hypometabolism and cognitive decline

(Forman et al., 2002; Reitz et al., 2009; Attems et al., 2012).

Tau tangles appear first in locus coeruleus, then entorhinal

cortex, followed by an orderly spread into the hippocampus,

amygdala, temporal lobe, basal forebrain, and isocortical asso-

ciation areas (Braak and Braak, 1991). Several emerging lines

of evidence suggest that these patterns of progression might

occur via white matter fibre connections, most likely involving

trans-synaptic transmission of toxic proteins along neuronal
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pathways (Clavaguera et al., 2009; Frost and Diamond, 2010;

Jucker and Walker, 2013; Iba et al., 2015). Indeed, toxic tau

protein induces misfolding in connecting neurons and slowly

ramifies across widespread brain circuits.

Despite these advances in our understanding of the patho-

physiology of disease transmission and progression, many

key questions relevant to Alzheimer’s disease remain unan-

swered: where does pathology and/or atrophy begin in a

patient, and what is the relationship of the inception region

to the eventual pattern of disease that develops in maturing

stages? Although Alzheimer’s disease progression is consid-

ered stereotyped, in clinical populations a considerable varia-

bility exists around the static pattern. This question therefore

assumes clinical relevance due to the large intersubject hetero-

geneity in the site and timing of disease onset and subsequent

progression observed in patients.

In this paper we present a network-based algorithm to

infer the likely sites of early Alzheimer’s disease, which we

assume related to tau pathology seeding, in Alzheimer’s dis-

ease-spectrum patients at all stages of disease. The basis of

our approach is that trans-synaptic transmission of mis-

folded proteins along neuronal pathways can be determinis-

tically modelled using graph theoretic models of network

spread. Recently we published a mathematical ‘Network

Diffusion’ model (NDM) that was shown to successfully

recapitulate patterns of regional brain atrophy and metabo-

lism in Alzheimer’s disease on cross-sectional Alzheimer’s

disease imaging data (Raj et al., 2012). This dynamical

model represents trans-synaptic protein transmission as a

first-order, diffusive process. As it is conditional only on

knowing the anatomic connectivity organization of the

brain, the NDM can predict a patient’s longitudinal pro-

gression using only their empirically observed baseline pat-

tern (Raj et al., 2012, 2015). Related studies and models

were also successful in predicting the empirical patterns of

Alzheimer’s disease (Iturria-Medina et al., 2014), lending

further support to the applicability of networked spread

to protein transmission through the brain.

Therefore, using the NDM as the forward model, we pro-

pose an inverse inference algorithm involving objective func-

tion minimization that gives the most likely estimate of the

seed regions from which that patient’s ongoing progression of

longitudinal atrophy can be expected to proceed. The cost

function is designed to optimize two constraints: (i) that the

seed pattern, when extrapolated into future time points using

the (forward) network diffusion model, must resemble the

observed pattern of atrophy in the patient; and (ii) that the

seed pattern must be sparse, so as to give the smallest set of

regions that are necessary to explain the data. The former

constraint is encoded by a cost term that is the L2-norm of

the discrepancy between the forward model prediction and

empirical pattern, and the latter constraint is imposed via a

L1-norm penalty function. The latter constraint is needed

because we expect Alzheimer’s disease seeding to involve

only a few regions of early vulnerability. Without this con-

straint, we would get the trivial result that the seed configura-

tion is identical to the baseline pattern. The cost function

involves fitting the forward model to both baseline regional

atrophy of a patient as well as its longitudinal change, in order

to benefit from longitudinal atrophy data wherever available.

Although the model is based on pathology spread, here we

apply it to model patterns of atrophy, since (tau) pathology

distribution is closely related to atrophy distribution, and the

latter may be considered a direct consequence of the former

(Arriagada et al., 1992; Nelson et al., 2012; Xia et al., 2017).

Like the previous model, we continue to use a static healthy

connectome, under the assumption that the structural network

serves merely as a conduit for transmitting proteinopathies,

rather than being the first to be impaired itself.

We applied the algorithm to a large number of Alzheimer’s

disease-spectrum subjects obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) public database

(adni.loni.usc.edu). Our total sample size was 421 patients

diagnosed with either Alzheimer’s disease, late mild cognitive

impairment (MCI), or early MCI, along with 175 age- and

sex-matched controls (Table 1). On these data we show that

the proposed algorithm can successfully infer likely sites of

disease initiation. Of course, there can be no ‘gold standard’

neuropathological validation of the inferred seed sites, as

these are live patients at various stages of post-onset progres-

sion. Instead we test whether the group average behaviour of

our inference correctly reproduces the most common sites of

tau pathology known from autopsy series (Braak and Braak,

1996; Thal et al., 2002). We found that group average maps

of inferred seed successfully recapitulated the strongest like-

lihood in the hippocampus and adjoining temporal cortices,

which are well known as the sites of tau aggregation in early

disease. However, despite this concordance on a population

level, there is significant heterogeneity on an individual level.

We find that a common initial state of neurodegeneration is

insufficient for explaining the atrophy patterns observed in

the patients at the time of diagnosis. In contrast, our infer-

ence algorithm shows wide divergence between patients in

their seeding patterns, which are nonetheless highly predictive

at the individual level of the patient’s empirical atrophy pat-

terns. Taken together, these data suggest not only that infer-

ence of Alzheimer’s disease onset regions and hence

putatively tau pathology seeding is possible from in vivo

MRI scans, but also point to intersubject variability in the

seeding pattern that could provide important insights into

seeding and progression in Alzheimer’s disease and other

neurodegenerative conditions.

Materials and methods

Participants

All subject data were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.
edu/). ADNI is a public-private private, large multisite long-
itudinal study with the goal of tracking Alzheimer’s disease
biomarkers and accelerate prevention and treatment of the
disease. For this study we have included all ADNI 2 and
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ADNI GO subjects from early 2011 to mid-2015. For our
analysis we have excluded all subjects that did not meet pass
and partial QC status for overall FreeSurfer segmentation.

Subjects were diagnosed and grouped to Alzheimer’s disease,
late MCI and early MCI according to ADNI data description.
Demographic and clinical features of our study population are
shown in Table 1. All subjects have volumetric MRI data.
There was no significant difference in age between the control
and each of the disease populations (P40.05), nor were there
significant differences in gender composition (P40.05).

