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Accurately determining pain levels is difficult, even for trained professionals. Facial

activity provides sensitive and specific information about pain, and computer vision algorithms

have been developed to automatically detect facial activities such as Facial Action Units (AUs)

defined by the Facial Action Coding System (FACS). Previous work on automated pain detection

from facial expressions has primarily focused on frame-level objective pain metrics, such as the

Prkachin and Solomon Pain Intensity (PSPI). However, the current gold standard pain metric is

the visual analog scale (VAS), which is self-reported at the video level. In this thesis, we propose

machine learning models to directly evaluate VAS in video.
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First, we study the relationship between sequence-level metrics and frame-level metrics.

Specifically, we explore an extended multitask learning model to predict VAS from human-

labeled AUs with the help of other sequence-level pain measurements during training. This model

consists of two parts: a multitask learning neural network model to predict multidimensional pain

scores, and an ensemble learning model to linearly combine the multidimensional pain scores

to best approximate VAS. Starting from human-labeled AUs, the model outperforms provided

human sequence-level estimates.

Secondly, we explore ways to learn sequence-level metrics based on frame-level auto-

matically predicted AUs. We start with an AU prediction software called iMotions. We apply

transfer learning by training another machine learning model to map iMotions AU codings to a

subspace of manual AU codings to enable more robust pain recognition performance when only

automatically coded AUs are available for the test data. We then learn our own AU prediction

system which is a VGGFace neural network multitask learning model to predict AUs.

Thirdly, we propose to improve our model using individual models and uncertainty

estimation. For a new test video, we jointly consider which individual models generalize well

generally, and which individual models are more similar/accurate to this test video, in order to

choose the optimal combination of individual models and get the best performance on new test

videos. Our structure achieves state-of-the-art performance on two datasets.
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Introduction

Accurate measurement of pain severity is difficult even for trained professionals. This is a

critical problem as over-medication can result in adverse side-effects, including opioid addiction,

and under-medication can lead to unnecessary suffering, tumor growth and can compromise

immune function and healing after surgery [LCP11b, QSH15].

The current clinical gold standard and most widely employed method of assessing clinical

pain is patient self-report [ZPG+16]. However, this subjective method is vulnerable to self-

presentation bias. Consequently, clinicians often distrust pain self-reports, and find them more

useful for comparisons over time within individuals, rather than comparisons between individu-

als [VB09]. Further, infants, young children, and others with communication/neurological disabil-

ities do not have the ability or capacity to self-report pain levels [ZPG+16, SAD+15, AKRP+16].

As a result, to evaluate pain in populations with communication limitations, observational tools

based on nonverbal indicators associated with pain have been developed [SFV+17], includ-

ing physiological, speech, body movements and facial expressions. A systematic review of

pain-recognition systems that are based on deep-learning models is provided by [MAEAKAS20].

Of the various modalities of nonverbal expression, it has been suggested that facial

activity provides the most sensitive, specific, and accessible information about the presence,

nature, and severity of pain across the life span, from infancy [GC87] to advanced age [HHP+14].

Moreover, observers largely consider facial activity during painful events to be a relatively

spontaneous reaction which is less subject to voluntary control than verbal expression [SFV+17,

Cra92, CPG11].

In this thesis, we focus on self-rated pain level prediction using facial videos.
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0.1 Background

0.1.1 Pain

Pain is defined as “an unpleasant sensory and emotional experience associated with, or

resembling that associated with, actual or potential tissue damage,” [RCC+20] by the Inter-

national Association for the Study of Pain (IASP). It is always a personal experience that is

influenced to varying degrees by biological, psychological, and social factors. Pain is different

from nociception and cannot be inferred solely from activity in sensory neurons. Individuals

learn the concept of pain through their life experiences, and inability to communicate does not

negate the possibility that a human or a nonhuman animal experiences pain [RCC+20].

Pain is multidimensional. Major dimensions of pain include physiological, sensory,

affective, cognitive, behavioral, and sociocultural [McG92] aspects. Self-report measures the

subjective nature of pain, which has been shown to be not as stable and accurate as a multidimen-

sional assessment [ABR83, CYT+02, RRM+07, vBVvdS+17]. Such properties of self-reported

pain level have made it hard to automatically evaluate across subjects.

0.1.2 Facial Action Units (AU)

Facial Action Units (AUs) is defined by the Facial Action Coding System (FACS) [EF76,

MVJP17], which is a comprehensive, anatomically based system for describing all visually

discernible facial movement. During AU coding, each present action unit is coded with on-

set, offset and with an intensity on a 5-point scale. The FACS manual was first published

in 1978 by Ekman and Friesen, and was most recently revised in 2002. (Visualizations of

facial activation units can be found at https://imotions.com/blog/facial-action-coding-system/).

Identifying AUs in video traditionally requires time intensive offline coding by trained human

coders, limiting application in real-time clinical settings. Recently, algorithms to automatically

detect AUs [VP06, JVP11, MVJP17, LAZ17, TZY+17, SLCM18, SLC+19, ECJ+19] have been

developed and implemented in software such as iMotions (imotions.com) allowing automatic
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output of AU probabilities in real-time based on direct recording of face video.

FACS provides an objective, comprehensive and descriptive approach to decode facial

expressions, and studies have found sets of AUs associated with pain. All studies of adults have

identified lowering of the brows (AU4) and narrowing of the eyes, as a result of tightening the

eyelids (AU7), as basic to the expression. Majority of studies also found raising the cheeks

(AU6), eyes closed or blinking (AU43), raising the upper lip (AU10), and parting of lips (AU25)

or dropping of the jaw (AU26) to be pain-related actions [CPG11]. People also found nose

wrinkling (AU9) to be related to pain [PS08].

0.1.3 PSPI

The Prkachin and Solomon Pain Intensity (PSPI) [PS08] is proposed to evaluate pain

levels in an image. It is defined as a combination of a set of AUs:

PSPI = AU4+max(AU6,AU7)+max(AU9,AU10)+AU43

It has been widely used as a pain level indicator, and most research on automatic

pain detection from facial expression has focused on predicting the frame-/image-level PSPI

scores [ALC+09, LCP+11a, MR06, RPP13, WXL+17, RCG+17, TH18, ZGKS18]. However, it

has some limitations. First, PSPI only consider 6 AUs, but there is evidence showing that pain

is reflected by other AUs too. The PSPI may also be non-zero when the subject doesn’t feel

any pain, for instance, AU43 (eyes closed) occurs during sleep and is obviously not specific

to pain expression. Secondly, it is defined on frame level, but the ground truth of pain level

should be measured on sequence level. People usually talk about pain levels during a period

of time, not at a point of time. PSPI may go up and down through a video while the feeling

of pain stays unchanged. Thirdly, PSPI only measures the facial expression of pain, and

shouldn’t be confounded with the feeling of pain. PSPI is influenced by many factors, e.g. facial

expressiveness.

With all these shortcomings with PSPI, although it is a good measure of pain, it doesn’t

reflect pain directly and successful estimation of PSPI doesn’t mean successful estimation of
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pain.

0.1.4 VAS

Two types of pain metrics are usually considered in pain studies: frame-by-frame metrics

and sequence-level metrics. AU and PSPI mentioned above are frame-by-frame, and VAS (Visual

Analog Scale) is sequence level, in the sense that there is one VAS score labeled for each video

(sequence of frames).

As stated above, self-report VAS is the gold standard of pain assessment and can be easily

acquired as ground truth. Participants rate their pain level during a period of time using a 0-10

Numerical Rating Scale, where 0 = no-pain and 10 = worst pain ever.

VAS also has drawbacks as a measure of pain. As illustrated above, is it subjective,

because the pain feeling is subjective, and VAS can also be affected by reporting bias and

variances in memory and culture, and interpretation of the scales or descriptive words [CPG11,

WAHLE+16].

Nevertheless, VAS is considered to be a metric that is the closest to the ground truth of

pain. Test–retest reliability has been shown to be good, and validity has been proved with a high

correlation with other pain scales [DLR+78,FQA+90]. VAS has also demonstrated sensitivity to

changes in pain [JZHM75].

0.1.5 Challenges in automated pain recognition

1. Datasets are small, and hard to obtain.

The most famous UNBC McMaster Shoulder Pain database [LCP+11a] only contains 25

subjects and 200 videos. The post-surgery child pain dataset [XCD+18] contains 134

videos of 70 subjects. These are the only two facial video datasets that have both clinically

obtained VAS labels and AU labels. Not only the number of samples in each dataset is

small, the number of videos from each subject is also small, because it is rare that a patient

will experience all 11 pain levels during genuine pain data collection. Another famous
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pain dataset is the Biovid Heat Pain database [WGE+13]. It includes 90 participants, but

the videos are not AU-coded, and pain levels are determined by stimulation temperatures,

not self-ratings. Other datasets such as BP4D [ZYC+14], SenseEmotion [VGL+16],

EmoPain [AKRP+15], X-ITE [HBN+18] all have similar problems. In such a scenario,

transfer learning, in particular, using CNN models trained on larger datasets, would benefit

the learning of pain.

2. Noisy labels.

Different people have different understanding of pain. Two people may experience the

same level of pain, but give different pain ratings. This makes it hard for machine learning

models to generalize to new subjects.

3. Noisy inputs.

Not only the pain feeling itself is subjective, the facial expressions of pain also differs

from person to person. There are studies suggesting that there are “different faces of

pain” [KL14]. Two people may have the same level of pain, but show completely different

facial expressions.

0.2 Dissertation overview

0.2.1 Chapter 1: Exploring Multidimensional Measurements for Pain
Evaluation using Facial Action Units

Pain is multidimensional, and studies have suggested to evaluate pain in patients using

multidimensional measures. In this chapter, we analyze the relationship between multidimen-

sional pain measurements: VAS (Visual Analog Scale), OPR (Observer Pain Rating), AFF

(Affective-motivational scale), SEN (Sensory scale), and their predictions from a machine

learning model.

We also study the relationship between sequence-level and frame-level pain metrics,

and explore ways of utilizing human-coded AUs and multidimensional pain ratings to im-
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prove VAS prediction, and study the contribution of each component of the multitask-ensemble

multidimensional-pain model. People have developed methods to evaluate the frame-level PSPI

and AUs in facial images. Our model serves as a baseline of how well one can predict VAS using

human-coded AUs. Our model can be combined with automated AU/PSPI detection systems to

achieve end-to-end VAS prediction and provides an upper-bound on expected performance.

0.2.2 Chapter 2: Automated Pain Detection in Facial Videos of Children
using Human-Assisted Transfer Learning

In this work we combine our VAS prediction model from true AUs with an AU prediction

system, the iMotions software, to achieve end-to-end VAS prediction from videos. The iMotions

takes live/recorded facial videos as input, locates the face and provides 20 AU estimations.

We find that AUs coded automatically are different from those coded by a human trained in

the FACS system, and that the human coder is less sensitive to environmental changes. We

improve the robustness of automatic AU codings by applying a transfer learning model to transfer

automatically coded AUs to manually coded AUs.

0.2.3 Chapter 3: Pain Evaluation in Video using Extended Multitask
Learning from Multidimensional Measurements

In Chapter 3, we use the iMotions software to obtain AU values. In this chapter, we

develop our own AU prediction model using the VGG16 structure. We replace the last layer of a

pre-trained VGGFace neural network and fine-tune it using our pain data. We build a three-stage

multitask learning model that exploits multiple dimensions of pain to evaluate the current gold

standard pain metric VAS in video from video frames directly.

0.2.4 Chapter 4: Personalized Pain Detection in Facial Video with
Uncertainty Estimation

Building on our 3-stage model, we propose to improve pain detection in facial videos

using individual models and uncertainty estimation. For a new test video, the system jointly
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considers which individual models generalize well generally, and which individual models are

more similar/accurate to this test video, in order to choose the optimal combination of individual

models and get the best performance on new test videos.

0.3 Contributions

1. We analyzed the relationship between multidimensional pain measurements and their

predictions from a machine learning model

2. We studied the relationship between sequence-level and frame-level pain metrics, and

built an extended multitask learning model to estimate sequence-level pain scores using

human-coded frame-level features

3. We explored ways of utilizing human-coded AUs and multidimensional pain ratings to

improve VAS prediction, and studied the contribution of each component of the multitask-

ensemble multidimensional-pain model

4. We provided a baseline of how well one can predict VAS using human-coded AUs

5. We showed that transferring automated features to the manual feature space improves

automatic recognition of clinical pain across different environmental domains.

6. We proposed a three-stage multitask learning model that exploits multiple dimensions of

pain to evaluate the current gold standard pain metric VAS in video from video frames

directly

7. We showed that multitask learning of pain-related ratings improves the learning of target

pain ratings

8. We learned personalized individual models to evaluate the current gold standard pain

metric VAS in video from video frames directly.
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9. We learned PSPI and VAS as a combination of the output of individual models to improve

the generalizability of the pain prediction model.

10. We learned the uncertainty of VAS prediction of each individual model, and improved

the VAS prediction on new test subjects by adjusting ensemble weights based on the

uncertainty of individual predictions

11. Our model beat the current state-of-the-art performance.
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Chapter 1

Exploring Multidimensional Measure-
ments for Pain Evaluation using Facial
Action Units

1.1 Introduction

The current gold standard of estimating clinical pain is patient self-report given by visual

analog scale (VAS), despite its known limitations [Cra92, ZPG+16]. One of these limitations

is that it is difficult to obtain in populations with verbal or neurological disabilities [ZPG+16].

Automated pain recognition models have been developed to solve this problem using vari-

ous nonverbal signals such as facial expressions, head/body movement and physiological sig-

nals [WGE+13, OBBMW15, JPP+15, CPS19]. Research has shown that facial expressions can

provide sensitive and reliable information about pain across the life span [PBB+01,Wil02], from

infants [GC87] to elderly patients [MBML03, HHP+14].

Two types of pain metrics are usually considered in pain studies: frame-by-frame metrics

and sequence-level metrics. One prominent example of frame-level metrics, are the muscle-based

facial action units (AUs) defined by the Facial Action Coding System (FACS) [EF76]; they

have been widely used as a consistent and reliable way to represent facial expressions including

pain [CAW18] expression. The names of some of the pain-related AUs can be found in Table 1.1.

Another frame-level metric, built on top of the AUs, is the Prkachin and Solomon Pain Intensity
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(PSPI) [PS08]. It defines a single number that measures pain as a combination of AU intensities:

PSPI = AU4+max(AU6,AU7)+max(AU9,AU10)+AU43

Most research on automatic pain detection from facial expression has focused on predict-

ing frame-level PSPI scores. A widely used 2-step framework is to first extract low-dimensional

relevant non-rigid geometric or appearance features from raw pixels and then learn a classi-

fication or regression model [ALC+09, LCP+11a, MR06, RPP13]. Otherwise, deep learning

can be used to learn from raw pixels directly [WXL+17, ZGKS18]. In addition to these “static

approaches” that extract features from single frames, it is also useful to learn dynamic features

when data is available in the form of video sequences [RCG+17, TH18]. Multiple-instance

learning has been used to learn frame-level scores using sequence-level labels in a weakly

supervised manner [SDB13, RRBP16].

Automated detection of facial AUs has also been well studied, and PSPI ratings can be

calculated directly from AU estimates. Many approaches of AU detection focused on finding

regions of interest [ZCZ16, G+17, LAZ17, LAZY18]. Jaiswal et al. and Chu et al. combined

CNN and LSTM, and Kumawat proposed a 3D convolutional layer called Local Binary Volume

layer, to learn temporal information [JV16, CDlTC17, KVR19]. Baltrušaitis et al. studied the

benefit of person-specific neutral expression normalisation and multiple datasets for generic

model training, and presented a pipeline that detects AUs in real-time [BMR15]. Tang et al. and

Romero et al. fine-tuned VGG models pretrained on face datasets to detect AUs under different

facial views [TZY+17, RLA18]

In contrast, to the automated work above, sequence-level pain metrics are more often

used in clinics, and the understanding and interpretation of pain in the literature is mostly based

on sequence level assessments, rated by observers or by self-report. The sequence-level self-rated

VAS is still the most commonly used pain score in clinical settings. Only a few papers have

addressed the problem of estimating VAS score in facial videos. Sikka et al. [SAD+15] and

Xu et al. [XCD+19] detected pain in children after surgery using AUs extracted by iMotions

(imotions.com). Liu et al., Martinez et al., and Xu et al. used a two-stage method to first train a
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model to predict pain scores at the frame level, and then predicted video VAS score using these

frame-level predictions [LPS+17, MRP+17, XHdS19] although only [XHdS19] started from raw

pixels.