FreeSurfer longitudinal MRI
processing

Automated cortical and subcortical volume measures were per-
formed with FreeSurfer software package, version 5.3 (http://
surfer.nmr.mgh.harvard.edu/fswiki) (Fischl et al., 2002, 2004).
We chose Freesurfer because it is perhaps the most widely used
brain segmentation and parcellation tool, and because of our
previous experience with using it for NDM testing (Raj et al.,
2012). We found also that the NDM predictions similar results,
whether using Freesurfer or SPM, another widely used tool. To
reduce the confounding effect of intra-participant morphological
variability, each participant’s longitudinal data series was
processed by FreeSurfer longitudinal workflow (http://surfer.
nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing). A pre-
vious test-retest study validated that the longitudinal processing
provides consistent regions of interest (ROI) segmentation
(Reuter et al., 2012). Estimated total intracranial volume (gen-
erated by FreeSurfer was used as an estimate for intracranial
volume as a measure to normalize FreeSurfer data. All images
underwent standardized quality control. Participants with com-
plete segmentation failure or gross errors throughout all brain
regions were rated as complete failure. Participants with com-
plete segmentation failure or gross errors throughout all brain
regions, as observed visually in Freesurfer’s tkmedit tool and
Freesurfer quality status outputs, were rated as complete failure.
Participants with gross errors in one or more specific brain
regions (i.e. temporal lobe regions, superior regions, occipital
regions, and insula) were given partial pass rating. Participants
with partial pass rating were included in analyses, but those
with gross errors were not. Detailed FreeSurfer segmentation
and QC guidelines are available on UCSF Freesurfer mthods
and QC official document (dated 01/31/2014) from the
LONI-ADNI website. Using these criteria we removed 8 of
125 subjects from the Alzheimer’s disease cohort and 25 of
181 from the late MCI cohort. At the time of writing, of the
305 early MCI subjects, Freesurfer processing was available for
148 subjects, all of whom had passing or partial Freesurfer QC

grade. The resulting size of the early MCI cohort is comparable
to the other groups, and is age-matched to them.

White matter connectome

The present study used diffusion MRI data from 37 control
subjects in the ADNI database to form a single control con-
nectome. Raw diffusion-weighted images (DWIs) were cor-
rected for image artefacts including Eddy current, motion,
and echo planar imaging distortions using FSL toolbox
(Jenkinson et al., 2012). A single diffusion tensor was mod-
elled at each voxel in the brain from the corrected DWI scans
using CAMINO toolbox (Cook et al., 2006). Afterward, the
deterministic simple whole white matter streamlining was
applied on the diffusion tensor images (DTI) using CAMINO
software (Cook et al., 2006). The tissue masks from T1 image
was rigidly registered to the first frame of the DWI and used in
the white matter tractography. FreeSurfer cortical parcellations
mapped in the DTI subject space is used to calculate the
ROI-ROI connectivity matrix.

The resulting matrices in the current study were of size
86 � 86, per the 86 cortical and subcortical structures from
the FreeSurfer (Desikan-Killarney) grey matter parcellation.
The control connectome was derived by taking the average
of all individual 37 86 � 86 control subject matrices to form
a single 86 � 86 control white matter connectome.

Derivation of atrophy from
FreeSurfer volumes

Using the FreeSurfer (FS) volumes derived above from the con-
trol and disease populations, we calculated regional Z-scores for
atrophy:

zij ¼
vij � �i;control

� �
�i;control

ð1Þ

where zij and vij are the Z-score and FS volume for the i-th
region of the j-th patient, respectively; and �i,control and
�i,control are the age-matched control FS volume mean and
standard deviation for the i-th region, respectively. We then
used a weighted logistic transform to renormalize each
patient’s atrophy within the range (0, 1):

aj ¼
eðzj�a0Þ=s�j

1þ eðzj�a0Þ=s�j
ð2Þ

where aj and zj are the renormalized atrophy and Z-score
vectors for patient j, respectively, �j is the standard deviation
of zj, s is an empirically-determined constant, and

Table 1 Study demographics and clinical characteristics

Cohort Group size (male/female) CSF amyloid-b ( + /�ve) Age (m � �) CDR MMSE

Control 175 (78/97) 59/78 73.8 � 6.7 0 to 0.5 24 to 30

Alzheimer’s disease 117 (60/57) 92/7 74.2 � 7.6 0.5 to 2 4 to 29

Late MCI 156 (86/70) 100/34 73.0 � 7.8 0.05 to 2 15 to 30

Early MCI 148 (82/66) 80/50 72.4 � 6.3 0 to 1 22 to 30

Each disease cohort is age- and sex-matched with respect to the control group. CDR = Clinical Dementia Rating Scale; MMSE = Mini-Mental State Examination.
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a0 ¼
s

2

Xn

i¼1

zij

n
; zij40 ð3Þ

Participants and regions that showed hypertrophy
(z-scores50) were assumed to be due to error or methodolo-
gical limitations. Instead of excluding these regions and sub-
jects in our calculation of longitudinal atrophy slopes, we
simply replaced these z-scores with zero and computed slope
as in the normal case. Similarly, negative slopes are also indi-
cative of hypertrophy and were thresholded to zero.

Network diffusion model

The NDM was used as described in Raj et al. (2012). Briefly,
Alzheimer’s disease-related disease pattern, given by the vector
x tð Þ, was modeled as a diffusive process:

x tð Þ ¼ e�bLtxseed ð4Þ

where xseed is the initial regional pattern of the disease, on
which the term e�bLt acts as a spatial and temporal blurring
operator. We therefore call e�bLt ‘the diffusion kernel’. We
used an eigenvalue decomposition of the Laplacian to evaluate
the network diffusion model.

Seed inference method

To infer the likely seed configuration subject to a tunable
sparsity parameter, we implemented a constrained optimiza-
tion routine using the graphical model described above.
Importantly, we applied our method to each patient individu-
ally, obtaining unique seed vectors for each baseline
configuration.

To properly initialize our minimization problem, we used the
following heuristic method to calculate a best first guess:
(i) run the network diffusion model on each brain region indi-
vidually using the rescaled atrophy as the end point, obtaining
a vector R of maximum Pearson correlations for each region
and an associated vector t of the model times at which these
correlations were achieved; (ii) set R to 0 for all regions i for
which ti = 0 or ti = tend, where tend is the final time point at
which the model was evaluated. Call this new vector R

0

; (iii)
set Ri to 0 if Ri 5 R

0

. Call this new vector R
00

; and (iv) nor-
malize R

00

to the unit norm.
We then used R

00

as x0 and create a narrower t-range over
which to evaluate the inference method using the distribution
of ti within t.

The optimization occurs in two discrete steps as there are
two active variables, xseed and t. We first find tmin, the t at
which the following cost function is minimized:

tmin ¼ argmint e�hx
� tð Þ;x�

b
i

� �
ð5Þ

where x(t) is defined as in Equation 4, xb is the patient baseline
atrophy pattern, and

v� ¼ v�
v

jjv� vjj2

hv�1; v
�
2i ¼

ðv1 � v1Þ � ðv2 � v2Þ

jjv1 � v1jj2 � jjv2 � v2jj2
¼ Rðv1; v2Þ

In other words, (tmin) is the atrophy pattern that best fits the

patient baseline under the NDM, using the Pearson correlation

coefficient R as the metric of similarity. Having chosen tmin, we
now find the optimal xseed using the following L1-penalized

cost function:

cL1
ðxseedÞ ¼ e�hx

�
min
;x�

b
i þ �jjxseedjj1 ð6Þ

where we adopt the shorthand xmin for x(tmin) as determined

in the previous step.
In the majority of cases, patients had follow-up scans in

addition to the initial scans we used for the seed determination
procedure described above. To incorporate this information

into our optimization, we approximated the rate of atrophy

spread using a least-squares linear fit of the sequence of scans.
We then followed the two-step procedure outlined above,

incorporating an additional term into our cost functions

scaled by a tunable weight parameter, w:

tmin ¼ argmint 1�wð Þe�hx
� tð Þ;x�

b
i þwe

�h _x� tð Þ;x�
slope
i

� �
ð7Þ

cL1
¼ 1�wð Þe�hx

�
min
;x�

b
i þwe

�h _x�min;x
�

slope
i
þ �jjxseedjj1 ð8Þ

The new terms involve the Pearson correlation between the

fitted atrophy rate, xslope, and the predicted rate using the

NDM, _xðtÞ. Note that Equations 7 and 8 reduce to
Equations 5 and 6 when the rate-fitting parameter, w, is

set to 0.
The details of the inference algorithm are in the

Supplementary material. Inspection of the cost function

(Equations 6 and 8) suggests that the cost function is quite
close to convex, except when the NDM predictor is completely

uncorrelated with baseline atrophy (which is by design never

close to the optimum solution). We ignore here the slight non-

linearity caused by the norm denominators inherent in
Pearson’s R. To summarize the algorithm briefly, we first esti-

mate a reasonable initial guess for xseed, which is here given by

single-region seeds’ Rmax values. Using this estimate for xseed

we estimate tmin by minimizing Equations S2 in the

Supplementary material. Then the optimal seed vector is

inferred from the L1 lasso algorithm using the above tmin

and the initial guess for xseed. We note that due to the various

heuristics used here, the overall algorithm cannot be said to

have any guaranteed global optima or a guaranteed conver-

gence speed. The most we can say is that it has been found to
be empirically effective. Empirically, we were able to determine

convexity and successful convergence indirectly by noting that

the minima found using the heuristic for initial seed do not
significantly differ from those found using random initializa-

tion, suggesting they are global minima.
For cost function minimization we used the minConf_SPG algo-

rithm (https://www.cs.ubc.ca/�schmidtm/Software/minConf.html)

to do the optimization and used the default settings. The
algorithm was stopped when either the maximum number of

iterations reached 500, or the maximum number of function

calls reached 500, or the error tolerance (change of objective

between consecutive iterations) dipped below 1 � 10�5.
Convergence under these conditions was not an issue in all

runs we observed.
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Results

Group level regional atrophy patterns

Figure 1 shows the mean baseline atrophy for the

Alzheimer’s disease cohort. Almost all 86 regions exhibit

decreased volume compared with age-matched controls,

with the left and right hippocampi, the left and right amyg-

dalae, and the left entorhinal cortex exhibiting both the

greatest degrees of atrophy and the lowest coefficients of

variation (COVs). In this ‘glassbrain’ rendering, each brain

region is represented by a sphere: its radius is proportional

to the region’s atrophy in comparison to healthy controls,

and its shading is proportional to the COV. Outside of this

relatively conserved set of regions, intersubject variability is

higher, suggesting significant patient-to-patient heterogene-

ity. The late MCI cohort’s average atrophy map (Fig. 1,

middle) is comparatively sparser with a lower degree of

global atrophy, consistent with the less severe diagnosis.

As with Alzheimer’s disease, the left and right hippocampi

are affected most severely across all late MCI patients. In

contrast, the early MCI group shows no global atrophy

pattern (Fig. 1, bottom) and only the right hippocampus

has significant degeneration. On average there are more

regions exhibiting a greater volume than the controls (red

spheres), though it is unclear whether this is true hypertro-

phy or statistical noise. Overall, our three patient groups

have average atrophy patterns consistent with their diag-

nostic categories.

Parameter choices, L curves and
group level patterns of inferred seeds

As described in the ‘Materials and methods’ section, we

designed our algorithm to determine a consistent seeding pat-

tern for each patient, subject to two parameters: the L1 pen-

alty, �, and the weight given to a linear fit of the rate of

atrophy, w. We first needed to characterize the relationship

between these parameters and the derived seeds, and then

select an optimal (�, w) pair for each cohort. Figure 2A and

Supplementary Fig. 1 show the characteristic L-curves for a

range of � and w for the Alzheimer’s disease, late MCI, and

early MCI cohorts, respectively. Since a consistent ‘elbow’

region is observed in these L-curves, we chose the correspond-

ing (�, w) values as optimal choices. In theory, parameter

optimization can be performed on a per-subject basis, but

we did not observe sufficient variability for this to be neces-

sary. Henceforth, a single set of ‘optimal’ parameter set was

chosen for each diagnostic condition, as indicated by the red

circles in Fig. 2A and Supplementary Fig. 1. Since the exact

‘elbow’ depends on the two user-defined cost terms (x and y

axes) and their relative weights, the optimal parameters are

still somewhat subjective. Hence we allowed a narrow range

around the visually identified elbow. For the late MCI group

the elbow is in fact unambiguous, and was selected as such.

For the Alzheimer’s disease and early MCI cohorts, the strict

elbow occurs at w = 0, which is arguably suboptimal. For

example, early MCI elbow is at (�, w) = (0.04, 0), but we

selected the close-by point (�, w) = (0.02, 0.33) instead. Our

intention was to opt for a non-zero ‘w’ weight with nearly the

same mean-squared error as the strict elbow, in order to

induce a longitudinal effect. At w = 0 the longitudinal slope

will be completely ignored, which is suboptimal.

Figure 2B shows the sagittal cross-sections of the non-tri-

vial average inferred seed patterns across a range of para-

meter values for each patient group. As expected by the

behaviour of L1 regularization, increasing the penalty para-

meter smoothly increases the sparsity of the solutions.