Although sequence-level metrics are considered to have more clinical relevance, frame-

level pain recognition has been studied more thoroughly and there exist software packages

and toolkits such as iMotions (imotions.com) and OpenFace [ALS16] to automatically detect

AUs. There are many reasons for this. First, it is difficult to obtain a large number of sequence-

level samples. A pain dataset with each video lasting less than 1 minute can have three orders

of magnitude more frames than videos. Second, machine learning models on videos require

significantly more space and time to train. This problem is not unique to pain; there are many

deep neural networks trained on facial images, but there is no publically available model trained

on facial videos, so it is hard to leverage prior work when working with videos. Currently most

sequence-level models use frame-level models as building blocks [SAD+15, LPS+17, MRP+17,

XCD+19, XHdS19], and the problem of learning sequence-level metrics is usually broken down

into two parts: learning frame-level metrics and learning sequence-level metrics based on the

frame-level metrics. Since there has been a lot of research addressing the first part (learning

frame-level metrics), in this work, we focus on whether and how well we can solve the second

part. In order to not be dependent on the quality of model solving the first part, we study the

second problem for human coded frame-level AUs and PSPIs (which are usually used as ground

truth in AU and PSPI estimation models). We do this through a two-stage model similar to the

last two stages in the extended multitask learning model which is the current state-of-the-art

for estimating VAS [XHdS19]. In the first stage, we send statistics of AUs and PSPI over

frames of each video as inputs to a neural network to get a sequence-level VAS prediction,

and use multitask learning to improve the VAS prediction while obtaining multidimensional

pain scales. Then, as in [XHdS19], we extend the multitask learning framework by finding an

optimal linear combination of these pain scales to further improve VAS prediction. We show on

the UNBC-McMaster Shoulder Pain dataset [LCP+11a] that this method outperforms human
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video-level labels, and can be further improved when combined with those human ratings.

The contributions of this paper are as follows:

• We analyze the relationship between multidimensional pain measurements and their

predictions from a machine learning model

• We study the relationship between sequence-level and frame-level pain metrics, and

build an extended multitask learning model to estimate sequence-level pain scores using

human-coded frame-level features

• We explore ways of utilizing human-coded AUs and multidimensional pain ratings to

improve VAS prediction, and study the contribution of each component of the multitask-

ensemble multidimensional-pain model

• Our model serves as a baseline of how well one can predict VAS using human-coded AUs

• Our model can be combined with automated AU/PSPI detection systems to achieve end-

to-end VAS prediction and provides an upper-bound on expected performance.

1.2 Method

This paper studies the widely used UNBC-McMaster Shoulder Pain dataset [LCP+11a].

It contains videos of patient faces (who were suffering from shoulder pain) while they were

performing a series of active and passive range-of-motion tests to their affected and unaffected

limbs on two separate occasions. The dataset includes 25 subjects, 200 videos and 48,398 frames.

Table 1.1. AU Description

AU4 brow lowering AU12 oblique lip raising
AU6 cheek raising AU20 horizontal lip stretch
AU7 eyelid tightening AU25 lips parting
AU9 Nose wrinkling AU26 jaw dropping

AU10 upper lip raising AU43 eye closure
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The dataset provides 11 facial action unit (AU) intensities coded each frame by certified

FACS coders, and 1 PSPI score calculated from the AUs. AUs are defined by FACS (Facial

Action Coding System) [EF76] to code movements of individual facial muscles. In this work,

we work with the 9 AUs (AU4, 6, 7, 10, 12, 20, 25, 26 and 43) present in more than 500 frames.

In addition to the frame-level features, the dataset also provides 4 sequence-level labels:

VAS (Visual Analog Scale) 0-10, OPR (Observers Pain Rating) 0-5, AFF (Affective-motivational

scale) 0-15 and SEN (Sensory Scale) 0-15. OPR is the human observers’ rating of pain level

of the video. The other three measures are provided by the patients themselves. The sensory

scale consists of a numeric scaling associated with the following words of increasing SEN

scale: extremely weak, faint, very weak, weak, very mild, mild, slightly moderate, moderate,

barely strong, clear cut, slightly intense, strong, intense, very intense, extremely intense. The

affective-motivational (AFF) scale uses the following affect-based words: slightly unpleasant,

slightly annoying, annoying, unpleasant, slightly distressing, slightly miserable, very annoying,

distressing, very unpleasant, miserable, very distressing, slightly intolerable, very miserable,

intolerable, very intolerable [GMD78, HGDM80].

With the features and labels described above, our goal is to train a model that predicts

VAS using AU and PSPI intensities. Our model structure and hyper-parameters follow that of

stage 2 and 3 of the model proposed in [XHdS19].

1.2.1 VAS Estimation in Facial Videos using AU Sequences

For each video, we form a 10-D feature vector by taking the maximum rating over all

frames for each of the 9 AUs and 1 PSPI to form a 10 dimensional feature vector of the video

that is input to a fully connected neural network with one 20 unit hidden layer to predict VAS in a

linear output layer using batch-weighted MSE loss [SH19]. We used the Adam optimizer, initial

learning rate of 1e-2, batch size of 32, max number of epochs of 200, and used early stopping

when the validation loss hadn’t decreased for 20 epochs.
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1.2.2 Multitask Learning

As mentioned in [XHdS19], the three other sequence level pain ratings are very related to

the VAS pain score which motivates a multitask learning (MTL) approach [Car97] that leverages

“the domain-specific information contained in the training signals of related tasks” [Car97]. OPR

may be especially useful as it should be fully constrained by information in the video (unlike

VAS that may reflect strong pain but masked facial expression). The multitask architecture is

straight forward. We use 4 scores instead of a single VAS as outputs of the neural network.

The labels are normalized into the same range so that all elements contribute equally to the

loss during training. The losses are weighted based on the distribution of VAS scores, and the

validation loss is the mean MSE of the 4 outputs.

1.2.3 Ensemble Learning of Multidimensional Pain Scores

Each of the four sequence-level scores (VAS, OPR, AFF, and SEN) reports on different

aspects of pain. VAS reflects the patient’s overall rating of their perceived pain. AFF and SEN

are designed to try to separate out affective vs sensory aspects of pain and are also reported by

the patient. OPR, on the other hand, is scored by an external observer and is only based on the

facial video so may be a more predictable function of the video for training a machine learning

system. If humans are considered the gold standard at facial pain recognition, then OPR could

be considered an approximate upper bound for a machine-learning facial video system.

OPR, AFF, and SEN are all highly correlated with VAS (see Figure 1.1 LEFT) and can be

considered as predictions of VAS. After scaling their outputs to the same range as VAS, they all

do a reasonable job at estimating VAS and can be considered as four different “experts” (Fig. 1.1

RIGHT). Ensemble averaging can be used to compute the optimal linear combination of experts

to reduce variance of the estimator [Has97].

As in [XHdS19], the final prediction of VAS is learned as a weighted sum of the four
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experts. If each expert outputs fi, then the overall model f̃ is defined as:

f̃ =
4

∑
i=1

αi fi

We solve the optimization problem minimizing MSE of the final prediction f̃ subject to

∑
4
i=1 αi = 1 [Cle86, TL86, Has97, XHdS19]. The optimal α = [α1,α2,α3,α4]

T is:

α =
Ω−11

1T
Ω−11

where Ω = [ωi j] = [E[( fi−VAS)( f j−VAS)]] and VAS gives the true VAS labels. The ensemble

weights an expert more if it is more accurate in estimating VAS.

1.3 Experimental Analysis

On the UNBC-McMaster dataset, we performed 5-fold cross validation with each fold

consisting of 5 subjects. To prevent overfitting, we used the same training/test splits for the two

stages in each iteration. One of the 4 training folds is randomly selected as the validation set

for neural network training. After 5 iterations we evaluate the models using Mean Absolute

Error (MAE), Mean Squared Error (MSE), Intraclass Correlation Coefficient (ICC) and Pearson

Correlation Coefficient (PCC) on all test data. ICC is useful when MAE scores are deceptively

low. For example, for the current dataset, if the model outputs the average VAS for all samples,

the MAE will be 2.44, but the ICC will be approximately zero. So we want low MAE with high

ICC.

For all models in this paper, we performed the above 5-fold cross validation 5 times, and

report mean and standard deviation over 5 experiments. All experiments were run on a single

NVIDIA Titan V GPU.
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Figure 1.1. Correlation (left) and MAE (right) between each pair of the 4 sequence-level true
scores. The scores have been scaled to the same range 0-10.

OPR AFF SEN

Figure 1.2. 2D histogram of sequence-level score pairs.

1.3.1 Relationship between Sequence-level Metrics in the Data

The relationship between the 4 sequence-level scores in the UNBC-McMaster dataset is

shown in Fig. 1.1. We can see from the heatmap on the left that VAS, AFF and SEN are highly

correlated, and OPR is also correlated with these 3 self-rated scores but not as much. The right

side of the figure shows how well (in terms of MAE) each of the multimodal pain measures

predicts the others (after appropriate rescaling). For example OPR (human ratings) predicts VAS

with an MAE of 1.76.

Figure 1.2 shows the joint distributions of VAS with OPR, AFF and SEN plotted as 2D

histograms. It can be seen that although VAS is linearly correlated with the three other scores,

they are not strictly proportional.
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Figure 1.3. The correlation between 4 sequence-level scores (VAS, OPR, AFF, SEN) and 10
frame-level scores (9 AUs and PSPI) in the data. On the left is the correlation at the frame level,
where the VAS for a frame is the VAS of the video it belongs to. On the right is the correlation at
the sequence level, where the maximum AU/PSPI for a video is taken.

1.3.2 Relating Sequence- and Frame-level Metrics in the Data

Fig. 1.3, shows the correlation between the frame-level and sequence-level pain scores.

We see again the high correlations between the sequence-level measures and some correlation

between the frame-level measures. Of the sequence measures, OPR generally has a higher

correlation with the AUs and PSPI. This shows the potential of predicting sequence-level pain

ratings from frame-level measurements.

1.3.3 Multidimensional Pain Prediction using Neural Networks

While the previous subsections discussed properties of the UNBC-McMaster Pain dataset,

in this subsection we discuss relations between predictions from our neural networks.

Fig. 1.4, presents, as heatmaps, the MAEs of the multitask neural network with 4 outputs

(prior to ensembling) corresponding to the 4 sequence-level pain ratings. For example, diagonal

elements show the MAEs of each output predicting the corresponding metric, and the second

element in the first row shows the MAE of using the OPR output to predict VAS. Interestingly,

the best MAE in predicting a metric is not always given by its corresponding output, e.g. the

OPR output predicts VAS better than the VAS output, and the OPR output works better in SEN
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Figure 1.4. Average MAE on training and test data. The y axis gives the true label, and x axis
the predictions. Each entry is the mean absolute difference between the two variables. All the
labels and predictions have been mapped to the range 0-10 before calculation, but MAEs in
different rows are not strictly comparable because OPR only takes 6 values while AFF and SEN
can take 16.

PSPI AU4 AU6 AU7 AU10AU12AU20AU25AU26AU430.0

0.1
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0.4 VAS
OPR
AFF
SEN

Figure 1.5. Contributions of each of the AUs to the neural network outputs that use max of AUs
and PSPI as input. The heights of the bars represent feature importance measured as the mean
absolute shap values. Error bars show the standard deviation of the mean absolute shap values.

prediction than the SEN output. Actually, the OPR output works well when used to estimate all

the metrics despite being trained to only estimate OPR, the metric with the lowest correlation

with the other pain scores. This may be because OPR is more consistent across subjects and is

based purely on video features. As a result, OPR may be learned more easily from facial features

such as AUs and PSPI, and serve as a better pain metric when tested across subjects.

AU Importance. We use the shap framework [LL17] to calculate the contribution of

each of the AUs to the four output scores, and plot the importance values in Fig. 1.5. The bar

graph shows, for example, that AU7, 12, 25 and 43 are very useful in pain prediction, except that
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Figure 1.6. Contributions of each of the 9 PSPI statistics to the neural network outputs that use
9 PSPI stats as input. The heights of the bars represent feature importance measured as the mean
absolute shap values. Error bars show the standard deviation of the mean absolute shap values.

AU25 is much less important when predicting OPR than predicting the self-ratings. OPR uses

PSPI more while not using as much the individual AUs compared to the self-report measures of

VAS, AFF and SEN. Interestingly, while AU4 is considered to be among the “core expressions

of pain” and contributes to PSPI score [Prk92, PS08, Prk09], it is not a very important feature in

this model on this dataset.

There is a fair amount of consistency between Fig. 1.5 and Fig. 1.3. For example, PSPI

has higher correlation with OPR than the 3 self-rated scores, and also higher importance for

predicting OPR. AU25 and 43 are less important for OPR and also less correlated with OPR than

the other 3 pain scores.

Benefit of Multitask Learning. We explore the benefit of multitask learning in the

neural network in Table 4.2 row 1-2. The first row shows the VAS prediction performance

without multitask learning, i.e. when the neural network only has one output predicting VAS.

The second row corresponds to the multitask learning model, where the performance is evaluated

only with the output trained to predict VAS. Learning the three other scores from a shared hidden

layer, together with VAS helps the model’s VAS output to better predict VAS.

Different Input Features. When extracting sequence-level features for a video from a

sequence of frame-level features, we simply take the maximum of the AU/PSPI sequence as
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in [ALC+09], but it is also common to use other statistics such as standard deviation, minimum,

mean, etc. [SAD+15, LPS+17, XCD+19, XHdS19]. To explore how different choices of input

features work, we extracted 9 statistics (mean, max, min, standard deviation, 95th, 85th, 75th,

50th, 25th percentiles) from the PSPI and AU sequences to form a length-90 (9 stats × (9

AU + 1 PSPI)) feature vector. The performance using 90 features is not as good as using 10

maxima (row 4-6 compared to row 1-3 in Table 4.2). The reason may be that 90 dimensional

inputs is too large for our model. To address this, we also tried using 9 statistics of PSPI only

following [LPS+17, XHdS19] since PSPI is defined to represent pain and contains the most

comprehensive information about pain expressions. The results are shown in the last three rows

in Table 4.2. Using 9 statistics of PSPI works fine, but still not as good as using 10 maxima of

PSPI and AUs. The shap importance values for this model are plotted in Fig. 1.6. Min and 25

percentile are two inputs that are not very useful for this model.

Table 1.2. Sequence-level VAS Prediction using Frame-level Labels

NN Input NN Output Ensemble MAE MSE ICC PCC
Learning

PSPI+AU max VAS - 1.94±0.05 5.25±0.18 0.57±0.02 0.64±0.02
PSPI+AU max 4 scores MTL - 1.90±0.04 4.98±0.10 0.59±0.01 0.67±0.01
PSPI+AU max 4 scores MTL Ensemble 1.73±0.03 4.61±0.19 0.61±0.02 0.67±0.02
PSPI+AU stats VAS - 2.02±0.05 5.83±0.14 0.51±0.04 0.58±0.02
PSPI+AU stats 4 scores MTL - 1.94±0.05 5.39±0.22 0.56±0.02 0.61±0.02
PSPI+AU stats 4 scores MTL Ensemble 1.81±0.04 5.04±0.17 0.58±0.01 0.63±0.01

PSPI stats VAS - 2.07±0.05 5.81±0.23 0.52±0.04 0.63±0.03
PSPI stats 4 scores MTL - 2.03±0.05 5.58±0.23 0.53±0.03 0.65±0.02
PSPI stats 4 scores MTL Ensemble 1.76±0.03 4.81±0.18 0.59±0.02 0.65±0.02

Table 1.3. Comparison with Humans and Other Work

MAE MSE ICC PCC
EMTL with true AU (this paper) 1.73±0.03 4.61±0.19 0.61±0.02 0.67±0.02

EMTL from pixels [XHdS19] 1.95±0.06 5.90±0.23 0.43±0.03 0.55±0.03
Human (OPR) 1.76 6.26 0.66 0.66

Average of EMTL (with true AU) 1.48±0.02 4.22±0.10 0.70±0.01 0.71±0.01
and Human
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1.3.4 Optimal Linear Combination of Multidimensional Pain

While multitask learning results in improved training of VAS prediction through joint

learning of all 4 measures, ensembling the 4 predicted outputs discussed in Section 1.2.3 results

in significantly (p < 0.0001) better performance as shown in row 3 in Table 1.2.

1.3.5 Contributions of Different Components: Multitask Learning,
Ensemble Learning and Multidimensional Pain

In this section, we perform ablation studies to explore the relative contributions of

different components of the extended multitask learning model.

In order to see whether multitask learning helps, we trained models with separate hidden

layer for each of the four sequence-level outputs i.e. with the same inputs and outputs but without

multitask learning/hidden layer sharing. The performance (“4 scores”) is not as good as using

multitask learning (“4 scores MTL”) (see Table 1.2 and Fig. 1.7).

In order to compare the importance of ensemble learning to that of multi-task learning,

we trained a model with the same structure as our best model, i.e. with 4 neural network outputs

and ensemble learning on top of them, but instead of using 4 different pain scores as labels for

NN outputs, we trained each of the 4 outputs with identical VAS labels (but different initial

conditions). This allows the model to start from 4 different initial states and explore different

areas of the weight space with different final predictions. The ensemble model will then find the

best way to linearly combine these predictions to obtain a new random variable as the prediction

of VAS. The results show that this simple ensemble model also performs better than a single

network predicting only VAS but slightly worse than the best model predicting 4 different pain

scores, as plotted in Fig. 1.7 “VAS ×4 MTL”. From these results we conclude that ensembling is

most helpful for the excellent performance, but that using multidimensional pain scores is also

helpful.