Surprisingly, we observe a similar trend when we increase

the slope weighting parameter. We hypothesize that the

terms corresponding to the baseline and fitted slope con-

straints in our cost function (see ‘Materials and methods’

section) generally oppose each other, forcing more regions

to 0 as w changes from 0 to 0.5. The optimal parameter

set (Fig. 2B, top) for Alzheimer’s disease gives just three

regions with significant non-zero seed atrophy: the left and

right hippocampi and the right amygdala, agreeing with the

prevailing theory that atrophy is first detected in this general

area of the temporal lobe. The analogous cohort-level plots

for the late MCI and early MCI patients exhibit the same

sparsity trends with regards to � and w, although the range

of values for which there is at least one region with non-zero

atrophy was smaller than the range for Alzheimer’s disease.

The group level patterns of inferred seeds shown in

Fig. 2B are consistent with the known prominence of hip-

pocampus, entorhinal and adjoining temporal cortices in

Figure 1 Average global atrophy patterns. The size of the

spheres corresponds to the magnitude of atrophy (Z-scores with

respect to controls), and the colour of each node indicates whether

there is hypotrophy (blue) or hypertrophy (red). The node size

scale is linear. The shading as represented by the colour bars cor-

responds to the coefficient of variation, with lighter shades indi-

cating a higher degree of variation. The scale of the spheres in the

early MCI glass brains is two times larger than the reference for

easier visualization. AD = Alzheimer’s disease; EMCI = early MCI;

LMCI = late MCI.
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early disease, thereby validating our inference algorithm at

least at the group level. Another way to assess this is to

look at the anatomical distribution of the seeds to find ‘hot

spots’ that exhibit the highest frequency among patients.

Figure 2C shows the number of patients with seeds includ-

ing each of the 86 regions, grouped by gross anatomical

location. Notably the inferred seeding in the Alzheimer’s

disease cohort is greatest in the temporal lobe, in agreement

with current knowledge and the above results (�2 goodness-

of-fit, P50.001). The most prevalent regions within the

seeds of the late and early MCI patients are also located

within the temporal lobe, though the seed patterns are

more diffuse than those of the Alzheimer’s disease group

(P50.001). The trend is very similar to that of the baseline

atrophy patterns (Fig. 1), with stage of disease correlating

with higher concentrations of temporal atrophy. Table 2

lists the most prevalent regions among the inferred seeds

in all three diagnostic groups, correctly imputing promi-

nence to hippocampal, entorhinal and temporal structures.

In particular, both hippocampi were among the five highest

regions for Alzheimer’s disease, late and early MCI. The

consistency of the seeds across cohorts suggests a

common aetiology for these three sets of patients, further

reinforcing the stereotypical pattern of tau spread.

Intersubject heterogeneity in inferred
seeding

Next, we explored the heterogeneity between individual

subjects’ baseline atrophy patterns and between their

inferred seed patterns. As an illustration, Fig. 3A shows

two cases on opposite ends of the similarity spectrum: the

baselines of Alzheimer’s disease Patients 82 and 95 are

highly correlated (R = 0.76), whereas Alzheimer’s disease

Patients 45 and 98 have atrophy patterns that oppose

each other (R = �0.47). In the former case, the correlation

between their derived seeds is still positive but slightly

smaller in magnitude (R = 0.64), suggesting that the differ-

ences that separate these two patients are more exaggerated

Figure 2 Seed parameterization and distribution. (A) L-curves for each weighting parameter plotted over a range of penalty parameters

for the Alzheimer’s disease cohort, with the best combination (� = 0.06, w = 0.17) circled in red. See Supplementary Fig. 1 for the late MCI and

early MCI L-curves. (B) Glass brain representations of the average seed atrophy patterns for each pair of parameters. The range closely

corresponds to the elbows of the L-curves for each cohort. As either � or w is increased, the sparsity of the average seed also increases until no

regions show significant atrophy. The glass brains outlined in red reflect the parameter choices used for further analysis. (C) Distribution of seeds.

We quantified the frequency with which patients in each cohort showed nonzero atrophy on a node-by-node basis. The results are visualized as a

bar graph, where regions were binned based on gross anatomical location. Seeds are particularly enriched in the temporal lobe compared with the

other regions of the brain for all three groups (P50.001). AD = Alzheimer’s disease; EMCI = early MCI; LMCI = late MCI.
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in their seed patterns than their baselines. The magnitude of

the seed correlation in the anticorrelated case is much more

dramatically shifted towards zero (R = �0.030).

To explore intersubject heterogeneity in seeding and how it

relates to heterogeneity in baseline atrophy, we performed a

series of Pearson correlations on regional data, used here as a

measure of similarity between any pair of subjects. We cal-

culated the pairwise correlations between all patients within

each cohort, displayed graphically in Fig. 4B and C. The

histograms in Fig. 3B show the distributions of pairwise R-

values for baseline atrophy and the inferred seeds. As we

observed in the two cases above, the intersubject correlations

between inferred seed patterns for the Alzheimer’s disease

cohort are closer to zero compared to the correlation between

their respective baseline atrophy patterns. Looking at all the

patient groups together, the three histograms show several

notable trends: (i) intra-cohort variability was high, reflecting

the high degree of heterogeneity between patients’ baseline

atrophy patterns; (ii) the mean pairwise correlations for

both baselines and seeds are higher for Alzheimer’s disease

(0.17 � 0.17, 0.075 � 0.19) than late MCI (0.052 � 0.16,

0.030 � 0.16) or early MCI (0.014 � 0.15, 0.014 � 0.15);

and (iii) comparing between the baseline atrophy patterns

and the inferred seeds, the means are significantly smaller

for Alzheimer’s disease and late MCI (two-sample t-test,

P50.001). Figure 3C transforms the same data as in

Fig. 3B into a series of scatterplots for the three groups,

with each pair of subjects represented by a single point.

When there is strong similarity between two patients’ baseline

atrophy patterns, there is also, on average, a strong similarity

between their inferred seed patterns. Taken together, these

observations suggest that (i) inferred seeds preserve important

features of patient baseline data; and (ii) the increase in spar-

sity improves the distinguishability of patients within the

same diagnostic group, as exhibited by a decrease in the

correlations between them. As an aside, it is possible that

similar results and trends could also be reproduced by

simply thresholding the baseline atrophy patterns, without

performing any inference algorithm at all. However, as

shown in Supplementary Fig. 2, the divergence between

these thresholded baselines and our seeds suggests that the

inference algorithm nontrivially transforms atrophy patterns

in addition to strongly enhancing sparsity.

Table 2 Most frequent regions present in the inferred seed patterns for each cohort

Alzheimer’s disease Highest frequency Late MCI Highest frequency Early MCI Highest

frequency

Left hippocampus 43% Right hippocampus 38% Left hippocampus 36%

Right hippocampus 40% Left hippocampus 37% Left inferior temporal 33%

Left entorhinal 35% Right entorhinal 37% Left parahippocampal 29%

Right entorhinal 32% Right superior temporal 32% Right bank STS 28%

Left inferior temporal 32% Right parahippocampal 29% Right entorhinal 27%

Each region is listed alongside the fraction of patients with seed configurations containing that region.

Figure 3 Individual seed investigation. (A) Baseline and seed

atrophy patterns for two pairs of patients, one exhibiting high corre-

lation (left) and the other high anticorrelation (right). (B) Histograms

of the pairwise correlations between patients within the Alzheimer’s

disease, late MCI, and early MCI cohorts, respectively. We calculated

the correlations between baseline atrophy patterns and seed atrophy

patterns for all pairs of patients. (C) The same data as in B repre-

sented as scatterplots, with each patient pair represented by a single

point. There is a strong correlation between pairwise baseline com-

parisons and pairwise seed comparisons for all three cohorts, as

shown by the best-fit lines and mean R-values between both sets of

correlations. AD = Alzheimer’s disease; EMCI = early MCI;

LMCI = late MCI.
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Inferred seeding, but not static hip-
pocampal seeding, has high forward
predictive power

We also investigated how well our inferred seeds could

predict future atrophy of individual subjects using network

diffusion as the forward model. Given the role of

hippocampus as one of the earliest and most atrophied

brain regions in Alzheimer’s disease, we chose to bench-

mark the patient-derived seeds’ performance against a

static seed located in the hippocampus. Figure 4 shows

histograms summarizing the maximum correlation between

patients’ baselines and the forward predictions of our two

choices of seeds. For all three cohorts, our seeds performed

well, with mean correlations with baseline around 0.4.

Intriguingly, the hippocampal seed, when extrapolated in

the forward time direction using the NDM, gave markedly

poorer mean correlations (Alzheimer’s disease:

0.082 � 0.13, late MCI: 0.074 � 0.11, early MCI � 0.11;

two-sample t-test, P50.001). This is surprising since the

hippocampus is considered a ‘hot spot’ of early atrophy

in Alzheimer’s disease. Moreover, as mentioned above,

the left and right hippocampi were among the most atro-

phied regions in the raw baseline atrophy patterns (Fig. 1)

and significantly overrepresented among the inferred seeds

for all three patient groups (Table 2).

Principal component analysis reveals
no underlying substructure

Given the heterogeneity observed in above results, next we

used principal component analysis (PCA) to investigate if

the atrophy and seed patterns from different subgroups

would lead to distinguishable and separate clusters. We

formed the full-data matrix X = [atrophy, seed] with both

atrophy and seed scores from all subjects. Then we per-

formed singular value decomposition and projected the

high-dimensional data X into the two largest principle com-

ponents PC1 and PC2. Figure 5 (top) shows a scatter plot

of PC1 and PC2 for all Alzheimer’s disease patients and all

early MCI patients on atrophy scores and on seed patterns.

While there were significant differences in the atrophy pat-

tern between early MCI and Alzheimer’s disease (consistent

with Noh et al., 2014; Dong et al., 2017; Park et al.,

2017), PCA did not reveal distinct clusters for the seed

patterns. These results are consistent with our hierarchical

clustering results (Supplementary Figs 4 and 5), in which

no significant subgroups emerged within any of the three

cohorts for either the inferred seeds or the baselines.

Additionally, when we applied PCA to the seeds and base-

line atrophy of all three diagnostic groups (early MCI, late

MCI, Alzheimer’s disease) combined (Fig. 5, bottom), the

first two PCs show no evidence of clustering of atrophy

based on diagnostic grouping, as the late MCI group over-

laps the other two. Similarly, there is no evident clustering

in the seeding pattern (Fig. 5 bottom right); the Alzheimer’s

disease and MCI groups are almost indistinguishable,

which was also suggested by hierarchical clustering

(Supplementary Fig. 3). Ultimately these PCA results sug-

gest that the data themselves lack substructure, and that the

seeding patterns of ADNI subjects cannot be clustered into

separate groups using disease stage.

Figure 4 Forward predictions of baseline atrophy patterns

with the inferred and hippocampal seeds. We initialize the

forward NDM with either the inferred seed or a static seed located

at the hippocampus and compare these predictions with baseline.

The forward prediction using the inferred seeds performs well,

while the hippocampal seed largely fails at reproducing each patient’s

baseline. Note that the choice of parameters differs here from

previous figures; see Supplementary Fig. 3.
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Comparison of inferred seeds for
early mild cognitive impairment sub-
groups according to amyloid-b levels

Given that intersubject heterogeneity in seeding patterns is

high and does not cluster by diagnostic group, we next

explored whether pathological heterogeneity might be

responsible for this effect. In particular, the CSF amyloid

status is an important feature of clinical Alzheimer’s disease

progression (Mattsson et al., 2013). Hence it is possible that

observed seeding heterogeneity is caused by differential amy-

loid status within diagnostic groupings. The ADNI dataset

contains thorough amyloid-b biomarker scores, which

allowed us to compare both atrophy and seed patterns for

amyloid-positive subjects (score5192, following published

cut-off level from Mattsson et al., 2013) versus amyloid-

negative subjects. Figure 6A shows glass brain renderings

of the seeding pattern of early MCI subjects, separated

into amyloid-positive and -negative, using optimal L-curve

parameters for early MCI (� = 0.02, w = 0.33). The locations

of high probability seeds are somewhat similar for both

patterns, but their likelihood values (given by R-max) exhi-

bit more variability. Ctx-lh-entorhinal and right-pallidum

regions were identified with higher seeds for amyloid-b-

positive while, ctx-lh-temporalpole and ctx-lh-frontalpole

regions were identified with higher seeds for amyloid-b-nega-

tive subgroups in early MCI subjects. See Supplementary

Fig. 6 for a detailed comparison of seed likelihood values

for all 86 brain regions. Histograms for R-max values are

shown in Fig. 6B. The amyloid-b-positive distribution

favours slightly higher R-max values and is appreciably

more left-skewed than the amyloid-b-negative distribution.

This analysis was limited to the early MCI group as the

amyloid positive/negative ratio was roughly even in this

group (80:50). This subgroup is also of special interest

since it would be more clinically advantageous to identify

seeds in the earlier stages of the disease. In comparison,

within the Alzheimer’s disease subgroup, the ratio between

amyloid-b-positive to amyloid-b-negative subjects is 92 to 7.