We also trained a version of the network with 4 VAS outputs where each output had its

own (unshared) hidden layer. (“VAS ×4” in Fig. 1.7). This model performed slightly worse.
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This is likely because the multitask learning model has less parameters and so learns faster with

less overfitting.

Lastly, since ensemble learning contributes significantly to the performance, we consid-

ered a model with extra copies of outputs to provide more “expert” predictions to ensemble. We

considered 4 copies of the 4 different sequence-level scores, and separately, 16 copies of VAS, to

make 16 output NNs. This didn’t further improve the performance.

To summarize, with the same inputs, the model with ensemble learning on multidimen-

sional pain predictions yields the best performance. This corresponds to the third row in Table 1.2

for each input type, as well as the first (blue) bar in Fig. 1.7 in each group.

1.3.6 Comparison with Humans and Other Work

We compare our model with humans in Table 1.3. The human ratings are given by

the OPR scores in the dataset. Our extended multitask learning model using AU features and

multidimensional pain outputs beats the MAE of those humans. Moreover, when averaging our

prediction with the human predictions, the performance can be further improved. This implies

that learning pain as a function of individual AUs may be a more accurate and systematic way

than learning pain from the whole face.

We also compare our model using true AUs with [XHdS19] that has a model with similar

structure but uses AUs predicted automatically from the output of a deep convolutional network.

Our results significantly outperform [XHdS19] demonstrating the potential of an end-to-end

VAS prediction model if the AU prediction stage is improved.

1.4 Discussion and Conclusion

We explored a model that predicts VAS using facial actions units, and beats human

observers on the UNBC-McMaster Shoulder Pain dataset. When a human observer is available,

the performance can be largely improved simply by averaging our prediction and the human

prediction. While the human observer in the UMBC-McMaster dataset is not necessarily the

22



same human that labeled the AUs, it would be interesting to explore whether this method of

using human-labeled AUs can beat the same observer at VAS prediction.

We studied ablations of the Extended Multitask Learning Model. The approaches using

multitask learning, multidimensional pain measurement and ensemble learning can be used in

similar healthcare datasets and tasks. Our model can be combined with existing frame-level pain

estimation models such as AU or PSPI extractors to easily form a video-level metric prediction

model. In this case, the performance shown in this paper provides an upper bound on the

accuracy that can be achieved when using automatically estimated AUs instead of manually

labeled AUs. It also provides a baseline for estimating sequence-level pain ratings such as VAS

using widely-used frame-level pain related measurements such as AUs and PSPI.
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Figure 1.7. Bar graphs showing the MAE, MSE, 1-ICC, 1-PCC (we plot 1-ICC and 1-PCC
instead of ICC and PCC so that for all sub-figures shorter bars mean better performance) of the
following models predicting VAS using 3 different combinations (PSPI, PSPI+AU, PSPI+AU
max) of frame-level labels: (1) 4 scores MTL. Predicting 4 scores using multitask learning. (2) 4
scores. Predicting 4 scores using 4 separate models. (3) VAS × 4 MTL. Predicting 4 VAS using
multitask learning. (4) VAS × 4 predicting 4 VAS using 4 separate models. (5) 4 scores × 4
MTL. Predicting 4 copies of 4 scores using multitask learning. (6) VAS × 16 MTL. Predicting
16 copies of VAS using multitask learning.
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Chapter 2

Automated Pain Detection in Facial Videos
of Children using Human-Assisted Trans-
fer Learning

2.1 Introduction

In the classic model of machine learning, scientists train models on a collected dataset

to accurately predict a desired outcome and then apply learned models to new data measured

under identical circumstances to validate performance. Given the notable variation in real

world data, it is tempting to apply learned models to data collected under similar but non-

identical circumstances. However, performance in such circumstances often deteriorates due

to unmeasured factors not accounted for between the original and new datasets. Nevertheless,

knowledge can be extracted in these scenarios. Transfer learning, or inductive transfer in

machine learning parlance, focuses on using knowledge gained from solving one problem to

improve performance on a different but related problem [WVW07]. The present paper describes

application of transfer learning to the important clinical problem of automated pain detection in

children.

Accurate measurement of pain severity in children is difficult, even for trained profession-

als and parents. This is a critical problem as over-medication can result in adverse side-effects,

including opioid addiction, and under-medication can lead to unnecessary suffering [QSH15].
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The current clinical gold standard and most widely employed method of assessing clinical

pain is patient self-report [ZPG+16]. However, this subjective method is vulnerable to self-

presentation bias. Consequently, clinicians often distrust pain self-reports, and find them more

useful for comparisons over time within individuals, rather than comparisons between individu-

als [VB09]. Further, infants, young children, and others with communication/neurological disabil-

ities do not have the ability or capacity to self-report pain levels [ZPG+16, SAD+15, AKRP+16].

As a result, to evaluate pain in populations with communication limitations, observational tools

based on nonverbal indicators associated with pain have been developed [SFV+17].

Of the various modalities of nonverbal expression (e.g., bodily movement, vocal qualities

of speech), it has been suggested that facial activity provides the most sensitive, specific, and

accessible information about the presence, nature, and severity of pain across the life span, from

infancy [GC87] to advanced age [HHP+14]. Moreover, observers largely consider facial activity

during painful events to be a relatively spontaneous reaction [SFV+17].

Evaluation of pain based on facial indicators requires two steps: (1) Extraction of facial

pain features and (2) pain recognition based on these features. For step (1), researchers have

searched for reliable facial indicators of pain, such as anatomically-based, objectively coded

Facial Action Units (AUs) defined by the Facial Action Coding System (FACS) [EF76,MVJP17].

(Visualizations of facial activation units can also be found at https://imotions.com/blog/facial-

action-coding-system/). However, identifying AUs traditionally requires time intensive offline

coding by trained human coders, limiting application in real-time clinical settings. Recently,

algorithms to automatically detect AUs [MVJP17] have been developed and implemented in

software such as iMotions (imotions.com) allowing automatic output of AU probabilities in

real-time based on direct recording of face video. In step (2), machine learning algorithms such

as linear models [SAD+15], SVM [ALC+09], and Neural Networks [MR06] have been used to

automatically recognize pain based on facial features.

Although a simple machine learning model based on features extracted by a well-designed

algorithm can perform well when training and test data have similar statistical properties,
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problems arise when the data follow different distributions, as happens, for example, when

videos are recorded in two different environments. We discovered this issue when training videos

were recorded in an outpatient setting and test videos in the hospital. One way to deal with

this problem is to use transfer learning, which discovers “common knowledge” across domains

and uses this knowledge to complete tasks in a new domain with a model learned in the old

domain [PY10]. In this work, we show that features extracted from human-coded (manual) AUs

are less sensitive to domain changes than features extracted from iMotions (automated) AU

codings, and thus develop a simple method that learns a projection from automated features onto

a subspace of manual features. Once this mapping is learned, future automatically coded data

can be transformed to a representation that is more robust between domains. In this work, we

use a neural network model to learn a mapping from automated features to manual features, and

another neural network model to recognize pain using the mapped facial features.

To summarize, our contributions of this work include demonstrating that:

• Manually/automatically coded AUs can be used to successfully recognize clinical pain in

videos with machine learning.

• Environmental factors modulate the ability of automatically coded AUs to recognize

clinical pain in videos.

• Manually coded AUs (especially previously established “pain-related” ones) can be used to

successfully recognize pain in videos with machine learning across different environmental

domains.

• Automatically coded AUs from iMotions do not directly represent or correlate with AUs

defined in FACS.

• Transfering automated features to the manual feature space improves automatic recognition

of clinical pain across different environmental domains.
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This work was presented at the Joint Workshop on Artificial Intelligence in Health and a shorter

version of this paper appeared in the proceedings [XCD+18].

2.2 Methods

2.2.1 Participants

One hundred and forty-three pediatric research participants (94 males, 49 females) aged

12 [10, 15] (median [25%, 75%]) years old and primarily Hispanic (78%) who had undergone

medically necessary laparoscopic appendectomy were videotaped for facial expressions during

surgical recovery. Videos were subsequently categorized into two conditions: pain and no-pain.

Participating children had been hospitalized following surgery for post-surgical recovery and

were recruited for participation within 24 hours of surgery at a pediatric tertiary care center.

Exclusion criteria included regular opioid use within the past six months, documented mental or

neurological deficits preventing study protocol compliance, and any facial anomaly that might

alter computer vision facial expression analysis. Parents provided written informed consent and

youth gave written assent [HHG+18]. The local institutional review board approved the research

protocol.

2.2.2 Experimental Design and Data Collection

Data were collected over three visits (V): V1 within 24 hours after appendectomy; V2

within the calendar day after the first visit; and V3 at a follow-up visit 25 [19, 28] (median [25%,

75%]) days postoperatively when pain was expected to have fully subsided. Data were collected

in two environmental conditions: V1 and V2 in hospital and V3 in the outpatient setting. At

every visit, two 10-second videos (60 frames per second at 853×480 pixel resolution) of the face

were recorded while manual pressure was exerted at the surgical site for 10 seconds (equivalent

of a clinical examination). During hospital visits (V1, V2), participants were lying in the hospital

bed with the head of the bed raised. In the outpatient lab in V3, they were seated in a reclined
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Table 2.1. Numbers of Samples at Different Pain Levels in Each Visit.

Pain Level 0 1 2 3 4 5 6 7 8 9 10
V1 16 12 18 28 31 26 26 19 24 15 11
V2 4 18 24 40 21 23 16 13 14 8 4
V3 166 17 3 1 0 0 0 0 0 0 0

Figure 2.1. Data Domain Illustration. The area of category is not proportional to the number of
samples.

chair. Participants rated their pain level during manual pressure using a 0-10 Numerical Rating

Scale, where 0 = no-pain and 10 = worst pain ever. For classification purposes, and following

convention used by clinicians for rating clinically significant pain [HSDA10], videos with pain

ratings of 0-3 were labeled as no-pain, and videos with pain ratings of 4-10 were labeled as

pain. Two hundred and fifty-one pain videos were collected from V1/2, 160 no-pain videos

were collected from V1/2, and 187 no-pain videos were collected from V3. The numbers of

samples collected for different pain levels and visits are shown in Table 2.1. Note that all V3 data

are labeled as no-pain and there are only 4 pain ratings over 1 in V3. In contrast, the majority

of no-pain data in V1 and V2 are ratings of 2 and 3. Figure 2.1 “All Data” demonstrates the

distribution of pain and no-pain videos across environmental conditions.

2.2.3 Feature Extraction

For each 10-second video sample we extracted AU codings per frame to obtain a sequence

of AUs. This was done both automatically by iMotions software (www.imotions.com) and

manually by a FACS trained human in a limited subset. A second trained human independently

coded a subset of the videos coded by the first human. We then extracted features from the
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AU FACS name AU FACS name

1 Inner brow raiser 15 Lip corner depressor

2 Outer brow raiser 17 Chin raiser

4 Brow lowerer 18 Lip pucker

5 Upper lid raiser 20 Lip stretcher

6 Cheek raiser and Lid compressor 23 Lip tightener

7 Lid tightener 24 Lip pressor

9 Nose wrinkler 25 Lips part

10 Upper lip raiser 26 Jaw drop

12 Lip corner puller 28 Lip suck

14 Dimpler 43 Eyes closed

Figure 2.2. FACS names (descriptions) of 20 AUs coded by iMotions. AUs 1-7 and 43 are upper
face AUs, and the others are lower face AUs.

sequence of AUs.

Automated Facial Action Unit Detection:

The iMotions software integrates Emotient’s FACET technology (www.imotions.com),

formally known as CERT [LWW+11]. In the described work, iMotions software was used

to process videos to automatically extract 20 AUs as listed in Figure 2.2 and three head pose

indicators (yaw, pitch and roll) from each frame. The values of these codings represent estimated

log probabilities of AUs, ranging from −4 to 4.

Manual Facial Action Unit Detection:

A trained human FACS AU coder manually coded 64 AUs (AU1-64) for each frame of a

subset (54%) of videos and labeled AU intensities (0-5, 0 = absence). In order to evaluate the

reliability of the manual codings, we had another trained human coder code a subset (15%) of

videos coded by the first human.

Feature Dimension Reduction:

The number of frames in our videos was too large to use full sequences of frame-coded

AUs. To reduce dimensionality, we applied 11 statistics (mean, max, min, standard deviation,
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95th, 85th, 75th, 50th, 25th percentiles, half-rectified mean, and max-min) to each AU over all

frames as in [SAD+15] to obtain 11× 23 features for automatically coded AUs, and 11× 64

features for manually coded AUs. We call these automated features and manual features,

respectively. The range of each feature was rescaled to [0,1] to normalize features over the

training data.

2.2.4 Machine Learning Models

Neural Network Model to Recognize Pain with Extracted Features:

A neural network with one hidden layer was used to recognize pain with extracted

automated or manual features. The number of neurons in the hidden layer was twice the number

of neurons in the input layer, and the Sigmoid activation function σ(x) = 1/(1+ exp(−x)) was

used with batch normalization for the hidden layer. The output layer used Softmax activation

and cross-entropy error.

Neural Network Model to Predict Manual Features with Automated Features:

A neural network with the same structure was used to predict manual features from

automated features, except that the output layer was linear and mean squared error was used as

the loss function.

Model Training and Testing:

Experiments were conducted in a participant-based (each participant restricted to one

fold) 10-fold cross-validation fashion. Participants were divided into 10 folds, and each time

1 fold was used as the test set, and the other 9 folds together were used as the training set.

We balanced classes for each participant in each training set by randomly duplicating samples

from the under-represented class. One out of nine participants in the training sets were picked

randomly as a nested-validation set for early stopping in the neural network training. A batch

size of 1/8 the size of training set was used.
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Table 2.2. AUC for Classification with SEM (Standard Error of The Mean).

Train on Test on Automated Manual
Automated

“Pain” Features
Manual

“Pain” Features
All D1 0.61±0.006 0.66±0.006 0.63±0.007 0.69±0.006
D1 D1 0.58±0.014 0.62±0.008 0.61±0.008 0.65±0.008
D2 D1 0.57±0.005 0.67±0.007 0.62±0.004 0.7±0.006
All D2 0.9±0.005 0.79±0.007 0.88±0.005 0.8±0.003
D1 D2 0.69±0.011 0.68±0.008 0.73±0.012 0.73±0.01
D2 D2 0.92±0.01 0.79±0.009 0.9±0.007 0.8±0.005

We then examined the receiver operating characteristic curve (ROC curve) which plots

True Positive Rate against False Positive Rate as the discrimination threshold varies. We used

Area under the Curve (AUC) to evaluate classification performance. We considered data from

three domains (D) as shown in Figure 2.1: (1) D1 with pain and no-pain both from V1/2 in

hospital; (2) D2 with pain from V1/2 in hospital and no-pain from V3 from outpatient lab; and

(3) All data, i.e., pain from V1/2 and no-pain from V1/2/3. The clinical goal was to be able to

discriminate pain levels in the hospital; thus evaluation on D1 (where all samples were from the

hospital bed) was the most clinically relevant evaluation.

2.3 Analysis and Discussion

Data from 73 participants labeled by both human and iMotions were used through sec-

tion 2.3.1 to 2.3.5, and data from the remaining 70 participants using only automated (iMotions)

AU codings were included for independent test set evaluation in the results section.

2.3.1 Automated Classifier Performance Varies by Environment

Using automated features, we first combined all visit data and trained a classifier to

distinguish pain from no-pain. This classifier performed well in general (AUC= 0.77±0.011 on

All data), but when we looked at different domains, the performance of D1 (the most clinically

relevant in-hospital environment) was inferior to that on D2, as shown in data rows 1 and 4 under

the “Automated” column in Table 2.2.

There were two main differences between D1 and D2, i.e., between V1/2 and V3 no-pain
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samples. The first was that in V1/2, participants still had some pain and their self-ratings were

greater than 0, while in V3, no-pain ratings were usually 0 reflecting a “purer” no-pain signal.

The second difference was that V1/2 occurred in the hospital with patients in beds and V3

videos were recorded in an outpatient setting with the participant sitting in a reclined chair.

Lighting was also inherently different between hospital and outpatient environments. Since

automated recognition of AUs is known to be sensitive to facial pose and lighting differences,

we hypothesized that added discrepancy in classification performance between D1 and D2 was

mainly due to the model classifying on environmental differences between V1/2 and V3. In other

words, when trained and tested on D2, the classifier might distinguish “lying in hospital bed” vs

“more upright in outpatient chair” as much as pain vs no-pain (this is similar to a computer vision

algorithm doing well at recognizing cows by recognizing a green background).

In order to investigate this hypothesis and attempt to improve classification on the

clinically relevant D1, we trained a classifier using only videos from D1. Within the “Automated”

column, row 2 in Table 2.2 shows that performance on automated D1 classification does not drop

much when D2 samples are removed from the training set. At the same time, training using only

D2 data results in the worst classification on D1 (row 3), but the best classification on D2 (last

row) as the network is able to exploit environmental differences (no-pain+more upright from V3,

pain+lying-down from V1/2).

Figure 2.3 (b) (LEFT) shows ROC curves of within and across domain tests for models

trained on automated features in D2. The dotted (red) curve corresponds to testing on D2 (within

domain) and the solid (blue) curve corresponds to testing on D1 (across domain). The model

performed well on within domain classification, but failed on across domain tasks.

2.3.2 Classification Based on Manual AUs Are Less Sensitive to Environ-
mental Changes

We also trained a classifier on manual AUs labeled by a human coder. Interestingly,

results from the classifier trained on manual AUs showed less of a difference in AUCs between
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domains, with a higher AUC for D1 and a lower AUC for D2 relative to those with automated

AUs (see Table 2.2 “Manual” and “Automated” columns). Overall, manual AUs appeared

to be less sensitive to changes in the environment, reflecting the ability of human labelers to

consistently code AUs without being affected by lighting and pose variations.

When we restricted training data from All to only D1 or only D2 data, classification

performance using manual AUs went down, likely due to the reduction in training data, and

training with D2 always gave better performance than training with D1 on both D1 and D2 test

data, which should be the case since pain and no-pain samples in D2 are more discrepant in

average pain rating. These results appear consistent with our hypothesis that human coding of

AUs is not as sensitive as machine coding of AUs to environmental differences between V1/2

and V3.

Figure 2.3 (b) (MIDDLE) displays ROC curves for manual features. As discussed

above, in contrast to the plot on the left for automated features, manual coding performance

outperformed automated coding performance in the clinically relevant test in D1. The dotted

(red) curve representing within-domain performance is only slightly higher than the solid (blue)

curve, likely due in part to the quality difference in no-pain samples in V1/2 and V3, and also

possibly any small amount of environmental information that the human labeler was affected by.

Note that ignoring the correlated environmental information in D2 (i.e., pain faces were more

reclined and no-pain faces were more upright) resulted in a lower numerical performance on D2

but does not likely reflect worse classification of pain but instead the failure to “cheat” by using

features affected by pose angle to classify all upright faces as “no-pain.”

2.3.3 Restricting Manual AUs to Those Associated with Pain Improves
Classification

In an attempt to reduce the influence of environmental conditions to further improve

performance on D1, we restricted the classifier to the eight AUs consistently associated with

pain: 4 (Brow Lowerer), 6 (Cheek Raiser), 7 (Lid Tightener), 9 (Nose Wrinkler), 10 (Upper
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(a) Training with D1

(b) Training with D2

(c) Training with All

Figure 2.3. ROC Curves for classification on D1 and D2 using automated features (left), manual
features (middle) and pain-related manual features (right), when the model is trained on (a)
D1, (b) D2 and (c) All data. The dotted (red) lines are ROCs when the machine is able to use
environment information to differentiate pain and no-pain conditions, and the solid (blue) lines
show the machine’s ability to discriminate between pain and no-pain based on AU information
alone. The straight (yellow) line graphs the performance of random chance.

Lip Raiser), 12 (Lip Corner Puller), 20 (Lip Stretcher), and 43 (Eyes Closed) [Prk92, Prk09] as

illustrated in Figure 2.4 to obtain 11 (statistics) ×8 (AUs) features. Pain prediction results using

these “pain” features are shown in the last two columns in Table 2.2. Results show that using
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8 AUs related to pain
4 (Brow Lowerer)

6 (Cheek Raiser)

7 (Lid Tightener)

9 (Nose Wrinkler)

10 (Upper Lip Raiser)

12 (Lip Corner Puller)

20 (Lip Stretcher)

43 (Eyes Closed)

12/19

Figure 2.4. Illustration of eight “pain-related” facial AUs.

only pain-related AUs improved classification performance of manual features. However, it did

not seem to help as much for automated features.

Similarly, Figure 2.3 (b) (RIGHT) shows that limiting manual features to use only pain-

related AUs further improved D1 performance when training with D2. We also employed PCA

on pain-related features and found that performance in the hospital domain was similar if using

four or more principal components.

In Figure 2.3 (a) and (c) we show ROC curves similar to Figure 2.3 (b) except with

different training data. These curves correspond to row 2 and 5 (a), or 1 and 4 (c), under

“Automated,” “Manual,” and “Manual ‘Pain’ Features” in Table 2.2.

2.3.4 iMotions AUs Are Different Than Manual FACS AUs

Computer Vision AU automatic detection algorithms have been programmed/ trained

on manual FACS data. However, we demonstrate differential performance of AUs encoded

automatically versus manually. To understand the relationship between automatically encoded

v. manually coded AUs, we computed correlations between binarized automatically coded

AUs and manually coded AUs at the frame level as depicted in Figure 2.5. The FACS names

corresponding to AU numbers are listed in Figure 2.2, in which AUs 1, 2, 4, 5, 6, 7, 43 are upper

face AUs and all others are lower face AUs. If two sets of AUs were identical, the diagonal of

the matrix (marked with small centered dots) should yield the highest correlations, which was
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Figure 2.5. Correlation matrix of AU pairs from automated and manual codings using All data.

Figure 2.6. Correlations of AU pairs from two of (1)iMotions; (2)human 1; and (3) human 2 on
a subset of the data.

not the case. For example, manual AU 6 was highly correlated with automated AU 12 and 14,

but had relatively low correlation with automated AU 6.

The correlation matrix shows that not only is our first human coder less affected by

environmental changes, the AUs she coded are not in agreement with the automated AUs. Our

second trained human coder (human 2) shows a better correlation with the coding of human 1

than between each human and iMotions, shown in Figure 2.6 (LEFT). The correlation between
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Figure 2.7. Self-correlation Matrices of AU pairs from iMotions or humans.

Figure 2.8. Self-correlation Matrices of AU pairs from iMotions or humans with “pain” AUs
arranged together at the top left corner.

each of the humans and the software on the same subset is shown in Figure 2.6 (MIDDLE,

RIGHT). This likely explains the reduced improvement by restricting the automated features

model to “pain-related AUs” as these have been determined based on human FACS coded AUs.

The self-correlation matrices between AUs in iMotions and the human coder are shown

in Figure 2.7. AUs coded by iMotions show higher correlations (between different iMotions

coded AUs) than AUs coded by humans. Some human AU codings were also correlated, which

is expected since specific AUs often occur together (e.g., AU 1 and 2 for inner and outer brow

raiser and AU 25 and 26 for lips part and jaw drop) and other AUs tend to occur together in pain.
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Table 2.3. AUC (and SEM) with Transferred Automated Features.

Train on Test on All Features “Pain” Features 7 PCs 4 PCs 1 PC
All D1 0.61±0.009 0.63±0.009 0.68±0.006 0.69±0.008 0.65±0.009
D1 D1 0.62±0.009 0.64±0.014 0.66±0.012 0.67±0.011 0.65±0.009
D2 D1 0.58±0.011 0.59±0.01 0.66±0.008 0.68±0.006 0.66±0.009
All D2 0.82±0.009 0.82±0.009 0.76±0.009 0.75±0.012 0.7±0.01
D1 D2 0.69±0.009 0.71±0.013 0.7±0.015 0.71±0.015 0.69±0.011
D2 D2 0.88±0.011 0.86±0.006 0.76±0.013 0.74±0.01 0.7±0.009

This latter correlation of pain AUs is more evident in Figure 2.4 which shows the same content

as Figure 2.7 except that in Figure 2.4 the eight pain-related AUs are put together at the upper

left corner to highlight their higher correlations. Interestingly, higher correlations within the pain

AUs for iMotions coding was observed but the pattern is different.

2.3.5 Transfer Learning via Mapping to Manual Features Improves
Performance

We have shown that manual codings are not as sensitive to domain change. However,

manual coding of AUs is very time-consuming and not amenable to an automated real-time

system. In an attempt to leverage manual coding to achieve similar robustness with automatic

AUs, we utilized transfer learning and mapped automated features to the space of manual features.

Specifically, we trained a neural network model to estimate manual features from automated

features using data coded by both iMotions and a human. Separate models were trained to

predict: manual features of 64 AUs, manual features of the eight pain-related AUs, and principal

components (PCs) of the manual features of the eight pain-related AUs. PCA dimensionality

reduction was used due to insufficient data for learning an accurate mapping from all automated

AUs to all manual AUs.

Once the mapping network was trained, we used it to transform the automated features

and trained a new network on these transformed data for pain/no-pain classification. The 10-fold

cross-validation was done consistently so that the same training data was used to train the

mapping network and the pain-classification network.

In Table 2.3, we show classification AUCs when the classification model was trained
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Figure 2.9. ROC Curves for classification on two domains using our transfer learning model
(left) and plot of average model output pain score (with error bars indicating standard deviation)
over true pain level (right).

and tested with outputs from the prediction network. We observed that when using All data

to train (which performed best), with the transfer learning prediction network, automated

features performed much better in classification on D1 (0.68−0.69 compared to 0.61−0.63 in

Table 2.2). Predicting four principal components of manual pain-related features yielded the best

performance in our data. Overall, the prediction network helped in domain adaptation of a pain

recognition model using automatically extracted AUs.

Figure 2.9 (LEFT) plots the ROC curves on two domains using the transfer learning

classifier trained and tested using four predicted features. The model performed well in across-

domain classification. Compared to Figure 2.3 (c) (LEFT), the transferred automated features

showed properties more similar to manual features (Figure 2.3 (c) (RIGHT)), with smaller

differences between performance on the two domains and higher AUC on the clinically relevant

D1. Table 2.3 shows numerically how transfer learning helped automated features ignore

environmental information in D2 like humans, and learn pure pain information that can be used

in classification on D1.

Within-domain classification performance for D1 was also improved with the prediction

network. These results show that by mapping to the manual feature space, automated features
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2 steps: iMotions -> Ryley -> Class

     Classification

Classification       Classification

     PCA    Regression

     Regression

Automated features (11x23)

Manual pain-related features (11x8) 

pain/no pain class

4 features

2

6

1

4

3
5

Figure 2.10. Illustration of Machine Learning Models. 1/2 are classifications using auto-
mated/manual pain features, in which 2 does better than 1. 3-4 can be done to reduce feature
dimensions while maintaining performance. 6-2 and 5-4 are our transfer learning models, train-
ing a regression network to map automated features to a subspace of manual pain features before
classification.

can be promoted to perform better in pain classification.

Figure 2.9 (RIGHT) plots output pain scores of our model tested on D1 versus 0-10

self-reported pain levels. The model output pain score increases with true pain level, indicating

that our model indeed reflects pain levels.

2.4 Results

In the previous section we showed that in Figure 2.10 classification with pain-related pain

features (2) performed better than automated features (1) on D1, which was the clinically relevant

classification. We also found that applying PCA to manual features (3-4) does not change

performance on D1 much. Thus, we introduced a transfer learning model to map automated

features first to manual pain-related features (or the top few principal components of them), and

then used the transferred features for classification (6-2 or 5-4). We obtained similar results

to manual features on D1 with the transfer learning model (5-4) mapping to four principal

components of manual features.

Table 2.2 shows that without our transfer learning method, training on all data and

restricting to pain-related AUs results in the best performance using automated features for
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Figure 2.11. ROC Curves for classification on NEW test domains D1 and D2 using our transfer
learning model (left) and plot of average model output pain score (with error bars indicating
standard deviation) over true pain level (right).

D1. And cross-validation results in Table 2.3 shows that with our method, using all data and

predicting four PCs yielded the best performance for D1. With these optimal choices of model

structure and training domain before and after transfer learning, we show the benefits of transfer

learning in two experiments.

2.4.1 Test on New Subjects with Only iMotions AU Codings

In this section we report on the results from testing our transfer learning method on a

new separate dataset (new participants), which contained only automated features. We trained

two models, with and without transfer learning, using all the data in section 2.3 labeled by both

iMotions and humans, and tested the model on this new dataset only labeled by iMotions D1,

D2. (We use italicized domain names to indicate that this is independent test data D1, D2.) Our

model with transfer learning (AUC= 0.72±0.002) performed better than the model without it

(AUC= 0.67±0.002) on D1 with a p-value= 1.33e−45 in a one-tailed two-sample t-test.

Similar to Figure 2.9, in Figure 2.11 we plot ROC curves for classification on the NEW

test dataset (LEFT) and output pain scores at 0-10 pain levels (RIGHT) using our transfer

learning model.
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Figure 2.12. Scatter plot and distributions of pain scores (transfer learning vs original) using
original iMotions features (on the x-axis) and transferred iMotions features (on the y-axis).

In Figure 2.12, we show a scatter plot of neural network output pain scores using

transferred automated features versus those using original automated features, as well as pain

score distributions, separately for training (All Data from section 2.3) and test (D1 from NEW

test data in the current section), pain and no-pain. We can see for original automated features

scores, no-pain samples from D1 are distributed very differently from no-pain in All data domain

used for training and fall mostly in the range of the pain class. Results using transfer learning do

not appear to have this problem.

2.4.2 Test with Masked Pain and Faked Pain

As another test of the effect of our transfer learning model, we looked at results of

classifying whether participants are in pain or not from videos where children were asked to
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fake pain when they were not really in pain as well as when they were asked to suppress visual

expressions of pain when they were in pain.

Although facial expressions convey rich and objective information about pain, they

can be deceptive because people can inhibit or exaggerate their pain displays when under

observation [HC04]. It has been shown that human observers discriminate real expressions of

pain from faked expressions only marginally better than chance [HC04, BLFL14]. Children

can also be very good at suppressing pain, but not fully successful in faking expressions of

pain [LCC06]. In this section we discuss performance of masked and faked pain in machine

learning models trained to distinguish genuine pain and no-pain.

In addition to the data described in section 2.2.2, we recorded videos of “masked pain”

in V1 and V2 by asking participants to suppress pain during the 10-second manual pressure,

and videos of “faked pain” during V3 by asking participants to fake the worst pain ever during

manual pressure. As in section 2.2.2, we asked participants to rate their true pain level during

manual pressure with a number from 0 to 10. We then labeled masked-pain videos with pain

ratings of 4-10 as masked-pain and faked-pain videos with pain ratings of 0-3 as faked-pain,

and discarded other samples. This ensured that in masked-pain videos participants actually

experienced pain and in faked-pain videos participants in fact felt no pain. One hundred and

seventeen masked-pain samples and 116 faked-pain samples were collected. The distribution of

the four classes within the three visits is shown in Figure 2.13.

Using the best models before and after transfer learning trained to distinguish between

genuine pain and no-pain described above, the masked and faked pain samples were processed

to obtain pain labels. The results are shown in Figure 2.14. We can see that without transfer

learning (LEFT), most masked-pain data were classified as real-pain and most faked-pain as no-

pain. This appeared to be the case because the AU features coded automatically were sensitive

to environmental factors, and during training the machine learned to discriminate between

genuine pain and no-pain by recognizing environmental differences between them. At test time,

since masked-pain is in the same environmental domain as real-pain and faked-pain is in the
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Figure 2.13. Distribution of four classes in three visits. The area of category is not proportional
to the number of samples.

Figure 2.14. Bar graph showing classification of real-pain, masked-pain, faked-pain and no-pain.
The area of bars shows the distribution of predicting pain and no-pain.

similar environment as no-pain, they are assigned to the corresponding classes. In contrast, with

transfer learning (Figure 2.14 (RIGHT)), masked-pain was mostly classified as no-pain and

faked-pain as real-pain. This might be because automated features were transferred to ignore the

difference between the two classes caused by environmental change, and the machine can only

use differences in facial actions to complete the classification task. Humans’ attempts to mask

pain are to mimic no-pain faces and, similarly, humans’ attempts to fake pain are to mimic pain

faces. The machine in this way classifies pain and no-pain according to expressed facial actions.
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2.5 Conclusion

In the present work we recognized differences in classifier model performance (pain vs

no-pain) across domains that reflect environmental differences as well as differences reflecting

how the data were encoded (automatically v. manually). We demonstrate that manually coded

facial features are more robust than automatically coded facial features to environmental changes

which allow us to obtain the best performance on our target data domain. We then introduced

a transfer learning model to map automated features first to manual pain-related features (or

principal components of them), and then used the transferred features for classification (6-2 or

5-4 in Figure 2.10). This allowed us to leverage data from another domain to improve classifier

performance on the clinically relevant task of automatically distinguishing pain levels in the

hospital. Further, we were able to demonstrate improved classifier performance on a separate,

new data set.

2.6 Future Work

Planned future work:

1. Classification of real-pain, masked-pain, faked-pain, and no-pain using machine learning,

and comparison to human judgments.

2. Classification of genuine expression and non-genuine expression using machine learning,

and comparison to human judgments.