Therefore we do not report corresponding data for the

Alzheimer’s disease group, as the amyloid-b-negative data

cannot be reliably reported. Limiting the analysis to the

amyloid-b-positive patients in the Alzheimer’s disease

group did not significantly change the results.

The highest seed values for the amyloid-b-positive sub-

group occurred in the left entorhinal cortex (seed = 0.55),

right pallidum (seed = 0.36) and right hippocampus

(seed = 0.34). For the amyloid-b-negative subgroup, how-

ever, the highest seed values occurred in the left temporal

pole (seed = 0.54), left frontal pole (seed = 0.33) and left

cuneus (seed = 0.32). The magnitudes of the top seed

values were similar for both subgroups, and both had

large seed values in the right hippocampus, left frontal

pole and right temporal pole. Having the largest seed at

the left entorhinal, however, seems to be a signature of the

amyloid-b-positive subgroup.

Amyloid negatives tend to have more widespread and

diffuse patterns of atrophy compared to amyloid positives,

who display the classic mesial temporal dominance. The

seed patterns appear to be slightly more different between

the amyloid � subgroups compared to their baseline atro-

phy patterns, suggesting that perhaps seeding heterogeneity

may be governed by amyloid status. Therefore to explore

possible clustering by amyloid status, in Fig. 6C, we repeat

the earlier PCA analysis for amyloid-b-positive patients

versus amyloid-b-negative patients within the early MCI

cohort on atrophy scores and on seed patterns. The sub-

groups are poorly separated in both cases. A possible

explanation is that the amyloid-b-negative group gives the

same patterns as amyloid-b-positive group, but is more

widespread. This is true in both baseline atrophy and seed-

ing patterns. This suggests that the origin region is either

the same for both, or is not necessarily correlated to amy-

loid aetiology.

Discussion
The present study proposes a novel inference algorithm,

based on the network diffusion model and sparsity-indu-

cing L1 norm regularization, capable of inferring a patient’s

Figure 5 PCA inferred seeds on Alzheimer’s disease, early

MCI, and late MCI groups. The top row shows only

Alzheimer’s disease and early MCI and bottom row shows

all three groups. Principal Component Analysis (PCA) for

inferred seeds showed no distinct clusters within the Alzheimer’s

disease, early MCI, and late MCI cohort. Seed values were calcu-

lated using optimal L-curve parameters for the each cohort as

described earlier. Alzheimer’s disease patients are shown in magenta

and early MCI patients in blue. While there were significant differ-

ences in the atrophy pattern (consistent with Noh et al., 2014; Dong

et al., 2017; Park et al., 2017), PCA did not reveal distinct/separate

clusters for the seed patterns. However, we recapitulate significant

separation between patients with Alzheimer’s disease (in magenta)

versus patients with early MCI (in blue) regarding atrophy scores.

AD = Alzheimer’s disease; EMCI = early MCI; LMCI = late MCI.
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past patterns of Alzheimer’s disease and MCI onset, which

we believe is suggestive of tau pathology seeding.

Specifically, we obtained sparse estimates of the patient’s

most likely foci of disease initiation, referred to here as

‘seed’ regions, from baseline and longitudinal regional volu-

metric data obtained from MRI. The key assumption

underlying this approach is that the current state of a

patient’s regional atrophy patterns are a result of network

transmission, following accumulating evidence of ‘trans-

neuronal transmission’ of misfolded tau protein in the

brain. In this work, regional atrophy is assumed to be a

reasonable stand-in for regional tau distribution, backed by

post-mortem and in vivo studies (Arriagada et al., 1992;

Nelson et al., 2012; Xia et al., 2017).

Our major findings are as follows. First, from each

patient’s longitudinal MRI scans, our inference algorithm

identified several seed regions from which Alzheimer’s dis-

ease or MCI tau pathology most likely originated in that

patient. The sparsity of the inferred seeds is effectively con-

trolled by the algorithm parameters � and w, indicating

that the algorithm functions as designed. Increasing

either, the L1 constraint, or w, the emphasis on fitting the

longitudinal rate of atrophy, results in seeds that have, on

average, fewer nonzero regions. Consequently, our infer-

ence method is flexible in yielding a set of seeds at different

levels of sparsity. We performed thorough L-curve analysis

to obtain the optimal parameter choices. Second, we

showed that the majority of these Alzheimer’s disease

seeds lie in the temporal lobe, specifically the hippocampus,

entorhinal cortices and surrounding areas in Alzheimer’s

disease, late MCI and early MCI subjects. Given the pro-

minence of these structures in early Alzheimer’s disease

from autopsy series in human Alzheimer’s disease brains

(Braak stages II–IV; Braak and Braak, 1996), this provides

a level of support to the accuracy of the proposed algo-

rithm. Third, we demonstrated that applying our previously

published NDM in the forward direction from these seeds

predicts a patient’s future atrophy (i.e. measured at baseline

and follow-up visits in the ADNI study) with high predict-

ability. We showed that the individualized seeds inferred by

our algorithm are significantly better at predicting ‘future’

patterns of regional atrophy than static seeding of the hip-

pocampus in all subjects. This suggests that hippocampus,

or any other single structure, may not be the true region of

disease onset in all or even most individual patients.

Finally, we thoroughly characterized the intersubject

Figure 6 Seed investigation for amyloid-b and PCA inferred seeds on distinct amyloid-b subgroups. (A) Seed investigation for

amyloid-b. Comparison between amyloid-b-negative (red) and amyloid-b-positive (blue) early MCI cohorts. Ctx-lh-entorhinal region was iden-

tified with higher seeds for amyloid-b-positive versuss ctx-lh-temporal pole region was identified with higher seeds for amyloid-b-negative

subgroups in early MCI subjects. Atrophy patterns on top depict (scaled) nodes with average Z-scores above 0.05 and seed patterns on bottom

show (scaled) nodes with average seed values above 0.15. Seed values were calculated using optimal L-curve parameters for the early MCI cohort

(� = 0.02, w = 0.33). (B) Seed investigation for amyloid-b. Histograms (normalized probability) for different Rmax values for amyloid-b-negative

(red) and amyloid-b-positive (blue) in early MCI cohorts. The positive distribution favors higher Rmax values and is significantly more left-skewed

than the negative distribution. (C) PCA inferred seeds on distinct amyloid-b subgroups. PCA for inferred seeds showed no distinct clusters for

different amyloid-b subgroups within the early MCI cohort. Seed values were calculated using optimal L-curve parameters for the early MCI

cohort (� = 0.02, w = 0.33). Ctx = cortex; lh = left hemisphere.
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heterogeneity in the seeding patterns in ADNI subjects, and

showed that seed variability is quite high even amongst

subjects in the same diagnostic group. This suggests that

Alzheimer’s disease spectrum patients can have quite vari-

able patterns of disease onset. It also suggests that correctly

inferring a patient’s seeding pattern can be helpful in differ-

ential and personalized diagnosis. We showed that seeding

variability is even higher than baseline atrophy variability

between patients. One potential explanation of this could

be that network transmission following disparate sources of

regional onset can still converge to a common template of

regional atrophy as disease progresses from onset to early

MCI to late MCI to full Alzheimer’s disease. Taken

together, these results provide preliminary support for the

proposed inference algorithm, which may have future

potential to characterize individual patterns of atrophy

for clinical applications.