3. Using transfer learning to improve fusion analysis of video features and peripheral physio-

logical features in [XSN+18].

4. Multidimensional pain assessment such as pain catastrophizing and anxiety based on facial

activities.
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Chapter 3

Pain Evaluation in Video using Extended
Multitask Learning from Multidimen-
sional Measurements

3.1 Introduction

Reading facial expressions is one of the most useful ways that humans perceive pain in

others [For76]. Accurate measurement of the pain severity, however, is difficult even for trained

professionals. The current clinical gold standard and most widely employed method of assessing

clinical pain is patient self-report [ZPG+16]. However, this method is subjective and vulnerable

to social and self-presentation biases and requires substantial cognitive, linguistic, and social

competencies [ZPG+16, SAD+15, AKRP+16]. The goal of an automated facial pain recognition

model is to generate a pain level based on facial videos that predicts the patient’s self-reported

visual analog scale (VAS) pain level. The model should be able to generalize to new patients, for

example those with communication disabilities.

Pain is multidimensional. Major dimensions of pain include physiological, sensory,

affective, cognitive, behavioral, and sociocultural [McG92] aspects. Self-reported VAS values

the subjective nature of pain, which has been shown to be not as stable and accurate as a

multidimensional assessment [RRM+07, ABR83, CYT+02]. In this paper, we analyzed the

relationship between several pain measurements and their predictions from a machine learning

48



model, and proposed a novel method to learn a pain score as a combination of several dimensions

of pain to better approximate the patient’s VAS level.

A natural way to predict a pain score using video is to use a 3D CNN. However, this

is difficult in clinical pain detection because (1) clinical pain datasets are usually too small to

train a deep model and (2) the length of the video is not fixed. By contrast, there are many

models designed and trained for image face analysis, and we can fine-tune such a model to

apply to pain data frames. We propose an efficient three-stage model to estimate pain in video.

In the first stage, we use deep neural networks pre-trained on other face datasets to predict

frame-level pain features such as Prkachin and Solomon Pain Intensity (PSPI) [PS08] scores

directly from raw images. We then extract statistics from the output of the first stage, and send

them into a neural network to get the sequence-level multidimensional pain scales. Further, we

find an optimal linear combination of these pain scales to estimate VAS. We also propose to

use multitask learning in each of the first two stages, and here show that both help improve the

final VAS estimation. We show on the UNBC-McMaster Shoulder Pain dataset [LCP+11a] that

the proposed extended multitask-learning multidimensional-pain approach outperforms current

state-of-the-art methods on pain intensity estimation in video.

3.1.1 Contributions

• We propose a three-stage multitask learning model that exploits multiple dimensions of

pain to evaluate the current gold standard pain metric VAS in video from video frames

directly

• We explore different frame-level features and discuss the relationship between frame-level

and sequence-level pain ratings

• We analyze the contribution of different aspects of our model

• Our model beats the current state-of-the-art performance on the UNBC-McMaster dataset
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3.1.2 Related Work

Two types of pain metrics are considered in pain studies [ALC+09]. In facial video

pain recognition, frame-level pain metrics are calculated from the intensity of objective facial

action units (AUs), such as PSPI. Sequence-level pain metrics are rated by observers or subjects

themselves.

Most research on automatic pain detection using facial expression has focused on objec-

tive frame-level pain metrics. Early studies have primarily involved two steps: extracting features

from facial images, and then using machine learning models to predict pain levels. Ashraf et

al. and Lucy et al. used Active Appearance Model (AAM)-based features and Support Vector

Machine (SVM) to detect pain [ALC+09,LCP+11a]. Monwar et al. extracted location and shape

features of the face and used a neural network to recognize pain expressions [MR06]. Rudovic

proposed the heteroscedastic Conditional Ordinal Random Field to change the variance in the

ordinal probit model to adapt to the pain expressiveness level specific to each subject [RPP13].

Recently, deep learning has been increasingly used to assess pain directly from raw pixels.

Wang et al. fine-tuned a face verification network [WXL+17]. Zamzmi et al. combine deep

features from pre-trained VGGFace with traditional features for neonates’ pain facial expres-

sion detection [ZGKS18]. Tavakolian et al. encoded CNN extracted features into a compact

binary code using a deep network so that videos with same level of pain have smaller Hamming

distance. [TH18].

There is also work considering spatiotemporal information when estimating pain in a

single frame. Zhou et al. implemented a Recurrent Convolutional Neural Network (RCNN)

model that took temporal information into feature extraction by adding recurrent connections

within each convolutional layer [ZHSZ16]. Rodriguez et al. linked CNNs to a Long Short-Term

Memory Networks (LSTM) model [RCG+17]. Tavakolian and Hadid used 3D CNNs to capture

a wide range of spatiotemporal variations of the faces [TH18]. Other work has attempted to

detect peak pain intensity of the entire video using multiple-instance learning [SDB13,RRBP16].
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None of the above methods estimate a sequence-level self-reported pain, but pain is a

subjective experience and self-rating such as VAS is still the most commonly used pain score

in clinical settings. Only a few works addressed the problem of estimating VAS score in facial

videos. Sikka et al. [SAD+15] and Xu et al. [XCD+18] detected postoperative pain in children

using AUs extracted by iMotions (imotions.com). Liu et al. proposed a two-stage method to first

train a neural network model at the frame level using sequence-level VAS as labels and AAM

landmarks as inputs, and then obtained video VAS score from frame-level predictions using a

Gaussian process regression model [LPS+17]. Martinez et al. used a bidirectional LSTM model

to predict PSPI of each video frame using AAM landmarks and then applied personalized HCRFs

(Hidden Conditional Random Fields) to predict VAS using the PSPI sequences [MRP+17].

Our model can be decomposed to frame-level and sequence-level predictions in a similar

way to the two stages in [LPS+17,MRP+17,XCD+18] but our model takes raw images as inputs

in stage 1, which involves the use of deep learning and transfer learning, and doesn’t require

AAM landmarks or AUs on test data which are obtained from expensive human annotation of key

frames and automated landmark/AU detector and tracking algorithms. In [XdS20], we explored

sequence-level models similar to our sequence-level stage 2 and 3 independently, using true AU

and PSPI labels In this paper, we use a similar stage 2 and 3 but use AU and PSPI predictions

from stage 1 as inputs.

3.2 Method

We developed our model based on the widely used UNBC-McMaster Shoulder Pain

dataset [LCP+11a]. It includes facial videos of participants suffering from shoulder pain while

performing a series of active and passive range-of-motion tests to their affected and unaffected

limbs on two separate occasions. The dataset has 25 subjects, 200 videos and 48,398 frames of

size 320 x 240 pixels in total.

The dataset has two types of labels: frame-level labels and sequence-level labels. Frame-
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level labels include 66 AAM landmarks, 11 facial action unit (AU) intensities and 1 PSPI score.

Both of the previous works predicting VAS using this dataset [MRP+17, LPS+17] used AAM

landmarks as features but in this work we only used images as inputs. We also used AUs and

PSPIs as outputs during training.

AUs are defined by FACS (Facial Action Coding System) [EF76] to code nearly all

anatomically possible facial expressions. Figure 3.5(a) shows names of some AUs. In this work,

we work with the 9 AUs (AU4, 6, 7, 10, 12, 20, 25, 26 and 43) present in more than 500 frames

in the dataset. PSPI [PS08] is a pain evaluation metric computed from a specific set of AU

intensities: PSPI = AU4 + max(AU6,AU7) + max(AU9,AU10) + AU43

AU intensities are integers ranging from 0-5 (weakest trace to maximum intensity possi-

ble), except for AU43 which can only take values from 0 and 1, so PSPI rating is also an integer

and ranges from 0-16 (with larger values reflecting more pain) .

Sequence-level labels include the gold standard self-rating VAS pain score ranging from

0-10, as well as three other pain ratings: OPR (Observers Pain Rating - A value given by a human

observer of the video) 0-5, AFF (Affective-motivational scale) 0-15 and SEN (Sensory Scale)

0-15. The properties of AFF and SEN are discussed in [GMD78, HGDM80]. The description for

SEN/AFF scales is shown in Fig 3.1.

UNPLEASANTNESS WORDS

SLIGHTLY UNPLEASANT VERY UNPLEASANT

SLIGHTLY ANNOYING MISERABLE

ANNOYING VERY DISTRESSING

UNPLEASANT SLIGHTLY INTOLERABLE

SLIGHTLY DISTRESSING VERY MISERABLE

SLIGHTLY MISERABLE INTOLERABLE

VERY ANNOYING VERY INTOLERABLE

DISTRESSING

SENSORY WORDS

EXTREMELY WEAK BARELY STRONG

FAINT CLEAR-CUT

VERY WEAK SLIGHTLY INTENSE

WEAK STRONG

VERY MILD INTENSE

MILD VERY INTENSE

SLIGHTLY MODERATE EXTREMELY INTENSE

MODERATE

(a) SEN Sensory intensity descrip-
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UNPLEASANT SLIGHTLY INTOLERABLE

SLIGHTLY DISTRESSING VERY MISERABLE

SLIGHTLY MISERABLE INTOLERABLE

VERY ANNOYING VERY INTOLERABLE

DISTRESSING

SENSORY WORDS

EXTREMELY WEAK BARELY STRONG

FAINT CLEAR-CUT

VERY WEAK SLIGHTLY INTENSE

WEAK STRONG

VERY MILD INTENSE

MILD VERY INTENSE

SLIGHTLY MODERATE EXTREMELY INTENSE

MODERATE(b) AFF Affective-motivational de-
scriptors

Figure 3.1. Word Descriptors for (a) SEN and (b) AFF

With the help of the labels described above, our goal is to train a model that predicts
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VAS from image sequences directly. We chose the hyper-parameters of the neural networks

based on training/validation learning curves and validation performance. The learning rates were

selected using grid search at logarithmic intervals. The number of epochs and early stopping

criterion were decided by observing the learning curves. The choice of optimizer doesn’t affect

the validation performance much so we chose it based on previous work [PVZ15, XCD+18] and

experience.

3.2.1 Stage 1: PSPI Estimation in Facial Images

Our first stage predicts the frame-level PSPI score using RGB images. We built our

model based on the VGGFace model [PVZ15]. The architecture was designed and pre-trained

to classify 2622 individuals, and we simply replaced the last layer with our own linear fully-

connected regression layer. During training, we updated all parameters in the neural network,

but we used different initial learning rates (1e-4 for the last layer and 1e-5 for other layers). We

used the Adam optimizer and a weight decay of 5e-4. We applied batch-weighted [SH19] Mean

Squared Error (MSE) loss, where the weight of a sample in the loss is inversely proportional

to the proportion of its label (which is PSPI score here) in the current batch, to overcome the

class imbalance problem. The batch-weighted loss has been shown to help reduce overfitting

compared to weighted loss [CJL+19] where weights are calculated for all data. We used a batch

size of 32 and max epochs of 50 and early stopping when the validation loss hadn’t decreased

for 20 epochs.

For image preprocessing, we used the cascade DPM Face Detector [WHM11,MBPVG14]

to detect the face and then extended the bounding box by a factor of 0.1 when cropping the

face. We then resized the image to 224 × 224 and normalized each channel with the mean and

standard deviation of the data the model was pre-trained on.
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VGG16: conv_1, …, fc6

PSPI 

9 statistics: mean, max, min, standard deviation, 95th, 85th, 75th, 50th, 25th percentiles

VAS

...

9 AUs

OPR AFF SEN 

VAS

VGG16 fc7 (4096)

Hidden layer (18)

Stage 1

Stage 2

Stage 3

Accumulate over video

(fc, sigmoid, batchnorm)

Mahta:
Having several arrows makes more sense
Having space between pictures
To make PSPI and AU blocks smaller - can have a separate table to describe layers (or put them on the side)
Making two diagrams one for training one for test

(fc, linear)

weighted MSE loss

(optimal combination)

MSE loss

weighted MSE loss

(fc, linear)
9 AUs9 AUs

PSPI PSPI ...
...

Figure 3.2. The proposed three-stage structure. The baseline model is represented by solid
blocks, and shaded blocks with dashed outlines show added parts in multitask learning and
ensemble learning with multidimensional pain scales.

3.2.2 Stage 2: VAS Estimation in Facial Videos using Sequence of
Predictions

After we obtained PSPI predictions of all frames in stage 1, we extracted 9 statistics

(mean, max, min, standard deviation, 95th, 85th, 75th, 50th, 25th percentiles) over all frames

of a video to form a video feature vector. We then sent it to a fully connected neural network

with 1 hidden layer with twice the number of units as the input layer to predict VAS in a linear

output layer using batch-weighted MSE loss similar to stage 1. We used Adam and started with

a learning rate of 1e-2. We set the batch size to 32, max number of epochs to 200, and used early

stopping when the validation loss hadn’t decreased for 20 epochs.

Combining stage 1 and 2 we obtained our baseline model which predicts the VAS score

from video. This is illustrated in Fig 3.2. Stage 1 and 2 were trained separately because the

memory capacity of our GPU doesn’t allow end-to-end training using video data.
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3.2.3 Multitask Learning

The UNBC-McMaster Shoulder Pain dataset contains other pain metrics besides VAS

and PSPI at both the frame and sequence level. At the frame level, it provides several manually

coded FACS AUs. At the sequence level, three other pain ratings are available. We reasoned that

a multitask network [Car97] learning these metrics with the same hidden layer/representation

learning to predict PSPI and VAS may better learn PSPI and VAS.

For example, in stage 1, PSPI is a non-linear combination (due to the max operation) of 6

AUs. The same PSPI could be due to many different combinations of AUs and underlying facial

expressions. Thus there is a noisy many to one mapping. Learning individual AU activations is a

simpler mapping, and a network that performs well on the underlying AU representations should

be able to compute PSPI.

Similarly, in the second stage, OPR, AFF, and SEN are very related to the VAS pain score.

OPR in particular is more simply related to the video than VAS is. In particular, OPR should be

a possibly noisy function of the video features whereas VAS may be not fully constrained by

the video; if the person is particularly expressive or stoic, their VAS score may be more or less

related to the video features.

Our proposed multitask architecture is illustrated in Fig 3.2. In stage 1, instead of having

only one output estimating PSPI, we concatenated several AU values and the PSPI score to form

a multitask vector output. During training, we scaled the labels into the same range to make sure

all elements contribute equally to the loss. AU labels are even more sparse than PSPI labels, so

we only used 9 AUs (AU4, 6, 7, 10, 12, 20, 23, 26, 43) labeled in more than 500 frames out of

the 48,398 frames in the dataset. For a similar reason, we weighted the loss function using PSPI

score distribution and only looked at PSPI for validation loss for early stopping.

In stage 2, similarly, we used a 4-dimensional vector representing the four pain ratings

instead of a single value representing VAS as output. The losses are weighted based on the

distribution of VAS scores, and the validation loss is the mean MSE of the 4 outputs.
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3.2.4 Stage 3: Ensemble Learning of Multidimensional Pain Measure-
ment

On the UNBC-McMaster dataset, each of the 4 sequence-level scores can be seen as an

evaluation of pain level, but focusing on different aspects of pain. For example, VAS reflects

how much pain the patient perceives and relies on the patient’s personal understanding of pain,

whilst OPR is based on third-party observation of facial expressions, and will be influenced by

how much “pain expression” the patient shows on his/her face and how good the observer is at

reading facial expressions of pain. They also have different properties. For example, OPR may

be more consistent across subjects when scored by the same observer. As OPR entirely depends

on facial video it should be more easily learned from facial video than VAS in the same way that

AUs should be more learnable from video than any non-linear function of them. At the same

time, OPR may be limited as a measure of actual pain as it is only able to reflect pain revealed

by facial expressions and will be biased if the subject hides it. But any computer vision system

will face the same limitations unless it incorporate features from other sensors [XSN+18].

OPR, AFF, and SEN are all highly correlated with VAS and can be considered as

predictions of VAS. In fact, after scaling the outputs to the same range as VAS, i.e. multiplying

the outputs corresponding to VAS, OPR, AFF, and SEN by 1, 10/5, 10/15, 10/15 respectively, all

4 outputs do a reasonable job at estimating VAS. In other words, we now have 4 “experts” each

with its own prediction of pain level.

Ensemble averaging can be used in this case in the hope of reducing variance at no cost

to bias [Has97]. This corresponds to the last layer in Fig 3.2. The optimal linear combination of

experts to form a least mean squared error estimation of the target score was discussed in [Has97].

Below we briefly discuss the derivation of our ensemble model weights.

Consider each data point (x,y) as an observation of random variables (X ,Y ) from an

unknown multivariate distribution over R9×R. And fi : R9→ R (i = 1,2,3,4) maps stage 2

inputs to a real number, each corresponding to one of the 4 scores.
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We learn the final prediction of VAS as a weighted sum of the four experts fi. The overall

model f̃ can be defined as:

f̃ (x) =
4

∑
i=1

αi fi(x) (3.1)

where we apply the constraint ∑
4
i=1 αi = 1 (and α0 = 0) as suggested by [Cle86, TL86, Has97].

The MSE loss of the final model is:

MSE( f̃ (X)) = E[( f̃ (X)−Y )2] (3.2)

= E[(
4

∑
i=1

αi fi(X)−Y )2] (3.3)

= E[(
4

∑
i=1

αi( fi(X)−Y ))2] (3.4)

Our goal is to minimize the MSE subject to ∑
4
i=1 αi = 1. The Lagrangian expression of

this problem is:

L(X,λ ) = MSE( f̃ (X))−λ (
4

∑
i=1

αi−1) (3.5)

where λ is the Lagrange multiplier.

First, we compute the partial derivative of Eq (3.5) with respect to αk for k = 1,2,3,4:

∂L(X,λ )

∂αk
= E[2

4

∑
i=1

αi( fi(X)−Y )( fk(X)−Y )]−λ (3.6)

Then set the gradients to 0:

4

∑
i=1

αiE[( fi(X)−Y )( fk(X)−Y )] =
λ

2
for k = 1,2,3,4 (3.7)
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Let α = [α1,α2,α3,α4]
T , Ω = [ωi j] = [E[( fi(X)−Y )( f j(X)−Y )]], the equation above becomes:

Ωα =
λ

2
1 (3.8)

This together with the constraint ∑
4
i=1 αi = 1 gives us the optimal weight vector α as:

α =
Ω−11

1T
Ω−11

(3.9)

3.3 Experimental Analysis

On the UNBC-McMaster dataset, we performed 5-fold cross validation with each fold

consisting of 5 subjects. We used the same training/test splits for the three stages in each

iteration. One of the 4 training folds is randomly selected as the validation set during neural

network training. After 5 iterations, we concatenated all the test samples and calculated the Mean

Absolute Error (MAE), Mean Squared Error (MSE), Intraclass Correlation Coefficient (ICC)

and Pearson Correlation Coefficient (PCC). ICC is useful when MAE scores are deceptively low.

For example, for the current dataset, if the model outputs the average VAS for all samples, the

MAE will be 2.44, but the ICC will be approximately zero. So we want a model with low MAE

and high ICC.

For all models in this paper, we performed the 5-fold cross validation 5 times, and report

mean and standard deviation of MAE, MSE, ICC and PCC over 5 runs of the 5-fold cross

validation. To ensure reproducibility, we used the same set of random seeds to make sure all

models are trained and tested on the same data and have the same initial states. We run all our

experiments on a single GPU (NVIDIA GeForce RTX 2080); it takes about 4 hours to train a

three-stage model using 4 folds of the UNBC-Mcmaster data.
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3.3.1 Relationship between Frame- and Sequence-level Metrics in the
Data

Relationship between Sequence-level Metrics

The correlation between the 4 sequence-level scores in the UNBC-McMaster dataset is

shown in Fig. 3.4 top left block. We can see from the heatmap that VAS, AFF and SEN are

highly correlated, and OPR is also correlated with these 3 self-rated scores but not as much.

OPR AFF SEN

(a) VAS vs OPR/AFF/SEN
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(b) VAS vs OPR distribution for each subject

Figure 3.3. 2D histogram of distribution of sequence-level score pairs. Mass above the diagonal
represents videos where the observer (OPR) underestimated the patient’s VAS.

Figure 3.3(a) shows the joint distributions of VAS with OPR, AFF and SEN plotted as

2D histograms. It can be seen that although VAS is linearly correlated with the three other scores,

they are not strictly proportional.

Relationship between Sequence-level and Frame-level Metrics

Fig. 3.4 shows the correlation between the frame-level and sequence-level pain scores.

We see again the high correlations between the sequence-level measures and some correlation
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Figure 3.4. The correlation between 4 sequence-level scores (VAS, OPR, AFF, SEN) and 10
frame-level scores (9 AUs and PSPI) in the data. On the left is the correlation at the frame level,
where the VAS for a frame is the VAS of the video it belongs to. On the right is the correlation at
the sequence level, where the maximum AU/PSPI for a video is taken.

between the frame-level measures. Of the sequence measures, OPR generally has a higher

correlation with the AUs and PSPI. This shows the potential of predicting sequence-level pain

ratings from frame-level measurements.

Sequence-level Metric Estimation using Frame-level Metrics

In [XdS20], we analyzed the last two stages of our model using true PSPI and AUs

to predict VAS and showed that such a model can achieve an MAE of 1.73 and ICC of 0.61,

outperforming the human labeler (MAE=1.76, calculated using OPR provided). In this paper the

last two stages use predicted PSPI and AUs output by our stage 1, thus will likely result in worse

performance, but this current approach does not need manual labeled AUs on test data and can

be used on videos directly making it much more practical.

3.3.2 Stage 1: PSPI Estimation using Multitask Learning

The performance of our stage 1 PSPI prediction model is shown in Table 3.1. In order to

better understand the importance of different components, we did ablation analyses to explore
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the importance of components. We found that improving PSPI estimation in stage 1 doesn’t

necessarily improve VAS estimation in stage 2 or 3. So for the well-performing models in stage

1, we continued to look at the final performance on VAS directly in Table 3.2 to decide which

one is better.

Multitask Learning in S1. Comparing rows 1 and 2 in Table 3.1 shows that multitask

learning of AUs helps the model to better predict PSPI. In Table 3.2, comparing “PSPI+AU

MTL” in the “Stage 1” column to “PSPI” rows shows that multitask learning in Stage 1 also

helps the model better predict VAS.

(a) AU Description. PSPI=AU4+max(AU6,AU7)+max(AU9,AU10)+AU43) (b) Output PSPI

(c) Output PSPI and 9 AUs

Figure 3.5. Contributions of pixels for two frames are explained in the figures above. (b) explains
the baseline stage 1 VGG model predicting only PSPI, and (c) explains the multitask learning
VGG model predicting PSPI and 9 AUs. The first frame has a PSPI score of 0 and corresponds to
the first row in each of the two figures. The second frame has a PSPI score of 6 and corresponds
to the second row. The first column in both (b) and (c) is the input image, and other columns
correspond to model outputs. Larger absolute SHAP value (corresponding to darker pixels)
means larger contribution of a pixel to the corresponding output. For example, in (c), when
predicting AU4, the model focuses on the area around eyes and eyebrows, especially the inner
portion of the eyebrows and the area between them, which is consistent with the description of
AU4.

To better understand this aspect, we plot the contributions of image pixels to the outputs

using SHAP introduced by [LL17] in Fig 3.5. SHAP is a framework that interprets complex
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models by assigning each feature an importance value for a particular prediction. Pixels with

larger absolute values of SHAP (darker red on the image) reflect a greater influence on the output.

In Fig 3.5, the 1st column in (c) shows the PSPI output of the MTL model has captured more

meaningful pixels on the face compared to the baseline model (Fig 3.5 (b) 2nd column). E.g. we

can see clearer outlines of the eyebrows, the eyes, the nose and the mouth. Fig 3.5 (c) shows that

many of these areas are relevant for the prediction of several AUs, such as eyebrows in AU4, eye

area in AU7 and AU43, corners of the lip and nasolabial furrows in AU12, mouth in AU25, etc.

Note this is true even though some of the AUs are not well learned because of a lack of training

data (AU10 and AU20 both are present in less than 1000 frames).

We also tried ensemble learning in stage 1, where we viewed the PSPI prediction as

one expert and a PSPI score calculated from AU predictions as another expert, and used the

same method in section 3.2.4 to obtain an ensembled PSPI prediction. The performance was not

improved by doing this, possibly because PSPI and AUs are not as “complementary” in stage 1

as the 4 scores in stage 2.

The ICC of the outputs of the multitask learning S1 model is shown in Fig 3.6. The

model learns PSPI more accurately than most AUs, possibly because it has more samples with

positive PSPI scores. Poor performance has been observer in AU4 and AU20 due to the lack of

positive samples.

Figure 3.6. ICC of PSPI and AU predictions of the MTL S1 model

Benefit of Transfer Learning. We observe the benefit of transfer learning in stage 1 in

62



row 2-5 in Table 3.1. Pretraining on face recognition (VGGFace) outperforms pretraining on

general object recognition (Imagenet), and training from scratch simply fails. Using VGG16

pretrained on ImageNet instead of VGGFace in the final model is also shown to increase the

MAE in Table 3.2 “ImageNet PSPI+AU MTL” under “Stage 1 Model”.

In our stage 1, we take a pretrained VGGFace model and replace the last layer with a

regression layer, and learn this new last layer while fine-tuning the other layers, but the trained

VGG16 model can also work as a feature extractor without fine-tuning, e.g. in [ZGKS18]. This

will save a lot of training time, but it doesn’t work as well for our model, as shown in “No

finetuning” under “Stage 1 Model” in Table 3.2

We also compared our method fine-tuning the VGGFace model to extract AU/PSPI scores

with using the commercial software iMotions (imotions.com) to detect the face and automatically

estimate AU intensities for each raw frame. AUs and computed PSPI from iMotions are not on

the same scale as AUs we use here, so they are not directly comparable, but iMotions AUs can

be used as input to train our stage 2 and 3 to predict VAS. The result is shown in row “iMotions

PSPI+AU” under “Stage 1 Model” in Table 3.2. AUs from iMotions are not as good as AUs

from our transferred S1 model, but perform better than our transferred S1 model pretrained on

ImageNet (“ImageNet PSPI+AU MTL” under “Stage 1 Model” in Table 3.2).

Face Pre-processing. For comparison purposes, we also trained our model on aligned

and warped faces. We used the provided 66 AAM facial landmarks to pre-process the face

images following procedures in [ALC+09, LCP+11a]. As described in [ALC+09, LCP+11a],

the shape s of an AAM is described by a 2D triangulated mesh defined by coordinates s =

[x0,y0,x1,y1, ...,xn,yn] where n is the number of vertices. The shape s can be expressed as a base

shape s0 plus a linear combination of m shape vectors si:

s = s0 +
m

∑
i=1

pisi (3.10)

where the coefficients p = (p1, . . . , pm)
T are the shape parameters. These shape parame-
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ters can typically be divided into rigid similarity parameters ps and non-rigid object deformation

parameters po, such that pT = [pT
s , pT

0 ]. Following [ALC+09, LCP+11a, RCG+17], we use

Generalized Procustes Analysis to align the faces. This removes all rigid geometric variation ps

in Eq (3.10) by translation, scale, and rotation. We also applied a piece-wise affine warping to

each triangle in the mesh to warp/frontalize the faces and then masked them following [RCG+17].

This step removes all variation p in Eq (3.10).

The results are shown in the last two rows in Table 3.1. Alignment and warping reduce

the MAE in PSPI prediction. However, final VAS prediction was not improved significantly

(Table 3.2 last two rows). One explanation can be that stage 1 model has been pre-trained with

faces without alignment or warping, so it can deal with varying scales, rotations and positions.

Another reason is that shape information is very important in pain detection and face warping

removes these cues and keeps only texture information. Similar conclusions have also been made

in [ALC+09] where S-APP (similarity normalized appearance representation) of AAM features

which applies the same transformation as our warping yields the worst performance. The fact

that alignment and warping is more helpful for the frame-level model than the sequence-level

model also indicates that the movement of facial points may provide useful temporal information

in identifying pain expression, so alignment/warping across images may help pain detection in

still images, but not in videos.

We have also compared warping using all 66 facial landmarks to results using a reduced

set with 37 landmarks in order to keep useful information as in [RCG+17] and didn’t see much

difference.

The process of alignment and warping involves AAM landmarks provided by the dataset,

which were obtained by hand-labeling and pre-processing of the data. Requiring AAM landmarks

on new test datasets would make this method very expensive.
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Figure 3.7. Average MAE matrices on training, validation and test data. y axis is the true label,
and x axis is the prediction (or the mean of the 4 predictions). Each entry is the mean absolute
difference between the two variables.
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Figure 3.8. Bar graphs (ordered by subject id) showing the per-subject MAE of different nodes
predicting VAS

3.3.3 Stage 2 and 3: VAS Estimation using Extended Multitask Learning
of Multidimensional Pain Scales

Using the PSPI (and AU) estimations from stage 1, we trained a neural network to predict

VAS. Ablation analyses in this section follow and are compared to [XdS20].

S2 Performance. We first observed the performance of each of the 4 outputs from stage

2, shown in Fig 3.7, after re-scaling each variable to 0-10. Interestingly, the best approximation

of a metric is not always given by its corresponding output. OPR output does a better job in

estimating OPR than other outputs. The same is true for AFF. However, OPR output gives a

better estimate of VAS than the VAS output. This is possibly because OPR is also based on facial

videos, whereas VAS involves other factors that may not be determinable from video frames,

and OPR is also more consistent across subjects. So as a result, OPR is an easier measure to be
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Figure 3.9. Bar graphs (ordered by OPR-VAS) showing the per-subject Mean Error of different
nodes predicting VAS

estimated by a computer vision model across subjects. At this point, in order to achieve the best

performance on VAS estimation, the OPR output should be used instead of the VAS output.

Following [XdS20], other than using 9 statistics of PSPI predictions as input, we also

tried using a length-10 vector concatenating the maximum of PSPI and 9 AU predictions as

input to S2, corresponding to “PSPI+AU max” rows under “Stage 2 Input” in Table 3.2. Unlike

in [XdS20] where the model was trained with hand-labeled AUs, statistics of PSPI perform better

than maximums of PSPI and AUs. This is possibly because our S1 model doesn’t predict AUs

perfectly. As a result, while true AUs work better as features for S2, predicted AUs are worse

than predicted PSPI statistics.

PSPI AU4 AU6 AU7 AU10AU12AU20AU25AU26AU430.0

0.1

0.2

0.3

0.4 VAS
OPR
AFF
SEN

(a) Max of true PSPI and AUs as input
PSPI AU4 AU6 AU7 AU10AU12AU20AU25AU26AU430.0

0.2

0.4

0.6
VAS
OPR
AFF
SEN

(b) Max PSPI and AU predictions as input

Figure 3.10. Contributions of each of the maximum measurements to the S2 model outputs.
The heights of the bars represent feature importance measured as the mean absolute shap values.
Error bars show the standard deviation of the mean absolute shap values.

Input Importance in S2. We plot the contribution of input features for the S2 model

predicting sequence-level scores using frame-level predictions from S1 in Fig 3.10(b) and 3.11(b),
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(a) Statistics of true PSPI as input
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(b) Statistics of PSPI predictions as input

Figure 3.11. Contributions of each of the statistics to the S2 model outputs. The heights of the
bars represent feature importance measured as the mean absolute shap values. Error bars show
the standard deviation of the mean absolute shap values.

and compare them to versions using true AU and PSPI as inputs (as studied in [XdS20]. We

plot them in (a) in both figures). When using the max of PSPI and AU predictions as input,

unlike Fig 3.10(a), PSPI is the most important. This is because our S1 model learns to predict

PSPI much better than AUs as there are more positive samples. So although AUs are useful to

multi-task train PSPI, the AU predictions are not good enough to be used in subsequent stages.

This explains why in Table 3.2, different from [XdS20] where using the max of PSPI and AU

yields the best performance, when PSPI and AUs are learned from S1, using PSPI statistics as

input leads to better performance than using AU maximums.

For both Fig 3.10(a) and (b), PSPI contributes more to OPR than self-rated pain scores,

which makes sense because PSPI is designed based on human observer’s understanding of pain.

In Fig 3.4 OPR is also the most correlated sequence-level score with PSPI.

When using statistics of PSPI as input, Fig 3.11 shows that when the model uses the

predicted PSPI values instead of the true ones, more statistics are considered important, with the

95th percentile feature (a form of trimmed or robust max) the most important.

Benefit of S3. Since the four S2 outputs are all performing well in VAS prediction, we

can regard them as outcomes of different experts trying to predict VAS, and learn an ensemble

model on top of them. This third stage of our model has been discussed in Section 3.2.4 and

experimental results are shown in row 7-9 in Table 3.2. The optimal weights were found on
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training and validation data, and the ensemble outperforms each of the 4 outputs on the test data.

Fig 3.8 plots the MAE for each of the 25 subjects. For a single subject, S3 VAS prediction

may not beat S2 VAS output or S2 OPR output when used to estimate VAS, but in general the

combined S3 score outperforms one of the S2 outputs, and for some of the subjects outperforms

both. The ensemble learning model in stage 3 works well in deciding how to best weight the S2

outputs.

Fig 3.9 plots the Mean Error for each subject. In Fig 3.3 (b) we can see for most of the

subjects, the human observer tends to either overestimate or underestimate pain for the same

patient, so the heights of the OPR vs. VAS bars are meaningful. However, the third bar is always

lower than the second bar, and this is because our model is trained on all subjects and the human

overall underestimates pain, so that S2 learns to output smaller estimations for OPR than VAS.