Agreement and comparison with
prior studies

The average baseline atrophy Z-scores of our Alzheimer’s

disease patient population (Fig. 1, top) is consistent with

classic features of Alzheimer’s disease topography, includ-

ing significant mesial temporal grey matter atrophy com-

pared to controls. Mesial temporal atrophy is a widely

replicated and accepted biomarker of Alzheimer’s disease

(Baron et al., 2001; Thompson et al., 2003; Apostolova

et al., 2007; Da et al., 2013; Peter et al., 2014; Fischer

et al., 2016). Figure 2B agrees with prior findings of

Alzheimer’s disease degeneration originating in the mesial

temporal lobe. In particular, as we apply more stringent

sparsity constraints by increasing � and w, the average

Alzheimer’s disease seed converges on hippocampal and

entorhinal regions. We further evaluated all seeds on an

individual-subject basis (Fig. 2C), confirming that atrophy

originates most frequently from temporal regions. A closer

look at seed distribution in Table 2 shows that the majority

of our computationally-modelled seeds are in the hippo-

campus, entorhinal cortex, and immediate surrounding cor-

tices consistently in Alzheimer’s disease and MCI patients.

These seed results parallel classic post-mortem pathology

studies of Alzheimer’s disease. The Braak staging model

of Alzheimer’s disease shows deposition of misfolded pro-

teins occurs in a stereotypical fashion, and early sites of

pathological involvement are the hippocampus, entorhinal

cortex, and limbic structures (Braak and Braak, 1991,

1996; Rüb et al., 2000; Sassin et al., 2000; Lace et al.,

2009).

Our group seeding results of Fig. 2 generally agree with

the spatial pattern of tau deposition noted in recently emer-

ging in vivo tau-binding PET scans. In particular, the

THK5351 binding pattern of early MCI subjects reported

by Kang et al. (2017), and of AV1451 binding pattern of

Alzheimer’s disease subjects reported by Mishra et al.

(2017), are strikingly similar to the early MCI glass

brains shown in Fig. 6A. All have a strong medial and

lateral temporal involvement, followed by more diffuse

involvement of the neocortex. Intriguingly, our seeding

results are much closer to these published tau patterns in

early MCI than is the early MCI atrophy pattern, lending

critical empirical support to our inferred seeds.

A fundamental assumption of the proposed method is that

pathological progression (of tau, not necessarily of amyloid-b)

occurs through white matter tracts. This is justified by sub-

stantial emerging evidence in human studies (Raj et al., 2012,

2015) and observations of trans-neuronal tau spread in

mouse models (Clavaguera et al., 2009). Hence we are con-

fident that network-mediated spread can be effectively used in

the proposed inference algorithm. However, other possibilities

cannot be ruled out, for instance that tau might spread with-

out the requirement of direct physical connections between

neurons (e.g. through interstitial fluid; Wu et al., 2016). It

is also possible that network mediation is through functional

rather than anatomic connectivity (Seeley et al., 2009; Zhou

et al., 2012), or through spatial spread. Interestingly, recent

work in our laboratory supports that the anatomic connec-

tome, rather than distance-based or interstitial fluid-mediated

spread, is the most likely mediator of tau spread in mouse

models (Mezias et al., 2017).

Some prior work exists on solving the seed inference

problem in the dementia context. Zhou et al. (2012) per-

form a brute-force search for the seed region that produces

the best match between its functional connectivity pattern

to the rest of the brain and regional atrophy patterns. This

may be considered a variant of our seed initialization strat-

egy, where we use as x0 each region’s Rmax after forward

propagation using network diffusion. However, as we have

seen, the final inference frequently veers away from the

brute-force initial pattern, after the imposition of sparsity

and other constraints. More recently, Hu et al. (2016),

proposed a Monte Carlo sampling technique to infer seed

patterns using the network diffusion model. This study

focuses mainly on simulations, and reports interesting pat-

terns that appear to be at variance to expected spatial pat-

terns in Alzheimer’s disease. This might be due to the

complexity of their inference problem, which has a large

number of unknown parameters whose accurate estimation

is difficult from either simulation data or from limited

number of longitudinal data points available in ADNI. In

contrast, our study considers only empirical atrophy and

connectivity data, and proposes a cost function that is well

suited to the limited number of time points available. It

therefore succeeds in recapitulating the classic temporal-

dominant seeding patterns at the group level. Iturria-

Medina et al. (2017) have also reported related approaches.

Individualized seeds outperform static
seeds in predicting future atrophy

Figure 4 lends further support to the seeds discovered by the

inference algorithm by showing each subject’s individual seed
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performed significantly better than using the hippocampus as

a static seed. In subjects whose seeds were not in the hippo-

campus, seeds were also found in the entorhinal cortex and

surrounding cortices. This seeding heterogeneity reinforces

the importance of inference on personalized patient as

opposed to group-wise data. We chose to test the hippocam-

pus as an a priori hypothesis, since exogenous seeding of

pathogenic proteins in the hippocampus via injections in

mouse models causes remote pathology in connected regions

similar to that observed in post-mortem humans (Clavaguera

et al., 2009; Ahmed et al., 2014). Even when we chose out-

side hippocampus, consisting of the 5–10 most common

regions (Table 2), the results did not significantly improve

(Supplementary Fig. 7). Also worth noting is that as the

seeds are inferred in part from the baseline atrophy, the

seed might itself be a strong predictor of baseline atrophy

without needing to do any forward prediction using the

NDM. However, the NDM predictions from the inferred

seeds are more strongly correlated with the baseline than

the seeds themselves (Supplementary Fig. 3), indicating that

the seeds truly represent earlier time points along the neuro-

degeneration trajectory.

Initial patterns of atrophy are highly
heterogeneous

Concordant with the observation that a group-level seed

fails to explain the progression of atrophy in individual

patients, the inferred seeds are highly heterogeneous, as

shown by the distribution of pairwise Pearson correlations

in Fig. 3B. This suggests that, although the progression of

Alzheimer’s disease is well-characterized on a group level,

the heterogeneity underlying the broad distributions of

baseline pairwise correlations is also present at very early

stages of disease. We therefore propose that the patient-to-

patient variability dominates disease aetiology, even though

hippocampus and adjoining temporal cortices are impli-

cated as seed locations on a population level.

Further, inferred seeds are more variable than the baseline

atrophy patterns. The correlated and anticorrelated examples

in Fig. 3A also illustrate the shifts towards no correlation.

One explanation of this of this trend is that the Pearson’s R

between two vectors relates to the cosine of the angle

between them. Hence sparsity-enforcing terms will tend to

make these vectors more orthogonal to each other, and

reduce Pearson’s R. This enhanced ‘distinguishability’ of

our inferred seeds may provide a more sensitive means of

diagnosing neurodegenerative diseases than MRI alone.

Additionally, it may be able to identify subtypes or new

diagnostic classes sharing a common pattern of origin. We

detail plans to more fully evaluate these hypotheses below.

These data on heterogeneity are not inconsistent with

prior literature. Alzheimer’s disease is well known to be a

heterogeneous disease in terms of different cognitive presen-

tations as well as neuropathological and structural hetero-

geneity (Whitwell et al., 2012; Noh et al., 2014). In an

attempt to address these heterogeneities, Alzheimer’s disease

patients were grouped into amnestic and non-amnestic types

based on cognition and as typical, limbic-predominant and

hippocampal-sparing based on MRI and pathology

(Whitwell et al., 2012). Our results support and underscore

the issue of phenotypic heterogeneity; however, unlike pre-

vious studies, we find no evidence for clustering based on

inferred seed patterns. One possibility could be that the

disease onset is highly heterogeneous, and that the hetero-

geneity decreases, rather than increases, over time.

The challenges of validation

There is no ‘gold standard’ against which we can validate our

inference method in individuals. Figure 5 and Supplementary

Fig. 2 confirm that a consensus seed, whether it was chosen

using outside knowledge or derived from the most prevalent

regions among the inferred seeds themselves, cannot repro-

duce individual baseline atrophy patterns under the NDM.

The individual inferred seeds in contrast give strong and

significant prediction under NDM of the subject’s baseline

atrophy pattern (Fig. 4), suggesting that the seeds represent

pre-baseline stages of atrophy. However, absent bona fide

preclinical atrophy data to compare to the inferred seeds

(which, if it existed, would eliminate the need to infer prior

states at all), it is impossible to ascertain exactly how accu-

rately they reproduce initial stages of pathology.

An alternative, indirect validation is if our inferred seeds

can distinguish (i) known population-level trends in early

disease; and (ii) populations of patients with different foci

of origin. Table 2 and Figs 2 and 3 confirm the first; with

regards to the second, we used hierarchical clustering on

the Alzheimer’s disease and MCI seeds to try to identify

latent substructure. Since subtypes of Alzheimer’s disease

have been well-described in the literature (Murray et al.,

2011; Mattsson et al., 2016) we hypothesized that our

inferred seeds can classify these subtypes. However, PCA

suggested that there was a lack of inherent substructure to

the seeds and baselines of the patient groups (Fig. 5).

Hierarchical clustering of the seeds and baselines revealed

no discernible outgroups in any of the three cohorts

(Supplemental Figs 4 and 5). One possibility is that in

fact our patient groups do not contain sufficient numbers

of subjects for the rarer subtypes to be detected. As an

additional test, we grouped all three of our cohorts into

one group and attempted to reproduce the diagnostic

classes using PCA and hierarchical clustering, but neither

method yielded identifiable subgroups (Fig. 5 and

Supplementary Fig. 3). This may reflect the fact that MCI

resembles a less severe form of Alzheimer’s disease, and

using our method to regress current regional atrophy pat-

terns to earlier stages produces a similar distribution of

seeds. Figure 2C and Table 2 suggest that this may be

the case, given the overlap of the most highly represented

regions in the seeds of all three groups. Thus, failure to

distinguish clinically relevant subpopulations may simply

be suggestive that MCI is not a topographically distinct
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phase than mature Alzheimer’s disease, just temporally

earlier. Another, not mutually-exclusive possibility is that

the origins of atrophy on an individual-patient level may

truly be heterogeneous, and apparent randomness domi-

nates any substructure within this population. We believe

that the true diagnostic power of inferred seeding will be

apparent between more diverse patient populations diag-

nosed with other proteinopathies such as Parkinson’s dis-

ease, frontotemporal dementia and posterior cortical

atrophy—a subject of future work in our laboratory.

Other limitations

Our inference algorithm, as it is based on the NDM, uses a

linear approximation to explain macroscopic trends in atro-

phy spread (Raj et al., 2012, 2015), which may obscure the

effects of higher-level dynamics exhibited at finer size scales.

The choice of Pearson correlation as the primary metric in

our cost function can be suboptimal if the atrophy data are

not Gaussian distributed or show outliers. While we did not

observe outliers in our atrophy data, we did not explore

other metrics such as Spearman correlation. Pearson was

our preferred choice as it reduces the risk of non-convex

optimization problem during the seed inference procedure.

Spearman is unfortunately quite discontinuous with respect

to the NDM quantities x and t. Additionally, we chose to use

an L1 regularization constraint for its desirable soft-thresh-

olding behaviour and ease of implementation, but further

exploring other possibilities is a necessary next step in the

validation of our inference method. However, we note that

the inferred seeds differ considerably from L0 seeds

(Supplementary Fig. 8) so the model is not simply picking

the regions of highest atrophy at the expense of less promi-

nent regions that may have instrumental roles in atrophy

progression at earlier time points.

Atrophy and white matter connectivity results in the cur-

rent work share the same sensitivity and accuracy issues

common to computational neuroanatomic data currently

in the public domain. Specifically, there exist technical lim-

itations of the volumetric and tractography processing pipe-

lines include HARDI spatial and angular resolution,

coregistration errors, low test-retest reliability of volumetric

data, and the distance bias inherent in tractography.

Finally, the use of pathology spread-based NDM on

MRI-derived atrophy data assumes that two are co-loca-

lized; this is reasonable as tau neurofibrillary tangles are

strongly associated with degeneration (Arriagada et al.,

1992; Nelson et al., 2012; Xia et al., 2017).
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