It’s also interesting that in Fig 3.9 the last bar is almost always lower (closer to negative

infinity) than both the second and the third bar. This is because S1 and S2 of our method have

been optimized for weighted MSE loss. This is a common approach to handle imbalanced

data. [WXL+17] has suggested to use weighted MSE/MAE as evaluation metrics for this

imbalanced dataset, but most work still report unweighted metrics which reflect the errors on the

true distribution of the data. However, the weighted MSE trained model is thus not optimal for

the evaluation metrics (unweighted MSE/MAE) on the current data distribution. In other words,

the model is not unbiased because it is trained with weighted MSE loss, not MSE loss. We found

that simply adding a constant to the output of S2 to make the VAS prediction unbiased will

reduce the MAE of S2 VAS prediction from 2.20 to 2.01 and MSE from 6.53 to 6.08. The same

trick doesn’t work as well for the S3 output, which will only reduce the MAE of S3 by at most

0.01. This indicates that S3, optimized for MSE, can “calibrate” the bias in S2 outputs, possibly

through assigning higher weights to smaller S2 predictions. This explains why in Fig 3.9 S3

VAS prediction is almost always lower than both OPR and VAS output by S2.

Multitask Learning in S2. Our S2 model again uses multitask learning and the 4

pain scales share the same hidden layer. In Table 3.2, we show that multitask learning using
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multidimensional pain (row 1-3 vs 4-6) in stage 2 improves VAS prediction.

We analyze variations of the extended multitask learning model similar to [XdS20] in

Fig 3.12. None are significantly better. “4 scores MTL” corresponds to body row 8 in Table 3.2,

which is the final model.

In order to show that multitask learning in stage 2 is also helpful for stage 3, we trained 4

separate networks for the 4 scores with no shared parameters. We combined these scores using

the same method for learning an ensemble model and obtained a final prediction of VAS. The

performance (body row 10 in Table 3.2 and “4 scores” bar in Fig 3.12) is slightly worse than

using multitask learning at this stage.

In order to compare the importance of ensemble learning to that of multitask learning,

we trained a model with the same structure as our best model, i.e. with 4 neural network outputs

and ensemble learning on top of them, but instead of using 4 different pain scores as labels

for S2 outputs, we trained each of the 4 outputs with identical VAS labels (but different initial

conditions). The corresponding bars “VAS×4 MTL” shows that an ensemble of 4 VAS is not as

good as our final model (ensemble of multidimensional pain), but is much better than learning

only 1 VAS, so the ensemble learning method contributes a lot to the final performance.

This observation lead us to train our S2 model to learn several copies of 4 scores (or

VAS) and learn stage 3 on top of them so that S3 has more variant input “experts” to ensemble.

We tried 4 copies of 4 scores and 16 copies of VAS and show results in “4 scores × 4 MTL” and

“VAS × 16 MTL” in Fig 3.12, and “4 scores × 4 MTL” under “Stage 2 Output” in Table 3.2).

While increasing the risk of overfitting, increasing the number of outputs of S2 by learning

multiple versions for the same variables doesn’t result in significant improvement in final VAS

estimation.

Lastly, it should also be noted that learning the weights in stage 2 and 3 together through

back propagation didn’t give as much improvement as in the “extended multitask learning” where

we learned to predict multiple pain dimensions first and combine them afterward.
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Figure 3.12. Bar graphs showing the S3 VAS output MAE, MSE, 1-ICC, 1-PCC of the following
different S2 models using 2 different combinations of input (stats of PSPI prediction, max
of PSPI and AU prediction) of frame-level predictions: (1) 4 scores MTL: (Our final model)
Predicting 4 scores using multitask learning. (2) 4 scores: Predicting 4 scores using 4 separate
models. (3) VAS × 4 MTL: Predicting 4 VAS using multitask learning. (4) VAS × 4: Predicting
4 VAS using 4 separate models. (5) 4 scores × 4 MTL: Predicting 4 copies of 4 scores using
multitask learning. (6) VAS × 16 MTL: Predicting 16 copies of VAS using multitask learning .

3.3.4 Comparison with Other Work

We compare to results from previous work estimating VAS using the UNBC-McMaster

dataset or a child pain dataset in Table 3.3. The child pain dataset contains facial video from

children aged 10 to 15 who had undergone medically necessary laparoscopic appendectomy.

Details of this dataset can be found in [XCD+18]. Without retraining, we tested the model

trained on the UNBC-McMaster dataset with 134 videos of 70 subjects from the child pain

dataset. Our 95% Confidence Interval of MAE on the shoulder pain dataset is 1.95± 0.0526

and that of ICC is 0.43±0.0175. If we assume equal variability for the previous state-of-the-art

[LPS+17] (not provided in the paper), our MAE is significantly lower (p = 0.0002). In [XHdS19]

we also applied our model with no extra fine-tuning to a dataset of children post surgery and

outperformed our earlier performance with a model based on iMotions [XCD+18].

3.3.5 Comparison with Human

Since OPR is obtained from human observers estimating the subject’s pain level, we can

see OPR as human’s estimation of VAS, and compare it with our model. The results are shown

in Table 3.4 in row 1-2. The human predicts VAS better than our model.
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From the per-subject MAE plot Fig 3.8, we can see that human is not always better than

the model. For almost half of the subjects, the model performs better than the human.

The model and human also don’t seem to make the same mistakes, i.e. the model may

perform pretty well on a subject the human fails at. The correlation between the error (difference

between VAS and the estimation) of human estimation of VAS and the error of model estimation

of VAS over videos is 0.5, which also shows that our model is not very highly correlated with

OPR.

This indicates that our model learns additional information than human observers. Based

on this observation, we take an average of OPR and the model output, and show the results in

row 3 Table 1.3. The average outperforms the human. This shows the potential of our machine

learning system for a clinical settings. When a human’s estimation is available, a more accurate

estimation of the VAS score of a patient can be obtained by simply averaging our model’s

prediction and the human’s rating. When a human observer is not present, the model can serve

as a cheap, consistent monitoring system that provides live feedback that is almost as accurate as

human observers.

3.3.6 Comparison with Model using True AU/PSPI labels

The last two rows in Table 3.4 shows the performance of a model with the same structure

as our last two stages but using true AU and PSPI as input. Details of this model can be found

in [XdS20]. Because our S1 is not making perfect predictions, our final results (and its average

with human) are not as good as [XdS20]. But the large difference between row 1 and row 4 (as

well as row 3 and row 5) in Table 1.3 indicates that there is a lot of space for improvement of our

S1.

3.4 Conclusions and Future Directions

We propose a three-stage model to predict VAS in facial videos directly, and propose a

method using multitask learning, multidimensional pain measurement and ensemble learning
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to effectively improve the performance of the model. Our approach achieves state-of-the-art

performance on the UNBC-McMaster Shoulder Pain dataset. Our MAE (1.95) is not as good

as human observers (1.76), but our model is cheaper and more consistent than humans. In the

UNBC-McMaster dataset, simply averaging our prediction and the human prediction reduces the

MAE to 1.58.

Our model can be broken into two parts similar to other work on video analysis, where

the first part (stage 1 of our model) focuses on frame-level feature extraction and the second part

(stage 2 and 3 of our model) uses the previous stage outputs to learn sequence-level targets. We

can improve the model at each of the parts. Our model is not as good as [XdS20] (MAE=1.73)

which uses true labels instead of predictions of AUs, indicating that if our stage 1 can achieve

better prediction of AUs, our final VAS prediction will also be improved. Our future work will

include exploring different deep models, e.g. a model that is designed and trained to recognize

AUs, to improve AU and PSPI estimation and further improve VAS prediction.

For the second part, the sequence-level model, we have studied the difference and

relationship between multidimensional pain scores, and designed an extended multitask learning

framework to take best advantage of them. However, the difference and relationship between

patients has not yet been explored. Since VAS is subjective and facial expressions of pain may

also be different for different people, we will learn different models to predict pain levels for

different patients, and an optimal ensemble of these models with a goal of generalizing better to

new subjects. Moreover, we can also try to learn similarities between subjects in terms of their

facial expression to pain level mapping. Then given a new video of a new subject, we can use

the model(s) of the most similar subject(s) to determine the pain score.
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Table 3.3. Comparison with Other Work

Model Dataset MAE ICC AUC
pRNN-HCRF (p=1) [MRP+17] UNBC 2.47±0.18 0.36±0.08
pRNN-HCRF (p=2) [MRP+17] UNBC 2.46±0.23 0.34±0.04

DeepFaceLIFT [LPS+17] UNBC 2.18 0.35
EMTL (this paper) UNBC 1.95±0.06 0.43±0.02

TransferLearning [XCD+18] Child - - 0.72±0.02
Extended MTL (Our Model) Child 2.22±0.10 0.33±0.05 0.76±0.01
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Chapter 4

Personalized Pain Detection in Facial
Video with Uncertainty Estimation

4.1 Introduction

Two types of pain metrics are considered in pain studies [ALC+09]. In facial video pain

recognition, frame-level pain metrics are calculated from the intensity of objective facial muscle

movements called facial action units (AUs) defined by the Facial Action Coding System (FACS).

A commonly used combination of pain-related action units developed by [PS08] is called

the Prkachin and Solomon Pain Intensity(PSPI) measure PSPI: PSPI=AU4+max(AU6,AU7)+

max(AU9,AU10)+AU43). The AU descriptions are: AU4 brow lowering, AU6 cheek raising,

AU7 eyelid tightening, AU9 nose wrinkling, AU10 upper lip raising, AU12 oblique lip rais-

ing, AU20 horizontal lip stretch, AU25 lips parting, AU26 draw dropping, AU43 eye closure.

Sequence-level pain metrics are overall pain levels rated by observers or the subjects themselves.

The current gold standard to evaluate pain is the sequence-level self-rated Visual Analog

Scale (VAS). Automated pain evaluation systems developed to help detect pain [SAD+15,

XHdS19, XCD+18, LPS+17, MVJP17] can usually be broken down into two stages: Stage 1

predicts the PSPI score in each frame, and Stage 2 learns VAS using predicted PSPI scores in a

video. This work follows the same two stage approach to predict VAS.

Pain is a personal, subjective experience, and VAS is a noisy label that differs in its

relationship to facial expression across subjects. This makes automated pain estimation difficult
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when generalizing to subjects not in the training dataset. To address this issue, Martinez et

al. introduced a facial expressiveness score, unique for each person, but their method requires

labeled data for new subjects [MRP+17]. Liu et al. personalized the estimation of self-reported

pain via a set of hand-crafted personal features including age, gender and complexion [LPS+17].

The labeling of these personal features is easier, but still the model can’t automatically generalize

to unseen subjects. There are also works tackling pain personalization in images instead of

videos [RMZ+20, RTK+21].

In this work, we propose a systematic way to model the noise and bias in VAS in different

subjects, and design a pain estimation model that can be optimized for new subjects using

uncertainty estimation.

4.1.1 Uncertainty in Machine Learning Models

Uncertainty can be generally categorized into two types: epistemic or aleatory [DKD09,

KG17]. Epistemic uncertainty can be reduced given enough data, while aleatoric uncertainty

captures noise that is inherent in the observations.

In a supervised learning problem, suppose data points (xi,yi) are related via a model

yi = f (xi)+ εi, where f is the true function that maps data input to output, and εi is the noise

inherent in the observations with zero mean and variance σ2
i . A machine learning model seeks

to find a function f̂ (x;D) that approximates the true f (x) as well as possible, using training data

D = {(x1,y1),(x2,y2), ...,(xn,yn)}. Using mean squared error to evaluate the approximation,

then given a new observation (x,y), the expected squared error between f̂ (x;D) and y is:

E[(y− f̂ (x;D))2] (4.1)

=E[( f (x)+ ε− f̂ (x;D))2] (4.2)

=E[ε2 +( f (x)− f̂ (x;D))2 +2ε( f (x)− f̂ (x;D))] (4.3)

=σ
2 +E[( f (x)− f̂ (x;D))2] (4.4)
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Equation (4.4) follows from (4.3) because ε is independent of f̂ .

σ2 is often called the irreducible error. It is a property of the data, not the model, so it

captures the aleatoric uncertainty. The second term doesn’t exactly capture epistemic uncertainty

because f̂ is only one deterministic model, but it is correlated to epistemic uncertainty, evaluating

how much the solution f̂ over D varies from the true solution f assuming infinite number of data

points.

Many authors have proposed to use neural networks to estimate the input dependent f (x)

as well as the variance σ2(x) of the prediction f̂ (x) [NW94, LPB17]. In this work, we make

the same assumption that the noise ε is input/subject dependent and can be predicted using a

machine learning model.

4.1.2 Contributions

• We learn personalized individual models to evaluate the current gold standard pain metric

VAS in video from video frames directly.

• We learn PSPI and VAS as a combination of the output of individual models to improve

the generalizability of the pain prediction model.

• We learn the uncertainty of VAS prediction of each individual model, and improve the VAS

prediction on new test subjects by adjusting ensemble weights based on the uncertainty of

individual predictions

• Our model beats the current state-of-the-art performance on the UNBC-McMaster dataset.

4.2 Methods

Our model uses the Extended Multi-Task Learning (EMTL) model described in [XHdS19]

as the baseline structure. The original EMTL model is trained using all training subjects together;

in this work we train individual models on data from individual training subjects, and explore
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ways to combine these individual models so that the ensemble prediction is optimal for samples

from test subjects.

4.2.1 Optimal Linear Combination of Individual Models

[XHdS19] proposed an optimal linear combination of multidimensional pain estimations

(VAS, OPR, SEN, and AFF) to obtain an improved prediction of VAS. This method works

very well in aggregating different aspects of pain to produce a better estimation. However, it

didn’t consider the subject-dependent aspect of pain, i.e. different patients having different

understanding of pain and expressing pain in different ways through facial expression.

We address this problem by training personalized models: instead of training one model

using all training subjects, we train several models each using video samples from one subject.

Consider each data point (x,y) as an observation of random variables (X ,Y ), and the

model for subject s is denoted as f̂s. We learn the final prediction of VAS as a weighted sum of

the predictions f̂s(x). The overall model f̃ can be represented as:

f̃ (x) = ∑
s

αs f̂s(x) = α
T f̂ (x) (4.5)

The solution to minimizing the MSE of the the final model E[( f̃ (X)−Y )2] subject to

∑s αs = 1 can be obtained using the Lagrangian function:

L(X ,λ ) (4.6)

=E[(Y −α
T f̂ (X))2]−λα

T 1 (4.7)

=E
[(

α
T (Y − f̂ (X))

)2
]
−λα

T 1 (4.8)

=α
T E
[
(Y − f̂ (X))(Y − f̂ (X))T ]

α−λα
T 1 (4.9)
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Setting the derivative of L(X ,λ ) with respect to α to zero:

E
[
(Y − f̂ (X))(Y − f̂ (X))T ]

α−λ1 = 0 (4.10)

The solution contains the error matrix:

α̂ =
Ω−11

1T
Ω−11

(4.11)

where Ω = E
[
(Y − f̂ (X))(Y − f̂ (X))T ].

What this means is that, if a subject generalizes to others better than another subject,

then the weight of the first subject should be larger than the weight of the second subject in the

ensemble model f̃ . The optimal linear combination takes into account the covariance between the

different estimators and is optimal for the whole data distribution in the sense of mean squared

error.

4.2.2 Ensemble using Predicted Variance

The optimal linear combination(OLC) model in section 4.2.1 only aims to reduce epis-

temic uncertainty, and helps the model generalize to data in the same distribution.

However, the data distribution is different for different subjects, and this is captured in

the first term σ2 in equation (4.4). In this section we propose to learn the variances of individual

model predictions to account for both aleatoric and epistemic uncertainties. In practice, we learn

σ̂2
s (x) to approximate (y− f̂s(x))2. This is not the variance exactly, but equals to the variance of

label noise if f̂s = fs.

The original MSE loss is only dependent on predicted means f̂s(x), and assumes the

same σ2 for all data points. This is not true especially across subjects because both x, facial

expression of pain, and y, the self-rated pain level VAS, are quite different across subjects. In

other words, for different subjects, (x,y) data are in different domains. Our variance prediction

model is able to predict such uncertainty due to domain shift, which can be used to determine
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parameters for the ensemble model. For example, if a video is quite similar to training subject 1,

and completely different from training subject 2, then the pain score prediction from the model

trained on subject 1 should have smaller σ2 for this sample than the model trained on subject

2, meaning this sample is out-of-distribution for subject 2 model and prediction from subject 1

model is more trustworthy, so that the ensemble model should assign higher weights to scores

output by subject 1 model.

The OLC model in section 4.2.1 can’t do this because the optimal weight in equa-

tion (4.11) is only dependent on training samples. We bring in σ̂2
s (x) which also depends on the

input x to predict the best weighting in the ensemble model for specific test samples.

Input-dependent Regularization Using Learned Variance

We propose a new loss function which applies Tikhonov regularization to integrate

predicted variance in personalized models:

Loss( f̃ ) = (y− f̃ )2 +βσ̃2 (4.12)

where

f̃ = ∑
s

as f̂s = aT f̂ (4.13)

σ̃
2 = var(ε̃) = aT

Σa (4.14)

a = [as] is the weight vector, f̂ = [ f̂s(x)] is the input vector, and Σ = diag(σ̂2
s (x)) is a diagonal

matrix where the learned variances are on the diagonal.

So the loss (4.12) can be expressed as

Loss( f̃ ) = aT (Ω+βΣ)a (4.15)

The first term is the MSE of the final prediction. It finds individual models that generalize
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well on the whole data distribution, and the MSE matrix Ω is the same as the Ω in equation (4.11),

and is learned on the training data. The second term on the other hand looks for models

performing better especially for the current video, and is different for each sample. At test

time, the ensemble model will calculate the optimal weights a for the loss above using the same

method as in section 4.2.1, using Ω learned from training data and Σ arising from the variance

prediction model σ̂2
s (x).

The optimal weight vector is determined by the following equation:

â =
(Ω+βΣ)−11

1T (Ω+βΣ)−11
(4.16)

Here because Σ is dependent on input, the optimal â is dependent on the input as well.

Maximum Likelihood Using Learned Variance

Another way we propose to integrate the input-dependent σ(x)2 is to use a maximum

likelihood estimation framework. When we apply the ensemble model on a sample (x,y), we

can represent the probability distribution of its output as a weighted sum of distributions of

candidates:

P(y|x) = ∑
s

πsPs(y|x) (4.17)

π = [πs] is the weighting coefficient, and should meet the condition ∑s πs = 1. The mean

and variance of Ps(y|x) are approximated by f̂s and σ̂2
s .

Note that y = f (x)+ ε(x) and E[y] = f (x), so the ensemble prediction is:

f̃ = ∑
s

πs f̂s (4.18)

If we assume a multivariate Gaussian distribution for y|x on the subjects, we have the
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probability of the training data:

P(D) ∝ ∏
(x,y)∈D

exp
(
(y−π

T f̂ )T
Σ
−1(y−π

T f̂ )
)

(4.19)

Maximizing the likelihood is equivalent to minimizing:

∑
(x,y)

(y−π
T f̂ )T

Σ
−1(y−π

T f̂ ) (4.20)

This has a similar form as the MSE in section 4.2.1, and the solution is similar to

equation (4.11):

π̂ =
W−11

1TW−11
(4.21)

where W = E
[
(Y − f̂ (X))Σ−1(Y − f̂ (X))T ].

Loss under Gaussian Assumption. In this section we make the strong assumption

of Gaussian noise in labels. We can actually do more with this assumption. For example, if

ε ∼N (0,σ2), then the distribution of y given x is:

P(y|x;σ
2) =

1√
2πσ2

exp
(
−(y− f (x))2

2σ2

)
(4.22)

The natural logarithm of the probability density function is:

lnP(y|x;σ
2) =−1

2
ln(2π)− 1

2
ln(σ2)− (y− f (x))2

2σ2 (4.23)

The first term is a constant, so in a feed-forward neural network, the maximum log-

likelihood estimation can be formulated as minimizing:

−L( f ;D) = ∑
i

(
(yi− f (xi))

2

2σ2
i

+
1
2

ln(σ2
i )

)
(4.24)
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This negative log-likelihood can be used as a loss function in a maximum likelihood learning

framework, and can be used in a neural network with split heads to learn f and σ2 at the same

time [NW94]. Note that MSE loss is a special case of this loss function when σ is constant

across all data points.

The reason we didn’t use this loss is that, we want to maximize the difference between

individual models f̂s, while what this loss does is to ensure a smoother and more general f̂s

across different data domains by allowing larger variances σ̂ for some samples.

4.2.3 Ensemble using Predicted Error

In the analysis above we ignored the correlation between the errors in individual model

outputs. It may not be true that the errors are independent, so in this section we generalize

the methods above to consider correlations between errors in different personalized model

predictions.

Instead of learning σ̂s(x), we use the same neural network structure as f̂s(x) to predict

ε̂s(x) which approximates y− f̂s(x). This allows us to calculate the covariance matrix Σ = [σi j] =

[εiε j] of the multivariate prediction.

To take covariance in prediction noise into consideration, we just need to replace Σ in

section 4.2.2 by Σ = [σi j] = [εiε j].

4.3 Experiments

4.3.1 Dataset

We developed our model based on the widely used UNBC-McMaster Shoulder Pain

dataset [LCP+11a]. It includes facial videos of participants suffering from shoulder pain while

performing a series of active and passive range-of-motion tests to their affected and unaffected

limbs on two separate occasions. The dataset has 25 subjects, 200 videos and 48,398 frames of

size 320 x 240 pixels in total.
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Algorithm 1: Pain Estimation Model Training
Data: D = (X ,Y ), Ds = data from subject s
Result: Model to predict y ∈ Y given x ∈ X
/* Train Stage-1 personalized models */

for s in training subjects do
train S1s using Ds
for x in D do

get predictions S1s(x)
end

end
/* Ensemble learning on Stage-1 predictions */

Over Dtrain, learn as to minimize the MSE of S1(x) = ∑s asS1s(x)
for x in D do

get predictions S1(x)
end
/* Train Stage-2 personalized models */

for s in training subjects do
train S2s using Ds
for x in D do

get predictions S2s(S1(x))
end

end
/* Train Stage-2b variance/error prediction models */

for s in training subjects do
train S2bs using Dtrain
for x in D do

get predictions S2bs(S1(x))
end

end
/* Ensemble learning on Stage-2 predictions using Stage-2b

uncertainty estimations */

Over Dtraining, learn error matrix to minimize the input dependent loss
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Figure 4.1. Stage 1 model structure. S1 and S1s’s have a similar structure to VGG16. They
are trained to predict PSPI and AUs. In our model S1s is trained with subject s, and OLC
parameters are learned to combine predictions from individual models to get a better ensemble
PSPI prediction.
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Figure 4.2. Stage 2 model structure using individual models. The baseline model [XHdS19]
uses OLC to combine four pain score, and we use OLC to combine individual models, and then
average the four scores to get the final estimation of VAS.
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Figure 4.3. Stage 2 model structure using individual models and uncertainty estimation. S2bs
models have the same structure as S2s and learns to predict (ys−S2s(x))2 after the S2s models
have been trained. This diagram uses variance predictions as an example. For error prediction
models, we simply replace all the “Var” with “Error” in this figure.
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Table 4.1. Frame-level PSPI Prediction

Stage 1 Model MAE MSE ICC PCC
Baseline 0.80±0.07 1.53±0.14 0.47±0.04 0.49±0.04

Personalized model 0.63±0.05 1.28±0.11 0.45±0.05 0.50±0.05

M
A
E

Figure 4.4. Stage 1 Performance.

The dataset has two types of labels: frame-level labels and sequence-level labels. Frame-

level labels include 66 AAM landmarks, 11 facial action unit (AU) [EF76] intensities and 1

PSPI [PS08] score. In the first stage of our model, we train individual models to predict PSPI as

well as AUs.

Sequence-level labels include the gold standard self-rating VAS pain score ranging from

0-10, as well as three other pain ratings: OPR (Observers Pain Rating - An estimate of the VAS

given by a human observer of the video) 0-5, AFF (Affective-motivational scale) 0-15 and SEN

(Sensory Scale) 0-15. The AFF and SEN measures are designed to separate the emotional and

sensory aspects of pain. Their properties are discussed in more detail in [GMD78, HGDM80].
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4.3.2 Algorithm, Model Training and Evaluation

Our model uses the EMTL model described in [XHdS19] as the baseline structure.

In [XHdS19], Stage 1 fine-tunes a VGGFace neural network with the last layer replaced by a

regression layer to predict frame-lavel PSPI and AUs from video frames, and Stage 2 uses a

fully connected neural network to estimate sequence-level pain scores using 9 statistics of PSPI

predictions in a video as features. The difference between our model and the EMTL model can

be found in Figures 4.1, 4.2 and 4.3.

The training algorithm of our pain estimation model is shown in Algorithm 1. Implemen-

tation details such as image pre-processing and optimization methods are the same as [XHdS19].

Following [XHdS19], we performed 5-fold cross validation with each fold consisting

of 5 subjects. We used the same training/test splits for all stages in each iteration. One of the 4

training folds is randomly selected as the validation set during neural network training. After 5

iterations, we concatenated all the test samples and calculated the Mean Absolute Error (MAE),

Mean Squared Error (MSE), Intraclass Correlation Coefficient (ICC) and Pearson Correlation

Coefficient (PCC).

For all models, we performed the 5-fold cross validation 5 times, and report mean and

standard deviation of MAE, MSE, ICC and PCC over 5 runs of the 5-fold cross validation.

(a) (y− f̂s)
2 (b) σ̂2

s

Figure 4.5. Personalized Model MSE on Individuals. Actual (a) and Predicted (b)
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(a) y− f̂s (b) ε̂s

Figure 4.6. Personalized Model Mean Error on Individuals. Actual (a) and Predicted (b)

4.3.3 Frame-level Pain using Individual Models

For the first stage, we train an individual VGGFace model for each subject. We didn’t

train from scratch but instead trained a Stage 1 model using all training subjects, and then

fine-tuned it for 10 epochs using data from each subject to get the individual model for this

subject. The model structure is shown in Figure 4.1.

The performance of individual models on their own subject’s data is good. The training

accuracy of individual models are higher on their own data than the training accuracy of the

model trained on all subjects. But the test accuracy on subjects not used for training is lower

for individual models. This is as expected because individual models can learn personalized

distributions better, but won’t work so well when used for other subjects.

We apply the optimal linear combination to individually trained models in section 4.2.1

to Stage 1, and show better performance on PSPI prediction (Table 4.1) and most AU predictions

(Figure 4.4). We didn’t use variance of S1 predictions based on inputs because looking at learning

curves, we noticed that the squared error or error of S1 predictions can’t be predicted using the

same VGG16 structure based on image inputs. The validation error of learning σ̂2 or ε̂ doesn’t

decrease while training.
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4.3.4 Sequence-level Pain using Individual Models

After getting predictions of PSPI, we train individual Stage 2 models to predict VAS. The

model structure is shown in Figure 4.2. The VAS prediction performance of the models is shown

in Table 4.2.

The first row is the original model proposed in [XHdS19], and is the previous state-of-

the-art. The second row uses personalized models for Stage 1, as described in section 4.3.3, and

Stage 2 remains the same except using PSPI predictions learned with optimal linear combination

on individual predictions. The performance is better than the first row, showing that learning

models tuned to individual faces and combining the outputs with OLC at Stage 1 helps both

PSPI prediction and VAS prediction.

The third row uses PSPI predictions based on OLC, as well as individual models in Stage

2 and OLC on top of individual VAS predictions. The performance is further improved. For

Stage 2 individual models, each model is trained from scratch on one training subject.

This shows that, even without uncertainty estimation, simply learning individual models

and running ensemble learning on top of the individual predictions can improve the performance

of the model on unseen test subjects significantly.

In Figure 4.5(a) we take one fold in one iteration as an example, and plot the MAE of

each individual model on each test subject. We can see that although clearly some subjects are

generally good as training or test subjects, there are significant differences across subjects, e.g.

subject 049 is easy to predict as a test subject, but its performance using the training subject 066

is not as good as subject 106 which is not performing as well using other training subjects. For

some of the test subjects, such as subjects 048 and 121, the MAE varies a lot across training

models.

It is also not true that a training subject always performs the best on itself. We don’t see

clear diagonal pattern in the square on the right side where the test subjects are in the same order

as the training subjects. For example, subject 155 performs better on models trained with subject
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047 and 096 than the model trained on itself.

We calculated a “cheating” MAE where we look at test performance in this plot and

choose the best training subject for each test subject, and the MAE is 0.26, showing great

potential for individual model ensembles.

4.3.5 Sequence-level Pain using Individual Models and Uncertainty
Estimation

In this work, we use the same structure as the Stage 2 sequence-level prediction models

to predict the error or variance of the predictions, and the final model is shown in Figure 4.3. For

each personalized model f̂s(x), we train models to predict (y− f̂s(x))2, and y− f̂s(x) using all

training subjects. These models are denoted as σ̂2s(x) and ε̂s(x) respectively, and we refer to

them as variance predictions and error predictions.

Figure 4.5 plots the average squared error (y− f̂s)
2 and the average predicted squared

error σ̂2
s of each individual model on each test subjects. For a test subject, we’d like the variance

prediction models σ̂2
s to be able to predict, from the training data, which training models will be

more reliable on test data, and they successfully recognize such differences. For example, test

subject 115 picks out training subjects 107 and 096 and 047 as having low mean squared error

predictions, and would weight them more using our input-dependent ensemble methods.

Similarly, Figure 4.6 plots the average (predicted) error. The error prediction models ε̂s

can not only learn the reliability of different individual models f̂s, but also their bias, e.g. they

all learn that subject 066 generally overrates his pain level, or the person is more stoic in their

facial expression of pain, and subject 107 tends to rate his VAS lower than shown in his facial

expression.

We test our four methods using uncertainty estimations: regularization using variance,

MLE using variance, regularization using error, MLE using error. For the regularization methods,

in practice, if there is enough data, β can be decided using cross-validation. In this work we

simply use the fixed β = 1/|Dtraining|.
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The last four rows in Table 4.2 show the models using personalized, input-dependent

uncertainty estimation proposed in section 4.2.2 and 4.2.3. They all improve the performance of

the model.

The variance in samples is large, resulting in relatively large standard deviation in the

performance metrics. However, as our train-test cross-validation splits were the same across

all models, we can perform pairwise tests which are much more sensitive in this case. We

performed a Wilcoxon signed-rank one-sided test and the p-value is < 0.0005 for all four

methods, supporting our hypothesis that our personalized models are significantly better than the

baseline model.

4.4 Conclusion

The relationship between perceived pain and facial expression of that pain is different

for different people. In this work we addressed this issue by creating a method that learns

data-dependent personalized models. Personalization is performed at stage one acting on video

frames and also at stage two predicting VAS from statistics of the PSPI measure. Uncertainty

estimation is used at the second stage to adjust ensemble weights to improve performance on new

subjects. We showed on the UNBC-McMaster Shoulder Pain dataset that our method improves

upon the non-personalized model and achieves the state-of-the-art performance.
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Chapter 5

Summary

In this dissertation, we build a deep learning framework to estimate self-rated pain level

from videos directly. We study the relationship between different levels of pain metrics, consider

the multidimensional measurements of pain, apply transfer learning on small datasets, and use

uncertainty estimation to optimize the prediction for a specific test sample.

Chapter 2 studies the relationship between sequence-level metrics and frame-level metrics.

Specifically, we explore an extended multitask learning model to predict VAS from human-

labeled AUs with the help of other sequence-level pain measurements during training. This model

consists of two parts: a multitask learning neural network model to predict multidimensional pain

scores, and an ensemble learning model to linearly combine the multidimensional pain scores

to best approximate VAS. Starting from human-labeled AUs, the model outperforms provided

human sequence-level estimates.

Chapter 3 learns sequence-level metrics based on frame-level automatically predicted

AUs with a software called iMotions. We apply transfer learning by training another machine

learning model to map iMotions AU codings to a subspace of manual AU codings to enable

more robust pain recognition performance when only automatically coded AUs are available for

the test data.

Chapter 4 learns a VGGFace neural network multitask learning model to predict AUs.

Combining with the model structure in Chapter 2, we build a 3-stage multitask-learning multidi-
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mensional pain deep model to predict VAS from videos directly.

Chapter 5 improves the model further using individual models and uncertainty estimation.

For a new test video, we jointly consider which individual models generalize well generally,

and which individual models are more similar/accurate to this test video, in order to choose the

optimal combination of individual models and get the best performance on new test videos. Our

structure achieves state-of-the-art performance on two datasets.

We closed the gap between frame-level and sequence-level pain metrics. We designed a

model that serves as a baseline of how well one can predict VAS using AUs. It can be combined

with pain estimation work on images to achieve end-to-end VAS prediction. In this case, the

performance shown by our model provided an upper bound on the accuracy that can be achieved

when using automatically estimated AUs instead of manually labeled AUs.

We have also shown that if we can achieve better predictions of AUs, the final VAS

prediction can also be improved. Although AU/PSPI prediction should be improved in a way that

also improves VAS prediction, because more accurate AU/PSPI doesn’t always leads to more

accurate VAS.

Our model based on AUs beat human observers, and our model based on videos achieved

the state-of-the-art performance on two datasets. In clinics, the model using manual AUs

outperformed human observer and can be used to teach human which AUs to focus on. The

model based on raw video was almost as good as human. So when a human observer is not

present, the model can serve as a cheap, effective and consistent monitoring system that is almost

as accurate as human observers. Moreover, when simply averaged with human predictors, the

model beat human alone. The model provided additional information than human observers. So

when a human observer is present, the model can be combined with human observers to provide

better estimates of pain than human alone.

Further, we studied the subjective nature of pain, and propose to improve pain estimation

using individual models. We combine individual models in a way that is not only optimal in

general, but also optimized for a new test sample.
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